English

FUJITSU Software

BS2000 OSD/BC V10.0

DMS Macros

User Guide

Edition June 2016

O
FUJITSU

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN 1SO 9001:2008

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2008.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © 2016 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Contents

1.1
1.2
1.3
14

21

2.2

2.21
222
223
224
225
226
2.2.7

23

3.1

Preface e e e e e e e e e 9
Objectives and target groups of thismanual 10
Summaryofcontents 1
Changes since the last edition of themanual 13
Notational conventions, 14
Overview of DMS mMacros & i i i i e e e e e e e e e e e e 15
Table of DMS macros (in alphabeticalorder) 15
DMS macros in order of function 18
File maintenance L 18
Controlling file processing 19
Data protection/security support L 20
Device and volume management 22
Accesstofiles 23
Generation of operand lists for control blocks, DMS tables,etc. 28
Output of information on files, volumes, devices,etc. 30
Comparison of macrosandcommands 31
Programming notes e e e e e e e e e e e 35
BTAM - Basic Tape Access Method 35
OPENmMmModes e e 37
BTAMrecord and block formats 38

U4250-J-Z2125-12-76

Contents

3.2

3.3

3.4

3.5

3.6

3.7

3.8

DIV-DatalnVirtual @ i i it i e i e e e e e e e e e e 39
Openingafile 40
Definingwindows e 44
Writing data back to the diskfile 45
Undoing modificationsinawindow, 46
Disablingawindow e 47
Closingafile e 47
EAM — Evanescent Access Method 48
MFCB (Mini File Control Block) 49
EAMprocessing e e e e 56
FASTPAM - Fast Primary AccessMethod 61
FASTPAM functions e 62
Processing files with FASTPAM 65
ISAM - Indexed Sequential AccessMethod 72
OPENmModes e 74
ISAM pointers e e 78
SAM - Sequential AccessMethod 81
OPENmModes e 82
UPAM — User Primary AccessMethod 89
OPENmModes e 92
UPAM for disk files 95
UPAM processing of tapefiles, 100
Chaining PAM macros inlistform 102
TU eventing: event-driven processingo 105
Fileslargerthan32GB @ i i it it e e e 108

U4250-J-2125-12-76

Contents

4 Macros e e e e e e e e e e e e e e e 13
ADDPLNK - Define pool linkname L. 113
BTAM — Process tape files (type S) L. 117
CATAL — Process catalogentry 130
Variations in different versions — VERSION=0/1/2/3 193
CHKFAR — Check file accessrights 196
CHNGE -Change TFTentry o 204
CLOSE -Closefile 205
COMPFIL — Compare disk files 209
COPFILE — Copyfile 218
CREAIX — Create secondary keys for ISAMfile 233
CREPOOL - Create ISAM pool 241
DECFILE — Convert encrypted file into unencryptedfile 249
DELAIX — Delete secondary key of ISAMfile 253
DELPOOL - Delete/release ISAM pool 257
DIV — Access files via virtual address space 261
DIV function: OPEN e 265
DIV function: MAP 273
DIV function: SAVE e 280
DIV function: RESET e 285
DIV function: UNMAP 291
DIV function: CLOSE e 295
DROPTFT —Release TFTentry 309
EAM — Process EAMfiles 312
ELIM —Eliminaterecord 314
ENCFILE — Convert unencrypted file into encrypted filen 316
ERASE —Erasefiles 322
Variations in versions — VERSION=0/1/2 387
EXLST — Define exitaddress list 391
EXRTN — Return from errorroutine 405
FCB - Define file control block 407
FCBAD —Create FCB addresses 449
FEOV —Closetape e 450
FILE — Define file attributes / control file processing 452
Variations in VERSION=0/1/2/3 518
FILELST — Create variable operand areas for FILEmacros 521
FPAMACC — Access FASTPAMfiles 525
FPAMSRV — FASTPAM management function 546
FASTPAM function: ENABLE ENVIRONMENT 551
FASTPAM function: ENABLE IOAREAPOOL 560
FASTPAM function: OPEN 567
FASTPAM function: CLOSE 576

U4250-J-Z2125-12-76

Contents

FASTPAM function: DISABLE IOAREAPOOL 579
FASTPAM function: DISABLE ENVIRONMENT 582
FSTAT — Request catalog information 596
Programming notes for VERSION=4 650
Programming notes (VERSION=2,3and4) 651
Programming notes for VERSION=0 and VERSION=1 660
Variations in versions — VERSION=0/1/2/3/4 664
Version variations in the representation of the outputarea 670
GET—-Read nextrecord 674
GETFL—-Readrecordbyflag., 679
GETKY — Get record with specifiedkey 688
GETR — Getrecord “reverse” e 691
IDBPL — Provide BTAM operand list with symbolicnames 694
IDFCB — Provide FCB with symbolicnames 695
IDFCBE - Provide FCBE with symbolicnames 696
IMPNFIL — Create (import) catalog entries fornodefiles 697
IDPPL — Provide PAM operand list with symbolicnames 706
IMPORT - Create catalog entry forfiles 707
INSRT —Insertrecord e 715
ISREQ —Unlockdatablock 717
LBRET — Return from user label routine 720
LFFSNAP — List filesfromaSnapset 722
LJFSNAP — List job variables froma Snapset 730
MAILFIL —Sendfilebyemail 738
NDWERINF — Evaluate statusbytes 748
OPEN —Openfile 749
OSTAT — Request information onopenfiles 753
PAM — Perform UPAM actions 755
PUT —Writerecord e 766
PUTX —Replacerecord e 769
RDTFT — Read TFT and TST information 772
RELSE —Close block e 780
RELTFT —Delete TFTentry o e e 782
REMPLNK — Delete pool linkname 787
RETRY —Repeatmacro 790
RFFSNAP- Restore filesfromSnapset 792
RJFSNAP- Restore job variables froma Snapset 802
SETL — Position file pointer 810
SHOPLNK - Return information on ISAM pool linknames 815
SHOPOOL - Return informationon ISAM pools 827
SHOWAIX — Request information on secondarykeys 843
STORE —Storerecord e 848
VERIF —Recoverfile 850

U4250-J-2125-12-76

Contents

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7

5.2
5.3

5.4

5.4.1
54.2
54.3
544
545
5.4.6
547
5438

5.5
5.6

Appendix e 857
Syntax presentation 858
Macroformat 858
Metasyntax used forthemacros Lo L 859
Obsolete metasyntax used forthemacros 861
Wildcards 863
Format of date specifications Lo o 864
Macrotypes 865
Standard header 869
DMS errorcodes i i i i it e e e e e e e e e e e e e e e 871
CALL interfacefor DIV e 876
Labels e e e e e e e e e e e e 879
Volume headerlabels L 879
User volume header labels (UVL1 through UVL9) 880
File header labels (HDR1 throughHDR9) 881
User file header labels (UHL) 886
End-of-volume labels (EOV1 through EOV9) 886
End-of-file labels (EOF1 through EOF9) 888
User file trailer labels (UTL) 889
Processing of label fields L 890
DMS dummy sections (DSECTs) i i it v it e e e 894
Formats of replacedmacros, 896
COPY —Copyfile. 896
REL —Delete TFTentry 896
GloSSary e e e e e e e e e e e e e e e e e 897
Related publications e 907
Index e e e e e e e e e e e e e 911

U4250-J-Z2125-12-76

Contents

U4250-J-2125-12-76

1 Preface

This manual describes the macros of the BS2000 Data Management System.

The Data Management System (DMS) is an autonomous subsystem within BS2000 and
forms the connecting link between the user-controlled accesses to data objects and the
central device drivers of the base system. DMS in turn makes use of certain services
offered by the base system.

DMS as a “distributed system”

DMS provides support primarily for data processing on public volume sets (often abbre-
viated to “pubsets”). In MPVS (Multiple Public Volume Set) systems, several such pubsets
are grouped together to form a single system.

MPVS systems are characterized by the fact that the individual pubsets can be managed
independently. Only the so-called “home pubset” and the pubsets which contain system
data need to be available throughout the session. The system can be distributed over
various pubsets. The system administrator can, as required, add or remove all other
pubsets, which do not contain system areas. The distribution of the system over various
pubsets and the mutual independence of the pubsets guarantee a high degree of avail-
ability.

For the BS2000 user this means that unless he explicitly requests private volumes, all of
his files are created on the pubset which the system administrator has defined as his default
pubset. He does not need to request volumes or devices, and DMS also manages his
memory requirements.

A file catalog is kept in each pubset for each user who is authorized to access this pubset.
All user files are uniquely identified by the user ID and the catalog ID (the ID of the pubset
on which the catalog is kept). At the same time, this ensures that file access is permitted
only to the owner of the files unless he explicitly permits other users to access his files.

U4250-J-Z2125-12-76 9

Objectives and target groups of this manual Preface

1.1

Functions of the Data Management System

The Data Management System (DMS) enables users to process their data by using the
functions provided for or necessary for file processing:

— creating and managing files, including memory space management
— managing catalogs

— making files available and processing files using the access methods
— assigning files to programs.

In addition to this, DMS permits the user to define data and file protection features at the
file level. Data security is also supported by DMS, for example by setting locks during file
access.

The functions of DMS are implemented via the program interfaces (Assembler) described
in this manual and compatible command interfaces described in the manuals
“Commands” [3].

Objectives and target groups of this manual

This manual is intended for users who wish to manage or process their files with the aid of
the Assembler programming interface or to control data and file protection, data security,
etc. with the aid of the DMS macros.

10

U4250-J-2125-12-76

Preface

Summary of contents

1.2 Summary of contents

Chapter 1: Preface

This chapter contains information on the contents and structure of the manual and
documents changes implemented since the preceding version.

Chapter 2: Overview of DMS macros

This part of the manual lists all DMS macros in alphabetical order and by function.

Chapter 3: Programming notes

This chapter lists the individual access methods used by DMS and the macros and
operands available for the relevant access methods. This section focuses on features of
individual access methods which are relevant to programming.

Chapter 4: Macros

This part of the manual is intended for use as a reference section. It contains descriptions
of functions, syntax and operands for DMS macros. All macros are listed in alphabetical
order.

Chapter 5: Appendix

The appendix contains tables and lists referred to at various points within this manual.
It includes metasyntax and tables showing label formats for tape files, DMS error
messages, and a list of device and volume types.

References

The manual concludes with a glossary, a list of related publications, and an index.

Notes on using this manual

References to other manuals in the text are generally in the form of abbreviated titles
together with a reference number. The full titles can be found under “Related publications”
at the back of the manual.

A general description of DMS functions can be found in the “Introductory Guide to DMS” [1].

U4250-J-Z2125-12-76 11

Summary of contents Preface

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the SHOW-FILE command or an editor.

The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Currentinformation, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

12

U4250-J-2125-12-76

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface

Changes since the last edition of the manual

1.3 Changes since the last edition of the manual

The “DMS Macros” manual was last published for BS2000/0SD-BC V9.0. The following
major changes have been made since the last edition of the manual:

Changes to the macro interfaces

Overview of the changes to the DMS macro interface:

Macro / operand or RC Subject of the change

IMPNFIL New macro: Imports node files from a Net-Storage volume

FILE New operand NFTYPE determines the file type of a file on Net-
Storage. The file can be created as a BS2000 file or as a node
file.

FSTAT New operand FILTYPE for selecting BS2000 files or node files.

ERASE New operand FILTYPE for selecting BS2000 files or node files.

In the case of DELETE-OR-EXPORT node files are retained
(corresponds to the function of the EXPORT-NODE-FILES
command).

COPFILE New operand CHDATE specifies whether the target file is
assigned the change date of the source file.

The PROTECT=*SAME-AND-CHANGE-DATE specification is
still supported for reasons of compatibility.

Fundamental information on the use of Net-Storage in BS2000 is provided in the “Intro-
duction to System Administration” [7]. How to work with BS2000 files and node files on Net-
Storage is described in the "Introductory Guide to DMS" [1].

The device and volume type tables are contained in the "System Installation" manual [16].
Information on the volume types of DMS (Net-Storage and tape processing is provided in
the "Commands" manual [3].

General change

The name BS2000/0SD-BC for the BS2000 basic configuration has changed and from
Version V10.0 becomes: BS2000 OSD/BC.

Previous versions will be referred to by the previous name BS2000/0SD-BC.

U4250-J-Z2125-12-76 13

Notational conventions Preface

1.4 Notational conventions

The following typographical elements are used in this manual:

@ For notes on particularly important information

C This symbol designates special information that points out the possibility that
data can be lost or that other serious damage may occur.

[] References to other publications within the text are given in abbreviated form
followed by numbers; the full titles are listed in the “References” section at the
back of this manual.

input Inputs and system outputs in examples are shown in typewriter font

Information on the syntax used in macro calls will be found in the appendix (starting on
page 857).

14

U4250-J-2125-12-76

2 Overview of DMS macros

2.1 Table of DMS macros (in alphabetical order)

Macro Brief description

ADDPLNK ISAM: define pool link name

BTAM controls all BTAM actions

CATAL process catalog entry

CHKFAR check access rights to file

CHNGE change TFT entry

CLOSE close file

COMPFIL compare two disk files

COPFILE copy file

CREAIX ISAM: create secondary key for ISAM file
CREPOOL ISAM: create ISAM pool

DECFILE convert encrypted file into unencrypted file
DELAIX ISAM: delete secondary key of ISAM file
DELPOOL ISAM: delete/release ISAM pool

DIV access file via virtual address space
DROPTFT release TFT entry

EAM macro (type R)

ELIM ISAM: delete record

ENCFILE convert unencrypted file into encrypted file
ERASE delete files

EXLST specify exit address list (type O)

EXRTN return from error routines (type R)

FCB define file control block (type O)

FCBAD create FCB addresses (type O)

(Teil 1 von 3)

U4250-J-Z2125-12-76 15

Table of DMS macros (in alphabetical order) Overview of DMS macros

Macro Brief description

FEOV BTAM/SAM: close volume

FILE define file characteristics / control file processing
FILELST create variable operand areas for FILE macro
FPAMACC FASTPAM: formulate FASTPAM file accesses
FPAMSRV FASTPAM: formulate FASTPAM management calls
FSTAT request catalog information

GET ISAM/SAM: read next record

GETFL ISAM: read record after flag

GETKY ISAM: read record with specified key

GETR ISAM: sequential “reverse” read

IDBPL BTAM: BTAM operand list (type O)

IDFCB provide FCB with symbolic names (type O)
IDFCBE provide FCBE with symbolic names (type O)
IDMCB provide MFCB (EAM control block with symbolic name)
IDPPL UPAM: PAM operand list

IMPNFIL create (import) catalog entries for node files
IMPORT create (import) catalog entries for files

INSRT ISAM: insert record (type R)

ISREQ ISAM: clear lock (type O)

LBRET return from user label routine (type R)
LFFSNAP list files from a Snapset

LJFSNAP list job variables from a Snapset

MAILFIL send file to a user ID by email

NDWERINF BTAM: interrogate status bytes

OPEN open file (type R)

OSTAT 1ISAM: information about opened files (type R)
PAM UPAM: perform UPAM actions

PUT ISAM: write record

PUTX ISAM/SAM: replace record

RDTFT information from TFT and TST

RELTFT delete TFT entry

REMPLNK ISAM: delete pool link name

(Teil 2 von 3)

16

U4250-J-2125-12-76

Overview of DMS macros Table of DMS macros (in alphabetical order)

Macro Brief description

RETRY ISAM: repeat macro

RELSE close block

RFFSNAP restore files from a Snapset
RJFSNAP restore job variables from a Snapset
SETL ISAM/SAM: position in file

SHOPLNK ISAM: output information on ISAM pool link name
SHOPOOL ISAM: output information on ISAM pool
SHOWAIX ISAM: output information on secondary key
STORE ISAM: store record

VERIF restore file

(Teil 3 von 3)

U4250-J-Z2125-12-76 17

DMS macros in order of function

Overview of DMS macros

2.2 DMS macros in order of function

The following tables provide an overview of the functions of the macros described in this

manual.

Further details can be found in the descriptions of the macros and operands in this manual
or in the appropriate introductory chapters in the “Introductory Guide to DMS” [1].

2.2.1 File maintenance

File maintenance includes not only creating, copying, deleting or restoring files, but also
maintenance of the file catalog by the user.

Macro Operands | Brief description
CATAL creates or updates catalog entries.
COMPFIL compares two disk files
COPFILE copies files.
ERASE erases/exports files.
FILE creates a catalog entry and reserves storage space for noncataloged
files.
SPACE reserves or releases storage space.
STATE creates catalog entries for files on private disk.
FSTAT displays information from the file catalog.
IMPORT creates (imports) catalog entries for files
LFFSNAP lists files from a Snapset
LJFSNAP lists job variable from a Snapset
MAILFIL sends a file to a user by email
RFFSNAP restores files from a Snapset
RJFSNAP restores job variable from a Snapset
VERIF restores damaged files.

18

U4250-J-2125-12-76

Overview of DMS macros DMS macros in order of function

2.2.2 Controlling file processing

To enable a file to be processed by a program, it must be possible to set up a connection
between the two. This connection can either be defined in the FCB or, if the program uses
an internal file name (the file link name), be established using the FILE macro.

The connection is stored together with other information in the task file table (TFT). File
processing is thus controlled via the TFT.

For NK-ISAM files, file processing control also incorporates the management of user ISAM
pools, in which these files are processed. The user can also use standard ISAM pools of
the system, but then has no influence on pool size or reservation.

Macro Operands | Brief description

ADDPLNK assigns a pool link name to a user ISAM pool.

CHNGE assigns a new file link name to a file.

CREAIX creates a secondary key for an ISAM file.

CREPOOL creates a user ISAM pool.

DELAIX deletes secondary indices of an ISAM file.

DELPOOL deletes a user ISAM pool.

FCB FILE defines a fixed link between file and program.
LINK defines a file link name in the program.

POOLLNK | sets up a connection to a user ISAM pool.

FILE LINK creates a TFT entry; further operands describe the file and processing
attributes.

BLKCTRL | defines the file format.
NFTYPE defines the file type of a file on Net-Storage (BS2000 file or node file).
POOLLNK | sets up the link to the ISAM pool.

RDTFT displays TFT information.

RELTFT deletes a TFT entry.

REMPLINK deletes a pool link name.

SHOPLNK shows assignments of pool link names to ISAM pools.

SHOPOOL returns information on the attributes and occupancy of ISAM pools.

U4250-J-Z2125-12-76 19

DMS macros in order of function

Overview of DMS macros

2.2.3 Data protection/security support

The mechanisms for file and data protection automatically supported by DMS (access
authorization checks, etc.) can be extended by the user, e.g. with the aid of passwords.
Data security is assured by various mechanisms for recovering files or programs, etc.

File protection

Macro Operands | Brief description
CATAL SHARE controls shareability.
ACCESS controls the type of access.
OWNERAR defines, in the BASIC-ACL,
GROUPAR the access rights for user groups.
OTHERAR (see the “Introductory Guide to DMS” [1])
GUARDS when SECOS is used: provides enhanced access protection for files.
EXPASS
RDPASS define passwords for the various access levels.
WRPASS
RETPD specifies a retention period.
PROTECT | transfers protection attributes
CHKFAR checks the caller's file access rights.
COPFILE |PROTECT |transfers the protection attributes when a file is copied.
DECFILE converts an encrypted file into an unencrypted file.
ENCFILE converts an unencrypted file into an encrypted file.
FILE RETPD defines a retention period (valid only if specified when the file is opened)
FCB PASS permits access to password-protected files.
RETPD defines a retention period for a file.

20

U4250-J-2125-12-76

Overview of DMS macros

DMS macros in order of function

Data protection

Macro Operands | Brief description

CATAL DESTROY | specifies in the catalog entry that disk files or superfluous foreign data
on tape files are to be overwritten during deletion (cf. FILE: DESTOC).

ERASE DESTROY | specifies data destruction in conjunction with deletion.

DECFILE converts an encrypted file into an unencrypted file.

ENCFILE converts an unencrypted file into an encrypted file.

FILE DESTOC specifies that any data remaining on the tape in the case of a tape swap
or after closing a tape file is overwritten.

Data security

Macro Operands |Brief description
CATAL BACKUP specifies the frequency of automatic saving.
COPFILE REPLACE | specifies whether an existing file is to be overwritten during copying.
CREPOOL |WROUT writes updated blocks in ISAM files back to disk immediately.
EXLST defines exit routines for errors and other events.
FCB EXIT the address of an exit routine or of an EXLST macro.
WRCHK specifies a read-after-write check as a safeguard against recording
errors.
FILE WRCHK performs a read-after-write check as a safeguard against recording
errors.
WROUT writes updated records in ISAM files back to disk immediately.
VERIF restores file structures, unlocks files.
WRCPT writes a checkpoint / creates a checkpoint file for restart with the
RESTART-PROGRAM command.

U4250-J-Z2125-12-76

21

DMS macros in order of function

Overview of DMS macros

2.2.4 Device and volume management

DMS supports users in the processing of files on private volumes by making it possible for
them to reserve volumes and devices for their jobs.

Macro Operands | Brief description

FILE DEVICE defines devices and volumes for a file on private disk or on Net-Storage
VOLUME volumes.
MOUNT issues a mount request at the console for private disks.

IMPNFIL creates (imports) catalog entries for node files.

IMPORT creates (imports) catalog entries for files.

RELTFT deletes TFT entries and implicitly releases devices.

22

U4250-J-2125-12-76

Overview of DMS macros DMS macros in order of function

2.2.5 Access to files

Access to files is executed by calling action macros for the various access methods. DMS
also handles the opening and closing of files (OPEN/CLOSE processing) as a function of
the access method involved.

DMS macros for file processing (“service macros”™)

The DMS macros for file processing (i.e. the “service macros”) are macro calls which are
valid for all access methods.

Macro Brief description

CLOSE closes one or more files.

EXLST defines error exits.

EXRTN implements a return from EXLST routines.

FCB creates a file control block (FCB).

FCBAD creates the FCB in the literal pool of a program.

LBRET implements a return from user label handling routines (tape processing).
OPEN opens a file.

Macros specific to the access methods

A distinction is made between the following access methods:

- BTAM

- DIV

- EAM

— FASTPAM
- SAM

- ISAM

- UPAM

Access takes place in the familar way for encrypted files (with plain text content). Decryption
when reading and encryption when writing are performed internally and automatically. The
macros for file access in a program do not need to be modified for this purpose. Before a
file is opened it is only necessary to enter the associated crypto password in the crypto
password table of the accessing task. This can be done before the program is started.

In the tables below, the macros used for file access are assigned to the various access
methods.

U4250-J-Z2125-12-76 23

DMS macros in order of function Overview of DMS macros

BTAM (Basic Tape Access Method)

BTAM is an access method for block-oriented tape processing; it can also be used to
process tape files which were not created with BTAM. During processing of a tape file, the
direction in which the file is processed can be changed as desired within the file, and tapes
can be positioned to any desired block or section. BTAM processes files with or without
standard blocks.

Macro Brief description

BTAM controls all BTAM actions.
FEOV initiates a tape swap.
NDWERINF |interrogates the status bytes.

DIV (Data In Virtual)

The basis for file processing for a user is 4KB blocks. DIV can also be used to process files
that were not created with DIV.

Macro Brief description
DIV Process files with the DIV access method
— open afile

— define a window (i.e. a work area in virtual address space)

— write modified pages from the window back to the file on disk

— undo changes in the window

— release windows in virtual address space

— close afile, releasing any existing windows with default values, if applicable

EAM (Evanescent Access Method)

EAM is used to process task-specific temporary files in the SYSEAM area. It is a block-
oriented access method and is particularly suitable for rapid processing of task-specific

work files.
Macro Brief description
EAM Controls all EAM accesses

24 U4250-J-2125-12-76

Overview of DMS macros DMS macros in order of function

FASTPAM (Fast Primary Access Method)

FASTPAM is a block-oriented access method which always works with 4KB blocks.
FASTPAM can also be used to process files that were not created with FASTPAM.

Macro Brief description
FPAMACC | File access functions

— read and write blocks synchronously

— read and write blocks asynchronously

— wait for the end of asynchronous I/O jobs
— report the end of asynchronous 1/O jobs

FPAMSRV | Management functions

— enable the system environment (FASTPAM environment)
— enable /O areas (FASTPAM I/O area pool)

— open a file for processing

— close a file opened with FFAMSRV

— disable the system environment (FASTPAM environment)
— disable I/O areas (FASTPAM 1/O area pool)

SAM (Sequential Access Method)

SAM is a record-oriented access method. The records are stored sequentially in the file.

SAM lets users process records sequentially in either direction (beginning-of-file to end-of-
file or vice versa). For tape processing, SAM complies with all requirements of DIN 66029
up to exchange level 3. Files with either standard or nonstandard blocks can be processed.

Macro Brief description

FEQV initiates a tape swap.

GET retrieves the next record.

PUT writes the next record.

PUTX (locate mode only) replaces a record read by means of GET.
RELSE terminates a data block.

SETL positions to beginning-of-file, to end-of-file, or to a record.

U4250-J-Z2125-12-76 25

DMS macros in order of function Overview of DMS macros

ISAM (Indexed-Sequential Access Method)

The basis for file processing is the structure of an ISAM file with its index and data sections.
Each record contains a key and the keys are the criterion for sorting the record. For index
and data blocks, see the “Introductory Guide to DMS” [1].

Macro

Brief description

ADDPLNK

assigns a pool link name to a user ISAM pool.

CREAIX

creates a secondary index for an ISAM file.

CREPOOL

sets up a user ISAM pool.

DELAIX

deletes secondary indices of an ISAM file.

DELPOOL

deletes a user ISAM pool.

ELIM

deletes a record from the file.

GET

reads the records from the file sequentially.

GETFL

if flagged ISAM keys are used: reads the next record within the flag range
(sequentially).

GETKY

reads the first record with the specified key.

GETR

reads the records sequentially in reverse order.

INSRT

inserts a record into the file with a new ISAM key.

ISREQ

clears an ISAM lock.

OSTAT

informs the caller about the number and type of concurrent file accesses.

PUT

sequentially writes records to the end of the file (and also checks that the keys are in
the right order).

PUTX

replaces a record read previously.

REMPLNK

deletes the pool link name.

RETRY

after execution of the EXLST PGLOCK exit, resets the ISAM pointer and repeats the
last macro.

SETL

positions the ISAM pointer to the beginning of the file, to the end of the file or to a
specific record for subsequent processing.

SHOPLNK

provides information about the assignment of ISAM pools to pool link names.

SHOPOOL

provides information about attributes and assignment status of ISAM pools.

SHOWAIX

provides information about secondary indices of an ISAM file.

STORE

— inserts a record with a new ISAM key into the file, or

— overwrites a record with an existing ISAM key if duplicate ISAM keys are not
permitted, or

— inserts into the file a record with an existing ISAM key as the last record with this
key.

26

U4250-J-2125-12-76

Overview of DMS macros

DMS macros in order of function

UPAM (User Primary Access Method)

UPAM is a block-oriented access method. The basis of UPAM is the standard block (= PAM
page). UPAM can also be used to process files that were not created with UPAM.

Macro

Brief description

PAM

Controls all UPAM accesses

For event-driven processing, the following macros are also significant (for detailed descrip-
tions, see the “Executive Macros” [2] manual).

Macro

Brief description

CHKEI

checks the queue status for an event item.

CONTXT

accesses the register set of the interrupted task/process.

DISCO

closes the routine for the contingency process.

DISEI

disconnects the user program from the event item.

ENACO

opens a routine as a contingency process and assigns it a name and a priority.

ENAEI

creates an event item and/or establishes the link between the calling process and the
event item.

FECB

creates a file event control block.

LEVCO

changes the priority of the called process.

POSSIG

signals an event.

RETCO

terminates the calling contingency process.

SOLSIG

requests a signal from the event item.

SUSPEND

places the calling process in an interruptible wait state.

U4250-J-Z2125-12-76

27

DMS macros in order of function

Overview of DMS macros

2.2.6 Generation of operand lists for control blocks, DMS tables, etc.

The user can generate program areas or DSECTs (Dummy SECTions) which permit him/
her to access the contents of DMS tables, file control blocks, etc. or the operand lists of

DMS macros with the aid of symbolic addresses. For most macros this is possible with the
aid of the MF operand, alternatively there are special DSECT macros. In the case of "older"
macros (e.g. CATAL) which were only converted in a later version, the VERSION operand
decides whether the special DSECT macro must still be used or whether specification using
the MF operand is possible.

Operand lists for DMS macros with command functions

Macro Required VERSION specification | MF operand “DSECT macro”
ADDPLNK X -
CATAL Without VERSION operand - IDCAT

VERSION=1 X -
CHNGE - IDCHA
COMPFIL X -
COPFILE X -
COPY (Macro replaced by COPFILE) - IDCOP
CREAIX X -
CREPOOL X -
DECFILE X -
DELPOOL X -
DELAIX X -
DROPTFT X -
ENCFILE X -
ERASE VERSION=0 - IDERS

VERSION=1 X -
FILE VERSION=0 - IDPFL/IDPFX

VERSION=1 X -
FSTAT VERSION=0 (corresponds to 710) - IDFST

VERSION=>1 (1 corresponds to X -

800)
IMPNFIL X -
IMPORT Without VERSION operand - DMAIMP

VERSION=1 X -

(Teil 1 von 2)

28

U4250-J-2125-12-76

Overview of DMS macros

DMS macros in order of function

Macro

Required VERSION specification

MF operand

“DSECT macro”

LFFSNAP

X

LJFSNAP

X

MAILFIL

X

RDTFT

Without VERSION operand

DMARD (PLIST=INPUT)
DMADR (PLIST=0OUTPUT)

VERSION=2

REL

(Macro replaced by RELTFT)

IDREL

RELTFT

REMPLNK

RFFSNAP

RJFSNAP

SHOPLNK

SHOPOOL

SHOWAIX

X | X [X [X [X [X |[X

VERIF

IDVRF

where:

X DSECT can be generated via the MF operand

- no MF operand/no DSECT macro

(Teil 2 von 2)

U4250-J-Z2125-12-76

29

DMS macros in order of function Overview of DMS macros

Control blocks and macros specific to access methods

Macro

Brief description

IDECB

for the UPAM file event control block (FECB).

IDFCB

for the file control block (FCB) of the user program at the TU level.

IDFCBE

extension of the 24-bit TU FCB.

IDMCB

EAM control block for EAM macros.

IDPPL

operand list for the PAM macro.

IDOST

operand list for the OSTAT macro.

DMS tables, file catalog, etc.

Macro

Brief description

IDCE

catalog entry.

IDCEG

catalog entry (extension for file generation groups).

IDCEX

catalog entry (extension).

IDEE

catalog entry (extent list).

IDEMS

DMS error messages.

IDTFT

TFT entry

IDVT

volume label entry (in the volume table).

2.2.7 Output of information on files, volumes, devices, etc.

Various DMS macros are provided enabling information on catalog entries, file status, the
task file table, device and volume allocation, etc. to be requested in the program at any time
and utilized for further processing.

Macro

Brief description

FSTAT

information from file catalog or about catalog entries for files.

OSTAT

information about the number and type of ISAM file accesses by different jobs.

RDTFT

information about TFT entries.

SHOWAIX

information about secondary keys of an ISAM file.

SHOPLNK

information about ISAM pool link names.

SHOPOOL

information about ISAM pools.

30

U4250-J-2125-12-76

Overview of DMS macros

Macros/Commands

2.3 Comparison of macros and commands

Macro Command Function
ADDPLNK | ADD-ISAM-POOL-LINK Define a pool link name for an ISAM pool
CATAL CREATE-FILE Create catalog entry
CREATE-FILE-GROUP Define file generation groups
MODIFY-FILE-ATTRIBUTES Define protection mechanisms
MODIFY-FILE-GROUP- Define protection mechanisms
ATTRIBUTES
CHNGE CHANGE-FILE-LINK Change a file link name in the TFT
COMPFIL | COMPARE-DISK-FILES Compare two disk files
COPFILE COPY-FILE Copy a file
CREAIX CREATE-ALTERNATE-INDEX Create an alternate index (secondary key) for an
ISAM file
CREPOOL | CREATE-ISAM-POOL Create an ISAM pool
DECFILE DECRYPT-FILE Convert an encrypted file into an unencrypted file
DELAIX DELETE-ALTERNATE-INDEX Delete alternate indices (secondary keys) of an
ISAM file
DELPOOL |DELETE-ISAM-POOL Delete/release an ISAM pool
DROPTFT | UNLOCK-FILE-LINK Release lock on TFT entry
ENCFILE ENCRYPT-FILE Convert an unencrypted file into an encrypted file
ERASE DELETE-FILE Delete or export one or more files
DELETE-FILE-GENERATION Delete file generation group(s)
DELETE-FILE-GROUP Delete file group(s)
DELETE-SYSTEM-FILES Delete system files
EXPORT-FILE Export file(s)
EXPORT-NODE-FILE Export node file(s)
FILE ADD-FILE-LINK Create a TFT entry
CREATE-FILE Create file
CREATE-FILE-GENERATION Create file generation group
CREATE-TAPE-SET Create TST entry
EXTEND-TAPE-SET Extend TST entry
IMPORT-FILE Import file
MODIFY-FILE-ATTRIBUTES Modify attributes of a file

(Teil 1 von 2)

U4250-J-Z2125-12-76

31

REMOVE-FILE-ALLOCATION-
LOCKS

REPAIR-DISK-FILES

Macros/Commands Overview of DMS macros
Macro Command Function
FILE (cont.) | MODIFY-FILE-GENERATION- Modify attributes of a file generation group
SUPPORT
FSTAT IMPORT-FILE Retrieve information from the file catalog
SHOW-FILE-ATTRIBUTES
IMPNFIL IMPORT-NODE-FILE Create (import) catalog entries for node files
IMPORT CHECK-IMPORT-DISK-FILE Check file import in advance
IMPORT-FILE Create (import) catalog entries for files
LFFSNAP | LIST-FILE-FROM-SNAPSET List files from a Snapset
LJFSNAP LIST-JV-FROM-SNAPSET List job variables from a Snapset
MAILFIL MAIL-FILE Send file or library member to a user ID by email
RDTFT SHOW-FILE-LINK Retrieve information from the task file table
RELTFT DELETE-TAPE-SET Delete a TST entry
REMOVE-FILE-LINK Delete a TFT entry
REMPLNK | REMOVE-ISAM-POOL-LINK Delete a pool link name
RFFSNAP | RESTORE-FILE-FROM- Restore files from a Snapset
SNAPSET
RJFSNAP | RESTORE-JV-FROM-SNAPSET | Restore job variables from a Snapset
SHOWAIX | SHOW-INDEX-ATTRIBUTES Output information on the alternate indices
(secondary keys) of an ISAM file
SHOPLNK | SHOW-ISAM-POOL-LINK Show assignments of ISAM pools to ISAM pool
link names
SHOPOOL |SHOW-ISAM-POOL- Return information on an ISAM pool
ATTRIBUTES
VERIF CHECK-FILE-CONSISTENCY Restore file consistency

(Teil 2 von 2)

U4250-J-2125-12-76

Overview of DMS macros

Macros/Commands

DMS commands without corresponding macros

Command Function
ADD-CRYPTO- Store the crypto password for decrypting encrypted file contents in the
PASSWORD task’s password table

ADD-PASSWORD

Enter a password in the password table of the job

CONCATENATE-DISK-
FILES

Concatenate SAM files

EDIT-FILE-ATTRIBUTES
EDIT-FILE-GROUP-
ATTRIBUTES
EDIT-FILE-GENER-
ATION-SUPPORT

Start the guided dialog of the corresponding MODIFY command and
enable an existing catalog entry to be “edited”

EDIT-FILE-LINK

Start the guided dialog of the ADD-FILE-LINK command and enable an
existing TFT entry to be “edited”

LIST-NODE-FILES

Provide information about node files on the Net-Storage

EDIT-FILE-GROUP-

Only possible if the chargeable product SDF-P is in use:

ATTRIBUTES activates the guided dialog of the MODIFY-FILE-GROUP-ATTRI-
BUTES command
EDIT-FILE-LINK Only possible if the chargeable product SDF-P is in use:

activates the guided dialog of the ADD-FILE-LINK command

LOCK-FILE-LINK

Lock a TFT entry, thus preventing it from being released until after a
UNLOCK-FILE-LINK command

REMOVE-CRYPTO-

Remove the crypto password from the password table of the ongoing

PASSWORD task
REMOVE-PASSWORD Delete a password from the password table of the job
RESTART-PROGRAM Restart a program at a checkpoint which was set by means of a

WRCPT (or CHKPT) macro

SHOW-BLOCK-TO-FILE-
ASSIGNMENT

Privileged command: shows files in which the requested blocks are
located

SHOW-FILE-LOCKS

Show the locks on a file

U4250-J-Z2125-12-76

33

Macros/Commands Overview of DMS macros

34 U4250-J-2125-12-76

3 Programming notes

This chapter describes features of the various access methods which are relevant to
programming.

3.1 BTAM - Basic Tape Access Method

BTAM is an access method for block-oriented tape processing; it can even be used to
process tape files which were not created with BTAM. While a tape file is being processed,
the processing direction within the file can be changed as desired. The tapes can be
positioned by block or by section as desired. BTAM processes files with and without
standard blocking.

Macros for the BTAM access method

The following macros can be used by the BTAM access method:

Macro Operation Function
CLOSE
EXLST
EXRTN
FCB

FCBAD -
IDFCB
IDFCBE
LBRET
OPEN

Service macros

(Teil 1 von 2)

U4250-J-Z2125-12-76 35

BTAM — Basic Tape Access Method

Programming notes

Macro Operation Function
BTAM CHK check processing status of an I/O operation.

ERG generate interblock gap.

MINF fetch medium information (only useful for volume types which contain
optical disks)

POS position tape.

RBID determine tape position.

RD/RDWT read data into main memory and wait for completion of 1/O operation.

RDBF read data from save area of tape cartridge buffer.

REV/REVWT |read tape in reverse direction and wait for completion of 1/0 operation.

RT/RTL read with data transfer; with/without message if the length is less than
anticipated.

RNT/RNTL read without data transfer; with/without message if the length is less
than anticipated.

SYNC synchronize and determine tape position.

WRT/ write data from main memory and optionally wait for completion of

WRTWT I/O operation.

WT wait for completion of the I/O operation

BSF synchronize and determine tape position.

BSR

FSF

FSR L Control code for positioning and for writing tape marks

REW

RUN

WTM

(Teil 2 von 2)

36

U4250-J-2125-12-76

Programming notes

BTAM — Basic Tape Access Method

OPEN modes

The following open modes are available with the BTAM access method:

INOUT

Retrieve records from an existing file and add new records; no header labels are
written, since the file must already exist.

INPUT

Retrieve files from an existing file in the forward direction.

OUTIN

Create a new file and/or retrieve records; labels are written since a new file is being
created.

OUTPUT

Create a new file.

REVERSE

As for INPUT, but the tape is positioned to EOF at OPEN time and the file is read
backwards. Files which extend over several volumes can only be processed individ-
ually (with the aid of the VSEQ operand).

SINOUT

As for INOUT, but the tape is not positioned; this is not permitted if the tape is
positioned at the beginning of the tape.

The OPEN modes INPUT and REVERSE differ, at OPEN time, only in how the tape is
positioned. An OPEN REVERSE followed by an RD or RDWT operation will not result in a
reverse read.

BTAM operations and OPEN modes

OPEN mode INPUT REVERSE OUTPUT INOUT / OUTIN /
BTAM operation SINOUT
CHK X X X X
Control * n n X X
ERG X X
RD/RDWT X X X
REV/REVWT X X X
RT/RTL X X X
RNT/RNTL X X X
WRT/WRTWT X X
WT X X X X
MINF X X X X
POS X X X X
(Teil 1 von 2)
U4250-J-2125-12-76 37

BTAM — Basic Tape Access Method Programming notes

OPEN mode INPUT REVERSE OUTPUT INOUT / OUTIN /
BTAM operation SINOUT
RBID X X X X
RDBF X X
SYNC X X X X
(Teil 2 von 2)

where:
X = permissible.
n = output control functions are not permissible.

* “Control” stands for the operands FSF, BSF, WTM, RUN, ERG, FSR, BSR, REW. These
are described in the “BTAM” macro (page 117).

BTAM record and block formats

BTAM is a block-oriented access method for tape files of format BLKCTRL=NO. The
following applies for block length: 18 bytes < block length < 32768 bytes (see description of
the LEN operand in the BTAM action macro).

BTAM evaluates the FCB operand RECFORM. The specification of the record format is
related to the block length.

— RECFORM=F fixed length for blocks
The length is defined with BLKSIZE=length or is specified as LEN in the BTAM macro.
The values specified above apply for the minimum and maximum length.

— RECFORM-=U for blocks of undefined length
BTAM takes the block length either from the LEN operand in the macro or from the
register specified in FILE/FCB with RECSIZE=reg.

— RECFORM=YV for blocks of variable length
(record format V is treated as record format U)

Tape files created with SAM can be read block-by-block with BTAM. Since BTAM does not
know the record structure, the user is responsible for deblocking the records.

38 U4250-J-2125-12-76

Programming notes

DIV - Data In Virtual

3.2 DIV - Data In Virtual

Data in Virtual (DIV) is an access method that differs from the traditional access methods
such as ISAM, SAM, and UPAM because it does not require a file to be structured into
records and blocks and works without I/O buffers, and operations such as GET or PUT.

DIV works with a special DIV-OPEN.

DIV is an object-oriented access method that is particularly suitable for processing unstruc-
tured data (Binary Large Objects (BLOBS)).

The DIV interface is an SVC interface. Jobs are formulated by a parameter list; acknowl-
edgments are made by means of a return code in the parameter list (not via exits).

DIV is not supported on SPARC systems.

Macro for the DIV access method

The DIV access method works with the DIV macro, which covers the various functions for
data processing:

Macro Function
DIV CLOSE | Close afile, releasing any existing windows with default values, if applicable
MAP Define a window (i.e. a work area) in the virtual address space
OPEN Open a file
RESET | Undo changes in the window
SAVE Write modified pages from the window back to the file on disk
UNMAP | Release the window in the virtual address space

U4250-J-Z2125-12-76

39

DIV - Data In Virtual Programming notes

Opening a file

A program can process a file only after calling an OPEN function. Among other things, the
OPEN function verifies whether a user has the necessary access rights, whether the file is
already open and whether the file open modes are compatible with each other. The file open
modes and file access by many users are to a great extent similar to the OPEN function of
other DMS access methods (see the “Introductory Guide to DMS” [1])

The file can be set for read-only or read and write access. Following a write access, the file
can be modified, extended or rewritten from the beginning of the file.

The file can be simultaneously accessed by a single user with write authorization and/or
many users with read authorization as well as many users with read and write authorization.
The user can specify whether a given data space or the entire file should be read immedi-
ately into a window when it is defined, or whether a given page should be read into a window
only when the page is first accessed.

40

U4250-J-2125-12-76

Programming notes

DIV - Data In Virtual

List of most important macro operands for opening a file

Operand |Operand values |Meaning
FCT *OPEN Opening a file
LARGE_ The LARGE_FILE function operand specifies whether the file that
FILE is to be opened may grow to become a “large file” with a file size
that may exceed 32 GB.
*ALLOWED The file may become a large file.
*FORBIDDEN The file may not become a large file.
MODE The function operand MODE specifies which operation (read,
write) should be performed on the file (write means executing the
DIV function SAVE).
*INPUT The file is opened as the input file; the SAVE function is not
permitted.
*INOUT The file must exist; both read and write operations are permitted.
*OUTIN A new file will be created; both read and write operations are
permitted.
SHARUPD Depending on the MODE setting, the function SHARPUPD is used
to indicate which multiuser operation modes should be allowed
(see the tables under “Multiuser operation” below):
*NO One write-authorized user or many read-authorized users can
open the file simultaneously.
*WEAK One write-authorized user and many read-authorized users can
open the file simultaneously.
*YES Multiple write-authorized users can open the file simultaneously.
LOCVIEW The LOCVIEW operand is used to specify when a page should be
read into a window.
*MAP All pages of the specified file region are read into a window as soon
as it is defined (FCT=*MAP).
*NONE A page is not read into a window from the disk file until a page is
accessed.

Multiuser operation

A UPAM file can be created and processed with the access methods UPAM (see page 89),
FASTPAM (see page 61) or DIV. FASTPAM and DIV can, however, only process UPAM files
with the attribute BLKCTRL=NO.

Authorization for parallel file processing is dependent on the operand open values specified
for SHARUPD, MODE, LOCKENV and LOCVIEW.

The permissible parallel opens are shown in the following table:

U4250-J-Z2125-12-76

41

DIV - Data In Virtual

Programming notes

Compatibility matrix for DIV-OPEN

USER B
SHARUPD =
*YES *NO *WEAK
[[o | [o | L | O
N N u N N u N M N u
OPEN mode P o T P O T P A o T
u U | u U | u P u |
T T N T T N T T N
SHARUPD INPUT X O X X X
=*YES INOUT o} ¢} X
U OUTIN 0} O X
: SHARUPD INPUT X X X X
R =*NO INOUT X
OUTIN X
A SHARUPD INPUT X X X X X X X
=*WEAK LMAP X X X X ¢}
INOUT X o
OUTIN X

LMAP: INPUT LOCVIEW=MAP (only for DIV)
X: OPEN permitted

O: OPEN only permitted if the openers employ the same block-oriented access method

and

and

(only UPAM/FASTPAM or only DIV)

use the same value for the LOCKENYV operand (all LOCKENV=*"HOST or
LOCKENV=*XCS)

all run in the same host or in an XCS network using LOCKENV=*XCS

42

U4250-J-2125-12-76

Programming notes DIV - Data In Virtual

Comments

— Read operations with SHARUPD=*WEAK may have opened a file simultaneously with
any write operation.

All read operation window pages with DIV-SHARUPD=*WEAK which specified
LOCVIEW=*MAP with OPEN are read from the file into the window when MAP is
reached. DIV thereby ensures that no file pages can be modified during reading by the
parallel SAVE of a write operation with DIV-SHARUPD=*WEAK.

This protection against parallel writing does not exist for a UPAM/FASTPAM write
operation.

For this reason, read operations with DIV-SHARUPD=*WEAK for which LOCVIEW=
*MAP was specified, are compatible to write operations with DIV-SHARUPD=*WEAK,
but not, however, to other write operations.

All other conditions formulated for entry 'O' above must also be fulfilled (all openers with
the same value for the LOCKENYV operand and all openers in the same host or, if in
different hosts, with the entry LOCKENV=*XCS).

Read operations with DIV-SHARUPD=*WEAK which specified LOCVIEW=*NONE with
OPEN possess the same compatibility as read operations with UPAM/FASTPAM-
SHARUPD=*WEAK.

— Openers with DIV-SHARUPD=*YES are not compatible with openers with UPAM/
FASTPAM-SHARUPD=*YES.

— Read operations are always compatible with each other (regardless of access method,
SHARUPD specification, LOCKENYV specification and host).

— SHARUPD=*YES:
The file size is checked whenever the allocator is called.
If this check indicates a file size > 32 GB and the attribute LARGE_FILE=*FORBIDDEN
is setin the associated FCB or the attribute EXCEED-32GB=*FORBIDDEN is set in the
TFT then processing is canceled.
In this case, DIV returns the code X'00400030" in its local parameter list DIV(]).

U4250-J-Z2125-12-76 43

DIV - Data In Virtual Programming notes

Defining windows

The MAP function is used to define a window, i.e. a region in an address area (program or
data space) that is assigned to a file area or an entire file.

At the time of calling OPEN, users can specify whether a given page should be read into a
window only when it is first accessed, or as soon as MAP is called. The individual operands
of the MAP function can be used to specify the type (program or data space), position and
size of the virtual address area.

The FCT=*MAP and FCT=*UNMAP functions of the DIV macro are used to open and close
windows for a program call. SPID=0 must always be specified for the SPID operand (ID of
the data space).

The following rules must be observed:

— One page of an address space can be assigned to one window only.

— Within an OPEN, a file page can be assigned to one window only.

— Afile page can be assigned to more than one window only if these windows belong to
different OPEN operations.

44

U4250-J-2125-12-76

Programming notes

DIV - Data In Virtual

List of the most important macro operands for defining windows

Operand

Operand values

Meaning

FCT

*MAP

Defines a window

SPID

SPID specifies the ID of the data space in which the window is to
be created.

AREA

AREA specifies the starting address of the window in a virtual
address space (aligned on a 4KB page boundary). A page of an
address space must be assigned to one window only.

OFFSET
SPAN

The OFFSET and SPAN operands specify the (beginning and
length) of the file area in units of 4KB pages and thus define the
size of the window. The MAP function can be used to extend the
physical length of a file.

DISPOS

*OBJECT

*UNCHNG

DISPOS can be used to define the contents of the window:

A page of the file will be read into the window when the page is first
accessed.

At the time of the first access, a window page retains its contents
(i.e. the contents of the virtual address space) and is not replaced
by the corresponding file page).

Note

After a call to the REQM or DSPSRV macro, the specified virtual
address space is initialized with X' 00' (see the “Introductory Guide
to DMS” [1])

Writing data back to the disk file

The SAVE function is used to write (save) modified window pages back to the disk file.

A file area for which the SAVE function is to be executed is specified, and all modified
window pages of this area are written back to the disk file. In the process, the file length can
be logically extended or reduced. (The file can be physically extended only by using the
MAP function, see the “Introductory Guide to DMS” [1]). The new file length is returned by
the SAVE function in a field (DIVPSIZE) of the parameter list.

U4250-J-Z2125-12-76

45

DIV - Data In Virtual

Programming notes

List of the most important macro operands for writing back to the disk file

Operand |Operand values |Meaning

FCT *SAVE Writes data back to the disk file

OFFSET The OFFSET and SPAN operands define the file area for which the
SPAN SAVE function is to be executed (i.e. the beginning of the area and

its length in 4KB blocks. The file length can be logically extended
or reduced. The new file length is returned by SAVE. Physical
extensions of the file length are only possible with MAP; see
extending of a file physically as described in the “Introductory
Guide to DMS” [1].

Undoing modifications in a window

The RESET function can be used to undo (“erase”) changes that have been made in

windows since MAP or the most recent SAVE. A file region for which the RESET function
is to be executed must be defined, taking the effects of the DISPOS operand of the MAP
function into account:

— If the window is defined with DISPOS=*OBJECT, an access to a page following a
RESET will cause that page of the file to be displayed on the screen.

— If the window is defined with DISPOS="UNCHNG, an access to a page following a
RESET will cause that page to be initialized with X'00', unless that page has already
been written to the file using SAVE. In the latter case, the page is read again from the
file after RESET.

List of the most important macro operands for undoing modifications in a window

Operand |Operand values |Meaning

FCT *RESET Undoes modifications in a window

OFFSET The OFFSET and SPAN operands define the file area for which the

SPAN RESET function is to be executed (i.e. the beginning of the area
and its length in 4KB blocks).
All modifications in the window pages of the RESET region are
undone.

RELEASE The RELEASE=*YES operand extends the RESET function to all
pages of the specified region, not just to modified pages.

46

U4250-J-2125-12-76

Programming notes

DIV - Data In Virtual

Disabling a window

UNMARP is used to disable a window. The user can define what the contents of the pages
of the (disabled) window should be after the execution of the UNMAP function. The window
pages can be either initialized with X'00' or set to appear to the user as they were before

UNMAP.

List of the most important macro operands for closing windows

Operand |Operand values |Meaning
FCT *UNMAP Disables windows
SPID Specifies the address space in which the window is located.
AREA Specifies the starting address of the window that lies in the address
space defined by SPID.
DISPOS Specifies the state in which the pages of the (disabled) window
should remain.
*FRESH The window pages are initialized (X' 00").
*UNCHNG As far as the program is concerned, the windows retain their

original contents prior to UNMAP.

Closing a file

The CLOSE function can be used to closed a specified file. Existing windows, if any, are
shut down using default values.

List of the most important macro operands for closing a file

Operand |Operand values |Meaning
FCT *CLOSE Closes a file.
ID ID of the file to be closed.

U4250-J-Z2125-12-76

47

EAM - Evanescent Access Method Programming notes

3.3

EAM - Evanescent Access Method

EAM is used for processing task-specific files in the SYSEAM area. EAM is a block-oriented
access method and is particularly suitable for the rapid processing of job-dependent work
files.

Macro for the EAM access method

All EAM functions are controlled by the EAM macro. The EAM macro covers the following
functions:

Macro Function

EAM — sets up and opens a new file

— opens an existing file

— reads (blockwise, sequential or direct)
— writes (blockwise, sequential or direct)
— checks and waits for I/O termination

— closes afile

— deletes afile

The desired operation is selected by specifying a hexadecimal operation code in the MFCB,
and initiated by the EAM macro. The effect is determined by the MFCB fields which EAM
additionally evaluates after analyzing the operation code (see table on page 49).

The EAM macro controls all EAM accesses. EAM has the following characteristics:

— EAMfiles are not cataloged. As a result of this, no disk access is necessary when an
EAM file is opened.

— Each EAM file is automatically deleted when the job which opened it is terminated
(temporary file).

— Communication between EAM and the user takes place only via the EAM control block
(MFCB = Mini File Control Block). No facilities exist for modifying this control block at
OPEN time.

— EAM works exclusively with public volumes (pubsets). No distinction is made between
disks with and without PAM keys (K and NK disks).

— The space requirements for the EAM routines and the runtimes for read and write
accesses are less than for the standard access methods for cataloged files.

— An EAM file can be processed only by the job which created and opened it. One job
may open and process several EAM files.

48

U4250-J-2125-12-76

Programming notes

EAM — Evanescent Access Method

— EAM is block-oriented and is based on blocks of 2048 bytes each (= a PAM page).
For chained 1I/0O, up to 16 sequential blocks may be transferred at one time.

— EAM files may not exceed 32 GB.
— If a program is restarted using RESTART-PROGRAM, all existing EAM files belonging

to the job are erased.

Note

Where the EAM file is created depends on whether or not shared pubsets are used and
on the definitions set by systems support. For more information, see the “Introduction
to System Administration” [7].

MFCB (Mini File Control Block)

Structure of the MFCB

The table below shows the fields within the MFCB and the way in which they are interpreted
according to the operation selected.

MFCB fields

Functional | Version | Return | Option | Logical File Sense | Status | Address No. of Address
Operation unit ID code byte block name byte byte |IOAREA1 | blocks to | IDAREA2
code number IDMFIO1 | be transf. | IDMFIO2
IDMFOPC IDM IDM IDM IDM | IDMFLBN | IDM | IDMFEB | IDM IDMFIO | IDMFNHP | IDMFIO
FUNIT* VERS* | RETCO*| FOC FFN FSB A1* A2*
Open new A A S A (+) S S (A)
file (IDMFOQ)
Reopen A A S A S A(+) S (A)
(IDMFRO)
Read A A S A A A S S (A) (A)
(IDMFRD)
Write A A S A A A S S (A) (A)
(IDMFWR)
Check A A S A S S
(IDMFCK)
Checkand A A S A S S
wait
(IDMFCW)
Close file A A S S A S S
(IDMFCL)
Erase file A A S A S
(IDMFER)

U4250-J-Z2125-12-76

49

EAM - Evanescent Access Method Programming notes

where:

* applies only with PARMOD=31

field contents are evaluated

E
S field contents are set by the system
+

exceptions in the case of object module files (see “Handling object module files with
EAM” on page 60)

Description of the MFCB

An overview of the fields contained in the MFCB and the way in which they are interpreted
according to the operation selected is given in the table on page 49.

The MFCB is the communication area between EAM and the user. It must be aligned on a
word boundary. The fields required for the selected operation must be supplied with the
appropriate values before the EAM macro is called.

The IDMCB macro can be used to assign symbolic names to the MFCB.

Functional unit (IDMFUNIT)

If PARMOD=31 applies either explicitly or implicitly, the value 'DMFEAM' must be placed in

IDMFUNIT.

Operation code (IDMFOPC)

IDMFO

Create and open a new file (OPEN). EAM evaluates bit IDMFOO of the option byte
and then opens either the object module file or a new job-specific file.

A new object module file has its name recorded in the TCB (Task Control Block); an
existing object module file is reopened (i.e. OPEN=REOPEN applies; see also
section “Handling object module files with EAM” on page 60).

A new EAM file is assigned a binary file name of between 1 and 14000, and this is
written into the “file name” field (IDMFFN).

In addition, bit IDMFCI of the option byte is evaluated.

If this bit is set (i.e. indicating chained I/O mode), a check is made to test whether field
IDMFNHP (= number of blocks to be transferred) contains a number between 1

and 16.

The addresses of the 1/O areas are not checked.

50

U4250-J-2125-12-76

Programming notes

EAM — Evanescent Access Method

IDMFRO

Reopen an existing file (REOPEN). Bits IDMFOO, IDMFSBR and IDMFCI of the
option byte are evaluated. For IDMFCI and hence for field IDMFNHP, the same
applies as in the case of the OPEN operation.

According to the result of the IDMFOOQO evaluation, either the job-specific object
module file or the file named in the IDMFFN field is opened (see “Handling object
module files with EAM” on page 60).

IDMFRD

Read (READ). EAM evaluates bit IDMFI1 of the option byte and checks the address
of an input area (field IDMFIO1 or IDMFIO2) selected via this bit. Input takes place at
the corresponding address, even if the contents of IDMFIO1/2 were modified immedi-
ately after the operation was invoked.

If the end-of-file condition is recognized during a read operation, bit IDMFEF of the
sense byte is set.

If bit IDMFCI of the option byte was set at OPEN/REOPEN time, chained input is
operative. The number of blocks to be transferred is also taken from field IDMFNHP
at OPEN/REOPEN time (see “Number of blocks to be transferred (IDMFNHP)” on
page 55).

The “logical block number” field (IDMFLBN) contains the number of the next block to
be read, or a value of zero in the case of sequential reading.

The read/write operation is asynchronous in EAM, i.e. control is returned to the user
immediately after the EAM macro is called, unless a previous 1/0O operation has not
yet terminated. Any error information entered in the MFCB (fields IDMFERR,
IDMFSB) always relates to the preceding I/O operation. Consequently, when there
are two I/O operations in immediate succession, the second has to wait.
Overlapping 1/0 or double buffering can be implemented by specifying two different
I/O area addresses (see section “Overlapping input/output” on page 57).

IDMFWR

Write (WRITE). As in the case of READ, bit IDMFI1 is evaluated and, depending on
the result, either field IDMFIO1 or field IDMFIO2 is checked for the validity of the
output area address it contains.

If the “logical block number” field (IDMFLBN) contains a value of zero, the block is
written sequentially at the end of the file. If its value is # 0, the block to be transferred
is inserted at the position in the file designated by this value.

In all other respects, the execution sequence for write operations is the same as for
read operations (see above).

IDMFCK

Check for termination of an I/O operation (CHECK). A check is made to determine
whether an outstanding I/O operation has terminated. Whatever the case, control is
immediately returned to the user. If the operation is not yet completed, a value of 8 is
placed in register 15. If the operation is completed, the status bytes are transferred to
the MFCB (IDMFSB) and register 15 is set to the value 0.

U4250-J-Z2125-12-76

51

EAM - Evanescent Access Method Programming notes

IDMFCW

Check an I/O operation and wait (CHECK WAIT). EAM is instructed to wait for the last
1/0O operation to terminate. Following this, the status bytes are transferred.

If another operation has already initiated the transfer of the status bytes, this EAM
macro has no effect.

IDMFCL

Close file (CLOSE). Following termination of the final outstanding I/O operation, the
file is marked as closed. The block number of the last block in the file is transferred to
the “logical block number” field (IDMFLBN).

IDMFER

Erase file (ERASE). The file is erased, irrespective of whether or not it is open.

