
Edition June 2016

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

ak
ro

\e
n_

pr
od

\d
vs

m
ak

_e
.v

or

English

BS2000 OSD/BC V10.0
DMS Macros

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2016 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U4250-J-Z125-12-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

. M
ai

 2
01

6
 S

ta
n

d
17

:0
4

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
1

00
\1

30
3

11
0

_d
vs

m
ak

ro
\e

n_
p

ro
d\

dv
sm

a
k_

e.
iv

z

Contents

1 Preface . 9

1.1 Objectives and target groups of this manual . 10

1.2 Summary of contents . 11

1.3 Changes since the last edition of the manual . 13

1.4 Notational conventions . 14

2 Overview of DMS macros . 15

2.1 Table of DMS macros (in alphabetical order) . 15

2.2 DMS macros in order of function . 18
2.2.1 File maintenance . 18
2.2.2 Controlling file processing . 19
2.2.3 Data protection/security support . 20
2.2.4 Device and volume management . 22
2.2.5 Access to files . 23
2.2.6 Generation of operand lists for control blocks, DMS tables, etc. 28
2.2.7 Output of information on files, volumes, devices, etc. 30

2.3 Comparison of macros and commands . 31

3 Programming notes . 35

3.1 BTAM – Basic Tape Access Method . 35
OPEN modes . 37
BTAM record and block formats . 38

Contents

 U4250-J-Z125-12-76

3.2 DIV – Data In Virtual . 39
Opening a file . 40
Defining windows . 44
Writing data back to the disk file . 45
Undoing modifications in a window . 46
Disabling a window . 47
Closing a file . 47

3.3 EAM – Evanescent Access Method . 48
MFCB (Mini File Control Block) . 49
EAM processing . 56

3.4 FASTPAM – Fast Primary Access Method . 61
FASTPAM functions . 62
Processing files with FASTPAM . 65

3.5 ISAM – Indexed Sequential Access Method . 72
OPEN modes . 74
ISAM pointers . 78

3.6 SAM – Sequential Access Method . 81
OPEN modes . 82

3.7 UPAM – User Primary Access Method . 89
OPEN modes . 92
UPAM for disk files . 95
UPAM processing of tape files . 100
Chaining PAM macros in list form . 102
TU eventing: event-driven processing . 105

3.8 Files larger than 32 GB . 108

Contents

U4250-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.iv
z

4 Macros . 113

ADDPLNK – Define pool link name . 113
BTAM – Process tape files (type S) . 117
CATAL – Process catalog entry . 130
Variations in different versions – VERSION=0/1/2/3 193
CHKFAR – Check file access rights . 196
CHNGE – Change TFT entry . 204
CLOSE – Close file . 205
COMPFIL – Compare disk files . 209
COPFILE – Copy file . 218
CREAIX – Create secondary keys for ISAM file . 233
CREPOOL – Create ISAM pool . 241
DECFILE – Convert encrypted file into unencrypted file 249
DELAIX – Delete secondary key of ISAM file . 253
DELPOOL – Delete/release ISAM pool . 257
DIV – Access files via virtual address space . 261
DIV function: OPEN . 265
DIV function: MAP . 273
DIV function: SAVE . 280
DIV function: RESET . 285
DIV function: UNMAP . 291
DIV function: CLOSE . 295
DROPTFT – Release TFT entry . 309
EAM – Process EAM files . 312
ELIM – Eliminate record . 314
ENCFILE – Convert unencrypted file into encrypted filen 316
ERASE – Erase files . 322
Variations in versions – VERSION=0/1/2 . 387
EXLST – Define exit address list . 391
EXRTN – Return from error routine . 405
FCB – Define file control block . 407
FCBAD – Create FCB addresses . 449
FEOV – Close tape . 450
FILE – Define file attributes / control file processing 452
Variations in VERSION=0/1/2/3 . 518
FILELST – Create variable operand areas for FILE macros 521
FPAMACC – Access FASTPAM files . 525
FPAMSRV – FASTPAM management function . 546
FASTPAM function: ENABLE ENVIRONMENT . 551
FASTPAM function: ENABLE IOAREA POOL . 560
FASTPAM function: OPEN . 567
FASTPAM function: CLOSE . 576

Contents

 U4250-J-Z125-12-76

FASTPAM function: DISABLE IOAREA POOL . 579
FASTPAM function: DISABLE ENVIRONMENT 582
FSTAT – Request catalog information . 596
Programming notes for VERSION=4 . 650
Programming notes (VERSION=2, 3 and 4) . 651
Programming notes for VERSION=0 and VERSION=1 660
Variations in versions – VERSION=0/1/2/3/4 . 664
Version variations in the representation of the output area 670
GET – Read next record . 674
GETFL – Read record by flag . 679
GETKY – Get record with specified key . 688
GETR – Get record “reverse” . 691
IDBPL – Provide BTAM operand list with symbolic names 694
IDFCB – Provide FCB with symbolic names . 695
IDFCBE – Provide FCBE with symbolic names . 696
IMPNFIL – Create (import) catalog entries for node files 697
IDPPL – Provide PAM operand list with symbolic names 706
IMPORT – Create catalog entry for files . 707
INSRT – Insert record . 715
ISREQ – Unlock data block . 717
LBRET – Return from user label routine . 720
LFFSNAP – List files from a Snapset . 722
LJFSNAP – List job variables from a Snapset . 730
MAILFIL – Send file by email . 738
NDWERINF – Evaluate status bytes . 748
OPEN – Open file . 749
OSTAT – Request information on open files . 753
PAM – Perform UPAM actions . 755
PUT – Write record . 766
PUTX – Replace record . 769
RDTFT – Read TFT and TST information . 772
RELSE – Close block . 780
RELTFT – Delete TFT entry . 782
REMPLNK – Delete pool link name . 787
RETRY – Repeat macro . 790
RFFSNAP– Restore files from Snapset . 792
RJFSNAP– Restore job variables from a Snapset 802
SETL – Position file pointer . 810
SHOPLNK – Return information on ISAM pool link names 815
SHOPOOL – Return information on ISAM pools 827
SHOWAIX – Request information on secondary keys 843
STORE – Store record . 848
VERIF – Recover file . 850

Contents

U4250-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.iv
z

5 Appendix . 857

5.1 Syntax presentation . 858
5.1.1 Macro format . 858
5.1.2 Metasyntax used for the macros . 859
5.1.3 Obsolete metasyntax used for the macros . 861
5.1.4 Wildcards . 863
5.1.5 Format of date specifications . 864
5.1.6 Macro types . 865
5.1.7 Standard header . 869

5.2 DMS error codes . 871

5.3 CALL interface for DIV . 876

5.4 Labels . 879
5.4.1 Volume header labels . 879
5.4.2 User volume header labels (UVL1 through UVL9) 880
5.4.3 File header labels (HDR1 through HDR9) . 881
5.4.4 User file header labels (UHL) . 886
5.4.5 End-of-volume labels (EOV1 through EOV9) . 886
5.4.6 End-of-file labels (EOF1 through EOF9) . 888
5.4.7 User file trailer labels (UTL) . 889
5.4.8 Processing of label fields . 890

5.5 DMS dummy sections (DSECTs) . 894

5.6 Formats of replaced macros . 896
COPY – Copy file . 896
REL – Delete TFT entry . 896

Glossary . 897

Related publications . 907

Index . 911

Contents

 U4250-J-Z125-12-76

U4250-J-Z125-12-76 9

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
4:

33
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

1

1 Preface

This manual describes the macros of the BS2000 Data Management System.

The Data Management System (DMS) is an autonomous subsystem within BS2000 and
forms the connecting link between the user-controlled accesses to data objects and the
central device drivers of the base system. DMS in turn makes use of certain services
offered by the base system.

DMS as a “distributed system”

DMS provides support primarily for data processing on public volume sets (often abbre-
viated to “pubsets”). In MPVS (Multiple Public Volume Set) systems, several such pubsets
are grouped together to form a single system.

MPVS systems are characterized by the fact that the individual pubsets can be managed
independently. Only the so-called “home pubset” and the pubsets which contain system
data need to be available throughout the session. The system can be distributed over
various pubsets. The system administrator can, as required, add or remove all other
pubsets, which do not contain system areas. The distribution of the system over various
pubsets and the mutual independence of the pubsets guarantee a high degree of avail-
ability.

For the BS2000 user this means that unless he explicitly requests private volumes, all of
his files are created on the pubset which the system administrator has defined as his default
pubset. He does not need to request volumes or devices, and DMS also manages his
memory requirements.

A file catalog is kept in each pubset for each user who is authorized to access this pubset.
All user files are uniquely identified by the user ID and the catalog ID (the ID of the pubset
on which the catalog is kept). At the same time, this ensures that file access is permitted
only to the owner of the files unless he explicitly permits other users to access his files.

Objectives and target groups of this manual Preface

10 U4250-J-Z125-12-76

Functions of the Data Management System

The Data Management System (DMS) enables users to process their data by using the
functions provided for or necessary for file processing:

– creating and managing files, including memory space management
– managing catalogs
– making files available and processing files using the access methods
– assigning files to programs.

In addition to this, DMS permits the user to define data and file protection features at the
file level. Data security is also supported by DMS, for example by setting locks during file
access.

The functions of DMS are implemented via the program interfaces (Assembler) described
in this manual and compatible command interfaces described in the manuals
“Commands” [3].

1.1 Objectives and target groups of this manual

This manual is intended for users who wish to manage or process their files with the aid of
the Assembler programming interface or to control data and file protection, data security,
etc. with the aid of the DMS macros.

Preface Summary of contents

U4250-J-Z125-12-76 11

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
4:

33
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

1

1.2 Summary of contents

Chapter 1: Preface

This chapter contains information on the contents and structure of the manual and
documents changes implemented since the preceding version.

Chapter 2: Overview of DMS macros

This part of the manual lists all DMS macros in alphabetical order and by function.

Chapter 3: Programming notes

This chapter lists the individual access methods used by DMS and the macros and
operands available for the relevant access methods. This section focuses on features of
individual access methods which are relevant to programming.

Chapter 4: Macros

This part of the manual is intended for use as a reference section. It contains descriptions
of functions, syntax and operands for DMS macros. All macros are listed in alphabetical
order.

Chapter 5: Appendix

The appendix contains tables and lists referred to at various points within this manual.
It includes metasyntax and tables showing label formats for tape files, DMS error
messages, and a list of device and volume types.

References

The manual concludes with a glossary, a list of related publications, and an index.

Notes on using this manual

References to other manuals in the text are generally in the form of abbreviated titles
together with a reference number. The full titles can be found under “Related publications”
at the back of the manual.

A general description of DMS functions can be found in the “Introductory Guide to DMS” [1].

Summary of contents Preface

12 U4250-J-Z125-12-76

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Changes since the last edition of the manual

U4250-J-Z125-12-76 13

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
4:

33
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

1

1.3 Changes since the last edition of the manual

The “DMS Macros” manual was last published for BS2000/OSD-BC V9.0. The following
major changes have been made since the last edition of the manual:

Changes to the macro interfaces

Overview of the changes to the DMS macro interface:

Fundamental information on the use of Net-Storage in BS2000 is provided in the “Intro-
duction to System Administration” [7]. How to work with BS2000 files and node files on Net-
Storage is described in the "Introductory Guide to DMS" [1].

The device and volume type tables are contained in the "System Installation" manual [16].
Information on the volume types of DMS (Net-Storage and tape processing is provided in
the "Commands" manual [3].

General change

The name BS2000/OSD-BC for the BS2000 basic configuration has changed and from
Version V10.0 becomes: BS2000 OSD/BC.

Previous versions will be referred to by the previous name BS2000/OSD-BC.

Macro / operand or RC Subject of the change

IMPNFIL New macro: Imports node files from a Net-Storage volume

FILE New operand NFTYPE determines the file type of a file on Net-
Storage. The file can be created as a BS2000 file or as a node
file.

FSTAT New operand FILTYPE for selecting BS2000 files or node files.

ERASE New operand FILTYPE for selecting BS2000 files or node files.
In the case of DELETE-OR-EXPORT node files are retained
(corresponds to the function of the EXPORT-NODE-FILES
command).

COPFILE New operand CHDATE specifies whether the target file is
assigned the change date of the source file.
The PROTECT=*SAME-AND-CHANGE-DATE specification is
still supported for reasons of compatibility.

Notational conventions Preface

14 U4250-J-Z125-12-76

1.4 Notational conventions

The following typographical elements are used in this manual:

i For notes on particularly important information

v This symbol designates special information that points out the possibility that
data can be lost or that other serious damage may occur.

[] References to other publications within the text are given in abbreviated form
followed by numbers; the full titles are listed in the “References” section at the
back of this manual.

input Inputs and system outputs in examples are shown in typewriter font

Information on the syntax used in macro calls will be found in the appendix (starting on
page 857).