Version number (IDMVERS)

If PARMOD=31 applies either explicitly or implicitly, the value DMEAMV must be placed in
IDMVERS. This is important with regard to future versions of BS2000, since it means that
different versions of this interface can be supported without the need for recompilation.

Return code (IDMRETCO)

In the 31-bit version the return code is placed in the IDMRETCO field in the MFCB. This
return code corresponds to that in register 15.

Return code |Meaning

0 Operation completed successfully

4 Operation not completed successfully; check sense byte (IDMFEB)
8 After check operation: checked I/O operation not yet terminated

52

U4250-J-2125-12-76

Programming notes

EAM — Evanescent Access Method

Option byte (IDMFOC)

IDMFOO

Open object module file. This bit is evaluated in all operations.

If the bit is set, the job-specific object module file is processed (see “Handling object
module files with EAM” on page 60). If the bit is not set, a new file is opened in the
OPEN function and its name is moved to the “file name” field (IDMFFN). In the
REOPEN function, the file named in the IDMFFN field is opened.

IDMFCI

Chained I/O. This bit is evaluated at OPEN/REOPEN time and its contents are saved.
Thus, when a file is (re)opened, if this bit is set, subsequent 1/O operations will be
chained. The length of the chain is specified by the contents of field IDMFNHP

(= number of blocks to be transferred), which is also evaluated when the file is
opened. If the bit is not set, no chained I/O will be performed.

IDMFSBR

Starting point for I/O in the file. This bit controls where 1/0 operations are to start in a
file. It is evaluated when the file is reopened.

If it is set, a value of 0 is moved to the “logical block number” field. If it is not set, the
highest block number so far assigned to the file is placed in the field IDMFLBN (see
the description of the IDMFLBN field).

IDMFI1

Control of the I/O area. This bit is evaluated during current I/O operations. If it is set,
the 1/0 area 2 address specified in field IDMFIO2 is checked for validity, and this area
is used for the pending 1/O operation. If the bit is not set, the I/O area 1 address
contained in field IDMFIO1 is checked. This area is then used for I/O operations (see
“Overlapping input/output” on page 57).

Logical block number (IDMFLBN)

The logical block number is a 2-byte binary number (0 < n < 65535). If its value is 0,
processing is performed sequentially. In a read operation, the block immediately following
the last block accessed in a read/write operation is transferred. In a write operation, a block
is added to the end of the file.

If the logical block number is = 0, it points directly to the block of the file that is to be read

or written.

In chained I/O, the value specified applies to the first block in the chain.

File name (IDMFFN)

The file name is a 2-byte binary number (decimal: 1 < n < 14000). When a new file is opened
by EAM, this number is placed in the “file name” field and must be specified whenever the
file is subsequently referenced.

U4250-J-Z2125-12-76

53

EAM - Evanescent Access Method Programming notes

Sense byte (IDMFEB)

If an error occurs during an operation initiated by the EAM macro, bits are set in the sense
byte according to the type of error (the bits can be addressed by their symbolic names).
At the same time a value of X'00000004"' is placed in register 15.

IDMFIC Invalid operation. Invalid operations include, for example, illegal operation code,
attempt to access a file which is not open, in chained 1/O the value of field IDMFHNP
is not between 1 and 16, and MFCB is not aligned on a word boundary.

IDMFIF Invalid file name. The number specified in the “file name” field (IDMFFN) does not
identify any EAM file associated with this job.

IDMFIB Invalid block number. The number specified in the “logical block number” field
(IDMFLBN) refers to a block outside the file (read access) or is greater than the
number of the last block written + 1 (write access).

IDMFIA Invalid I/O area address. The address contained in field IDMFIO1 or IDMFIOZ2 for
I/0O area 1 or I/O area 2 respectively is invalid.

IDMFNS No more EAM space available. For example, the user has reached the maximum
number of EAM files allowed (14000) or the total amount of space available on the
system for all EAM files has been exhausted.

IDMFNP lllegal access to a privileged file. A non-privileged user attempted to access a privi-
leged file.
IDMFEF End-of-file. End-of-file was reached during a read access: if a block chain encounters

the end of the file during chained input, as much of the read operation as possible is
completed and the end-of-file bit is set.

IDMFERR Check status bytes. The preceding read or write operation was not completed
successfully. The status bytes should be checked to determine the cause of the error.

Status field (IDMFSB)
The value of this field is set by the system if the following conditions are true simultaneously:

— the preceding operation was a read or write operation;
— the current operation is a read, write, check, check-and-wait, or close operation.

The following bytes are transferred from the channel control block (CCB): the standard
device byte, 3 sense bytes, the Executive flag byte.
Address of I/O area 1 (IDMFIO1/IDMFIOAI)

This field contains the virtual address of the first byte of 1/O area 1.
In write operations, a block or block chain is transferred from this address. In read opera-
tions, the block/block chain is transferred to this address.

54 U4250-J-2125-12-76

Programming notes EAM - Evanescent Access Method

If the I/O area is the same size as a block (2048 bytes), it should be located within a page
(4096 bytes) and commence on a word boundary. In the case of chained I/O the area
should commence on a page boundary; it must be able to hold as many blocks as can be
transferred with a single 1/0 request.

If the area is not aligned as specified above, buffering may be required in conjunction with
certain hardware, which in turn leads to a drop in performance.

Number of blocks to be transferred (IDMFNHP)

This field is evaluated at OPEN/REOPEN time if chained I/O (IDMFCI) is specified in the
option byte. It contains a 1-byte binary number < 16.

If end-of-file is reached during chained I/O in read mode, the system sets the value of this
field equal to the number of blocks transferred.

Address of I/O area 2 (IDMFIO2/IDMFIOA2)

This field contains the virtual address of the first byte of /O area 2. The same address can
be used as for I/0O area 1, but for asynchronous processing with overlapping input/output,
the address specified in this field must refer to an area which does not overlap I/O area 1.

The same conditions apply here as in the case of I/O area 1.

Chained input/output

If bit IDMFCI for chained processing is set in the MFCB, 1/O operations are performed at a
faster rate. The blocks to be written as a chain need not be adjacent to each other. In write
operations, block chains are always written in groups of 3 PAM pages. In read operations,
adjacent pages are read as a chain. Field IDMFNHP (= number of blocks to be transferred)
must therefore always contain a value that is a multiple of 3. In addition, I/O operations
should always start at block numbers that can be represented in the form
(3xn)+1,ie.1,4,7, ..

Note

In order to support NK4 pubsets (in later operating system versions), EAM users are
requested to convert chained processing to the blocking factor 2 or a multiple of 2.

In this case, odd block numbers (BLOCK#) should be specified for direct I/O operations,
ie.1,3,5, ..

Increasing the blocking factor at the expense of main memory space (I/O buffer) leads
to savings with regard to CPU time (initiation and termination of the 1/0O request) and
channel and device times (seek and search times); this is because several blocks can
be read or written in one physical I/O operation. The system has no influence on this
optimization possibility, which lies effectively in the hands of the EAM user.

U4250-J-Z2125-12-76 55

EAM - Evanescent Access Method Programming notes

EAM processing

Using check operations

After a read or write call, control is returned to the user as soon as the requested operation
has been accepted. In other words, there is no need to wait for this operation to be
completed.

Before a read or write operation is initiated, however, the system waits for the preceding
read/write operation (if any) to terminate (i.e. implicit check-and-wait operation). Similarly,
when a close operation is requested, the system waits for the last read/write operation to
terminate.

Thus, after the last in a series of read/write operations, a check operation is necessary only
if the file is not immediately closed again or if, in the case of chained /O, reading is
continued until the end-of-file condition is reached (bit IDMFIB or IDMFEF of sense byte=1)
and the number of blocks transferred is not equal to 0.

Example

In an EAM file, 3 read operations are performed. The file is not closed after this, because it
is still required for later I/O operations. However, these 1/O operations are not requested
until after processing of the blocks that were read has been completed:

READ

CHECK/WATIT Wait for termination of the Tast I/0 operation.

Processing of the blocks that were read

Further 1/0 operations

Changing processing characteristics

The following specifications are observed when opening or reopening a file:

— chained/non-chained input/output
— number of blocks to be transferred.

If one of these values is to be changed during processing of the file, the following actions
are required:

1. Close file
2. Modify fields in MFCB
3. Reopen file

56

U4250-J-2125-12-76

Programming notes EAM - Evanescent Access Method

The value for the number of blocks to be transferred should be changed if, for example,
fewer blocks are to be transferred in the last write operation than was specified when the
file was opened.

Example

99 blocks are to be written to an EAM file. Chaining is to be used, with 15 blocks being trans-
ferred per write call (byte IDMFNHP in the MFCB). The following operations are then
requested:

OPEN (new file) —> WRITE —> WRITE —> WRITE —> WRITE —-> WRITE —> WRITE —>
CLOSE *) —> REOPEN —> WRITE —> CLOSE

*) After 6 write operations, there are still 9 blocks to be written. The file must therefore be
closed and then reopened, this time with a value of 9 set for the number of blocks to be
transferred.

Overlapping input/output

A reduction in processing time can be achieved by means of asynchronous I/O operations:
Once an I/O operation has been initiated, control is immediately returned to the program in
order to enable other processing to take place in parallel with the physical I/0. The next
I/O operation is then initiated using a second I/O area that does not overlap the first, and so
on. Figure 1 on page 58 illustrates the overlapping of processing and input operations.

Sequential read with chained input/output

Chained I/O is used most effectively for sequential reading if

— amultiple of 3 is selected as the number of blocks to be transferred (3 x n);
— the block number selected is in the form: (3xn)+1 (e.g. 1,4,7 ...)

Note

In order to support NK4 pubsets (in later operating system versions), EAM users are
requested to convert chained processing to the blocking factor 2 or a multiple of 2.

In this case, odd block numbers (BLOCK#) should be specified for direct I/O operations,
ie.1,3,5, ..

A program converted in this way is downward compatible, which means it can run in
earlier versions.

U4250-J-Z2125-12-76 57

EAM — Evanescent Access Method

Programming notes

START

I:=1, EOF:=NO

Read block I into I/O area 1

Y

End-of-file?

LOOP

I:=1+1

Read block I into I/O area 2

Y End-of-file?

EOF:=YES

Process block I-1

If EOF=YES, terminate

I:=1+1

Read block I into I/0O area 1

Y End-of-file?

EOF:=YES

Process block I-1

If EOF=YES, terminate

END

Figure 1: EAM — overlapping input/output

58

U4250-J-2125-12-76

Programming notes

EAM — Evanescent Access Method

START

I:=1, EOF:=NO

Read block I into I/O area 1

-of-file?
Y End-of-file?

LOOP

I:=I+1

Read block I into I/O area 2

Y End-of-file?

EOF:=YES

Process block I-1

If EOF=YES, terminate

I:=1+1

Read block I into I/O area 1

Y End-of-file?

EOF:=YES

Process block I-1

7 If EOF=YES, terminate

END

U4250-J-Z2125-12-76

59

EAM — Evanescent Access Method

Programming notes

Handling object module files with EAM

Each job can process exactly one object module file. If bit IDMFOO of the option byte is set,
all operations relate to the object module file. The actions involved in opening or reopening

a file are illustrated in the following diagram:

START

Open new file (X'00")

Determine type of operation

Reopen existing file (X'01")

Does file exist?
Y N

Does file exist?

Assign file name
and
place in MFCB

EXISTENT X
Set logical block

number in MFCB
to zero (MFCB:=0)

Set error byte

EXISTENT (bit 21:=1)

RETURN to user program

Figure 2: Actions when an EAM file is opened

EXISTENT

Place file name in MFCB

Position to start of file?
v (option byte bit 21=17)

Set block number in MFCB
to zero (MFCB:=0)

Set block number in MFCB:=
<number of last block in file>

Figure 3: EAM — sequence when opening an object module file

60

U4250-J-2125-12-76

Programming notes FASTPAM - Fast Primary Access Method

3.4 FASTPAM - Fast Primary Access Method

FASTPAM (Fast Primary Access Method) is a block-access method for NK4 disk files. It is
comparable with UPAM in terms of functionality, but is far superior to it in terms of perfor-
mance, especially with multiprocessor systems.

With FASTPAM, I/O operations can be directly performed in data spaces. I/O area pools are
placed in data spaces for this purpose, but these 1/0O area pools can only be created in
non-resident memory.

The FASTPAM access method uses a special OPEN.

The FASTPAM interface is an SVC interface. Jobs are formulated by means of a parameter
list, and return messages for results are supplied via a return code in the parameter list (not
via exits).

Macros for the FASTPAM access method

The FASTPAM access method uses the following two macros:

Macro Function

FPAMSRV Management functions:

— prepare system environment (FASTPAM environment)
— prepare |/O areas (FASTPAM IO area pool)

— open file for processing

— close file opened with FFAMSRV

— disable system environment (FASTPAM environment)
— disable I/O areas (FASTPAM IO area pool)

FPAMACC Access functions (formulate file accesses):

— synchronous reading and writing of logical blocks
— asynchronous reading and writing of logical blocks
— waiting for the end of asynchronous 1/O jobs

— reporting the end of asynchronous 1/O jobs

U4250-J-Z2125-12-76 61

FASTPAM - Fast Primary Access Method Programming notes

FASTPAM functions

The functions of the FASTPAM access method are implemented in the macros FFAMSRY
and FPAMACC. These functions are as follows:

Function Meaning
ENABLE ENVIRONMENT | Enable system environment for FASTPAM processing
ENABLE IOAREA POOL | Enable I/O area for FASTPAM processing

OPEN FILE Open file for processing with FASTPAM
ACCESS FILE Process a file (opened with FPAMSRYV)
CLOSE FILE Close a file (opened with FASTPAM), optionally specifying the last-

page pointer.
DISABLE ENVIRONMENT | Disable system environment for FASTPAM processing
DISABLE IOAREA POOL | Disable 1/O area for FASTPAM processing

Enabling the system environment for FASTPAM processing (macro function FCT=*ENAENYV)

The ENABLE ENVIRONMENT function (macro FPAMSRYV, operand FCT="ENAENV)
enables a user to create a FASTPAM environment or join an existing one. The caller is
returned a task-specific environment short ID which can be used to refer to the environment
in subsequent OPEN calls.

Since a FASTPAM environment is uniquely identified by its name and scope, and the scope
is implicitly derived from the address of the FPAMACC parameter lists, the name as well as
the address of the parameter lists must be specified in each ENABLE-ENVIRONMENT call.
The other attributes need not be specified when joining an existing environment. If they are
specified, however, they must match the corresponding values for the existing environment.

If the user has FASTPAM authorization, the entire class 3 memory area required for disk
access is generated in advance, and the area of the FPAMACC parameter list is fixed.
In order to do this, the address of the parameter list area, the number of parameter lists,
and the maximum transfer length used for later file access are required.

The only values permitted for the transfer length are 4 KB and 32KB. A value of 32KB
should be used only if the number of parallel access operations is not too high, since 2KB
of resident system memory is used for each 1/0 path. The logical block size of files subse-
quently opened with this environment and the I/O length of the following file accesses must
not exceed this maximum value.

Users who wish to work with eventing must specify the short ID of the event item at the time
of creating the environment.

62

U4250-J-2125-12-76

Programming notes FASTPAM - Fast Primary Access Method

The parameter list area must be requested in advance and must allow write access. When
the FASTPAM environment is being created by the first environment user (i.e. when the
ENABLE ENVIRONMENT call is being processed), no I/O is permitted on any page that
overlaps the parameter list area.

Enabling the I/O area for FASTPAM processing (macro function FCT=*ENAIPO)

The ENABLE IOAREA POOL function (macro FPAMSRY, operand FCT=*ENAIPO)
enables a user to create a FASTPAM 1/O area pool or join an existing one. Given the appro-
priate FASTPAM authorization, the operating system “fixes” the specified memory area and
returns to the caller a task-specific 1/0 area pool short ID which can be used to refer to the
pool in subsequent OPEN FASTPAM calls.

Like the FASTPAM environment, an I/O area pool is also identified uniquely by its name and
scope. The attributes of the 1/0 area pool are fixed at the time it is created and cannot be
changed, so no deviating attributes may be specified by other users of the same 1/O area.
The 1/0O area pool is typically joined by specifying just the name and the address.

The memory area must be requested in advance and must allow write access. When the
FASTPAM I/O area pool is being created by the first I/O area user (i.e. when the ENABLE-
IOAREA-POOL call is being processed), no 1/O is permitted on any page of the I/O area
pool.

Opening files for processing with FASTPAM (macro function FCT=*OPEN)

The short IDs obtained from ENABLE ENVIRONMENT and ENABLE IOAREA POOL can
be used by any task to open any number of files.

If the environment is associated with an event item, each file can be opened by using the
FPAMSRYV macro with the operand FCT=*OPEN, EVENTNG="YES. Every asynchronous
ACCESS job is then acknowledged via the event item. Otherwise, each asynchronous job
must be explicitly terminated by the user with a WAIT operation. Synchronous jobs are
treated identically in both cases.

The access mode (read or write) can be defined with the MODE operand, and the
SHARUPD operand can be used to define multiuser mode. The BLKSIZE operand deter-
mines the granularity of subsequent file access operations.

The LARGE_FILE operand specifies whether the file that is to be opened may grow to
become a “large file” with a file size > 32 GB.

For each OPEN that is completed without error, the user is returned an OPEN short ID,
which must be specified for following ACCESS FILE jobs.

As in the case of UPAM, parameter values specified in a previously issued ADD-FILE-LINK
call override the values specified in the *OPEN call. If these values are not permitted for the
FASTPAM-OPEN, the *OPEN call is rejected.

U4250-J-Z2125-12-76 63

FASTPAM - Fast Primary Access Method Programming notes

Processing a file opened with FPAMSRYV (macro FPAMACC)

The FPAMACC macro can be used to write to the file and read from it. The file, its
associated environment, and the 1/0 pool are identified by the OPEN short ID. I/O requests
can be submitted both synchronously and asynchronously.

Synchronous operations are:

— READ AND WAIT
— WRITE AND WAIT
— READ AND EQUALIZE

Asynchronous operations are:

- READ
- WRITE

The WAIT operation is used to wait for the end of asynchronous jobs, i.e. jobs which are not
executed synchronously.

In order to enable users to make efficient use of cached files, FASTPAM closes synchro-

nously executed asynchronous jobs completely and does not send any signal to the event
item when eventing is used. No WAIT macro (for eventing: no SOLSIG call) may be issued
following a synchronously executed job.

The I/0O length must be a multiple of BLKSIZE and must not exceed the value specified for
MAXIOLN. In addition, specifications for the logical block within the file (BLOCK) and the
address of the I/O buffer (IOAREA) are also required.

In order to avoid SVCs, job chaining is also supported. The CHAIN operand may be used
to concatenate up to 5000 FPAMACC lists.

Eventing

Like UPAM, FASTPAM supports event-driven processing of I/O requests (see also section
“TU eventing: event-driven processing” on page 105 and the “Executive Macros” manual

[2]). If ajob is not terminated synchronously, FASTPAM sends a message to the associated
event item on completion of an 1/0O operation. This message can be retrieved by the user
with the SOLSIG macro. The message is sent if EVENTNG=YES is specified; no message
is sent if EVENTNG=NO. A WAIT macro must be issued in any case.

Closing a file opened with FASTPAM (macro function FCT=*CLOSE)

The CLOSE function (macro FPAMSRYV, operand FCT=*CLOSE) is used to close a file that
was open. The file is identified by the OPEN short ID in this case as well.

64

U4250-J-2125-12-76

Programming notes FASTPAM - Fast Primary Access Method

Disabling the system environment for FASTPAM processing (macro function FCT=*DISENYV)

The DISABLE ENVIRONMENT function (macro FPAMSRY, operand FCT=*DISENV) is
used to disconnect a task from a FASTPAM environment that is specified by means of a
short ID. When the last task is disconnected, the environment is disabled, but no user
memory is released.

Disabling the IOAREA for FASTPAM processing (macro function FCT=*DISIPO)

The DISABLE IOAREA POOL function (macro FPAMSRYV, operand FCT=*DISIPO) is used
to disconnect a task from an 1/O area pool specified by a short ID. When the last task is
disconnected, the I/O area pool is disabled, but no user memory is released.

Processing files with FASTPAM

File format

FASTPAM will only process PAM files with BLKCTRL=NO/DATA and BLKSIZE=(STD,2n),
where n=1,2,3...8. Files which do not have this format must first be converted.

FASTPAM authorization

In order to receive resident memory via FASTPAM calls, the user must be authorized for
this purpose, which means that there must be an entry for the user in the user catalog (field
DMS—TUNING—RESOURCES=*EXCLUSIVE in the SHOW-USER-ATTRIBUTES command or field
DMS—-TUNING-RESOURCES=*EXCLUSIVE-USE in the MODIFY-USER-ATTRIBUTES command).
Users who do not have such authorization may also use the FASTPAM access method, but
no resident areas are maintained. FASTPAM behaves like UPAM in such cases, i.e. only a
small, non-resident part of the I/O path is created by the system, and the area of the
parameter lists and the I/O area pool are not fixed. In other words, the path must be
recreated, and user areas must be validated and fixed for each 1/0. Performance gains
typically achieved with FASTPAM are lost as a result.

If no memory can be made resident, FASTPAM behaves as if the required FASTPAM autho-
rization were missing, thus offering a performance level equivalent to or better than that of
UPAM.

U4250-J-Z2125-12-76 65

FASTPAM - Fast Primary Access Method Programming notes

Making memory areas resident

One of the primary purposes of FASTPAM is to enable rapid file access. This is done by
making the required system environment available in resident memory before the first file
is accessed.

In order to do this, the memory areas containing the user parameter lists and the 1/O areas
(both of which must be supplied by the user) are made memory resident by the “FASTPAM
page fixing” mechanism.

This is essentially the same procedure that is performed by PPAM for the 1/O area for every
I/O operation when other access methods are used. The only difference with the other
access methods is that the I/O area is released on completion of each 1/0O operation.

With FASTPAM, the user can define how long the parameter lists and the I/O area are (with
ENABLE/DISABLE ENVIRONMENT and ENABLE/DISABLE IOAREA POOL) and can use
them during that period. Validation is only required once at the beginning, since fixed areas
cannot be released.

The ENABLE ENVIRONMENT function is also used to request the system memory that is
required for 1/0 operations (once for each I/O operation that can be concurrently executed).
A major part of this memory, i.e. the area used by IOCTRL, is always resident. This is also
true for the other access methods, but the area is reallocated for each 1/0O and is not perma-
nently reserved.

The rest of the system memory consists of a FASTPAM work area, which primarily contains
the parameter list to call PPAM. In contrast to UPAM, if TU eventing is used, this area must
also be in resident memory (since the 1/O is then terminated in SIH).

The fixing of memory areas as described above is performed only if the user ID has the
required FASTPAM authorization (entry in the user catalog, field DMS-TUNING-RESOURCES=
*EXCLUSIVE).

If such an entry exists and if the appropriate memory areas are fixed, the resulting
environment or I/O area pool is said to be “resident”.

A “resident environment” thus refers to:
— prevalidated parameter lists in resident memory
— system memory that is reserved in advance, and

if eventing is used:
— aresident FASTPAM work area

Similarly, a “resident IO area pool” implies:
— prevalidated I/O areas in resident memory

66

U4250-J-2125-12-76

Programming notes FASTPAM - Fast Primary Access Method

Prerequisites for resident FASTPAM areas

— The user has specified the appropriate parameters
(macro FPAMSRY, FCT="ENAENV/*ENAIPO, operand RES=YES)

— The user has the required FASTPAM authorization

— No data spaces are being used

— An adequate amount of main memory is available

— Asufficient number of resident pages were allocated on calling the program (command
START-PROGRAM/LOAD-PROGRAM, operand RESIDENT-PAGES); when resident
pages are allocated in the program call, the maximum value defined in the user catalog
and the system-global limit for resident memory pages must not be exceeded.

FASTPAM macros and their functions

Two macros are available to the user for processing files: FFPAMSRYV and FPAMACC.
These macros can be used to execute various functions and operations (see the section on
FASTPAM functions, page 62, and the macro and operand descriptions on page 546).

The FPAMSRYV macro has the following functions:

ENABLE ENVIRONMENT | Enable system environment for FASTPAM processing
ENABLE IOAREA POOL | Enable I/O area for FASTPAM processing

OPEN FILE Open file for processing with FASTPAM
ACCESS FILE Process a file (opened with FPAMSRYV)
CLOSE FILE Close a file (opened with FASTPAM), optionally specifying the last-

page pointer
DISABLE ENVIRONMENT | Disable system environment for FASTPAM processing
DISABLE IOAREA POOL | Disable I/O area for FASTPAM processing

The following function is implemented in the FPAMACC macro:

ACCESS FILE Process a file (opened with FPAMSRYV)

U4250-J-Z2125-12-76 67

FASTPAM - Fast Primary Access Method Programming notes

Multiuser mode on one computer

A PAM file can be created and/or processed with the UPAM access method (see page 89),
FASTPAM or DIV (see page 39).

The first user (User A) can select any combination of values for OPEN and SHARUPD (in
the FCB macro) when opening his PAM file. The table on page 69 shows which OPEN and
SHARUPD combinations a second user (User B) may use to open the same (already
opened) file. If a file has been opened by more than one user, the OPEN/SHARUPD combi-
nation specified by each subsequent user (User B) is compared with all the existing opens
(User A). each of these comparisons must yield a positive result before the file can be
opened by the next user. lllegal combinations result in an OPEN error.

The following points apply to the FASTPAM access method:

— Afile can be concurrently processed with FASTPAM by multiple tasks (multiple
SHARUPD=*YES and MODE=*OUTIN/*INOUT opens).

Note

When a file is accessed in shared-update mode, appropriate synchronization
routines must be supplied by the user if no such routines are built into the software
product being used. In contrast to UPAM, FASTPAM does not provide any locking
mechanism for this purpose.

— FASTPAM and UPAM openers

A file can be opened in parallel by multiple tasks with FASTPAM as well as UPAM.
Processing of the file is controlled by the operands MODE and SHARUPD (see below)
of the OPEN function. Although FASTPAM does not support SHARUPD=WEAK, it
otherwise behaves exactly like UPAM: both for FASTPAM openers exclusively and also
when UPAM and FASTPAM openers are mixed.

When a file is concurrently accessed with UPAM and FASTPAM, the UPAM user must
also synchronize operations with the FASTPAM user, since UPAM page locks are only
effective when used by both sides, and since FASTPAM has no page-locking
mechanism.

— FASTPAM and DIV openers

FASTPAM interacts with DIV exactly like UPAM. Parallel processing is permitted only if
the file is opened with INPUT by all users.

68

U4250-J-2125-12-76

Programming notes FASTPAM - Fast Primary Access Method

Compatibility matrix: FASTPAM with UPAM/FASTPAM/DIV

FASTPAM does not support SHARUPD=*WEAK

USER B
SHARUPD =
*YES *NO *WEAK

| | 6} | | O | | o

N N u N N u N N u

OPEN mode P (e} T P (6] T P O T

U u | U u | U U |

T T N T T N T T N
SHARUPD INPUT X O X X
=*YES INOUT O O X
u OUTIN O O X
: SHARUPD INPUT X X X
R =*NO INOUT X
OUTIN X

A SHARUPD INPUT X X X X X X

=*WEAK INOUT X
OUTIN X

X: OPEN allowed
O: OPEN only permissible if the openers employ the same block-oriented access method (only

UPAM/FASTPAM or only DIV)

and use the same value for the LOCKENV operand (all LOCKENV=*HOST or
LOCKENV=*XCS)

and all run in the same host or in an XCS network using LOCKENV=*XCS

Comments

Read operations with SHARUPD=*WEAK may have opened a file simultaneously with
any write operation (SHARUPD="WEAK is only possible with UPAM and DIV).
Exception:

Parallel opening with a UPAM/FASTPAM write operation is not allowed for read opera-
tions with DIV-SHARUPD=*WEAK and which specified LOCVIEW=*MAP with OPEN.

Read operations with DIV-SHARUPD=*WEAK and which specified LOCVIEW=*NONE
with OPEN possess the same compatibility as read operations with UPAM/FASTPAM-
SHARUPD=*WEAK.

Openers with DIV-SHARUPD=*YES are not compatible to openers with UPAM/
FASTPAM-SHARUPD=*YES.

Read operations are always compatible to each other (regardless of access method,
SHARUPD specification, LOCKENYV specification and host).

U4250-J-Z2125-12-76 69

FASTPAM - Fast Primary Access Method Programming notes

lllegal combinations lead to an OPEN error.

SHARUPD=*YES:

The file size is checked whenever the allocator is called.

If this check indicates a file size > 32 GB and the attribute LARGE_FILE=*FORBIDDEN
is set in the associated FCB or the attribute EXCEED-32GB=*FORBIDDEN is set in the
TFT then processing is canceled.

In this case, FASTPAM returns the code X' 00400145' in its local parameter list
FPAMACC(I).

Multiuser mode with multiple systems

A multisystem environment is a configuration in which several systems are interlinked by
means of shareable private disks (see the chapter “Volumes” in the “Introductory Guide to
DMS?” [1]) or shared pubsets. The table on page 69 shows the permissible combinations
for access from two different systems.

The following points are relevant for the FASTPAM access method:
A multisystem environment is a configuration in which several systems are interlinked by
means of shared pubsets.

Files on shared pubsets (shared PVS) are supported by FASTPAM: FASTPAM openers
can access a shared PVS from different systems and read from it concurrently and can
also read in parallel with UPAM and DIV openers.

Files on shared private disks (SPD) and protected private disks (PPD) are not
supported by FASTPAM.

Remote file access (RFA) is not supported.

Data consistency

Data consistency in multiuser mode

The FASTPAM access method does not provide a synchronization mechanism for
shared access to a file (shared-update mode). Appropriate synchronization routines
must therefore be supplied by the user if no such routines are included in the software
product being used.

If FASTPAM, UPAM and DIV applications are all operating in shared-update mode, a
common synchronization mechanism must be used for all accesses

Data consistency following a system crash

If an error occurs during an ACCESS FILE job, it is not possible to specify whether and
how much data has been transferred. The writing of a block cannot be treated as an
atomic operation. The contents of the file may be inconsistent in such cases.

70

U4250-J-2125-12-76

Programming notes FASTPAM - Fast Primary Access Method

Summary of functional differences between UPAM and FASTPAM

— FASTPAM can only be used to process PAM files with the following file attributes:
— BLOCK-CONTROL-INFO=NO
— BUF-LEN = an even number

— FASTPAM supports I/Os in data spaces.

— The following functions are not supported by FASTPAM:
— dummy files
— tape processing
- RFA
— SPD (Shared Private Disk)
— PPD (Protected Private Disk)

— FASTPAM supports synchronous and asynchronous read and write operations. The
following operations are offered by UPAM, but are not supported by FASTPAM:
- CHK
— LOCK/UNLOCK
— LRD/LRDWT/WRTWU
- SETL
— SYNC

— The functionality of the UPAM operation SETLPP is included in the framework of
FASTPAM-CLOSE processing.

— The function SHARUPD=*WEAK is not supported (see also “Compatibility matrix:
FASTPAM with UPAM/FASTPAM/DIV” on page 69).

— An implicit WAIT is not possible.

— Within an OPEN/CLOSE bracket asynchronous I/Os can either be terminated only by
WAIT, or their termination can be reported only via the eventing mechanism.

— ltis not possible to specify a relative page number.

U4250-J-Z2125-12-76 71

ISAM — Indexed Sequential Access Method Programming notes

3.5 ISAM - Indexed Sequential Access Method

ISAM, like SAM, is a record-oriented access method for disk files. Processing is based on
a file composed or index and data blocks. each data record contains a key, and these act
as a sort criterion (for index and data blocks, see the “Introductory Guide to DMS” [1].

There are two versions of the ISAM access method, capable of processing files with
different block formats (see the section dealing with access methods in the “Introductory
Guide to DMS” [1]):

— K-ISAM (Key ISAM) processes files with the block format “PAMKEY”. These are
characterized by the fact that DMS management information for each PAM page is kept
in a separate PAM key located outside the page.

— NK-ISAM (Non-Key ISAM) processes files with the block format “DATA”. These do not
contain a separate PAM key. The DMS management information is kept in a block
control field within the PAM page.

By means of the BLKCTRL operand in the macros FILE and FCB, the user can select
whether a K file or an NK file is to be processed: BLKCTRL=PAMKEY declares a K-ISAM
file; BLKCTRL=DATA/DATA2K/DATA4K specifies an NK-ISAM file.

72

U4250-J-2125-12-76

Programming notes

ISAM - Indexed Sequential Access Method

Macros for the ISAM access method

The macros for the ISAM access method can be split into function classes:

Administration:

Macros with administration functions that support file processing.

Access: Macros that access the data on a file.
Macro Function Brief description
call class
ADDPLNK | Administration | Assigns a pool link name to a user ISAM pool
CREAIX Administration | Creates a secondary index for an ISAM file
DELAIX Administration | Deletes secondary indices for an ISAM file
DELPOOL | Administration | Deletes a user ISAM pool
ELIM Access Erases a record from the file
GET Access Reads the following record in the file (sequential reading)
GETFL Access When using marked ISAM keys:
reads the following record in the marking area (sequentially)
GETKY Access Reads the first record with the specified key
GETR Access Reads the previous record (sequential reading, in reverse)
INSRT Access Adds a record with a new ISAM key to the file
ISREQ Access Removes an ISAM lock
OSTAT Access Gives details of the number and type of synchronous file accesses
PUT Access Writes records sequentially to the end of file (including checking the
key for valid sequence)
PUTX Access Replaces a record provided by GET, etc.
REMPLNK | Administration | Deletes the pool link name
RETRY Access Resets the ISAM pointer after execution of the EXLST-PGLOCK and
repeats the last macro
SETL Access Positions the ISAM pointer for subsequent sequential processing at
start or end of file or a particular record
SHOPLNK | Administration | Gives details of assignment of ISAM pools to pool link names
SHOPOOL | Administration | Gives details of attributes and allocation states of ISAM pools
STORE Access — Adds a record with a new ISAM key to the file
— Overwrites a record with an existing ISAM key, of multiple
assignment of ISAM keys is not permitted
— Adds a record with an existing ISAM key to the file as the last
record with this key

U4250-J-Z2125-12-76

73

ISAM — Indexed Sequential Access Method Programming notes

OPEN modes

Before a file can be processed, it must be opened using an OPEN macro. The following
OPEN modes are permitted for ISAM files: OUTPUT, OUTIN, EXTEND, INOUT, INPUT. At
the same time, it is necessary to check whether the file has already been opened by another
job, in which ISAM pool itis to be processed, whether it is to be processed in locate or move
mode, etc.

OUTPUT A new file is created sequentially and only the PUT macro may be used. If an ISAM
file with the specified name already exists, it is overwritten and the catalog entry is
updated.

OUTIN As for OPEN OUTPUT, a new file is created and any existing file with the specified
name is overwritten, but all ISAM actions are permitted.

EXTEND An existing file is extended sequentially; as for OPEN OUTPUT only write operations
with PUT are permitted.

INOUT An existing file is to be updated: as for OUTIN, all ISAM actions (such as finding,
reading, updating, inserting and deleting records) are permitted.

INPUT An existing file is to be read, i.e. only read operations are permitted.

Operating modes

ISAM files are normally processed in move mode; locate mode can be used, but in
NK-ISAM this is only still supported for reasons of compatibility.

Action macro OPEN type
INPUT OUTPUT |EXTEND |[INOUT |OUTIN

GET B - - B B
GETR B - - B B
GETFL B - - B B
GETKY B - - B B
PUT - B B B B
PUTX - - - B B
INSRT - - - M M
STORE - - - M M
ELIM - - - X X
SETL X - - X X

74 U4250-J-2125-12-76

Programming notes ISAM - Indexed Sequential Access Method

where:

M Move mode (locate mode only if a work area is supplied).
B Move mode or locate mode permitted.

X Action macro may be used.

- Action macro must not be used.

OPEN errors when processing NK-ISAM files

Access from BS2000 version < V9.5: the user attempts to read or update an NK-ISAM file
(see above); OPEN error: DMSODBA.

Access to a file overwritten in BS2000 < V9.5 from a V9.5 environment: if the file was
overwritten in an old version of BS2000, it can no longer be opened as an NK-ISAM file
(see above): OPEN error: DMSDDA?.

NK-ISAM file on tape: an invalid data format was specified in the FILE or FCB macro when
importing the tape file or writing it back to tape.

NK-ISAM is not loaded: if NK-ISAM is not loaded in the system (V9.5), OPEN processing
for NK-ISAM files is rejected with error code DMS0D81.

The ISAM pool in which an NK-ISAM file is to be opened is overloaded: OPEN processing
is rejected with error code DMS0D9B.

On each SVC entry, the size of the NK-ISAM file in question is checked on the basis of the
extent list present in the File Entry Table. If this check indicates that the file size is greater
than 32 GB and if the caller has set the attribute LARGE_FILE=*FORBIDDEN in the FCB
then processing is canceled. In this case, NK-ISAM issues the return code: X' 00000A23"
(FILE SIZE GREATER 32 GIGABYTES IS NOT ALLOWED).

Transferring file attributes to the FCB

The contents of FCB fields for file attributes may differ from the values specified for the
corresponding operands in the FILE macro. This is true, for example, for KEYPOS,
KEYLEN, PAD and BLKSIZE. If “n” is the value in field KEYPOS and “m” is the value of
KEYLEN in the catalog entry or in the TFT or the FCB macro, the following applies to files
which are open:

— field KEYLEN in the TU FCB contains m-1
— field KEYPOS in the TU FCB contains, for RECFORM=F, (n+4)-1 = n+3

The PAD value is taken into account only when a file is created sequentially by means of
the PUT macro. The macros INSRT and STORE use all the available space of each data
block. Block splitting may occur during creation of the file in both functions.

U4250-J-Z2125-12-76 75

ISAM — Indexed Sequential Access Method Programming notes

The contents of field BLKSIZE in the TU FCB may also differ from the value of the BLKSIZE
operand in the FILE or FCB macro or the catalog entry: except for input files, the BLKSIZE
is recalculated, taking the PAD value into account (BLKSIZE minus PAD) and placed in FCB
field BLKSIZE.

Example

Catalog entry: BLKSIZE=(STD,3); PAD=15 (default value). The contents of BLKSIZE in
the TU FCB are calculated as follows: (3 * 2048) * (1.0 — 0.15); during file processing,
the field BLKSIZE contains the value X'1467'.

Dummy files

Dummy files can be used for test purposes, particularly for testing error routines in user
programs. These dummy files are defined by *DUMMY in the FILE macro. No actual

I/O operations are executed when these files are processed. Any attempt to read such a file
causes control to be passed to an error routine and write attempts are ignored. In each
case, a no-op (no operation) is executed.

The following table shows which events occur for the various ISAM read operations.

Read operation Macro Event EXLST exit Message
Sequential read GET/GETR End of file EOFADDR DMSO0AAE
Read with key GETKY Key not found NOFIND DMSO0AAS
Read with flags GETFL Key not found NOFIND DMSO0AAS8
LIMIT=KEY
LIMIT=END | End of file EOFADDR DMSO0AAE

Block usage: PAD value

During sequential creation of a file with PUT, the user can specify via the PAD operand in
the FILE/FCB macro how much space is to be left free in each data block. This space is
needed if the records in the file are subsequently updated and extended. The default value
is PAD=15, i.e. 15% of the space in each data block is left free. If a PUT macro would result
in less free space in an existing block, a new data block is created for the next record.

For NK-ISAM files, a new data block is requested as soon as this limit is exceeded; K-ISAM
requests a new data block before the limit is exceeded.

For sequential creation with PUT, the size of a file increases if the PAD factor is increased.
However, subsequent processing of the file (STORE/INSRT) can be optimized by selecting
a suitable value for PAD: the free space left in the data blocks should be so large that block
splitting does not occur when the file is subsequently extended. In order to select the correct
PAD value, it is thus necessary to estimate how the file will grow.

76

U4250-J-2125-12-76

Programming notes ISAM - Indexed Sequential Access Method

If ISAM files are created using STORE, the PAD value has no effect on how the blocks are
filled. STORE writes records into a block until it is full. If a further record is then written, block
splitting occurs. The blocks are usually only 50% full.

Even if the file is created by means of PUT, but not via an 1/O area in the program, the PAD
has no effect (the 1/O area is defined in the FCB with IODAREAN; see “Program buffer”,
below). Each PUT macro initiates a write operation and DMS attempts to place the new
record in the current data block. A new data block is created only when the current block is
full.

Program buffer = I/O area in the user program

If a program uses its own I/O area, this must be at least as large as a data block
(= n * 2048 bytes, where 1 < n < 16), as specified in BLKSIZE=(STD,n). By default, the
system generates an I/O area in class 5 memory.

The existence of an I/O area defined by the user via IOAREA1/2 in his/her program is partic-
ularly advantageous for the sequential processing of ISAM files, since it reduces the
number of SVCs:

— sequential read operations (GET/GETR): in the first read operation, as many records
as possible are transferred to the I/O area before the first record is returned to the
program. For subsequent read operations, the records already in the 1/O area are
returned to the program and a new I/O operation is executed only when all of these
records have been passed to the program.

— sequential write operations (PUT): during the sequential creation or extension of a file,
the records are collected in the I/O area until it is full (taking the PAD value into account)
or until sequential processing is terminated by a call for another operation. Care should
be taken that sequences of PUT operations are not interrupted by other actions, since
each such interruption causes the contents of the I/O area to be written as a new data
block and this can lead to blocks with relatively small amounts of data.

For NK-ISAM in move mode, the user can dispense with an I/O area (IOAREA1=NO in the
FCB). In this case, each action macro call leads to an SVC.

U4250-J-Z2125-12-76 77

ISAM — Indexed Sequential Access Method Programming notes

ISAM pointers

Macros which refer to a record that was processed by a preceding macro use internal
“pointers” to determine the current position within the file.

A separate pointer is maintained for the primary key and for each secondary key defined
for the file. A successful positioning or read operation via a secondary key (using SETL,
GET, GETKY or GETR) first modifies the pointer for the secondary key and then, with the
aid of the updated secondary key value, sets the pointer for the primary key to the appro-
priate record.

Macros which evaluate the ISAM pointers are all sequential macros or, for example, PUTX,
which writes a previously read record back to the file.

If a macro cannot be executed completely, e.g. because an error or a PGLOCK condition
occurs, then the pointer is reset, for NK-ISAM, to the value it had before the macro was
called. The only exception to this is the error “NOFIND”: since the desired record could not
be found, it is not possible to position the pointer to this key.

ISAM pointers are generally updated before the macro is executed. However, for sequential
read operations (GET, GETR), the preceding macro must be taken into account: if a
sequential read operation is preceded by a SETL macro, then this SETL acts as a
“positioning macro”.

The ISAM actions OSTAT (Open STATus) and ISREQ have no effect on the pointer position
since they do not initiate any actions in the file.

When a file is opened, a “SETL B” is initiated internally as the first action for an ISAM file,
i.e. the pointer is positioned to the first record in the file.

78

U4250-J-2125-12-76

Programming notes

ISAM - Indexed Sequential Access Method

Rules for ISAM pointers

Action Pointer Action Comments

macro

ELIM KEY not specified: Eliminates a record | ELIM can be regarded as a “left-shift”
Pointer is not moved. from the file. operation on that portion of the file to the
KEY specified: right of the defined record. Thus, if ELIM
Pointer is moved to the is successful, the pointer does not have
first record with the to be updated.
specified key.

GET The pointer for the Retrieves the If the pointer points to a record outside
primary or secondary record referenced | the file, the user is given control at the
key specified in the by the pointer. EOFADDR exit.
macro is moved one If the preceding macro was a SETL or
record towards the end ELIM (with KEY), the pointer is not
of the file. updated until the record is retrieved.

GETFL The pointer is moved to | Retrieves the next | The record which would have been
the record retrieved, or | sequential record retrieved by a corresponding GET or
to the last record in the | which satisfies the | GETR macro is the first record
defined area. flag criteria. examined for the flag criteria.

GETKY | The pointer is set to the | Retrieves the A GETKY for a key without a corre-
record with the specified | record pointed to by | sponding record is equivalent to a
primary or secondary the pointer, GETKY for arecord of zero length that is
key or to the position in | assuming the assumed to be located between two
the file where this record | record with the existing records.
should be. specified key exists. | Thus, a subsequent GET or GETR wiill

work correctly (see GET).

GETR The pointer for the Retrieves the If the pointer points to a record situated
primary or secondary record referenced | before the beginning of the file, the user
key specified in the by the pointer (see |is given control at the EOFADDR exit
macro is moved one reverse read) (see GET).
record towards the
beginning of the file.

INSRT The pointer is moved to | Inserts the record at | The record is not inserted if a record with
the position specified by | the location the same key already exists. However,
the record key. indicated by the the pointer still points to the position in

pointer. the file at which the record was to be
inserted.
A GET macro issued after an unsuc-
cessful INSRT retrieves the duplicate
record.

OPEN The pointeris positioned See page 749
before the first record in
the file.

U4250-J-Z2125-12-76

79

ISAM — Indexed Sequential Access Method

Programming notes

Action
macro

Pointer

Action

Comments

PUT

The pointeris positioned
immediately after the
current end of the file.

Places the record in
the file at the
position indicated
by the pointer.

PUTX

The pointer does not
change its position.

Places the record in
the file at the
position indicated
by the pointer.

A check is made to verify that a GET,
GETR, GETFL or GETKY macro was
called immediately prior to PUTX. This
ensures that no errors occur even
though the pointer was not updated.

RETRY

Contingent on the
operation to be
repeated, or on the
positioning operation.

Repeats the last
action macro for the
file or positions the
pointer to the origin
or places the
program in a queue.

RETRY itself does not affect the pointer
except when it results in the execution of
an action macro which does move the
pointer.

SETL

SETL B: The pointer is
positioned in front of the
first record in the file.

SETL E: The pointer is
positioned after the last
record in the file.

SETL KEY: The pointeris
set to the first record
with the specified
primary or secondary
key or to the record with
the next-higher key
value.

No action

Inhibits the pointer update by a following
GET or GETR macro.

Under the pointer concept, a SETL for a
non-existent record can, when followed
by a GET or GETR macro, be inter-
preted as a SETL for a record of zero
length at the correct position. In this
case the SETL does not cancel updating
of the pointer by the following GET or
GETR macro.

STORE

The pointer is moved to
the position specified by
the key.

DUPEKY=YES: If a
duplicate key is encoun-
tered, the pointer is
positioned after the
existing record.

Writes the record at
the desired
location.

If a record with the same key already
exists in the file, it is overwritten (unless
DUPEKY=YES was specified).

If DUPEKY=YES applies, the new
record is written after the “old” record.

80

U4250-J-2125-12-76

Programming notes SAM - Sequential Access Method

3.6 SAM - Sequential Access Method

SAM is a record-oriented access method used to process files sequentially. SAM can be
used to write to, update and read records. SAM also features a positioning function which
permits positioning at the logical start or end of a file or at any existing record.

As SAM is a record-oriented access method, it carries out the blocking, deblocking and
buffering of the records for the user. If two I/O areas are available in the user program,
exchange buffer operation can be used. If only one I/O area is provided, no overlapped
processing is possible.

SAM is virtually device-independent and permits the processing of files on disks and tapes;
tape cartridges are essentially handled like normal magnetic tapes.

From BS2000 Version 10.0 onwards, the access method SAM is capable of processing files
with different block formats (see the section dealing with access methods in the “Intro-
ductory Guide to DMS” [1]).

— K-SAM files, i.e. files with a PAM key, have the conventional block format “PAMKEY”.
They are characterized by the fact that DMS management information for each PAM
page is held in a separate PAM key located outside the page.

— NK-SAM files, i.e. PAM files without a PAM key (non-key PAM files), have the block
format “DATA” or “NO”. They do not contain separate PAM keys. With the block format
“‘DATA”, the DMS management information is kept in a block control field within the PAM
page.

No such block-specific management information is supported for the block format “NO”.

By way of the BLKCTRL operand in the macros FILE and FCB, the user can select whether
a Kfile or an NKfile is to be processed: BLKCTRL=PAMKEY defines a K-SAM file,
BLKCTRL=DATA or BLKCTRL=NO specifies an NK-SAM file.

U4250-J-Z2125-12-76 81

SAM - Sequential Access Method Programming notes

Macros for the SAM access method

The following action macros are available for processing files with SAM:

Macro Function

FCB set up file control block.

FEOV for tape files: initiate tape swap.

GET read sequentially; records are retrieved one after the other.

PUT write sequentially: in move mode, record blocking is handled by the logical routines of
the access methods i.e. output to the data volume is delayed until the output buffer is full;
the buffers are served automatically by the system; in locate mode, blocking must be
handled by the user.

PUTX a record that has been read is replaced (for disk files in locate mode only).

RELSE |terminate a data block i.e. for input files:
the next GET causes the next data block to be read;
for output files: the next PUT causes the buffer contents to be written as a data block,
the next record becoming the first record in the new data block (this is necessary in
locate mode if the next record no longer fits in the current buffer).

SETL position to a certain record in the file, to beginning-of-file or to end-of-file.

OPEN modes

INPUT read sequentially towards the end of the file; the file must exist.

OUTPUT create a new file sequentially or overwrite an existing file.

EXTEND extend file.

UPDATE for disk files in locate mode only: update records; the record to be updated must be
retrieved by means of GET, the length of the record must not be changed during
processing; the updated record is replaced by means of PUTX.

REVERSE | read sequentially towards the beginning of the file; the file must exist; tape files which
extend over more than one volume can only be read volume by volume with the aid
of the VSEQ operand (see page 506); no automatic tape swap.

82

U4250-J-2125-12-76

Programming notes SAM - Sequential Access Method

The following table shows which OPEN modes are possible for which SAM action macros.

Action macro OPEN type

(SAM access method) INPUT |OUTPUT |EXTEND |UPDATE |REVERSE
GET X X X
PUT X X

PUTX X

RELSE X X X X X
SETL X X X X X

If files are opened as output files (OPEN OUTPUT/EXTEND), SAM interprets each PUT or
SETL macro as an end-of-file (EOF) indicator. The last PUT or SETL macro prior to a
CLOSE macro for a file thus automatically indicates EOF to the system. If the user wishes
to delete all records after a specific record in a file, he/she can use the SETL macro to
position to the desired point in the file, and then issue a CLOSE macro to close the file.

For direct access, a retrieval address is made available to the user. The format of this
retrieval address is described in detail in the “SAM” chapter of the “Introductory Guide to
DMS” [1]. When a record is written, its retrieval address is made available in the FCB. If the
user wishes, he/she can create a new file from this retrieval address data to serve as a
basis for subsequent non-sequential processing of this file. The retrieval address is also
made available in the FCB after execution of a GET macro. In this case too, therefore, even
if the user did not create the file, he/she can still create a secondary file from the retrieval
addresses in order to perform subsequent non-sequential processing of the file.

If, in move mode with two output buffers, physical end-of-volume is detected when a data
block is written to a tape file, the other buffer (which contains only one record) is written to
the other tape. A tape swap is not executed until this has been done.

If a file is to be created in locate mode (OPEN OUTPUT/EXTEND), the start address of the
first record to be written is returned to the user, after OPEN, in the register specified in the
operand IOREG in the FCB macro. After execution of the PUT macro, this register contains
the address for the next higher record.

In the case of a file with variable-length records (RECFORM=V), the user also always
receives the number of free bytes in the current block. This information is passed in the
register he/she specified in the VARBLD operand of the FCB macro.

U4250-J-Z2125-12-76 83

SAM - Sequential Access Method Programming notes

Primary and secondary allocations (disk files)

When a SAM file is created or overwritten (OPEN OUTPUT) or extended (OPEN EXTEND),
both the primary and secondary allocations must be at least the same as the block size.

If a file for which RECFORM=F or RECFORM=V is specified is to be created or extended
in move mode (OPEN OUTPUT/EXTEND) and is to have more than one record per data
block, then the following conditions apply:

— The primary allocation must be at least twice as long as the data block (primary
allocation = 2 * BLKSIZE). Otherwise control will be passed to the EXLST exit
NOSPACE (insufficient storage space).

— The secondary allocation defined by SAM is implemented as of the first record of the
last block that can still be written in the assigned area. If the secondary allocation
cannot be implemented, control passes to the EXLST exit NOSPACE (provided it is
available in the program), thereby giving the user the opportunity to write the remaining
records of the last block.

Effects of the LABEL operand (tape files)

NO / NSTD | Specification of the BUFOFF operand will lead to an OPEN error with
CODE=ISO/OWN and BLKSIZE=STD.

(STD,0) Specification of the BUFOFF operand and CODE=ISO/OWN will lead to an OPEN
error.

(STD,1) Specification of the BUFOFF operand and the entry CODE=ISO/OWN will lead to an
OPEN error.

(STD,2) Standard blocks are converted into nonstandard blocks (BLKCTRL=DATA/NO) and
V-records are converted to D-records;
RECSIZE > 9999 together with RECFORM=V will lead to an OPEN error.

(STD,3) Standard blocks are converted into nonstandard blocks (BLKCTRL=DATA/NO) and
V-records are converted to D-records;
RECSIZE > 9999 together with RECFORM=V will lead to an OPEN error.

STD/ Specification of the BUFOFF operand will lead to an OPEN error.

no LABEL

operand

specified

) Length specified in decimal form in the case of D-records.

84

U4250-J-2125-12-76

Programming notes SAM - Sequential Access Method

The combination of the specifications for the operands CODE, RECSIZE and RECFORM
result in the following values for LABEL if the file to be created is the first file on a tape:

CODE Block format RECFORM | LABEL value (implicit)
EBCDIC PAMKEY - (STD,1)

EBCDIC DATA/NO U (STD,2)

EBCDIC DATA/NO FIV (STD,3), V-records -> D-records
ISO/OWN PAMKEY - OPEN error

ISO/OWN DATA/NO u (STD,2)

ISO/OWN DATA/NO F (STD,3)

ISO/OWN DATA/NO \% V-records -> D-records (STD,3)

OPEN error if BLKSIZE > 9999

The combination BUFOFF and RECFORM=U or BLKCTRL=DATA is not permitted.

In the case of LABEL=(STD,1), it is not possible to write a file with CODE=EBCDIC, with
nonstandard blocks and D-records. However, it is possible to read such a file.

An OPEN error will occur if the standard label level requested via the LABEL operand does
not match that specified in the VOL1 label.

If LABEL=STD is specified or the LABEL operand is omitted, the label level is determined
as shown in Table 55. If the resulting label level is higher than that in the VOL1 label, the
label level defined in the VOL1 label is used. If the resulting label level is lower than that in
the VOL1 label, or if the VOL1 label specifies LABEL=(STD,0), and if CODE=ISO/OWN is
specified, an OPEN error will result.

SAM file record formats

The SAM access method permits the record formats: F (fixed record length), V (variable
record length) and U (undefined record length).

When format U is used, SAM reads or writes only one record per data block (buffer).

For example, the definition RECFORM=U in combination with BLKSIZE=STD,
BLKCTRL=PAMKEY and a current record length of 48 bytes would mean that 2000 bytes
in each PAM page would be “wasted”.

If the full capacity of a standard block is not used (e.g. after the action macro RELSE, SETL,
FEQOV or CLOSE), the remaining bytes in the block are unchanged, which means that their
contents are undefined.

The size of the record must not exceed the block size (see the BLKSIZE operand in the
FILE/FCB macro).

Further information on record format can be found in the section dealing with access
methods in the “Introductory Guide to DMS” [1].

U4250-J-Z2125-12-76 85

SAM - Sequential Access Method Programming notes

FCB retrieval address

When creating a SAM file, DMS places a retrieval address in the FCB. This address can be
used for positioning by means of SETL. It consists of block numbers and record numbers.
The block number always refers to a logical data block (not to a PAM page), while the record
number indicates the position of the record within the indicated block. For multivolume files,
it should be noted that the block number is maintained only within each volume.

In the 31-bit TU FCB, i.e. for XS programming, the retrieval address is split into two fields,
each one word long: the field ID1BLK# contains the block number within the file and the
field ID1REC# contains the record number within this block. Both fields are incremented
automatically by the system. Whenever a data transfer operation is initiated, the record
counter is automatically reset.

For non-XS programming, the retrieval address is kept in field ID1RPTR of the 24-bit

TU FCB in the form “bbbbbbrr”, where “bbbbbb” is the number of the data block in the file
and “rr” is the number of the record within the block. The record counter is not automatically
incremented by the system; the user must do this in his program if he/she wants to use the
retrieval address. However, the record counter is automatically reset whenever a data
transfer operation is initiated.

For tape files, it should be noted that the retrieval address is returned only for files with
standard blocks, which means that SETL R (see the SETL macro, page 810) cannot be
used for files with nonstandard blocks.

Structure of the retrieval address:

XS interface: 31-bit TU FCB Non-XS interface: 24-bit TU FCB
ID1BLK# ID1REC# ID1RPTR (1 word)
(1 word) (1 word) Bytes 1-3 Byte 4
Block number Record number Block number Record number

The first record in a file thus has the following retrieval address:
in the 31-bit TU FCB 00000001 in field ID1BLK# and 00000001 in field ID1REC#
in the 24-bit TU FCB 00000101 in field ID1IRPTR

86

U4250-J-2125-12-76

Programming notes

SAM - Sequential Access Method

Retrieval address values for SETL B and SETL E, depending on the OPEN type:

OPEN type SETLB SETL E
IDIBLK# | ID1IREC# | IDIRPTR | ID1BLK# | ID1REC# | ID1RPTR
INPUT, UPDATE - - - max. 1 max. 1
OUTPUT 1 0 1 error error error
EXTEND 1 0 10 error error error
REVERSE - - - - - -
where:

- Field contents unchanged.
max Highest block number.

Field IDRPTR contains both the block and record counters.

The action macros return the retrieval address as follows:
GET

if a data transfer is necessary for the requested record, the block counter contains the
logical block number and the record counter is reset. For 31-bit FCB, the record counter is
updated by each action macro.

PUT

if the PUT macro results in a data transfer, the block counter is updated and the record
counter is reset. The block counter thus contains the number of the new data block which
will receive the record. For 31-bit FCB, the record counter is updated by each action macro.

RELSE

if a file is being created or extended (OPEN OUTPUT/EXTEND), the block counter contains
the number of the block which will receive the following record and the record counter is set
to zero.

FEOV

after a tape swap, the block and record counters are reset for the new tape by the system.

U4250-J-Z2125-12-76 87

SAM - Sequential Access Method Programming notes

Example
File attributes: BLKCTRL=PAMKEY, BLKSIZE=(STD,2), RECFORM=F,
RECSIZE=512
Retrieval address
31-bit TU FCB 24-bit TU FCB

ID1BLK# ID1IREC# IDRPTR
Record 10 00000002 00000002 00000202
Record 20 00000003 00000004 00000304

88 U4250-J-2125-12-76

Programming notes UPAM - User Primary Access Method

3.7 UPAM - User Primary Access Method

UPAM is the primary, block-oriented access method in BS2000 for random access to disk
files. Read or write access to any block of a file is possible at any time.

Tape files may likewise be processed using UPAM (see below).

By way of the BLKCTRL operand in the macros FILE and FCB, the user can select whether
a K file or an NK file is to be processed: BLKCTRL=PAMKEY defines a K-PAM file,
BLKCTRL=DATA or BLKCTRL=NO specifies an NK-PAM file.

The format of the file created on an NK2 disk depends on how the block size is specified.
If the block size is specified as BLKSIZE=(STD,n), and n is even, an NK4-PAM file is
created; if n is odd, an NK2-PAM file is created.

An NK4 disk can only be used for an NK4-PAM file (see also the section dealing with access
methods in the “Introductory Guide to DMS” [1]).

Multiple 2048-byte standard blocks can be combined to form a single data block (logical
block) by specifying BLKSIZE=(STD,n) (with n > 1) in the FCB or FILE macro.

In the case of a K-PAM file, each standard block within the logical data block can be
addressed in the program.

For an NK-PAM file, it is only possible to address a complete data block from within a
program; separate processing of the individual 2048-byte blocks which make up the data
block is not possible.

U4250-J-Z2125-12-76 89

UPAM - User Primary Access Method Programming notes

BS2000 disk file User program
Block number:
1 2 3 UPAM OPEN file (OPEN macro)
7777777 e o o
4 5 6
Access to READ or WRITE
blocks block no. k (PAM macro)
7 8 9
e o o
A CLOSE file (CLOSE macro)
/—\ e o o
File control block (FCB macro)
/—\ e o o
1/O areas (IOAREA 1/2)
n-2 n-1 n e j‘
l__
—_—

Data transfer

{_ Initiate UPAM I/O operation

[A second I/O area may be used if desired

Figure 4: Principles of UPAM operation

90 U4250-J-2125-12-76

Programming notes

UPAM - User Primary Access Method

Macros for UPAM access methods

Service macros

Macro Operation | Function

OPEN open file.

CLOSE close file.

FCB define file control block.
EXLST define error exits.

PAM CHK check status of 1/O processing.

LOCK lock a PAM page.

LRD lock a PAM page and read its contents into main memory.

LRDWT lock a PAM page, read its contents into main memory and wait for
completion of I/0.

RD read PAM page into main memory.

RDEQU same as RDWT (see below), but the copy is also updated in the case of files
with DRV (Dual Recording by Volume; see (the “DRV” manual [15]).

RDWT read PAM page into main memory and wait for completion of 1/0.

SETL set file pointer.

SETLPP change last-page pointer (EOF pointer); this enables files to be reduced in
length, i.e. after the CLOSE call has been issued, PAM pages which are no
longer required can be released. This operation is not permitted for files
which have been opened with SHARUPD=WEAK/YES or OPEN=INPUT.
SETLPP is ignored in conjunction with tape files.

SYNC wait for completion of I/O operation and write the contents of the tape
cartridge buffer to tape.

UNLOCK | unlock PAM page.

WRT write data from main memory to a PAM page.

WRTWT | write data from main memory to a PAM page and wait for completion of I/O.

WRTWU | write from main memory to a PAM page, wait for completion of I/O operation
and unlock the PAM page that has been written.

WT wait for completion of 1/0 operation.

U4250-J-Z2125-12-76

91

UPAM - User Primary Access Method Programming notes

Macros used for eventing

The ENAEI, DISEI and SOLSIG macros must be used in all types of eventing. For further
information on the macros listed below, refer to the “Executive Macros” manual [2].

CHKEI checks the status of an event item.

CONTXT | enables read or write access to the register set and program counter (the “context”) of
an interrupted contingency process or of the basic task.

DISEI detaches a job from an event item.

DISCO prevents a contingency definition from controlling contingency processes.

ENACO allows a contingency definition to control contingency processes.

ENAEI assigns an event item to a job.

LEVCO changes the priority level of a contingency process or of the basic task.

RETCO terminates a contingency process.

SOLSIG sends a request to an event item.

OPEN modes

INPUT read blocks from an existing file.

OUTIN create a new file and, if required, read blocks from this file.

INOUT read blocks from an existing file and, if required, add and/or exchange blocks.

PAM operations and OPEN modes

PAM macro functions OPEN mode

INPUT OUTIN INOUT
RD, RDWT, RDEQU, LRD, LRDWT X X X
WRT, WRTWT, WRTWU - X X
WT, CHK, SYNC X X X
LOCK, UNLOCK, SETL X X X
SETLPP - X X

Multiuser operation

A UPAM file can be created and processed with the UPAM, FASTPAM (see page 61) or DIV
(see page 39) access methods. FASTPAM and DIV can, however, only process UPAM files
with the attribute BLKCTRL=NO.

92

U4250-J-2125-12-76

Programming notes UPAM - User Primary Access Method

Authorization for parallel file processing is dependent on the FCB operand open values
specified for SHARUPD, MODE, LOCKENYV and LOCVIEW (the FCB OPEN operand
corresponds to the MODE operand of macros DIV and FPAMSRY).

The allowed parallel opens are shown in the following table:

Compatibility matrix with UPAM-OPEN

USERB
SHARUPD =
*YES *NO *WEAK
I I o 1 (O (| I O
N N U|N N UJ|N N U
OPEN mode P O T|P O T|P O T
u u I |fu v Ly u 1
T T NJ|T T N|T T N
SHARUPD INPUT X O X X
=*YES INOUT o O X
u OUTIN o o X
: SHARUPD INPUT X X X
R |=NO INOUT X
OUTIN X
A | SHARUPD INPUT X X X X X X
=*WEAK INOUT X
OUTIN X
X: OPEN permissible

O: OPEN only permissible if the openers employ the same block-oriented
access method (only UPAM/FASTPAM or only DIV)

and use the same value for the LOCKENV operand (all
LOCKENV=*HOST or LOCKENV=*XCS)

and all run in the same HOST or in an XCS network using
LOCKENV=*XCS

Comments

— Read operations with SHARUPD=*WEAK may have opened a file simultaneously with
any write operation.

Exception:

Read operations with DIV-SHARUPD=*WEAK which specified LOCVIEW=*NONE with
OPEN possess the same compatibility as read operations with UPAM/FASTPAM-
SHARUPD=*WEAK.

— Openers with DIV-SHARUPD=*YES are not compatible with openers with UPAM/
FASTPAM-SHARUPD=*YES.

U4250-J-Z2125-12-76 93

UPAM - User Primary Access Method Programming notes

— Read operations are always compatible with each other (regardless of access method,
SHARUPD specification, LOCKENYV specification and host).

— lllegal combinations lead to an OPEN error.

— An attempt to open a tape file with SHARUPD=YES or WEAK also leads to an OPEN
error.

— If the block size of a tape file without PAM key is not a multiple of 2048, any attempt to
open it with FCBTYPE=PAM is also rejected by UPAM with an OPEN error.

— SHARUPD=*YES:
The file size is checked whenever the allocator is called. If this check indicates a file
size > 32 GB and the attribute LARGE_FILE=*FORBIDDEN is set in the associated
FCB then processing is canceled.
In this case, UPAM issues the return code X' 000009AD' (FILE SIZE GREATER 32
GIGABYTES IS NOT ALLOWED).

UPAM formats

UPAM is a block-oriented access method. The basic processing unit is the 2-Kbyte
standard block for K-PAM files and the logical block for NK-PAM files (its size being deter-
mined by the BLKSIZE operand in the FCB or FILE macro.

UPAM can read in or output up to 16 2-Kbyte standard blocks at the same time
(LEN=(STD,n) or LEN=n*2048, where n < 16).

The following point applies to K-PAM files:

If the value specified for the LEN operand in the PAM macro is not an integer multiple
of 2048, it is rounded up to the next higher integer multiple of 2048.

In the case of a write operation, the remainder of the last PAM page to be written in the
file is undefined; for a read operation, the remainder of the last PAM page to be read is
not passed to the buffer.

The following point applies to NK-PAM files:

If the value specified for the LEN operand in the PAM macro is not an integer multiple
of the size of a logical block, it is rounded up to the next higher integer multiple of the
logical block size.

In the case of a write operation, the remainder of the logical block in the file is undefined;
for a read operation, the remainder of the last logical block to be read is not passed to
the buffer and the remainder of the buffer contents is undefined.

94

U4250-J-2125-12-76

Programming notes UPAM - User Primary Access Method

Example

The operands WRT and LEN=5000 are specified in a PAM call for a file with BLKCTRL=NO
and BLKSIZE=(STD,2). 5000 bytes are transferred from the buffer, and the remainder (up
to the next higher integer multiple of the logical block size (8192 bytes)) is undefined.

< 2 logical blocks: 8192 bytes >
1st logical block: 4096 bytes 2nd logical block: 4096 bytes

5000 data bytes 3192 (undefined) bytes
< Buffer >

UPAM for disk files

UPAM offers the following functions for disk files:

Creation of disk files; users themselves must program access to records (e.g. sequential
access or associative access using hashing techniques).

Reading of SAM and ISAM files (OPEN=INPUT) and their transfer to other volumes (e.g. from
disk to tape); the file attributes, e.g. BLKSIZE, RECSIZE, RECFORM, are stored in the
associated FCB. This enables the user to program access to records.

UPAM cannot open SAM or ISAM files in UPDATE mode.

Because of the complex relationships between index blocks and data blocks, ISAM files
cannot be effectively processed using UPAM. UPAM can, however, be used for the block-
oriented transfer of ISAM files to tape.

Shared-update processing: a number of parallel jobs can process a PAM file concurrently.
The OPEN modes permitted in the shared-update processing of a PAM FILE (mono
system) are described in detail in the “UPAM” chapter of the “Introductory Guide to DMS”

[1].

U4250-J-Z2125-12-76 95

UPAM - User Primary Access Method Programming notes

PAM macros in list form (up to 255, not necessarily all referring to the same file) can be
handled with a single UPAM 1I/O request, i.e. only one SVC is required. The chaining of PAM
macros (just like chained 1/0O) serves to optimize the runtime performance of user programs.

Eventing mechanism: the user job is notified when a UPAM 1/O operation terminates and a
contingency process starts.

For files with DRV (Dual Recording by Volume; see the “DRV’ manual [15]): user information is
output on the current status (e.g. loss of a copy of a disk). This information is requested by
UPAM when an I/O operation is performed, and stored in the FCB (field ID1DRVST).
However, this field is not updated unless the DRV status is modified.

When using UPAM for a disk file without a PAM key (BLKCTRL=DATA or BLKCTRL=NO), the
following points should be borne in mind:

— the file must have standard blocks (BLKSIZE=(STD,n))
— if the file is not an ISAM file (FCBTYPE=SAM or FCBTYPE=PAM), the secondary
allocation must be at least as large as the defined block size (BLKSIZE).

Chained I/0

Chained I/O permits the simultaneous input/output of up to 16 logically consecutive

PAM pages using a single PAM macro (not to be confused with the chaining of PAM macros
in list form with the CHAIN= operand). This reduces the number of I/O operations (and inter-
rupts) and thus reduces processing time. On the downside, however, it increases main
memory requirements and the paging rate.

— UPAM uses chained /O if the LEN operand of the PAM macro contains a value greater
than STD or greater than 2048.

End-of-file (EOF) processing

If the end-of-file condition is encountered during a write operation, a secondary allocation
is performed and the specified number of PAM pages are appended to the file.

If the end-of-file condition is detected during a read operation, UPAM merely transfers the
PAM pages belonging to the file into the buffer.

UPAM notifies the calling job of end-of-file processing as follows:

— If eventing is not used:
the user job receives control at the EXLST exit USERERR with error code X'0922' in
field ID1ECB of the FCB. The number of PAM pages transferred is contained in field
IDINBPP of the FCB. The value X'00' in this field means that all the PAM pages to be
read are located outside the file. A value greater than X'00' means that the user job must
perform a wait operation, unless this was implicitly included in the read operation (i.e.
in a RDWT operation).

96

U4250-J-2125-12-76

Programming notes UPAM - User Primary Access Method

— Ifeventing is used:
if all the PAM pages to be read are located outside the file, UPAM passes control to the
user job at the EXLST exit USERERR with error code X'0922' in field ID1ECB of the
FCB. If at least one of the PAM pages to be read belongs to the file, UPAM either
resumes the basic task or initiates a contingency process (see “TU eventing: event-
driven processing” on page 105). Field IDECBNPA of the FECB (File Event Control
Block, see page 106) now contains a value indicating the number of PAM pages trans-
ferred.

X'00" All PAM pages to be read were transferred to the buffer

X'0n' n =number of PAM pages belonging to the file that were transferred to the
buffer.

Locking and unlocking of PAM pages

Only the firstin a series of PAM pages to be locked/unlocked needs to be specified in a PAM
macro; the number of pages to be locked/unlocked is derived from the value of the LEN
operand. It should, however, be noted that after a lock or unlock operation, the file pointer
points to the last PAM page that was locked/unlocked. This page may lie outside the file
(see “End-of-file (EOF) processing” above).

A LOCK or UNLOCK operation applied to a file opened as SHARUPD=NO or SHARUPD=
WEAK is treated as a no-op, i.e. the only action taken is to update the pointer to indicate
the last page processed. The LEN operand is interpreted in this case.

Processing of PAM keys
There are two possible ways of processing PAM keys:

— The user reads/writes each individual key of a series of PAM pages: MKEY=YES
operand in the PAM macro; the KEYFLD operand must contain the address of a suffi-
ciently large area.

— The user reads/writes only the first key of a series of PAM pages. During writing,
succeeding blocks are assigned the same key as the first, with just the logical block
number being incremented by 1 each time.

U4250-J-Z2125-12-76 97

UPAM - User Primary Access Method Programming notes

Notes on the processing of disk files with UPAM

Blocks are not transferred to the user buffer until an explicit action macro is issued. As this
causes a delay, asynchronous I/O operations have to be terminated by means of the

WT action macro. For TU eventing, the SOLSIG macro should be used (synchronously or
asynchronously).

Any unsuccessful branch to the UPAM routines causes control to be passed to the routine
specified in the EXIT operand of the FCB macro, or to the corresponding EXLST routine.
An indicator is stored in the FCB.

Whenever UPAM induces a program termination, it supplies registers 0, 1 and 15 with the
following contents, which can be easily identified and evaluated in memory dumps:

Register 0 Address at which the termination occurred.

Register 1 Address of the element in the UPAM operand list chain in which the error
was detected.

Register 15 UPAM error code.

If register 1 contains an invalid address when the PAM macro is issued for the first time, this
address will be contained in register 0 when the dump is taken, and register 1 will contain
zeros (i.e. the error occurred before the first element in the operand list chain was located).

UPAM uses the following EXLST exits:
ERRADDR Hardware fault or abnormal I/O termination.

USERERR Invalid use of a macro in the program or attempt to read a PAM page not
belonging to the file (EOF).

EOFADDR Attempt to read a dummy file.

PGLOCK Not all of the requested locks become available within the specified time,
and the job currently has no blocks locked.

DLOCK The request to set up a lock is rejected and the job already has locks set.

PAM pages which have been allocated to a file but have not yet been written by the file
owner are identified by an internal file name code assigned by the system (CFID = Coded
File ID, bytes 0-3 of the PAM key or block control field), which does not correspond to the
current file name. The name comparison must be performed by the user, taking the
following points into account (see also the KEYFLD operand of the PAM macro, page 757):

— At OPEN time, the current CFID is written to the first word of field ID1KEY1 in the FCB.

98

U4250-J-2125-12-76

Programming notes UPAM - User Primary Access Method

The

The
stor
The

If th

following points apply solely to the processing of K-PAM files (BLKCTRL=PAMKEY):

After execution of a RDWT, LRDWT or RDEQU operation, the CFID of the block just
read is located in the first word of FCB field ID1KEY?2.

After execution of one of the operations WRT, WRTWT, WRTWU, or WT, the CFID of
the PAM page concerned is located in the first word of FCB field ID1KEY 1. As the entry
generated by OPEN will be overwritten, it should be saved prior to processing so that
subsequent comparisons can be made.

After execution of an LRD or RD operation, the contents of fields ID1KEY1 and
ID1KEY2 are not changed.

With event-driven processing, the CFID of the relevant PAM page is in the first word of
FCB field ID1KEY1 after completion of an 1/O operation.

fields ID1LWB (PARMOD=24) and ID1LWBPT (PARMOD=31) in the FCB are used to
e the address of the last block on which UPAM successfully performed an I/O operation.
leftmost byte of field ID1LWB is used as an indicator for an outstanding WT operation.

e last UPAM operation on the file was a successful WT, then the indicator byte in

ID1LWB is set to X'00' and the three least significant bytes of ID1LWB or ID1WBPT contain

the
orn

If th

address of the block affected by the WT operation. This occurs regardless of whether
ot the operation which initiated the WT was successfully completed.

e last UPAM operation on that file did not initiate a WT operation, the indicator byte in

ID1LWB is set to X'FF'. The contents of the remaining three bytes in ID1LWB or ID1LWBPT

are

of no significance.

U4250-J-Z2125-12-76

99

UPAM - User Primary Access Method Programming notes

UPAM processing of tape files

UPAM offers the following functions for tape files:

Creation of tape files not extending over more than one tape; the user is responsible for
programming access to logical records in these files.

Reading of SAM files with standard blocks; the file attributes are stored in the FCB by OPEN
processing (see the chapter “OPEN processing” in the “Introductory Guide to DMS” [1]),
e.g. BLKSIZE, RECSIZE, RECFORM. This enables the user to program access to logical
records.

Chained I/0 is not possible for tape files.

Informing the user job upon termination of a UPAM I/O operation and start of a contingency
process (eventing mechanism).

When using UPAM, the following basic points must be noted:

— UPAM is a block-oriented access method, i.e. the system is unaware of any logical
structure within the blocks. The user must program his own record handling.

The following points apply to the use of UPAM with tape files:
— The file must reside on a single tape.
— Every read/write operation processes exactly one physical block.

— In the case of a file with the format BLKCTRL=PAMKEY (explicit or implicit), this must
be a 2064-byte standard block. The first 16 bytes contain the PAM key and the
remaining 2048 bytes contain the user data. Only STD or 2048 may be specified for the
LEN operand of the PAM macro.

— In the case of a file with the format BLKCTRL=DATA or BLKCTRL=NO, BLKSIZE can
be specified in bytes, in which case the value must be a multiple of 2048. The LEN value
must not be greater than the BLKSIZE value. Blocks of the length specified by LEN and
containing either only user data (with BLKCTRL=NO) or a 12-byte block control field
plus the LEN value minus 12 bytes of user data (with BLKCTRL=DATA) are written to
the tape. These blocks can be read by means of the UPAM function RD, in which case
the value for LENRp in the read call must lie within the range:

LENwg < LENRp < BLKSIZE. (LENyR = value for LEN when writing to the file.)

In this context, the following special feature applies to files with FCBTYPE=ISAM:

regardless of the value specified for BLKSIZE, UPAM always works with a block size of
2048 bytes. This is because, for ISAM, each 2K block has a block control field and thus
constitutes a separate entity. In this case, the LEN value must not be more than 2048.

100

U4250-J-2125-12-76

Programming notes UPAM - User Primary Access Method

Due to its different block format, a tape file without a PAM key created by UPAM in
Version 10.0 cannot be read or processed by UPAM in earlier BS2000 versions.
However, it can be processed using BTAM. This also applies to NK-ISAM files created
in V10.0 and due to be read in V9.5.

— The following errors may arise in the context of a UPAM access to a tape file with
BLKCTRL=PAMKEY and nonstandard blocks (= 2064 bytes):

— hardware error (error code = 927)
— the data may be stored in the buffer incorrectly
— the PAM key may be corrupted.

— Tape files must not be accessed by several jobs at once, or by one job several times
(this is due directly to the properties of magnetic tape). This means that:

— atape file must not be opened with SHARUPD=YES/WEAK

— atape file which is already open cannot be opened again, even when both OPEN
operations are in INPUT mode

— atape file must not be opened with an FCB operand whose PAMREQS value is
greater than one.

— ltis possible to read a tape file with UPAM using random access. However, the time
outlay involved can be considerable.

— ltis possible to write PAM blocks as of a specific point in an existing tape file. The last
newly written block automatically becomes the last block in the file, even if the existing
file contained more blocks. The file can then only be read up to this block. If a block
nearer the start of the file is then read and the file is then closed, the most recently read
block becomes the last block in the tape file.

Programming notes

Magnetic tape cartridges are treated just like normal magnetic tapes.

Whenever UPAM causes program termination, it places the address which was responsible
for the abortion in register 0, while the address of the element in the UPAM operand list
chain at which the error was detected is placed in register 1, and the UPAM error code is
placed in register 15. This facilitates location of this information in memory dumps.

If register 1 contains an invalid address after the first PAM macro is issued, register 0 in the
memory dump will also contain this address; register 1 will then contain the value 0, i.e. the
error occurred before the first element of the operand list chain could be located.

U4250-J-Z2125-12-76 101

UPAM - User Primary Access Method Programming notes

UPAM uses the following EXLST exits:
ERRADDR Hardware error or abnormal 1/0O termination.

USERERR Invalid operation, such as an attempt to read a PAM page which does not
belong to the file (end-of-file).

Fields ID1LWB (PARMOD=24) and ID1LWBPT (PARMOD=31) in the FCB are used to store
the address of the last block on which a WT operation was carried out successfully by
UPAM. The leftmost byte of field ID1LWB is used as an indicator byte.

If the last UPAM operation on the file was a successful WT, then the indicator byte in
ID1LWB is set to X'00' and the three least significant bytes of ID1LWB/ID1LWBPT contain
the address of the block affected by the WT operation. This occurs regardless of whether
or not the operation which initiated the WT was successfully completed.

If the last UPAM operation on that file did not initiate a WT, the indicator byte in ID1LWB is
set to X'FF'. The contents of the rightmost three bytes in ID1LWB/ID1LWBPT are of no
significance.

Chaining PAM macros in list form

PAM macros which are to be chained, and which do not necessarily have to refer to the
same file, must be generated in list form by means of the operand MF=L and then stored in
a constant area; chaining is implemented by specifying the CHAIN= operand.

All the macros (except the last) have the following format:

element,, ‘ PAM ‘ fcbaddr,operation,...,MF=L,CHAIN=element .. 1

In the last element of the chain, the CHAIN operand is omitted.

A chain of PAM macros in list form is called by means of a PAM macro with the following
format:

[PAM | MF=(E element,)

Only one SVC instruction is required for each chain, i.e. by chaining UPAM requests the
user avoids the overhead of multiple SVC processing.

102

U4250-J-2125-12-76

Programming notes UPAM - User Primary Access Method

Example of coding

START
LDBASE 10
USING *,10

PAM MF=(E,ELEM1)

TERM

*CONSTANT—-AREA

ELEMI e MF=L,CHAIN=ELEMZ
ELEMZ Y MF=L,CHAIN=ELEM3
ELEM3 e MF=L

END

If execution is successful, the user regains control at the statement following the PAM
macro which requested processing of an operand list chain.

All operations are carried out in exactly the same order in which the PAM macro lists appear
within the chain — with one exception: when the first operation to request a lock is encoun-
tered, the rest of the chain is examined and all operations requesting locks are registered.
If all the requested locks cannot be imposed within the specified time, the chain is termi-
nated at the operation which requested the first lock.

If an action requested in the chain is not performed successfully, none of the following
actions in the chain is executed (including locks).

Control is passed to the appropriate EXLST exit; register 1 points to the FCB of the file in
which the error occurred. The error code (ID1ECB) and the sense byte (ID1XITB) are set
in this FCB in the normal way, and field ID1CHERR in the FCB is set to the address of the
element in the operand list chain that caused the error.

A check on an unfinished I/O operation also causes control to be transferred from the
operand list chain to the user program at the specified address. The remaining requests in
the chain (including locks) are not executed, and field ID1CHERR in the FCB is set to the
address of the operand list element which contains the CHK operation. It is therefore not
advisable to use check operations in operand list chains.

The user must ensure that the lock, read, write, wait, check and unlock operations are
applied appropriately within a chain. Buffers and key fields are utilized by UPAM according
to the request. A check is made to verify that a buffer exists and that access is authorized,
but there is no guarantee that a buffer or a key field filled by an operation in a chain will not
be overwritten by a later operation involving this chain.

U4250-J-Z2125-12-76 103

UPAM - User Primary Access Method Programming notes

The format of the PAM operand list can be described by means of a dummy program
section (DSECT) generated with the IDPPL macro.

In all cases where a chain of UPAM operand lists cannot be processed in full (e.g. I/O
operation failed, error detected, lock not accepted, EOF condition encountered, or CHK
operation attempted on currently executing I/O request), the address of the first unexecuted
chain entry is moved to field ID1CHERR of the FCB. The user can assume that all
preceding entries were executed correctly.

UPAM does not report errors via FCB-EXIT and EXLST

— ifthe UPAM SVC is executed and neither register 1 nor any chain operand contains a
valid address (e.g. the address is not aligned on a word boundary or refers to a field
which is not entirely within the user's virtual address space and is not large enough to
accommodate a UPAM macro operand list, etc.);

— if the FCB address in the UPAM macro operand list is either missing or invalid.

In both these cases, there is no FCB to which the error could be reported, and therefore
UPAM aborts the program.

A UPAM operand list chain is validated in full before any function is initiated. If a CHAIN
address or FCB address is found to be invalid, the job is aborted before any chain element
is executed.

Where the eventing mechanism is used, the user program is likewise aborted if the
I/O operation is completed and there is no event item available to which the event can be
reported.

104

U4250-J-2125-12-76

Programming notes

UPAM - User Primary Access Method

TU eventing: event-driven processing

This section describes event-driven processing using certain macros. For a more detailed
explanation of “eventing”, see the “Executive Macros” manual [2].

Eventing is used by UPAM to report the completion of an 1/0 request to a job. The job can

— be continued in parallel with the UPAM I/O operation and, when the expected event
occurs (in this case, termination of the requested 1/O operation), proceed with a contin-
gency process (asynchronous processing).

— wait for termination of the requested 1/0 operation and then proceed (synchronous
processing; this is, of course, equally feasible without eventing).

Upon completion of an I/O operation, UPAM sends a message to the associated eventitem
(using the POSSIG macro). Sooner or later this message encounters the request issued by
the user (by means of the SOLSIG macro).
When both request and message are present (for the same event item), a contingency
process is started or the basic task resumed.

UPAM processing

Execute the requested
I/O operation; upon
termination)
of the 1/O operation,
post entry in the
message queue

Event item

messages

Queues for

requests

L 4

Job

Initiate a UPAM 1/O
operation (PAM macro)
L]

L]
L]

Post entry in the
request queue (SOLSIG

macro)
L]

L]
L]

Further processing
parallel to the I/O activity

When request and
message are both
present: start a
contingency process
or resume the basic
task

Figure 5: Coordination of user job and UPAM processing

U4250-J-Z2125-12-76

105

UPAM - User Primary Access Method Programming notes

Basic task

The system must be informed of the event items and contingency definitions that are to be
used (ENAEI, ENACO macros).

For each 1/0O operation, the system must be supplied with the address of a file event control
block (FECB). I/O operations running in parallel must refer to different FECBs. The
maximum number of parallel I/O operations is defined via the FCB operand PAMREQS; for
tape files, only PAMREQS=1 may be specified.

The number of contingency definitions depends on whether different procedures are
required after execution of I/0 operations. If, for instance, the same procedure is to be used
in all cases, the contingency definition needs to be coded once only.

A 14-byte FECB (File Event Control Block) must be set up for each event item.

The FCB macro for each file must specify a valid PAMREQS operand; PAMREQS defines
the maximum number of concurrent I/0O operations which may be requested for that file.

Until the first I/O operation with an FECB is terminated, the FECB must not be used for other
I/O operations.

The address of the associated FECB must be specified for each UPAM 1/O request (FECB
operand in the PAM macro). No wait operations may be requested either explicitly or
implicitly by the PAM macro. The instruction sequence read (RD) — write (WRT) — wait
(WT) for the same block would thus yield an undefined result. The user must wait for the
event (I/0 termination) before issuing the WRITE call.

After each UPAM I/O request, precisely one request must be issued to the associated event
item (SOLSIG macro). The request may also be used to specify whether the basic task is
to continue in parallel with the 1/0O operation or is to wait for it to terminate.

At the start of a contingency process, it is passed the following information via registers 2
and 3:

For PARMOD=31: the 1/O operation is initiated using the 31-bit operand list; the required
information is transferred in registers 2, 3 and 4:

Register | Information

2 contains the event information code.

3 the two rightmost bytes contain a post code supplied by the user at the start of the /10
operation, the leftmost byte contains an identifier indicating a UPAM event (X'10').

4 contains the address of the operand list for the operation which has just been completed.

106 U4250-J-2125-12-76

Programming notes UPAM - User Primary Access Method

For PARMOD=24: the 1/O operation is initiated using the 24-bit operand list; the required
information is held in registers 2 and 3 (as in earlier versions of BS2000):

Register | Information

2 contains the event information code.

3 the three rightmost bytes contain the address of the operand list for the operation just
terminated, the leftmost byte contains the value X'10'".

If a SOLSIG macro generated with PARMOD=24 or a 24-bit contingency definition is
addressed via an operand list created with PARMOD=31, the secondary return code
(leftmost byte in register 15) indicates that the sending and receiving lengths are not
consistent.

Format of the file event control block (FECB)

The FECB must be aligned on a word boundary. It can be given a symbolic name by means
of the IDECB macro.

Executive flag byte

Meaning of field Field length Field name

(in bytes)

Internal ID of event item 4 CBEVID

Address of FCB 4 CBP1LNK

Standard device byte 1 CBSDB

Sense bytes 3x1 CBSB1, CBSB2, CBSB3
Executive flag byte 1 CBEFB

Number of PAM pages transferred 1 CBNPA

A UPAM I/O operation can be terminated in a number of different ways (EFB = Executive
flag byte; see FECB):

Normal I/O termination EFB=X'80'
I/O operation led to exception condition EFB=X'C0O'
Unrecoverable error (e.g. hardware fault) EFB=X'AQ'

In a contingency process, the user can program appropriate responses to the various ways
in which an 1/O operation can terminate.

U4250-J-Z2125-12-76 107

Files larger than 32 GB Programming notes

3.8 Files larger than 32 GB

As of BS2000/0SD-BC V5.0, BS2000 supports files and volumes with a capacity of up to
4 Terabytes. These files and volumes are known as “large files” and “large volumes”.

The limit values supported by BS2000 are now as follows:

— the maximum capacity of a disk is approx. 4 TB (2 147 483 647 PAM pages)
— the maximum file size is also approx. 4 TB (2 147 483 647 PAM pages)

Large files and large volumes are only supported in special pubsets whose attributes must
have been set up for the use of these large objects by systems support.
Such pubsets cannot be imported into BS2000/OSD-BC versions < V5.0.

Extension to the catalog entry

The introduction of 4-byte fields for the following data stored in the catalog entry is a key
aspect in the lifting of the 32-GB limit for volume and data sizes:

— FILE-SIZE, the storage space allocated for the file
— HIGHEST-USED-PAGE, the amount of storage that currently contains data

— LHP (Logical halfpage number) and PHP (physical halfpage number) of the individual
extents in the extent list, that allocate “physical” halfpages of volumes to the logical
halfpages

3-byte and 4-byte fields

Block numbers and block counters are visible at various BS2000 user interfaces. Although
4-byte fields have been used exclusively in all new versions of these interfaces, some old
interface versions may still use 3-byte fields. If files > 32 GB exist, you may experience

compatibility problems. This may also occur in rare cases when only volumes > 32 GB exist.

New format for the extent list

The introduction of 4-byte LHPs and 4-byte PHPs means that a new (additional) format has
been introduced for the extent list.

The correlation between the maximum size of volumes and files and the field width of LHP
and PHP is depicted in figure 6:

108 U4250-J-2125-12-76

Programming notes Files larger than 32 GB

IDVT IDEE IDEE IDVT IDEE IDEE IDEE
Extent list: VSN_1 2 Ext. (1. Ext.‘2. Ext.‘VSN_2 4 Ext. ‘3. Ext.‘4. Ext.‘5. Ext.‘
LHP: highest logical ! PHP: the physical page
page of the extent; ' assigned to the LHP:
file size limit ’ volume size limit

3-byte extent R .

LHP PHP

L L max. volume size 32 GB

max. file size 32 GB

as of OSD-BC 5.0:
4-byte extent

LHP PHP
I I

max. volume size 4 TB

max. file size 4 TB

Figure 6: Correlation between file and volume sizes and the field width of LHP and PHP

This new format cannot be interpreted in older BS2000/0OSD-BC versions. In order to
achieve as much downward compatibility as possible, both formats of the extent list are
supported by BS2000:

— In general, the “old” format with 3-byte block numbers will be used.

— Only in the case of large files or of files that have to be addressed via PHPs >
X'FFFFFF' will the new format with 4-byte block numbers be used.

Extent lists therefore contain either extents with 3-byte block numbers or extents with 4-byte
block numbers.

U4250-J-Z2125-12-76 109

Files larger than 32 GB

Programming notes

Restrictions for large files

— No large files can exist on the home pubset.

— The dump file $TSOS.SLEDFILE (SLED file) cannot be > 32 GB.

— The paging file cannot be = 32 GB.

— A SYSEAM file cannot be = 32 GB.

— SIR does not support large files when reading from ARCHIVE tapes.

— Files with BLKCTRL=PAMKEY

The logical page number is stored as a 3-byte field in the system section of the
PAMKEY. This cannot be modified for all access methods.

Summary of the DMS macro interfaces affected by 32-byte objects

Interface Change
FCB New operand for large files
FILE New operand for large files
FSTAT Effort involved in check and conversion if VERSION=0/1
OPEN Takes account of semantic problems
RDTFT Attribute of the “large file” file attribute
DIV New operand for large files;
extended range of values for BLOCK and SPAN
FPAMACC Extended range of values for BLOCK
FPAMSRV New operand for large files

110

U4250-J-2125-12-76

Programming notes Files larger than 32 GB

User programs

As stated above, it cannot be assumed that all programs have been prepared for accessing
large objects, i.e. that they can address 4-byte block numbers and block counters and it
must be borne in mind that the interfaces available to user applications only relate to
accessing and processing files and their metadata.

Program behavior can thus be classified as follows:

Class A: A program is able to process large files without restrictions. This behavior is
defined as LARGE_FILES-capable.

Class B: A program has not been prepared for processing large files and/or their
metadata. It is, however, able to perform defined rejections of corresponding
access attempts that it regards as illegal. Alternatively, there are no access files
or their metadata within the program. This behavior is defined as
LARGE_FILES-capable.

Class C: A program has not been prepared for processing large files and cannot perform
a defined rejection of corresponding access attempts. This behavior is defined
as LARGE_FILES-incompatible.

In configurations that contain large files, programs that are compatible with or capable of
LARGE_FILES are required. LARGE_FILES compatibility is to be regarded as the norm.
Growth over 32 GB will initially be limited to a relatively small number of files. Only the
programs that access these require LARGE_FILES capability.

For concrete examples of this classification for the relevant DMS interfaces in BS2000 and
further, detailed information on this subject, refer to the manual “Files and Volumes larger
than 32 GB” [19].

U4250-J-Z2125-12-76 111

U4250-J-Z2125-12-76 112

Macros

ADDPLNK

4 Macros

ADDPLNK - Define pool link name

Macro type: type S (E form/L form/D form/C form); see page 866

The ADDPLNK macro is used to assign a pool link name to an ISAM pool for a user job and
to enter this name in a pool table. This pool

link name must have been entered in the task file table by means of the FILE command

(operands LINK and POOLLNK) or specified in the FCB (field POOLLNK). During OPEN
processing, the system checks whether a pool link name exists for the file and whether an
ISAM pool exists for the name.

Format

Operation

Operands

ADDPLNK

POOLNME=poolname

» LINKNME=name

[,CATID=catid]
TASK

[.SCOPE= USERID
USERGROUP

HOST

MF=L,POOLNME=poolname

addr
MF=E, PARAM=
(r)

MF=DL,PREFIX=prel

MF=CL,PREFIX=prell,MACID=macid]

U4250-J-Z2125-12-76

113

ADDPLNK

Macros

Operand descriptions

CATID = catid
Specifies the pubset to which the ISAM pool belongs. This must match the “catid”
specification in the CREPOOL macro.

Default value: the default catalog ID of the task.

LINKNME = name

Assigns the pool link name “name” to the ISAM pool “poolname”. “name” may be

1-8 characters long and may contain all letters and digits and the special characters $, #
and @ (in accordance with the rules for file names).

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
the field names and equates generated in the data area when the macro is expanded.

Default value: MACID = ISA

= macid
Three-character string defining the second through fourth characters of each field name
and equate generated.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

PARAM
Specifies the address of the operand list; evaluated only in conjunction with MF=E (see
page 865).

= addr
Symbolic address (name) of the operand list.

=(r)
Number of the register containing the address of the operand list. The register must be
loaded with this address value before the macro is called.

POOLNME = poolname
Specifies the ISAM pool to be used for file processing. “poolname” is the name with which
the ISAM pool was created (see the CREPOOL macro, page 241).

114

U4250-J-2125-12-76

Macros

ADDPLNK

PREFIX
evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default value: PREFIX=D

= pre
One-character prefix with which the field names and equates generated by the
assembler are to begin.

SCOPE
Specifies the scope of the ISAM pool. This must have the same value as in the CREPOOL
macro.

=TASK
The pool link name is assigned to the task-local ISAM pool “poolname”.

= USERID
This scope is still supported only for reasons of compatibility (see the CREPOOL
macro, page 241).

= USERGROUP
This scope is still supported only for reasons of compatibility (see the CREPOOL
macro, page 241).

= HOST
The pool link name is assigned to the cross-task ISAM pool “poolname”.

U4250-J-Z2125-12-76 115

ADDPLNK

Macros

Return codes

Unless otherwise specified, the field names and EQU statements for return codes
generated by the C and D forms of the macro begin with the string DISA; this string can be
modified by means of PREFIX and MACID.

The return codes are entered in the standard header of the operand list.

Main return code

Meaning

DISAOK X'0000'

The macro call was successful

DISANPAR X'0001"'

Access to the operand list was not possible

DISANREM X'0002'

The pubset identified by “catid” is on a host system running a version of
BS2000 which does not support ISAM pools

DISANCAT X'0003'

The catalog ID “catid” is unknown in the system

DISANACC X'0004'

There is no connection to pubset “catid”

DISAINVN X'0005'

The pool name or pool link name is invalid

DISANCLA X'000A'

The pool name already exists and the existing assignment cannot be cleared

DISASYSE X'000B'

An internal error occurred during macro processing

DISANOPL X'000D’

There is no pool with the specified name

DISARNLK X'FFFF'

The macro call could not be executed: evaluate subsidiary return code 1
(linkage error)

116

U4250-J-2125-12-76

Macros

BTAM

BTAM - Process tape files (type S)

Macro type: type S (E form/L form); see page 866

All user requests for BTAM are handled using this macro. In the operand descriptions, the
abbreviation “MTC” is used for “magnetic tape cartridge”.

Format

Operation

Operands

BTAM

fcbadr

RDWT
RBID
RD
RDBF
CHK
MINF
POS
REV
REVWT
RNT
RNTL
RT
[,{ RTL
SYNC
WRT
WRTWT
WT
ERG
BSF
BSR
FSF
FSR
REW
RUN
WTM

1C,LEN=1ength][,L0C=: 2]
relexp

(Teil 1 von 2)

U4250-J-Z2125-12-76

117

BTAM Macros
Operation |Operands
24
L, PARMOD={ 31 }] [,REQNO=number1]
MF=L
MF=(E,addr ;
E,(r)
(Teil 2 von 2)

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

RDWT
Reads the tape forwards and waits until the operation is completed before returning control
to the user program (default function).

CHK
Checks whether the previous I/0O operation has been completed. If not, control is
transferred to the address specified in LOC. Otherwise, the operation is equivalent to WT.

MINF

Fetches information about the medium during the processing of optical disks. In BS2000,
optical disks are operated via an MTC emulation.

The area to which the information is to be written and its length (currently 128 bytes) must
be specified via the LOC and LEN operands. The layout of the output information is
described with GC NDWMINF.

POS
Permissible only with PARMOD=31; positions the tape (see “Operation codes” on
page 122).

RBID
Permissible only with PARMOD=31; determines the tape position (see “Operation codes”
on page 122).

118

U4250-J-2125-12-76

Macros BTAM

RD
Reads the tape in a forward direction.

RDBF
For tape cartridges, permissible only with PARMOD=31; transfers data block-by-block from
the save area of the MTC buffer to the user area (see “Operation codes” on page 122).

REV
Reads the tape backwards (towards BOT).

REVWT
Reads the tape backwards and waits until the operation has been completed before
returning control to the user program.

RNT
Reads without data transfer; a message is issued if the length is shorter than expected.

RNTL
Reads without data transfer; no message is issued if the length is shorter than expected.

RT
Reads with data transfer; a message is issued if the length is shorter than expected.

RTL
Reads with data transfer; no message is issued if the length is shorter than expected.

SYNC
Permissible only with PARMOD=31; determines the tape position and synchronizes
(see “Operation codes” on page 122).

WRT
Writes to a magnetic tape.

WRTWT
Writes to a magnetic tape, waiting until the operation has been completed before returning
control to the user program.

U4250-J-Z2125-12-76 119

BTAM

Macros

WT

Waits until the previous 1/0O operation has been completed. Control is not returned to the
user program until the operation has been completed or the necessary error recovery
functions have been performed.

ERG

Generates an interblock gap; if repeated, the tape is erased.

The operation triggered by ERG is physically a write operation. However, instead of a bit
pattern, an “interblock gap” pattern is generated. The length of this pattern is defined by the
user (although for some magnetic tape types, the length is preset).

BSF
Rewinds (backspaces) the tape by one tape mark.

BSR
Rewinds (backspaces) the tape by one block.

FSF
Forward-spaces the tape by one tape mark.

FSR
Forward-spaces the tape by one block.

REW
Rewinds the tape to the BOT marker.

RUN
Rewinds and unloads the tape; subsequently, only CLOSE is possible.

WTM
Writes a tape mark.

LEN = length

Specifies the length of the individual blocks or, for chained I/O (CHAINIO operand in FILE/
FCB), the length of the transport unit.

If LEN is not specified, the length of a transport unit is the product of the block size and the
chaining factor, where the block size is defined by BLKSIZE if RECFORM=F is specified,
and by the contents of the register specified for RECSIZE if RECFORM=U applies.

120

U4250-J-2125-12-76

Macros

BTAM

Without chaining, the system takes the specifications only from the RECSIZE operand
when writing with RECFORM=U; otherwise, they are taken from the BLKSIZE operand.

If RECFORM=U is specified, a length specification entered via the LEN operand may be
such that the last block within a transport unit is shorter than the previous blocks.

If RECFORM-=F is specified, the given length should be a multiple of the BLKSIZE specified
(but the job will not be rejected if this is not the case).

The length to be read is always taken from the current length specification and only from
this. After a successful READ, the actual block size is returned in the RECSIZE register.
If specified in conjunction with operation code RDBF, LEN specifies the length of the blocks
to be saved from the buffer. If RECFORM=U/V applies, the current block length is stored in
the RECSIZE register.

LOC
Specifies the area from which data is to be read or to which data is to be written.

Default value: IOAREA1

for the first input or output
— when switching from LOC=relexp to an IOAREA
— if IOAREA2 was used last
— if IOAREAZ is not defined

IOAREA2 if IOAREA1 was used last

=relexp

Address of an area in the macro.

The LOC operand must be specified in the form LOC=relexp if a CHK operation is
required. It specifies the address to which control is to be passed if the operation being
checked has not yet been completed. The addressed area must not coincide with
IOAREA1/2.

=1
Points to the address IDAREA1 in the FCB.

=2

Points to the address IODAREA2 in the FCB.

The used I/O area is indicated in the TU FCB:

— infield ID1BLWB of the 31-bit TU FCB, or

— infield ID1LWB of the 24-bit TU FCB.

When used with the operation codes POS, RBID, RDBF, and SYNC, LOC has the
following functions:

— POS:address of the specified tape position (9 bytes)

— RBID:address at which the specified tape position (9 bytes) is output

— RDBF:address of the area into which the saved block is to be placed

— SYNC:address at which the specified tape position (9 byes) is output

The pointer in the TU FCB (ID1BLWB or ID1LWB) is set to the last used area for these
operation codes as well.

U4250-J-Z2125-12-76 121

BTAM

Macros

MF
The formats of the MF operand are described in detail in the appendix, page 865.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

=24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

=31
The macro is generated as addressing mode-independent.

REQNO = number

Number < 8; the number of the input/output request or of the associated macro. Several
asynchronous read or write operations, identified by different numbers, can be started.
Each of these read/write operations must be terminated by the WT operand (together with
the relevant number). The maximum number of concurrent I/O operations is specified in the
BTAMRQS operand of the FCB.

Operation codes

POS — Position the tape

This is useful for restarting, e.g. after a write error with loss of data: the user can specify the
block number (2 bytes) which he/she obtained from an earlier RBID operation at the
address defined by LOC and the tape is then positioned to the corresponding block.

RBID — Determine current tape position (block number)

Each block on a tape, including the tape marks, can be identified by means of its position
on the tape.

In the case of conventional magnetic tapes, the tape position is returned to the user as a
pair of values (TM and record counters). This information is returned to the user after an
RBID instruction (or SYNC instruction, see page 124) at the address defined by means of
the LOC operand (see the operand description) or, if LOC is not specified, in one of the I/O
areas defined in the FCB. The position information (first 8 bytes) depends on the processing
status and returns the information listed in the table on page 123 in field ID1ECB of the FCB
in the case of an error.

122

U4250-J-2125-12-76

Macros BTAM

The 9th byte specifies how the position information is to be interpreted.

27 = 1: TM and record counters
26 =1: block ID
2**0=1: no valid position specified

Before an RBID instruction is issued, all outstanding asynchronous read/write operations
(in MAV mode) must be terminated with a WAIT. In the case of synchronous file processing,
BTAM executes the WAIT automatically.

For magnetic tape cartridges, the tape position is defined as a “block number” (or block ID).

Information returned

Event Information Meaning Action
Successful Block number Indicates the position of the next
execution block to be written to or read out of

the MTC buffer
Unsuccessful | Block number The tape position has been saved; | Reposition using
execution + error DC7C the block number shows which block | POS

was written last without error

Block number undefined | The tape position could not be saved | Reposition to

+ error DC7B checkpoint or
program is
aborted

Block number undefined | The tape position could not be saved | Program is

+ error DC79 aborted

Block number I/O error; the block number is the one | ----

+ error DC77 that existed after error handling

Block number undefined | I/O error with “loss of position” Reposition to

+ error DC77 checkpoint or
program is
aborted

RDBF — for MTC only — after an unrecoverable write error, read data from the save area of the MTC
buffer into a user area.

When writing is buffered, it is possible for errors to occur for data blocks for which the user
has already received a positive acknowledgment. DMS attempts to save the data already
passed to the MTC buffer and the tape position so that the user can carry out normal error
handling. (S)he can retrieve the block causing the error and subsequent blocks (which have
been acknowledged but not yet written to tape) from the save area of the buffer and process
them again, for example by sending them to a different volume.

U4250-J-Z2125-12-76 123

BTAM

Macros

Before the file is closed (CLOSE) or a tape swap is initiated by FEOV, the user must use
the POS function to position the tape after the last block which was written successfully. The
blocks are read on the principle “last in, first out” and the number of blocks stored in the
bufferis kept in field ID1BLANZ in the TU FCB. A separate RDBF instruction must be issued
for each block, in which case the input area is specified as for normal read operations: the
address is given by the LOC operand in the BTAM macro or by IOAREA in the FCB and the
length in the LEN operand or in the FCB, in the same way as for reading from tape. The
blocks are transferred with the specified length. If RECFORM=V/U is specified for the file,
the actual length of the saved block is indicated in the register specified by means of
RECSIZE in the FILE or FCB macro.

SYNC — Synchronize and set marker points

The data contained in the MTC buffer is written to tape. For synchronous processing (not
MAV mode), BTAM initiates any outstanding WAIT. For asynchronous processing (MAV
mode), the user must ensure that any outstanding WAITs are executed before the SYNC
instruction is issued. The SYNC call implicitly includes an RBID call, i.e. the current tape
position is returned to the user in the I/O area. The user can utilize this fact to set check-
points, e.g. for handling subsequent errors: he/she can then restart at one of these points
and continue processing.

Programming notes

1. The BTAM macro destroys the contents of registers 0, 1, 14 and 15.

2. Misuse of FSF or FSR can cause the tape to run to end-of-volume, in which case it must
be rewound by the operator (offline).

3. Whenever a branch to BTAM is unsuccessful, control is passed to the address specified
in the EXIT operand of the FCB. An appropriate hexadecimal error code is stored in the
FCB.

4. |If the user specifies fixed-length blocks (format F) but reads blocks of a different length,
control is passed to the ERRADDR exit in the EXLST macro.

If the record length exceeds the specified length, an “abnormal termination” bit is set in
the Executive flag byte, and the “record-length error” bit is set in the sense byte,
provided no RTL or RNTL operation with the simultaneous use of chaining and/or
MAV mode is involved (in which case the user is not informed).

If the block is shorter than the specified length, however, the “abnormal termination” bit
is set, but no error byte is returned (the residual count is stored in sense bytes 2 and 3;
see the NDWERINF macro, page 748). No natification is provided to the user if an RTL
or RNTL operation is involved.

124

U4250-J-2125-12-76

Macros BTAM

5. If the user specifies variable-length blocks (format U or V) or uses the operation codes
RTL or RNTL, but reads blocks of a greater length than specified, control is passed to
the ERRADDR exit in the EXLST macro, provided chaining and MAV mode are not
used. The ERRADR exit is always activated for RT and RNT operations. In all other
cases, no information is returned to the user for the U/V format.

The various cases and situations in which the user is notified are summarized in the

table below:
Operation Format
RECFORM=F RECFORM=U/V
Block < specified | Block > specified | Block < specified | Block > specified
length length length length

RD(WT) yes yes no conditional *)
R(N)T yes yes yes yes
R(W)TL no conditional *) no conditional)

) yes if chaining and MAV mode are not used

6. The user need not specify wait operations explicitly, provided that he/she is not working
in MAV mode. BTAM automatically outputs a WAIT before each new operation.
However, if an error occurs during this WAIT operation, error code X'0C77' is output.
The new operation is not executed.

Note that this implicit WAIT is only meaningful when working with multiple I/O areas.
Since the data in the output area must essentially be retained when writing until the
completion of a WAIT, and since the input area is correctly filled when reading only after
completion of a WAIT, users who work with only one I/O area must ensure that a WAIT
is issued as soon as they wish to reuse this single area.

7. BTAM does not use the EOFADDR exit of the EXLST macro (end of file). If a tape mark
is read by a RD, RDWT, RNT, RNTL, RT, RTL, REV or REVWT, control is transferred to
the ERRADDR address.

The program can evaluate the 5 status bytes in the FCB (SDB, FB1, FB2, FB3, AMB)
after the WAIT. Control is also transferred to the ERRADDR address if an attempt is
made to reverse-read a tape that is positioned at the beginning of the tape.

8. Inthe case of the REV and REVWT operations, the address for the first byte into which
data is read is defined by:

LOC + LEN -1

9. The SAM macro FEOV can be used for a file opened by BTAM. If end-of-file (on the
current tape) is encountered, BTAM branches to the otherwise unused exit EOFADDR.

U4250-J-Z2125-12-76 125

BTAM

Macros

10.

1.

12.

13.

14.

15.

CHAINIO with tape cartridges: the transport unit should not be larger than the buffer
size, and the buffer size should be an integral multiple of BLKSIZE. In the case of an
error, the indicated number of blocks in the buffer (TU FCB: ID1BLANZ) always refers
to individual blocks, not to transport units. The RDBF operations also process only
individual blocks.

MAV mode with tape cartridges: the value specified for BTAMREQS in the FCB can be
smaller than for tapes, since the user I/0O areas become free again more rapidly in the
case of tape cartridges.

In the event of an error, it is possible that the entire contents of the MTC buffer cannot
be written to the cartridge. The user can access the blocks transferred by the operating
system from the MTC buffer to a save area, which is equivalent to reading a tape in the
reverse direction. After this, the user should attempt to position the MTC after the last
block which was written correctly.

The user must ensure that the tape is positioned correctly (by means of POS) before
further write operations are started (particularly before writing the EOV/EOF labels).
Otherwise, data on the tape may be overwritten. An RBID operation after error DC7C
returns the tape position after the last block which was written correctly.

The tape can be closed correctly by writing the end labels if it is first read backwards for
a few blocks or positioned backwards (if the user does not need the data already
written).

If, due to a write error, some blocks were not written from the MTC buffer to tape, but
are still saved in the save area of the buffer, the user must first execute an RDBF or
RBID operation in order to tell the system that he/she does not want to discard this data;
otherwise, it will not be available later. RDBF and RBID may be issued in any sequence;
the contents of the buffer are retained as long as the user starts no other operations,
with the exception of any outstanding WAITs. The user may issue these before issuing
the RBID and/or RDBF instructions (and must issue them before the RBID); naturally,
all of these WAITs will result in error code DC7C.

If the user does not position the tape after the DC7C error message, the tape position
becomes “UNDEFINED” and this state can be cleared only by positioning the tape (or
with REW and UNL).

Before checkpoints are written by means of the SYNC instruction, all previously initiated
I/O operations must be terminated by means of WAIT.

If a calling sequence in which a “write” operation follows a “reverse read” is used when
in MAV mode, all outstanding WAITS must be issued before the “write” operation.

126

U4250-J-2125-12-76

Macros

BTAM

16.

17.

18.

A characteristic feature of tape cartridge devices is that errors which occur during output
operations are reported only when the buffer contents are transferred to tape. The user
may thus be informed that an error has occurred only when (s)he starts another
request. Consequently, the user may receive the message “end of tape” before the
message indicating that an error has occurred. The “end-of-tape” message means that
the user should not start any more write operations, in order to ensure that all data still
in the buffer and the end labels will fit on the current tape. In the case of tape cartridges,
this “end-of-tape” message does not result from detection of an end-of-volume label on
the tape; rather it is generated during the transfer of data into the buffer, contingent on
the amount of data already in the buffer and other criteria.

When the FEOV or CLOSE macro is issued for a BTAM file which was opened in INOUT
mode, the file is treated as an output file if a WRITE-and-WAIT operation was requested
for it during processing (WRT, WRTWT, WTM). If no WRITE-and-WAIT operation was
requested, the file is treated as an input file.

BTAM issues the error code X'0C95' if:

— aninvalid device type is specified

— the operation code is invalid

— one of the registers 0, 1, 13, 14 or 15 is specified in the FCB RECSIZE operand

— the value of the LEN operand in the BTAM macro is less than or equal to 0 or, if
LOC-=relexp is not specified, greater than BLKSIZE (in which case IODAREA1/2 will
be used, which is the same size as BLKSIZE)

— aread operation is requested for a file opened in OUTPUT mode
— the REQNO specification in MAV mode exceeds the maximum permissible value

— a WAIT macro has not been issued before a read/write call for the same REQNO,
when in MAV mode

— aBTAM call is specified after RUN (only CLOSE is possible) or after an unsuc-
cessful FEOV operation

— BTAM calls are issued for a file which has not been opened for BTAM (except in
EXLST routines for label handling)

U4250-J-Z2125-12-76 127

BTAM

Macros

19. When extending a tape file, a direct switch from “write” to “read” should be avoided.

20.

21.

22.

23.

Discrepancies in deletion overlaps can lead to problems on certain magnetic tape
devices.

The following sequence of operations always guarantees error-free execution:

BTAM macro Meaning

BSR, FSR, ... Position tape before block n
RD Read (save) block n

BSR Reposition tape before block n
WRT Write block n back to the tape
WRT/WRTM Write block n+1 (or tape mark)

An incorrect block length is not indicated in some cases, e.g. when reading data with
chaining specified (see page 124).

The chain for the input of CCWSs continues to run. However, the areas to which the
individual blocks are transferred are incremented at the customary rate for blocks of
normal size; in other words there will be gaps in the input/output areas in those cases
where blocks of shorter length occur.

Information relating to the buffers used is provided in the TUFCB field ID1LWB when
PARMOD=24, and in the field ID1BLWB when PARMOD=31, when a WAIT is executed
in the following manner (asynchronous processing): for an input operation, a note is
made of the buffer affected by the last WAIT operation without an error message. For
output operations, the buffer indicated is the one which was used for the last output
(which may not necessarily have terminated).

For synchronous processing, the following applies: for PARMOD=24, the value
specified in the FCB field ID1LWB refers to the buffer which was last used, and for which
a successful WAIT was issued; if PARMOD=31 applies, the FCB field ID1BLWB is
used.

When the block and transport unit sizes are defined by the user, the following point
should be borne in mind: Each I/O operation initiated by the device driver involves
defining block and transport unit sizes for the pages affected. In the case of chained
input/output, these definitions are effected for every CCW of the chain. For memory
management reasons, however, this is only possible for up to 63 definitions per page;
that is, if a job is issued in such a way that more than 63 CCWs referring to the same
page may be created (e.g. when using small block sizes and large transport unit
lengths), a CSTAT error may be the result.

In the case of tapes with standard labels, BTAM checks whether a planned write
operation is actually allowed by the current tape position. If not, the request is rejected
with USERERR and error code 0C9D.

128

U4250-J-2125-12-76

Macros BTAM

Return codes

Five FCB sense bytes (SDB, FB1, FB2, FB3 and AMB) are loaded in the TU FCB.
In addition, the following information is issued in field ID1LRCRB:

Byte 1: X'04' End-of-tape/beginning-of-tape encountered
X'02' Block shorter than value from BLKSIZE
X'05' Block longer than value from BLKSIZE
X'01' Tape mark detected
X'08' Undefined error (unrecoverable)
X'09' Parity error (inoperable)
X'0C' Device defective
X'0D' Device in operation
X'OE' Continuation error on tape cartridge; position to defective block
X'OF' Tape format not compatible with device type

Byte 2: Request number (required, since EXIT ERRADR can be issued only once
per FCB).
Bytes 3/4: Block number within a chained input/output job during which an error

occurred, or number of the block at which the end of the tape was reached
(this block will still be written).

A DSECT (DLRC macro) is supplied to interrogate the values set in the first byte of the
ID1LRCLB field.

With operations in asynchronous mode (REQNO operand), any further input/output jobs
which have already been accepted are no longer started if an error occurs during input/
output. Instead, these jobs are terminated logically after a WAIT command has been issued
by the user. When this is the case, the block number in bytes 3 and 4 of field ID1LRCLB
and the error information for the errored 1/0 operation both have a value of 1, and the value
in the RECSIZE register (for RECFORM=U) is 0.

The user can issue a CLOSE macro at any time, even before all outstanding WAITS have
been issued. All outstanding input/output requests which may not yet have been completed
at this point in time are then terminated logically. However, this does not necessarily mean
that all these requests have been honored.

U4250-J-Z2125-12-76 129

CATAL

Macros

CATAL - Process catalog entry
Macro type: type S (E form/L form/D form/C form/M form); see page 866

The CATAL macro creates or modifies catalog entries. It can be used to define attributes for
file and data protection, to specify the coded character set and performance attributes, and
to convert temporary files to permanent files and vice versa.

If attributes in existing catalog entries are to be modified, the operand STATE=*UPDATE
must be specified. Only those file attributes, i.e. fields in the catalog entry, whose
associated operands are specified with valid operand values are updated.

A catalog entry can be updated only if write access is not prevented by means of a
password. Otherwise, the password must be entered in the password table of the job by
means of the PASSWORD command (see the “Introductory Guide to DMS” [1]).

CATAL can be used to catalog files, file generations and file generation groups. The
protection attributes for files and file generation groups can be modified; the protection attri-
butes for file generations are defined by the related group entry.

The CATAL macro supports the “Default-Protection” function.

The encryption attributes of a file cannot be modified using the CATAL macro.

130

U4250-J-2125-12-76

Macros CATAL

Temporary files

Since temporary files are job-specific, it is not possible to define file protection for them, i.e.
the applicable default attributes cannot be modified. The following points must be noted
when setting up a temporary file or if a permanent file is recataloged as a temporary file
(or vice versa).

Nonprivileged users can only create temporary files on the default pubsets relating to their
user IDs.