U4250-J-Z125-12-76 15

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

2 Overview of DMS macros

2.1 Table of DMS macros (in alphabetical order)

Macro Brief description

ADDPLNK ISAM: define pool link name

BTAM controls all BTAM actions

CATAL process catalog entry

CHKFAR check access rights to file

CHNGE change TFT entry

CLOSE close file

COMPFIL compare two disk files

COPFILE copy file

CREAIX ISAM: create secondary key for ISAM file

CREPOOL ISAM: create ISAM pool

DECFILE convert encrypted file into unencrypted file

DELAIX ISAM: delete secondary key of ISAM file

DELPOOL ISAM: delete/release ISAM pool

DIV access file via virtual address space

DROPTFT release TFT entry

EAM macro (type R)

ELIM ISAM: delete record

ENCFILE convert unencrypted file into encrypted file

ERASE delete files

EXLST specify exit address list (type O)

EXRTN return from error routines (type R)

FCB define file control block (type O)

FCBAD create FCB addresses (type O)

(Teil 1 von 3)

Table of DMS macros (in alphabetical order) Overview of DMS macros

16 U4250-J-Z125-12-76

FEOV BTAM/SAM: close volume

FILE define file characteristics / control file processing

FILELST create variable operand areas for FILE macro

FPAMACC FASTPAM: formulate FASTPAM file accesses

FPAMSRV FASTPAM: formulate FASTPAM management calls

FSTAT request catalog information

GET ISAM/SAM: read next record

GETFL ISAM: read record after flag

GETKY ISAM: read record with specified key

GETR ISAM: sequential “reverse” read

IDBPL BTAM: BTAM operand list (type O)

IDFCB provide FCB with symbolic names (type O)

IDFCBE provide FCBE with symbolic names (type O)

IDMCB provide MFCB (EAM control block with symbolic name)

IDPPL UPAM: PAM operand list

IMPNFIL create (import) catalog entries for node files

IMPORT create (import) catalog entries for files

INSRT ISAM: insert record (type R)

ISREQ ISAM: clear lock (type O)

LBRET return from user label routine (type R)

LFFSNAP list files from a Snapset

LJFSNAP list job variables from a Snapset

MAILFIL send file to a user ID by email

NDWERINF BTAM: interrogate status bytes

OPEN open file (type R)

OSTAT ISAM: information about opened files (type R)

PAM UPAM: perform UPAM actions

PUT ISAM: write record

PUTX ISAM/SAM: replace record

RDTFT information from TFT and TST

RELTFT delete TFT entry

REMPLNK ISAM: delete pool link name

Macro Brief description

(Teil 2 von 3)

Overview of DMS macros Table of DMS macros (in alphabetical order)

U4250-J-Z125-12-76 17

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

RETRY ISAM: repeat macro

RELSE close block

RFFSNAP restore files from a Snapset

RJFSNAP restore job variables from a Snapset

SETL ISAM/SAM: position in file

SHOPLNK ISAM: output information on ISAM pool link name

SHOPOOL ISAM: output information on ISAM pool

SHOWAIX ISAM: output information on secondary key

STORE ISAM: store record

VERIF restore file

Macro Brief description

(Teil 3 von 3)

DMS macros in order of function Overview of DMS macros

18 U4250-J-Z125-12-76

2.2 DMS macros in order of function

The following tables provide an overview of the functions of the macros described in this
manual.

Further details can be found in the descriptions of the macros and operands in this manual
or in the appropriate introductory chapters in the “Introductory Guide to DMS” [1].

2.2.1 File maintenance

File maintenance includes not only creating, copying, deleting or restoring files, but also
maintenance of the file catalog by the user.

Macro Operands Brief description

CATAL creates or updates catalog entries.

COMPFIL compares two disk files

COPFILE copies files.

ERASE erases/exports files.

FILE creates a catalog entry and reserves storage space for noncataloged
files.

SPACE reserves or releases storage space.

STATE creates catalog entries for files on private disk.

FSTAT displays information from the file catalog.

IMPORT creates (imports) catalog entries for files

LFFSNAP
LJFSNAP

lists files from a Snapset
lists job variable from a Snapset

MAILFIL sends a file to a user by email

RFFSNAP
RJFSNAP

restores files from a Snapset
restores job variable from a Snapset

VERIF restores damaged files.

Overview of DMS macros DMS macros in order of function

U4250-J-Z125-12-76 19

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

2.2.2 Controlling file processing

To enable a file to be processed by a program, it must be possible to set up a connection
between the two. This connection can either be defined in the FCB or, if the program uses
an internal file name (the file link name), be established using the FILE macro.
The connection is stored together with other information in the task file table (TFT). File
processing is thus controlled via the TFT.

For NK-ISAM files, file processing control also incorporates the management of user ISAM
pools, in which these files are processed. The user can also use standard ISAM pools of
the system, but then has no influence on pool size or reservation.

Macro Operands Brief description

ADDPLNK assigns a pool link name to a user ISAM pool.

CHNGE assigns a new file link name to a file.

CREAIX creates a secondary key for an ISAM file.

CREPOOL creates a user ISAM pool.

DELAIX deletes secondary indices of an ISAM file.

DELPOOL deletes a user ISAM pool.

FCB FILE defines a fixed link between file and program.

LINK defines a file link name in the program.

POOLLNK sets up a connection to a user ISAM pool.

FILE LINK creates a TFT entry; further operands describe the file and processing
attributes.

BLKCTRL defines the file format.

NFTYPE defines the file type of a file on Net-Storage (BS2000 file or node file).

POOLLNK sets up the link to the ISAM pool.

RDTFT displays TFT information.

RELTFT deletes a TFT entry.

REMPLINK deletes a pool link name.

SHOPLNK shows assignments of pool link names to ISAM pools.

SHOPOOL returns information on the attributes and occupancy of ISAM pools.

DMS macros in order of function Overview of DMS macros

20 U4250-J-Z125-12-76

2.2.3 Data protection/security support

The mechanisms for file and data protection automatically supported by DMS (access
authorization checks, etc.) can be extended by the user, e.g. with the aid of passwords.
Data security is assured by various mechanisms for recovering files or programs, etc.

File protection

Macro Operands Brief description

CATAL SHARE controls shareability.

ACCESS controls the type of access.

OWNERAR
GROUPAR
OTHERAR

defines, in the BASIC-ACL,
the access rights for user groups.
(see the “Introductory Guide to DMS” [1])

GUARDS when SECOS is used: provides enhanced access protection for files.

EXPASS
RDPASS
WRPASS

define passwords for the various access levels.

RETPD specifies a retention period.

PROTECT transfers protection attributes

CHKFAR checks the caller's file access rights.

COPFILE PROTECT transfers the protection attributes when a file is copied.

DECFILE converts an encrypted file into an unencrypted file.

ENCFILE converts an unencrypted file into an encrypted file.

FILE RETPD defines a retention period (valid only if specified when the file is opened)

FCB PASS permits access to password-protected files.

RETPD defines a retention period for a file.

Overview of DMS macros DMS macros in order of function

U4250-J-Z125-12-76 21

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

Data protection

Data security

Macro Operands Brief description

CATAL DESTROY specifies in the catalog entry that disk files or superfluous foreign data
on tape files are to be overwritten during deletion (cf. FILE: DESTOC).

ERASE DESTROY specifies data destruction in conjunction with deletion.

DECFILE converts an encrypted file into an unencrypted file.

ENCFILE converts an unencrypted file into an encrypted file.

FILE DESTOC specifies that any data remaining on the tape in the case of a tape swap
or after closing a tape file is overwritten.

Macro Operands Brief description

CATAL BACKUP specifies the frequency of automatic saving.

COPFILE REPLACE specifies whether an existing file is to be overwritten during copying.

CREPOOL WROUT writes updated blocks in ISAM files back to disk immediately.

EXLST defines exit routines for errors and other events.

FCB EXIT the address of an exit routine or of an EXLST macro.

WRCHK specifies a read-after-write check as a safeguard against recording
errors.

FILE WRCHK performs a read-after-write check as a safeguard against recording
errors.

WROUT writes updated records in ISAM files back to disk immediately.

VERIF restores file structures, unlocks files.

WRCPT writes a checkpoint / creates a checkpoint file for restart with the
RESTART-PROGRAM command.

DMS macros in order of function Overview of DMS macros

22 U4250-J-Z125-12-76

2.2.4 Device and volume management

DMS supports users in the processing of files on private volumes by making it possible for
them to reserve volumes and devices for their jobs.

Macro Operands Brief description

FILE DEVICE
VOLUME

defines devices and volumes for a file on private disk or on Net-Storage
volumes.

MOUNT issues a mount request at the console for private disks.

IMPNFIL creates (imports) catalog entries for node files.

IMPORT creates (imports) catalog entries for files.

RELTFT deletes TFT entries and implicitly releases devices.

Overview of DMS macros DMS macros in order of function

U4250-J-Z125-12-76 23

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

2.2.5 Access to files

Access to files is executed by calling action macros for the various access methods. DMS
also handles the opening and closing of files (OPEN/CLOSE processing) as a function of
the access method involved.

DMS macros for file processing (“service macros”)

The DMS macros for file processing (i.e. the “service macros”) are macro calls which are
valid for all access methods.

Macros specific to the access methods

A distinction is made between the following access methods:

– BTAM
– DIV
– EAM
– FASTPAM
– SAM
– ISAM
– UPAM

Access takes place in the familar way for encrypted files (with plain text content). Decryption
when reading and encryption when writing are performed internally and automatically. The
macros for file access in a program do not need to be modified for this purpose. Before a
file is opened it is only necessary to enter the associated crypto password in the crypto
password table of the accessing task. This can be done before the program is started.

In the tables below, the macros used for file access are assigned to the various access
methods.

Macro Brief description

CLOSE closes one or more files.

EXLST defines error exits.

EXRTN implements a return from EXLST routines.

FCB creates a file control block (FCB).

FCBAD creates the FCB in the literal pool of a program.

LBRET implements a return from user label handling routines (tape processing).

OPEN opens a file.

DMS macros in order of function Overview of DMS macros

24 U4250-J-Z125-12-76

BTAM (Basic Tape Access Method)

BTAM is an access method for block-oriented tape processing; it can also be used to
process tape files which were not created with BTAM. During processing of a tape file, the
direction in which the file is processed can be changed as desired within the file, and tapes
can be positioned to any desired block or section. BTAM processes files with or without
standard blocks.

DIV (Data In Virtual)

The basis for file processing for a user is 4KB blocks. DIV can also be used to process files
that were not created with DIV.

EAM (Evanescent Access Method)

EAM is used to process task-specific temporary files in the SYSEAM area. It is a block-
oriented access method and is particularly suitable for rapid processing of task-specific
work files.

Macro Brief description

BTAM controls all BTAM actions.

FEOV initiates a tape swap.

NDWERINF interrogates the status bytes.

Macro Brief description

DIV Process files with the DIV access method
– open a file
– define a window (i.e. a work area in virtual address space)
– write modified pages from the window back to the file on disk
– undo changes in the window
– release windows in virtual address space
– close a file, releasing any existing windows with default values, if applicable

Macro Brief description

EAM Controls all EAM accesses

Overview of DMS macros DMS macros in order of function

U4250-J-Z125-12-76 25

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

FASTPAM (Fast Primary Access Method)

FASTPAM is a block-oriented access method which always works with 4KB blocks.
FASTPAM can also be used to process files that were not created with FASTPAM.

SAM (Sequential Access Method)

SAM is a record-oriented access method. The records are stored sequentially in the file.
SAM lets users process records sequentially in either direction (beginning-of-file to end-of-
file or vice versa). For tape processing, SAM complies with all requirements of DIN 66029
up to exchange level 3. Files with either standard or nonstandard blocks can be processed.

Macro Brief description

FPAMACC File access functions

– read and write blocks synchronously
– read and write blocks asynchronously
– wait for the end of asynchronous I/O jobs
– report the end of asynchronous I/O jobs

FPAMSRV Management functions

– enable the system environment (FASTPAM environment)
– enable I/O areas (FASTPAM I/O area pool)
– open a file for processing
– close a file opened with FPAMSRV
– disable the system environment (FASTPAM environment)
– disable I/O areas (FASTPAM I/O area pool)

Macro Brief description

FEOV initiates a tape swap.

GET retrieves the next record.

PUT writes the next record.

PUTX (locate mode only) replaces a record read by means of GET.

RELSE terminates a data block.

SETL positions to beginning-of-file, to end-of-file, or to a record.

DMS macros in order of function Overview of DMS macros

26 U4250-J-Z125-12-76

ISAM (Indexed-Sequential Access Method)

The basis for file processing is the structure of an ISAM file with its index and data sections.
Each record contains a key and the keys are the criterion for sorting the record. For index
and data blocks, see the “Introductory Guide to DMS” [1].

Macro Brief description

ADDPLNK assigns a pool link name to a user ISAM pool.