— Setting up a temporary file:

The temporary file is assigned the following values (explicit specification of other values
is generally not permitted):

EXPIRATION-DATE = <date> BACKUP-CLASS =*E
USER-ACCESS = *OWNER-ONLY READ-PASSWORD =*NONE
WRITE-PASSWORD =*NONE EXEC-PASSWORD =*NONE
ACL =*NO GUARDS = *NONE
BASIC-ACL = *NONE ACCESS =*WRITE
FREE-FOR-DELETION =*NONE AVAILABILITY =*STD

MANAGEMENT-CLASS = *NONE

The attribute DISK-WRITE is set as default to *BY-CLOSE but may, however, be
explicitly set to *IMMEDIATE. The attribute MIGRATE, which is set to the default value
*INHIBITED, may also be set explicitly to *FORBIDDEN.

— Recataloging from temporary to permanent:

The permanent file is assigned the following values if no explicit entries are made:

BACKUP-CLASS = value of the class 2 option BACKUP
DISK-WRITE = *IMMEDIATE
MIGRATE *ALLOWED is set for the permanent file if

MIGRATE=*INHIBITED was set for the temporary file
(MIGRATE=*FORBIDDEN remains unchanged).

The remaining attributes are taken over unchanged from the temporary file.

U4250-J-Z2125-12-76 131

CATAL

Macros

Recataloging from permanent to temporary:
The temporary file is assigned the same values as when a temporary file is set up.

The only difference is the value for MIGRATE:
If MIGRATE="ALLOWED was set for the permanent file, *INHIBITED is set for the
temporary file (MIGRATE="FORBIDDEN or *INHIBITED remains unchanged).

Renaming from temporary to permanent and vice versa is rejected in an SM pubset if
simultaneous changing of the file attributes requires reallocation to another volume set
(SO migration).

Recataloging a work file or a file on a Net-Storage volume to a temporary file or vice
versa is not allowed.

File generation groups (FGG)

The following points must be noted when creating or accessing file generation group
catalog entries:

If the user wishes to work with a file generation group (FGG), he must create the group
entry before he catalogs the first generation. In contrast to files and file generations,
which can be cataloged by means of FILE, the group entry can be created at the
program level only by means of the CATAL macro.

If the file generation group is indexed on public volumes (no VOLUME and/or DEVICE
specification), the generations can be created on both public volumes and on tapes
(FILE program interface).

If the file generation group is indexed on a private disk (VOLUME/DEVICE specifi-
cation), the generations can then also only be created on private disks (FILE program
interface).

Files can be recataloged as file generations if the file generations do not already exist.
A file on a Net-Storage volume cannot be renamed as a file generation. However, file
generations cannot be recataloged as files.

The attributes (operands) STOCLAS, IOPERF, IOUSAGE, DISKWR and SOMIGR can
be assigned or modified for the separate file generations of a file generation group.
The entries of the user or system administration metainformation (USRINFO and
ADMINFO operands) can be defined separately for the index of the file generation
group and each individual file generation.

The remaining attributes can only be defined for the complete file generation group.
They are inherited automatically from the index by all cataloged generations.

The USER-ACCESS attribute must not be set to SPECIAL for file generation groups.

It is not possible or meaningful to assign execution rights for file generation groups
since generations cannot be executed (/CALL-PROCEDURE or /START-PROGRAM is
rejected).

132

U4250-J-2125-12-76

Macros CATAL

— The protection attributes READ-PASSWORD, WRITE-PASSWORD and EXPIRATION-
DATE do not protect the index of a file generation group against new generations being
created using CATAL. This means that new generations can be cataloged and,
dependent on the selected OVERFLOW-OPTION, old generations deleted regardless
of the protection attributes.

— A new generation cannot be created in a generation group with the attribute
ACCESS=READ using CATAL <generation name>,STATE=*NEW,
CATAL <file><generation name>,STATE=*UPDATE must be used instead.

— The protection attributes BASIC-ACL and GUARDS protect the file generation group
(index) as well as each individual file generation. This means that a caller who does not
posses write authorization cannot create a new file generation in a file generation group
which is write-protected with these attributes.

— File generation groups which are stored on private volumes and for which no catalog
entries exist are called foreign file generation groups. If such FGGs are to be cataloged
again, the group entry must first be created. For file generation groups on private disks,
the operand STATE=*FOREIGN can be used for this purpose if the F1 label on the disk
contains the group entry. The system then creates the catalog entry from the infor-
mation in the F1 label of the private disk specified via the DEVICE and VOLUME
operands. The associated file generations must then be imported (e.g. FILE macro,
operand STATE=*FOREIGN).

— If afile generation group whose generations are stored on a tape or private disk is to be
imported, and if the F1 label of the disk does not contain the group entry, the operand
FIRST and at least one of the operands BASE or LAST must be specified in the CATAL
macro to enable reconstruction of the group entry.

— When a file generation group is set up in the SM pubset, this must be defined as either
a group of permanent generations or a working generation group (WORK-FILE
attribute) by either implicitly assigning a default storage class or explicitly specifying the
WORKGRP operand. It is not possible to subsequently change the attribute.

If the generation concerned is assigned a storage class (during initial allocation via the
FILE program interface) or the storage class is exchanged, the WORK-FILE attribute in
the storage class must match the attribute of the group.

Files on tapes and tape cartridges

When creating or updating the catalog entries for tape files, some special features which
result from the use of tapes must be observed.

— Details of shareability (SHARE), access type (ACCESS) and passwords are trans-
ferred, for files with standard labels, from the catalog entry to the file labels when the
file is created. For foreign files the details of the access rights are transferred from the
file labels into the catalog entry when the file is opened.

U4250-J-Z2125-12-76 133

CATAL

Macros

Since file labels on a tape cannot be modified without destroying the file (this is a
hardware restriction), and the contents of the catalog entry for a file must match the
contents of the file labels, the access rights and the expiration date of a tape file cannot
be modified by means of the CATAL macro once the file has been opened and closed
correctly.

If the tape file was cataloged by means of a FILE macro, the file protection attributes
can be modified by means of the CATAL macro before the file is opened for the first
time. These attributes are then transferred without further checking to the file labels
when the file is created. In this way, it is possible to define write protection
(ACCESS=READ) for a file which is still to be created. The file can then be opened as
an output file and created; the write-protection then becomes effective.

Note

If a tape file is cataloged using FILE, it is shareable unless SHARE=NO is set by
means of a CATAL macro before it is opened for the first time.

If password protection is specified for a tape file, the label processing routines transfer
the passwords to the HDR3 label from the catalog entry when the file is created, without
checking them (the reverse applies when a file is imported, i.e. passwords are trans-
ferred from the HDR3 label into the catalog entry).

The passwords are not checked for a file for which SECLEV=LOW is specified.

If the system administrator selected password encryption when the system was
generated, the encryption indicator in the HDR3 label is set to '1' when the file is
opened.

If a file (FILE=...) is to be renamed (NEWNAME-=...), the new name may only consist of
the old name plus a version designation enclosed in parentheses. The version desig-
nation must differ from any other version designation that may already be present.
This restriction results from the tape label processing: for hardware reasons, the
separate blocks of a tape file cannot be overwritten and the file name in the label is
compared with the file name in the catalog entry when the file is opened.

ACCESS types for tape files:

— All OPEN modes are permitted with ACCESS=*WRITE.

— Only the OPEN modes INPUT and REVERSE are permitted with
ACCESS="READ.

— The access type is entered in the HDR1 label according to the entries in the
ACCESS operand, as follows:
ACCESS="READ — access type 1
ACCESS=*WRITE — access type 2

— The ACCESS operand is used mainly for securing a file against destruction
(ACCESS=*"READ). Only the owner of a tape file can bypass checking of the
access authorization by specifying SECLEV=LOW in the FCB macro.

134

U4250-J-2125-12-76

Macros

CATAL

Shareability (USER-ACCESS/SHARE) for tape files:

— The access type is entered in the HDR1 label according to the entries in the SHARE
operand, as follows:
SHARE=*NO (USER-ACCESS=*0OWNER-ONLY) — access type 1
SHARE=*YES (USER-ACCESS=*ALL-USERS) — access type 2

— USER-ACCESS=*ALL-USERS is assumed as default if the catalog entry was
created with the FILE call.

DESTROY operand:
If DESTROY="YES was specified, the remaining part of the tape is deleted after the file
is closed (CLOSE).

Using wildcard file names

If a wildcard file name (selection and/or construction specification) is to begin with an
asterisk and contains no further wildcards, the leading asterisk must be entered twice.
Otherwise, the request is rejected.

Examples: "*A' and "A/Z' are valid, "ABC' and 'P(A)' are invalid.

If a wildcard file name (selection or construction) is to begin with two asterisks, these
are handled with respect to the construction as a single asterisk.

Example: a CATAL call with the parameters FILE='A.*.* and NEWNAME="*.0OLD.*'
renames an existing file 'A.TEST.1' to "'TEST.OLD.1"'

The contents of the class 2 option TEMPFILE do not represent a partially qualified file

vk

name in this case (in contrast to FSTAT). ".*' can or must be used instead.

Note on SM pubsets

The following specifications are ignored for files/generations/FGGs on volume sets with
permanent data storage if the file identifier in the SM pubset in question has a default
storage class and physical allocation is forbidden:

AVAIL, DISKWR, IOPERF, IOUSAGE, SOMIGR=*ALLOWED, STOCLAS=*NONE.

U4250-J-Z2125-12-76 135

CATAL Macros
Overview of the macro functions
Function FGG Generation Permanent file Temp. file |Operand
(Index)
PUB | PRV | PUB | PRV | TAP | PUB | PRV | TAP | PUB | TAP
Identify catalog entry X X X X X X X X X x | pathname
Rename file or FGG X X X X X X X | pathname2
Catalog entry STATE
— create X X X X X =NEW
— change X X X X X X X x |=UPDATE
— import X =FOREIGN
Permit read or write X X X X X ACCESS
access
Access control with X X BASACL
BASIC-ACL X x OWNERAR
X X READ
X X WRITE
X EXEC
X X GROUPAR
X X READ
X X WRITE
X EXEC
X X OTHERAR
X X READ
X X WRITE
X EXEC
Access control with X X GUARDS
GUARDS X X READ
X X WRITE
X EXEC
Transfer of protection X X X X X X x |PROTECT
attributes
Shareability X X X X X SHARE
Password protection:
- write X X X X X WRPASS
- read X X X X X RDPASS
— execute X X X EXPASS
Expiration date X X X X EXDATE
(retention period) (RETPD)
Release for deleting X X X X DELDATE

136

U4250-J-2125-12-76

Macros CATAL
Function FGG Generation Permanent file Temp. file |Operand
(Index)
PUB | PRV | PUB | PRV | TAP | PUB | PRV | TAP | PUB | TAP
Automatic data X X X X X X x | DESTROY
destruction
Audit monitoring X X X X X AUDIT
Frequency of ARCHIVE X X X X BACKUP
backups
Scope of ARCHIVE X X X X LARGE
backups
HSMS migration X X X X X MIGRATE
permitted/not permitted
SM pubset migration X X X SOMIGR
permitted/not permitted
Availability X X AVAIL
HSMS management class | x X MANCLAS
Storage class X X STOCLAS
Enable/disable character X X X X x |CCS
set
Define performance attri- X X X IOPERF
butes
Performance required for X X X IOUSAGE
I/O operations
Suitability for processing X X DISKWR
in cache (DAB)
User metainformation X X X X USRINFO
System administration X X X ADMINFO
metainformation
Define file generation
groups: X X GEN
Oldest generation X X FIRST
First generation X X LAST
Base generation X X BASE
Overflow handling X X DISP
Define volume
— volume X VOLUME
— device X DEVICE
Work group X WORK
U4250-J-2125-12-76 137

CATAL Macros

Key

PUB : public volume

PRV : private volume (private disk)

TAP : tape

X: the attribute can be set or modified with CATAL

138 U4250-J-2125-12-76

Macros

CATAL

Format

Operation

Operands

CATAL

VERSION =1 /2 / 3
L,MF=C/D/E/L/M

,PARAM = <npame 1..8>

,PREFIX = 1/ <pre>

,MACID = DK/ <macid>

,ACCESS = *WRITE / *READ / *UNCHANGED
,ACLPROT = *NO / *YES

,ADMINFO = *NONE / <c-string 1..8> / (<reg: A(char:8)>) /
<var: char:8>

,AUDIT = *NONE / *FAILURE / *SUCCESS / *ALL
,AVAIL = *STD / *HIGH
,BACKUP = *A / *B / *C / *D / *E

,BASACL = *NONE / *STD / *UNCHANGED
,BASE = <integer -99..9999> / (<reg: int:2>) / <var: int:2>

,CCS = *NONE / *STD / <c-string 1..8> / (<reg: A(char:8)>) /
<var: char:8>

,CHECK = *NO / *MULTIPLE / *ERROR / *SINGLE / *CATALOG / *USERID
,DELDATE = *NONE / *UNCHANGED / <c-string 1..10> /

(<reg: A(char:10)>) / <var: char:10> /

[(<c-string 8..8> / (<reg: A(char:8)>) / <var: char:8>)1]
,DESTROY = *NO / *YES / *UNCHANGED

,DEVICE <c-string: device> / (<reg: A(char:8)>) / <var: char:8>

,DISKWR = *IMMEDIATE / *BY-CLOSE

,DISP = *CYCLE / *REUSE / *DELETE / *KEEP

(Teil 1 von 4)

U4250-J-Z2125-12-76

139

CATAL Macros

Operation |Operands

,EXDATE = *UNCHANGED /
<c-string 1..10> / (<reg: A(char:10)>) / <var: char:10>
[(<c-string 8..8> / (<reg: A(char:8)>) / <var: char:8>)1]

,EXPASS = *NONE / *UNCHANGED / <c-string 1..4> / <x-string 1..8>/
<integer -2147483648..2147483647>
(<reg: A(char:4)>) / <var: char:4>

,FILE = <c-string 1..80: filename 1..54 with-wild(80)> /
(<reg: A(char:80)>) / <var: char:80>

,FIRST = <integer 1..9999> / (<reg: int:2>) / <var: int:2>
,GEN = <integer 0..255> / (<reg: int:2>) / <var: int:2>

,GROUPAR = *NO-ACCESS / (
[READ = *NO / READ = *YES / R = *N / R = *Y1]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[,EXEC = *NO / EXEC = *YES / X= *N / X = *Y]1)

,GUARDS = *NONE / (

[READ = *NONE /
<c-string: filename 1..18 without cat—-gen-vers>/
<var: char:18> / (<reg: A(char:18)>) 1

[,WRITE = *NONE /
<c-string: filename 1..18 without cat—-gen-vers>/
<var: char:18> / (<reg: A(char:18)>) 1

[,EXEC = *NONE /
<c-string: filename 1..18 without cat—-gen-vers>/
<var: char:18> / (<reg: A(char:18)>) 1) /

*UNCHANGED

,IOPERF = *STD / *HIGH / *VERY-HIGH / *USER-MAX

,IOUSAGE = *READ-WRITE / *WRITE / *READ

,LARGE = *NO / *YES

,LAST = <integer 1..9999> / (<reg: int:2>) / <var: int:2>

,LIST

*NO / *SYSOUT / *ERRORS-TO-SYSOUT

,MANCLAS = *NONE / <c-string: struct-name 1..8> /
(<reg: A(char:8)>) / <var: char:8>

(Teil 2 von 4)

140 U4250-J-2125-12-76

Macros

CATAL

Operation |Operands

,MIGRATE

,NEWNAME

,OPNBACK

,OTHERAR

,OWNERAR

,PROTECT

, RELSPAC

,SHARE =
,STATE =
,STOCLAS

, TIMBASE

,USRINFO

,VOLUME =

= *NO / *YES

,RDPASS = *NONE / *UNCHANGED / <c-string 1..4> /

,RETPD = <integer 0..32767> / (<reg: int:2>) / <var: int:2>
,SOMIGR = *ALLOWED / *FORBIDDEN

*

*NEW / *UPDATE / *FOREIGN

= *NO-ACCESS / (

= *ALLOWED / *IGNORED / *UNCHANGED

*ALLOWED / *INHIBITED / *FORBIDDEN

c-string 1..80: filename 1..54 with-constr-wild(80)> /
(<reg: A(char:80)>) / <var: char:80>

*NO—-ACCESS / (

CREAD = *NO / READ = *YES / R = *N / R = *Y]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[LEXEC = *NO / EXEC = *YES / X= *N / X = *Y]1)

CREAD = *NO / READ = *YES / R = *N / R = *Y]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[LEXEC = *NO / EXEC = *YES / X= *N / X = *Y1)

*STD / *BY_DEF_PROT_OR_STD /
(*FROM_FILE,<c-string: filename 1..54>) /
(*FROM_FILE, (<reg: A(char:54)>)) /
(*FROM_FILE,<var: char:54>)

<x-string 1..8> / <integer -2147483648..2147483647>
(<reg: A(char:4)>) / <var: char:4>

NO / *YES / *SPECIAL / *UNCHANGED

*STD / *NONE / *UPDATE / <c-string: struct-name 1..8>/
(<reg: A(char:8)>) / <var: char:8>

*UTC / *LTI

*NONE / <c-string 1..8> / (<reg: A(char:8)>) /
<var: char:8>

<c-string: vsn 1..6> / (<reg: A(char:6)>) /
<var: char:6>

(Teil 3 von 4)

U4250-J-Z2125-12-76

141

CATAL Macros

Operation |Operands
,WORKGRP = *YES

,WRPASS = *NONE / *UNCHANGED / <c-string 1l..4> /
<x-string 1..8> / <integer -2147483648..2147483647>
(<reg: A(char:4)>) / <var: char:4>

(Teil 4 von 4)

Operand descriptions

ACCESS

The ACCESS operand can be used to protect a file against overwriting. It specifies whether
write/read or only read access is permitted for the file or file generation. This protection
attribute is only relevant if no BASIC-ACL or GUARDS protection is activated.

Tape files:

when the file is opened for the first time, DMS places the ACCESS indicator in its HDR3
label. For subsequent accesses, the file owner can bypass access type checking by speci-
fying SECLEV=LOW (see pages 438 and 492).

Default setting — only in conjunction with STATE=*NEW: ACCESS=*"WRITE

= *WRITE
All access types are permitted for the file or file generations.
Tape files, HDR3 label: access type = 0.

= *READ

Only read access is permitted for the file or the file generations, i.e. only the OPEN
modes INPUT and REVERSE are permitted.

Temporary files: write access cannot be prevented; ACCESS=READ is rejected.
Tape files, HDR3 label: access type = 1.

142 U4250-J-2125-12-76

Macros

CATAL

=*UNCHANGED

Only relevant if PROTECT is specified:

If STATE=*UPDATE is specified at the same time, the value of ACCESS remains
unchanged. If STATE=*NEW is specified at the same time, the value
ACCESS=*WRITE is entered.

Specification of “"UNCHANGED has the following effects:

— ifPROTECT=*FROM-FILE is specified:
the value *UNCHANGED prevents the corresponding value from being taken over
from the reference file

— ifPROTECT=*"BY_DEF_PROT_OR_STD is specified and if STATE=*NEW is
specified without a value for PROTECT:
the value *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over

— ifPROTECT=*STD and STATE=*UPDATE are specified together:
the value *UNCHANGED prevents the value in the catalog entry from being reset
to the value ACCESS=*"WRITE

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
ACCESS=*WRITE (irrespective of what is specified for PROTECT).

ACLPROT

Reserved for the system administrator; called under the user ID TSOS):

sets or resets the ACL indicator and thus activates or deactivates access control via ACL
(see the “SECOS” manual [8]).

Access control via ACL has not been supported since SECOS V4.0.
Instead access control with GUARDS must be used.

This operand can lead to inconsistencies in the system and should therefore only be used
to enable access to a file protected with ACL.
This operand is not permitted for temporary files, tape files or files on private volumes.

=*NO
The ACL indicator is reset, thus deactivating access control via ACL.

=*YES

Should no longer be used as files protected with ACL cannot be accessed:

The ACL indicator is set. Any GUARDS protection which is defined is deleted.
If the default protection function supplies a value for GUARDS, it is ignored.

U4250-J-Z2125-12-76 143

CATAL

Macros

ADMINFO

Reserved for system administrators (called under the TSOS ID):

Enters system administration metainformation into the file catalog entry. The entry can have
a maximum of 8 bytes, with any contents; the system administrator defines the meaning.
The operand is ignored for files on private volumes.

= *NONE
The entry is deleted.

= <c-string 1..8>

The specified characters are entered.
= (<reg: A(char:8)>)

Only possible with MF=M:

The specified register contains the address of an 8-byte memory area containing the
metainformation to be entered.

= <var: char:8>

Only possible with MF=M:

Symbolic address of an 8-byte memory area containing the metainformation to be
entered.

AUDIT
Reserved for user IDs with AUDIT=YES rights:
Defines whether DMS accesses to files or file generations are to be monitored with the aid

of system exit routines. Monitoring applies to the operations CATAL, FILE, OPEN and
ERASE.

If the user does not have the authorization AUDIT=YES, a CATAL macro specifying AUDIT
will be rejected.

Default setting — only in conjunction with STATE=*NEW: AUDIT=*NONE

= *NONE
No monitoring.

= *All
All DMS operations for the file/generation are monitored.

=*SUCC
All successful DMS operations for the file/generation are monitored.

= *FAIL
All unsuccessful DMS operations for the file/generation are monitored.

144

U4250-J-2125-12-76

Macros CATAL

AVAIL

Only relevant with STATE=*UPDATE for files on public volumes or on a Net-Storage volume:
The file availability requirements are modified. Files that are to have an increased
availability are reallocated to an appropriate volume set (e.g. DRV — Dual Recording by
Volume).

An existing storage class entry in the SM pubset file catalog entry is removed by specifying
the operand.

The operand must not be specified simultaneously with the STOCLAS=*NONE operand.

The operand is ignored for files and generations on volume sets with permanent data
storage if the file identifier on the SM pubset concerned has a default storage class and
physical allocation is forbidden.

=*STD
No special availability requirements are set.

= *HIGH

The file is to have increased availability. It is ensured that the file is allocated to a
corresponding volume set. If the current storage location does not provide the
requirements of increased availability, the request is rejected for SF pubsets. The
request is only rejected in an SM pubset if no suitable volume set is available or if the
permitted user ID allocations are exceeded. Otherwise, the storage space is reallocated
to a suitable volume set.

If the file is stored on a private volume, if it is a work file, or if it has been migrated to a
background level, the request is rejected with a return code. The request is also
rejected for temporary files, even if a temporary file is renamed to a permanent file. In
this case, the file must be renamed first and then increased availability can be assigned
with an additional CATAL call.

Files in SM pubsets:

If the current storage location (volume set) does not provide the requirements of high
availability and a suitable volume set is in the SM pubset, the data or storage space is
automatically reallocated. The file is locked (opened) during this reallocation, i.e. all
accesses to the file or its catalog entry are rejected instead of being put into a wait state.

U4250-J-Z2125-12-76 145

CATAL

Macros

BACKUP

Valid only for files or FGGs on disks:

controls automatic file backup with the archiving system ARCHIVE or HSMS; specifies in
which backup runs the files or the generations of the FGG are to be saved.

Default setting: for permanent files: according to class 2 option BACKUP
for temporary files: BACKUP=*E
=*A
The files/generations are to be saved in each backup run.
=*B

The files/generations are to be saved when a backup run occurs for files with
BACKUP=*B, *C or *D.

=*C

The files/generations are to be saved in backup runs with BACKUP=*C or *D.
=*D

The files/generations are to be saved only in backup runs with BACKUP="D.

=*E
No automatic backup via ARCHIVE.

BASACL
Activates or deactivates access control via the BASIC-ACL with standard access rights.
Protection is only effective if no GUARDS protection is activated.

The operand must not be specified together with the OWNERAR, GROUPAR or OTHERAR
operand.

Default setting — only in conjunction with STATE=*NEW: BASACL=*NONE
= *NONE
Deactivates access control via BASIC-ACL:
=*STD

Enters the following standard access control rights in the basic ACL:

— If STATE=*NEW is specified or if no STATE value is specified, the following access
rights are entered:

OWNER ~ GROUP OTHERS
RWX --- ---

This corresponds to the following operand entries:
OWNERAR=(READ=*YES,WRITE=*YES,EXEC=*YES),GROUPAR=*NO-
ACCESS,0THERAR=*NO- ACCESS.

146

U4250-J-2125-12-76

Macros CATAL

— If STATE=*UPDATE is specified (i.e. if the file involved is already cataloged), the
valid values for SHARE and ACCESS are converted to BASIC-ACL values if access
control via the basic access control list was not activated before. The values are
converted in accordance with the following table:

SHARE ACCESS OWNER GROUP OTHERS
RIW| X|R| W] X | R|W) X
NO READ R| -] X]| - - - - - -
NO WRITE R|W]| X | - - - - - -
YES / SPECIAL READ R| - X | R|-|X|R|]-]X
YES / SPECIAL WRITE RIW|X|R|W|]X|R|W/|X

Notes

If the operands SHARE, ACCESS and/or PROTECT are specified together with
BASACL=*STD, conversion is carried out according to these entries.
Nothing (no access) is entered for EXEC with file generation groups.

=*UNCHANGED

Only relevant in conjunction with specification of PROTECT:

If STATE=*UPDATE is specified at the same time, the value of BASIC-ACL remains
unchanged. If STATE=*NEW is specified at the same time, no BASIC-ACL is entered.

Specification of “"UNCHANGED has the following effects:

— ifPROTECT=*FROM-FILE is specified:
the value *UNCHANGED prevents the corresponding value from being taken over
from the reference file

— ifPROTECT=*"BY_DEF_PROT_OR_STD is specified and if STATE=*NEW is
specified without a value for PROTECT:
the value *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over

— ifPROTECT=*STD and STATE=*UPDATE are specified at the same time:
the value *UNCHANGED prevents the value in the catalog entry from being reset
(no BASIC-ACL)

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as no BASIC-
ACL in the catalog entry (irrespective of what is specified for PROTECT).

U4250-J-Z2125-12-76 147

CATAL

Macros

BASE

For file generation groups only:

defines a reference point (a base generation) to which all relative generation numbers are
related and also enables the reconstruction of an index for file generations on private
volumes.

If the BASE operand is not specified when creating an FGG (group index), it is assigned the
value of the FIRST operand if that operand is specified; otherwise, it is assigned the value 0.

Use of the BASE operand for index reconstruction:

If generations of an FGG are to be imported from a private disk, and if the group entry is
neither in the catalog nor in the F1 label of the disk, the group index must first be
reconstructed. A CATAL call with the operands STATE=*NEW, GEN=<num>,
FIRST=<num>, and at least one of the operands BASE or LAST must be executed for this
purpose. If only the BASE operand is specified, it also defines the most recent file
generation, i.e. the value for LAST.

= <integer -99..9999>
The new base generation can be defined in relation to the specified “number” in
absolute or relative form.

Absolute form: value range: 1 < number < 9999.

— STATE=*UPDATE: “number” is assigned as the new base value; it must designate
an existing generation according to the index entry.

— STATE=*NEW: “number” is added to the catalog as the base value.
If BASE is specified in conjunction with FIRST and/or LAST, the specified number
must fulfill the following condition: FIRST < number < LAST.

Relative form:

— Only possible with STATE=*UPDATE:
value range: -99 < number < 0.
Defines the base generation relative to the most recently cataloged generation
(catalog field LAST-GEN) according to the index.
The new base value must designate an existing file generation in accordance with
the index, i.e. it must be > the value in the output field FIRST-GEN.

= (<reg: int:2>)

Only possible with MF=M_:

The base value (see above for value range and meaning) is stored in the lower half-
word of the specified register.

= <var: int:2>

Only possible with MF=M_:

Symbolic address of a half-word in which the base value is stored (see above for value
range and meaning).

148

U4250-J-2125-12-76

Macros

CATAL

CCs

Only valid for files/FGGs on public volumes, for files on Net-Storage and for tape files:
Character set to be used for the file.

The coded character set (CCS) defines how the characters of a national character set are
to be stored in binary form. The specified character set has an effect on the representation
of characters on the screen, the collating sequence, etc. (see the “XHCS” manual [22]).

The operand is ignored for files on private volumes; as a result, no return code is supplied.
Default setting — only in conjunction with STATE=*NEW: CCS=*NONE

=*NONE
No character set is to be specified for the file.

=*STD
The character set is taken over from the file owner’s user catalog entry provided a
character set which is not EDFO31RV is entered. Otherwise *NONE applies.

= <c-string 1..8>

Name of the coded character set with which the file is to be processed (e.g.: EDFO3IRV
for the international version of EBCDIC.DF.03).

The specified string is not checked, in particular not whether it is the name of a defined
coded character set.

= (<reg: A(char:8)>)

Only possible with MF=M:

The specified register contains the address of an 8-byte memory area containing the
name of the coded character set.

= <var: char:8>

Only possible with MF=M:

Symbolic address of an 8-byte memory area containing the name of the coded
character set.

CHECK
Defines the conditions under which a user dialog is to be started.

When the dialog is started, the user can decide whether the displayed files are processed
or not. He can also call up help text on the reply options and define a new value for LIST
and/or CHECK when processing is resumed.

The value *NO always applies in batch mode.
Default: CHECK=*NO

=*NO
All selected files are processed without a check dialog, i.e. the user cannot intervene.

U4250-J-Z2125-12-76 149

CATAL

Macros

= *MULTIPLE

A check dialog is only started if more than one file is selected.

If the catalog and/or user ID contain wildcards, a check dialog is executed for each
catalog and/or user ID.

CHECK="ERROR is also implied.

= *ERROR

An error check dialog is started if an error occurs while a selected file name is being
processed. A file set check dialog is started if the selection entry selects more files than
can be processed in available memory. CHECK=*"ERROR is also always implied for
CHECK#*NO.

= *SINGLE
A check dialog is executed for each selected file name. CHECK=*ERROR is also
implied.

= *CATALOG

The user must decide in a check dialog for each catalog whether the files selected on
it are to be processed.

CHECK="ERROR is also implied.

= *USERID

Reserved for system administrators.

The system administrator must decide in a check dialog for each user ID on each
catalog whether the selected files are to be processed.

CHECK="ERROR is also implied.

DELDATE

Only for files on public volumes and for files on Net-Storage:

Determines the time after which the file may be deleted regardless of the protection
attributes ACCESS, BASACL, EXDATE, GUARDS, RDPASS, WRPASS and EXPASS or
after which its storage place may be released.

An absolute date is interpreted according to the TIMEBASE operand, either based on local
time (LTI) or the universal time coordinate (UTC), while a relative date is always based on
local time.

= *NONE
The file should not be deleted without taking the protection attribute into account
(corresponds to DELDATE="+0").

150

U4250-J-2125-12-76

Macros

CATAL

=*UNCHANGED

If STATE=*UPDATE is specified at the same time, the value of DELDATE remains
unchanged. If STATE=*NEW is specified at the same time, the value
DELDATE=*NONE is entered.

If STATE=*UPDATE is specified, then: if PROTECT=*BY_DEF_PROT_OR_STD is
specified, the value *UNCHANGED prevents the transfer of the corresponding value
supplied by the default protection function; otherwise “*UNCHANGED has the same
effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as the specifi-
cation *NONE (irrespective of what is specified for PROTECT).

= <c-string 1..10> / (<reg: A(char:10)>) / <var: char:10>

[<c-string 8..8> / (<reg: A(char:8)>) / <var: char:8>]

Defines the time from which the file may be deleted regardless of the protection
attributes, where the variable “...10” stands for the date and “...8” for the time.

The following formats are allowed:

— '+<integer 0..99999>"[('<time 8..8>")]
— '<date 8..10>"[('<time 8..8>')]

— 'yymmdd'[('<time 8..8>')]

Itis imperative that the '+' is specified for relative date entries to discriminate them from
absolute ones.

Date entries of less than 10 characters must be terminated with blanks.

Double-digit year entries from 00 through 59 are prefixed by 20, from 60 through 99
by 19.

Examples
LA 7 ,DELTIME
EXAMPLEL CATAL MF=M,VERSION=3,..., DELDATE="+1"'((7))
LA 6,DELDATE
EXAMPLEZ CATAL MF=M,VERSION=3,..., DELDATE=(6) (DELTIME)
EXAMPLE3 CATAL MF=M,VERSION=3,..., DELDATE=DELDATE('00:00:00")
DELDATE DC CL10'2011-11-11" 11.11.2011
DELTIME DC CL8'11:11" 11:11:00
DESTROY

In order to improve data protection, the user can specify in the catalog entry that data which
is no longer needed is to be overwritten with X'00' (binary zeros). For disk files, this applies
to erase operations (see the ERASE command); for tape files, it applies to the overwriting
of data remaining on the tape during EOF or EQV processing (see the DESTOC operand

U4250-J-Z2125-12-76 151

CATAL Macros

of the FILE macro, page 475).
Default setting — only in conjunction with STATE=*NEW: DESTROY=*NO

=NO

Disk files:

The storage space is simply released unless the operand DESTROY=*YES is specified
in the ERASE macro.

Tape files:
Any further data on the tape is not overwritten unless the operand DESTOC=YES is
specified in the FILE macro for the current processing run.

=YES

Disk files:

The storage space which is released is automatically overwritten with binary zeros
(X'00").

Tape files:

Any data remaining on the tape is erased; this can also be done using the FILE macro
for the current processing run by specifying the operand DESTOC=YES.

= *UNCHANGED

Only relevant in conjunction with specification of PROTECT:

If STATE=*"UPDATE is specified at the same time, the value of DESTROY remains
unchanged. If STATE=*NEW is specified at the same time, the value DESTROY=*NO
is entered.

Specification of *UNCHANGED has the following effects:

— if PROTECT=*FROM-FILE is specified:
prevents the corresponding value from being taken over from the reference file

— if PROTECT=*BY_DEF_PROT_OR_STD is specified and if STATE=*NEW is
specified without a value for PROTECT:
prevents the corresponding value supplied by default protection from being taken
over

— if PROTECT=*STD and STATE="UPDATE are specified at the same time:
prevents the value in the catalog entry from being reset to the value
DESTROY=*NO

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
DESTROY=*NO (irrespective of what is specified for PROTECT).

152 U4250-J-2125-12-76

Macros

CATAL

DEVICE

Only for file generation groups on private disks and in conjunction with the VOLUME operand.
Specifies the device type on which the file generation group is to be stored or the device
type from which it is to be imported (see also the DEVICE operand of the FILE macro).

DEVICE does not have to be specified if MAREN is available.

= <c-string: device>

Device type: permissible entries are listed in the device table in ,System installation®
manual [16].

Every disk device type specification is handled like the STDDISK specification.

= (<reg: A(char:8)>)

Only possible with MF=M:

The specified register contains the address of an 8-byte memory area containing the
device type.

= <var: char:8>
Only possible with MF=M:
Symbolic address of an 8-byte memory area containing the device type.

DISKWR

Only for files and file generations on public volumes and files on Net-Storage volumes:

Specifies the time at which data consistency is required after a write operation.

If the file is processed via a temporary cache for writing, data in the file will not be in a
consistent state until CLOSE processing has been completed. This means that system
errors during the processing phase could lead to inconsistencies. Immediate data
consistency after each write operation should therefore be requested for files which contain
important data.

Default setting:
DISKWR = *IMMEDIATE for permanent files
DISKWR = *BY-CLOSE for temporary files

If DISKWR is not specified when recataloging from temporary to permanent or vice versa,
the entry is set automatically to the respective default/permitted value.

The operand is ignored (no return code!) if:

— itis specified for files which are not located on a public volume or which are to be
created.

— the file identifier on the SM pubset concerned has a default storage class and physical
allocation is forbidden.

A storage class entered in the file catalog entry in an SM pubset is removed if this operand
is specified. The operand must not be specified simultaneously with the operand
STOCLAS#*NONE.

U4250-J-Z2125-12-76 153

CATAL

Macros

= *IMMEDIATE

Data contained in the file must be in a consistent state immediately after a write
operation, so a volatile write cache should not be used when processing the file (default
value for permanent files).

This entry is ignored for temporary files.

= *BY-CLOSE
Data in the file need not be in a consistent state (i.e. written to disk) until CLOSE
processing has been completed. This is the default value for temporary files.

DISP

Only for file generation groups:

Specifies whether the oldest generations are to be erased and, possibly, their storage space
reused when the maximum number of simultaneously existing generations specified via
GEN= is exceeded. In the case of generations on tape, only the catalog entry is deleted.
Existing expiration dates for the oldest generations, if any, are ignored.

Default setting — only in conjunction with STATE=*NEW: DISP=*CYCLE

=*CYCLE

The oldest existing generation is erased and its storage space on disk or the tapes it
occupies is/are released. The fields LAST-GEN and FIRST-GEN in the group entry
(youngest and oldest existing generations) are updated accordingly.

= *REUSE
The effects of DISP="REUSE depend on the type of volume:

For FGGs on public disks:
The oldest generation is erased, its storage space is returned to the system, and the
group entry is updated (see DISP=*CYCLE).

For FGGs on private disks:

The new generation is created, the oldest generation is erased, and the volume of the
oldest generation is used for storing the new generation. If the generation which was
deleted extended over several volumes, the new generation is cataloged only on the
first of these volumes. The catalog entry is updated accordingly. Since the old gener-
ation is erased only after the new generation has been created, insufficient space on
the volume can mean that the new generation cannot be created although
DISP=*REUSE is specified.

For FGGs on tape:

The oldest generation is deleted from the catalog and the new generation is created on
the tapes which become free. The group entry is updated accordingly. DISP=*REUSE
must not be specified for FGGs in MF/MV sets.

154

U4250-J-2125-12-76

Macros

CATAL

= *DELETE
All generations of the FGG are erased and the new generation becomes the oldest
generation of a new series. The group entry is updated accordingly.

= *KEEP

The “superfluous” oldest generations are not erased automatically, but only when the
user, in a further CATAL macro with the operands FIRST and BASE, defines a new
“oldest” and a new base generation, or when the user specifies a new value for DISP=.
As each new generation is created, only the field LAST-GEN in the group entry is
updated.

EXDATE
Specifies the period (EXPIRATION-DATE) during which the file cannot be modified or
deleted, i.e. when it is only available for read access (“read only”).

An expiration date can only be set for existing files, i.e. the catalog fields CRE-DATE and
FILE-STRUC must have a value # NONE. This also means that the CATAL operands
EXDATE and STATE=*NEW or STATE=*FOREIGN cannot be combined (EXDATE is
ignored).

An absolute date is interpreted according to the TIMEBASE operand, either based on local
time (LTI) or the universal time coordinate (UTC), and a relative date is always based on
local time.

A time of 00:00:00 is always assumed in conjunction with TIMBASE=*LT]I or a relative time
entry. An explicit time specification is only accepted in conjunction with TIMBASE=*UTC.
The minutes and seconds are, however, always set to zero.

Note

If the specified expiration date is earlier than the current date, it is not entered. Instead
the current date is entered with 0.00 hours local time.

Simultaneous use of the EXDATE and RETPD operands is not permitted.

U4250-J-Z2125-12-76 155

CATAL Macros

= <c-string 1..10> / (<reg: A(char:10)>) / <var: char:10>

[(<c-string 8..8> / (<reg: A(char:8)>) / <var: char:8>)]

Defines the time from which the file may be modified, where the variable “...10” stands
for the date and “...8” for the time.

The following formats are permitted:
— '+<integer 0..99999>'

— '<date 8..10>"[('<time 8..8>")]

— 'yymmdd'('<time 8..8>")]

It is imperative that the '+' is specified for relative date entries to distinguish them from
absolute ones.

Date entries of less than 10 characters must be terminated with blanks.

Double-digit year entries from 00 through 59 are prefixed by 20, from 60 through 99

by 19.
Examples

LA 6,EXPDATE

LA 7 ,EXPTIME
EXAMPLEL CATAL MF=M,VERSION=3,..., EXDATE=(6)((7))
EXAMPLEZ CATAL MF=M,VERSION=3, ..., EXDATE=(6)('23:00:00")
EXAMPLE3 CATAL MF=M,VERSION=3, ..., EXDATE=EXPDATE(EXPTIME)
EXPDATE DC CL10'111231" 31.12.2011
EXPTIME DC CL8'00:00:00" 00:00:00
=*UNCHANGED

Only relevant in conjunction with specification of PROTECT:
If STATE=*"UPDATE is specified at the same time, the value of EXDATE remains
unchanged.

The value *UNCHANGED has the following effects for permanent files with a creation
date and for file generation groups with a cataloged group entry:
— if PROTECT=*FROM-FILE is specified:
prevents the corresponding value from being taken over from the reference file
— if PROTECT=*BY_DEF_PROT_OR_STD is specified:
prevents the corresponding value supplied by default protection from being taken
over
— if PROTECT=*STD is specified:
prevents the value in the catalog entry from being reset to the current date

If STATE=*UPDATE is specified, then: if PROTECT is not specified, “*UNCHANGED
has the same effect as no specification.

156 U4250-J-2125-12-76

Macros

CATAL

EXPASS

Only for files; not for FGGs or file generations:

This operand is used to define or delete the execute password. Execute protection is
provided for the call of a program or a procedure file by means of the command START-
PROGRAM, LOAD-PROGRAM, CALL-PROCEDURE or ENTER-PROCEDURE.

Tape files:
The password protection is recorded in the HDR3 label.

Encrypted files:
All EXPASS specifications are handled like “*UNCHANGED.

Default setting — only in conjunction with STATE=*NEW: EXPASS=*NONE

=*NONE
No execute password is defined or an existing password is deleted.

= *UNCHANGED

If STATE=*"UPDATE is specified at the same time, the value of EXPASS remains
unchanged. If STATE=*NEW is specified at the same time, the value EXPASS=*NONE
is entered.

If PROTECT=*"BY_DEF_PROT_OR_STD or STATE=*NEW is specified without a value
for PROTECT, *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over.

If STATE=*UPDATE is specified, then: if PROTECT=*BY_DEF_PROT_OR_STD is not
specified, *UNCHANGED has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as the
specification “NONE (irrespective of what is specified for PROTECT).

= <c-string 1..4> |/ <x-string 1..8> / <integer -2147483648..2147483647>
Defines a password required for calling the program or procedure.

The specification EXPASS=X'00000000' is treated in the same way as *NONE.

Before writing to the file, “password” must be entered in the password table of the job
by means of the ADD-PASSWORD command (see the corresponding description in the
“Commands” [3] manual).

If password assignment is logged, the passwords are not shown in plaintext.

= (<reg: A(char:4)>)

Only possible with MF=M:

The specified register contains the address of a 4-byte memory area containing the
execution password.

= <var: char:4>
Only possible with MF=M:
Symbolic address of a 4-byte memory area containing the execution password.

U4250-J-Z2125-12-76 157

CATAL

Macros

FILE
Path name of the file, file generation or file generation group catalog entry which is
referenced by the entries of the remaining macro operands.

With STATE=*NEW (default), a catalog entry is created under the specified name.
With STATE=*"FOREIGN, a file generation group catalog entry is imported which exists
on the private volume specified with the VOLUME and DEVICE operands.

With STATE=*UPDATE, a catalog entry can be modified which exists under the
specified path name. If wildcards are specified, all catalog entries selected can be
modified.

= <c-string 1..80: filename 1..54 with-wild(80)>
The path name consists of [:catid:][$userid4.]<filename>.

catid;

ID of the catalog which contains or is to contain the file catalog entry. Wildcards may be
used if STATE=*UPDATE is specified. However, only those files in the catalog are then
selected that are locally available.

The default catalog ID of the caller (DEFAULT-PUBSET) is assumed if no catalog ID is
specified.

userid;

User ID under which the file is stored or is to be created. Only the system administrator

may also specify wildcards with STATE=*UPDATE.
The logon ID is assumed if no user ID is specified.

— The system administrator may specify a foreign user ID if no TSOS restriction has
been declared for the file (see the “SECOS” manual [8]) or if STATE=*UPDATE is
not specified.

— Nonprivileged users may specify a foreign user ID if they are co-owners of the file.

filenamey

Name of the temporary or permanent file, the file generation or file generation group.
The file may contain wildcards or be partially qualified (i.e. end with a period) if
STATE=*UPDATE is specified.

= (<reg: A(char:80)>)

Only possible with MF=M_:

The specified register contains the address of an 80-byte memory area containing the
path name. If the path name is shorter than the maximum length of 80 bytes, it must be
terminated with at least one blank (X'40'").

= <var: char:80>

Only possible with MF=M:

Symbolic address of an 80-byte memory area containing the path name. If the path
name is shorter than the maximum length of 80 bytes, it must be terminated with at least
one blank (X'40").

158

U4250-J-2125-12-76

Macros CATAL

FIRST = num

Only for file generation groups:

This operand may only be specified with STATE=*NEW.

It defines the absolute generation number of the oldest cataloged file generation. It is
needed in order to reconstruct the index entry of a file generation group on private volumes
(foreign file generation group) and should be used only for this purpose. The FIRST
operand specifies the number of the oldest file generation to be imported.

File generations stored on tape must be cataloged individually using FILE (operand
STATE=FOREIGN).

Generations stored on private disk can be imported by using IMPORT or individually by
means of FILE (operand STATE=FOREIGN).

= <integer 1..9999>

The file generation specified by FIRST can only be imported, not recataloged. This
means that if the created index entry is not to be used for the reconstruction of a file
generation group, there is no way of actually creating the file generation group specified
here (or any other file generations < LAST or < BASE; see also the description of those
operands).

= (<reg: int:2>)

Only possible with MF=M:

The specified register contains the generation number of the oldest cataloged file
generation in the lower half-word.

= <var: char:2>

Only possible with MF=M:

Symbolic address of a half-word containing the generation number of the oldest
cataloged file generation.

U4250-J-Z2125-12-76 159

CATAL

Macros

GEN = num

Only for file generation groups:

Specifies how many generations of a file generation group may be cataloged concurrently
(see also the DISP operand).

GEN may be specified for a new (STATE=*NEW) or an existing file generation group
(STATE=*UPDATE).

Default value: GEN=0

= <integer 0..255>

Maximum number of concurrently cataloged file generations.

If GEN=0 is specified together with STATE=*NEW, a “normal’” file rather than a file
generation group is created; if it is specified together with STATE=*UPDATE, GEN=0 is
ignored.

= (<reg: int:2>)

Only possible with MF=M:

The specified register contains the maximum number of concurrently cataloged file
generations in the lower half-word.

= <var: char:2>

Only possible with MF=M:

Symbolic address of a half-word containing the maximum number of concurrently
cataloged file generations.

GROUPAR

Only for files on public volumes and on Net-Storage:

Activates access control via the BASIC-ACL and specifies how a user who is not the file
owner but who belongs to the same user group as the file owner may access the file when
no GUARDS protection is active.

User groups can be defined in a system only if the software product SECOS is installed (see
the “SECOS” manual [8]). In a system without user groups and in which SECOS has not
been installed, the value for GROUPAR applies to all users except the file owner (and the
system administrator). When user groups are defined in the system, this value is evaluated
for the members of the file owner's user group.

The operand must not be specified together with the BASACL operand.

= *NO-ACCESS
No access to the file is permitted for the user group.

160

U4250-J-2125-12-76

Macros

CATAL

= ([READ =*NO / READ =*YES /R=*N/ R =*Y]

[LWRITE = *NO / WRITE =*YES / W = *N / W = *Y]

[LEXEC =*NO /EXEC = *YES / X=*N/ X = *Y])

The access types for which *YES or *Y is specified in the list are permitted. The
parentheses are component parts of the access list and must be specified.

The various elements of the access list have the following meanings:

READ=NO or R=N Read access is forbidden (default value).

READ=YES or R=Y Read access is permitted. In contrast to access control via the
ACCESS operand, this does not automatically imply the right to
execute the file.

WRITE=NO or W=N Write access is forbidden (default value).

WRITE=YES or W=Y Write access is permitted. In contrast to access control via the
ACCESS operand, this does not automatically imply the right to
read or execute the file.

EXEC=NO or X=N Execution of the file is forbidden (default value).
EXEC=YES or X=Y Execution of the file is permitted (not for file generation groups).
GUARDS

Activates/deactivates access control using GUARDS (Generally Usable Access contRol
aDministration System). GUARDS protects the file by means of a special access profile.
This access protection will be effective only if the GUARDS function unit of the software
product SECOS is loaded (see the “SECOS” manual [8]).

File protection with GUARDS is activated if at least one access mode (READ/WRITE/
EXEC) is linked with a “guard” entry in the “guard” catalog. The specification of READ/
WRITE/EXEC=*NONE is also considered to be a “guard” entry and activates the GUARDS
file protection mechanism (thus preventing read, write, or execute access to the file).

This specification can be given even if the access profile has not yet been defined and even
if the GUARDS function unit is not being used. In both cases, all attempts to access the file
will be rejected.

It is only at the time of accessing a file protected with GUARDS that a check is performed
to determine whether the specified guard entry (guard name) exists, whether it may be
used, and whether the corresponding access profile permits the user to access the file in
the desired access mode.

Notes

— If GUARDS protection is entered for a file in the file catalog but no access profile has
been defined for the specified guard name in the guard catalog, the file in question
cannot be accessed.

U4250-J-Z2125-12-76 161

CATAL

Macros

If GUARDS protection is enabled, the access protection defined previously using
BASIC-ACL or USER-ACCESS and ACCESS s retained.

For more information on access protection using the GUARDS function unit, see the
section on “File protection” in the “Introductory Guide to DMS” [1].

= *NONE

Deactivates GUARDS protection, thus disabling any existing access protection
provided by a guard. In other words, the file will no longer be protected by the GUARDS
protection mechanism.

= ([READ...] [WRITE...] [,EXEC...])

Each of the three access modes (read, write, execute) can be protected by means of a
separate guard entry. When GUARDS protection is activated for a file, all access modes
not explicitly specified are set to “NONE, which means that they are not permitted.

[READ = *NONE / <c-string: filename 1..18 without cat-gen-vers> /
<var: char:18>/ (<reg: A(char:18)>)]
Activates read access control using GUARDS.

Default value: READ = *NONE, If GUARDS protection was activated via another
access mode.

=*NONE

Disables GUARDS protection for read access (i.e. cancels the link between read
access control and the access profile). File protection via GUARDS remains active,
but the file cannot be read.

= <c-string: filename 1..18 without cat-gen-vers>

Name of the access profile (guard entry in the guard catalog) that provides read
protection via GUARDS.

Read access to the file is granted only if the conditions specified in the access
profile are fulfilled.

The name must not exceed a maximum length of 8 characters (18 characters if
specified with the user ID). It is not possible to specify a catalog ID.

= (<reg: A(char:18)>)

Only possible with MF=M_:

The specified register contains the address of an 18-byte memory area containing
the name of the READ-GUARD.

= <var: char:18>

Only possible with MF=M:

Symbolic address of an 18-byte memory area containing the name of the READ-
GUARD.

162

U4250-J-2125-12-76

Macros

CATAL

[,WRITE = *NONE / <c-string: filename 1..18 without cat-gen-vers> /
<var: char:18> / (<reg: A(char:18)>)]
Activates write protection using GUARDS.

Note
Unlike password protection, write access does not automatically imply read access.

Default value: WRITE = *NONE, if GUARDS protection was activated via another
access mode.

=*NONE

Disables GUARDS protection for write access (i.e. cancels the link between write
access control and the access profile). File protection via GUARDS remains active,
but no write access to the file is possible.

= <c-string: filename 1..18 without cat-gen-vers>

Name of the access profile (guard entry in the guard catalog) that provides write
protection via GUARDS.

Write access to the file is granted only if the conditions specified in the access
profile are fulfilled.

The name must not exceed a maximum length of 8 characters (18 characters if
specified with the user ID). It is not possible to specify a catalog ID.

= (<reg: A(char:18)>)

Only possible with MF=M:

The specified register contains the address of an 18-byte memory area containing
the name of the WRITE-GUARD.

= <var: char:18>

Only possible with MF=M:

Symbolic address of an 18-byte memory area containing the name of the WRITE-
GUARD.

[,EXEC = *NONE / <c-string: filename 1..18 without cat-gen-vers> /
<var: char:18> / (<reg: A(char:18)>) / *{UNCHANGED])
Activates execute protection using GUARDS.

Default value: EXEC = *NONE, if GUARDS protection was activated via another
access mode.

=*NONE

Disables GUARDS protection for execute access (i.e. cancels the link between
execute access control and the access profile). File protection via GUARDS
remains active, but no execute access to the file is possible.

U4250-J-Z2125-12-76 163

CATAL

Macros

= <c-string: filename 1..18 without cat-gen-vers>

Name of the access profile (guard entry in the guard catalog) that provides execute
protection via GUARDS.

Write access to the file is granted only if the conditions specified in the access
profile are fulfilled.

The name must not exceed a maximum length of 8 characters (18 characters if
specified with the user ID). It is not possible to specify a catalog ID.

= (<reg: A(char:18)>)

Only possible with MF=M:

The specified register contains the address of an 18-byte memory area containing
the name of the EXEC-GUARD.

= <var: char:18>

Only possible with MF=M:

Symbolic address of an 18-byte memory area containing the name of the EXEC-
GUARD.

= *UNCHANGED

Only relevant in conjunction with specification of PROTECT:

If STATE=*UPDATE is specified at the same time, the value of GUARDS remains
unchanged. If STATE=*NEW is specified at the same time, the value GUARDS=*NONE
is entered.

The value *UNCHANGED has the following effects:

if PROTECT=*FROM-FILE is specified:

prevents the corresponding value from being taken over from the reference file

if PROTECT="BY_DEF_PROT_OR_STD is specified and if STATE=*NEW is
specified without a value for PROTECT:

prevents the corresponding value supplied by default protection from being taken
over

if PROTECT=*STD and STATE=*UPDATE are specified at the same time:
prevents the value in the catalog entry from being reset to the value
GUARDS=*NONE

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *‘UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
GUARDS=*NONE (irrespective of what is specified for PROTECT).

164

U4250-J-2125-12-76

Macros

CATAL

IOPERF

Only for files and file generations on public volumes and files on Net-Storage volumes:
Requested performance attribute of the file for /O processing. There are three performance
attributes: ““VERY-HIGH”, “*STD”, and “*HIGH”. The highest permissible value depends on
the user ID.

If a performance higher than the maximum permitted value is required, the maximum value
from the catalog entry is taken over (no return code).

The operand is ignored (no return code!) if:

— itis specified for files which are not located on a public volume or which are to be
created.

— the file identifier on the SM pubset concerned has a default storage class and physical
allocation is forbidden.

A storage class entered in the file catalog entry in an SM pubset is removed if this operand
is specified. The operand must not be specified simultaneously with the operand
STOCLAS#*NONE.

Default setting — only in conjunction with STATE=*NEW: IOPERF=*STD

=*STD
The file should not be processed via a cache.

=*HIGH
The file has a high performance priority and should therefore be processed via a cache
if possible.

= *VERY-HIGH
The file has a very high performance priority, so all pages of the file should be
maintained in global memory if possible.

= *USER-MAX

The file is processed in accordance with the highest performance attribute permitted for
the user ID.

This entry ensures that the maximum value is always used without program changes
even if the value range is extended above *VERY-HIGH.

U4250-J-Z2125-12-76 165

CATAL

Macros

IOUSAGE

Only for files and file generations on public volumes and files on Net-Storage volumes:

Specifies the I/O operations to which the performance attribute of the file (operand IOPERF)
applies.

The operand is ignored (no return code!) if:
— itis specified for files which are not located on a public volume or which are to be

created.
— the file identifier on the SM pubset concerned has a default storage class and physical
allocation is forbidden.

A storage class entered in the file catalog entry in an SM pubset is removed if this operand
is specified. The operand must not be specified simultaneously with the operand
STOCLAS#*NONE.

Default setting — only in conjunction with STATE=*NEW: |IOUSAGE="RDWRT

= *RDWRT
The performance attribute applies to read and write operations.

= *WRITE
The performance attribute applies to write operations only.

= *READ
The performance attribute applies to read operations only.

LARGE

Only for files and FGGs on disk:

similar to BACKUP, LARGE refers to the saving of files with ARCHIVE or HSMS. It specifies
whether the complete file (or generations) is to be saved or only the blocks which have been
changed since the last save operation.

Default setting — only in conjunction with STATE=*NEW: LARGE=*NO

=*NO
A complete backup is to be made.

=*YES
A partial backup is to be made (only blocks which have been changed); this setting is
useful for large files.

166

U4250-J-2125-12-76

Macros

CATAL

LAST

Only for file generation groups:

This operand may only be specified in conjunction with STATE=*NEW and the FIRST
operand. It defines the absolute generation number of the most-recently cataloged (i.e.
youngest) file generation and is required when reconstructing the index entry of a file
generation group on private volumes. The LAST operand determines the number of the
most recent file generation to be imported.

= <integer 1..9999>

The file generation specified by LAST can only be imported, not recataloged.

This means that if the created index entry is not to be used for the reconstruction of a
file generation group, there is no way of actually creating the file generation group
specified here (or any other file generations > FIRST; see also the description of the
FIRST operand).

= (<reg: int:2>)

Only possible with MF=M:

The specified register contains the generation number of the latest cataloged file
generation in the lower half-word.

= <var: char:2>

Only possible with MF=M:

Symbolic address of a half-word containing the generation number of the latest
cataloged file generation

LIST

Defines whether a log is to be written to SYSOUT for the processed file name.
=*NO
The file is not to be logged.
=*SYSOUT

Each processed file name and any errors are logged in a report.

= *ERRORS-TO-SYSOUT
Only file names whose processing leads to errors are logged in a report.

MACID
Only evaluated in conjunction with MF=C/D/M; defines the second and third characters of
the field names and equates which are generated during macro expansion in the data area.

Default: MACID = DK

= <macid>
One- or two-character string defining the second and third characters of the generated
field names and equates.

U4250-J-Z2125-12-76 167

CATAL

Macros

MANCLAS

Only for permanent files and file generation groups on public volumes in SM pubsets and for files
on the Net-Storage of an SM pubset if the sofiware product HSMS is loaded:

Specifies whether data backup and migration are to be controlled via a management class
(see the manual “HSMS” [10] for further details).

= *NONE
A management class is not assigned. Only the corresponding operand specifications
are relevant for file backup and migration.

= <c-string: structured-name 1..8>

File backup and migration are controlled via the specified management class.
The management class must exist and the user must posses the right to use it.
The entry is ignored for files in SM pubsets or on private volumes and rejected for
temporary files.

= (<reg: A(char:8)>)

Only possible with MF=M_:

The specified register contains the address of an 8-byte memory area containing the
name of the management class.

= <var: char:8>

Only possible with MF=M_:

Symbolic address of an 8-byte memory area containing the name of the management
class.

MF

The forms of the MF operand are described in detail in the appendix (page 865). In all
macros differentiated by MF operands (MF=L/E/D/C), the version operand must contain the
same value.

MIGRATE

Only for files on public disks and for files on Net-Storage:

is interpreted by means of the software product HSMS (Hierarchical Storage Management
System).

Using MIGRATE, the user can specify whether files which he/she has not accessed for
some time may be migrated to a storage level with slower access. The files are migrated
from online processing level SO to online background level S1 or offline background

level S2 (e.g. tape). For further details see the “HSMS” manual [10].

File generation groups:
the MIGRATE value specified for an FGG index is representative of the whole group.

Default value:
MIGRATE = *ALLOWED for permanent files
MIGRATE = *INHIBITED for temporary files

168

U4250-J-2125-12-76

Macros CATAL

=*ALLOWED
The file may be migrated from SO to storage level S1 or S2.

= *INHIBITED
The file is not to be migrated but may, however, be temporarily stored to a background
level, e.g. for reorganization purposes.

= *FORBIDDEN

Only for users with the right for physical allocation:

The file must not be migrated to a background level.

This entry is rejected if the file is migrated to a background level or if no authorization
for physical allocation exists.

NEWNAME

Only permitted with STATE=*UPDATE:

The file specified in the FILE operand is renamed to this name. It is thereby not possible to
change either the pubset (catalog) or the user ID. A file on a Net-Storage volume cannot be
renamed as a temporary file or as a file generation. See also the sections “Temporary files”
on page 131 and “File generation groups (FGG)” on page 132.

= <c-string 1..80: filename 1..54 with-wild(80)>
The path name consists of [:catid,:][$userid,.]<filename,>.

catid,
ID of the catalog containing the file catalog entry. If an entry is made here, it must be
identical to the catid specified in FILE.

userid,
User ID under which the file is stored. If an entry is made here, it must be identical to
the userid, specified in FILE.

filename,

File name to which filename,, which is specified in the FILE operand, is to be renamed.
A suitable construction can be specified if flename, contains wildcards. If filename;
ends with a period, flename, may also end with a period.

filename, must be specified if a file/FGG is to be renamed. filename, and filename,
must be different.

In the case of tape files, filename4 must differ from filename, by the added or modified
version designation.

If HSMS is used then files that were migrated to storage level S1 or S2 cannot be
renamed.

U4250-J-Z2125-12-76 169

CATAL

Macros

= (<reg: A(char:80)>)

Only possible with MF=M:

The specified register contains the address of an 80-byte memory area containing the
new path name. If the path name is shorter than the maximum length of 80 bytes, it must
be terminated with at least one blank (X'40").

= <var: char:80>

Only possible with MF=M_:

Symbolic address of an 80-byte memory area containing the new path name. If the path
name is shorter than the maximum length of 80 bytes, it must be terminated with at least
one blank (X'40").

OPNBACK

Is provided specially for database files (UDS files) and permits the user to back up the file
with ARCHIVE (see the “ARCHIVE” manual [9]) while it is still open. This may lead to
inconsistencies in the file; it is the user's responsibility to avoid this.

Default setting — only in conjunction with STATE=*NEW: OPNBACK=*NO

=*NO
Only the closed file is saved.

=*YES
The file may be backed up while it is open.

OTHERAR

Only for files on public volumes and for files on Net-Storage:

Activates access control via the BASIC-ACL and specifies how a user who is neither the file
owner nor belongs to the same user group as the file owner may access the file if no
GUARDS protection is active.

User groups can be defined in a system only if the software product SECOS is installed
(see the “SECOS” manual [8]).

In a system without user groups and in which SECOS is not installed, the value for
OTHERAR applies to all user IDs except the file owner.

The operand must not be specified together with the BASACL operand.

= *NO-ACCESS
No access to the file is permitted for the user group.

= ([READ =*NO / READ =*YES/R=*N/ R =*Y]

[LWRITE = *NO / WRITE =*YES /| W =*N /| W = *Y]

[LEXEC =*NO /EXEC =*YES / X=*N/ X =*Y])

The access types for which *YES or *Y is specified in the list are permitted. The
parentheses are component parts of the access list and must be specified.

170

U4250-J-2125-12-76

Macros

CATAL

The various elements of the access list have the following meanings:

READ=NO or R=N
READ=YES or R=Y

WRITE=NO or W=N
WRITE=YES or W=Y

EXEC=NO or X=N
EXEC=YES or X=Y

OWNERAR

Read access is forbidden (default value).

Read access is permitted. In contrast to access control via the ACCESS
operand, this does not automatically imply the right to execute the file.

Write access is forbidden (default value).

Write access is permitted. In contrast to access control via the ACCESS
operand, this does not automatically imply the right to read or execute
the file.

Execution of the file is forbidden (default value).

Execution of the file is permitted (not for file generation groups).

Only for files on public volumes and for files on Net-Storage:
Activates access control via the BASIC-ACL and specifies how the file owner (and the
system administrator) may access the file if no GUARDS protection is active.

The operand must not be specified together with the BASACL operand.

=*NO-ACCESS

No access to the file is permitted for the user group.

= ([READ = *NO / READ =*YES / R=*N /R =*Y]

[LWRITE = *NO / WRITE = *YES / W = *N | W = *Y]

[LEXEC =*NO / EXEC = *YES / X=*N/ X =*Y])

The access types specified with *“YES or *Y in the list are permitted. The parentheses
are component parts of the access list and must be specified.

The various elements of the access list have the following meanings:

READ=NO or R=N
READ=YES or R=Y

WRITE=NO or W=N

WRITE=YES or W=Y

EXEC=NO or X=N
EXEC=YES or X=Y

Read access is forbidden (default value).

Read access is permitted. In contrast to access control via the ACCESS
operand, this does not automatically imply the right to execute the file.

Write access is forbidden (default value).

Write access is permitted. In contrast to access control via the ACCESS
operand, this does not automatically imply the right to read or execute
the file.

Execution of the file is forbidden (default value).

Execution of the file is permitted (not for file generation groups).

U4250-J-Z2125-12-76

171

CATAL

Macros

PARAM
Designates the address of the operand list and is only evaluated in conjunction with MF=E
(see also page 865).

= <name 1..8>
Symbolic address (name) of the operand list.

PREFIX
Evaluated only in conjunction with MF=C/D/M. Defines the first character of each field name
and equate generated in the data area when the macro is expanded.

=1

Default prefix with which the field names and equates generated by the assembler
begin.

= pre

Single-character prefix with which the field names and equates generated by the
assembler are to begin.

=%

No prefix is generated.

172

U4250-J-2125-12-76

Macros

CATAL

PROTECT

Defines where the protection attribute is to be taken over from, that cannot be explicitly

defined with the respective operand.

The following protection attributes (operands) can be assigned with PROTECT (depending

on the operand values):

Access protection Protection attribute CATAL
operand
Standard access control (access type) ACCESS ACCESS
Standard access control (access by other users) USER-ACCESS SHARE
Basic access control list BASIC-ACL BASACL,
OWNERAR,
GROUPAR,
OTHERAR
Access control via GUARDS GUARDS GUARDS
Passwords READ-PASSWORD, RDPASS,
WRITE-PASSWORD, WRPASS,
EXEC-PASSWORD EXPASS
Binary deletion DESTROY-BY-DELETE DESTROY
Memory space lock SPACE-RELEASE-LOCK RELSPAC
Release date for deletion FREE-FOR-DELETION DELDATE
Expiration date EXPIRATION-DATE EXDATE
or
RETPD

The values of these protection attributes may be preset differently depending on the value
of the STATE operand (NEW or UPDATE); (see tables).

U4250-J-Z2125-12-76

173

CATAL

Macros

Protection attributes when cataloging new files

FREE-FOR-DELETION

AUDIT

PROTECTION-ATTR= | *FROM_FILE *STD *BY_DEF_PROT_OR_STD
Def Prot. not Default
active Protection
Protection attribute (System default values active
ACCESS WRITE
USER-ACCESS OWNER-ONLY
Value
BASIC-ACL transferred NONE Value
DESTROY-BY-DELETE from NO supplied by
GUARDS reference file NONE defau.lt
protection
SPACE-RELEASE-LOCK NO
READ-PASSWORD
WRITE-PASSWORD
EXEC-PASSWORD NONE

No expiration date (EXPIRATION-DATE) can be defined for the first entry. In the case of
files, it is implicitly preset to *“NONE, and in the case of file generation groups to *TODAY.

174

U4250-J-2125-12-76

Macros

CATAL

Protection attributes when changing file attributes

EXEC-PASSWORD

FREE-FOR-DELETION

AUDIT

UNCHANGED

PROTECTION-ATTR=| *UNCH |*FROM_FILE *STD *BY_DEF_PROT_OR_STD
DefProt. not Default
active Protection
. . active
Protection attribute (System default values
ACCESS WRITE
USER-ACCESS OWNER-ONLY
BASIC-ACL Value NONE
DESTROY-BY-DELETE transferred NO Value
GUARDS from _ NONE supplied by
reference file default
SPACE-RELEASE-LOCK NO protection
EXPIRATION-DATE *) TODAY
READ-PASSWORD
WRITE-PASSWORD
NONE

*) The expiration date is only entered for permanent files with creation dates or for file
generation groups. If the referende file has no expiration date, *TODAY is entered.

=*STD

The following system defaults are set:
ACCESS =*WRITE
BASIC-ACL =*NONE
USER-ACCESS =
DESTROY =*NO
SPACE-RELEASE-LOCK =*NO
GUARDS =*NONE

EXPIRATION-DATE

*OWNER-ONLY (also for tape files)

for file generation groups)

PROTECT=*STD is rejected for individual file generations.

*TODAY (only for permanent files with a creation date and

U4250-J-Z2125-12-76

175

CATAL

Macros

=*BY_DEF_PROT_OR_STD

The protection attributes are assigned depending on the use of the “default protection”
function.

If default protection is activated, it provides values for all the protection attributes listed
above, unless these have been specified explicitly.

If default protection has not been activated, the protection attributes are entered as for
PROTECT=*STD. In addition, the following system default values apply:

FREE-FOR-DELETION =*NONE
READ-PASSWORD =*NONE
WRITE-PASSWORD =*NONE
EXEC-PASSWORD =*NONE

If STATE=*NEW is specified, PROTECT=*"BY_DEF_PROT_OR_STD has the same
effect as no specification.

= (*FROM_FILE,<c-string: filename 1..54>)

All the protection attributes listed for *STD that are not explicitly specified by the caller
are imported from the reference file. The protection attributes taken over from the
reference file are treated as if they had been specified explicitly.

Exceptions:

— In the case of a file generation group, the execution rights are ignored rather than
rejected.

— In the case of temporary files, EXDATE is ignored rather than rejected.

If the reference file does not have an expiration date, EXDATE=*TODAY is used for file
generation groups and for permanent files with a creation date.

Passwords and the release date of the reference file are not copied: if CATAL
STATE="NEW applies, they have the system default value *"NONE (see also
“Protection attributes when cataloging new files” on page 174), if STATE=*UPDATE
applies, they have the value *UNCHANGED (see the table “Protection attributes when
changing file attributes” on page 175).

The reference file must be located on the same pubset as the file specified by FILE. If
no catalog ID is specified then the user ID's default catalog is assumed. For this reason
it is always necessary to specify the catalog ID if file does not refer to the default ID.

= (*FROM_FILE,(<reg: A(char:54)>))

Only possible with MF=M_:

The specified register contains the address of a 54-byte memory area containing the
path name. If the path name is less than the maximum of 54 bytes long, it must be
terminated with at least one blank (X'40").

176

U4250-J-2125-12-76

Macros

CATAL

= (*FROM_FILE,<var: char:54>)

Only possible with MF=M:

Symbolic address of a 54-byte memory area containing the path name. If the path name
is less than the maximum of 54 bytes long, it must be terminated with at least one blank
(X'40").

RDPASS
This operand is used to define, modify or delete a read password.

Temporary files: Password protection is not possible.
Tape files: The password is recorded in the HDR3 label.
For encrypted files: All RDPASS specifications are handled like “UNCHANGED

Default setting — only in conjunction with STATE=*NEW: RDPASS=*NONE

=*NONE
No read password is assigned or an existing read password is deleted.

= *UNCHANGED

If STATE="UPDATE is specified at the same time, the value of RDPASS remains
unchanged. If STATE=*NEW is specified at the same time, the value RDPASS=*NONE
is entered.

If PROTECT=*"BY_DEF_PROT_OR_STD or STATE=*NEW is specified without a value
for PROTECT, *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over.

If STATE=*UPDATE is specified, then: if PROTECT=*BY_DEF_PROT_OR_STD is not
specified, *UNCHANGED has the same effect as no specification.

if STATE=*NEW is specified, then: “"UNCHANGED has the same effect as the specifi-
cation *NONE (irrespective of what is specified for PROTECT).

= <c-string 1..4> / <x-string 1..8> / <integer -2147483648..2147483647>
Defines a password required for read access.

If a program is protected by a read password, this also applies to the load module in
main memory. The LOAD-PROGRAM command is rejected, as are the IDA commands
DISPLAY and AT. If a source program is protected by a read password, it cannot be
assembled or compiled.

= (<reg: A(char:4)>)

Only possible with MF=M:

The specified register contains the address of a 4-byte memory area containing the
read password.

= <var: char:4>
Only possible with MF=M:
Symbolic address of a 4-byte memory area containing the read password.

U4250-J-Z2125-12-76 177

CATAL

Macros

RELSPAC
Specifies whether or not storage space may be released by using the MODIFY-FILE-
ATTRIBUTES command or the FILE macro.

Default setting — only in conjunction with STATE=*NEW: RELSPAC=*ALLOWED

=*ALLOWED
The storage space may be released.

= *IGNORED
The request to release space is ignored.

= *UNCHANGED

Only relevant in conjunction with specification of PROTECT:

If STATE=*"UPDATE is specified at the same time, the value of RELSPAC remains
unchanged. If STATE=*NEW is specified at the same time, the value
RELSPAC=*ALLOWED is entered.

The value *UNCHANGED has the following effects:

— if PROTECT=*FROM-FILE is specified:
prevents the corresponding value from being taken over from the reference file

— if PROTECT=*BY_DEF_PROT_OR_STD is specified and STATE=*NEW is
specified without a value for PROTECT:
prevents the corresponding value supplied by default protection from being taken
over

— if PROTECT=*STD and STATE=*UPDATE are specified together:
prevents the value in the catalog entry from being reset to the value
RELSPAC=*ALLOWED

If STATE=*UPDATE is specified, then: if PROTECT is not specified, “*UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
RELSPAC=*ALLOWED (irrespective of what is specified for PROTECT).

178

U4250-J-2125-12-76

Macros

CATAL

RETPD
Defines an EXPIRATION DATE before which the file must not be updated or erased, i.e.
during which it can only be read.

Default value: only if STATE=*NEW: RETPD = 0, i.e. the file or generation can be
updated or erased at any time.

An expiration date can only be defined for an existing file, i.e. the catalog fields CRE-DATE
and FILE-STRUC must contain a value = NONE. This also means that RETPD cannot be
specified together with the CATAL operand STATE=*NEW or STATE=*FOREIGN (RETPD
is ignored).

The expiration date is calculated from the number of specified days and is always based on
local time with the date and a time of 00:00:00.

The expiration date can be canceled or modified by means of a further CATAL macro
containing the RETPD operand. Once the expiration date has elapsed, write access is
again possible.

An existing generation of an FGG can be erased when creating a new generation even if
the expiration date has not expired (see the DISP operand for details).

Simultaneous use of the EXDATE and RETPD operands is not possible.

If the RETPD operand is specified, the EXDATE value returned by the default protection
function is ignored.

= <integer 0..32767>
Number of days for which the file is to be protected.

= (<reg: int:2>)

Only possible with MF=M:

The specified register contains the number days for which the file is to be protected in
the lower half-word.

= <var: char:2>

Only possible with MF=M:

Symbolic address of a half-word containing the number days for which the file is to be
protected.

SOMIGR

Only relevant with STATE=*UPDATE for files in SM pubsets that already occupy storage:
Defines whether the file within the SM pubset (storage hierarchy level S0) may be
reallocated to another volume set.

A storage class entered in the file catalog entry in an SM pubset is removed if this operand
is specified. The operand must not be specified simultaneously with the operand
STOCLAS=#*NONE.

U4250-J-Z2125-12-76 179

CATAL

Macros

=*ALLOWED
The file may be reallocated within the SM pubset.

The value is ignored for files and generation on volume sets with permanent data
storage if the file identifier on the SM pubset concerned has a default storage class and
physical allocation is forbidden.

= *FORBIDDEN

Only for users with the right for physical allocation:

Automatic reallocation is not permitted. The file is to remain on the volume set to which
it is currently allocated.

This entry is rejected in the following cases:

— No authorization for physical allocation exists.

— Thefile is on an SM pubset but does not occupy storage.

— Thefile is cataloged on an SM pubset, but resides on a Net-Storage volume.

SHARE

Specifies whether the file or file generation may be processed under a user ID other than
that of the owner if no BASIC-ACL or GUARDS protection is active. The type of access
which is permitted is determined by the other file protection attributes (see the operands
ACCESS, WRPASS etc.).

Default setting — only in conjunction with STATE=*NEW: SHARE=*NO for disk files
SHARE=*YES for tape files

Tape files:
when the file is opened for the first time, DMS writes the SHARE indicator in the HDR1 label
(“access indicator”).

=*NO
The file is not shareable.
Tape files, HDR1 label: access indicator = 1

=*YES

File access is permitted for any user ID, i.e. the file or generation is shareable.
Temporary files, SHARE=*YES is not permitted

Tape files, HDR1 label: access indicator = X'40'

= *SPECIAL
File access is permitted for the user ID with HW—MAINTENANCE privileges.
SHARE=*YES is implied.

This value must not be specified for file generation groups.

180

U4250-J-2125-12-76

Macros CATAL

=*UNCHANGED

Only relevant in conjunction with specification of PROTECT:

If STATE=*UPDATE is specified at the same time, the value of SHARE remains
unchanged. If STATE=*NEW is specified at the same time, the value SHARE=*NO is
entered.

The value *UNCHANGED has the following effects:

— ifPROTECT=*FROM-FILE is specified:
prevents the corresponding value from being taken over from the reference file

— ifPROTECT=*"BY_DEF_PROT_OR_STD is specified and STATE=*NEW is
specified without a value for PROTECT:
prevents the corresponding value supplied by default protection from being taken
over

— ifPROTECT=*STD and STATE=*UPDATE are specified at the same time:
prevents the value in the catalog entry from being reset to the value SHARE=*NO

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
SHARE=*NO (irrespective of what is specified for PROTECT).

STATE
Specifies whether a new catalog entry is to be created, an existing catalog entry is to be
updated or a catalog entry is to be imported.

=*NEW
A new catalog entry is to be created.

=*UPDATE

An existing catalog entry (FILE=...) is to be updated. STATE=*UPDATE must be
specified for each access to an existing catalog entry. The attributes whose associated
operands are specified in this CATAL macro are updated. If password protection exists
for the file, the write password must be entered in the password table of the job by
means of a PASSWORD command before the catalog entry can be updated.

= *FOREIGN

Only for exported FGGs on private disks:

A group entry (that is only in the F1 label of a private disk) of a file generation group
stored on private disks is to be imported. The VOLUME and DEVICE operands must be
specified with this operand; all other operands are ignored or rejected. The generations
to be transferred must then be imported individually or collectively by using the FILE
macro (operands STATE=*FOREIGN, DEVICE and VOLUME) or IMPORT,
respectively.

U4250-J-Z2125-12-76 181

CATAL

Macros

STOCLAS
The operand is only relevant for files, file generations and file generation groups on public volumes
in SM pubsets and files on a Net-Storage volume which are cataloged on an SM pubset.

It defines whether the data storage location selection (volume set) within the SM pubset is
to be controlled via a storage class for files and file generations with STATE=*UPDATE for
which storage has been allocated.

A storage class must not be assigned (i.e. by specifying the operand STOCLAS#*NONE)
simultaneously with assignment of the separate attributes it contains (AVAIL, DISKWR,
IOPERF or IOUSAGE operand) or together with the SOMIGR operand.

The request is also rejected if the file does not occupy storage space or if the storage class
contains the attribute AVAILABILITY=*HIGH and the file is currently migrated to a
background level (S1 or S2 migration with HSMS).

The operand defines the default storage class for file generation groups, which is used for
the first storage assignment to a generation if no explicit storage class or one of the
separate attributes is specified.

With STATE=*NEW, a storage class must not be assigned (i.e. by specifying the
STOCLAS=*NONE operand) together with the WORKGRP operand.

With STATE=*UPDATE, it is only possible to assign a storage class whose WORK-FILE
attribute matches the WORK-FILE attribute of the file generation group.

A file on a Net-Storage volume can be assigned a storage class. In this case no work file
and no file with the preliminary file format K can be created.

Note

Specifying a value which is not equal to *NONE for the STOCLAS operand can result
in the file being displaced (reallocated) from its current volume set to another volume
set which suits the storage class better. The following cases can occur here:

— If the storage class contains AVAILABILITY=*HIGH and AVAILABILITY=*STD
applies for the current volume set, the file must be reallocated to a colume set with
the attribute AVAILABILITY=*HIGH. If reallocation is not possible, the CATAL call is
rejected.

— Ifthe storage class contains a volume set list and the file is not located on a volume
set in the volume set list, the file will, if possible, be reallocated to a volume set from
the list. If reallocation is not possible, the CATAL call is executed without reallo-
cation taking place.

The file is locked (opened) during this reallocation, i.e. all accesses to the file or its
catalog entry are rejected instead of being put into a wait state.

182

U4250-J-2125-12-76

Macros

CATAL

=*NONE
No storage class is assigned. The corresponding separate attributes are evaluated for
selecting the storage location.

The value is ignored for files and generation on volume sets with permanent data
storage if the file identifier on the SM pubset concerned has a default storage class and
physical allocation is forbidden.

= *UPDATE

Only relevant for files that have been assigned a storage class whose attributes have been
modified

The file attributes are modified according to the assigned storage class. If the entry is
made for file generation groups, the only check made is whether the WORK-FILE
attribute of the storage class still matches the WORK-FILE attribute of the file
generation group. The request is rejected with a return code if this is not the case.

=*STD

The default storage class of the user ID for the respective pubset is used for files and
file generation groups.

The default storage class of the file generation group is used for file generations, in
other words the storage class that was assigned to the file generation group index.

= <c-string: structured-name 1..8>

The specified storage class defines selection of the file storage location.

The storage class must exist and the user must have the right to use it.

The file attributes are not updated if the file was not already assigned the specified
storage class, i.e. intermediate storage class modifications are not effective, see
*UPDATE.

The entry is ignored for files in SF pubsets or on private volumes. The entry is rejected
with STATE=*NEW and for cataloged files without allocated storage space.

= (<reg: A(char:8)>)

Only possible with MF=M:

The specified register contains the address of an 8-byte memory area containing the
name of the storage class.

= <var: char:8>
Only possible with MF=M:
Symbolic address of an 8-byte memory area containing the name of the storage class.

U4250-J-Z2125-12-76 183

CATAL

Macros

TIMBASE
Defines the basis on which absolute dates specified with the EXDATE and DELDATE
operands are to be interpreted (relative dates always refer to local time).

The TIMBASE operand has no effect on dates supplied by the default protection function.
These always refer to the local time.

=*UTC
Absolute dates are interpreted based on UTC world time (universal time coordinate).

= *LTI
All dates are interpreted based on LTI (local time).

USRINFO

Enters user metainformation into the file catalog entry. The entry can be a maximum of
8 bytes long, with any contents, whose meaning is defined by the user. The operand is
ignored for files on private volumes.

= *NONE
No entry or the entry will be deleted.

= <c-string 1..8>
The specified characters are entered.

= (<reg: A(char:8)>)

Only possible with MF=M:

The specified register contains the address of an 8-byte memory area containing the
metainformation to be entered.

= <var: char:8>

Only possible with MF=M:

Symbolic address of an 8-byte memory area containing the metainformation to be
entered.

VERSION

Specifies which version of the parameter list is to be generated. The latest version should
always be used.

The default setting cannot be specified explicitly!

Implicit default setting: VERSION=0

The parameter list format that was supported prior to BS2000 V9.5A is generated, but only
for the parameters recognized at the time.

The supported operands and operand values are listed in table “Variations in different
versions — VERSION=0/1/2/3” on page 193.

184

U4250-J-2125-12-76

Macros CATAL

=1

Generates the parameter list format that was supported in BS2000 V9.5 and V10.0, but
only for the parameters recognized at the time.

The supported operands and operand values are listed in table “Variations in different
versions — VERSION=0/1/2/3” on page 193.

=2

Generates the parameter list format for versions BS2000/0SD-BC V1.0 and V2.0.
=3

Generates the parameter list format for versions as of BS2000/0SD-BC V3.0.

Note

If existing software which manipulates the generated parameter list is to be
reassembled, the old format (0, 1 or 2) must be requested. In all other respects,
source code compatibility is ensured.

VOLUME
Only for FGGs on private disks:
Specifies the volume serial number (“vsn”) of a private volume (private disk).

The operands VOLUME and DEVICE must be specified when an FGG is created or recon-
structed on private disks (STATE=*NEW) or when an FGG kept on private disks is to be
imported (STATE=*FOREIGN).

If the software product MAREN is being used, a VOLUME may be specified without a
DEVICE.

= <c-string 1..6>
Archive number

= (<reg: A(char:6)>)

Only possible with MF=M:

The specified register contains the address of a 6-byte memory area containing the
volume serial number.

= <var: char:6>
Only possible with MF=M:
Symbolic address of a 6-byte memory area containing the volume serial number.

U4250-J-Z2125-12-76 185

CATAL

Macros

WORKGRP
Only relevant when setting up a file generation group in SM pubsets:
Defines whether the file generation group is to be a permanent or work file generation

group.
Work file generation groups can be deleted by system administration at a time specified by
system administration.

=*YES
The file generation group is set up as a work file generation group.

WRPASS
The user can define, update or delete a write password with this operand.

Temporary files:
Password protection is not permitted.

Tape files:
The password is stored in the HDR3 label.

Default setting — only in conjunction with STATE=*NEW: WRPASS=*NONE

=*NONE
No password is defined or an existing password is deleted.

= *UNCHANGED

If STATE=*"UPDATE is specified at the same time, the value of WRPASS remains
unchanged. If STATE=*NEW is specified at the same time, the value WRPASS=*NONE
is entered.

If PROTECT=*"BY_DEF_PROT_OR_STD or STATE=*NEW is specified without a value
for PROTECT, *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over.

If STATE=*UPDATE is specified, then: if PROTECT=*BY_DEF_PROT_OR_STD is not
specified, *"UNCHANGED has the same effect as no specification.

If STATE=*NEW is specified, then: “*UNCHANGED has the same effect as the specifi-
cation *NONE (irrespective of what is specified for PROTECT).

= <c-string 1..4> | <x-string 1..8> / <integer -2147483648..2147483647>
Defines the password needed for write access.

= (<reg: A(char:4)>)

Only possible with MF=M_:

The specified register contains the address of a 4-byte memory area containing the
write password.

186

U4250-J-2125-12-76

Macros

CATAL

= <var: char:4>
Only possible with MF=M:
Symbolic address of a 4-byte memory area containing the write password.

Programming notes

1. Calling the CATAL macro with the new operand list:
label CATAL <operands,...>,VERSION=3

2. Register 1 Address of the operand list.

3. The error code is only returned in the standard header of the parameter list (IDKRET
field) and no longer in general-purpose register 15 as in version 2.

Return codes

Standard The following code relating to execution of the CATAL macro
header: c ‘C b ‘b a ‘a a ‘a is re_tumed in the stand_ard header _ .
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):
X'cc' |X'bb' |X'aaaa' |Meaning
X'00" | X'0000' No error
X'01" | X'00" |X'0000" |Only with check dialogs:
Request was fully or partially retracted in dialog, i.e. at least one check
dialog was answered with *NO.
X'02" |X'00" |X'0000" |Only in conjunction with CHECK=*NO:
An error has occurred but continuation of the function was requested
in an error dialog.
X'40" | X'0501" Requested catalog not available
X'82" | X'0502' Requested catalog in the wait state
X'40" | X'0503' Incorrect information in MRSCAT
X'82" | X'0504' Error in catalog management system
X'40" | X'0505' | Error during computer communication (MRS)
X'80" | X'0506' Operation canceled because of master switch
X'40" | X'0510' Error when calling an internal function
X'40'" | X'0512' Requested catalog unknown
X'40" | X'0513" | Call rejected by system exit routine
X'40" | X'051B' |User ID not known in specified pubset
X'40" | X'051C" |No access right to specified pubset
X'40'" | X'051D' |LOGON password to specified pubset is different
X'20" | X'0527 I/O error while reallocating the data in an SM pubset

U4250-J-Z2125-12-76

187

CATAL

Macros

X'cc' |X'bb' |X'aaaa' |Meaning

X'20" | X'0530'" |CMS reports error during a request for storage space

X'20" | X'0531' Unexpected error during catalog access

X'82" | X'0532' File locked because it is in use

X'82" | X'0534' Private volume cannot be assigned

X'40" | X'0535" | No access right to the file catalog entry (only in conjunction with CCS
assignment to a foreign user ID)

X'20" | X'0536' Error in file management system

X'40" | X'053A" | Error while modifying the F1 label on a private disk

X'20" | X'053B' |System error during file access

X'82'" |X'053C' |Catalog file of the pubset is full

X'40" | X'053D' |Catalog of F1 label block is destroyed

X'40" | X'053E' |File on private volume is already cataloged

X'82" | X'053F' |File is reserved by another task

X'40" | X'0540' No volume set that matches the required file attributes is available in
the specified pubset

X'82" |X'0541" | Data reallocation is not possible because there is no suitable volume
set with enough free storage space

X'40" | X'0546" | File catalog entry is full

X'82" |X'054D' | Storage allocation exceeded

X'20" | X'054F' | Unexpected error while accessing JOIN file

X'40" | X'0555' |STATE=*FOREIGN: specified file already exists in the catalog of the
user

X'82" | X'055A" | Device currently reserved

X'40" | X'055C' |Catalog entry on private disk not found

X'40" | X'055D' | User has no right for physical allocation

X'40" | X'055F' | Volume could not be reserved

X'01" | X'0576' Contradictory operand combination or reserved parameter area fields
used

X'20" | X'0577' Internal error while accessing job environment

X'20" | X'0578' Internal error while checking access rights

X'01" | X'0579' Invalid operand specified for temporary file

X'40" | X'057A" | Attribute cannot be assigned for work file

X'40" | X'057E' |HSMS not available

X'40" | X'057F' | File is migrated, renaming not possible

X'01" | X'0590' |Volume specification not permitted without device specification

188

U4250-J-2125-12-76

Macros

CATAL

X'cc' |X'bb' |X'aaaa' |Meaning

X'82' |X'0594' |Insufficient virtual memory available (also if wildcards are used and too
many files are selected)

X'01" | X'0599' |Operand is not supported in the RFA-BS version

X'40' | X'05A0' Updating the performance attributes (DISKWR, IOPEREF,
IOUSAGE) is not permitted if data in the write cache has not been
written yet

X'01" | X'05A8' |Requested device type not found in system

X'40" | X'05AD' | Only when renaming with simultaneous SO migration:
File attributes were modified but the file could not be renamed because
of CMS problems

X'82" | X'05B0" |No suitable device is currently available

X'40' | X'05B4' | Only in conjunction with VOLUME/DEVICE:
A MOUNT message for the requested volume was answered with 'NO'
by the operator

X'40" | X'05B5' | Guard not available

X'40" | X'05BD' | lllegal combination of file and volume set attributes

X'20" |X'05C7' |Internal error in DMS

X'82' |X'05C8' |Maximum number of files reached for user ID

X'20" |X'05CA' |Internal error while modifying the CE allocation

X'01" | X'05CB' |Incorrect or illegal first file name

X'40" | X'05CC' |File name already cataloged

X'01" | X'05CD" |Incorrect or illegal new file name

X'40" | X'05CE' |First file name not cataloged

X'40" | X'05CF' |File is protected with a password

X'82" | X'05D0" |File locked because it is in use

X'40" | X'05D1" | Error while requesting a device

X'40" | X'05D2'" |EXPIRATION-DATE was specified for an empty file

X'01" | X'05D3'" | GUARDS name incorrect

X'40" | X'05D4' | GUARDS catalog must not be protected by a guard

X'01" | X'05E8' | File name illegal for disk file

X'01" | X'0O5EE' |File name too long

X'01" | X'05EF' |BASIC-ACL or guard cannot be assigned

X'01" | X'05FA" | Access to REMOTE-IMPORTED pubset not possible

X'40' | X'05FC' | Specified user ID not in home pubset

U4250-J-Z2125-12-76

189

CATAL

Macros

X'cc' |X'bb' |X'aaaa' |Meaning

X'40" | X'O5FD' |File is write-protected with USER-ACCESS or EXPIRATION-DATE
(only for CCS assignment to foreign user ID)

X'40" | X'0606' |Volume request rejected by MAREN

X'40" | X'0609" | Action not permitted for system file

X'40" | X'060D' | Error while reading reference file attributes (PROTECT operand)
— Syntax error in file name, possibly also in conjunction with an ACS

replacement

— Specified reference file not accessible

X'40" | X'0610' Function execution supplies a return code for at least one of the
selected file names

X'01" | X'0611' Incorrectly specified construction (NEWNAME operand with wildcards)

X'40" | X'0613' Unknown management class

X'40" | X'0614' No access right for management class

X'40" | X'0616" | Specified attributes require an SO migration, but the file is locked
against reallocation

X'40" | X'0618' Unknown storage class

X'40" | X'0619' No access right for storage class

X'40" | X'0640 Access to Net-Storage is rejected by the ONETSTOR subsystem
because of communication problems with the net client

X'40" | X'0643' Net client reports access error

X'40" | X'0644' Net client reports internal error

X'40" | X'0645' File does not exist on Net-Storage

X'40" |X'0646' |FGG not permitted on Net-Storage volume

X'40" | X'0649' Net server reports POSIX ACL error

X'40" | X'064A' | Net client reports that access to files on the Net-Storage volume is
forbidden

X'40" | X'064B' |Access to node files from the net client not supported

X'40" | X'0666' File is write-protected by ACL or GUARDS (only with CCS assignment
to foreign user ID)

X'40" | X'0685' File occupies no storage space and AVAIL=*HIGH, a storage class or
an S0 migration lock is to be set

X'20" | X'069D' |Incorrect catalog entry structure

X'40" | X'06A6' |AUDIT specification not permitted for user ID

190

U4250-J-2125-12-76

Macros

CATAL

X'cc' |X'bb' |X'aaaa' |Meaning
X'02" | X'00" |X'06A9" |Generations missing from the file generation group
X'40" | X'06B6' | File attributes unsuitable for the file generation group
X'01" |X'06C1" | More than 255 generations requested or conflict with BASE, LAST or
FIRST operand
X'01" | X'06C3' |lllegal name for a file generation group
X'40" | X'06C4"' |File generation group not cataloged
X'01" | X'06C5' | File generation group name too long
X'01'" | X'06C6' | Tape file name or attribute cannot be modified
X'01" | X'06C7"' |Invalid generation number specified
X'01" | X'06C8' | Attribute can only be modified for the complete file generation group
X'01" | X'06C9" | Generation-specific operand in incorrect context

U4250-J-Z2125-12-76

191

CATAL

Macros

X'cc' |X'bb' |X'aaaa' |Meaning
X'02" |X'00" |X'06CA' |Command executed, apart from incorrect BASE specification
X'40" | X'06CC' |Only with wildcard selection:
No file matches the specified selection entry
X'40" | X'06CD' | Specified file generation group locked with write protection against
extensions
X'01" | X'06CE' |Retention date (RETPD, EXDATE) or delete date (DELDATE) incor-
rectly specified
X'40" | X'06D5' | Deleting of superfluous file generations is prevented by write protection
X'01" | X'06DA" | lllegal combination of private and public volumes for a file generation
group
X'01" | X'06DB' |Incorrect VOLUME and DEVICE specification
X'01" | X'06FA' | New file name only permitted with STATE=*UPDATE
X'01" | X'06FB' | Granting of execution rights not possible for file generation groups
X'01" | X'06FD' |Parameter range invalid or not accessible
X'40'" | X'06FF' |BCAM connection interrupted
X'01" | X'FFFF' |Incorrect function number in parameter range header
X'03" | X'FFFF' |Incorrect version number in parameter range header

192

U4250-J-2125-12-76

Macros

CATAL

Variations in different versions - VERSION=0/1/2/3

MF=

Operand

ohne Vers

Vers=1

Vers=2

Vers=3

Remarks

MF=E

(1)

(1)

(1)

X

VERSION

X

X

PARAM

MF=D/
MF=C

PREFIX

MACID

VERSION

MF=M

PREFIX

MACID

all operands
of MF=I/L

X [X | X [X | X [X | X | X |X|[X

MF=I/
MF=L

X

x

x

pathname4

)

B

s

pathname,

®)

—
w
~

s

ACCESS

ACLPROT

X | X

ADMINFO

AUDIT

BACKUP

BASACL

BASE

CCs

CHECK

DELDATE

DESTROY

DEVICE

®)

DISKWR

DISP

EXDATE

EXPASS

X [X [X [X | X[X | X |[X|X|[X|X|[|X|X|[X|X]|X

FILE

)

S

U4250-J-Z2125-12-76

193

CATAL

Macros

MF=

Operand

ohne Vers

Vers=1

Vers=2

Vers=3

Remarks

MF=1/
MF=L
(cont.)

FIRST

GEN

GROUPAR

GUARDS

IOPERF

IOUSAGE

LARGE

LAST

LIST

MANCLAS

MIGRATE

NEWNAME

OPNBACK

OTHERAR

OWNERAR

X | X | X [N|X

PROTECT

RDPASS

RELSPAC

RETPD

SHARE

STATE

X | X [X | X | X

STOCLAS

SOMIGR

TIMBASE

USRINFO

VERSION

VOLUME

WORKGRP

WRPASS

X |IX [X [X | X [X|X|[X|X[X|X|X|X[X|X[X|X|S|X|X|X|X|X|X|X]|X

194

U4250-J-2125-12-76

Macros

CATAL

The operand is available in the macro version.

Operand is available in the macro version, but not as of the first release.

The operand is not available in the macro version.

Version

Format MF=(E,<addr>)

Path name with a maximum of 54 characters , format: [:catid:][$userid.]filename
File name without catalog ID and user ID (44 characters maximum)

Selection or construction specifications (analogous to 2), 80 characters maximum
Only the respectively supported device types

Vers=1: operand value is called INHIBIT instead of INHIBITED (Vers=2)

In the above table, positional operands are listed before keyword operands under MF=L.

U4250-J-Z2125-12-76

195

CHKFAR Macros

CHKFAR - Check file access rights

Macro type: type S (E form/L form/D form/C form/M form); see page 866

The CHKFAR macro checks the access rights for the file specified in the call and informs
the caller which access rights he/she has for this file. The user may select

— whether all access facilities he/she has for the file are to be shown (ignoring any
passwords or retention period which may exist) or

— whether he/she desires information on a specific access right (including any password
protection or retention period defined for the file).

The information is returned to the caller in an output area of the operand list.

For private files: the CHKFAR macro evaluates information from the user catalog only, not
from the F1 label.

For tape files: the CHKFAR macro evaluates information from the user catalog, but not from
the header record on the tape.

196 U4250-J-2125-12-76

Macros

CHKFAR

Format

Operation

Operands

CHKFAR

‘pathname’
,FILE={ adrl
(r)

*ANY
*READ
*WRITE
,ACCESS={ *UPDATE
*DELETE
*EXEC
adr2

1

addr
MF=E, PARAM=
(r)

MF=D,[,PREFIX=prel]

MF=C,L[,PREFIX=prell,MACID=macid]

U4250-J-Z2125-12-76

197

CHKFAR

Macros

Operand descriptions

FILE
Specifies the file for which the user wishes to determine or check his/her access rights.

= pathname
Name of the file whose access rights are to be checked, where
<c-string 1..54: filename 1..54>

Pathname means [:catid:][$userid.]filename

catid
Catalog ID: if omitted, the default catalog ID for the current user ID is assumed.

userid
User ID: if omitted, the user ID in the SET-LOGON-PARAMETERS or LOGON
command is assumed.

filename
A fully qualified file name.

= addr1
Symbolic address (i.e. the name) of a 54-byte field in the user program which contains
the path name of the file to be checked.

=(r)
Number of a register which contains the address of the “addr1” field. The register must
be loaded with this address value before the macro is called.

ACCESS

Specifies whether all access rights enjoyed by the user for the specified file are to be
returned or whether the file is to be checked for a specific access right for the user. The
information is returned in an output area of the operand list.

=*ANY

Information on all access rights which the user possesses for the specified file is placed
in an output area of the operand list. Any other possible protection attributes of the file,
such as passwords or a retention period, are not evaluated.

= *READ
The system checks whether the caller may read the specified file. Any existing
password for the file is also taken into account.

= *WRITE
The system checks whether the caller may write to the specified file. Any existing
password or retention period for the file is also taken into account.

198

U4250-J-2125-12-76

Macros

CHKFAR

= *UPDATE
The system checks whether the caller may read from and write to the specified file. Any
existing password or retention period for the file is also taken into account.

= *DELETE
The system checks whether the caller may delete the specified file. Any existing
password or retention period for the file is also taken into account.

=*EXEC
The system checks whether the caller may execute the specified file. Any existing
password for the file is also taken into account.

MACID
Defines the second through fourth characters of each field name and equate generated
when the macro is expanded.

Default value: MACID = RMZ
= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

PARAM
Specifies the address of the operand list; it is evaluated only if MF=E applies
(see page 865).

= addr
Symbolic address (name) of the operand list.

=(r)
Number of the register which contains the address of the operand list. The register must
be loaded with this address value before the macro is called.

PREFIX
Specifies the first character of each field name or equate which the assembler generates in
the data area when expanding the macro.

Default value: PREFIX=S.

= pre
Single-character prefix with which the field names and equates generated by the
assembler are to begin.

U4250-J-Z2125-12-76 199

CHKFAR

Macros

Return codes

Standard The following code relating to execution of the CHKFAR
header: 0 ‘O b ‘b a ‘a a ‘a macro is returned in the standard header
(bb = SUBCODE1, aaaa = MAINCODE):
X'bb' |X'aaaa' |Meaning
X'00" [X'0000" | The function was executed successfully.
X'01" | X'6000" | The function could not be executed: the operand list contains an invalid value.
X'40' | X'6001" | The function could not be executed: the specified file was not found in the
catalog.
X'40'" | X'6008' | The function could not be executed: the specified catalog is unknown or was not
available.
X'20'" | X'6014' | The function could not be executed: system error.
X'40" | X'6021' BCAM connection error
X'40" | X'6022' BCAM connection interrupted
X'01" | X'6040" | The function could not be executed: The operand list was not available or
assigned with the necessary length.

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

— thelistis not assigned to the caller
— thelistis not aligned on a word boundary
— the list is write-protected.

200

U4250-J-2125-12-76

Macros CHKFAR

Description of the output fields

— The following information is returned for ACCESS = *ANY:

Access rights: the caller's access rights for the file. Passwords and retention periods are
not taken into account.

— Ifaccess control using GUARDS is defined, the guards for the caller are evaluated.

— If aBASIC-ACL is in effect, the values from the entry applicable to the caller are
used.

— Ifan ACL is in effect then the “null” value is supplied in the ACCESS-RIGHTS field.

Access control using ACL has no longer been supported since SECOS
V4.0.

— If SHARE/ACCESS is in effect, the values are set as follows:

Owner. Other
ACCESS SHARE R w X R w X
WRITE NO Y Y Y N N N
WRITE YES Y Y Y Y Y Y
READ NO Y N Y N N N
READ YES Y N Y Y N Y
Key: R: READ, W: WRITE, X: EXECUTE, Y: YES, N: NO

If the file to be checked exists, but the caller has no access rights for it, the CHKFAR
macro returns the access rights in the ACCESS-RIGHTS field and the return code null.

— Where ACCESS = *READ/*WRITE/*UPDATE/*DELETE/*EXEC:
CHECK-RESULT: specifies whether or not the desired access is permitted.

U4250-J-Z2125-12-76 201

CHKFAR Macros
Layout of the operand list
(macro expansion with MF=D and default values for PREFIX and MACID)
CHKFAR MF=D
1 MFCHK MF=D,PREFIX=S,MACID=RMZ,PARAM=, C
1 SUPPORT=(C,D,E,L,M),DMACID=RMZ,SVC=8
2 SRMZ DSECT ,
2 * #HHHHE PREFIX=S, MACID=RMZ #####
1 KEAKA AR AAAAAKA AR A A A A A AR EA AR A A A A Ak Ak A A A Ak A A Ak Ak, khkhhkhAkhAkhkhkAAk Ak A khkhhAhAhkkkk%
1 * CHKFAR - PARAMETER AREA *
1 R R R R o S i R S S S R R R S S R S S S
1 #INTF REFTYPE=REQUEST, INTNAME=CHKFAR, INTCOMP=001
1 *
1 SRMZPA DS OF BEGIN of PARAMETER AREA _INOUT
1 *
1 FHDR MF=(C,SRMZ),EQUATES=NO
2 DS 0A
2 SRMZFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 SRMZIFID DS 0A O INTERFACE IDENTIFIER
2 SRMZFCTU DS AL2 O FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 SRMZFCT DS ALl 2 FUNCTION NUMBER
2 SRMZFCTV DS ALl 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 SRMZRET DS 0A 4 GENERAL RETURN CODE
2 SRMZSRET DS 0AL2 4 SUB RETURN CODE
2 SRMZSR2 DS ALl 4 SUB RETURN CODE 2
2 SRMZSR1 DS ALl 5 SUB RETURN CODE 1
2 SRMZMRET DS 0AL2 6 MAIN RETURN CODE
2 SRMZMR2 DS ALl 6 MAIN RETURN CODE 2
2 SRMZMR1 DS ALl 7 MAIN RETURN CODE 1
2 SRMZFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 *
1 SRMZACC DS XL1 ACCESS 001
1 SRMZANY EQU 0 = *ANY 001
1 SRMZREA EQU 1 = *READ 001
1 SRMZWRI EQU 2 = *WRITE 001
1 SRMZUPD EQU 3 = *UPDATE 001
1 SRMZDEL EQU 4 = *DELETE 001
1 SRMZEXE EQU 5 = *EXEC 001
1 *
1 SRMZFILE DS CL54 FILE = pathname 001

202

U4250-J-2125-12-76

Macros CHKFAR

1*

1 SRMZRIF DS XL1 RETURN_INFO 001
1 * Here after: ACCESS_RIGHTS bits returned when ACCESS = *ANY

1 SRMZARR EQU X'80" READ 001
1 SRMZARW EQU X'40'" WRITE 001
1 SRMZARE EQU X'20" EXEC 001
1 SRMZARU EQU X'1F' UNUSED 001
1 * Here after: AUTHORIZATION bin-value returned when ACCESS NE *ANY

1 SRMZALW EQU 0 ALLOWED 001
1 SRMZFBD EQU 1 FORBIDDEN 001
1*

1 SRMZUNU DS XL4 —— MUST BE ZERO —— 001
1 SRMZPA# EQU *~SRMZPA LENGTH OF PARAMETER AREA 001

U4250-J-Z2125-12-76 203

CHNGE Macros

CHNGE - Change TFT entry

Macro type: type S (E form/L form); see page 866

The CHNGE macro changes the file link name in an entry in the task file table (TFT), i.e. a
new file link name is assigned to the file. All other values in the TFT entry remain
unchanged.

CHNGE cannot be used on the TFT entry of a file which is currently open.

Format
Operation |Operands
CHNGE [name;1,name,[,MF=L]
mr=ce,| 2997 1
"l (r)

Operand descriptions
The forms of the MF operand are described in detail in the appendix, page 865.

nameq
The file link name (1-8 characters long) which is to be replaced by “name,”.

Default setting: the first TFT entry with file link name C'__...... 'is processed
(e.g. created via the LOCK-FILE-LINK function).

name,
The new file link name (1-8 characters long) which is to replace the old name “name,”.

Programming note

The following return codes are placed in register 15:

X'00' - call was executed successfully

X'05A6'- second operand errored

X'05C2'- file link name contains illegal binary zeros
X'05D5'- file link name not found

X'05D6' - file with specified file link name is currently open
X'05DD'- second file link name already exists

204 U4250-J-2125-12-76

Macros

CLOSE

CLOSE - Close file

The CLOSE macro closes files, i.e. it disconnects them from the user program in which they
were opened. All input/output buffers which the system generated automatically when the
file was opened are now released. The FCB is restored to the state it was in before the file

was opened.

During CLOSE processing, the user program can make use of EXLST exits, as with OPEN

processing, in order to position the tape (CLOSPOS) or write user labels (LABEND).

A CLOSE macro issued for a file which is not open is ignored.

Format
Operation |Operands
CLOSE
RWD
REPOS
ALL DISCON 24
fcbaddr ([, LEAVE][,PARMOD={ 31 }]
(1) INVAL

KEEP-DATA-IN-CACHE
0

U4250-J-Z2125-12-76

205

CLOSE

Macros

Operand descriptions

fcbaddr
Address of the FCB for the file to be closed.

(0)
Register 0 contains the positioning key and CLOSE mode in the right-hand byte:

X'00' LEAVE
X'01'" DISCON

X'02' REPOS

X'03' RWD

X'05' INVAL (only for PARMOD=31)
X'068' KEEP-DATA-IN-CACHE

(1)

Register 1 contains the FCB address.

ALL

Closes all files which were opened in the current program and have not yet been closed.
System files and EAM files are not affected. If a file is not closed normally, a warning is
issued.

DISCON

For tape files:

The tape is positioned to the start and unloaded/released. A device which may have been
reserved using FILE remains assigned to the task; it is not released until a subsequent
RELEASE command (REL macro) is issued.

INVAL

For disk files:

The cached pages of the file are to be invalidated, but not written back to the disk, i.e. the
data is lost after CLOSE. INVAL can only be specified if PARMOD=31 applies.

KEEP-DATA-IN-CACHE

For disk files:

The data that was buffered in a cache is not saved to the disk at CLOSE. A subsequent
OPEN on the same file can then use this data immediately.

206

U4250-J-2125-12-76

Macros

CLOSE

Note

Files that have been closed in this way can be displayed using the SHOW-FILE-ATTRI-
BUTES command (CACHE-NOT-SAVED operand). A backup of the data from the
cache onto the disk can be forced either by means of a further OPEN/CLOSE cycle
without this function or implicitly when the cache is dissolved with the system adminis-
trator command STOP-PUBSET-CACHING or EXPORT-PUBSET. A file-specific cache
backup for closed files is not possible.

LEAVE

For tape files:

The tape is positioned to the logical end of the file, depending on the LABEL specification
in FILE or FCB.

If the BYPASS operand was specified in the FILE command, the tape position is not
changed and the CLOSPOS routine is not activated. Otherwise the LEAVE functions are as
indicated in the “REPOS” table: REPOS for OPEN=REVERSE corresponds to LEAVE for
OPEN=REVERSE, and vice versa.

In the case of LEAVE for OPEN OUTPUT, it should be noted that no CLOSPOS routine is
activated, and the tape position is not changed.

For multifile tapes, the tape is rewound to the start by CLOSE unless LEAVE is specified.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembiler.

=24

The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

=31

The macro is generated as addressing mode-independent.

REPOS

For tape files:

positions a tape to the logical beginning of the file, depending on the LABEL specification
in FILE or FCB.

U4250-J-Z2125-12-76 207

CLOSE

Macros

If the BYPASS operand was specified in the FILE macro, the tape is rewound and the
CLOSPOS routine is not activated. In all other cases, the following table applies (position

tape):

LABEL-Angabe

OPEN = REVERSE

OPEN = REVERSE

LABEL=(STD,n)

The tape is automatically positioned
to HDR1;
FSEQ is not changed.

The tape is positioned to the tape mark
after the last EOF label of the file;
FSEQ is incremented by 1.

LABEL=NSTD EXLST: CLOSPOS=NO, the tapeis | EXLST: CLOSPOS=NO, the tape is
automatically positioned to the start | positioned to the start of tape mark;
of tape mark; FSEQ=0
FSEQ is not changed.
EXLST: CLOSPOS#NO, the user EXLST: CLOSPOS#NO the user himself
must program a routine to position | positions the tape in the CLOSPOS
the tape; routine;
FSEQ is not changed FSEQ is not changed.
LABEL=NO EXLST: CLOSPOS=NO, the tape is

automatically positioned to the tape
mark after the last block;
FSEQ is incremented by 1.

For OPEN OUTPUT: no CLOSPOS routine, no positioning.

RWD

Default setting for tape files:
the tape is rewound and positioned to the start; FSEQ is set to zero (this also applies to files
with NSTD labels), i.e. FSEQ points to the first file of the file set or tape volume.

Programming note

The CLOSE macro destroys the contents of registers 0, 1, 14 and 15.

208

U4250-J-2125-12-76

Macros

COMPFIL

COMPFIL — Compare disk files

Macro type: type S (E form/L form/D form/C form/M form) (see page 865)

The COMPFIL macro, like the COMPARE-DISK-FILES command, compares two disk files
block by block (UPAM) or record by record (SAM, ISAM) and informs the user of the result
of the comparison.

Temporary or work files can also be compared. The files can reside on public volumes, Net-
Storage or private disks.

The files to be compared must be identical with respect to the following properties:

Access method (FILE-STRUCTURE or FCBTYPE)

Block format (BLOCK-CONTROL-INFO)
When BLKCTRL=*IGNORE, different block formats are also permissible.

Coded character set (CODED-CHARACTER-SET, EXTENDED_HOST_CODE)

For SAM files:
— RECORD-SIZE (RECSIZE) when RECORD-FORM=F (RECFORM=F)

For ISAM files:

— RECORD-SIZE (RECSIZE) when RECORD-FORM=F (RECFORM=F)

— Structure of the ISAM key (KEY-LEN, KEY-POS, LOG-LEN and VAL-FL-LEN)
— Structure of the secondary key (KEY-LEN, KEY-POS, DUPKEY) for NK-ISAM

For UPAM files:
— BUFFER-LENGTH (BLKSIZE)
— HIGHEST-USED-PAGE (LPP)

Files with the following properties cannot be compared:

empty files

opened files

locked files (e.g. SECURE lock)
REPAIR-NEEDED label set
NO-DMS-ACCESS label set

Entire file generation groups cannot be compared, although individual file generations can.

PLAM libraries can be compared block by block. The members they contain cannot be
compared.

U4250-J-Z2125-12-76

209

COMPFIL Macros

The TPCOMP2 utility routine is available to compare tape files, see the “Utility Routines”
manual [14].

Privileged functions

Systems support (TSOS privilege) can compare files of all user IDs. Wildcards are not
permissible in the user ID here.

Format

Operation |Operands

COMPFIL ,PATHNMl=<c-string 1..54: filename 1..54> / <var: char:54>
,PATHNM2=<c-string 1..54: filename 1..54> / <var: char:54>
,BLKCTRL=*IGNORE / *INCLUDE
,PAMINFO=*INCLUDE / *IGNORE
,OUTAREA=(NULL / <var: pointer>,

0 / <integer 0..32767> / <var: int:4>)
,CALLER=USER / SYSTEM
,EQUATES=YES / NO
,XPAND=PARAM / OUTPUT

MF=L
MF=D,PREFIX=D / <pre>
MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAM / <macid>

Operand descriptions

PATHNM1
Selects the first file to be compared.

=<c-string 1..54: filename 1..54>
Name of the first file.

=<var: char:54>

Only possible with MF=M_:

Symbolic address of a memory area of 54 bytes in which the name of the first file is
stored.

210 U4250-J-2125-12-76

Macros COMPFIL

PATHNM2
Selects the second file which is to be compared.

=<c-string 1..54: filename 1..54>
Name of the second file.

=<var: char:54>

Only possible with MF=M:

Symbolic address of a memory area of 54 bytes in which the name of the second file is
stored.

BLKCTRL=*IGNORE / *INCLUDE
Specifies whether the files’ block format is included in the comparison (*INCLUDE) or
ignored (*IGNORE).

PAMINFO=*INCLUDE / *IGNORE
Specifies whether the user information in the PAM key of UPAM files is included in the
comparison (*INCLUDE) with BLOCK-CONTROL-INFO=*PAMKEY or ignored (*IGNORE).

OUTAREA=(<address>,<length>)
Determines the address and length of the output area in which the information concerning
the file comparison is to be stored.

<address>=NULL / <var: pointer>
Specifies the address of the output area.

<length>=0 / <integer 0..32767>
Specifies the length of the output area.

<length>=<var: int:4>)

Only possible with MF=M:

Symbolic address of a memory area of 4 bytes in which the length of the output area is
stored.

CALLER
Control operand; for MF=E and MF=M only:
Specifies whether an SVC or a direct call is to be generated when the function is called.

= USER
The function call is generated via SVC 144.

= SYSTEM

Control operand; for callers from TPR only:

A direct call is generated with BASR. The DSL conventions apply for the interface.
When TU programs are linked, the entry generated cannot be satisfied.

U4250-J-Z2125-12-76 211

COMPFIL Macros

EQUATES

Control operand; for MF=C and MF=D only:

Specifies whether equates are also to be generated for the values in the fields of the
parameter or output area when the parameter or output area is expanded.

=*YES

Equates are also generated for the values in the fields of the parameter or output area
when the parameter or output area is expanded.

=*NO

No equates are generated for the values in the fields of the parameter or output area
when the parameter or output area is expanded.

XPAND

Control operand; for MF=C and MF=D only:

Determines which structure is to be expanded (generated). Specifications for this operand
are ignored for other MF values.

= PARAM
The layout of the parameter list is expanded.

= OUTPUT
The layout of the output area is expanded.

Programming notes

1. Before the layout of the parameter area is generated, the standard header must be
cleared.

2. AllRESERVED fields of the parameter area must have been deleted with binary zeros.

The caller is responsible for the consistency of the parameter area whenever modifica-
tions are made to the parameter area without the help of GCs.

4. The caller is responsible for deleting the output area.

In the event of a nonprivileged call (function status TU), register 1 points to the
parameter area. In the event of a privileged call (function status TPR), the register
assignment complies with the DSL convention.

212 U4250-J-2125-12-76

Macros

COMPFIL

Return codes

The return code is returned in the standard header of the parameter area. The parameter
area may then not be located in the read-only area, otherwise the program terminates.

The following return codes are generated by COMPFIL:

X'cc' | X'bb' | X'aaaa' | Explanation

X'00" | X'00" | X'0630" | No error. The files are identical.

X'00" | X'00" | X'0631" | No error. The files are not identical.

X'00" | X'40' | X'0501" |File catalog not available

X'00' | X'40" | X'0505" | Error in host communication

X'00" | X'40' | X'0512" |File catalog not found

X'00" [X'40" | X'051B' |User ID not on the pubset

X'00" | X'20" | X'0531" | Unexpected error during file catalog access

X'00" | X'01" | X'0554' | Format of file name invalid

X'00" | X'01" | X'0576" |Incorrect operand combination or UNUSED fields not deleted

X'00" | X'82" | X'0594" | Insufficient virtual memory available

X'00" | X'20" | X'05AB' | Address of output area incorrect or not specified

X'00" | X'20" | X'05C7' |Internal error in DMS

X'00" | X'40' | X'0O5F4' | Specified file names are identical

X'00" | X'40' | X'05FC' | User ID not in home pubset

X'00" | X'01" | X'0624" |Invalid file name

X'00" | X'40' | X'0636" |File attributes are incompatible

X'02' | X'00" | X'06CB' | Output information not completely transferred

Further return codes, whose meanings are defined by conventions valid for all macros, can

be found in the table on page 869 (Standard header).