CREAIX creates a secondary index for an ISAM file.

CREPOOL sets up a user ISAM pool.

DELAIX deletes secondary indices of an ISAM file.

DELPOOL deletes a user ISAM pool.

ELIM deletes a record from the file.

GET reads the records from the file sequentially.

GETFL if flagged ISAM keys are used: reads the next record within the flag range
(sequentially).

GETKY reads the first record with the specified key.

GETR reads the records sequentially in reverse order.

INSRT inserts a record into the file with a new ISAM key.

ISREQ clears an ISAM lock.

OSTAT informs the caller about the number and type of concurrent file accesses.

PUT sequentially writes records to the end of the file (and also checks that the keys are in
the right order).

PUTX replaces a record read previously.

REMPLNK deletes the pool link name.

RETRY after execution of the EXLST PGLOCK exit, resets the ISAM pointer and repeats the
last macro.

SETL positions the ISAM pointer to the beginning of the file, to the end of the file or to a
specific record for subsequent processing.

SHOPLNK provides information about the assignment of ISAM pools to pool link names.

SHOPOOL provides information about attributes and assignment status of ISAM pools.

SHOWAIX provides information about secondary indices of an ISAM file.

STORE – inserts a record with a new ISAM key into the file, or
– overwrites a record with an existing ISAM key if duplicate ISAM keys are not

permitted, or
– inserts into the file a record with an existing ISAM key as the last record with this

key.

Overview of DMS macros DMS macros in order of function

U4250-J-Z125-12-76 27

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

UPAM (User Primary Access Method)

UPAM is a block-oriented access method. The basis of UPAM is the standard block (= PAM
page). UPAM can also be used to process files that were not created with UPAM.

For event-driven processing, the following macros are also significant (for detailed descrip-
tions, see the “Executive Macros” [2] manual).

Macro Brief description

PAM Controls all UPAM accesses

Macro Brief description

CHKEI checks the queue status for an event item.

CONTXT accesses the register set of the interrupted task/process.

DISCO closes the routine for the contingency process.

DISEI disconnects the user program from the event item.

ENACO opens a routine as a contingency process and assigns it a name and a priority.

ENAEI creates an event item and/or establishes the link between the calling process and the
event item.

FECB creates a file event control block.

LEVCO changes the priority of the called process.

POSSIG signals an event.

RETCO terminates the calling contingency process.

SOLSIG requests a signal from the event item.

SUSPEND places the calling process in an interruptible wait state.

DMS macros in order of function Overview of DMS macros

28 U4250-J-Z125-12-76

2.2.6 Generation of operand lists for control blocks, DMS tables, etc.

The user can generate program areas or DSECTs (Dummy SECTions) which permit him/
her to access the contents of DMS tables, file control blocks, etc. or the operand lists of
DMS macros with the aid of symbolic addresses. For most macros this is possible with the
aid of the MF operand, alternatively there are special DSECT macros. In the case of "older"
macros (e.g. CATAL) which were only converted in a later version, the VERSION operand
decides whether the special DSECT macro must still be used or whether specification using
the MF operand is possible.

Operand lists for DMS macros with command functions

Macro Required VERSION specification MF operand “DSECT macro”

ADDPLNK x -

CATAL Without VERSION operand - IDCAT

VERSIONÏ1 x -

CHNGE - IDCHA

COMPFIL x -

COPFILE x -

COPY (Macro replaced by COPFILE) - IDCOP

CREAIX x -

CREPOOL x -

DECFILE x -

DELPOOL x -

DELAIX x -

DROPTFT x -

ENCFILE x -

ERASE VERSION=0 - IDERS

VERSIONÏ1 x -

FILE VERSION=0 - IDPFL/IDPFX

VERSIONÏ1 x -

FSTAT VERSION=0 (corresponds to 710) - IDFST

VERSIONÏ1 (1 corresponds to
800)

x -

IMPNFIL x -

IMPORT Without VERSION operand - DMAIMP

VERSION=1 x -

(Teil 1 von 2)

Overview of DMS macros DMS macros in order of function

U4250-J-Z125-12-76 29

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

where:

x DSECT can be generated via the MF operand

– no MF operand/no DSECT macro

LFFSNAP x -

LJFSNAP x -

MAILFIL x -

RDTFT Without VERSION operand - DMARD (PLIST=INPUT)
DMADR (PLIST=OUTPUT)

VERSIONÏ2 x -

REL (Macro replaced by RELTFT) - IDREL

RELTFT x -

REMPLNK x -

RFFSNAP x -

RJFSNAP x -

SHOPLNK x -

SHOPOOL x -

SHOWAIX x -

VERIF - IDVRF

Macro Required VERSION specification MF operand “DSECT macro”

(Teil 2 von 2)

DMS macros in order of function Overview of DMS macros

30 U4250-J-Z125-12-76

Control blocks and macros specific to access methods

DMS tables, file catalog, etc.

2.2.7 Output of information on files, volumes, devices, etc.

Various DMS macros are provided enabling information on catalog entries, file status, the
task file table, device and volume allocation, etc. to be requested in the program at any time
and utilized for further processing.

Macro Brief description

IDECB for the UPAM file event control block (FECB).

IDFCB for the file control block (FCB) of the user program at the TU level.

IDFCBE extension of the 24-bit TU FCB.

IDMCB EAM control block for EAM macros.

IDPPL operand list for the PAM macro.

IDOST operand list for the OSTAT macro.

Macro Brief description

IDCE catalog entry.

IDCEG catalog entry (extension for file generation groups).

IDCEX catalog entry (extension).

IDEE catalog entry (extent list).

IDEMS DMS error messages.

IDTFT TFT entry

IDVT volume label entry (in the volume table).

Macro Brief description

FSTAT information from file catalog or about catalog entries for files.

OSTAT information about the number and type of ISAM file accesses by different jobs.

RDTFT information about TFT entries.

SHOWAIX information about secondary keys of an ISAM file.

SHOPLNK information about ISAM pool link names.

SHOPOOL information about ISAM pools.

Overview of DMS macros Macros/Commands

U4250-J-Z125-12-76 31

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

2.3 Comparison of macros and commands

Macro Command Function

ADDPLNK ADD-ISAM-POOL-LINK Define a pool link name for an ISAM pool

CATAL CREATE-FILE Create catalog entry

CREATE-FILE-GROUP Define file generation groups

MODIFY-FILE-ATTRIBUTES Define protection mechanisms

MODIFY-FILE-GROUP-
ATTRIBUTES

Define protection mechanisms

CHNGE CHANGE-FILE-LINK Change a file link name in the TFT

COMPFIL COMPARE-DISK-FILES Compare two disk files

COPFILE COPY-FILE Copy a file

CREAIX CREATE-ALTERNATE-INDEX Create an alternate index (secondary key) for an
ISAM file

CREPOOL CREATE-ISAM-POOL Create an ISAM pool

DECFILE DECRYPT-FILE Convert an encrypted file into an unencrypted file

DELAIX DELETE-ALTERNATE-INDEX Delete alternate indices (secondary keys) of an
ISAM file

DELPOOL DELETE-ISAM-POOL Delete/release an ISAM pool

DROPTFT UNLOCK-FILE-LINK Release lock on TFT entry

ENCFILE ENCRYPT-FILE Convert an unencrypted file into an encrypted file

ERASE DELETE-FILE Delete or export one or more files

DELETE-FILE-GENERATION Delete file generation group(s)

DELETE-FILE-GROUP Delete file group(s)

DELETE-SYSTEM-FILES Delete system files

EXPORT-FILE Export file(s)

EXPORT-NODE-FILE Export node file(s)

FILE ADD-FILE-LINK Create a TFT entry

CREATE-FILE Create file

CREATE-FILE-GENERATION Create file generation group

CREATE-TAPE-SET Create TST entry

EXTEND-TAPE-SET Extend TST entry

IMPORT-FILE Import file

MODIFY-FILE-ATTRIBUTES Modify attributes of a file

(Teil 1 von 2)

Macros/Commands Overview of DMS macros

32 U4250-J-Z125-12-76

FILE (cont.) MODIFY-FILE-GENERATION-
SUPPORT

Modify attributes of a file generation group

FSTAT IMPORT-FILE
SHOW-FILE-ATTRIBUTES

Retrieve information from the file catalog

IMPNFIL IMPORT-NODE-FILE Create (import) catalog entries for node files

IMPORT CHECK-IMPORT-DISK-FILE Check file import in advance

IMPORT-FILE Create (import) catalog entries for files

LFFSNAP LIST-FILE-FROM-SNAPSET List files from a Snapset

LJFSNAP LIST-JV-FROM-SNAPSET List job variables from a Snapset

MAILFIL MAIL-FILE Send file or library member to a user ID by email

RDTFT SHOW-FILE-LINK Retrieve information from the task file table

RELTFT DELETE-TAPE-SET Delete a TST entry

REMOVE-FILE-LINK Delete a TFT entry

REMPLNK REMOVE-ISAM-POOL-LINK Delete a pool link name

RFFSNAP RESTORE-FILE-FROM-
SNAPSET

Restore files from a Snapset

RJFSNAP RESTORE-JV-FROM-SNAPSET Restore job variables from a Snapset

SHOWAIX SHOW-INDEX-ATTRIBUTES Output information on the alternate indices
(secondary keys) of an ISAM file

SHOPLNK SHOW-ISAM-POOL-LINK Show assignments of ISAM pools to ISAM pool
link names

SHOPOOL SHOW-ISAM-POOL-
ATTRIBUTES

Return information on an ISAM pool

VERIF CHECK-FILE-CONSISTENCY Restore file consistency

REMOVE-FILE-ALLOCATION-
LOCKS

REPAIR-DISK-FILES

Macro Command Function

(Teil 2 von 2)

Overview of DMS macros Macros/Commands

U4250-J-Z125-12-76 33

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
ay

 2
01

6
 S

ta
n

d
11

:4
1

.5
7

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
2

DMS commands without corresponding macros

Command Function

ADD-CRYPTO-
PASSWORD

Store the crypto password for decrypting encrypted file contents in the
task’s password table

ADD-PASSWORD Enter a password in the password table of the job

CONCATENATE-DISK-
FILES

Concatenate SAM files

EDIT-FILE-ATTRIBUTES
EDIT-FILE-GROUP-
ATTRIBUTES
EDIT-FILE-GENER-
ATION-SUPPORT

Start the guided dialog of the corresponding MODIFY command and
enable an existing catalog entry to be “edited”

EDIT-FILE-LINK Start the guided dialog of the ADD-FILE-LINK command and enable an
existing TFT entry to be “edited”

LIST-NODE-FILES Provide information about node files on the Net-Storage

EDIT-FILE-GROUP-
ATTRIBUTES

Only possible if the chargeable product SDF-P is in use:
activates the guided dialog of the MODIFY-FILE-GROUP-ATTRI-
BUTES command

EDIT-FILE-LINK Only possible if the chargeable product SDF-P is in use:
activates the guided dialog of the ADD-FILE-LINK command

LOCK-FILE-LINK Lock a TFT entry, thus preventing it from being released until after a
UNLOCK-FILE-LINK command

REMOVE-CRYPTO-
PASSWORD

Remove the crypto password from the password table of the ongoing
task

REMOVE-PASSWORD Delete a password from the password table of the job

RESTART-PROGRAM Restart a program at a checkpoint which was set by means of a
WRCPT (or CHKPT) macro

SHOW-BLOCK-TO-FILE-
ASSIGNMENT

Privileged command: shows files in which the requested blocks are
located

SHOW-FILE-LOCKS Show the locks on a file

Macros/Commands Overview of DMS macros

34 U4250-J-Z125-12-76

U4250-J-Z125-12-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

3 Programming notes

This chapter describes features of the various access methods which are relevant to
programming.

3.1 BTAM – Basic Tape Access Method

BTAM is an access method for block-oriented tape processing; it can even be used to
process tape files which were not created with BTAM. While a tape file is being processed,
the processing direction within the file can be changed as desired. The tapes can be
positioned by block or by section as desired. BTAM processes files with and without
standard blocking.

Macros for the BTAM access method

The following macros can be used by the BTAM access method:

Macro Operation Function

CLOSE

Service macros

EXLST

EXRTN

FCB

FCBAD

IDFCB

IDFCBE

LBRET

OPEN

(Teil 1 von 2)

BTAM – Basic Tape Access Method Programming notes

36 U4250-J-Z125-12-76

BTAM CHK check processing status of an I/O operation.

ERG generate interblock gap.

MINF fetch medium information (only useful for volume types which contain
optical disks)

POS position tape.

RBID determine tape position.

RD/RDWT read data into main memory and wait for completion of I/O operation.

RDBF read data from save area of tape cartridge buffer.

REV/REVWT read tape in reverse direction and wait for completion of I/O operation.

RT/RTL read with data transfer; with/without message if the length is less than
anticipated.