U4250-J-Z2125-12-76

213

COMPFIL

Macros

Layout of the parameter area

The parameter area must be aligned on a word boundary. It begins with a standard header

which COMPFIL initializes as follows:

22
33
Interface Version Number 1

Return Code -1

Function Unit Number
Function Number

Macro expansion with MF=D and XPAND=PARAM and default values for EQUATES,

PREFIX and MACID:
COMPFIL MF=D,XPAND=PARAM

DMAVGLPL DSECT ,

DMAVHDR DS 0A

DMAVFHE DS 0XL8 0
DMAVIFID DS 0A 0
DMAVFCTU DS AL2 0
DMAVFCT DS ALl 2
DMAVECTV DS ALl 3
DMAVRET DS 0A 4
DMAVSRET DS 0ALZ 4
DMAVSR2 DS ALl 4
DMAVSR1 DS ALl 5
DMAVMRET DS 0AL2 6
DMAVMRZ DS ALl 6
DMAVMR1 DS ALl 7
DMAVFHL EQU 8 8
*

DMAVPNAM1 DS CL54
DMAVPNAM2 DS CL54
DMAVBCTRL DS FL1

* values of operand blckctrl_info

DMAVBLKIG EQU 0
DMAVBLKIN EQU 1

*

DMAVPINFO DS FL1

* values of operand paminfo
DMAVPIIG EQU 0
DMAVPIIN EQU 1

*

DMAVRES1 DS XL6
DMAVARAD DS A
DMAVARLN DS F

DMAV# EQU *—~DMAVHDR

GENERAL PARAMETER AREA HEADER
INTERFACE IDENTIFIER

FUNCTION UNIT NUMBER

FUNCTION NUMBER

FUNCTION INTERFACE VERSION NUMBER
GENERAL RETURN CODE

SUB RETURN CODE

SUB RETURN CODE 2

SUB RETURN CODE 1

MAIN RETURN CODE

MAIN RETURN CODE 2

MAIN RETURN CODE 1

GENERAL OPERAND LIST HEADER LENGTH

Pathnamel
Pathname?2

blockctrl operand

ignore
include

paminfo operand

ignore

include

RESERVED
Outarea=(<addr>,...)
Outarea=(...,<length>)

214

U4250-J-2125-12-76

Macros COMPFIL

Layout of the output area

The output area must be aligned on a word boundary.

Macro expansion with MF=D and EXPAND=OUTPUT and default values for EQUATES,
PREFIX and MACID:

COMPFIL MF=D,XPAND=OUTPUT
DMAVOUTP DSECT ,
* Compfile Output

DMAVMSGNR DS F MESSAGENUMBER
*

DMAVMSGINF DS 0XL80 MESSAGEINFO
DMAVMSG_DETAILS DS 0XL80 MESSAGEDETAILS
DMAVPNAM DS CL8O PATHNAME

ORG DMAVMSG_DETAILS

*

DMAVCMPINF DS 0XxL12 COMPAREINFO
DMAVPAGNR DS F PAGENUMBER
DMAVRECNR DS F RECORDNUMBER
DMAVBYTENR DS F BYTENUMBER
DMAVABSRECNR DS F ABSOLUT RECORDNUMBER FOR SAM
* FILES

DMAVERRNR DS FL1 ATTRIBUT ERROR

* type of file attribut error

DMAVBKCTR EQU 1 blk-contr
DMAVFISTR EQU 2 file-struc
DMAVFITYP EQU 3 file-type
DMAVHIUSP EQU 4 high-us—pa
DMAVRECFR EQU 5 rec—form
DMAVRECSZ EQU 6 rec-size
DMAVKEYPO EQU 7 key—pos
DMAVKEYLN EQU 8 key=Ten
DMAVVALLN EQU 9 val=Ten
DMAVLOGLN EQU 10 log-Tlen
DMAVALTIX EQU 11 alternate—index
DMAVLBP EQU 12 last—-byte-pointer
DMAVBKSZ EQU 13 block-size
DMAVPKUI EQU 14 pamkey—-user—info
DMAVLASTP EQU 14 last-position

*

ORG ~ DMAVMSG_DETAILS+80
*
DMAVUNUS DS XL8 UNUSED
DMAVOUTPUT# EQU *-DMAVMSGNR

U4250-J-Z2125-12-76 215

COMPFIL

Macros

The following cases are distinguished when the COMPFIL information is output to the
user’s output area:

e No output was possible
No output area was made available by the caller or the output area was write-protected.
In the standard header of the output area the user receives the return code X'05AB'
following validation of the output area or of the address. If the output area was too small
to transfer the output information, the caller receives the return code X'06CB'.

e Error when accessing one or both of the files to be compared
The first file in which an access error occurs is output in the DMAVPNAM field in the
format :<cat-id>:$<user-id>.<filename>. In addition, message number X'0681’,
indicating a general file access error, is output in the DMAVMSGNR field. The precise
reason for this access error can be found in the return code placed in the parameter
area’s standard header.

e The comparison of the two files is not possible because of the incompatibility of their file
attributes
Message number X'0636' is output in the standard header of the parameter area and in
the DMAVMSGNR field of the output area. In addition, the DMAVERRNR field indicates
which file attribute led to the comparison aborting.

e The same name was specified for both files
The same return code is displayed in the standard header of the parameter area and in
the DMAVMSGNR field of the output area.

e The two files are identical
Return code X'0630' is displayed in the standard header of the parameter area. The
DMAVMSGNR field of the output area contains X'0000'.

e The two files are not identical
Return code X'0631' is displayed in the standard header of the parameter area.
Depending on the access method, the following correlation exists between MESSAGE-
NUMBER in the DMAVMSGNR field and the COMPARINFO in the DMAVPAGNR
(PAGENUMBER), DMAVRECNR (RECORDNUMBER), DMAVBYTENR
(BYTENUMBER) and DMAVABSRECNR (ABSOLUT RECORD NUMBER FOR SAM
FILES) fields.

Access MESSAGE PAGE RECORD BYTE ABSOLUTE | Meaning
method NUMBER | NUMBER | NUMBER | NUMBER | RECORD

NUMBER
SAM X'0632' <p> <r> <a> 1
ISAM X'0633' <r> 2
UPAM X'0634' <p> 3
UPAM X'0635' <p> !

" The two SAM files differ as of record <a>. That is record <r> within the 2k data block <p>.

216

U4250-J-2125-12-76

Macros COMPFIL

2 The two SAM files differ as of record <r>.
3 The two UPAM files differ as of data byte within the 2k data block <p>.

4 The two UPAM files differ in the user information in the PAM key of the 2K data block <p>, but their contents
are identical (specification PAMINFO=*INCLUDE).

Sample calling sequence

MVC COMPMFC (DMAV#) , COMPMFL

COMPFIL MF=M,0OUTAREA=(A(COMPOAC),OUTLEN),PARAM=COMPMFC, -
PATHNMI=":X:SAM.1"' , PATHNMZ2="':X:SAM.2'

COMPFIL MF=E,PARAM=COMPMFC

COMPMFC COMPFIL MF=C,XPAND=PARAM

COMPOAC COMPFIL MF=C,XPAND=0OUTPUT

COMPMFL COMPFIL MF=L,PATHNM1='AAA', PATHNM2="'BBB'
OUTLEN DC A(DMAVOUTPUT#)

U4250-J-Z2125-12-76 217

COPFILE

Macros

COPFILE - Copy file

Macro type: type S (C form/D form/E form/L form/M form); see page 866

The COPFILE macro copies files, file generations and file generation groups in blocks from
disk to disk, from disk to tape and from tape to disk without modifying them. Consequently
it cannot normally be used to modify file attributes. The only exception concerns the block
control attribute, which can be modified during copying in certain cases (see “File link
names” on page 220 and the description of the operand “BLKCTRL” on page 223).

If the output (or target) file is not yet cataloged, it is automatically created on a public volume
(as with a FILE with default values for the specified output file) when COPFILE is executed.

If the target file is to be on a different Speichertyp (Public-Storage oder Net-Storage) oder
volume (private disk, Net-Storage or tape), it must be set up using FILE (operands DEVICE,
VOLUME) before the COPFILE macro is called.

If the target file is a disk file which has not yet been cataloged, the primary and secondary
allocations are taken from the original disk file.

If the target file is a disk file, its primary and secondary allocations are not modified unless
they are smaller than those of the original file.

If the original file is on tape, a default value is used for the target file.

Note

The COPFILE macro is the earlier COPY macro extended by the use of wildcards in
pathname1 (selection) and pathname2 (construction). The additional operands CHECK
and LIST have also been provided. The function of the earlier COPY is still supported.
The format of the COPY macro is therefore still included in the appendix (see

page 896). Its operands, however, are the same as those of the COPFILE macro and
are therefore only described here.

218

U4250-J-2125-12-76

Macros COPFILE

File generation groups

A file generation group can be copied into another file generation group only if one of the
following conditions is fulfilled:

— The group entries for the two file generation groups match (i.e. the values for GEN,
FIRST, LASTGN and BASE are the same). In the file generation group into which DMS
is to write the copy, the generations from FIRST to LASTGN must already be cataloged
and have storage space allocated.

— The value for GEN is the same for both file generation groups, and the file generation
group into which DMS is to write the copy contains no generations (i.e. FIRST, LASTGN
and BASE have the value zero).

The file generation group to be copied may not contain tape file generations (COPFILE
does not support copying of tapes).

A file generation group can be copied into a single file or file generation only if the following
conditions are satisfied:

— The file generation group consists of SAM file generations with identical attributes (e.g.
the same record and block lengths, the same record format, the same block control
attribute).

— The file generation to which the copy is to be made does not belong to the file gener-
ation group to be copied.

A single file or file generation can only be copied into a file generation group if the following
condition is fulfilled:

— The file or file generation must possess the same CODED-CHARACTER-SET as the
file generation group.
Files on private disks

If a file on private disk only has an entry in the system catalog but no F1 label, the catalog
entry is deleted. If the file is the input file, COPFILE is rejected.

A COPFILE call for an ISAM file on private disk with index and data sections on different
disks is rejected.

U4250-J-Z2125-12-76 219

COPFILE

Macros

Tape files

Internally, COPFILE uses the UPAM access method, which does not support continuation
tape processing. This means that it is possible to copy several files to the same tape (FILE
macro, FSEQ operand), but not files that extend over more than one tape.

— K tape files (BLKCTRL=PAMKEY) must have standard block format
(BLKSIZE=(STD,n)) if they are to be processed by the COPFILE macro.

— NK tape files (BLKCTRL=DATA/NO) can be processed by COPFILE if their BLKSIZE
value is a multiple of 2048 bytes.

If NK files are copied to tape, the BLKCTRL information is lost when the catalog entry
is deleted. If the file is to be copied back again, the COPFILE macro must be preceded
by a FILE macro with the operands LINK and STATE=FOREIGN and with the correct
value for the BLKCTRL operand, i.e. either NO or DATA, to match the actual data format
of the file.

If a K file (BLKCTRL=PAMKEY) is inadvertently copied in this manner into an NK file
(BLKCTRL=DATA), the resulting disk file cannot be read, because the first 16 bytes of each
logical block, which contain data when BLKCTRL=PAMKEY applies, are overwritten with
management information.

— Foreign files on tape: if an uncataloged tape file is to be copied, a TFT entry with the
file link name valid for COPFILE must be created before copying in order to define the
file attributes (see “File link names” on page 220).
FILE pathname;, LINK=DMCOPY11l,STATE=FOREIGN,BLKCTRL=...

File link names

Internally, COPFILE uses the file link names DMCOPY11 (for the original file pathname1)
and DMCOPY22 (for the target file pathname2). On completion of processing, the file link
names are implicitly released (implicit REL macro).

The option of selecting an original and a target file for COPFILE processing by means of a
FILE macro with appropriate file link names can be used, for example, in order to modify
the file's block control attribute during copying. Specifying the BLKCTRL operand in the
FILE macro together with BLKCTRL=*IGNORE/*CHECK in the COPFILE macro enables
the definition of different BLKCTRL attributes for original and target file in the course of
copying (see the description of the operand “BLKCTRL” on page 223).

When there are wildcards in the file name, an existing TFT entry (DMCOPY11/DMCOPY22)
only becomes effective when the first file to be processed is copied.

220

U4250-J-2125-12-76

Macros

COPFILE

Remote file access (see also the “RFA” manual [6])

Copying from one remote system to another, with input and output on different systems, is
supported by a higher-level execution routine. In this case, the local system acts only as an
intermediate station for data transfer. A SET-RFA-CONNECTION command must be issued
for each of the remote systems before copying is started.

If a remote file is copied to a local file with the PROTECT=*SAME operand, the passwords
are not copied with the file.

SM pubsets

If the target file does not yet exist, an attempt is made to create it on a suitable volume set
using the source file attributes for selecting the volume set (performance, availability).

File encryption

Normally no crypto password is required to copy an encrypted file. COPFILE transfers the
contents of an encrypted file without decrypting the file, and the target file is assigned the
same encryption attributes as the source file, in particular the crypto password.

The exceptions here are copy operations which require file decryption:

— An encrypted file is to be copied to tape or private disk.

— An encrypted file is to be copied to a file generation.

— A shared update was declared via the TFT entry DMCOPY11 or DMCOPY22.

U4250-J-Z2125-12-76 221

COPFILE

Macros

Macro forma

Operation

Operands

COPFILE

BLKCTRL = *IGNORE / *CHECK / <var: blkctrl>
,CHDATE = *STD / *SAME / <var: bit: 1>

,CHECK = *MULTIPLE / *NO / *ERROR / *SINGLE / *CATALOG /
*USERID /<var: check>

, IGNORE = *SOURCE / *TARGET / (*SOURCE,*TARGET)

,LIST = *NO / *SYSOUT / *ERRORS_TO_SYSOUT / <var: list>

,PATHNM1 = <c-string 1..80: filename 1..54 with-wild(80)> /
<var: char: 80>

,PATHNM2 = <c-string 1..80: filename 1..54 with—-constr-wild(80)>/
<var:char: 80>

,PROTECT = *STD / *SAME / *SAME—AND-CHANGE-DATE /
<var: prot>

,REPLACE = *YES / *NO / <var: replace>

LMF=C/D/E/L/M
,PARAM = DMACOPPL / <addr> / <(r)>

,PREFIX = D / <pre>

,MACID = MAC / <macid>

222

U4250-J-2125-12-76

Macros COPFILE

Operand descriptions

BLKCTRL
Specifies whether the target file (or the TFT entry DMCOPY22) may have a different
BLKCTRL attribute than the source file pathname;.

TFT entry or target file (with null operands in the TFT) must have the same BLKCTRL
attribute as the source file.

pathname, and the TFT entry for DMSCOPY22 must have the
same BLKCTRL attribute.

Default value:

= *IGNORE
Even if the BLKCTRL attributes of pathname and the TFT entry for DMCOPY22 do not
match, pathname, can be copied to pathname, in the following cases:

BLKCTRL attribute of the file pathname,

BLKCTRL attribute of the file pathname,

PAMKEY

DATA (disk files only)

PAMKEY NO

DATA (disk files only) PAMKEY

NO PAMKEY
Note

It is the user's responsibility to ensure that no data is lost in the course of copying. This
danger exists when copying a file with BLKCTRL=PAMKEY to a file with
BLKCTRL=DATA or BLKCTRL=NO: in both cases, the information in the user section
of the PAM key is lost. Furthermore, if the target file has the attribute BLKCTRL=DATA,
the first 12 bytes of each logical block (in the case of ISAM files, the first 16 bytes) are
overwritten by the block control field.

=*CHECK

Even if the BLKCTRL attributes of pathname and the TFT entry for DMCOPY22 do not
match, it is possible to copy pathname, to pathname, whenever this can be done
without losing any user information in the user section of the PAM key. If the user part
of the PAM key does not contain any user information (this is checked here), pathname;
can be copied to pathname, when the following BLKCTRL attributes apply; otherwise,
the command is rejected.

BLKCTRL attribute of the file pathname, BLKCTRL attribute of the file pathname,
PAMKEY DATA (disk files only)
PAMKEY NO

U4250-J-Z2125-12-76 223

COPFILE Macros

CHDATE
Specifies whether the target file will be given the same change date (CHANGE-DATE) as
the source file.

=*STD
Only for PROTECT=*STD or *SAME:
The change date of the target file is updated.

The specification PROTECT=*SAME-AND-CHANGE-DATE is still supported
for reasons of compatibility and causes the source file’s change date to be
transferred to the target file.

= *SAME

The source file’'s change date is transferred to the target file. The specification
CHDATE=*SAME also applies in the following cases:

— The target file is located under a foreign user ID.

— The target file is a file generation.

CHECK

Only for wildcard entries:

Defines the conditions in interactive mode under which a user dialog is to be started if
multiple files are selected using wildcards.

If the dialog is started, the user can decide whether or not processing is to be executed on
the displayed file(s). He can also call up help text on the reply options and define a new
value for CHECK and/or LIST when processing is resumed.

The value 'NO' always applies in batch mode.
The operand has no effect if pathname4 contains no wildcards or is not partially qualified.

= *MULTIPLE

A check dialog is only started if multiple files are selected.

If the catalog and/or user ID contain wildcards, a check dialog is executed for each
catalog and/or user ID.

CHECK="ERROR is also implied.

=*NO
All selected files are processed without a check dialog, i.e. without any possible user
intervention.

= *ERROR

An error check dialog is started if an error occurs during processing of a selected file
name. A file set check dialog is started if the selection entry selects more files than can
be processed in available memory. CHECK=*ERROR is also always implied for all
entries where CHECK=*NO.

224 U4250-J-2125-12-76

Macros COPFILE

= *SINGLE
A check dialog is executed for each selected file name. CHECK=*ERROR is also
implied.

=*CATALOG

The user must decide in a check dialog for each catalog whether the files selected in
them are to be processed.

CHECK=*"ERROR is also implied.

= *USERID

Reserved for system administrators:

The system administrator must decide in a check dialog for each user ID and each
catalog whether the selected files are to be processed.

CHECK=*"ERROR is also implied.

IGNORE

For the system administrator only:

Allows the system administrator to ignore file protection for the source and/or target file.
This operand has no effect on files located on a remote computer (RFA). If a TSOS
restriction exists for a file under a foreign user ID then the ACCESS protection attribute is
ignored.

=*SOURCE
The protection attributes READ-PASSWORD and EXEC-PASSWORD of the source file
are ignored when copying (also applies to BASIC-ACL and GUARDS protection).

= *TARGET

The protection attributes ACCESS and EXPIRATION-DATE and the READ-/WRITE-/
EXEC-PASSWORD attributes of the target file are ignored when copying (also applies
to BASIC-ACL and GUARDS protection).

LIST
Defines whether a log is to be written to SYSOUT for all file names selected with wildcards
after their processing.

The operand has no effect if pathname, contains no wildcards or is not partially qualified.
=*NO
No log is kept.

=*SYSOUT
Each processed file and any errors that occur are logged in a report.

=*ERRORS_TO_SYSOUT
Only those files whose processing led to errors are logged in a report.

U4250-J-Z2125-12-76 225

COPFILE Macros

MACID
Only evaluated in conjunction with MF=C; defines the second through fourth characters of
the field names and equates which are generated during macro execution in the data area.

Default: MACID = MAC

= macid
“macid” is a three-character string which defines the second through fourth characters
of the generated field names and equates.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

PARAM
Defines the address of the operand list and is only evaluated in conjunction with MF=E
(see also page 865).

= addr
The symbolic address (the name) of the operand list.

=(r)
The number of the register containing the address of the operand list. This register must
be loaded with the appropriate address value before calling the macro.

PATHNM1 =
Pathname of the original file

= <c-string 1..80: filename 1..54 with-wild(80) without-gen>
pathname, (enclosed in single quotes)

= <var: char: 80: filename 1..54 with-wild(80) without-gen>
Name of a variable that contains pathname;

Pathname, means [:catid:][$userid4.]filename;

catidy
Catalog ID of the original file; default value: the catalog ID belonging to the user ID.

useridy
User ID of the original file; default value: the user ID specified in the SET-LOGON-
PARAMETERS/LOGON command.

filename
Name of the original file, file generation or file generation group.

Read permission must exist for the original file.

226 U4250-J-2125-12-76

Macros

COPFILE

If pathname, is an FGG, pathname, must also be an FGG, unless the FGG pathname;
consists of SAM file generations with the same attributes with respect to record format,
record length, block size, and block control information. In this case, it is possible to copy
into a single file or into a file generation, but this file generation must not belong to the FGG
which is to be copied.

Wildcard use
Selection criteria for the files to be copied. The nonprivileged user may only use wildcards
in the catalog ID and file name.

PATHNM2
Pathname of the output/target file.

= <c-string 1..80: filename 1..54 with-wild(80) without-gen>
pathname, (enclosed in single quotes)

= <var: char: 80: filename 1..54 with-wild(80) without-gen>
Name of a variable that contains pathname,

pathname, means [:catid,:][$userid,.]filename,

catidy
Catalog ID of the output file; default value: the catalog ID belonging to the user ID.

useridy
User ID of the output file; default value: the user ID specified in the SET-LOGON-
PARAMATERS or LOGON command.

filenamey
Fully qualified name of the output file, file generation or file generation group.

pathname4 and pathname, must not be identical.

If pathname, is not yet cataloged, only the user's own user ID may be specified, i.e. the user
ID of the SET-LOGON-PARAMETERS/LOGON command or a user ID of which the user is
Co-owner.

If pathname, is already cataloged, write access must be permitted.

The COPFILE macro call is rejected if pathname, is read-only (e.g. ACCESS=READ or
EXDATE > current date) or if the secondary allocation for disk file pathname, is 0 and the
primary allocation is too small to accommodate the file to be copied.

If pathname, is cataloged under a foreign user ID, this user ID must also be specified.
If pathname, is a file generation group, pathname4 must also be a file generation group.

Wildcard use
Construction entry for the files to be copied to as a result of the selection criteria
(pathnamey).

U4250-J-Z2125-12-76 227

COPFILE

Macros

SM pubsets
If the output/target file is not yet cataloged, an attempt is made to create it on a suitable
volume set using the attributes of the original file.

PREFIX
Only evaluated in conjunction with MF=C or MF=D; this defines the first character of field
names and equates which are generated in the data area with macro execution.

Default: PREFIX=D

= pre
A single-character prefix with which field names and equates generated by the
assembler are to begin.

PROTECT

Defines whether the copy pathname, receives the same file backup and protection
attributes as pathname;.

As far as is possible and permitted, the encryption attributes are taken over into the target
file when copying takes place regardless of the PROTECT specifications (see also “File
encryption” on page 221).

=*STD

If pathname, is not yet cataloged, the new file is set up with the default attributes (see
operand defaults in the CATAL macro, page 130, e.g. SHARE=NO, ACCESS=WRITE
for disk files etc.).

= *SAME

The copy pathname, receives the same file backup and file protection attributes as
pathname, (identical values for ACCESS, BACKUP, DELDATE, DESTROY, LARGE,
MANCLAS, MIGRATE (FORBIDDEN is set to INHIBIT), OPNBACK, RETPD, SHARE
and the same passwords). The following are not transferred: AUDIT, AVAIL,
PREFORM, SOMIGR, STOCLAS, VOLSET and WORKFIL.

The entry PROTECT=*SAME is ignored if pathname, is cataloged under a foreign user
ID or is a file generation (its file attributes are then defined in the group entry).

If a temporary file is copied into a permanent file, only the attribute BACKUP=E is taken
over for the specification PROTECT=*SAME. The new file is ignored for ARCHIVE save
runs. If the new file is to be saved automatically with ARCHIVE, the BACKUP value
must be changed by means of CATAL.

228

U4250-J-2125-12-76

Macros

COPFILE

When pathname is protected by a BASIC-ACL entry (see the “Introductory Guide to
DMS?” [1]), or GUARDS entry, the following points apply to copying with
PROTECT=*"SAME:

If the target file was created on a public disk, the access rights of BASIC-ACL or
GUARDS are copied.

If the target file pathname, is created on a private disk, and if pathname is
protected by BASIC-ACL, the protection attributes from the BASIC-ACL are used
for pathname,. If a GUARDS entry has been created for pathname,, pathname, is
assigned the default protection attributes SHARE=NO and ACCESS=WRITE.

If the target file pathname, is created on a magnetic tape, it is assigned the default
protection attributes SHARE=YES and ACCESS=WRITE, regardless of the
protection attributes defined for pathname, by the BASIC-ACL or GUARDS.

If the source file pathname is not cataloged under the user ID under which
COPFILE was called, pathname, is assigned default protection attributes,
regardless of the protection attributes defined by the BASIC-ACL or GUARDS for
pathname,. These default protection attributes are USER-ACCESS=0WNER-
ONLY and ACCESS=WRITE for disk files, USER-ACCESS=ALL-USERS and
ACCESS=WRITE for tape files.

When copying to tape, the retention period (EXDATE) can only accept values up to a
difference of 32767 (for larger values the maximum value is assumed).

= *SAME-AND-CHANGE-DATE
This specification has the same effect as PROTECT=*SAME. In addition, the source
file’'s change date (CHANGE-DATE) is transferred to the target file.

The specification PROTECT=*SAME-AND-CHANGE-DATE is only still
supported for reasons of compatibility. The CHDATE=*SAME operand should
be used to transfer the change date of the source file.

REPLACE

The user can specify whether an existing output file pathname, is to be overwritten.
If pathname, is a tape file or if it is empty, the operand is ignored and the “old” file is
overwritten without output of a message.

=*YES
“pathname,” is overwritten without output of a message.

=*NO
“‘pathname,” is not overwritten. The call is rejected with the error code X'051A".

U4250-J-Z2125-12-76

229

COPFILE

Macros

Return codes

The error code is only returned in the standard header and no longer in general-purpose
register 15 as with the COPY macro. If the parameter area is not accessible or shorter than
the length of the standard header or if a setup error occurs, program termination is initiated
via STXIT. The error codes are described in the DMAIDEM/DCOIDEM macros.

Standard The following code relating to execution of the COPFILE
header: c ‘C b ’b a ‘a a ’a mac_ro is returned in th_e standard header) .
(cc = SUBCODEZ2, bb = SUBCODE1, aaaa = MAINCODE):
X'cc' |[X'bb' |X'aaaa' |Meaning
X'00" | X'0000' No error
X'01" [X'00" |X'0000" |Only in conjunction with check dialogs: the job was completely or
partially withdrawn in interactive mode, i.e. at least one check dialog
was answered with *NO.
X'02" [X'00" |X'0000" |Only in conjunction with CHECK#NO: an error has occurred, but
continuation of the function was requested in an error dialog
X'40" | X'0501' Requested catalog not available
X'82" | X'0502' Requested catalog in the rest state
X'40" | X'0503" |Incorrect information in the MRSCAT
X'82" | X'0504' Error in catalog management system
X'40" | X'0505'" | Computer communication error (MRS)
X'80" |X'0506" |Operation canceled because of master change
X'40" | X'0510' Error while calling an internal function
X'40" | X'0512' Requested catalog unknown
X'40" | X'051A' |File already exists
X'40" | X'051B' | User ID not known in specified pubset
X'40" | X'051C' | No access right to specified pubset
X'40'" | X'051D' |LOGON password different on specified pubset
X'20" | X'0530' Error in storage space request
X'20" | X'0531' Unexpected catalog access error
X'40" |X'0533" | File not found
X'82" |X'0534' |Private volume cannot be allocated
X'40" | X'0535" | No access right to the file catalog entry (only in conjunction with CCS
assignment on foreign user ID)
X'20" |X'053B' |System error during file access

230

U4250-J-2125-12-76

Macros

COPFILE

X'cc' |X'bb' |X'aaaa' |Meaning

X'82' |X'053C' |Catalog file of the pubset is full

X'40" | X'053D' |Catalog or F1 label block is destroyed

X'40" | X'053E' |File on private volume already cataloged

X'82" |X'053F' |File reserved by another task

X'01" | X'0576" | Contradictory operand combination or reserved fields of the parameter
area used

X'20" | X'0577 Internal error during access to job environment

X'82' | X'0594' Not enough virtual memory available. This return code can also occur
in particular in conjunction with a selection specification (wildcard) if too
many files are selected

X'01'" | X'0599' |Operand is not supported in the RFA-BS version

X'01" | X'05A7' | First file name incorrect

X'01" | X'05A9" | Second file name incorrect

X'20" |X'05C7" |Internal error in DMS

X'01" | X'O5EE' | File name too long

X'01" |X'05F0" | Foreign user ID not permitted for file2

X'01" |X'05F1" | Copying to the specified file not possible

X'01" | X'05F2' |lllegal specification of *DUMMY

X'40" | X'05F3 First or second file protected

X'01" | X'05F4' | First and second file name are identical

X'20" | X'05F5"' |Some blocks could not be copied

X'01" | X'0O5F6' File cannot be copied

X'40" | X'05F9' |Incompatible attributes of source and target file

X'40" | X'05FC' | Specified user ID not in home pubset

X'40" | X'0610" | The function execution sent a return code for at least one of the
selected file names

X'01" | X'0611 Incorrect constructor specification (PATHNM2 operand in conjunction
with wildcards)

X'40" | X'0666' | The file is write-protected by ACL or GUARDS (only in conjunction with
CCS assignment on foreign user ID)

X'40" | X'0698' File generation groups do not have the same attributes

X'40" | X'06B5' |File is not properly closed

X'40" | X'06B6" | Attributes of the file are not compatible with the file generation group

X'40" | X'06C4"' |File generation group not yet cataloged

U4250-J-Z2125-12-76

231

COPFILE

Macros

X'cc' |X'bb' |X'aaaa' |Meaning

X'01" | X'06C7" |Invalid generation number specified

X'40" | X'06CC' |only with selection specification (wildcard): no file matches the
selection specification

X'01" | X'06D7' | Generation group cannot be copied to an individual generation of this
group

X'01" | X'06D8' | Generations of the specified group have different file characteristics

X'01" | X'06DE' |File or generation cannot be copied to a group

X'01" | X'06FD' |Parameter area invalid or not accessible

X'40" | X'06FF' | BCAM connection aborted

X'01" | X'FFFF' | Wrong function number in parameter area header

X'03" | X'FFFF' |Wrong version number in parameter area header

232

U4250-J-2125-12-76

Macros

CREAIX

CREAIX - Create secondary keys for ISAM file

Macro type: type S (E form/L form/D form/C form); see page 866

The CREAIX macro defines one or more secondary keys for an NK-ISAM file. Up to

30 secondary keys may be declared for one file; each must be identified by a name defined
in the CREAIX macro. Each of these secondary keys can then be addressed via its name
in the macros GET, GETR, GETKY and SETL, thus permitting the user to access records
on the basis of secondary key values.

In order to create a secondary key, all the records in the file are first read sequentially. For
each record, a triplet is formed from the index in the list of secondary keys to be created,
the current secondary key itself and the current primary key. These triplets are then sorted
for each secondary key, in ascending order of the secondary key values, a time stamp is
added to each and they are transferred to the secondary index blocks created for this
secondary key.

Secondary keys can be created only for existing NK-ISAM files, i.e. for files which have
already been opened at least once with OUTPUT or OUTIN. Furthermore, there must be
no duplicate primary keys in a file for which a secondary key is to be created (no DUPKEYSs)
and neither logical nor value flags may be defined for the file. When the macro is called,
neither SHARED-UPDATE=*YES (via an ADD-FILE-LINK command), nor
SHARUPD=YES (by a macro) must have been set for the NK-ISAM file, and no other user
can access it while the secondary key is being set.

If the program is aborted during creation of the secondary key, the secondary key is flagged
as incomplete in the control block of the file. If the user then attempts to open the file, control
branches to the OPENER exit (assuming it has been defined in the program) and error code
0D84 is placed in the FCB. The file cannot be opened again until the incomplete secondary
key has been deleted (and, if applicable, defined again by means of CREAIX).

For performance reasons, it is advisable not to define secondary keys for a file until it has
been filled with records.

U4250-J-Z2125-12-76 233

CREAIX

Macros

Format

Operation

Operands

CREAIX

YES
[,DUPKEY=(y — L, YES ,...1)1]
NO NO

,KEYLEN=(keylenl [,keylen2,...1)
,KEYNAME=(keynamel [,keyname2,...]1)
,KEYPOS=(keyposl [,keypos2,...1)

LINK=11inknamel
> | FILE=pathname

[,SORTLNK=Tinkname?2]
1
[,VERSION= é]

MF=L

addr
MF=E,PARAM=
(r)

D 1
MF=D[,PREFIX={ - }] [,VERSION={ - }]
pre 2

D ISS
MF=C[,PREFIX={ — }][,MACID={ — }] [,VERSION={

pre maci

f

N =

234

U4250-J-2125-12-76

Macros

CREAIX

Operand descriptions

DUPKEY
Specifies whether duplicate values may exist in different records for each secondary key to
be created (KEYNAME operand).

The parentheses in this entry can be omitted if the list only contains one specification for
DUPKEY. A list can only be specified for VERSION=2; for VERSION=1, only an entry
without parentheses is allowed.

=YES
Default value; the same value of the secondary key may occur in more than one record
in the file.

=NO
Different records in the file must not have the same value for the secondary key.

FILE = pathname
Denotes the NK-ISAM file for which a secondary key is to be created, with:
<c-string 1..54: filename 1..54>.

When the CREAIX macro is called, the file must have been opened at least once with
OUTPUT or OUTIN and it must not contain duplicate primary key values, logical or value
flags. The value specified for the FILE operand is ignored if the LINK operand is also
specified.

Pathname means [:catid:][$userid.]filename

catid
Catalog ID: if omitted, the default catalog ID for the user ID is assumed.

userid
User ID: if omitted, the user ID in the SET-LOGON-PARAMETERS or LOGON
command is assumed.

filename
Fully qualified file name.

KEYLEN = (keylen1 [,keylen2,...])

Specifies the length of each secondary key (KEYNAME operand) to be created (in bytes).
“keylen” is any whole number where 1 < keylen < 127.

KEYPOS and KEYLEN must be selected such that the secondary key

— is completely contained in even the shortest record of the file and

— lies entirely within a data block and does not extend into an overflow block.

U4250-J-Z2125-12-76 235

CREAIX

Macros

The parentheses in this entry can be omitted if the list only contains one specification for
KEYLEN. A list can only be specified for VERSION=2; for VERSION=1, only an entry
without parentheses is allowed.

KEYNAME = (keyname1 [,keyname2,...])

Specifies the name of the secondary key to be created. A maximum of 30 names may be
specified in the list and it must be noted that a maximum total of 30 secondary keys can be
created for an NK-ISAM file.

The name must not already have been defined for another secondary key. “keyname” may
be up to eight characters long and may contain any letters or digits and the special
characters “$”, “#” and “@”"; it must begin with a letter or special character.

The parentheses in this entry can be omitted if the list only contains one name. A list can
only be specified for VERSION=2; for VERSION=1, only an entry without parentheses is
allowed.

KEYPOS = (keypos1 [,keypos2,...])

Specifies the position within a record, of the first character of each secondary key
(KEYNAME operand) to be created.

“keypos” may be any integer in the range 1 < keypos < 32496.

In variable-length records, the four bytes used for the record length and control field must
be taken into account.

KEYPOS and KEYLEN must be selected such that the secondary key

— is completely contained in even the shortest record of the file and

— lies entirely within a data block and does not extend into an overflow block.

The parentheses in this entry can be omitted if the list only contains one specification for
KEYPOS. A list can only be specified for VERSION=2; for VERSION=1, only an entry
without parentheses is allowed.

LINK = linkname1

Specifies the link name for the file for which a secondary key is to be created. When the
program is executed, an NK-ISAM file must be assigned to this link name. When CREAIX
is called, this file must have been opened at least once with OUTPUT or OUTIN and it must
not contain duplicate primary key values, logical flags or value flags.

“linkname1” may be up to eight characters long. If the file link name is to be accessible via
the command interface, it must comply with the data type <structured_name 1..8> (see the
“Commands” manual [3]).

236

U4250-J-2125-12-76

Macros

CREAIX

MACID
Defines the second through fourth characters of each field name and equate generated
when the macro is expanded.

Default value: MACID = ISS

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

PARAM
Specifies the address of the operand list; it is evaluated only if MF=E applies
(see page 865).

= addr
Symbolic address (name) of the operand list.

=(r)
Number of the register which contains the address of the operand list. The register must
be loaded with this address value before the macro is called.

PREFIX
Defines the first character of each field name and equate generated when the macro is
expanded.

Default value: PREFIX=D

= pre
One-character prefix with which the generated field names and equates are to begin.

SORTLNK = linkname2

Specifies the file link name of a work file for the sort program. This work file is used only if
there is not enough virtual address space for sorting the entries for the secondary index
block.

If a work file is needed for sorting and SORTLNK was not specified, or if no file is assigned
to the file link name when the program is executed, the macro creates a work file with the
name DISWORK.tsn (where “tsn” is the task sequence number of the task which called the
macro).

“linkname2” may be up to eight characters long and must be formed from letters, digits and
special characters in accordance with the rules governing the format of file names.

U4250-J-Z2125-12-76 237

CREAIX

Macros

VERSION
Defines the version of the generated CREAIX macro.

=1

The “old” macro version is generated.

=2

The version of the CREAIX macro, which is valid as of BS2000/0SD-BC V3.0, is
generated.

Programming notes

1.

The C and D forms of the macro generate field names and equates for return codes.
They begin with the string DISS..., which can be modified with the PREFIX and MACID
operands.

If no symbolic address is specified with the D form, the DSECT name DISCRAIX is
generated, where the first character is modified by a PREFIX entry.

When the CREAIX macro is expanded, a field is created in the parameter list with the
name KEY# (with the default prefix DISS or correspondingly modified by the PREFIX
and MACID operands). This field contains the number of secondary indices to be
created (maximum 30), supplied by the macro expansion. If, however, the parameter
listis built up dynamically at program runtime, the KEY# field must be supplied explicitly
by the program.

If an error occurs, the parameter list contains the index of the secondary index in the
specified list with which the error occurred. In addition to this, any DMS error that occurs
is also stored in the parameter list (the name of the field containing the index of the
secondary index with which the error occurred is DISAERR or <xxxy>AERR depending
on PREFIX and MACID)

A total of up to 30 secondary indices can be created for an NK-ISAM file. It must
therefore be noted that, on the one hand, the list of names in specified in the macro for
the secondary indices to be defined may not contain more than 30 elements. On the
other hand, the sum of existing secondary indices and those to be created may also not
exceed 30 (both cases lead to a corresponding return code).

It must be ensured that for a parameter list VERSION is consistently given a value for
calls with different MF formats.

238

U4250-J-2125-12-76

Macros

CREAIX

Return codes

The return codes output by the CREAIX macro are stored in the standard header of the
operand list. The standard header must be defined for the CREAIX parameter list before
generating the DSECT.

By default, the return codes generated with the C or D form of the macro start with the string
DISS, which can be modified by specifying PREFIX (first character) and/or MACID (second
through fourth characters).

Standard The following code relating to execution of the CREAIX

resder (0 0jblo alaae reisretimedin e sindar pescer

X'bb' |X'aaaa' |Meaning

X'00" |X'0000" | The function was executed successfully.

X'01" | X'0001" |The operand list is not available.

X'40" | X'0002" |Secondary keys are not supported in the remote system (if the macro is called
via RFA).

X'40" | X'0003" | The specified catalog ID does not exist.

X'40" | X'0004' |The catalog cannot be accessed.

X'01" | X'0005' The operand list contains an invalid name.

X40' | X'0006" | The specified file contains duplicate keys.

X'40" | X'0007' |The secondary key to be created already exists.

X'01" | X'0009' The value specified for KEYLEN is invalid.

X'40" | X'000A" | The specified file contains logical or value flags.

X'20" | X'000B' |System error.

X'40'" | X'000C' |The user address space is too small.

X'01" | X'000D' |The value specified for KEYPOS is invalid.

X'40" | X'000E' | The control block of the file is incorrect.

X'40" | X'000F' | A record in the specified file is too short for the secondary key to be defined

X'40" | X'0010" | There are already 30 secondary keys defined for the file.

X'40" | X'0011" The file contains incomplete secondary index blocks.

X'40" | X'0012' The ISAM pool is overloaded.

X'40" |X'0013" | The secondary key has already been defined with other attributes.

X'40" | X'0014" | Interruption via CANCEL.

X'40" | X'0015' Interruption via BREAK.

X'01" | X'0017" | There was no file specified in the operand list.

U4250-J-Z2125-12-76

239

CREAIX

Macros

X'bb' |X'aaaa' |Meaning

X'40" |X'0018" | The file was set to SHARUPD=YES when the macro was called.

X'40" | X0019' The file link name is invalid.

X'40' | X'001A" | Although DUPKEY=NO was specified, duplicate secondary key values exist in
different records.

X'40" | X'001B' |Invalid list element.

X'40' | X'001C" |Invalid number of secondary indices in the list.

X'40" | X'0040" |OPEN error.

X'40" | X'0041" |CLOSE error.

X'40" | X'0042' |An error occurred when writing the secondary index blocks.

X'40" | X'0043" | An error occurred when reading the file.

X'40" | X'0044" | The file is not an NK-ISAM file.

X'40" | X'0081" | A DMS special status occurred when sorting the secondary index entries.

X'40" | X'0082'" |Aninternal error occurred when sorting the secondary index entries.

X'01" |X'FFFF' |Linkage error (function not supported).

X'02" |X'FFFF' |Linkage error (function not available).

X'03" |[X'FFFF' |Linkage error (version not supported).

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

— thelistis not assigned to the called
— thelistis not aligned on a word boundary
— the list is write-protected.

240

U4250-J-2125-12-76

Macros

CREPOOL

CREPOOL - Create ISAM pool

Macro type: type S (E form/L form/D form/C form); see page 866

The CREPOOL macro creates a task-specific, host-specific, or user ID-specific ISAM pool
or links a job to an existing ISAM pool. The ISAM pool is unambiguously identified by the
following characteristics:

its pool name: operand NAME

its catalog ID: operand CATID

its scope: operand SCOPE

its size: operand SIZE

type of buffering: operand WROUT

performance characteristic of the ISAM pool: operand RESDNT

The CREPOOL macro may be used only for XS programming (31-bit interface).

Note

Cross-task ISAM pools are created automatically in a data space on a file-specific basis
when the file is opened.

SCOPE=USERID and SCOPE=USERGROUP, which were available up to BS2000/
OSD V6.0A, are still accepted for reasons of compatibility, but are mapped internally to
SCOPE=HOST (cross-task ISAM pool).

For further information on ISAM pools in data spaces please refer to the “Introductory
Guide to DMS” [1].

U4250-J-Z2125-12-76 241

CREPOOL

Macros

Format
Operation |Operands
CREPOOL [,CATID=catidl

ANY
[,MODE=y — t1]
NEW

NAME=poolname

TASK
USERID
USERGROUP
HOST

[,SCOPE=

STD
[,SIZE={ — }]
num

NO
[,RESDNT=q ——]
YES

YES
[,WROUT=J NO]
UNCOND-NO

MF=L

addr
MF=E,PARAM=
(r)

MF=DL, PREFIX=prel

MF=CL,PREFIX=prell,MACID=macid]

242

U4250-J-2125-12-76

Macros

CREPOOL

Operand descriptions

CATID = catid

Specifies the catalog ID of the pubset to which the ISAM pool is to be assigned. The
ISAM pool is created on the host computer to which this pubset belongs. The catalog ID
can —as in the file name — be regarded as part of the name, i.e. different catalog IDs identify
different ISAM pools.

Default value: the default catalog ID of the calling job.

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
each field name and equate generated in the data area when the macro is expanded.

Default setting: MACID = ISC

= macid
Three-character string defining the second through fourth characters of each field name
and equate generated.

MF
The forms of the MF operand are described in detail in the appendix (see page 865).

MODE

Specifies, for cross-task ISAM pools, whether the user wants to create a new ISAM pool or
whether a link to any existing ISAM pool with the same name and the same catalog ID may
be established.

By default, DMS always links the job to an existing ISAM pool with the specified name.

= ANY

If a cross-task ISAM pool with the same name and the same catalog ID has already
been created by another task, the job is linked to this pool, even if the value specified
for SIZE does not match the actual pool size.

If no such ISAM pool exists, a new pool with the size specified in SIZE is created.

The parameter CREATION-MODE=ANY can be used to set up an exclusive
connection to an ISAM pool that was created by some other task. This means that if a
task issues a CREPOOL with CREATION-MODE=ANY more than once in succession
for one ISAM pool, the second call (and all others) will be rejected with an error
message even if the ISAM pool already exists as a result of the first call. This in turn
implies that an exclusive ISAM pool can be created within a task only if the pool does
not exist for that task.

U4250-J-Z2125-12-76 243

CREPOOL

Macros

= NEW

A new cross-task ISAM pool is to be created. If, in this case, a host-specific ISAM pool
with the same name and the same catalog ID already exists, the command is rejected
with an error message.

NAME = poolname
Assigns a name to the ISAM pool. This, together with the catalog ID and the scope, uniquely
identifies the pool.

“poolname” may be 1-8 characters long and may contain all letters and digits and the
special characters $, # and @; the first character of “poolname” must be a letter or the
special character # or @.

PARAM
Specifies the address of the operand list; evaluated only in conjunction with MF=E
(see page 865).

= addr
Symbolic address (name) of the operand list.

=(r)
Number of the register containing the address of the operand list. The register must be
loaded with this address value before the macro is called.

PREFIX
Evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default setting: PREFIX =D

= pre
Single-character prefix with which the field names and equates generated by the
assembler are to begin.

244

U4250-J-2125-12-76

Macros

CREPOOL

RESDNT
Specifies whether the pages of an ISAM pool are to be maintained in resident working
memory (as defined in the function $CSTAT):

=NO
Specifies that the pages of the ISAM pool to be created are not to be maintained in
resident memory.

=YES
Specifies that the pages of an ISAM pool are to be maintained in resident memory.
A PFA (Performant File Access) privilege is required in order to execute this function.

The call is rejected for existing ISAM pools if there is a conflict between the RESDNT
attribute of the pool and the requested RESDNT attribute.

SCOPE
Specifies the scope of the ISAM pool.

All the operand values except TASK are only still supported for reasons of compatibility (see
the “Note” on page 241).

=TASK
The ISAM pool can be used only by the calling job: it is task-local.

= USERID

= USERGROUP

SCOPE=USERID and SCOPE=USERGROUP, which were available up to BS2000/
OSD V6.0A, are still accepted for reasons of compatibility, but are mapped internally to
SCOPE=HOST (cross-task ISAM pool).

= HOST
The ISAM pool is cross-task and may be used by all jobs.

In the case of SCOPE=HOST, the MODE operand is evaluated. At the same time,
SCOPE=HOST affects the WROUT operand: the default value WROUT=YES applies
to all files in the ISAM pool and cannot be changed by the user.

SIZE
Specifies the size of the ISAM pool to be created.

=S8TD
The ISAM pool is to be created with the standard size defined during system
installation.

If the parameter CREATION-MODE=ANY is specified, the following applies: if a new
pool is being created, the specified SIZE is evaluated as described above. If the
ISAM pool already exists, the size of the existing pool is used. The values specified for
RESDNT and WROUT, by contrast, must match the attributes of the existing pool.

U4250-J-Z2125-12-76 245

CREPOOL

Macros

= num
Specifies the size of the new ISAM pool in PAM pages:

32 < num < 32767 for systems with 31-bit addressing

32 < num < 2048 for all other systems.

If appropriate, the maximum size of the user address space specified by the system
administrator represents an upper limit.

An ISAM pool that is used to buffer files which were created with both
BLKCTRL=DATA2K and =DATA4K is dynamically allocated a second extent and thus
consists of a 2K extent as well as a 4K extent of the size defined by “num”.

Note that the minimum pool size of 32 PAM pages can only be used to process files with
a block size of up to (STD,6).

The minimum pool size is thus 32 PAM pages, which is sufficient for processing only
files with a blocking factor < 6 (BLKSIZE < (STD,6)), unless the files are opened for
read-access only (i.e. with MODE=INPUT).

WROUT
Specifies for the pool whether modified blocks of a file are to be written to disk immediately:

Default value: — WROUT=NO for a task-local ISAM pool

(SCOPE=TASK)
— WROUT=YES for a cross-task ISAM pool (SCOPE=USERID/
USERGROUP/HOST)

=YES
Modified blocks are written to disk immediately, regardless of the value specified for the
WROUT operand in the FILE or FCB macro for the associated file.

=NO

Specifies that the updated blocks are not to be written back to disk immediately.

Modified blocks are written back to disk immediately despite a WROUT=NO

specification in CREPOOL if

— WROUT=YES is specified for the associated file (using FILE, FCB or ADD-FILE-
LINK) or when

— SCOPE=#TASK is specified for the pool.

246

U4250-J-2125-12-76

Macros

CREPOOL

= UNCOND-NO

Specifies that updated blocks need not be written back to disk immediately. The

restrictions of WROUT=NO do not apply in the following cases:

— For a cross-task pool (SCOPE=USERID/USERGROUP/HOST), too, updated
blocks are not written back to disk immediately;

— An OPEN for files to be opened with SHARUPD=YES will only be executed if
WRITE-IMMEDIATE=NO or WROUT=NO was explicitly specified in an associated
ADD-FILE-LINK command or FILE macro.

If WROUT is not specified for a pool, WROUT=YES is assumed for a task-local pool
(SCOPE=TASK) and for a cross-task pool (SCOPE=USERID,USERGROUP, HOST).

Return codes

The field names and the EQU statements for return codes generated with the C and D
forms of the macro start with the string DISC. The first character of this string can be
changed by PREFIX, characters 2-4 by MACID.

The return codes are placed in the standard header of the operand list.

Main return code

Meaning

DISCOK X'0000'

The macro was executed successfully.

DISCNPAR X'0001'

Access to the operand list is not possible.

DISCNREM X'0002'

The pubset identified by “catid” is on a host system running a version of
BS2000 which does not support ISAM pools.

DISCNCAT X'0003'

The catalog ID “catid” is unknown in the system.

DISCNACC X'0004'

There is no link to the pubset “catid”.

DISCINVN X'0005'

The pool name is invalid.

DISCSPAC X'0007'

There is not enough free address space to create a pool (SIZE specifi-
cation is too large).

DISCPLEX X'0008'

The specified ISAM pool already exists;
MODE=NEW was already used for creation by another task; MODE-ANY
was already used by the same task

DISCSYSE X'000B'

A system error occurred during macro processing.

DISCSIZE X'000C'

The SIZE specification is invalid.

DISCINVW X'000E'

The WROUT specification is invalid.

DISCINVS X'000F'

The SCOPE specification is invalid.

DISCINVM X'0010'

The MODE specification is invalid.

DISCPRIV X'0011"

Missing privilege with a RESDNT=YES specification

DISCPRES X'0012'

The RESDNT specification in the parameter list and the one for the
existing pool are in conflict.

U4250-J-Z2125-12-76

247

CREPOOL

Macros

Main return code

Meaning

DISCPERR X'0013'

Parameter error.

DISCSPEX X'0014'

Contingent for ISAM pools exceeded.

DISCRLNK X'FFFF'

Macro could not be executed (linkage error):

evaluate sub return code 1.

248

U4250-J-2125-12-76

Macros

DECFILE

DECFILE - Convert encrypted file into unencrypted file
Macro type: type S (E Form/M Form/L Form/C Form/D Form) (see page 866)

The DECFILE macro converts an encrypted file into an unencrypted file (see the ENCFILE
macro on page 316).

After DECFILE has run all encryption attributes (procedure and check string for crypto
password) are deleted in the catalog entry.

File generations

DECFILE cannot be used for individual file generations but only for complete file generation
groups. Within a file generation group, all generations with the exception of tape genera-
tions have the same encryption attributes as the group entry.

Format

Operation | Operands
DECFILE ,PATHNAM=<c-string 1..54: filename 1..54> / <var: char:54>

,EQUATES=YES / NO
MF=L
MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>
MF=C / M

,PREFIX=D / <pre>

,MACID=MAE / <macid>

Operand descriptions

PATHNAM
Specifies the file which is to be decrypted. The file’s crypto password must be contained in
the crypto password table of the calling task.

=<c-string 1..54: filename 1..54>
Path name of the file.

=<var: char:54>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the file’s path name is stored.

U4250-J-Z2125-12-76 249

DECFILE Macros

EQUATES
Specifies whether equates are also to be generated for the values of the parameter area
fields when the parameter area is expanded.

= YES
Equates are also generated for the values of the parameter area fields when the
parameter area is expanded.

=NO
No equates are generated for the values of the parameter area fields when the
parameter area is expanded.

Example

MVC DECFMFC(YMAD#),DECFMFL
DECFILE MF=M,PREFIX=Y,PATHNAM="UMSATZ.3.QUARTAL.2004'
DECFILE MF=E,PARAM=DECFMFC

DECFMFC DECFILE MF=C,PREFIX=Y
DECFMFL DECFILE MF=L

Programming notes

1. Before the layout of the parameter area is generated the standard header must be
cleared.

2. All RESERVED fields in the parameter area must be deleted with binary zeros.

The caller is responsible for the consistency of the parameter area whenever modifica-
tions are made to the parameter area without with the aid GCs.

4. In the event of a nonprivileged call (function status TU) register 1 points to the
parameter area.

5. The names in the parameter area are not converted from lower- to upper-case letters
while the function is executed. In the case of GC expansion, on the other hand,
conversion from lower- to upper-case letters can take place, depending on the compiler
setting.

250 U4250-J-2125-12-76

Macros

DECFILE

Notes on function execution

File locks and file protection attributes which forbid write access to the catalog entry or
the content of a file thus also prevent conversion of the file using DECFILE.

Conversion of a file with DECFILE requires the calling task to have ownership rights for
the file. Conversion therefore takes place when:

— thefile is under the user ID of the calling task.
— the calling task is running under a user ID with TSOS privilege.
— the user ID of the calling task is co-owner of the file and the file is not temporary.

Additional functions for tasks with TSOS privilege:
If the calling task has TSOS privilege, the following additional functions are possible:

— Temporary files which do not belong to the calling task but to another task can also
be specified.

— Temporary files can also be specified on a pubset other than the default pubset of
the user ID. (These are not deleted automatically when the calling task terminates.)

Conversion of the encrypted file is logged with SAT.

The AUDIT attribute output here is taken from the catalog entry of the file to be
converted (see the CREATE-FILE command, AUDIT operand, in the “Commands”
manual [3]).

RFA:
DECFILE is rejected if the file to be converted can only be accessed via RFA.

Help file:

When converting with DECFILE a help file is created and then automatically deleted
when the function has been completed. The converted file content is written to the help
file. The help file needs as much disk storage space as the file to be converted.

The file name of the help file has the following format:
S.DMS.<tsn>.<date><time>.CRYPTO

U4250-J-Z2125-12-76 251

DECFILE

Macros

Return codes

The return code is returned in the standard header of the parameter list. The standard
header may not be located in the read-only area, otherwise the program is terminated.

Standard The following return code concerning the execution of
header: c ‘c b ‘b a ‘a a ‘a the DECFILE macro is transferred in the standard
header
(cc = SUBCODEZ2, bb = SUBCODE1, aaaa =
MAINCODE):
X'cc' |[X'bb' |X'aaaa' |Explanation
X'00" [X'00" |X'0000" |No error
X'01" | X'0554" Format of the file name not permitted
X'01" | X'0576" |a) Incorrect operand combination
b) Undeleted UNUSED fields
X'20" | X'0578' Internal error when checking the access rights
X'82" | X'0594' Not enough virtual memory available
X'20" | X'05C7' |Internal errorin DMS
X'01" | X'05CB' |Incorrect/inadmissible first file name
X'40" | X'05CF' |Password not in password table
X'40" | X'05FD' |File is write-protected
X'40" | X'0609' | Action not permitted for system file
X'40" | X'0666' File protection prevents access
X'01" | X'00" |X'066B' |Fileis already decrypted
X'00" |X'00" |X'066E' |Use help file
X'01" | X'FFFF' | Wrong function number in standard header
X'03" | X'FFFF' |Wrong version number in standard header

252

U4250-J-2125-12-76

Macros

DELAIX

DELAIX — Delete secondary key of ISAM file

Macro type: type S (E form/L form/D form/C form); see page 866

The DELAIX macro deletes a selected secondary key or all secondary keys in an NK-ISAM

file.

Deleting a secondary key does not mean that the values of this key are deleted from the
records. Instead, the secondary index blocks belonging to the secondary key(s) are
deleted, which means that access to the records via the secondary key(s) is no longer

possible.

Format

Operation |Operands

DELAIX (keynamell ,keyname2,...1)

,KEYNAME=
N {:*ALL

FILE=pathname
] LINK=11inkname

MF=L

}

addr
MF=E, PARAM=
(r)

MF=DL,PREFIX=prel

MF=CL,PREFIX=prell ,MACID=macid]

U4250-J-Z2125-12-76

253

DELAIX

Macros

Operand descriptions

FILE = pathname
Specifies the NK-ISAM file from which the secondary key(s) specified for KEYNAME is/are
to be deleted, with: <c-string 1..54: filename 1..54>.

The value specified for the FILE operand is ignored if the LINK operand is also specified.
pathname means [:catid:][$userid.]filename

catid
Catalog ID: if omitted, the default catalog ID for the current user ID is assumed.

userid
User ID: if omitted, the user ID in the SET-LOGON-PARAMETERS or LOGON
command is assumed.

filename
Fully qualified file name.

KEYNAME
Specifies which secondary key(s) is/are to be deleted.

= (keyname1[,keyname2,...])

All secondary keys whose names are included in the list are deleted. The secondary
keys with the names “keyname1”, “keyname2”, etc. must have been defined for the file
specified in the FILE or LINK operand. The user can determine the names and
attributes of all secondary keys defined for a file with the aid of the SHOWAIX macro or
of the SHOW-INDEX-ATTRIBUTES command.

The parentheses in the list format may be omitted if the list contains only one name.

= *ALL
All secondary keys defined for the file specified in the FILE or LINK operand are
deleted.

LINK = linkname

Specifies the link name for the file from which the secondary key(s) specified in the
KEYNAME operand is/are to be deleted.

“linkname” may be up to eight characters long. If the file link name is to be addressed via
the command interface, it must correspond to the data type <structured_name 1..8> (see
the “Commands” manual [3]).

254

U4250-J-2125-12-76

Macros

DELAIX

MACID
Defines the second through fourth characters of each field name and equate generated
when the macro is expanded.

Default value: MACID = IST

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

PARAM
Specifies the address of the operand list; it is evaluated only if MF=E applies
(see page 865).

= addr
Symbolic address (name) of the operand list.

=(r)
Number of the register which contains the address of the operand list. The register must
be loaded with this address value before the macro is called.

PREFIX
Defines the first character of each field name and equate generated in the data area when
the macro is expanded.

Default value: PREFIX=D

= pre
One-character prefix with which the generated field names and equates are to begin.

U4250-J-Z2125-12-76 255

DELAIX

Macros

Return codes

Standard- The following code relating to execution of the DELAIX

resdetlofolobjalalala] mEcSietimedin e e pencer

X'bb' |X'aaaa' |Meaning

X'00" [X'0000" | The function was executed successfully.

X'01" | X'0001" | The function could not be executed: the operand list is not available.

X'40" [X'0002"' | The function could not be executed: secondary keys are not supported in the
remote system (if the macro is called via RFA).

X'40" | X'0003" | The function could not be executed: the specified catalog ID does not exist.

X'40' | X'0004' | The function could not be executed: the catalog cannot be accessed.

X'01" | X'0005' | The function could not be executed: the operand list contains an invalid name.

X'40" | X'0008" | The function could not be executed: the specified secondary key does not exist.

X'20" | X'000B' | The function could not be executed: system error.

X'40' | X'000C' | The function could not be executed: the user address space is too small.

X'40" | X'000E' | The function could not be executed: the control block of the file is errored.

X'40" | X'0012" | The function could not be executed: the ISAM pool is overloaded.

X'40" | X'0016" | The function could not be executed: an invalid number of key names was
specified for KEYNAM.

X'01" | X'0017' The function could not be executed: there was no file specified in the operand
list.

X'40" | X'0018" | The function could not be executed: the file was set to SHARUPD=YES when
the macro was called.

X'40" [X'0019" | The function could not be executed: the file link name is invalid.

X'40" | X'0040" | The function could not be executed: OPEN error.

X'40" | X'0041" | The function could not be executed: CLOSE error.

X'40" | X'0044' | The function could not be executed: the file is not an NK-ISAM file.

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

— thelistis not assigned to the caller
— thelistis not aligned on a word boundary
— the list is write-protected.