RNT/RNTL read without data transfer; with/without message if the length is less
than anticipated.

SYNC synchronize and determine tape position.

WRT/
WRTWT

write data from main memory and optionally wait for completion of
I/O operation.

WT wait for completion of the I/O operation

BSF synchronize and determine tape position.

BSR

Control code for positioning and for writing tape marks

FSF

FSR

REW

RUN

WTM

Macro Operation Function

(Teil 2 von 2)

Programming notes BTAM – Basic Tape Access Method

U4250-J-Z125-12-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

OPEN modes

The following open modes are available with the BTAM access method:

The OPEN modes INPUT and REVERSE differ, at OPEN time, only in how the tape is
positioned. An OPEN REVERSE followed by an RD or RDWT operation will not result in a
reverse read.

BTAM operations and OPEN modes

INOUT Retrieve records from an existing file and add new records; no header labels are
written, since the file must already exist.

INPUT Retrieve files from an existing file in the forward direction.

OUTIN Create a new file and/or retrieve records; labels are written since a new file is being
created.

OUTPUT Create a new file.

REVERSE As for INPUT, but the tape is positioned to EOF at OPEN time and the file is read
backwards. Files which extend over several volumes can only be processed individ-
ually (with the aid of the VSEQ operand).

SINOUT As for INOUT, but the tape is not positioned; this is not permitted if the tape is
positioned at the beginning of the tape.

OPEN mode
BTAM operation

INPUT REVERSE OUTPUT INOUT / OUTIN /
SINOUT

CHK x x x x

Control * n n x x

ERG x x

RD/RDWT x x x

REV/REVWT x x x

RT/RTL x x x

RNT/RNTL x x x

WRT/WRTWT x x

WT x x x x

MINF x x x x

POS x x x x

(Teil 1 von 2)

BTAM – Basic Tape Access Method Programming notes

38 U4250-J-Z125-12-76

where:

x = permissible.

n = output control functions are not permissible.

* “Control” stands for the operands FSF, BSF, WTM, RUN, ERG, FSR, BSR, REW. These
are described in the “BTAM” macro (page 117).

BTAM record and block formats

BTAM is a block-oriented access method for tape files of format BLKCTRL=NO. The
following applies for block length: 18 bytes Î block length Î 32768 bytes (see description of
the LEN operand in the BTAM action macro).

BTAM evaluates the FCB operand RECFORM. The specification of the record format is
related to the block length.

– RECFORM=F fixed length for blocks
The length is defined with BLKSIZE=length or is specified as LEN in the BTAM macro.
The values specified above apply for the minimum and maximum length.

– RECFORM=U for blocks of undefined length
BTAM takes the block length either from the LEN operand in the macro or from the
register specified in FILE/FCB with RECSIZE=reg.

– RECFORM=V for blocks of variable length
(record format V is treated as record format U)

Tape files created with SAM can be read block-by-block with BTAM. Since BTAM does not
know the record structure, the user is responsible for deblocking the records.

RBID x x x x

RDBF x x

SYNC x x x x

OPEN mode
BTAM operation

INPUT REVERSE OUTPUT INOUT / OUTIN /
SINOUT

(Teil 2 von 2)

Programming notes DIV – Data In Virtual

U4250-J-Z125-12-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

3.2 DIV – Data In Virtual

Data in Virtual (DIV) is an access method that differs from the traditional access methods
such as ISAM, SAM, and UPAM because it does not require a file to be structured into
records and blocks and works without I/O buffers, and operations such as GET or PUT.

DIV works with a special DIV-OPEN.

DIV is an object-oriented access method that is particularly suitable for processing unstruc-
tured data (Binary Large Objects (BLOBS)).

The DIV interface is an SVC interface. Jobs are formulated by a parameter list; acknowl-
edgments are made by means of a return code in the parameter list (not via exits).

DIV is not supported on SPARC systems.

Macro for the DIV access method

The DIV access method works with the DIV macro, which covers the various functions for
data processing:

Macro Function

DIV CLOSE Close a file, releasing any existing windows with default values, if applicable

MAP Define a window (i.e. a work area) in the virtual address space

OPEN Open a file

RESET Undo changes in the window

SAVE Write modified pages from the window back to the file on disk

UNMAP Release the window in the virtual address space

DIV – Data In Virtual Programming notes

40 U4250-J-Z125-12-76

Opening a file

A program can process a file only after calling an OPEN function. Among other things, the
OPEN function verifies whether a user has the necessary access rights, whether the file is
already open and whether the file open modes are compatible with each other. The file open
modes and file access by many users are to a great extent similar to the OPEN function of
other DMS access methods (see the “Introductory Guide to DMS” [1])
The file can be set for read-only or read and write access. Following a write access, the file
can be modified, extended or rewritten from the beginning of the file.
The file can be simultaneously accessed by a single user with write authorization and/or
many users with read authorization as well as many users with read and write authorization.
The user can specify whether a given data space or the entire file should be read immedi-
ately into a window when it is defined, or whether a given page should be read into a window
only when the page is first accessed.

Programming notes DIV – Data In Virtual

U4250-J-Z125-12-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

List of most important macro operands for opening a file

Multiuser operation

A UPAM file can be created and processed with the access methods UPAM (see page 89),
FASTPAM (see page 61) or DIV. FASTPAM and DIV can, however, only process UPAM files
with the attribute BLKCTRL=NO.

Authorization for parallel file processing is dependent on the operand open values specified
for SHARUPD, MODE, LOCKENV and LOCVIEW.

The permissible parallel opens are shown in the following table:

Operand Operand values Meaning

FCT *OPEN Opening a file

LARGE_
FILE

*ALLOWED
*FORBIDDEN

The LARGE_FILE function operand specifies whether the file that
is to be opened may grow to become a “large file” with a file size
that may exceed 32 GB.
The file may become a large file.
The file may not become a large file.

MODE

*INPUT

*INOUT
*OUTIN

The function operand MODE specifies which operation (read,
write) should be performed on the file (write means executing the
DIV function SAVE).
The file is opened as the input file; the SAVE function is not
permitted.
The file must exist; both read and write operations are permitted.
A new file will be created; both read and write operations are
permitted.

SHARUPD

*NO

*WEAK

*YES

Depending on the MODE setting, the function SHARPUPD is used
to indicate which multiuser operation modes should be allowed
(see the tables under “Multiuser operation” below):
One write-authorized user or many read-authorized users can
open the file simultaneously.
One write-authorized user and many read-authorized users can
open the file simultaneously.
Multiple write-authorized users can open the file simultaneously.

LOCVIEW

*MAP

*NONE

The LOCVIEW operand is used to specify when a page should be
read into a window.
All pages of the specified file region are read into a window as soon
as it is defined (FCT=*MAP).
A page is not read into a window from the disk file until a page is
accessed.

DIV – Data In Virtual Programming notes

42 U4250-J-Z125-12-76

Compatibility matrix for DIV-OPEN

USER B

SHARUPD =

*YES *NO *WEAK

OPEN mode

I
N
P
U
T

I
N
O
U
T

O
U
T
I
N

I
N
P
U
T

I
N
O
U
T

O
U
T
I
N

I
N
P
U
T

L
M
A
P

I
N
O
U
T

O
U
T
I
N

U
S
E
R

A

SHARUPD
=*YES

INPUT
INOUT
OUTIN

X
O
O

O
O
O

X X
X
X

X

SHARUPD
=*NO

INPUT
INOUT
OUTIN

X X X
X
X

X

SHARUPD
=*WEAK

INPUT
LMAP
INOUT
OUTIN

X
X

X X
X

X X
X
X
X

X
X
O

X
O

LMAP: INPUT LOCVIEW=MAP (only for DIV)

X: OPEN permitted

O: OPEN only permitted if the openers employ the same block-oriented access method
(only UPAM/FASTPAM or only DIV)

and use the same value for the LOCKENV operand (all LOCKENV=*HOST or
LOCKENV=*XCS)

and all run in the same host or in an XCS network using LOCKENV=*XCS

Programming notes DIV – Data In Virtual

U4250-J-Z125-12-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Comments

– Read operations with SHARUPD=*WEAK may have opened a file simultaneously with
any write operation.

All read operation window pages with DIV-SHARUPD=*WEAK which specified
LOCVIEW=*MAP with OPEN are read from the file into the window when MAP is
reached. DIV thereby ensures that no file pages can be modified during reading by the
parallel SAVE of a write operation with DIV-SHARUPD=*WEAK.
This protection against parallel writing does not exist for a UPAM/FASTPAM write
operation.

For this reason, read operations with DIV-SHARUPD=*WEAK for which LOCVIEW=
*MAP was specified, are compatible to write operations with DIV-SHARUPD=*WEAK,
but not, however, to other write operations.

All other conditions formulated for entry 'O' above must also be fulfilled (all openers with
the same value for the LOCKENV operand and all openers in the same host or, if in
different hosts, with the entry LOCKENV=*XCS).

Read operations with DIV-SHARUPD=*WEAK which specified LOCVIEW=*NONE with
OPEN possess the same compatibility as read operations with UPAM/FASTPAM-
SHARUPD=*WEAK.

– Openers with DIV-SHARUPD=*YES are not compatible with openers with UPAM/
FASTPAM-SHARUPD=*YES.

– Read operations are always compatible with each other (regardless of access method,
SHARUPD specification, LOCKENV specification and host).

– SHARUPD=*YES:
The file size is checked whenever the allocator is called.
If this check indicates a file size Ï 32 GB and the attribute LARGE_FILE=*FORBIDDEN
is set in the associated FCB or the attribute EXCEED-32GB=*FORBIDDEN is set in the
TFT then processing is canceled.
In this case, DIV returns the code X'00400030' in its local parameter list DIV(I).

DIV – Data In Virtual Programming notes

44 U4250-J-Z125-12-76

Defining windows

The MAP function is used to define a window, i.e. a region in an address area (program or
data space) that is assigned to a file area or an entire file.
At the time of calling OPEN, users can specify whether a given page should be read into a
window only when it is first accessed, or as soon as MAP is called. The individual operands
of the MAP function can be used to specify the type (program or data space), position and
size of the virtual address area.

The FCT=*MAP and FCT=*UNMAP functions of the DIV macro are used to open and close
windows for a program call. SPID=0 must always be specified for the SPID operand (ID of
the data space).

The following rules must be observed:

– One page of an address space can be assigned to one window only.
– Within an OPEN, a file page can be assigned to one window only.
– A file page can be assigned to more than one window only if these windows belong to

different OPEN operations.

Programming notes DIV – Data In Virtual

U4250-J-Z125-12-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

List of the most important macro operands for defining windows

Writing data back to the disk file

The SAVE function is used to write (save) modified window pages back to the disk file.

A file area for which the SAVE function is to be executed is specified, and all modified
window pages of this area are written back to the disk file. In the process, the file length can
be logically extended or reduced. (The file can be physically extended only by using the
MAP function, see the “Introductory Guide to DMS” [1]). The new file length is returned by
the SAVE function in a field (DIVPSIZE) of the parameter list.

Operand Operand values Meaning

FCT *MAP Defines a window

SPID SPID specifies the ID of the data space in which the window is to
be created.

AREA AREA specifies the starting address of the window in a virtual
address space (aligned on a 4KB page boundary). A page of an
address space must be assigned to one window only.

OFFSET
SPAN

The OFFSET and SPAN operands specify the (beginning and
length) of the file area in units of 4KB pages and thus define the
size of the window. The MAP function can be used to extend the
physical length of a file.

DISPOS
*OBJECT

*UNCHNG

DISPOS can be used to define the contents of the window:
A page of the file will be read into the window when the page is first
accessed.
At the time of the first access, a window page retains its contents
(i.e. the contents of the virtual address space) and is not replaced
by the corresponding file page).
Note
After a call to the REQM or DSPSRV macro, the specified virtual
address space is initialized with X' 00' (see the “Introductory Guide
to DMS” [1])

DIV – Data In Virtual Programming notes

46 U4250-J-Z125-12-76

List of the most important macro operands for writing back to the disk file

Undoing modifications in a window

The RESET function can be used to undo (“erase”) changes that have been made in
windows since MAP or the most recent SAVE. A file region for which the RESET function
is to be executed must be defined, taking the effects of the DISPOS operand of the MAP
function into account:

– If the window is defined with DISPOS=*OBJECT, an access to a page following a
RESET will cause that page of the file to be displayed on the screen.

– If the window is defined with DISPOS=*UNCHNG, an access to a page following a
RESET will cause that page to be initialized with X'00', unless that page has already
been written to the file using SAVE. In the latter case, the page is read again from the
file after RESET.

List of the most important macro operands for undoing modifications in a window

Operand Operand values Meaning

FCT *SAVE Writes data back to the disk file

OFFSET
SPAN

The OFFSET and SPAN operands define the file area for which the
SAVE function is to be executed (i.e. the beginning of the area and
its length in 4KB blocks. The file length can be logically extended
or reduced. The new file length is returned by SAVE. Physical
extensions of the file length are only possible with MAP; see
extending of a file physically as described in the “Introductory
Guide to DMS” [1].

Operand Operand values Meaning

FCT *RESET Undoes modifications in a window

OFFSET
SPAN

The OFFSET and SPAN operands define the file area for which the
RESET function is to be executed (i.e. the beginning of the area
and its length in 4KB blocks).
All modifications in the window pages of the RESET region are
undone.

RELEASE The RELEASE=*YES operand extends the RESET function to all
pages of the specified region, not just to modified pages.

Programming notes DIV – Data In Virtual

U4250-J-Z125-12-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Disabling a window

UNMAP is used to disable a window. The user can define what the contents of the pages
of the (disabled) window should be after the execution of the UNMAP function. The window
pages can be either initialized with X'00' or set to appear to the user as they were before
UNMAP.

List of the most important macro operands for closing windows

Closing a file

The CLOSE function can be used to closed a specified file. Existing windows, if any, are
shut down using default values.

List of the most important macro operands for closing a file

Operand Operand values Meaning

FCT *UNMAP Disables windows

SPID Specifies the address space in which the window is located.

AREA Specifies the starting address of the window that lies in the address
space defined by SPID.

DISPOS

*FRESH
*UNCHNG

Specifies the state in which the pages of the (disabled) window
should remain.
The window pages are initialized (X' 00').
As far as the program is concerned, the windows retain their
original contents prior to UNMAP.

Operand Operand values Meaning

FCT *CLOSE Closes a file.

ID ID of the file to be closed.

EAM – Evanescent Access Method Programming notes

48 U4250-J-Z125-12-76

3.3 EAM – Evanescent Access Method

EAM is used for processing task-specific files in the SYSEAM area. EAM is a block-oriented
access method and is particularly suitable for the rapid processing of job-dependent work
files.

Macro for the EAM access method

All EAM functions are controlled by the EAM macro. The EAM macro covers the following
functions:

The desired operation is selected by specifying a hexadecimal operation code in the MFCB,
and initiated by the EAM macro. The effect is determined by the MFCB fields which EAM
additionally evaluates after analyzing the operation code (see table on page 49).

The EAM macro controls all EAM accesses. EAM has the following characteristics:

– EAM files are not cataloged. As a result of this, no disk access is necessary when an
EAM file is opened.

– Each EAM file is automatically deleted when the job which opened it is terminated
(temporary file).

– Communication between EAM and the user takes place only via the EAM control block
(MFCB = Mini File Control Block). No facilities exist for modifying this control block at
OPEN time.

– EAM works exclusively with public volumes (pubsets). No distinction is made between
disks with and without PAM keys (K and NK disks).

– The space requirements for the EAM routines and the runtimes for read and write
accesses are less than for the standard access methods for cataloged files.

– An EAM file can be processed only by the job which created and opened it. One job
may open and process several EAM files.

Macro Function

EAM – sets up and opens a new file
– opens an existing file
– reads (blockwise, sequential or direct)
– writes (blockwise, sequential or direct)
– checks and waits for I/O termination
– closes a file
– deletes a file

Programming notes EAM – Evanescent Access Method

U4250-J-Z125-12-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

– EAM is block-oriented and is based on blocks of 2048 bytes each (= a PAM page).
For chained I/O, up to 16 sequential blocks may be transferred at one time.

– EAM files may not exceed 32 GB.

– If a program is restarted using RESTART-PROGRAM, all existing EAM files belonging
to the job are erased.

Note

Where the EAM file is created depends on whether or not shared pubsets are used and
on the definitions set by systems support. For more information, see the “Introduction
to System Administration” [7].

MFCB (Mini File Control Block)

Structure of the MFCB

The table below shows the fields within the MFCB and the way in which they are interpreted
according to the operation selected.

M F C B f i e l d s

Operation
code

Functional
unit

Version
ID

Return
code

Option
byte

Logical
block

number

File
name

Sense
byte

Status
byte

Address
IOAREA1
IDMFIO1

No. of
blocks to
be transf.

Address
IOAREA2
IDMFIO2

IDMFOPC IDM
FUNIT*

IDM
VERS*

IDM
RETCO*

IDM
FOC

IDMFLBN IDM
FFN

IDMFEB IDM
FSB

IDMFIO
A1*

IDMFNHP IDMFIO
A2*

Open new
file (IDMFO)

A A S A (+) S S - - (A) -

Reopen
(IDMFRO)

A A S A S A(+) S - - (A) -

Read
(IDMFRD)

A A S A A A S S (A) - (A)

Write
(IDMFWR)

A A S A A A S S (A) - (A)

Check
(IDMFCK)

A A S - - A S S - - -

Check and
wait
(IDMFCW)

A A S - - A S S - - -

Close file
(IDMFCL)

A A S - S A S S - - -

Erase file
(IDMFER)

A A S - - A S - - - -

EAM – Evanescent Access Method Programming notes

50 U4250-J-Z125-12-76

where:

* applies only with PARMOD=31

E field contents are evaluated

S field contents are set by the system

+ exceptions in the case of object module files (see “Handling object module files with
EAM” on page 60)

Description of the MFCB

An overview of the fields contained in the MFCB and the way in which they are interpreted
according to the operation selected is given in the table on page 49.

The MFCB is the communication area between EAM and the user. It must be aligned on a
word boundary. The fields required for the selected operation must be supplied with the
appropriate values before the EAM macro is called.

The IDMCB macro can be used to assign symbolic names to the MFCB.

Functional unit (IDMFUNIT)

If PARMOD=31 applies either explicitly or implicitly, the value 'DMFEAM' must be placed in
IDMFUNIT.

Operation code (IDMFOPC)

IDMFO Create and open a new file (OPEN). EAM evaluates bit IDMFOO of the option byte
and then opens either the object module file or a new job-specific file.
A new object module file has its name recorded in the TCB (Task Control Block); an
existing object module file is reopened (i.e. OPEN=REOPEN applies; see also
section “Handling object module files with EAM” on page 60).

A new EAM file is assigned a binary file name of between 1 and 14000, and this is
written into the “file name” field (IDMFFN).

In addition, bit IDMFCI of the option byte is evaluated.
If this bit is set (i.e. indicating chained I/O mode), a check is made to test whether field
IDMFNHP (= number of blocks to be transferred) contains a number between 1
and 16.

The addresses of the I/O areas are not checked.

Programming notes EAM – Evanescent Access Method

U4250-J-Z125-12-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

IDMFRO Reopen an existing file (REOPEN). Bits IDMFOO, IDMFSBR and IDMFCI of the
option byte are evaluated. For IDMFCI and hence for field IDMFNHP, the same
applies as in the case of the OPEN operation.

According to the result of the IDMFOO evaluation, either the job-specific object
module file or the file named in the IDMFFN field is opened (see “Handling object
module files with EAM” on page 60).

IDMFRD Read (READ). EAM evaluates bit IDMFI1 of the option byte and checks the address
of an input area (field IDMFIO1 or IDMFIO2) selected via this bit. Input takes place at
the corresponding address, even if the contents of IDMFIO1/2 were modified immedi-
ately after the operation was invoked.

If the end-of-file condition is recognized during a read operation, bit IDMFEF of the
sense byte is set.

If bit IDMFCI of the option byte was set at OPEN/REOPEN time, chained input is
operative. The number of blocks to be transferred is also taken from field IDMFNHP
at OPEN/REOPEN time (see “Number of blocks to be transferred (IDMFNHP)” on
page 55).
The “logical block number” field (IDMFLBN) contains the number of the next block to
be read, or a value of zero in the case of sequential reading.

The read/write operation is asynchronous in EAM, i.e. control is returned to the user
immediately after the EAM macro is called, unless a previous I/O operation has not
yet terminated. Any error information entered in the MFCB (fields IDMFERR,
IDMFSB) always relates to the preceding I/O operation. Consequently, when there
are two I/O operations in immediate succession, the second has to wait.
Overlapping I/O or double buffering can be implemented by specifying two different
I/O area addresses (see section “Overlapping input/output” on page 57).

IDMFWR Write (WRITE). As in the case of READ, bit IDMFI1 is evaluated and, depending on
the result, either field IDMFIO1 or field IDMFIO2 is checked for the validity of the
output area address it contains.

If the “logical block number” field (IDMFLBN) contains a value of zero, the block is
written sequentially at the end of the file. If its value is ≠ 0, the block to be transferred
is inserted at the position in the file designated by this value.
In all other respects, the execution sequence for write operations is the same as for
read operations (see above).

IDMFCK Check for termination of an I/O operation (CHECK). A check is made to determine
whether an outstanding I/O operation has terminated. Whatever the case, control is
immediately returned to the user. If the operation is not yet completed, a value of 8 is
placed in register 15. If the operation is completed, the status bytes are transferred to
the MFCB (IDMFSB) and register 15 is set to the value 0.

EAM – Evanescent Access Method Programming notes

52 U4250-J-Z125-12-76

Version number (IDMVERS)

If PARMOD=31 applies either explicitly or implicitly, the value DMEAMV must be placed in
IDMVERS. This is important with regard to future versions of BS2000, since it means that
different versions of this interface can be supported without the need for recompilation.

Return code (IDMRETCO)

In the 31-bit version the return code is placed in the IDMRETCO field in the MFCB. This
return code corresponds to that in register 15.

IDMFCW Check an I/O operation and wait (CHECK WAIT). EAM is instructed to wait for the last
I/O operation to terminate. Following this, the status bytes are transferred.
If another operation has already initiated the transfer of the status bytes, this EAM
macro has no effect.

IDMFCL Close file (CLOSE). Following termination of the final outstanding I/O operation, the
file is marked as closed. The block number of the last block in the file is transferred to
the “logical block number” field (IDMFLBN).

IDMFER Erase file (ERASE). The file is erased, irrespective of whether or not it is open.

Return code Meaning

0 Operation completed successfully

4 Operation not completed successfully; check sense byte (IDMFEB)

8 After check operation: checked I/O operation not yet terminated

Programming notes EAM – Evanescent Access Method

U4250-J-Z125-12-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Option byte (IDMFOC)

Logical block number (IDMFLBN)

The logical block number is a 2-byte binary number (0 Î n Î 65535). If its value is 0,
processing is performed sequentially. In a read operation, the block immediately following
the last block accessed in a read/write operation is transferred. In a write operation, a block
is added to the end of the file.

If the logical block number is î 0, it points directly to the block of the file that is to be read
or written.

In chained I/O, the value specified applies to the first block in the chain.

File name (IDMFFN)

The file name is a 2-byte binary number (decimal: 1 Î n Î 14000). When a new file is opened
by EAM, this number is placed in the “file name” field and must be specified whenever the
file is subsequently referenced.

IDMFOO Open object module file. This bit is evaluated in all operations.
If the bit is set, the job-specific object module file is processed (see “Handling object
module files with EAM” on page 60). If the bit is not set, a new file is opened in the
OPEN function and its name is moved to the “file name” field (IDMFFN). In the
REOPEN function, the file named in the IDMFFN field is opened.

IDMFCI Chained I/O. This bit is evaluated at OPEN/REOPEN time and its contents are saved.
Thus, when a file is (re)opened, if this bit is set, subsequent I/O operations will be
chained. The length of the chain is specified by the contents of field IDMFNHP
(= number of blocks to be transferred), which is also evaluated when the file is
opened. If the bit is not set, no chained I/O will be performed.

IDMFSBR Starting point for I/O in the file. This bit controls where I/O operations are to start in a
file. It is evaluated when the file is reopened.
If it is set, a value of 0 is moved to the “logical block number” field. If it is not set, the
highest block number so far assigned to the file is placed in the field IDMFLBN (see
the description of the IDMFLBN field).

IDMFI1 Control of the I/O area. This bit is evaluated during current I/O operations. If it is set,
the I/O area 2 address specified in field IDMFIO2 is checked for validity, and this area
is used for the pending I/O operation. If the bit is not set, the I/O area 1 address
contained in field IDMFIO1 is checked. This area is then used for I/O operations (see
“Overlapping input/output” on page 57).

EAM – Evanescent Access Method Programming notes

54 U4250-J-Z125-12-76

Sense byte (IDMFEB)

If an error occurs during an operation initiated by the EAM macro, bits are set in the sense
byte according to the type of error (the bits can be addressed by their symbolic names).
At the same time a value of X'00000004' is placed in register 15.

Status field (IDMFSB)

The value of this field is set by the system if the following conditions are true simultaneously:

– the preceding operation was a read or write operation;
– the current operation is a read, write, check, check-and-wait, or close operation.

The following bytes are transferred from the channel control block (CCB): the standard
device byte, 3 sense bytes, the Executive flag byte.