256

U4250-J-2125-12-76

Macros

DELPOOL

DELPOOL - Delete/release ISAM pool

Macro type: type S (E form/L form/D form/C form); see page 866

With the aid of the DELPOOL macro, the user can delete ISAM pools he/she has created
or clear the link between his/her job and ISAM pools. When the link between an ISAM pool
and the last job connected to it is cleared, the ISAM pool is automatically deleted.

If the specified ISAM pool does not exist, the macro is rejected with an error message.

Before an ISAM pool or the link between a job and an ISAM pool can be deleted, all entries
in the pool table for the affected ISAM pools must be deleted by means of REMPLNK. If a
pool is still linked to a pool table via its link name, DELPOOL is rejected with an error
message.

Note

Cross-task ISAM pools which are not task-specific are created automatically in a data
space on a file-specific basis when the file is opened and released again when the file
is closed.

COPE=USERID and SCOPE=USERGROUP, which were available up to BS2000/0SD
V6.0A, are still accepted for reasons of compatibility, but are mapped internally to
SCOPE=HOST (cross-task ISAM pool). For further information on ISAM pools in data
spaces please refer to the “Introductory Guide to DMS” [1].

Format

Operation

Operands

DELPOOL

TASK
SINGLE ,NAME=poolnamel,CATID=catid][,SCOPE= USERID |
USERGROUP

HOST

MF=L,MODE=

ALL

addr
MF=E, PARAM=
(r)

MF=DL[, PREFIX=prel
MF=CL,PREFIX=prell,MACID=macid]

U4250-J-Z2125-12-76 257

DELPOOL

Macros

Operand descriptions

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
each field name and equate generated when the macro is expanded.

Default value: MACID = ISD

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

MODE
Specifies whether only a specific pool or all pools linked to the job are to be released.

MODE = SINGLE
At least one pool name must be specified. Only the ISAM pool identified by NAME, CATID
and SCOPE is to be deleted/released.

NAME=poolname
Specifies the name with which the pool was created by means of the CREPOOL macro.

CATID=catid
Specifies the pubset to which the pool was assigned by means of the CREPOOL macro.

Default value: the default catalog ID of the job.

SCOPE
Specifies the scope of the ISAM pool as defined in the CREPOOL macro.

All the operand values except TASK are only supported still for reasons of compatibility
(see the note on page 257).

= TASK
The task-local ISAM pool is deleted or released if there is no pool link name still
active for it; otherwise, the macro is aborted with an error message.

= USERID

= USERGROUP

SCOPE=USERID and SCOPE=USERGROUP, which were available up to
BS2000/0OSD V6.0A, are still accepted for reasons of compatibility, but are mapped
internally to SCOPE=HOST (cross-task ISAM pool).

258

U4250-J-2125-12-76

Macros

DELPOOL

= HOST
The cross-task ISAM pool “poolname” is deleted or released if no further pool link
names exist for the job; otherwise, the macro is aborted with an error message.

MODE = ALL
Specifies that all (task-local and cross-task) ISAM pools linked to this job are to be deleted.

PARAM
Specifies the address of the operand list; evaluated only in conjunction with MF=E
(see page 865).

= addr
Symbolic address (name) of the operand list.

=(r)
Number of the register containing the address of the operand list. The register must be
loaded with this address value before the macro is called.

PREFIX
Evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default setting: PREFIX =D

= pre
Single-character prefix with which the field names and equates generated by the
assembler are to begin.

U4250-J-Z2125-12-76 259

DELPOOL

Macros

Return codes

Unless otherwise specified, the field names and the EQU statements for the return codes
generated by the C and D forms of the macro begin with the string DISD. This string can be
modified by PREFIX and MACID.

The return codes are placed in the standard header of the operand list.

Main return code

Meaning

DISDOK X'0000

The macro was executed successfully.

DISDNPAR X'0001"

Access to the operand list is not possible.

DISDNREM X'0002'

The pubset identified by “catid” is on a host system running a version of
BS2000 which does not support ISAM pools.

DISDNCAT X'0003'

The catalog ID “catid” is unknown in the system.

DISDNACC X'0004'

There is no link to the pubset “catid”.

DISDINVN X'0005'

The pool name is invalid.

DISDNANF X'0006'

There is no ISAM pool with the specified name, catalog ID and scope.

DISDPUSE X'0009'

The task pool table still contains entries with pool link names for this ISAM
pool.

DISDSYSE X'000B'

A system error occurred during macro processing.

DISDSPEX X'0014'

Allocation for ISAM pools exceeded.

DISDRNLK X'FFFF'

Macro could not be executed (linkage error):
evaluate sub return code 1.

260

U4250-J-2125-12-76

Macros

DIV

DIV — Access files via virtual address space

Macro type: type S (E form /L form /D form /C form /M form); see page 866

General

All operands can be specified in a DIV macro, regardless of the DIV function (operand
FCT). The evaluation of the operands depends upon the selected DIV function.

First, all operands are presented in an overview. The format and the operands evaluated
for the respective functions are described for each function unit. The format overview is
follwed by a summary description of the DIV macro funtions.

Operand values which are neither address nor register entries are referred to as “direct
specification” in the operand description.

The operand value “addr” defines a symbolic address that can be stored in an A constant,
i.e. the symbolic address must be evaluatable at compile time and must not be included in
a DSECT.

The various forms of the MF operand are described in detail in the appendix (page 865).

Parameter list

The parameter list of the macro contains a header with fields that can be automatically
supplied with values by means of the L form when the parameter list is generated.

If the parameter list is dynamically generated with the D or C forms, it must first be initialized
with a parameter list that has been generated with the L form. This is the only way of
ensuring that the header of a parameter list is correctly supplied with values.

Wherever fields of a parameter list are referred to in the following description, the names of
the parameter list have been indicated as they are generated by MF=D (without a PREFIX
specification).

Special parameters in the parameter list

The following parameters are return parameters which can only be accessed directly via
the parameter list.

DIVPID

The ID of the OPEN is returned in DIVPID. It must be contained in the parameter listin order
to call other DIV functions that belong to the same OPEN. If the same parameter list is used,
the DIVPID will have already been entered.

U4250-J-Z2125-12-76 261

DIV

Macros

DIVPSIZE

DIVPSIZE returns the logical file size of OPEN in 4096-byte page units. DIVPSIZE contains
the number of the last logical 4K page (1 means that the first file page is the last logical
page, and 0 means that the file is empty). DIVPSIZE can be evaluated to request memory
for a window.

If a file has already been accessed using the UPAM access method, it is possible that the
logical end-of-file may not lie on a 4K page boundary. In such cases, DIVPSIZE returns the
rounded value. The last half-page before the logical EOF will then appear in the window
initialized with X'00'".

Since the file can be logically extended or truncated by SAVE, DIVPSIZE is updated after
every successful call to SAVE. DIVPSIZE will then contain the number of the last logical
4K page of the file (1 means that the first page of the file is the last logical page; 0 means
that it is empty).

Modifying file characteristics via a command or macro

SHARUPD mode (NO | WEAK | YES) can be changed via the ADD-FILE-LINK command
(or via the FILE macro).

OPEN mode (INPUT | INOUT | OUTIN) cannot be changed via the ADD-FILE-LINK
command or via the FILE macro.

With the ADD-FILE-LINK command, the operands ACCESS-METHOD and BLOCK-
CONTROL-INFO must not be specified in a way which contradicts the file structure attri-
butes FILE_STRUC=PAM or BLK-CONTR=PAM. The same applies for the operands
FCBTYPE and BLKCRTL of the FILE macro.

262

U4250-J-2125-12-76

Macros DIV
Format overview
Operation |Operands
DIV *OPEN
*CLOSE
*MAP
FCT= *UNMAP [D= addr]
*7 77 *SAVE)
*RESET
addr
(r)
"name’ ‘name’
[,LINK={ addr 1[,FILE={ addr]
(r) (r)
*INPUT *NO *NONE
*INOUT *WEAK *MAP
[,MODE= *OUTIN :1[,SHARUPD={ *YES 1L,LOCVIEW=
addr addr addr
(r) (r) (r)
number
addr addr addr
[,SPID= 1L, AREA= 1L,0FFSET=
(r) (r) *equ
(r)
b *0BJECT
gg'grer *UNCHNG
[,SPAN= - 1L,DISPOS=: *FRESH]
equ
(r) addr
(r)
number *NO
*YES
r,prcount={ 299" l3p RELEASE= 1
equ addr
(r) r)
(Teil 1 von 2)

U4250-J-Z2125-12-76

263

DIV

Macros

Operation | Operands
*HOST
_) *XCS
[,ENV= addr 1
(r)
*FORBIDDEN
*
[,LARGE_FILE=] ~ALLOWED 1,
addr
(r)
MF

(r)

addr
MF=E, PARAM=

pre

D
MF:D[,PREFIX={ — }]

C D IVP
MF [,PREFIX=y — 1[,MACID=s ——]
M pre macid
(Teil 2 von 2)

Function overview
Function Brief description See
FCT =*OPEN Open DIV / PAM file page 265
FCT = *MAP Create window in address space page 273
FCT = *SAVE Write back modified window pages to the disk file page 280
FCT =*RESET |Undo changes to window pages page 285
FCT = *UNMAP | Delete window page 291
FCT =*CLOSE |Close disk file page 295

264

U4250-J-2125-12-76

Macros

DIV - OPEN

DIV function: OPEN

A file is opened, and an ID is entered in the parameter list. This ID must be used in subse-

quent calls in order to identify the OPEN association of these calls.

If the same parameter list is used for every DIV call that is associated with a DIV OPEN, the
ID will have already been entered into the parameter list and need not be taken into

account.

The size of the file is returned in the parameter list after the call.

The OPEN function evaluates only the function operands described below. However,
additional operands can be used even at this stage, to prepare the parameter list for other

DIV function calls.

Format FCT=*OPEN

Operation |Operands

DIV
*0PEN

[,FCT=4 addr
(r)

"name’
[,LINK: addr
(r)

"name’
[,FILE={ addr
r)

*INPUT
*INOUT
[,MODE=J *OUTIN

addr
(r)

]

]

]

(Teil 1 von 2)

U4250-J-Z2125-12-76

265

DIV - OPEN

Macros

Operation

Operands

*NO
*WEAK
[,SHARUPD={ *YES]
addr
(r)

*NONE
*MAP
[,LOCVIEW=]
addr

(r)

*HOST

] *xcs
[LENV=(S0]

(r)

*FORBIDDEN

*ALLOWED
addr
(r)

[,LARGE_FILE=

MF=L

addr
MF=E,PARAM=
(r

D
MF=D[,PREFIX={ - }]
pre

C D
MF= [,PREFIX=q —
M pre

IVP
}][,MACID={

macid

f

(Teil 2 von 2)

266

U4250-J-2125-12-76

Macros

DIV - OPEN

Operand descriptions

ENV
Influences the compatibility of parallel openers dependent on their execution location
(see “Compatibility matrix for DIV-OPEN” on page 42).

Only direct specification is permitted with the MF=L form.

= *HOST
The maximum possible parallelism is restricted to openers running in the same host.
=*XCS

The openers can run in different hosts in an XCS network without restricting the
compatibility (e.g. write operations with SHARUPD=*YES can run in parallel).

= addr
The symbolic address of a one-byte field containing the value of ENV.

=(r)

A register containing the value of ENV.

FCT
Specifies the DIV function to be executed.

Only a direct specification is allowed for the MF=L form.

= *OPEN
A file is opened, and an ID is entered into the parameter list. This ID must be used in
subsequent calls in order to indicate the OPEN association of these subsequent calls.

If the same parameter list is used for every DIV call that is associated with a DIV OPEN,
this ID will have already been entered into the parameter list and need not be taken into
account.

Following the call to OPEN, the OPEN ID and the size of the file will be contained in the
DIVPSIZE field of the parameter list, respectively.

= addr
Symbolic address of a 1-byte field containing the value for the OPEN function (for more
information on the DIVPOPEN value, see the layout of the parameter list on page 301).

=(r)

Register containing the value for the OPEN function.

U4250-J-Z2125-12-76 267

DIV - OPEN Macros

FILE
Specifies the name of the file. The FILE specification is not evaluated if a value has been
specified for the LINK operand.

Only a direct specification is allowed for the MF=L form.

='name’
The name must be enclosed within single quotes.
Length of file name: 1-54 characters (including the catalog ID).

= addr
Symbolic address of a 54-byte field containing the file name.

= (r)

Register containing the address of a 54-byte field with the file name.

LARGE_FILE

The LARGE_FILE operand determines whether or not the file size may grow beyond 32 GB
during data processing (see page 108). The operand is entered in the TFT (Task File Table)
and is not evaluated until the file is opened with OPEN.

Default value: LARGE_FILE = *FORBIDDEN
In the case of MF=L, only direct specification is permitted.
= FORBIDDEN
The default value means that the specifications in the TU-FCB are to be used.
= ALLOWED
The file is created as a “large file”: the file size may exceed 32 GB.
= addr

The address of an 8-byte field that contains the value for LARGE_FILE.

=(r)
Register containing the address of an 8-byte field with the value for LARGE_FILE.

268 U4250-J-2125-12-76

Macros

DIV - OPEN

LINK
Specifies the link name of the file.

The file link name/TFT links the program and file (for information on the file link name/TFT,
see the “Introductory Guide to DMS” [1]).

Only a direct specification is allowed for the MF=L form.

='name’

If the file link name is enclosed in single quotes “name” may be up to 8 characters long.
If the file link name can be addressed via the command interface, it must correspond to
the data type <structured_name 1..8> (see the “Commands” manual [3]).

= addr
Address of an 8-byte field containing the file link name.

=(r)

Register which contains the address of an 8-byte field containing the file link name.

LOCVIEW
Operand that specifies whether pages are to be read into a window as soon as MAP is
called, or only when the page is accessed.

Default value: LOCVIEW = *NONE
The LOCVIEW operand is only effective for windows created with DISPOS=*0OBJECT
Only a direct specification is allowed for the MF=L form.

=*MAP

When a window is defined (function FCT=*MAP), all file pages are read into the window
as soon as MAP is called. When the file is being read by a SHARUPD=*WEAK user,
DIV prevents the file pages from being updated by a parallel write operation from a
SHARUPD=*WEAK user who calls SAVE.

= *NONE
A page will be read from the file into the window when first accessed (default setting).

= addr
Symbolic address of a 1-byte field containing a value for LOCVIEW (DIVPLNON |
DIVPLMAP; see the layout of the parameter list on page 301).

=(r)
Register containing a value for LOCVIEW.

U4250-J-Z2125-12-76 269

DIV - OPEN Macros

MACID
Defines the second through fourth characters of each field name and equate generated
when the macro is expanded.

= [VP
Default value: MACID=IVP

= macid
“macid” is three-character string that defines the second to the fourth character
(inclusive) of the generated field names and equates.

MF
The forms of the MF operands are described in detail in the appendix (see page 865).

MODE

Specifies OPEN mode (see “Multiuser operation” on page 41):

OPEN mode cannot be changed by an ADD-FILE-LINK command (return code DIVPICFS
(INCOMPATIBLE_FILE_SPEC)).

Default value: MODE=*INPUT
Only a direct specification is allowed for the MF=L form.
= *INPUT

The file can only be read, so the SAVE function cannot be executed in this OPEN mode.

Parallel INPUT opens are possible, even with the UPAM access method, regardless of
the SHARUPD mode.

The file must exist, i.e. must have been opened once with OUTIN.

= *INOUT
The file can be modified, i.e. can be saved with the DIV function SAVE.

The file must exist, i.e. must have been opened once with OUTIN.
Parallel OPEN calls are possible, depending upon the SHARUPD mode.

=*OUTIN
A new file will be created, i.e. the file will be “empty” after the OPEN, and may then be
written to. As with MODE=*INOUT, the file can be written to by the SAVE function.

Parallel OPEN calls are possible, depending upon the SHARUPD mode.

In multiuser mode (SHARUPD=*WEAK|*YES), a MODE=*OUTIN user must always be
the first to open the file; otherwise, the OPEN call will be rejected.

270 U4250-J-2125-12-76

Macros

DIV - OPEN

= addr
Symbolic address of a 1-byte field containing a value for MODE (DIVPINPT | DIVPINOT
| DIVPOUTI; see layout of the parameter list, page 301).

=(r)

Register containing a value for MODE.

PARAM
Indicates the address of the operand list. This operand is only evaluated in conjunction with
MF=E (see also page 865).

PREFIX
Specifies the first character of each field name and equate generated when the macro is
expanded.

=D
Default value: PREFIX=D

= pre
“pre” is a one-character prefix with which the generated field names and equates are to
begin.

SHARUPD
Controls parallel access by a number of users (see the section “Multi-user mode on a single
computer” in the “Introductory Guide to DMS” [1].

Default value: SHARUPD = *NO
Only a direct specification is allowed for the MF=L form.

=*NO
Allows multiple concurrent reads with MODE=*INPUT or one write with
MODE=*INOUT | *OUTIN.

=*WEAK

Allows multiple concurrent reads with MODE=*INPUT and one write with
MODE=*INOUT | *OUTIN.

The data in the window of a read-authorized user (MODE=*INPUT) will therefore
depend on the changes that are made by a parallel write-authorized user
(MODE=*INOUT | *OUTIN) and on the time at which a page is read into the window.
Users with read and write authorization must therefore coordinate their activities.

If LOCVIEW=*"MAP is specified, the consistency of data in a window is not affected by
parallel write operations even if the tasks are not coordinated.

=*YES
Multiple write-authorized users may open a file.

U4250-J-Z2125-12-76 271

DIV - OPEN Macros

Notes

In this case, data consistency is not maintained by DIV, but must be ensured by the
users themselves, e.g. by sequential calls to SAVE.

The file size is checked whenever the allocator is called.

If this check indicates a file size > 32 GB and the attribute
LARGE_FILE=*FORBIDDEN is set in the associated FCB or the attribute
EXCEED-32GB="FORBIDDEN is set in the TFT then processing is canceled.
In this case, DIV returns the code X'00400030" in its local parameter list DIV(I).

The SHARUPD mode can be changed by means of an ADD-FILE-LINK command.

= addr
Symbolic address of a 1-byte field containing a value for SHARUPD (value DIVPSNO |
DIVPSWEA | DIVPSYES; see layout of the parameter list, page 301).

=(r)
Register containing a value for SHARUPD.
Note

DIVPID and DIVPSIZE are return parameters that can only be accessed directly via the
parameter list. See subsection “Parameter list” on page 261 for details.

272 U4250-J-2125-12-76

Macros DIV - MAP

DIV function: MAP

The MAP function creates a window in an address space (program or data space).
A window is assigned to a file region or an entire file.

The address space must be allocated before calling the MAP function (explicitly by REQM,
implicitly by the linking loader). The address space in which a window is located cannot be
released until the window has been disabled (using UNMAP).

The window region should not include a READ-ONLY page, and at the time of MAP, no
I/O fixed page, i.e. no page on which I/O is enabled (e.g. asynchronous I/0 by UPAM during
the MAP function).

The address space must not be shareable.

When the MAP function is executed, DIV ensures that all pages of the file which are repre-
sented by the window are allocated for. If part or all of a window lies beyond the physical
end-of-file, the required additional pages are allocated. No allocation is made for a user
opening the file in INPUT mode.

The DISPOS operand can be used to specify whether pages of the file are to be displayed
in the window, or whether the data in the address space should be retained.

MAP only evaluates the function operands described below.

U4250-J-Z2125-12-76 273

DIV - MAP

Macros

Format FCT=*MAP

Operation |Operands
DIV
*MAP
addr addr
[,FCT={ addr }1L[,ID= 1L,SPID=]
(r) (r)
(r)
number number

dd

[,AREA=] 29" L9 oFFseT=) addr (qp span=) addr (4

(r) *equ *equ
(r) (r)

*0BJECT number
*

[,D1sPos=] ~ONCHNG Lqr ppcount=) 3ddr 1y
addr equ
(r) (r)

MF=L

addr
MF=E,PARAM=
(r)
MF=D[,PREFIX={ - }]
pre
C D IVP
MF= [,PREFIX=q — 1L,MACID=y ——]
M pre macid

274

U4250-J-2125-12-76

Macros

DIV - MAP

Operand descriptions

AREA
Specifies the starting address of the window within the address space defined by the SPID
operand (data or program space).

The address space must be allocated before calling the MAP function (macro REQM,
DSPSRYV, linking loader) and cannot be released until the window is disabled (UNMAP).

The window must lie on a 4K page boundary. Its length is specified by the SPAN operand.

Each page in the virtual address space may only belong to a single window. Once a page
is assigned to a window, any request to use it for another window is rejected.

In the MF=L form, the starting address of the window can only be specified by a symbolic
address.

= addr
Symbolic address of a 4-byte field containing the starting address of the window.

=(r)

Register containing the starting address of the window.

DISPOS
Determines what data should be visible in the window after MAP: unchanged data in the
address space (as before MAP), or the data of the corresponding pages of the file.

Default value: DISPOS = *OBJECT
Only a direct specification is allowed for the MF=L form.
= *OBJECT

The file pages appear in the window. Pages behind the last logical page appear filled
with X'00'.

= *UNCHNG
The window pages retain their contents and are not replaced by pages from the file.

A window defined with DISPOS=*UNCHNG can be used to initialize the corresponding
file pages with the page contents of the virtual address space when SAVE is called (see
the SAVE function and the logical extension of filesas described in the “Introductory
Guide to DMS” [1]).

DISPOS=*FRESH must not be specified with FCT=*MAP.

= addr
Symbolic address of a 1-byte field containing a value for DISPOS
(DIVPOBJ | DIVPUNCH; see layout of the parameter list, page 301)).

=(r)

Register containing a value for DISPOS.

U4250-J-Z2125-12-76 275

DIV - MAP Macros

FCT
Specifies the DIV function to be executed.
Only a direct specification is allowed for the MF=L form.

= *MAP
The MAP function is used to define a window in an address space (program or data
space). See page 273 for details.

= addr
Symbolic address of a 1-byte field containing the value for the MAP function (value
DIVMAP, see the layout of the parameter list on page 301).

=(r)

Register containing a value for the MAP function.

ID
Specifies the OPEN for which the DIV function is to be executed.

If the same parameter list is used as in OPEN, the ID need not be specified, since the ID of
the OPEN will already be in the parameter list. The ID is contained in the DIVPID field of the
parameter list.

If a different parameter list is used than the one for OPEN, the ID can be specified here and
be transferred to the new parameter list by using the MF=M form of the DIV macro.

ID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification.

=(r)
Register containing the address of the 8-byte field.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

276 U4250-J-2125-12-76

Macros DIV - MAP

OFFSET
The operands OFFSET and SPAN specify the file region for which the window is created.
— OFFSET specifies the beginning of the file region. It indicates from which block
(i.e. which 4-Kbyte page) the file region begins.
— SPAN defines the number of 4-Kbyte blocks in the file region (i.e. the length of the

region).
The file region defined by OFFSET and SPAN is assigned to the window in virtual address
space.
Default value: OFFSET =0

If OFFSET = 0, the first window page corresponds to the first page of the file. The file is read
into the window from the beginning of the file up to the length defined by SPAN.

If SPAN is not specified (or SPAN=0), the window size is selected such that the last window
page corresponds to the logical last page of the file. If neither OFFSET nor SPAN is defined,
an appropriate window size that can accommodate the entire file (until the logical last page)
in the window is selected.

If the file is empty and SPAN has been assigned default values, the call will be rejected.

SPAN and OFFSET can be selected such that pages lying beyond the logical EOF appear
in the window. Pages which follow the logical EOF are displayed in the window filled with
X'00'".

SPAN and OFFSET can also be selected such that pages which follow the physical EOF
appear in the window. If OPEN OUTIN | INOUT is then called, MAP will allocate additional
blocks for the file, ending with the file page that corresponds to the last window page.

Note

A file can be physically extended with MAP, and SAVE can be used to extend
(or reduce) it logically.
The logical EOF is not changed by MAP (only by SAVE).

A file page can be assigned to only one window for the same OPEN, but may be assigned
to multiple windows if they are part of different OPEN calls.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value of OFFSET is limited by the maximum size of a file in 4-KB pages minus 1:

0 < number < 8388606 for LARGE_FILE="FORBIDDEN
0 < number < 1073741823 for LARGE_FILE=*ALLOWED

U4250-J-Z2125-12-76 277

DIV - MAP

Macros

= addr
Symbolic address of a 4-byte field containing the numeric value (binary) of the
specification for the first block of the file region to be mapped in virtual address space.

=*equ

Equate representing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space. The "' character must precede the name
of the equate.

=(r)
Register containing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space.

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

PFCOUNT

If pages of a window are accessed sequentially (in ascending order), the number of page
fault interrupts can be reduced by specifying a PFCOUNT. If a file page is read into a
window as a consequence of a page fault interrupt, and if PFCOUNT has been specified
for the window, all following pages are read in a single read operation until the number of
pages specified in PFCOUNT, the end of the window, or a previously read page is reached.

Only a direct specification is allowed for the MF=L form.

= number
Specifies how many additional pages are to be read.
0 < number < 15

= addr
Symbolic address of a 4-byte field containing a numeric value (binary) for the number
of pages.

=*equ
Equate, representing the numeric value. The ™' character must precede the name of the
equate.

=(r)

Specifies a register containing the numeric value.

278

U4250-J-2125-12-76

Macros DIV - MAP

SPAN

The operands OFFSET and SPAN define the file region for which the window is created.
The file region specified by SPAN and OFFSET is assigned to the window in virtual address
space.

Default value: SPAN=0

For a description of SPAN see the OFFSET operand.
Only a direct specification is allowed for the MF=L form.

= number

Specifies the length of the file region in 4K blocks. The value for SPAN is restricted to
the maximum address space (2 Gbytes) in units of 4K pages.

0 < number < 524287

= addr
Symbolic address of a 4-byte field which specifies the length of the data area in
4KB blocks (binary).

=*equ
Equate to define the length of the file region in 4K blocks (binary). The
precede the name of the equate.

=(r)
Register containing the length of the file region in 4K blocks (binary).

%1

character must

SPID
Specifies the address space (program or data space) in which the window is to be created.

Default value: SPID=0

If SPID is omitted or SPID = 0 is specified, the window is created in program space;
otherwise, SPID defines a data space.

SPID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification of the data space.

=(r)
Register with the address of an 8-byte field containing the identification of the data
space.

U4250-J-Z2125-12-76 279

DIV - SAVE

Macros

DIV function: SAVE

The SAVE function writes modified window pages to a file, if they lie in a file region defined
by SPAN and OFFSET.

If modified window pages exist in the defined region and these pages lie beyond the logical
end-of-file, the file is extended: the last modified page defines the new logical EOF. When
a file is extended, unmodified window pages that lie between the previous and the new
logical EOF are also written to the file. If no window has been defined for file segments that
need to be added, no pages are written to the file for these segments, and the contents of
the corresponding file pages are undefined (see also the logical extension of files as
described in the “Introductory Guide to DMS” [1]).

If the logical last page of the file is in a window that was defined with DISPOS=*UNCHNG,
and if no conditions exist for logical file extension, then the file is truncated if the logical last
page was not accessed, i.e. if the logical last page is still in its initial state. Truncation ends
when a page which is no longer in the initial state, a previously saved page (with SAVE), or
a page which does not belong to a DISPOS=*UNCHNG window is encountered (see also
the logical truncation of files as described in the “Introductory Guide to DMS” [1]).

A page that is written to file with SAVE is no longer considered modified, i.e. will not be
written to the file by a subsequent SAVE unless it is modified again after the last SAVE.

The SAVE function cannot be used if the file is opened with MODE=*INPUT.

The SAVE function evaluates only the function operands described below.

280

U4250-J-2125-12-76

Macros

DIV - SAVE

Format FCT=*SAVE

Operation |Operands
DIV
*
SAVE addr
[,FCT=3 addr 1L, ID=]
(r)
(r)
number number
[,0FFSET= 223; 1[, SPAN= 223;]
(r) (r)
MF=L
addr
MF=E,PARAM= r)

D
MF=D[,PREFIX={ — }]

pre

c D
MF={ y }[,PREFIX={

- }][,MACID={
pre

e
macid

U4250-J-Z2125-12-76

281

DIV - SAVE

Macros

Operand descriptions

FCT
Specifies the DIV function to be executed.

Only a direct specification is allowed for the MF=L form.

= *SAVE
The DIV function SAVE writes modified window pages in the file back to disk
(see also page 280).

= addr
Symbolic address of a 1-byte field containing the value for the SAVE function (DIVPSAVE;
see the layout of the parameter list on page 301).

=(r)

Register containing the value for the SAVE function.

ID
Specifies the OPEN for which the DIV function is to be executed.

If the same parameter list is used as in OPEN, the ID need not be specified, since the ID of
the OPEN will already be in the parameter list. The ID is contained in the DIVPID field of the
parameter list.

If a different parameter list is used than the one for OPEN, the ID can be specified here and
be transferred to the new parameter list by using the MF=M form of the DIV macro.

ID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification.

=(r)
Register containing the address of the 8-byte field.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

282

U4250-J-2125-12-76

Macros DIV - SAVE

OFFSET

The operands OFFSET and SPAN specify the file region to which the SAVE function

applies.

— OFFSET specifies the beginning of the file region. It indicates from which block
(i.e. which 4-Kbyte page) the file region begins.

— SPAN defines the number of 4-Kbyte blocks in the file region (i.e. the length of the

region).
The SAVE function applies to all window pages of the file region defined by OFFSET and
SPAN.
Default value: OFFSET =0

If SPAN is omitted or SPAN = 0 is specified, the file region is selected so as to enable the
last page of the last window defined for the OPEN to be included in the region. If neither

OFFSET nor SPAN is specified, all pages of all windows defined for the OPEN are taken
into account.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value of OFFSET is limited by the maximum size of a file in 4-KB pages minus 1:

0 < number < 8388606 for LARGE_FILE="FORBIDDEN
0 < number < 1073741823 for LARGE_FILE=*ALLOWED

= addr
Symbolic address of a 4-byte field containing the numeric value (binary) of the
specification for the first block of the file region to be mapped in virtual address space.

=*equ

Equate representing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space. The ™' character must precede the name
of the equate.

=(r)
Register containing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space.

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

U4250-J-Z2125-12-76 283

DIV - SAVE

Macros

SPAN
SPAN and OFFSET define the file region to which the SAVE function applies.

Default value: SPAN =0
For a description of SPAN see the OFFSET operand.
Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value of SPAN is limited by the maximum size of a file in 4-KB pages:

0 < number < 8388607 for LARGE_FILE=*FORBIDDEN
0 < number < 1073741824 for LARGE_FILE=*ALLOWED

= addr
Symbolic address of a 4-byte field containing the length of the file region in 4-Kbyte
blocks (binary).

=*equ

Equate that specifies the length of the file region in 4-Kbyte blocks (binary).
The ™' character must precede the name of the equate.

=(r)
Register containing the length of the file region in 4-Kbyte blocks (binary).

Special parameters in the parameter list

The following parameter is a return parameter that can only be accessed directly via the
parameter list. The name of the parameter list generated by means of MF=D (without a
PREFIX specification) is specified:

DIVPSIZE

Since the file may be logically extended or truncated by SAVE, DIVPSIZE is updated after
every successful call to SAVE and contains the number of the last logical 4K page of the file
(1 means that the first file page is the last logical page; 0 means that the file is empty).

284

U4250-J-2125-12-76

Macros DIV - RESET

DIV function: RESET

The RESET function can be used to undo changes in window pages which belong to a
region defined by SPAN and OFFSET.

This is done by setting each modified page to the initial state so that the page will be read
from the file when accessed. If the page belongs to a window that is defined with
DISPOS=*UNCHNG, it will be read from the file upon access only if it has already been
written to the file with SAVE; otherwise, it is initialized with X'00'.

Specifying RELEASE=*YES resets not only unmodified pages, but all pages of the defined
region to the initial state. This allows file pages that have been updated by a parallel write-
authorized user to be displayed in the window.

The RESET function evaluates only the function operands described below.

U4250-J-Z2125-12-76 285

DIV - RESET

Macros

Format FCT=*RESET

Operation |Operands
DIV
*RESET
[,FCT=J addr]
(r)
[D= addr]
’ (r)
number
[,0FFsET={ 3ddr 4
equ
(r)
number
[,sPAN={ 3ddr 14
equ
(r)
*NO
[,RELEASE= *YES]
addr
(r)
MF=L
addr
MF=E, PARAM=
{ (r) }

D
MF=D[,PREFIX={ - }]
pre

c D
MF= [,PREFIX=q —
M pre

IVP
}][,MACID={

macid

f

286

U4250-J-2125-12-76

Macros

DIV - RESET

Operand descriptions

FCT
Specifies the DIV function to be executed.

Only a direct specification is allowed for the MF=L form.

=*RESET
The DIV function RESET is used to undo changes in window pages that belong to a file
region defined by SPAN and OFFSET (for further details, see page 285).

= addr
Symbolic address of a 1-byte field containing the value for the RESET function (field
DIVPRES, see the layout of the parameter list on page 301).

=(r)

Register containing the value for the RESET function.

ID
Specifies the OPEN for which the RESET function is to be executed.

If the same parameter list is used as in the OPEN, the ID need not be specified, since the
ID of OPEN will already be in the parameter list.

If a different parameter list is used than the one for OPEN, the ID can be specified here and
be transferred to the new parameter list by using the MF=M form of the DIV macro.

ID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification.

=(r)
Register containing the address of the 8-byte field.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

U4250-J-Z2125-12-76 287

DIV - RESET Macros

OFFSET

OFFSET and SPAN specify the file region (in the window) for which window pages are to

be reset to their initial state.

— OFFSET specifies the first 4K page of the file region; SPAN specifies the length of that
region in 4K pages.

— SPAN defines the number of 4-Kbyte blocks in the file region (i.e. the length of the
region).

The RESET function applies to all window pages in the file region defined by SPAN and
OFFSET.
Default value: OFFSET =0

If no value is specified for SPAN (or SPAN = 0), the file region is selected so as to enable
the last page of the last window to be included in the region. If neither OFFSET or SPAN is
specified, all pages of all windows defined for the OPEN are taken into account.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in 4KB blocks. The value of
OFFSET is limited by the maximum size of a file in 4-KB pages minus 1:

0 < number < 8388606 for LARGE_FILE=*FORBIDDEN
0 < number < 1073741823 for LARGE_FILE=*ALLOWED

= addr
Symbolic address of a 4-byte field containing the length of the file region in 4K blocks

(binary).

=*equ

Equate that specifies the length of the file region in 4K blocks (binary). The
must precede the name of the equate.

=(r)
Register containing the length of the file region in 4K blocks (binary).

%

character

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

288

U4250-J-2125-12-76

Macros

DIV - RESET

RELEASE
Defines whether only modified pages are to be reset to the initial state.
Default value: RELEASE=*NO

Only a direct specification is allowed for the MF=L form.

=*NO
All modified pages are returned to the initial state.

As a result, when such a page is accessed, the corresponding page is read in from the
file if the page lies in a DISPOS=*OBJECT window. If the page lies in a window that is
defined with DISPOS=*UNCHNG, it is initialized with X'00' upon access if it has not yet
been written to file with SAVE. Otherwise, it is read from the file when accessed.

Pages in the initial state that follow the logical last page of the file are always initialized
with X'00' when accessed.

=*YES
All window pages — both modified and unmodified — in the specified region are reset to
the initial state, with the consequences described above.

= addr
Symbolic address of a 1-byte field containing a value for RELEASE (DIVPRNO |
DIVPRYES; see the layout of the parameter list on page 301).

=(r)
Register containing a value for RELEASE.

U4250-J-Z2125-12-76

289

DIV - RESET Macros

SPAN
SPAN and OFFSET define the file region to which the RESET function applies.

Default value: SPAN =0
For a description of SPAN see the description of the OFFSET operand.
Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value of SPAN is limited by the maximum size of a file in 4-KB pages:

0 < number < 8388607 for LARGE_FILE=*FORBIDDEN
0 < number < 1073741824 for LARGE_FILE=*ALLOWED

= addr

Symbolic address of a 4-byte field which defines the length of the file region in 4K blocks
(binary).

=*equ

Equate to define the length of the file region in 4K blocks (binary). The ™' character must
precede the name of the equate.

=(r)
Register containing the length of the file region in 4K blocks (binary).

290

U4250-J-2125-12-76

Macros DIV - UNMAP

DIV function: UNMAP

The UNMAP function disables a window created by MAP.
UNMAP does not result in any changes to file pages.
The state of the unmapped window pages is determined by the DISPOS operand:

— If DISPOS=*UNCHNG is specified, the pages in the window will have the same
contents before and after UNMAP, from the program's point of view. This means that all
pages that would be read from the file if accessed prior to UNMAP must be read in from
the file at the time of UNMAP, since no data can be read from the file after the window
is disabled.

— IfDISPOS=*"FRESH is specified, all pages of the window will be reset to the initial state.
If accessed after UNMAP, they will appear in the window initialized with X'00'.

UNMAP only evaluates the function operands described below.

U4250-J-Z2125-12-76 291

DIV - UNMAP Macros

Format FCT=*UNMAP

Operation |Operands
DIV

*UNMAP
[,FCT=J addr]
(r)

[,SPID= addr]
’ 1

addr
[,AREA=]
{ (r) }

*FRESH

*
[,DISPOS= UNCHNG

addr

(r)
MF=L

addr
MF=E, PARAM=
(r

D
MF=D[,PREFIX={ - }]
pre

C D IVP
MF= [,PREFIX=< — 1L,MACID=s —]
M pre macid

292 U4250-J-2125-12-76

Macros DIV - UNMAP

Operand descriptions

AREA
Specifies the starting address of the window within the address space defined by SPID
(data space or program space if no data space is defined).

In the MF=L form, the starting address of the window can only be specified by a symbolic
address.

= addr
4-byte (symbolic) starting address of the window.

=(r)

Register containing the starting address of the window.

DISPOS
Determines the contents (state) of the window pages on disabling the window:

Default value: DISPOS = *FRESH
Only a direct specification is allowed for the MF=L form.

=*UNCHNG
The pages appear as they were before the window was disabled.

This variant could have an adverse effect on performance if pages which have never
been accessed since UNMAP are read from the file.

=*FRESH
All pages of the window are reset to their initial state. They appear initialized with X'00'.

If a parameter list that was used by a preceding *MAP function is used for
FCT="UNMARP, it should be noted that a value will have already been entered for the
DISPOS operand. This value may need to be redefined, since DISPOS=*OBJECT is
an illegal value for UNMAP.

= addr
Symbolic address of a 1-byte field containing a value for DISPOS (DIVPFRSH |
DIVPUNCH; see parameter list, page 301).

=(r)

Register containing a value for DISPOS.

U4250-J-Z2125-12-76 293

DIV - UNMAP Macros

FCT
Specifies the DIV function to be executed.

= *UNMAP
The UNMAP function disables a window created by MAP (for a detailed description of
the function, see page 291).

Only a direct specification is allowed for the MF=L form.

= addr
Symbolic address of a 1-byte field containing the value for the UNMAP function (field
DIVUNMP, see the layout of the parameter list on page 301).

= (r)

Register containing the value for the UNMAP function.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

SPID
Specifies the address space (program or data space) in which the window is located.

SPID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification of the address space.

=(r)
Register with the address of an 8-byte field containing the identification of the address
space (program or data space).

294

U4250-J-2125-12-76

Macros

DIV - CLOSE

DIV function: CLOSE

The CLOSE function closes a file.

If windows that were defined for the OPEN still exist, they are disabled using default values

for the operands.

The CLOSE function only evaluates the function operands described below.

Format FCT=*CLOSE

Operation |Operands

DIV
*CLOSE

addr]
r)

[1D= addr 1
’ (r)

MF=L

[,FCT=

addr
MF=E, PARAM=
(r)

D
MF=D[,PREFIX={ - }]
pre

C D IVP
MF= [,PREFIX=¢ — JL,MACID=y —]
M pre macid

U4250-J-Z2125-12-76

205

DIV - CLOSE Macros

Operand descriptions

FCT
Specifies the DIV function to be executed.

=*CLOSE
The CLOSE function closes the file.

Only a direct specification is allowed for the MF=L form.

= addr
Symbolic address of a 1-byte field containing the value for the CLOSE function (field
DIVPCLS; see the layout of the parameter list on page 301).

=(r)

Register containing the value for the CLOSE function.

ID
Specifies the OPEN for which the CLOSE function is to be executed.

If the same parameter list is used as in OPEN, the ID need not be specified, since the ID of
the OPEN will already be in the parameter list. The ID is contained in the DIVPID field of the
parameter list.

If a different parameter list is used than the one for OPEN, the ID can be specified here and
be transferred to the new parameter list by using the MF=M form of the DIV macro.

ID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification.

=(r)

Register with the address of an 8-byte field containing the identification.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

296

U4250-J-2125-12-76

Macros

DIV

Return codes

Return codes are placed in the header of the parameter list. All DIV-specific return codes
are explained in the table below. Other return codes and their meanings as well as the
structure of the default header are defined by conventions applicable to all macros and are

described on page 869.

Standard The following code relating to execution of the DIV macro
header: c ‘c b ‘b a ‘a a ‘a is returned in the standard header

(cc=SUBCODEZ2, bb = SUBCODE1, aaaa = MAINCODE)
X'cc' |X'bb' |X'aaaa' |Meaning

X'00" | X'0000" |Function executed successfully.

X'01" | X'0001" |Atleast one part of the parameter list is not accessible. If the header of
the parameter list (or a portion thereof) cannot be accessed, or if the
parameter list is not aligned on a word boundary, the program will be
aborted with an error message.

X'01" | X'0002'" |The window address specified by AREA (in MAP or UNMAP) is not
aligned on a 4K page boundary.

X'01" | X'0003' For MAP, SAVE and RESET: the size of the region (SPAN, possibly in
conjunction with the specified OFFSET) results in a disk address that
is too large.

Possible cause with MAP:
the window size (SPAN) is greater than 2 Gbytes.

X'01" | X'0004' |For MAP, SAVE and RESET:
the OFFSET value corresponds to a disk address that is too large.

X'01" | X'0005' |For MAP: the DISPOS value is neither *OBJECT nor *UNCHNG.

For UNMAP: the DISPOS value is neither *FRESH nor *UNCHNG.

X'01" | X'0006' |The value for PFCOUNT is not in the range of 0 to 15 (MAP).

X'01" | X'0007" | The value for RELEASE is neither *NO nor *YES (RESET).

X'01" | X'0008" | The value for MODE (OPEN) is neither *INPUT, nor *INOUT or
*OUTIN.

X'01" | X'0009" | The value for SHARUPD (OPEN) is neither *NO, nor *\WEAK or *YES.

X'01" | X'000A' | The value for LOCVIEW (OPEN) is neither “NONE nor *MAP.

X'01" | X'000B' | The value for ENV (OPEN) is neither *HOST nor *XCS.

X'01" | X'000C" |The value for LARGE_FILE (OPEN) is neither *ALLOWED nor
*FORBIDDEN.

X'01" | X'000D' |DIV is not supported on SPARC-HSI.

U4250-J-Z2125-12-76

297

DIV

Macros

X'cc

X'bb'

X'aaaa'

Meaning

X'40'

X'0014'

DIV calls from TPR are not permitted.

X'40'

X'0015'

An error was detected during (general) OPEN handling by DMS. The
DIVPDMSC field contains the DMS error code.

X'40'

X'0016'

An error was detected during (general) CLOSE handling by DMS. The
DIVPDMSC field contains the DMS error code.

X'40'

X'0017'

The file is already open.

The OPEN request is rejected because the MODE value and/or the
SHARUPD value of the current OPEN request, and the existing values
under which the file is opened do not permit parallel processing.

X'40'

X'0018'

The OPEN request is rejected due to one of the following situations:

— An OPEN mode specified in the ADD-FILE-LINK command is not
supported by DIV (e.g. OUTPUT).

— The OPEN mode specified in the ADD-FILE-LINK command
differs from the one specified by the program.

— ACCESS-METHOD=*UPAM was not specified in the ADD-FILE-
LINK command.

— Animpermissible value for ACCESS-METHOD was specified in
the ADD-FILE-LINK command.

— The BUFFER-LENGTH operand in the ADD-FILE-LINK command
was explicitly set to a value not equal to 2 in the case of a new file
(MODE=*OUTIN).

— The operand BLOCK-CONTROL-INFO was not specified correctly
in the ADD-FILE-LINK command, or an attempt was made to open
an existing file that does not have the attribute BLKCTRL=NO.

X'40'

X'0019'

Neither a link name nor a file name is specified (OPEN).

X'40'

X'001A'

The file to be opened is located on a shared private disk (SPD).
Files on shared private disks are not processed by DIV.

X'40'

X'001B'

A window with the DISPOS=*UNCHNG attribute is not permitted for a
file opened with MODE=*INPUT (MAP).

X'40'

X'001C'

The privileges of the user (USER or SYSTEM) who opened the file are
not the same as those of the user calling the MAP, UNMAP, SAVE,
RESET or CLOSE function.

X'40'

X'001D’

The ID supplied with one of the functions MAP, UNMAP, RESET or
CLOSE to identify the OPEN is not known (any longer) by DIV.

The parameter list is possibly different from that of the OPEN and the
ID was not indicated, or the file has already been closed.

X'40'

X'001E'

SPID was specified but does not indicate a data space for the window,
or indicates a data space that the caller is not permitted to access
(MAP, UNMAP).

208

U4250-J-2125-12-76

Macros

DIV

X'cc' |X'bb' |X'aaaa' |Meaning

X'40" | X'001F" | At least part of the address space specified for a window is already
being used by an existing window (MAP).

X'40" | X'0020" |Atleast part of the file region specified for a window is already mapped
in another window of the opener (MAP).

X'40" | X'0021" | SPAN is not specified (or SPAN=0), and cannot be determined by DIV
for window definition (MAP) because either
— the file is empty or
— the OFFSET points beyond the logical last page.

X'40" | X'0022' |The window area contains multiple memory classes (e.g. class 5 and
class 6 memory) (MAP).

X'40" | X'0023" | A page in the virtual address space has been requested as a window
page, but that page has been fixed for an /0 (MAP).

X'40" | X'0024' | Apage invirtual address space that s intended for a window is resident
(MAP).

X'40" | X'0025' | A page in virtual address space that is intended for a window is marked
READ-ONLY (MAP).

X'40' | X'0026' |Atleast part of the address space that is defined for a window is not
allocated (e.g. a REQM was not executed) (MAP).

X'40" | X'0027' |The address space specified for a window is shareable (MAP).

X'40" | X'0028' |The address space specified for a window is not accessible to
nonprivileged users and the caller is not privileged (MAP).

X'40" | X'0029" | Aninternal DIV table cannot be created due to insufficient user address
space (MAP).

X'40" | X'002A" | The file cannot be physically extended (MAP) because
— either no more disk space is available to the user or
— asecondary allocation has not been defined for the file (operand

SPACE... SEC-ALLOC in the CREATE-FILE or MODIFY-FILE-
ATTRIBUTES command).

X'40" | X'002B' |An error occurred when reading a block (MAP, UNMAP).

X'40" | X'002C' | An error occurred when writing a block (SAVE).

X'40" | X'002D' | The window defined by AREA (and SPID) does not exist for the current
OPEN (UNMAP).

X'40" | X'002E' |No window exists for the file region defined by OFFSET and SPAN
(SAVE, RESET).

X'40" | X'002F' | Read-authorized users are not allowed to call SAVE.

U4250-J-Z2125-12-76

299

DIV

Macros

X'cc' |X'bb' |X'aaaa' |Meaning
X'40" | X'0030' On file access in mode SHARUPD=YES, it was detected that the file

size exceeds the value of 32 GB even though there is no permission to
exceed this value when using OPEN together with this file.

X'80" | X'003C' |The DIV subsystem was stopped by a command.
Subsequent OPEN requests will be rejected.

X'80" | X'003E' |The system address space required to create internal DIV tables is not
available (OPEN, MAP).

X'20' | X'0046' Internal DIV error.

X'20" | X'0047' Possibly due to an internal DIV error, a wait for the release of a locked
system resource was unsuccessful.

Explanations for the return codes
Return codes are placed in the header of the parameter list:

— The main return code is stored in a half-word with the name DIVPMRET.

— Subcode1 is stored in a byte with the name DIVPSR1.
Subcode1 describes error classes, which allow the caller to respond to them (see table
on page 869). The caller can refer both to the main code as well as to subcode1.

— Subcode? is currently not used. It is always zero (X'00").

Return codes cannot be placed in the header if:

— thelistis not assigned to the user
— thelistis not aligned on a word boundary
— the list is write-protected.

The calling program is aborted with an error message (see section “DMS error codes” on
page 871) and the STXIT event for a “non-recoverable program error” is generated in such
cases.

The field names generated by the C or D forms of the macro and EQU instructions for the
return codes begin with the string DIVP by default, and can be changed using PREFIX and
MACID.

300

U4250-J-2125-12-76

Macros

DIV

Layout of the parameter list

The following parameter list is returned by a DIV macro with MF=D:

[NSEEACEEACEEACEE RN RN RN O A C RN A C T A I SR O R O A SR AR SR A SR AR A SR AR AR AR AR AC R A RN AC RN ACRE A RE A RE OB AR A CRE ORI A OISl N

DIV MF=D
MFCHK MF=D,PREFIX=D,MACID=IVP,PARAM=,
SVC=126,DMACID=IVP,DNAME=IVPLIST, SUPPORT=(C,D,E,L,M)
DIVPLIST DSECT ,
* ##HHH PREFIX=D, MACID=IVP #####
#INTF REFTYPE=REQUEST, INTNAME=DIV, INTCOMP=002

*

DIVPPA DS OF BEGIN of PARAMETERAREA
FHDR MF=(C,DIVP),EQUATES=YES
DS 0A

DIVPFHE DS OXL8 0 GENERAL PARAMETER AREA HEADER

*

DIVPIFID DS 0A 0 INTERFACE IDENTIFIER

DIVPFCTU DS AL2 0 FUNCTION UNIT NUMBER

* BIT 15 HEADER FLAG BIT,

* MUST BE RESET UNTIL FURTHER NOTICE

* BIT 14-12 UNUSED, MUST BE RESET

* BIT 11-0 REAL FUNCTION UNIT NUMBER

DIVPFCT DS ALl 2 FUNCTION NUMBER

DIVPFCTV DS ALl 3 FUNCTION INTERFACE VERSION NUMBER

*

DIVPRET DS 0A 4 GENERAL RETURN CODE

*

* GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS

* REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
*

DIVPSRET DS 0AL2 4 SUB RETURN CODE

DIVPSR2 DS ALl 4 SUB RETURN CODE 2

* ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'

* Standard subcode? values as defined by convention:

DIVPR20OK EQU X'00' A11 correct, no additional info
DIVPRZNA EQU X'0l' Successful, no action was necessary
DIVPRZWA EQU x'02' Warning, particular situation
DIVPSR1 DS ALl 5 SUB RETURN CODE 1

*

* GENERAL INDICATION OF ERROR CLASSES

*

* CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED

* CLASS B X'0l'" = X'1F' PARAMETER SYNTAX ERROR

* CLASS C X'20" INTERNAL ERROR IN CALLED FUNCTION

* CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE

* CLASS E X'80' - X'82' WAIT AND RETRY

*

DIVPRFSP EQU X'00O' FUNCTION SUCCESSFULLY PROCESSED

U4250-J-Z2125-12-76 301

DIV

Macros

R PP PP RPRPPRPRPRRRERRPERFRERFRERFEFEREFEDNDDNDD MDD MNDMNDD MDD MNP NN MNDMNDMNDMND NN MDD MNP MNDDMNDMNDMNDMNDMNDMNDMNDMNDND N

DIVPRPER EQU X'o1' PARAMETER SYNTAX ERROR

* 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'O1' — X'IF'
DIVPRENS EQU X'o1' CALLED FUNCTION NOT SUPPORTED
DIVPRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
DIVPRVNA EQU X'03" INTERFACE VERSION NOT SUPPORTED
*

DIVPRAER EQU X'o4' ALIGNMENT ERROR

DIVPRIER EQU X'2o! INTERNAL ERROR

DIVPRCAR EQU X'40' CORRECT AND RETRY

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' — X'7F'
DIVPRECR EQU X'41! SUBSYSTEM (SS) MUST BE CREATED
* EXPLICITELY BY CREATE-SS
DIVPRECN EQU Xr42' SS MUST BE EXPLICITELY CONNECTED
*

DIVPRWAR EQU X'80" WAIT FOR A SHORT TIME AND RETRY
DIVPRWLR EQU X'8l' ! LONG !
DIVPRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
* BUT RETRY IS POSSIBLE

* 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' — X'82'
DIVPRTNA EQU X'8l' SS TEMPORARILY NOT AVAILABLE
DIVPRDH EQU X'82' SS IN DELETE / HOLD

*

DIVPMRET DS 0AL2 6 MAIN RETURN CODE

DIVPMRZ DS ALl 6 MAIN RETURN CODE 2

DIVPMR1I DS ALl 7 MAIN RETURN CODE 1

*

* SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'OOXXYYYY')

*

DIVPRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
DIVPFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*

* DIV-FUNCTIONS:

DIVPOPEN EQU 1 OPEN

DIVPCLS EQU 2 CLOSE

DIVPMAP EQU 3 MAP

DIVPUNMP EQU 4 UNMAP

DIVPSAVE EQU 5 SAVE

DIVPRES EQU 6 RESET

* DIV-MAINCODES:
DIVPPNAC EQU PARLIST NOT ACCESSIBLE
DIVPIWAD EQU INVALID WINDOW ADDRESS
DIVPISPA EQU INVALID SPAN

DIVPIOFF EQU INVALID OFFSET
DIVPIDSP EQU INVALID DISPOS
DIVPIPFC EQU INVALID PFCOUNT
DIVPIREL EQU INVALID RELEASE
DIVPIOM EQU INVALID OPEN MODE
DIVPISUM EQU INVALID SHARUPD MODE

O 00 NO Ol WM =

302

U4250-J-2125-12-76

Macros DIV

1 DIVPILVM EQU 10 INVALID LOCVIEW MODE

1 DIVPIENV EQU 11 INVALID LOCKENV

1 DIVPILRF EQU 12 INVALID LARGE_FILE

1 DIVPNSPA EQU 13 DIV NOT SUPPORTED ON SPARC—-HSI

1 DIVPPRVC EQU 20 PRIVILEGED DIV CALL

1 DIVPDOER EQU 21 DMS OPEN ERROR

1 DIVPDCER EQU 22 DMS CLOSE ERROR

1 DIVPICOM EQU 23 INCOMPATIBLE OPEN MODE

1 DIVPICFS EQU 24 INCOMPATIBLE FILE SPEC

1 DIVPNLNF EQU 25 NEITHER LINK NOR FILE

1 DIVPPD EQU 26 PRIVATE DISK

1 DIVPDOI EQU 27 DISPOS OPEN INCONSISTENCY

1 DIVPPRVI EQU 28 PRIV INCONSISTENCY

1 DIVPWRID EQU 29 WRONG ID

1 DIVPSIDU EQU 30 SPID UNDEFINED

1 DIVPSPOV EQU 31 SPACE OVERLAP

1 DIVPFOV EQU 32 FILE OVERLAP

1 DIVPUSNP EQU 33 UNDEF SPAN NOT POSSIBLE

1 DIVPINHM EQU 34 INHOMOG MEM

1 DIVPPFIX EQU 35 PAGE FIXED

1 DIVPRESP EQU 36 RESIDENT PAGE

1 DIVPROP EQU 37 READ ONLY PAGE

1 DIVPMNA EQU 38 MEM NOT ALLOC

1 DIVPSHRM EQU 39 SHARABLE MEMORY

1 DIVPPRSP EQU 40 PRIVILEGED SPACE

1 DIVPNOAS EQU 41 NO ADDRESS SPACE

1 DIVPALER EQU 42 ALLOC ERROR

1 DIVPRDER EQU 43 READ ERROR

1 DIVPWRER EQU 44 WRITE ERROR

1 DIVPWNF EQU 45 WINDOW NOT FOUND

1 DIVPNWIR EQU 46 NO WINDOW IN RANGE

1 DIVPSAVN EQU 47 SAVE NOT ALLOWED

1 DIVPLFNS EQU 48 LARGE_FILE NOT SPECIFIED

1 DIVPSSS EQU 60 SUBSYSTEM STOPPED

1 DIVPSOR EQU 61 SHORTAGE OF RESOURCES

1 DIVPIERR EQU 70 INTERNAL ERROR

1 DIVPTOUT EQU 71 TIME RUNOUT

1 *

1 DIVPID DS XL8 ID

1 DIVPLARF DS ALl LARGE_FILE

1 DIVPFRBD EQU 0 LARGE_FILE=FORBIDDEN

1 DIVPALWD EQU 1 LARGE_FILE=ALLOWED

1 DIVPUNUS DS ALl UNUSED BYTE

1 DIVPDMSC DS H DMS-CODE

1 DIVPLINK DS CL8 LINK

1 DIVPFILE DS CL54 FILE

1 DIVPOMOD DS ALl MODE

1 DIVPINPT EQU 1 MODE=INPUT
U4250-J-2125-12-76 303

DIV

Macros

U VA R N TN T T O VN O O SO O O T

DIVPINOT
DIVPOUTI
DIVPSUPD
DIVPSNO
DIVPSWEA
DIVPSYES
DIVPLOCV
DIVPLNON
DIVPLMAP
DIVPDISP
DIVPOBJ
DIVPUNCH
DIVPFRSH
DIVPREL
DIVPRNO
DIVPRYES
DIVPLENV
DIVPHOST
DIVPXCS
DIVPSIZE
DIVPSPID
DIVPAREA
DIVPOFFS
DIVPSPAN
DIVPPFC
DIVP#

EQU
EQU
DS
EQU
EQU
EQU
DS
EQU
EQU
DS
EQU
EQU
EQU
DS
EQU
EQU
DS
EQU
EQU
DS
DS
DS
DS
DS
DS
EQU

(*=DIVPPA)

MODE=INOUT
MODE=OUTIN
SHARUPD
SHARUPD=NO
SHARUPD=WEAK
SHARUPD=YES
LOCVIEW
LOCVIEW=NONE
LOCVIEW=MAP
DISPOS
DISPOS=0BJECT
DISPOS=UNCHNG
DISPOS=FRESH
RELEASE
RELEASE=NO
RELEASE=YES
LOCKENYV
LOCKENV=HOST
LOCKENV=XCS
SIZE

SPID

AREA

OFFSET

SPAN

PFCOUNT
LENGTH OF STRUCTURE

304

U4250-J-2125-12-76

Macros

DIV

Examples

Example 1: Reading and updating an existing file

*

*

*

Example 1: Reading and updating an existing file *

D1

*

DIV MF=D

BSP0OO1 START

BALR RI10,0
USING *,R10
USING DI1,R9
LA R9, PA

Open a file with INOUT *

DIV MF=E, PARAM=PA
CLI DIVPSR1,DIVPRFSP

BNE ERROR
*. *
* Determine the file size and request pages for a window. *
* REQM supplies the starting address in RI. *
* *

L R3,DIVPSIZE FILE SIZE IN 4K PAGES —> R3

REQM (R3),PARMOD=31

LTR R15,R15

BNZ ERROR

LR R8,R1
* *
* Create a window in which the pages of the file appear only after *
* an access (DISPOS=*0BJECT and LOCVIEW=*NONE are default settings). *
* A window of the same size as the file is created (OFFSET and SPAN *
* are not specified). *
*. *

DIV MF=M, PARAM=PA , FCT=*MAP , AREA=(R8)
DIV MF=E, PARAM=PA

CLI DIVPSR1,DIVPRFSP

BNE ERROR

Write modified window pages to file. *

DIV MF=M, PARAM=PA, FCT=*SAVE
DIV MF=E, PARAM=PA

CLI DIVPSR1,DIVPRFSP

BNE ERROR

U4250-J-Z2125-12-76 305

DIV

Macros

*
* Disable a window and close the file. *
* After the window is disabled, the pages are in the same state *
* as just before REQM. *
*. *
*

DIV~ MF=M,PARAM=PA, FCT=*UNMAP,DISPOS=*FRESH

DIV MF=E,PARAM=PA

CLI DIVPSR1,DIVPRFSP

BNE ERROR
*

DIV~ MF=M,PARAM=PA,FCT=*CLOSE

DIV MF=E,PARAM=PA

CLI DIVPSR1,DIVPRFSP

BNE ERROR
*
*
ERROR DS 0Y
*
*
PA DIV~ MF=L,FCT=*0OPEN,LINK='TSTO01' ,MODE=*INOUT

END
Example 2: Copying and modifying a file
*. *
* Example 2: Copying and modifying a file. *
*. *
*
D1 DIV MF=D
*
BSP00?2 START

BALR R10,0

USING *,R10

USING D1,R9

LA R9,PAl
* *
* Open an existing file. *
*. *
DIV ~ MF=E,PARAM=PAl

CLI DIVPSR1,DIVPRFSP

BNE ERROR
* *
* Determine the file size and request pages for a window *

*

* REQM supplies the starting address in RI.