Address of I/O area 1 (IDMFIO1/IDMFIOA1)

This field contains the virtual address of the first byte of I/O area 1.
In write operations, a block or block chain is transferred from this address. In read opera-
tions, the block/block chain is transferred to this address.

IDMFIC Invalid operation. Invalid operations include, for example, illegal operation code,
attempt to access a file which is not open, in chained I/O the value of field IDMFHNP
is not between 1 and 16, and MFCB is not aligned on a word boundary.

IDMFIF Invalid file name. The number specified in the “file name” field (IDMFFN) does not
identify any EAM file associated with this job.

IDMFIB Invalid block number. The number specified in the “logical block number” field
(IDMFLBN) refers to a block outside the file (read access) or is greater than the
number of the last block written + 1 (write access).

IDMFIA Invalid I/O area address. The address contained in field IDMFIO1 or IDMFIO2 for
I/O area 1 or I/O area 2 respectively is invalid.

IDMFNS No more EAM space available. For example, the user has reached the maximum
number of EAM files allowed (14000) or the total amount of space available on the
system for all EAM files has been exhausted.

IDMFNP Illegal access to a privileged file. A non-privileged user attempted to access a privi-
leged file.

IDMFEF End-of-file. End-of-file was reached during a read access: if a block chain encounters
the end of the file during chained input, as much of the read operation as possible is
completed and the end-of-file bit is set.

IDMFERR Check status bytes. The preceding read or write operation was not completed
successfully. The status bytes should be checked to determine the cause of the error.

Programming notes EAM – Evanescent Access Method

U4250-J-Z125-12-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

If the I/O area is the same size as a block (2048 bytes), it should be located within a page
(4096 bytes) and commence on a word boundary. In the case of chained I/O the area
should commence on a page boundary; it must be able to hold as many blocks as can be
transferred with a single I/O request.

If the area is not aligned as specified above, buffering may be required in conjunction with
certain hardware, which in turn leads to a drop in performance.

Number of blocks to be transferred (IDMFNHP)

This field is evaluated at OPEN/REOPEN time if chained I/O (IDMFCI) is specified in the
option byte. It contains a 1-byte binary number Î 16.

If end-of-file is reached during chained I/O in read mode, the system sets the value of this
field equal to the number of blocks transferred.

Address of I/O area 2 (IDMFIO2/IDMFIOA2)

This field contains the virtual address of the first byte of I/O area 2. The same address can
be used as for I/O area 1, but for asynchronous processing with overlapping input/output,
the address specified in this field must refer to an area which does not overlap I/O area 1.

The same conditions apply here as in the case of I/O area 1.

Chained input/output

If bit IDMFCI for chained processing is set in the MFCB, I/O operations are performed at a
faster rate. The blocks to be written as a chain need not be adjacent to each other. In write
operations, block chains are always written in groups of 3 PAM pages. In read operations,
adjacent pages are read as a chain. Field IDMFNHP (= number of blocks to be transferred)
must therefore always contain a value that is a multiple of 3. In addition, I/O operations
should always start at block numbers that can be represented in the form
(3 x n) + 1, i.e. 1, 4, 7, ...

Note

In order to support NK4 pubsets (in later operating system versions), EAM users are
requested to convert chained processing to the blocking factor 2 or a multiple of 2.
In this case, odd block numbers (BLOCK#) should be specified for direct I/O operations,
i.e. 1, 3, 5, ...

Increasing the blocking factor at the expense of main memory space (I/O buffer) leads
to savings with regard to CPU time (initiation and termination of the I/O request) and
channel and device times (seek and search times); this is because several blocks can
be read or written in one physical I/O operation. The system has no influence on this
optimization possibility, which lies effectively in the hands of the EAM user.

EAM – Evanescent Access Method Programming notes

56 U4250-J-Z125-12-76

EAM processing

Using check operations

After a read or write call, control is returned to the user as soon as the requested operation
has been accepted. In other words, there is no need to wait for this operation to be
completed.

Before a read or write operation is initiated, however, the system waits for the preceding
read/write operation (if any) to terminate (i.e. implicit check-and-wait operation). Similarly,
when a close operation is requested, the system waits for the last read/write operation to
terminate.

Thus, after the last in a series of read/write operations, a check operation is necessary only
if the file is not immediately closed again or if, in the case of chained I/O, reading is
continued until the end-of-file condition is reached (bit IDMFIB or IDMFEF of sense byte=1)
and the number of blocks transferred is not equal to 0.

Example

In an EAM file, 3 read operations are performed. The file is not closed after this, because it
is still required for later I/O operations. However, these I/O operations are not requested
until after processing of the blocks that were read has been completed:

READ

CHECK/WAIT Wait for termination of the last I/O operation.
 .
 .
Processing of the blocks that were read
 .
Further I/O operations

Changing processing characteristics

The following specifications are observed when opening or reopening a file:

– chained/non-chained input/output
– number of blocks to be transferred.

If one of these values is to be changed during processing of the file, the following actions
are required:

1. Close file

2. Modify fields in MFCB

3. Reopen file

Programming notes EAM – Evanescent Access Method

U4250-J-Z125-12-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

The value for the number of blocks to be transferred should be changed if, for example,
fewer blocks are to be transferred in the last write operation than was specified when the
file was opened.

Example

99 blocks are to be written to an EAM file. Chaining is to be used, with 15 blocks being trans-
ferred per write call (byte IDMFNHP in the MFCB). The following operations are then
requested:

OPEN (new file) -> WRITE -> WRITE -> WRITE -> WRITE -> WRITE -> WRITE ->
CLOSE *) -> REOPEN -> WRITE -> CLOSE

*) After 6 write operations, there are still 9 blocks to be written. The file must therefore be
closed and then reopened, this time with a value of 9 set for the number of blocks to be
transferred.

Overlapping input/output

A reduction in processing time can be achieved by means of asynchronous I/O operations:
Once an I/O operation has been initiated, control is immediately returned to the program in
order to enable other processing to take place in parallel with the physical I/O. The next
I/O operation is then initiated using a second I/O area that does not overlap the first, and so
on. Figure 1 on page 58 illustrates the overlapping of processing and input operations.

Sequential read with chained input/output

Chained I/O is used most effectively for sequential reading if

– a multiple of 3 is selected as the number of blocks to be transferred (3 x n);
– the block number selected is in the form: (3 x n) + 1 (e.g. 1, 4, 7 ...)

Note

In order to support NK4 pubsets (in later operating system versions), EAM users are
requested to convert chained processing to the blocking factor 2 or a multiple of 2.
In this case, odd block numbers (BLOCK#) should be specified for direct I/O operations,
i.e. 1, 3, 5, ...

A program converted in this way is downward compatible, which means it can run in
earlier versions.

EAM – Evanescent Access Method Programming notes

58 U4250-J-Z125-12-76

Figure 1: EAM – overlapping input/output

START

END

LOOP

Y

Y

Y

N

N

N

I:=1, EOF:=NO

Read block I into I/O area 1

End-of-file?

I:=I+1

Read block I into I/O area 2

End-of-file?

End-of-file?

EOF:=YES

Process block I-1

If EOF=YES, terminate

I:=I+1

Read block I into I/O area 1

EOF:=YES

Process block I-1

If EOF=YES, terminate

Programming notes EAM – Evanescent Access Method

U4250-J-Z125-12-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

START

END

LOOP

Y

Y

Y

N

N

N

I:=1, EOF:=NO

Read block I into I/O area 1

End-of-file?

I:=I+1

Read block I into I/O area 2

End-of-file?

End-of-file?

EOF:=YES

Process block I-1

If EOF=YES, terminate

I:=I+1

Read block I into I/O area 1

EOF:=YES

Process block I-1

If EOF=YES, terminate

EAM – Evanescent Access Method Programming notes

60 U4250-J-Z125-12-76

Handling object module files with EAM

Each job can process exactly one object module file. If bit IDMFOO of the option byte is set,
all operations relate to the object module file. The actions involved in opening or reopening
a file are illustrated in the following diagram:

Figure 2: Actions when an EAM file is opened

Figure 3: EAM – sequence when opening an object module file

START

RETURN to user program

Determine type of operation

Reopen existing file (X'01')Open new file (X'00')

Does file exist?

Y N

EXISTENT

Assign file name
and
place in MFCB

Does file exist?

Y N

EXISTENT
Set logical block
number in MFCB
to zero (MFCB:=0)

Set error byte
(bit 21:=1)

Set block number in MFCB:=Set block number in MFCB

Y N

Position to start of file?
(option byte bit 21=1?)

Place file name in MFCB

EXISTENT

to zero (MFCB:=0) <number of last block in file>

Programming notes FASTPAM – Fast Primary Access Method

U4250-J-Z125-12-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

3.4 FASTPAM – Fast Primary Access Method

FASTPAM (Fast Primary Access Method) is a block-access method for NK4 disk files. It is
comparable with UPAM in terms of functionality, but is far superior to it in terms of perfor-
mance, especially with multiprocessor systems.

With FASTPAM, I/O operations can be directly performed in data spaces. I/O area pools are
placed in data spaces for this purpose, but these I/O area pools can only be created in
non-resident memory.

The FASTPAM access method uses a special OPEN.

The FASTPAM interface is an SVC interface. Jobs are formulated by means of a parameter
list, and return messages for results are supplied via a return code in the parameter list (not
via exits).

Macros for the FASTPAM access method

The FASTPAM access method uses the following two macros:

Macro Function

FPAMSRV Management functions:
– prepare system environment (FASTPAM environment)
– prepare I/O areas (FASTPAM IO area pool)
– open file for processing
– close file opened with FPAMSRV
– disable system environment (FASTPAM environment)
– disable I/O areas (FASTPAM IO area pool)

FPAMACC Access functions (formulate file accesses):
– synchronous reading and writing of logical blocks
– asynchronous reading and writing of logical blocks
– waiting for the end of asynchronous I/O jobs
– reporting the end of asynchronous I/O jobs

FASTPAM – Fast Primary Access Method Programming notes

62 U4250-J-Z125-12-76

FASTPAM functions

The functions of the FASTPAM access method are implemented in the macros FPAMSRV
and FPAMACC. These functions are as follows:

Enabling the system environment for FASTPAM processing (macro function FCT=*ENAENV)

The ENABLE ENVIRONMENT function (macro FPAMSRV, operand FCT=*ENAENV)
enables a user to create a FASTPAM environment or join an existing one. The caller is
returned a task-specific environment short ID which can be used to refer to the environment
in subsequent OPEN calls.

Since a FASTPAM environment is uniquely identified by its name and scope, and the scope
is implicitly derived from the address of the FPAMACC parameter lists, the name as well as
the address of the parameter lists must be specified in each ENABLE-ENVIRONMENT call.
The other attributes need not be specified when joining an existing environment. If they are
specified, however, they must match the corresponding values for the existing environment.

If the user has FASTPAM authorization, the entire class 3 memory area required for disk
access is generated in advance, and the area of the FPAMACC parameter list is fixed.
In order to do this, the address of the parameter list area, the number of parameter lists,
and the maximum transfer length used for later file access are required.

The only values permitted for the transfer length are 4 KB and 32KB. A value of 32KB
should be used only if the number of parallel access operations is not too high, since 2KB
of resident system memory is used for each I/O path. The logical block size of files subse-
quently opened with this environment and the I/O length of the following file accesses must
not exceed this maximum value.

Users who wish to work with eventing must specify the short ID of the event item at the time
of creating the environment.

Function Meaning

ENABLE ENVIRONMENT Enable system environment for FASTPAM processing

ENABLE IOAREA POOL Enable I/O area for FASTPAM processing

OPEN FILE Open file for processing with FASTPAM

ACCESS FILE Process a file (opened with FPAMSRV)

CLOSE FILE Close a file (opened with FASTPAM), optionally specifying the last-
page pointer.

DISABLE ENVIRONMENT Disable system environment for FASTPAM processing

DISABLE IOAREA POOL Disable I/O area for FASTPAM processing

Programming notes FASTPAM – Fast Primary Access Method

U4250-J-Z125-12-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

The parameter list area must be requested in advance and must allow write access. When
the FASTPAM environment is being created by the first environment user (i.e. when the
ENABLE ENVIRONMENT call is being processed), no I/O is permitted on any page that
overlaps the parameter list area.

Enabling the I/O area for FASTPAM processing (macro function FCT=*ENAIPO)

The ENABLE IOAREA POOL function (macro FPAMSRV, operand FCT=*ENAIPO)
enables a user to create a FASTPAM I/O area pool or join an existing one. Given the appro-
priate FASTPAM authorization, the operating system “fixes” the specified memory area and
returns to the caller a task-specific I/O area pool short ID which can be used to refer to the
pool in subsequent OPEN FASTPAM calls.

Like the FASTPAM environment, an I/O area pool is also identified uniquely by its name and
scope. The attributes of the I/O area pool are fixed at the time it is created and cannot be
changed, so no deviating attributes may be specified by other users of the same I/O area.
The I/O area pool is typically joined by specifying just the name and the address.

The memory area must be requested in advance and must allow write access. When the
FASTPAM I/O area pool is being created by the first I/O area user (i.e. when the ENABLE-
IOAREA-POOL call is being processed), no I/O is permitted on any page of the I/O area
pool.

Opening files for processing with FASTPAM (macro function FCT=*OPEN)

The short IDs obtained from ENABLE ENVIRONMENT and ENABLE IOAREA POOL can
be used by any task to open any number of files.
If the environment is associated with an event item, each file can be opened by using the
FPAMSRV macro with the operand FCT=*OPEN, EVENTNG=*YES. Every asynchronous
ACCESS job is then acknowledged via the event item. Otherwise, each asynchronous job
must be explicitly terminated by the user with a WAIT operation. Synchronous jobs are
treated identically in both cases.
The access mode (read or write) can be defined with the MODE operand, and the
SHARUPD operand can be used to define multiuser mode. The BLKSIZE operand deter-
mines the granularity of subsequent file access operations.
The LARGE_FILE operand specifies whether the file that is to be opened may grow to
become a “large file” with a file size Ï 32 GB.
For each OPEN that is completed without error, the user is returned an OPEN short ID,
which must be specified for following ACCESS FILE jobs.

As in the case of UPAM, parameter values specified in a previously issued ADD-FILE-LINK
call override the values specified in the *OPEN call. If these values are not permitted for the
FASTPAM-OPEN, the *OPEN call is rejected.

FASTPAM – Fast Primary Access Method Programming notes

64 U4250-J-Z125-12-76

Processing a file opened with FPAMSRV (macro FPAMACC)

The FPAMACC macro can be used to write to the file and read from it. The file, its
associated environment, and the I/O pool are identified by the OPEN short ID. I/O requests
can be submitted both synchronously and asynchronously.

Synchronous operations are:

– READ AND WAIT
– WRITE AND WAIT
– READ AND EQUALIZE

Asynchronous operations are:

– READ
– WRITE

The WAIT operation is used to wait for the end of asynchronous jobs, i.e. jobs which are not
executed synchronously.

In order to enable users to make efficient use of cached files, FASTPAM closes synchro-
nously executed asynchronous jobs completely and does not send any signal to the event
item when eventing is used. No WAIT macro (for eventing: no SOLSIG call) may be issued
following a synchronously executed job.

The I/O length must be a multiple of BLKSIZE and must not exceed the value specified for
MAXIOLN. In addition, specifications for the logical block within the file (BLOCK) and the
address of the I/O buffer (IOAREA) are also required.

In order to avoid SVCs, job chaining is also supported. The CHAIN operand may be used
to concatenate up to 5000 FPAMACC lists.

Eventing

Like UPAM, FASTPAM supports event-driven processing of I/O requests (see also section
“TU eventing: event-driven processing” on page 105 and the “Executive Macros” manual
[2]). If a job is not terminated synchronously, FASTPAM sends a message to the associated
event item on completion of an I/O operation. This message can be retrieved by the user
with the SOLSIG macro. The message is sent if EVENTNG=YES is specified; no message
is sent if EVENTNG=NO. A WAIT macro must be issued in any case.

Closing a file opened with FASTPAM (macro function FCT=*CLOSE)

The CLOSE function (macro FPAMSRV, operand FCT=*CLOSE) is used to close a file that
was open. The file is identified by the OPEN short ID in this case as well.

Programming notes FASTPAM – Fast Primary Access Method

U4250-J-Z125-12-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Disabling the system environment for FASTPAM processing (macro function FCT=*DISENV)

The DISABLE ENVIRONMENT function (macro FPAMSRV, operand FCT=*DISENV) is
used to disconnect a task from a FASTPAM environment that is specified by means of a
short ID. When the last task is disconnected, the environment is disabled, but no user
memory is released.

Disabling the IOAREA for FASTPAM processing (macro function FCT=*DISIPO)

The DISABLE IOAREA POOL function (macro FPAMSRV, operand FCT=*DISIPO) is used
to disconnect a task from an I/O area pool specified by a short ID. When the last task is
disconnected, the I/O area pool is disabled, but no user memory is released.

Processing files with FASTPAM

File format

FASTPAM will only process PAM files with BLKCTRL=NO/DATA and BLKSIZE=(STD,2n),
where n=1,2,3...8. Files which do not have this format must first be converted.

FASTPAM authorization

In order to receive resident memory via FASTPAM calls, the user must be authorized for
this purpose, which means that there must be an entry for the user in the user catalog (field
DMS-TUNING-RESOURCES=*EXCLUSIVE in the SHOW-USER-ATTRIBUTES command or field
DMS-TUNING-RESOURCES=*EXCLUSIVE-USE in the MODIFY-USER-ATTRIBUTES command).
Users who do not have such authorization may also use the FASTPAM access method, but
no resident areas are maintained. FASTPAM behaves like UPAM in such cases, i.e. only a
small, non-resident part of the I/O path is created by the system, and the area of the
parameter lists and the I/O area pool are not fixed. In other words, the path must be
recreated, and user areas must be validated and fixed for each I/O. Performance gains
typically achieved with FASTPAM are lost as a result.

If no memory can be made resident, FASTPAM behaves as if the required FASTPAM autho-
rization were missing, thus offering a performance level equivalent to or better than that of
UPAM.

FASTPAM – Fast Primary Access Method Programming notes

66 U4250-J-Z125-12-76

Making memory areas resident

One of the primary purposes of FASTPAM is to enable rapid file access. This is done by
making the required system environment available in resident memory before the first file
is accessed.

In order to do this, the memory areas containing the user parameter lists and the I/O areas
(both of which must be supplied by the user) are made memory resident by the “FASTPAM
page fixing” mechanism.

This is essentially the same procedure that is performed by PPAM for the I/O area for every
I/O operation when other access methods are used. The only difference with the other
access methods is that the I/O area is released on completion of each I/O operation.

With FASTPAM, the user can define how long the parameter lists and the I/O area are (with
ENABLE/DISABLE ENVIRONMENT and ENABLE/DISABLE IOAREA POOL) and can use
them during that period. Validation is only required once at the beginning, since fixed areas
cannot be released.

The ENABLE ENVIRONMENT function is also used to request the system memory that is
required for I/O operations (once for each I/O operation that can be concurrently executed).
A major part of this memory, i.e. the area used by IOCTRL, is always resident. This is also
true for the other access methods, but the area is reallocated for each I/O and is not perma-
nently reserved.

The rest of the system memory consists of a FASTPAM work area, which primarily contains
the parameter list to call PPAM. In contrast to UPAM, if TU eventing is used, this area must
also be in resident memory (since the I/O is then terminated in SIH).

The fixing of memory areas as described above is performed only if the user ID has the
required FASTPAM authorization (entry in the user catalog, field DMS-TUNING-RESOURCES=
*EXCLUSIVE).

If such an entry exists and if the appropriate memory areas are fixed, the resulting
environment or I/O area pool is said to be “resident”.

A “resident environment” thus refers to:
– prevalidated parameter lists in resident memory
– system memory that is reserved in advance, and

if eventing is used:
– a resident FASTPAM work area

Similarly, a “resident IO area pool” implies:
– prevalidated I/O areas in resident memory

Programming notes FASTPAM – Fast Primary Access Method

U4250-J-Z125-12-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Prerequisites for resident FASTPAM areas

– The user has specified the appropriate parameters
(macro FPAMSRV, FCT=*ENAENV/*ENAIPO, operand RES=YES)

– The user has the required FASTPAM authorization
– No data spaces are being used
– An adequate amount of main memory is available
– A sufficient number of resident pages were allocated on calling the program (command

START-PROGRAM/LOAD-PROGRAM, operand RESIDENT-PAGES); when resident
pages are allocated in the program call, the maximum value defined in the user catalog
and the system-global limit for resident memory pages must not be exceeded.

FASTPAM macros and their functions

Two macros are available to the user for processing files: FPAMSRV and FPAMACC.
These macros can be used to execute various functions and operations (see the section on
FASTPAM functions, page 62, and the macro and operand descriptions on page 546).

The FPAMSRV macro has the following functions:

The following function is implemented in the FPAMACC macro:

ENABLE ENVIRONMENT Enable system environment for FASTPAM processing

ENABLE IOAREA POOL Enable I/O area for FASTPAM processing

OPEN FILE Open file for processing with FASTPAM

ACCESS FILE Process a file (opened with FPAMSRV)

CLOSE FILE Close a file (opened with FASTPAM), optionally specifying the last-
page pointer

DISABLE ENVIRONMENT Disable system environment for FASTPAM processing

DISABLE IOAREA POOL Disable I/O area for FASTPAM processing

ACCESS FILE Process a file (opened with FPAMSRV)

FASTPAM – Fast Primary Access Method Programming notes

68 U4250-J-Z125-12-76

Multiuser mode on one computer

A PAM file can be created and/or processed with the UPAM access method (see page 89),
FASTPAM or DIV (see page 39).

The first user (User A) can select any combination of values for OPEN and SHARUPD (in
the FCB macro) when opening his PAM file. The table on page 69 shows which OPEN and
SHARUPD combinations a second user (User B) may use to open the same (already
opened) file. If a file has been opened by more than one user, the OPEN/SHARUPD combi-
nation specified by each subsequent user (User B) is compared with all the existing opens
(User A). each of these comparisons must yield a positive result before the file can be
opened by the next user. Illegal combinations result in an OPEN error.

The following points apply to the FASTPAM access method:

– A file can be concurrently processed with FASTPAM by multiple tasks (multiple
SHARUPD=*YES and MODE=*OUTIN/*INOUT opens).

Note

When a file is accessed in shared-update mode, appropriate synchronization
routines must be supplied by the user if no such routines are built into the software
product being used. In contrast to UPAM, FASTPAM does not provide any locking
mechanism for this purpose.

– FASTPAM and UPAM openers

A file can be opened in parallel by multiple tasks with FASTPAM as well as UPAM.
Processing of the file is controlled by the operands MODE and SHARUPD (see below)
of the OPEN function. Although FASTPAM does not support SHARUPD=WEAK, it
otherwise behaves exactly like UPAM: both for FASTPAM openers exclusively and also
when UPAM and FASTPAM openers are mixed.

When a file is concurrently accessed with UPAM and FASTPAM, the UPAM user must
also synchronize operations with the FASTPAM user, since UPAM page locks are only
effective when used by both sides, and since FASTPAM has no page-locking
mechanism.

– FASTPAM and DIV openers

FASTPAM interacts with DIV exactly like UPAM. Parallel processing is permitted only if
the file is opened with INPUT by all users.

Programming notes FASTPAM – Fast Primary Access Method

U4250-J-Z125-12-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Compatibility matrix: FASTPAM with UPAM/FASTPAM/DIV

FASTPAM does not support SHARUPD=*WEAK

Comments

– Read operations with SHARUPD=*WEAK may have opened a file simultaneously with
any write operation (SHARUPD=*WEAK is only possible with UPAM and DIV).
Exception:
Parallel opening with a UPAM/FASTPAM write operation is not allowed for read opera-
tions with DIV-SHARUPD=*WEAK and which specified LOCVIEW=*MAP with OPEN.

Read operations with DIV-SHARUPD=*WEAK and which specified LOCVIEW=*NONE
with OPEN possess the same compatibility as read operations with UPAM/FASTPAM-
SHARUPD=*WEAK.

– Openers with DIV-SHARUPD=*YES are not compatible to openers with UPAM/
FASTPAM-SHARUPD=*YES.

– Read operations are always compatible to each other (regardless of access method,
SHARUPD specification, LOCKENV specification and host).

USER B

SHARUPD =

*YES *NO *WEAK

OPEN mode

I
N
P
U
T

I
N
O
U
T

O
U
T
I
N

I
N
P
U
T

I
N
O
U
T

O
U
T
I
N

I
N
P
U
T

I
N
O
U
T

O
U
T
I
N

U
S
E
R

A

SHARUPD
=*YES

INPUT
INOUT
OUTIN

X
O
O

O
O
O

X X
X
X

SHARUPD
=*NO

INPUT
INOUT
OUTIN

X X X
X
X

SHARUPD
=*WEAK

INPUT
INOUT
OUTIN

X X X X X
X
X

X

X: OPEN allowed

O: OPEN only permissible if the openers employ the same block-oriented access method (only
UPAM/FASTPAM or only DIV)

and use the same value for the LOCKENV operand (all LOCKENV=*HOST or
LOCKENV=*XCS)

and all run in the same host or in an XCS network using LOCKENV=*XCS

FASTPAM – Fast Primary Access Method Programming notes

70 U4250-J-Z125-12-76

– Illegal combinations lead to an OPEN error.