306

U4250-J-2125-12-76

Macros DIV

*.

L R3,DIVPSIZE FILE SIZE IN 4K PAGES —> R3
REQM (R3),PARMOD=31
LTR R15,R15

BNZ ERROR

LR R8,R1
* *
* Create a window. The pages of the file are immediately read into *
* the window (file pages appear in the window because DISPOS=*0BJECT *
* (default); the pages are read immediately because LOCVIEW=*MAP). *
* A window of the same size as the file is created (OFFSET and SPAN *
* are not specified). *
* *
DIV MF=M, PARAM=PA1, FCT=*MAP,AREA=(R8)

DIV MF=E, PARAM=PA1

CLI DIVPSR1,DIVPRFSP

BNE ERROR
*. *
* Modify window pages. *
* *
*
*
*. *
* Disable the window and close the file. *
* The contents of the window pages are retained (DISPOS=*UNCHNG) . *
* *
*

DIV MF=M, PARAM=PA1, FCT=*UNMAP,DISPOS=*UNCHNG

DIV MF=E, PARAM=PA1

CLI DIVPSR1,DIVPRFSP

BNE ERROR
*

DIV MF=M, PARAM=PA1,FCT=*CLOSE

DIV MF=E, PARAM=PA1

CLI DIVPSR1,DIVPRFSP

BNE ERROR
*
* *
* Open the new file. *
* *
LA R9,PA2

DIV MF=E, PARAM=PAZ
CLI DIVPSR1,DIVPRFSP
BNE ERROR

U4250-J-Z2125-12-76 307

DIV Macros

Create a window. Data remains unchanged (because DISPOS=*UNCHNG). *
The address of the region is still in R8; the window size in R3.

T X o o o

IV MF=M, PARAM=PAZ2 , FCT=*MAP , AREA=(R8) ,DISPOS=*UNCHNG, SPAN=(R3)
DIV MF=E, PARAM=PAZ
CLI DIVPSRI,DIVPRFSP

BNE ERROR
*. *
* Write window pages to the new file. *
* *

DIV MF=M, PARAM=PAZ , FCT=*SAVE
DIV MF=E, PARAM=PAZ
CLI DIVPSRI,DIVPRFSP

BNE ERROR
* *
* Delete the window and close the file. *
* *

DIV MF=M, PARAM=PAZ , FCT=*UNMAP ,DISPOS=*FRESH
DIV MF=E, PARAM=PAZ
CLI DIVPSRI,DIVPRFSP
BNE ERROR

DIV MF=M, PARAM=PAZ , FCT=*CLOSE
DIV MF=E, PARAM=PAZ

CLI DIVPSRI,DIVPRFSP

BNE ERROR

ERROR DS oy

PAl DIV MF=L, FCT=*0PEN, LINK="'TSTOO1"', LOCVIEW=*MAP
PA2 DIV MF=L, FCT=*OPEN, LINK='TST002"' ,MODE=*OUTIN
END

308 U4250-J-2125-12-76

Macros DROPTFT

DROPTFT — Release TFT entry

Macro type: type S (C form/D form/E form/L form/M form); see page 866

The DROPTFT macro releases a LOCK-FILE-LINK lock for an entry in the task file table
(TFT). If a REMOVE-FILE-LINK command or RELTFT macro call is still pending for this

entry, it is processed now, i.e. the TFT entry is deleted according to the command/macro
parameters and the private devices connected to it are released.

Format

Operation |Operands
DROPTFT ,LINK = <c-string 1..8> / <var: char:8>

,VERSION = <integer 1..1>
b,MF=C/D/E/L/M
,PARAM = <addr> / <(r)>
,PREFIX = D / <pre>

,MACID = MAD / <macid>

U4250-J-Z2125-12-76 309

DROPTFT

Macros

Operand descriptions

LINK
File link name of the TFT entry to be released.
Default value: The first TFT entry with the link name *BLANK is released.

= <c-string 1..8>
File link name (specified in quotes).

= <var: char: 8>
Name of a variable that contains the file link name.

MACID
Only evaluated with MF=C/D/M; this defines the second, third and fourth characters of the
field names and equates that are generated in the data area when the macro is expanded.

Default value: MACID = MAD

= macid
“macid” is a three-character string that defines the second, third and fourth characters
of the generated field names and equates.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

Default value: Operand list and SVC as previously

PARAM
Designates the address of the operand list and is only evaluated in conjunction with MF=E
(see also page 865).

= addr
The symbolic address (name) of the operand list.

= (r)
The number of the register containing the address of the operand list. The register must
be loaded with this address value before calling the macro.

310

U4250-J-2125-12-76

Macros

DROPTFT

PREFIX
Only evaluated with MF=C/D/M; this defines the first character of the field names and
equates that are generated in the data area when the macro is expanded.

Default value: PREFIX=D

= pre
Single-character prefix with which the field names and equates generated by the
assembler should begin.

VERSION = <integer 1..1>
Control operand; controls generation.

Programming notes

The error is returned in the standard header of the parameter area. Program termination
with STXIT can be initiated in the following cases:

parameter address incorrect (e.g. shorter than the standard header)

parameter address not aligned on a word boundary

UNIT or FUNCTION in header incorrect

header is write-protected

Return codes

Standard The following code relating to execution of the DROPTFT
header: c ‘C b ‘b macro is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

‘a a‘a

o]

X'cc' |X'bb' |X'aaaa' |Meaning

X'02'" | X'00" |X'0662' Link name missing or invalid. No action necessary

X'40" | X'06FF' |BCAM connection not operational or is closed

X'01" | X'xxxx' RFA not supported for version < 12

U4250-J-Z2125-12-76 311

EAM

Macros

EAM - Process EAM files

Macro type: R type

All processing requests addressed to the EAM access method are handled via the EAM
macro. The operation to be performed is determined by the contents of the MFCB.

Format

Operation |Operands

EAM
mfcbaddr [PARMOD= 24]
(1) ’ 7] 31

Operand descriptions

mfcbaddr
Address of the MFCB.

(1)
The address of the MFCB is stored in register 1.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

=24
The macro is expanded in accordance with the 24-bit interface format. The object code
can thus run only in 24-bit addressing mode.

=31
The macro is generated as addressing mode-independent.

Programming note

The EAM macro overwrites the contents of registers 0, 1, 14 and 15.

312

U4250-J-2125-12-76

Macros EAM

Return codes

If PARMOD=24, the return code is placed in register 15; for PARMOD=31, itis placed in the
IDMRETCO field in the MFCB.

Return code Meaning

0 Operation completed successfully

4 Operation not completed successfully; check sense byte (IDMFEB)
8 After check operation: checked I/O operation not yet terminated

U4250-J-Z2125-12-76 313

ELIM

Macros

ELIM - Eliminate record

Macro type: R for PARMOD=24
O for PARMOD=31

The ELIM macro eliminates (deletes) a record from an ISAM file. The second operand
(LAST/KEY/(0)) indicates which record is to be eliminated.

Format

Operation |Operands

ELIM

LAST
febaddr | 1r, PARMOD=) 24 13
(r) »1 KEY ’ 7] 31

(0)

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

(1)

The FCB address is stored in register 1.

LAST
The last record made available by one of the macros GET, GETFL, GETKY and GETR is
processed (default value).

With the exception of OSTAT, no other ISAM macro which refers to the same FCB may be
executed between the macro GET, GETFL, GETR or GETKY and the ELIM macro with
function LAST. If SHARUPD=YES is specified, the preceding read macro must also set a
lock and this lock must still be active when the ELIM macro is issued, i.e. no action, even
for another FCB, which would cancel the lock may be executed.

314

U4250-J-2125-12-76

Macros

ELIM

KEY
The key of the record to be deleted is located at the address defined by KEYARG in the
FCB.

If the specified key does not exist, the user program is continued at the address NOFIND
(see page 398). If the file contains several records with the same key, the first of these
records is eliminated.

(0)

The contents of register 0 indicate which record is to be processed:

— If the address in register 0 is not the FCB address, the function “KEY” is executed.

— If the address in register 0 is the FCB address, the “LAST” function is initiated, i.e. the
last record made available is deleted.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembiler.

=24

The object code generated can run only in the 16-Mb address space (24-bit addressing
only).

=31

The object code generated can run in the 2-Gb address space (24-bit or 31-bit
addressing).

Programming note

The ELIM macro overwrites the contents of registers 0, 1, 14 and 15.

U4250-J-Z2125-12-76 315

ENCFILE

Macros

ENCFILE - Convert unencrypted file into encrypted filen

Macro type: type S (E Form/M Form/L Form/C Form/D Form) (see page 866)

The ENCFILE macro converts an unencrypted file into an encrypted file.

File encryption with a crypto password enables the contents of a file to be protected against
unauthorized access — even against people with TSOS privilege. However, file encryption
does not protect against deletion, overwriting or destruction of the file contents and cannot
replace file protection (e.g. by a write password).

The encryption method used is taken from the class-2 system parameter FILECRYP.

After ENCFILE has run all encryption attributes (procedure and check string for crypto
password) are entered in the catalog entry and the read and execute passwords are
deleted.

Only disk files on pubsets can be encrypted.

When PAM files are encrypted, the last-byte pointer is incremented to the block boundary.

File generations

ENCFILE cannot be used for individual file generations but only for complete file generation
groups. Within a file generation group all generations with the exception of tape generations
have the same encryption attributes as the group entry.

316

U4250-J-2125-12-76

Macros

ENCFILE

Format

Operation

Operands

ENCFILE

,PATHNAM=<c-string 1..54: filename 1l..54> / <var: char:54>
.CRYPASS=<c-string 1..8: filename 1..8> / <var: char:8>
,REFFILE=<c-string 1..54: filename 1..54> / <var: char:54>

,EQUATES=YES / NO
MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAE / <macid>

Operand descriptions

PATHNAM

Specifies the name of the file which is to be encrypted.

The file to be encrypted must satisfy the following requirements:

— It must be unencrypted.

— It must already have a catalog entry.

— The pubset on which it is cataloged must be available locally.

— It may not be located on a private disk.

— It may not have a tape type.

— It may not be located under the TSOS user ID on the home pubset.

=<c-string 1..54: filename 1..54>
Fully qualified path name of the file.

=<var: char:54>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the file’s path name is stored.

U4250-J-Z2125-12-76

317

ENCFILE

Macros

CRYPASS = password

This operand may not be specified together with the REFFILE operand.

Explicit specification of the crypto password which is needed for all accesses to the
decrypted file contents. Instead of being specified here, the crypto password can also be
taken over from an encrypted reference file (see the REFFILE operand).

When a user ID is entered in the class-2 system parameter FREFCRYP, CRYPASS may
only be specified if the file specified under PATHNAM is located on this user ID.

=<c-string 1..8: filename 1..8>
Crypto password.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the crypto password is stored.

REFFILE = filename
Encrypted reference file from which the crypto password is taken over.

The reference file’s crypto password must be entered in the calling task’s crypto password
table. If REFFILE is specified, CRYPASS may not be specified. If REFFILE is not specified,
CRYPASS must be specified.

=<c-string 1..54: filename 1..54>
Fully qualified path name of the reference file.

=<var: char:54>

Only possible with MF=M:

Symbolic address of a memory area of 54 bytes in which the reference file’s path name
is stored.

EQUATES
Specifies whether equates are also to be generated for the values of the parameter area
fields when the parameter area is expanded.

= YES
Equates are also generated for the values of the parameter area fields when the
parameter area is expanded.

=NO
No equates are generated for the values of the parameter area fields when the
parameter area is expanded.

318

U4250-J-2125-12-76

Macros

ENCFILE

Example

Pro

1.

MVC ENCFMFC(XMAE#) ,ENCFMFL
ENCFILE MF=M,PREFIX=X,PATHNAM="UMSATZ.3.QUARTAL.2004'
ENCFILE MF=E, PARAM=ENCFMFC

ENCFMFC ENCFILE MF=C,PREFIX=X
ENCFMFL ENCFILE MF=L,CRYPASS='KROKODIL'

gramming notes

Before the layout of the parameter area is generated the standard header must be
cleared.

All RESERVED fields in the parameter area must be deleted with binary zeros.

The caller is responsible for the consistency of the parameter area whenever modifica-
tions are made to the parameter area without with the aid of the GCs.

In the event of a nonprivileged call (function status TU) register 1 points to the
parameter area.

The names in the parameter area are not converted from lower- to upper-case letters
while the function is executed. In the case of GC expansion, on the other hand,
conversion from lower- to upper-case letters can take place, depending on the compiler
setting.

U4250-J-Z2125-12-76

319

ENCFILE

Macros

Notes on function execution

File locks and file protection attributes which forbid write access to the catalog entry or
the content of a file thus also prevent conversion of the file using ENCFILE.

Conversion of a file with ENCFILE requires the calling task to have ownership rights for
the file. Conversion therefore takes place when:

— the file is under the user ID of the calling task.
— the calling task is running under a user ID with TSOS privilege.
— the user ID of the calling task is co-owner of the file and the file is not temporary.

Conversion of the encrypted file is logged with SAT.

The AUDIT attribute output here is taken from the catalog entry of the file to be
converted (see the CREATE-FILE command, AUDIT operand, in the “Commands”
manual [3]).

Additional functions for tasks with TSOS privilege:
If the calling task has TSOS privilege, the following additional functions are possible:

— Temporary files which do not belong to the calling task but to another task can also
be specified.

— Temporary files can also be created on a pubset other than the default pubset of the
user ID. (These are not deleted automatically when the calling task terminates.)

RFA:
ENCEFILE is rejected if the file to be converted can only be accessed via RFA.

Help file:

When converting with ENCFILE a help file is created and then automatically deleted
when the function has been completed. The converted file content is written to the help
file. The help file needs as much disk storage space as the file to be converted.

The file name of the help file has the following format:
S.DMS.<tsn>.<date><time>.CRYPTO

320

U4250-J-2125-12-76

Macros

ENCFILE

Return codes

The return code is returned in the standard header of the parameter list. The standard
header may not be located in the read-only area, otherwise the program is terminated.

Standard The following return code concerning the execution of
header: c ‘c b ‘b a ‘a a ‘a the ENCFILE macro is transferred in the standard
header
(cc = SUBCODEZ2, bb = SUBCODE1, aaaa =
MAINCODE):
X'cc' |X'bb' |X'aaaa' |Erlauterung
X'00" |[X'00" |X'0000" |No error
X'01" | X'0554" Format of the file name not permitted
X'01" | X'0576" |a) Incorrect operand combination
b) Undeleted UNUSED fields
X'20" | X'0578' Internal error when checking the access rights
X'82" | X'0594' Not enough virtual memory available
X'20" | X'05C7' |Internal error in DMS
X'01" | X'05CB' |Incorrect/inadmissible first file name
X'40" | X'05CF' |Password not in password table
X'20" |X'05EC' |Internal error in crypto password handling
X'40" | X'05FD' |File is write-proteected
X'40" | X'0609" | Action not permitted for system file
X'40" | X'060D" |Incorrect file name specified for reference file
X'40" | X'0663' Encryption of the file not permitted
X'40" | X'0666' File protection prevents access
X'40" | X'0667' | File cannot be used as reference file
X'02" |X'00" |X'0669' |Protection attribute changed implicitly
X'00" |X'40" |X'066A" |Crypto password cannot be used
X'40" | X'066D' | Crypto password specification has been restricted
X'00" | X'066E' |Use help file
X'01" | X'06C8' | Attribute not permissible for file generation
X'01" | X'FFFF' | Wrong function number in standard header
X'03" | X'FFFF' |Wrong version number in standard header

U4250-J-Z2125-12-76

321

ERASE

Macros

ERASE - Erase files

Macro type: type S (E form/L form/D form); see page 866

Using the ERASE macro, the user can erase his/her own temporary or permanent files, file
generation groups or file generations, depending on the selection criteria specified in the
command. Furthermore, the user can release storage space and export files (= delete their
catalog entries). The operands of the ERASE macro can be divided into five groups which
correspond to the various functional levels (see table on page 323).

Selection operands

By means of the selection operands, the user specifies which files or catalog entries are to
be processed, using attributes stored in the catalog entries as selection criteria. For this
purpose, some operands of the FSTAT macro are integrated in the ERASE macro.

If a selection operand is omitted, the files/catalog entries to be processed are selected
without taking that selection criterion into account.

File protection operands

File protection operands make it unnecessary for the user to reset the protection attributes
in order to erase files for which file protection attributes such as passwords, retention
period, etc. are defined.

Macro execution

Action operands control the internal execution of the ERASE macro. The user can specify
the scope for erasure and also define conditions for erasure.

Control operands permit the user to define, to a certain degree, his/her own user interface.
(S)he can, for example, have a log printed or respond to control questions in a dialog.

Macro generation

Assembler operands control how the macro is generated. The VERSION operand, for
example, controls the generation of the operand list.

Source compatibility is ensured for existing programs since the new format VERSION=3
fully covers the functions of the old formats VERSION=0/1/2. The only exception to this is:
if the generated operand list is modified in the program, the program must be re-assembled.

Files protected by an ACL

If a file is protected by an ACL then it can only be erased by the file owner or the system
administrator (user ID with the TSOS privilege) if the operand IGNORE=*ACCESS is
specified.

322

U4250-J-2125-12-76

Macros

ERASE

Access control using ACL has not been supported since SECOS V4.0. Files with ACL
protection should therefore be protected by GUARDS. GUARDS protection “overrides”
ACL protection and makes the file available to the file owner once again (and to all the
individuals to whom the owner has permitted access).

Functional overview

Operand

Operand value

‘ Selection criterion

Selection — file name

*DUMMY

Dummy file

pathname

Path name (fully qualified, partially qualified,
wildcards)

prefix

Temporary user files

*SYSid

System files, wildcards permitted

*

EAM object module file

Selection — file type

BLKCTRL NONE Catalog entries of unopened files
PAMKEY/DATA/DATA2K/ File format
DATA4K/NO/NK/NK2/NK4
FCBTYPE NONE Catalog entries of unopened files
ISAM/SAM/BTAM/PAM Access method
FILTYPE *ANY/*BS2000/*NODE File type on Net-Storage: BS2000 file or node file
POS AFTER/BEFORE In conjunction with TYPE=FGG; specifies the file
generations to be processed
TYPE FILE Files, not FGGs or file generations
FGG File generations or FGGs
PLAM PLAM libraries
WORKEFIL *NO/*YES Work files

U4250-J-Z2125-12-76

323

ERASE

Macros

Operand Operand value Selection criterion

Selection — volume

STOTYPE *PUBSPACE/*NETSTOR Storage type

SUPPORT PUBLIC Files on public disks
PRDISC Files on private disks
TAPE Tape files

VOLSET Volume set

VOLUME VSN of the volume

Selection — data security and protection

ACCESS READ/WRITE Write protection
ACL YES/NO ACL protection
AVAIL *STD/*HIGH Availability
BACKUP A/B/C/D/IE Backup level
BASACL NONE/YES BASIC-ACL protection
ENCRYPT ANY/NONE/AES/DES Encrypted files
GROUPAR NO-ACCESS/access-list Access rights of the user group
GUARDS (READ...,WRITE...,.EXEC...) | GUARDS protection
OTHERAR NO-ACCESS/access-list Access rights of the others group
OWNERAR NO-ACCESS/access-list Access rights of the owner
PASS NONE Password protection
EXPASS
RDPASS
WRPASS
PROTACT ANY/LEVEL-0/ Protection level of the activated access control
LEVEL-1/LEVEL-2 method
SHARE NO/YES/SPECIAL Shareability

Selection — storage space (disk files)

EXTENTS Number of extents

FSIZE Size of reserved but unused storage space
LASTPAG Number of PAM pages used

RELSPAC Lock preventing release of storage space
SIZE Size of reserved storage space

Selection — storage space (tape files)

BLKCNT

Number of blocks in the file on tape

324

U4250-J-2125-12-76

Macros

ERASE

CACHE-NOT-SAVED
REPAIR-NEEDED
DEFECT-REPORTED
OPEN-ALLOWED
NO-OPEN-ALLOWED

Operand Operand value Selection criterion
Selection — date and time entries
CRDATE Date and time of creation
DELDATE DELETION date and time (implicit: retention
period)
EXDATE Expiration date and time (implicit: retention period)
LADATE Date and time of last access
LCDATE Date and time of last write access
TIMBASE *UTC/ALTI Time base of date entries
Selection — HSMS
MIGRATE ALLOWED/ Migration allowed/
INHIBIT/ briefly allowed/
FORBIDDEN not allowed
SLEVEL S0/81/S2 Storage level
SOMIGR *ALLOWED/*FORBIDDEN Migration allowance
Selection — performance and 1/0 attributes
DISKWR IMMEDIATE/BY-CLOSE Time at which data is written back to disk
IOPERF STD/HIGH/VERY-HIGH Performance attribute
IOUSAGE RDWRT/WRITE/READ Type of 1/O operation
Selection — file status
STATE NOCLOS Current status of the file
CLOSED
CACHED
NOT-CACHED

Selection — coding

CCSs

Code table (coded character set)

Selection — metainformation

ADMINFO

*NONE/<c-string 1..8>

System administrator metainformation

USRINFO

*NONE/<c-string 1..8>

User metainformation

U4250-J-Z2125-12-76

325

ERASE

Macros

Operand

Operand value

Selection criterion

Selection — SM pubset

MANCLAS *NONE/<c-string 1..8> Management class
PREFORM Intended file format on SM pubsets
STOCLAS *NONE/<c-string 1..8> Storage class

File protection — file protection operands

IGNORE omitted Defined protection attributes are evaluated

ACCESS The protection attribute ACCESS=READ,
BASIC-ACL, ACL or GUARDS is ignored

EXDATE Retention periods are ignored
RDPASS For system administration only:
WRPASS } Dialog for change of user ID
EXPASS

PASSWORD | omitted Password protection is evaluated
password The password protection defined by the specified

password is ignored

Macro execution

— action operands

CATALOG Files on private volumes are exported

DATA Logical erasure: the data-specific attributes of the
file are deleted, the catalog entry updated accord-
ingly and the allocated storage space is retained

DATA-KEEP- Logical erasure as with DATA, but the data-specific

ATTR attributes are retained

DELETE-OR- Files on private volumes and node files on Net-

EXPORT Storage volumes are exported, files on public disks
or on Net-Storage volumes are deleted

DESTROY The catalog entry is deleted, the storage space is
released and overwritten

MOUNT Specifies, for files on private disks, whether all
affected disks must be online

SPACE Only storage space is released, the catalog entry is
retained

SPACE- The catalog entry is deleted and storage space

CATALOG released

326

U4250-J-2125-12-76

Macros

ERASE

Operand Operand value

Selection criterion

Macro execution — control operands

CHECK NO No user intervention permitted
(default value for procedures and batch jobs)
MULTIPLE Dialog when the catalog or user ID is changed if
“pathname” was not fully qualified (default value for
interactive mode)
ERROR Dialog if a user-correctable error occurs
PVS Dialog when the catalog ID is changed
SINGLE The user decides, in a dialog, whether each
selected file is to be processed by the current
ERASE macro
USERID For system administration only:
Dialog for change of user ID
LIST NO/YES [Do not] log erasure on SYSOUT
NOSTEP errcode Via the DMS error code, the user can specify which

errors are not to trigger the spin-off mechanism

Macro generation — assembler operands

MF

Macro generation (operand list/SVC/DSECT)

PREFIX prefix

Call-specific prefix

VERSION 0

VERSION 1

VERSION 2

VERSION 3

Macro format for BS2000 versions < V9.5A (see
table “Variations in versions — VERSION=0/1/2" on
page 387)

Macro format for BS2000 Versions V9.5A and
V10.0A (see table “Variations in versions —
VERSION=0/1/2" on page 387)

Macro format as of BS2000/0SD-BC V1.0 (see
“Macro format and operand descriptions” below)

Macro format as of BS2000/0SD-BC V3.0 (see
“Macro format and operand descriptions” below)

U4250-J-Z2125-12-76

327

ERASE

Macros

Operand overview

Operand Operand value Function
*DUMMY Selection operand dummy file
pathname Selection operand - path name (fully qualified, partially
qualified, wildcards)
prefix Selection operand - temporary user files
*SYSid Selection operand - system files, wildcards permitted
* Selection operand - EAM object module file
CATALOG Files on private volumes are exported
DATA Logical erasure: the data-specific attributes of the file are
deleted, the catalog entry updated accordingly and the
allocated storage space is retained
DATA-KEEP- Logical erasure as with DATA, but the data-specific attributes
ATTR are retained
DELETE-OR- Files on private volumes and node files on Net-Storage
EXPORT volumes are exported, files on public disks or on Net-Storage
volumes are deleted
DESTROY The catalog entry is deleted, the storage space is released
and overwritten
MOUNT Specifies, for files on private disks, whether all affected disks
must be online
SPACE Only storage space is released, catalog entry is retained
SPACE- The catalog entry is deleted and storage space released
CATALOG
ACCCNT Selection operand - access counter
ACCESS READ/WRITE Selection operand - write protection
ACL YES/NO Selection operand - ACL protection
ADMINFO *NONE/ Selection operand - system administrator metainformation
<c-string 1..8>
AVAIL *STD/*HIGH Selection operand - availability
BACKUP A/B/C/D/E Selection operand - backup level
BASACL NONE/YES Selection operand - BASIC-ACL protection
BLKCNT Selection operand - number of blocks in the file on tape
BLKCTRL NONE Selection operand - catalog entries of unopened files
PAMKEY/DATA/ File format
DATA2K/DATA4K/
NO/NK/NK2/NK4

328

U4250-J-2125-12-76

Macros

ERASE

Operand Operand value Function
CCS Selection operand - code table
(coded character set)
CHECK NO No user intervention permitted (default value for procedures
and batch jobs)
MULTIPLE Dialog when the catalog or user ID is changed if “pathname”
was not fully qualified (default value for interactive mode)
ERROR Dialog if a user-correctable error occurs
PVS Dialog when the catalog ID is changed
SINGLE The user decides, in a dialog, whether each selected file is to
be processed by the current ERASE macro
USERID For system administration only:
dialog for change of user ID
Specify which errors are not to trigger the spin-off mechanism
CRDATE Selection operand - date and time of creation
DELDATE Selection operand - DELETION date and time
(implicit: retention period)
DISKWR IMMEDIATE/ Selection operand - time at which data is written back to disk
BY-CLOSE
EXDATE Selection operand - expiration date and time
(implicit: retention period)
EXTENTS Selection operand - number of extents
FCBTYPE NONE Selection operand - catalog entries of unopened files
ISAM/SAM/ Access method
BTAM/PAM
FILTYPE *ANY/*BS2000/ Selection operand — file type on Net-Storage (BS2000 file or
*NODE node file)
FSIZE Selection operand - size of reserved but unused storage
space
GROUPAR NO-ACCESS/ Selection operand - access rights of the user group
access-list
GUARDS (READ..., Selection operand - GUARDS protection
WRITE...,
EXEC...)

U4250-J-Z2125-12-76

329

ERASE Macros

Operand Operand value Function
IGNORE omitted Defined protection attributes are evaluated
ACCESS The protection attribute ACCESS=READ, BASIC-ACL, ACL
or GUARDS is ignored
EXDATE Retention periods are ignored
RDPASS For system administration only:
WRPASS }the defined password is ignored
EXPASS
IOPERF STD/HIGH/ Selection operand - performance attribute
VERY-HIGH
IOUSAGE RDWRT/WRITE/ Selection operand - type of I/0 operation
READ
KEEPACL For system administration only:
Access list deletion (ACL)
LADATE Selection operand - date and time of last access
LASTPAG Selection operand - number of PAM pages used
LCDATE Selection operand - date and time of last write access
LIST NO/YES [Do not] log erasure on SYSOUT
MANCLAS *NONE/ Selection operand - management class
<c-string 1..8>
MF Macro generation (operand list/SVC/DSECT)
MIGRATE ALLOWED/ Selection operand - migration allowed/
INHIBIT/ briefly allowed/
FORBIDDEN not allowed
NOSTEP errcode Via the DMS error code, the user can specify which errors are
not to trigger the spin-off mechanism
OTHERAR NO-ACCESS/ Selection operand - access rights of the others group
access-list
OWNERAR NO-ACCESS/ Selection operand - access rights of the owner
access-list
PASS NONE Selection operand - password protection
EXPASS
RDPASS
WRPASS

330 U4250-J-2125-12-76

Macros

ERASE

Operand Operand value Function
PASSWORD | omitted Password protection is evaluated
password The password protection defined by the specified password is
ignored
POS AFTER/BEFORE Selection operand - in conjunction with TYPE=FGG;
specifies the file generations to be processed
PREFIX prefix Call-specific prefix
PREFORM Selection operand - intended file format on SM pubsets
PROTACT ANY/LEVEL-0/ Selection operand - protection level of the activated access
LEVEL-1/LEVEL-2 |control method
RELSPAC Selection operand - lock preventing release of storage space
SHARE NO/YES/SPECIAL | Selection operand - shareability
SIZE Selection operand - size of reserved storage space
SLEVEL S0/S1/S2 Selection operand - storage level
STATE NOCLOS Selection operand - current status of the file
CLOSED
CACHED
NOT-CACHED
CACHE-NOT
-SAVED
REPAIR-NEEDED
DEFECT
-REPORTED
OPEN-ALLOWED
NO-OPEN
-ALLOWED
STOCLAS *NONE/ Selection operand - storage class
<c-string 1..8>
STOTYPE *PUBSPACE/ Selection operand - storage type
*NETSTOR
SUPPORT PUBLIC Selection operand - files on public disk
PRDISC Files on private disk
TAPE Tape volume
SOMIGR *ALLOWED/ Selection operand - migration allowance
*FORBIDDEN
TIMBASE *UTC/ALTI Selection operand - time base of date entries

U4250-J-Z2125-12-76

331

ERASE

Macros

Operand Operand value Function
TYPE FILE Selection operand - files, not FGGs or file generations
FGG File generations or FGGs
PLAM PLAM libraries
USRINFO *NONE/ Selection operand - user metainformation
<c-string 1..8>
VERSION 0 Macro format for BS2000 versions < V9.5A
(see table “Variations in versions — VERSION=0/1/2" on
page 387)
1 Macro format for BS2000 versions V9.5A and V10.0A
(see table “Variations in versions — VERSION=0/1/2" on
page 387)
2 Macro format as of BS2000/OSD-BC V1.0 (see Macro format
and operand descriptions)
3 Macro format as of BS2000/OSD-BC V3.0 (see Macro format
and operand descriptions)
VOLSET Selection operand - volume set
VOLUME Selection operand - VSN of the volume
WORKFIL *NO/*YES Selection operand - work files

332

U4250-J-2125-12-76

Macros

ERASE

Format

The macro format represented below contains all the operands that are supported as of
BS2000/0SD-BC V3.0. In order to generate this format, VERSION=3 must be specified.

Source code compatibility for existing programs is ensured, since the new format
VERSION=3 completely covers the functions of the old formats VERSION=0/1/2. However,
an operand list generated in the program can only be changed if the program is
reassembled with the updated macro.

— All operands/operand values that were supported up to and including BS2000 Version
V2.0A may be used in the macro format with VERSION=2.

— All operands/operand values that were supported up to and including BS2000 Version
V10.0A may be used in the macro format with VERSION=1.

— Operands/operand values that were supported up to and including BS2000 Version
V9.0A may be used in the macro format with VERSION=0.

The table “Variations in versions — VERSION=0/1/2" on page 387 shows which operands/operand
values are supported with VERSION=2/1/0.

In the format, the representation of operands for which a list of operand values can be
specified has been simplified. The list is shown as an additional value (list-of-operand) in
the format and should be interpreted as follows:

— several operand values can be specified in the form of a list:
(eTementl, element2, ...)

— if only one operand value is specified, i.e. the list consists of only one element, the
parentheses may be omitted: eTement or (element).

U4250-J-Z2125-12-76 333

ERASE Macros
Operation |Operands
ERASE
SPACE-CATALOG
pathname SPACE
prefix DATA
L * 1L, < DATA-KEEP-ATTR
*SYSid CATALOG
*DUMMY DELETE-OR-EXPORT
DESTROY
ANY
nmbr
[,ACCCNT={ (nmbrL,1)]
(,nmbr)
(nmbrl,nmbr2)
ANY
[,ACCESS=: READ]
WRITE
ANY
[,ACL={ YES ;]
NO
*ANY
[,ADMINFO={ *NONE]
<c-string 1..8>
*ANY
[,AVAIL=: *STD]
*HIGH

(Teil 1von 11)

334

U4250-J-2125-12-76

Macros

ERASE

Operation |Operands

[,CCS=

[,BACKUP=

[,BLKCNT=

[,BLKCTRL=

ANY

~ mMm OO W

list-of-backup)

ANY

[,BASACL={ NONE]

YES

ANY

nmbr
(nmbrC,1)]
(,nmbr)

(nmbrl,nmbr2)

ANY

PAMKEY

DATA4K

DATA2K

DATA

NO

NONE

NK4

NK2
(list-of-blkctrl)

*ANY
*NONE]
ccs—name

(Teil 2 von 11)

U4250-J-Z2125-12-76

335

ERASE

Macros

Operation

Operands

[,CHECK=

[,CRDATE=

[,DELDATE=

NO
STD
MULTIPLE
ERROR
PVS
SINGLE
USERID

—

ANY

NONE

date

date(timel, 1)
date(timel,time2)
(datel, 1)
(date(time)L,1)
(,date)
(,date(time))
(datel,date2)
(datel(time),date2)
(datel(time),date2(time))

*ANY

*NONE

date

date(timel, 1)
date(timel,time2)
(datel,1)
(date(time)L, 1)
(,date)
(,date(time))
(datel,date2)
(datel(time),date2)
(datel(time),date2(time))

(Teil 3 von 11)

336

U4250-J-2125-12-76

Macros

ERASE

Operation |Operands

ANY
[,DISKWR={ IMMEDIATE]
BY-CLOSE

*ANY

*NONE
[,ENCRYPT=< *AES]

*DES
(Tist-of-encrypt)

ANY

NONE

date

date(timel,])
date(timel,time2)
(datel,1)
(date(time)L, 1)
(,date)
(,date(time))
(datel,date2)
(datel(time),date2)
(datel(time),date2(time))

[,EXDATE=

ANY
[,EXTENTS=] nmbr]
(nmbrL,1)
(nmbrl,nmbr2)

ANY
ISAM

BTAM
[,FCBTYPE={ SAM]

PAM
NONE
(1ist—-of-fcbtype)

(Teil 4 von 11)

U4250-J-Z2125-12-76

337

ERASE

Macros

Operation

Operands

*ANY
*BS2000 1
*NODE

[,FILTYPE=

ANY
SIZE
[,Fsize=] "mPr 1
(nmbrL,1)
(nmbr)

(nmbrl,nmbr2)

ANY

[,GROUPAR={ NO-ACCESS]
list-of-groupar
*ANY

*NONE
*YES

,GUARDS=
[,GUARDS FANY

*NONE
fname

(CREAD= JC,WRITE=

ANY
ACCESS
EXDATE
RDPASS]
WRPASS

EXPASS

(list-of-ignore)

[, IGNORE=

ANY
STD
HIGH]
VERY-HIGH

(list-of-ioperf)

[,IOPERF=

*ANY

*NONE
fname

1L, EXEC=

*ANY
*NONE
fname

ipl

(Teil 5von 11)

338

U4250-J-2125-12-76

Macros

ERASE

Operation |Operands

[, LADATE=

[, IOUSAGE=

[,LASTPAG=

ANY

RDWRT

WRITE]
READ
(list-of-iousage)

*NO
[,KEEPACL={ — _)
*YES

ANY

NONE

date

date(timel, 1)
date(timel,time2)
(date(timel, 1)
(,date)
(,date(time))
(datel,date2)
(datel(time),date2)
(datel(time),date2(time))

ANY

nmbr

(nmbrLC,1)]
(,nmbr)
(nmbrl,nmbr2)

(Teil 6 von 11)

U4250-J-Z2125-12-76

339

ERASE

Macros

Operation

Operands

[,LIST={

[,LCDATE=]

[,MOUNT={

[,NOSTEP=

ANY

NONE

date

date(timel, 1)
date(timel,time2)
(datel, 1)
(date(time)L, 1)
(,date)
(,date(time))
(datel,date2)
(datel(time),date2)
(datel(time),date2(time))

ERRORS-TO-SYSOUT
(area,len)

*ANY

[,MANCLAS=< *NONE]

<c-string 1..8>

ANY
ALLOWED

[,MIGRATE=< INHIBIT]

FORBIDDEN
(list-of-migrate)

FIRST-DISK
ALL-DISKS

errcode]
(list-of-nostep)

(Teil 7 von 11)

340

U4250-J-2125-12-76

Macros ERASE

Operation |Operands

ANY
[,O0THERAR={ NO-ACCESS]
list-of-otherar

ANY
[,OWNERAR=< NO-ACCESS]
list-of-ownerar

ANY
NONE
EXPA
[,PASS= 53]
RDPASS
WRPASS

(1list—-of-pass)

password
[,PASSWD=

(Tist-of-passwd)

—— AFTER
**“>7) BEFORE

*ANY

*NONE
*K
*NK2

*NK4
(list-of-preform)

[,PREFORM=

ANY
LEVEL-0
[,PROTACT={ LEVEL-1]
LEVEL-2

(list-of-protact)

(Teil 8 von 11)

U4250-J-Z2125-12-76 341

ERASE

Macros

Operation

Operands

ANY

ALLOWED

IGNORED
(list-of-relspac)

[,RELSPAC=

ANY
YES

[,SHARE={ NO 1
SPECIAL
(Tist-of-share)

ANY
FSIZE
nmbr
[,SIZE=]
(nmbr[,1)
(,nmbr)

(nmbrl,nmbr2)

ANY
SO

[,SLEVEL={ S1
S2
(list-of-slevel)

(Teil 9 von 11)

342

U4250-J-2125-12-76

Macros

ERASE

Operation |Operands

ANY
NOCLOS
CLOSED
CACHED
NOT-CACHED
[,STATE={ CACHE-NOT-SAVED ;]
OPEN-ALLOWED
NO-OPEN-ALLOWED
REPAIR-NEEDED
DEFECT-REPORTED
(Tist-of-state)

*ANY
[,STOCLAS={ *NONE
<c-string 1..8>

*ANY
[,STOTYPE={ *pPUBSPACE]
*NETSTOR

ANY
PUBLIC

[,SUPPORT={ PRDISC
TAPE
(list-of-support)

*ANY

*ALLOWED
*FORBIDDEN
(Tist-of-sOmigr)

[,SOMIGR=

*UTC
[, TIMEBASE=]
*LTI

(Teil 10 von 11)

U4250-J-Z2125-12-76

343

ERASE

Macros

Operation

Operands

ANY
FILE

[,TYPE={ FGG]
PLAM
(list—-of-type)

*ANY
[,USRINFO={ *NONE]
<c-string 1..8>

*ANY
[,VOLSET=]

<c-string 1..4>

*ANY
[,VOLUME={ }]
vsn

*ANY
[,WORKFIL={ *NO
*YES

—_

[,MF=L1,VERSION= [,PREFIX=prel

wl\)l—\|c

add

MF=(E,
¢ {(r)

r
}),VERSION=

wl\)l—\|o

1
MF=D,VERSION=< 2 [,PREFIX=prel
3

(Teil 11 von 11)

344

U4250-J-2125-12-76

Macros

ERASE

Operand descriptions

pathname
Designates the pathname of the files that are to be erased, with:
<c-string 1..80: filename 1..54 with-wild(80) without-gen>

Only the user's own files or for which the user possesses co-owner rights may be erased.
pathname means [:catid:][$userid.][filename]

catid

Catalog ID of the files that are to be erased; if wildcards are used for “catid”, then these
are evaluated only for catalogs in an MPVS environment. Catalogs in an MSCF
environment can be addressed only via their explicit “catid” (for information on MSCF
see the “HIPLEX MSCF” User Guide [11]).

The default value is the “catid” assigned to the user ID.

userid

User ID: non-privileged users may only delete their own files or files under user IDs for
which they are entered as co-owner. The system administrator can also specify
wildcards.

Default value: the user ID of the current job (i.e. of the SET-LOGON-PARAMETERS or
LOGON command).

filename

Designates the files, file generations, FGGs or temporary files to be erased. The user
may specify a fully or partially qualified file name or use wildcards. The prefix must be
included in the names of temporary files; otherwise, the temporary files are ignored.

Wildcard specifications

Nonprivileged users may only use wildcards in the “catid” and “filename” specifications
whereas the system administrator may also use them in the “userid” (as in the FSTAT
macro; see section “Wildcards” on page 863). If the wildcard "' is used, it must be entered
twice (**) if it is to include the beginning of the file name (for example: ERASE *SYSLST
erases the system file SYSLST, while ERASE **SYSLST erases all files whose names end
with the string SYSLST).

prefix

With the prefix defined for temporary files, all temporary files of the job can be erased. If the
erase operation is logged, the internal names of the temporary files being processed are
output.

U4250-J-Z2125-12-76 345

ERASE

Macros

*

The ERASE macro is for the EAM object module file (* file) which is created and used by
compilers. All operands except the control and Assembler operands (CHECK, LIST,
NOSTEP) are checked for syntax errors, but are otherwise ignored. Errors which occur
when erasing the * file are ignored.

*SYSid

Designates the logical system files SYSLST, SYSLSTnn and SYSOUT (00 < nn < 99).
Wildcards may be specified for “id”, which means that one ERASE command may be used
for several system files (see section “Wildcards” on page 863 for details of wildcards). All
operands except the control operands (CHECK, LIST, NOSTEP) are checked for syntax
errors, but are otherwise ignored.

The system file SYSOUT can also be erased in dialog mode.

If SYSLST is assigned to a file and has been printed out with PRINT *SYSLST, a subse-
quent ERASE *SYSLST macro logically erases only those pages which have been created
since the printout.

If aLOGOFF command immediately follows an ERASE *SYSOUT or ERASE *SYSLST and
no log is requested via LIST=YES or /OPTION MSG=H, no new SYSOUT or SYSLST file
is created.

*DUMMY

Designates the dummy file *DUMMY, which “always exists” and fulfills all selection criteria.
All operands except the control operands (CHECK, LIST, NOSTEP) are checked for syntax
errors, but are otherwise ignored. If “DUMMY is specified, no catalog or data access is
necessary. *DUMMY is particularly useful for test runs.

CATALOG

Only for files, file generation groups and file generations on private volumes and for files on Net-
Storage:

The catalog entries of the specified or selected files are deleted, but their storage space is
retained. Password protection is observed, but write protection defined with
ACCESS=READ orimplied by RETPD (see the CATAL macro) is ignored. Any definition for
“binary deletion” (see DESTRQOY, CATAL macro) in the catalog entry is also ignored.

For tape files, “CATALOG” is the default value for the execution of ERASE.

The action ERASE ...,CATALOG is equivalent to exporting the file(s) (see the VOLUME
operand). These files can be imported again later, either individually by means of FILE (with
STATE=FOREIGN) or using IMPORT, which can import one or more files on private disks
or on Net-Storage at the same time. Exclusively reserved files cannot be exported.

346

U4250-J-2125-12-76

Macros

ERASE

DATA

Only for disk files; the default value CATALOG applies to tape files:

The data of the affected files is “logically erased” (see “Logically erasing a file” in the
"Introductory Guide to DMS” [1]). After this, the user can no longer access the file’s data
since physical access to the relevant volume is not permitted. The catalog entry and the
space allocation still exist. The catalog entry is identical to that for a file which has been
created by means of FILE but not yet opened (FCBTYPE=NONE, CRDATE=NONE).

DATA-KEEP-ATTR

Only for disk files; the default CATALOG applies for tape files:

The files are logically erased as with DATA, but the data-specific attributes are retained. The
data itself can, however, no longer be addressed by the user.

DELETE-OR-EXPORT

Selects files for processing by ERASE on the basis of the type of volume on which the files

are stored:

— Files, FGGs, etc. on public volumes and files are erased, i.e. the catalog entry is deleted
and the storage space is released (corresponds to the specification “SPACE-
CATALOG”).

— Forfiles on Net-Storage the following applies depending on the file type:

— For BS2000 files the catalog entry is deleted and the storage space is released.
— For node files the catalog entry is deleted. The files are retained on the Net-Storage
(corresponds to the EXPORT-NODE-FILE command).

— Forfiles, FGGs, etc. on private volumes, the catalog entry is simply deleted (corre-

sponds to the specification “CATALOG”).

DESTROY

Only for disk files; the default value CATALOG is valid for tape files:

The storage space for the selected files is released, the catalog entry is deleted, and the
storage space being released is overwritten by binary zeros so that if the space is allocated
again, nobody can read the old data (data protection). In the case of files on private disks,
all volumes on which the file was stored must be mounted when erasure takes place.

“Data destruction” during erasure can also be set in the catalog entry (DESTROY=YES) by
means of the CATAL macro. In this case, the storage space being released is automatically
overwritten. When a file is erased, the action operands are evaluated first: if the file is to be
exported (specification CATALOG or DELETE-OR-EXPORT), the data is not overwritten,
since the storage space is not released.

U4250-J-Z2125-12-76 347

ERASE

Macros

SPACE

Only for files on public disks and on Net-Storage; the default value CATALOG is valid for tape files:
The storage space for the files affected by ERASE is released. The catalog entry is retained
but updated: it is then identical to one created via CATAL. The SPACE operand is rejected
for files on private disks.

SPACE-CATALOG
is the default value for disk files; the catalog entries for the affected files are deleted, and
the storage space used by these files is released.

ACCCNT

Allows the user to select files to be processed on the basis of the access count, which
indicates how often a file has been accessed. The access counter can be assigned values
from 0 to 2147483647.

= ANY
The access counter is not a selection criterion.

= nmbr
Processes files for which the access count exactly matches the specified number of
accesses.

= (nmbrl,])
Processes files for which the access count is greater than or equal to the specified
value.

= (,nmbr)
Processes files for which the access count is less than or equal to the specified value.

= (nmbr1,nmbr2)
Processes files for which the access count lies in the specified interval:
(nmbr1 < access-count < nmbr2).

ACCESS
The user can select files for processing depending on his or her access authorization.

= ANY
The access type is not a selection criterion.

= READ
Only files for which write access is forbidden by ACCESS=READ, i.e. read-only files,
are processed.

= WRITE
Selects files for which read and write access is permitted.

348

U4250-J-2125-12-76

Macros ERASE

ACL
Allows the user to select files for processing on the basis of whether or not they are
protected by an access control list (ACL).

= ANY

The ACL entry is not a selection criterion.

=NO

Processes all files that are not protected by an ACL entry.

=YES

Processes files that are protected by an ACL entry.
These files can only be erased if IGNORE=*ACCESS is specified.

Access control using ACL has not been supported since SECOS V4.0. The ACL
entry therefore normally contains the value NO (no ACL protection).

ADMINFO
The user can select files/file generations for processing dependent on the system
administrator metainformation.
=*ANY
The system administrator metainformation is not a selection criterion.
=*NONE
Only those files are processed that possess no system administrator metainformation.
= <c-string 1..8>

Only those files possessing the specified system administrator metainformation are
processed.

AVAIL

The user can select files/file generations for processing dependent on their availability.
=*ANY
The availability is not a selection criterion.

=*STD
Only those files not on a volume set with high availability are processed.

= *HIGH
Only those files on a volume set with high availability are processed (DRV pubset).

U4250-J-Z2125-12-76 349

ERASE Macros

BACKUP
The user can select the files for processing on the basis of the BACKUP level. The backup
defines in which backup runs the file is to be saved.

= ANY

The backup level is not a selection criterion.

=A

Only the files with backup level A are processed.
=B

Only the files with backup level B are processed.
=C

Only the files with backup level C are processed.
=D

Only the files with backup level D are processed.
=E

Only the files with backup level E are processed.
= (list-of-backup)

All files that have one of the specified backup levels are processed. Up to 5 backup
different levels may be specified in a list.

BASACL
Allows the user to select files for processing on the basis of whether they are protected by
a basic access control list (BASIC-ACL).

= ANY
The BASIC-ACL is not a selection criterion.

= NONE
Processes all files for which no BASIC-ACL entry is defined.

=YES

Processes only those files for which a BASIC-ACL entry is defined. The selection
operands OWNERAR, GROUPAR, and OTHERAR can be used to restrict the selection
to specific BASIC-ACL entries.

350 U4250-J-2125-12-76

Macros ERASE

BLKCNT
For tape files only:
Selects files for processing on the basis of the number of blocks on tape.

= ANY
The number of blocks on tape is not a selection criterion.

= nmbr
Processes all tape files with exactly the specified number of blocks.

= (nmbrl,])
Processes all tape files for which the number of blocks is greater than or equal to the
specified value.

= (,nmbr)
Processes all tape files for which the number of blocks is less than or equal to the
specified value.

= (nmbr1,nmbr2)
Processes all tape files for which the number of blocks lies within the specified interval.

Any integers from the range 0 < value < 2147483647 may be specified.

BLKCTRL

Allows the user to select files for processing on the basis of the file format. The file format
is defined when creating the file and is based on the existence and position of the block
control field that contains management information for the PAM page.

= ANY
The file format is not a selection criterion.

= PAMKEY

Processes all files which use a separate PAM key for the block control field, i.e. files for
which the block control information is stored in a special key field outside the PAM block.
Such files are created with BLKCTRL=PAMKEY (see the FILE macro).

= DATA
Processes all files for which the block control information is located at the start of the
data block. Such files are created with BLKCTRL=DATA (see the FILE macro).

=NO
Processes all files which contain no block control field. Such files are created with
BLKCTRL=NO (see the FILE macro).

= NONE
Processes all files for which no BLKCTRL value was defined, i.e. files which have not
yet been opened.

U4250-J-Z2125-12-76 351

ERASE

Macros

= DATA2K
Processes all files which were created with BLKCTRL=DATAZ2K (see the FILE macro).

= DATA4K
Processes all files that were created with BLKCTRL=DATA4K (see the FILE macro).

= NK2
Processes all NK2 files (files which can be stored on NK2 volumes).

= NK4
Processes NK4 files only (files which can be stored on NK4 volumes).

= (list-of-blkctrl)
Processes all files that match one of the specified file formats. All values except ANY
may be specified in a list.

CCs

Allows the user to select files for processing on the basis of the specified coded character
set.

The coded character set (CCS) defines how the characters of a national character set are
to be stored in binary form. The specified character set has an effect on the representation
of characters on the screen, the collating sequence, etc. (see the “XHCS” manual [22]).

=*ANY
The code table is not a selection criterion for files to be processed with ERASE.

= *NONE
Only files for which no character set is defined are erased.

= ccs-name
Only the files for which the specified code table was defined are processed. The name
of the code table may consist of up to 8 alphanumeric characters.

CHECK

As in interactive mode, the user can specify that a control check be performed by issuing a
prompt to SYSOUT before a file set is processed. The file set for which the prompted dialog
is to be executed can be specified by the user (e.g. for all files to be processed). The issued
prompt must be answered by the user as follows:

“Y” confirms that the specified file set is to be processed.
— “N” excludes the specified file set from the operation.
“T” terminates the entire ERASE processing operation.

Any response that consists of only blanks or the “null string” will be interpreted as “N”.

In batch mode, CHECK=NO always applies.

352

U4250-J-2125-12-76

Macros

ERASE

=S8TD

The default setting depends on the operating mode:

— In aninteractive dialog (SYSCMD is assigned to the terminal), CHECK=MULTIPLE
is the default.

— In procedures and in batch mode, the default value is CHECK=NO.

=NO
The user cannot intervene in the ERASE processing; all specified or selected files are
erased.

= MULTIPLE

If “pathname” is partially qualified, which means that more than one file is selected, or
if “pathname” contains wildcards, the user can decide, each time the catalog ID
changes, whether or not files from the new catalog are to be erased. He/she must
respond with “YES” or “NO” to the question issued by the system. CHECK=MULTIPLE
is useful if wildcards are specified for “catid” in the “pathname”. In the dialog, ERASE
processing can be terminated by responding with “TERMINATE” to the question, or the
CHECK mode can be changed (— NO/ERROR/SINGLE/PVS).

= ERROR

By means of CHECK=ERROR, the user specifies that a dialog as for CHECK=SINGLE
is to be started if user-correctable errors occur. As long as no errors occur,
CHECK=ERROR is equivalent to CHECK=NO (i.e. no dialog). CHECK=ERROR is set
implicitly if CHECK=SINGLE is selected.

In the case of an error, the user can acknowledge the error message, abort ERASE
processing or attempt to recover the error. If desired, he/she can also change the
CHECK mode.

=PVS

As for CHECK=MULTIPLE, ERASE processing starts a dialog if files in different
catalogs are affected by the ERASE macro. The user can respond with “YES” or “NO”
to the system question, abort ERASE processing (“TERMINATE”) or change the
CHECK mode.

= SINGLE

For each file which is processed, the user can decide in a dialog whether or not it is to
be erased (response YES/NO). If, in the dialog, (s)he specifies protection attributes or
one or more passwords together with “lGNORE”, these specifications are evaluated
and any file which fulfills them is erased without further questions (“YES” must also be
specified). The user can also abort ERASE processing or change the CHECK mode.

The affected files are listed in alphabetical order. If file generation groups are affected,
the generations are listed separately in the order of their generation numbers. If the user
elects not to erase a file generation, processing of the file generation group is termi-
nated and the current status is saved (there must be no gaps in the sequence of file
generations).

U4250-J-Z2125-12-76 353

ERASE

Macros

If only parts of a generation group are to be erased, the order of the generations
depends on the value of the POS operand: with POS=AFTER, the generations are
listed in descending order of their generation numbers, starting with the youngest
generation; with POS=BEFORE, they are listed in ascending order of their generation
numbers, starting with the oldest generation.

= USERID

For system administration only:

ERASE processing branches to an interactive dialog if files of various user IDs are
involved. Whenever the user ID changes, a prompt is issued to determine whether the
next user ID is to be processed.

The system administrator can accept (“YES”), deny (“NO”), or end (“TERMINATE”) the
ERASE operation, or switch to CHECK mode.

CRDATE
Allows the user to select files for processing on the basis of their creation dates. File
generation groups and file generations are not taken into account.

Date values may be supplemented by specifying a time. The rules for date and time speci-
fications are described on page 864.
Range specifications are inclusive of both specified limits.

= ANY
The creation date is not a selection criterion.

= NONE
Processes all files for which no creation date has been entered in the catalog, i.e. files
which have not yet been opened.

= date
Processes all files that were created on the specified date.

= (date[,])
Processes all files that were created on or after the specified date
(creation date > current date).

= (,date)
Processes all files that were created on or before the specified date
(creation date < current date).

= (date1,date2)
Processes all files that were created within the specified period
(date1 < creation date < date2).

= date(time[,])
Processes all files that were created on the specified date on or after the specified time.

354

U4250-J-2125-12-76

Macros ERASE

= date(time1,time2)
Processes all files that were created on the specified date within the specified period.

= (date(time)[,])
Processes all files that were created on or after the specified date and time.

= (,date(time))
Processes all files that were created before the specified date and time.

(date1(time),date2(time))

Processes all files that were created within the specified period. The upper and lower
limits of the specified period are defined more precisely by a time specification in both
cases.

DELDATE
Allows the user to select files on the basis of the DELETION-DATE (the time from which the
file may be deleted irrespective of the protection attributes).

The user can supplement the date values by specifying a time. It must be noted in this
respect that the deletion time of 00:00:00 is currently always entered in the file catalog.

The rules for date and time specifications are described on page 864. Range specifications
are inclusive of both specified limits.

=*ANY
The DELETION-DATE is not a selection criterion.

=*NONE
Processes all files for which no DELETION-DATE is entered in the catalog.

= date
Processes all files for which the specified DELETION-DATE is defined.

= (date[,])
Processes all files whose DELETION-DATE is later or equal to the specified date.

= (,date)
Processes all files whose DELETION-DATE is earlier or equal to the specified date.

= (date1,date2)
Processes all files whose DELETION-DATE lies within the specified time period
(date1 < release date < date2).

= date(time[,])

Processes all files for which the specified DELETION-DATE is defined and for which the
release time is later or equal to the specified time. The release time (referred to the
DELETION-DATE) is always entered in the catalog as 00:00:00.

U4250-J-Z2125-12-76 355

ERASE

Macros

= date(time1,time2)

Processes all files for which the specified DELETION-DATE is defined and for which the
release time is within the specified time period. The release time (referred to the
DELETION-DATE) is always entered in the catalog as 00:00:00.

= (date(time)[,])

Processes all files whose DELETION-DATE and time is later than or equal to the
specified time. The release time (referred to the DELETION-DATE) is always entered
in the catalog as 00:00:00.

= (,date(time))

Processes all files whose DELETION-DATE and time is earlier than or equal to the
specified time. The release time (referred to the DELETION-DATE) is always entered
in the catalog as 00:00:00.

(date1(time),date2(time))

Processes all files whose DELETION-DATE lies within the specified time period
(date1 < DELETION-DATE < date2). The upper and lower limits of the specified time
period are defined more exactly by specifying a time.

DISKWR
Enables the user to select files for processing based on the time at which data consistency
is required for them, as defined in the catalog entry.

= ANY
The time at which data consistency is required, as defined in the catalog, is not a
selection criterion.

= IMMEDIATE
Processes all files for which data consistency is required immediately after a write
operation is completed. Such files are not suitable for processing in a write cache.

= BY-CLOSE
Processes all files for which data consistency is not required until CLOSE processing.
These files are suitable for processing in a write cache.

ENCRYPT
Enables the user to select files based on whether or with which encryption method they are
encrypted.

=*ANY
Processes all files regardless of whether or with which encryption method they are
encrypted.

= *NONE
Processes only those files which are not encrypted.

356

U4250-J-2125-12-76

Macros

ERASE

=*AES
Processes only those files which are encrypted with the AES encryption method.

=*DES
Processes only those files which are encrypted with the DES encryption method.

EXDATE

The user can select files to be processed on the basis of their expiration date. The
expiration date of a file is defined in the catalog and specifies when the file may be updated
again or deleted. If no expiration date is defined when creating the file, the expiration date
is set to the creation date.

File generation groups and file generations are not taken into account.

The user may supplement date specifications by a time value; however, it should be noted
that the time stamp for the expiration date is always set to 00:00:00 in the file catalog at
present.

The rules for date and time specific