– SHARUPD=*YES:
The file size is checked whenever the allocator is called.
If this check indicates a file size Ï 32 GB and the attribute LARGE_FILE=*FORBIDDEN
is set in the associated FCB or the attribute EXCEED-32GB=*FORBIDDEN is set in the
TFT then processing is canceled.
In this case, FASTPAM returns the code X'00400145' in its local parameter list
FPAMACC(I).

Multiuser mode with multiple systems

A multisystem environment is a configuration in which several systems are interlinked by
means of shareable private disks (see the chapter “Volumes” in the “Introductory Guide to
DMS” [1]) or shared pubsets. The table on page 69 shows the permissible combinations
for access from two different systems.

The following points are relevant for the FASTPAM access method:
A multisystem environment is a configuration in which several systems are interlinked by
means of shared pubsets.

– Files on shared pubsets (shared PVS) are supported by FASTPAM: FASTPAM openers
can access a shared PVS from different systems and read from it concurrently and can
also read in parallel with UPAM and DIV openers.

– Files on shared private disks (SPD) and protected private disks (PPD) are not
supported by FASTPAM.

– Remote file access (RFA) is not supported.

Data consistency

– Data consistency in multiuser mode

The FASTPAM access method does not provide a synchronization mechanism for
shared access to a file (shared-update mode). Appropriate synchronization routines
must therefore be supplied by the user if no such routines are included in the software
product being used.
If FASTPAM, UPAM and DIV applications are all operating in shared-update mode, a
common synchronization mechanism must be used for all accesses

– Data consistency following a system crash

If an error occurs during an ACCESS FILE job, it is not possible to specify whether and
how much data has been transferred. The writing of a block cannot be treated as an
atomic operation. The contents of the file may be inconsistent in such cases.

Programming notes FASTPAM – Fast Primary Access Method

U4250-J-Z125-12-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Summary of functional differences between UPAM and FASTPAM

– FASTPAM can only be used to process PAM files with the following file attributes:
– BLOCK-CONTROL-INFO=NO
– BUF-LEN = an even number

– FASTPAM supports I/Os in data spaces.

– The following functions are not supported by FASTPAM:
– dummy files
– tape processing
– RFA
– SPD (Shared Private Disk)
– PPD (Protected Private Disk)

– FASTPAM supports synchronous and asynchronous read and write operations. The
following operations are offered by UPAM, but are not supported by FASTPAM:
– CHK
– LOCK / UNLOCK
– LRD / LRDWT / WRTWU
– SETL
– SYNC

– The functionality of the UPAM operation SETLPP is included in the framework of
FASTPAM-CLOSE processing.

– The function SHARUPD=*WEAK is not supported (see also “Compatibility matrix:
FASTPAM with UPAM/FASTPAM/DIV” on page 69).

– An implicit WAIT is not possible.

– Within an OPEN/CLOSE bracket asynchronous I/Os can either be terminated only by
WAIT, or their termination can be reported only via the eventing mechanism.

– It is not possible to specify a relative page number.

ISAM – Indexed Sequential Access Method Programming notes

72 U4250-J-Z125-12-76

3.5 ISAM – Indexed Sequential Access Method

ISAM, like SAM, is a record-oriented access method for disk files. Processing is based on
a file composed or index and data blocks. each data record contains a key, and these act
as a sort criterion (for index and data blocks, see the “Introductory Guide to DMS” [1].

There are two versions of the ISAM access method, capable of processing files with
different block formats (see the section dealing with access methods in the “Introductory
Guide to DMS” [1]):

– K-ISAM (Key ISAM) processes files with the block format “PAMKEY”. These are
characterized by the fact that DMS management information for each PAM page is kept
in a separate PAM key located outside the page.

– NK-ISAM (Non-Key ISAM) processes files with the block format “DATA”. These do not
contain a separate PAM key. The DMS management information is kept in a block
control field within the PAM page.

By means of the BLKCTRL operand in the macros FILE and FCB, the user can select
whether a K file or an NK file is to be processed: BLKCTRL=PAMKEY declares a K-ISAM
file; BLKCTRL=DATA/DATA2K/DATA4K specifies an NK-ISAM file.

Programming notes ISAM – Indexed Sequential Access Method

U4250-J-Z125-12-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Macros for the ISAM access method

The macros for the ISAM access method can be split into function classes:

Administration: Macros with administration functions that support file processing.

Access: Macros that access the data on a file.

Macro
call

Function
class

Brief description

ADDPLNK Administration Assigns a pool link name to a user ISAM pool

CREAIX Administration Creates a secondary index for an ISAM file

DELAIX Administration Deletes secondary indices for an ISAM file

DELPOOL Administration Deletes a user ISAM pool

ELIM Access Erases a record from the file

GET Access Reads the following record in the file (sequential reading)

GETFL Access When using marked ISAM keys:
reads the following record in the marking area (sequentially)

GETKY Access Reads the first record with the specified key

GETR Access Reads the previous record (sequential reading, in reverse)

INSRT Access Adds a record with a new ISAM key to the file

ISREQ Access Removes an ISAM lock

OSTAT Access Gives details of the number and type of synchronous file accesses

PUT Access Writes records sequentially to the end of file (including checking the
key for valid sequence)

PUTX Access Replaces a record provided by GET, etc.

REMPLNK Administration Deletes the pool link name

RETRY Access Resets the ISAM pointer after execution of the EXLST-PGLOCK and
repeats the last macro

SETL Access Positions the ISAM pointer for subsequent sequential processing at
start or end of file or a particular record

SHOPLNK Administration Gives details of assignment of ISAM pools to pool link names

SHOPOOL Administration Gives details of attributes and allocation states of ISAM pools

STORE Access – Adds a record with a new ISAM key to the file
– Overwrites a record with an existing ISAM key, of multiple

assignment of ISAM keys is not permitted
– Adds a record with an existing ISAM key to the file as the last

record with this key

ISAM – Indexed Sequential Access Method Programming notes

74 U4250-J-Z125-12-76

OPEN modes

Before a file can be processed, it must be opened using an OPEN macro. The following
OPEN modes are permitted for ISAM files: OUTPUT, OUTIN, EXTEND, INOUT, INPUT. At
the same time, it is necessary to check whether the file has already been opened by another
job, in which ISAM pool it is to be processed, whether it is to be processed in locate or move
mode, etc.

Operating modes

ISAM files are normally processed in move mode; locate mode can be used, but in
NK-ISAM this is only still supported for reasons of compatibility.

OUTPUT A new file is created sequentially and only the PUT macro may be used. If an ISAM
file with the specified name already exists, it is overwritten and the catalog entry is
updated.

OUTIN As for OPEN OUTPUT, a new file is created and any existing file with the specified
name is overwritten, but all ISAM actions are permitted.

EXTEND An existing file is extended sequentially; as for OPEN OUTPUT only write operations
with PUT are permitted.

INOUT An existing file is to be updated: as for OUTIN, all ISAM actions (such as finding,
reading, updating, inserting and deleting records) are permitted.

INPUT An existing file is to be read, i.e. only read operations are permitted.

Action macro OPEN type

INPUT OUTPUT EXTEND INOUT OUTIN

GET B - - B B

GETR B - - B B

GETFL B - - B B

GETKY B - - B B

PUT - B B B B

PUTX - - - B B

INSRT - - - M M

STORE - - - M M

ELIM - - - x x

SETL x - - x x

Programming notes ISAM – Indexed Sequential Access Method

U4250-J-Z125-12-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

where:

M Move mode (locate mode only if a work area is supplied).

B Move mode or locate mode permitted.

x Action macro may be used.

– Action macro must not be used.

OPEN errors when processing NK-ISAM files

Access from BS2000 version < V9.5: the user attempts to read or update an NK-ISAM file
(see above); OPEN error: DMS0DBA.

Access to a file overwritten in BS2000 < V9.5 from a V9.5 environment: if the file was
overwritten in an old version of BS2000, it can no longer be opened as an NK-ISAM file
(see above): OPEN error: DMSDDA7.

NK-ISAM file on tape: an invalid data format was specified in the FILE or FCB macro when
importing the tape file or writing it back to tape.

NK-ISAM is not loaded: if NK-ISAM is not loaded in the system (V9.5), OPEN processing
for NK-ISAM files is rejected with error code DMS0D81.

The ISAM pool in which an NK-ISAM file is to be opened is overloaded: OPEN processing
is rejected with error code DMS0D9B.

On each SVC entry, the size of the NK-ISAM file in question is checked on the basis of the
extent list present in the File Entry Table. If this check indicates that the file size is greater
than 32 GB and if the caller has set the attribute LARGE_FILE=*FORBIDDEN in the FCB
then processing is canceled. In this case, NK-ISAM issues the return code: X'00000A23'
(FILE SIZE GREATER 32 GIGABYTES IS NOT ALLOWED).

Transferring file attributes to the FCB

The contents of FCB fields for file attributes may differ from the values specified for the
corresponding operands in the FILE macro. This is true, for example, for KEYPOS,
KEYLEN, PAD and BLKSIZE. If “n” is the value in field KEYPOS and “m” is the value of
KEYLEN in the catalog entry or in the TFT or the FCB macro, the following applies to files
which are open:

– field KEYLEN in the TU FCB contains m-1
– field KEYPOS in the TU FCB contains, for RECFORM=F, (n+4)-1 = n+3

The PAD value is taken into account only when a file is created sequentially by means of
the PUT macro. The macros INSRT and STORE use all the available space of each data
block. Block splitting may occur during creation of the file in both functions.

ISAM – Indexed Sequential Access Method Programming notes

76 U4250-J-Z125-12-76

The contents of field BLKSIZE in the TU FCB may also differ from the value of the BLKSIZE
operand in the FILE or FCB macro or the catalog entry: except for input files, the BLKSIZE
is recalculated, taking the PAD value into account (BLKSIZE minus PAD) and placed in FCB
field BLKSIZE.

Example

Catalog entry: BLKSIZE=(STD,3); PAD=15 (default value). The contents of BLKSIZE in
the TU FCB are calculated as follows: (3 * 2048) * (1.0 – 0.15); during file processing,
the field BLKSIZE contains the value X'1467'.

Dummy files

Dummy files can be used for test purposes, particularly for testing error routines in user
programs. These dummy files are defined by *DUMMY in the FILE macro. No actual
I/O operations are executed when these files are processed. Any attempt to read such a file
causes control to be passed to an error routine and write attempts are ignored. In each
case, a no-op (no operation) is executed.

The following table shows which events occur for the various ISAM read operations.

Block usage: PAD value

During sequential creation of a file with PUT, the user can specify via the PAD operand in
the FILE/FCB macro how much space is to be left free in each data block. This space is
needed if the records in the file are subsequently updated and extended. The default value
is PAD=15, i.e. 15% of the space in each data block is left free. If a PUT macro would result
in less free space in an existing block, a new data block is created for the next record.

For NK-ISAM files, a new data block is requested as soon as this limit is exceeded; K-ISAM
requests a new data block before the limit is exceeded.

For sequential creation with PUT, the size of a file increases if the PAD factor is increased.
However, subsequent processing of the file (STORE/INSRT) can be optimized by selecting
a suitable value for PAD: the free space left in the data blocks should be so large that block
splitting does not occur when the file is subsequently extended. In order to select the correct
PAD value, it is thus necessary to estimate how the file will grow.

Read operation Macro Event EXLST exit Message

Sequential read GET/GETR End of file EOFADDR DMS0AAE

Read with key GETKY Key not found NOFIND DMS0AA8

Read with flags GETFL
LIMIT=KEY

Key not found NOFIND DMS0AA8

LIMIT=END End of file EOFADDR DMS0AAE

Programming notes ISAM – Indexed Sequential Access Method

U4250-J-Z125-12-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

If ISAM files are created using STORE, the PAD value has no effect on how the blocks are
filled. STORE writes records into a block until it is full. If a further record is then written, block
splitting occurs. The blocks are usually only 50% full.

Even if the file is created by means of PUT, but not via an I/O area in the program, the PAD
has no effect (the I/O area is defined in the FCB with IOAREAn; see “Program buffer”,
below). Each PUT macro initiates a write operation and DMS attempts to place the new
record in the current data block. A new data block is created only when the current block is
full.

Program buffer = I/O area in the user program

If a program uses its own I/O area, this must be at least as large as a data block
(= n * 2048 bytes, where 1 Î n Î 16), as specified in BLKSIZE=(STD,n). By default, the
system generates an I/O area in class 5 memory.

The existence of an I/O area defined by the user via IOAREA1/2 in his/her program is partic-
ularly advantageous for the sequential processing of ISAM files, since it reduces the
number of SVCs:

– sequential read operations (GET/GETR): in the first read operation, as many records
as possible are transferred to the I/O area before the first record is returned to the
program. For subsequent read operations, the records already in the I/O area are
returned to the program and a new I/O operation is executed only when all of these
records have been passed to the program.

– sequential write operations (PUT): during the sequential creation or extension of a file,
the records are collected in the I/O area until it is full (taking the PAD value into account)
or until sequential processing is terminated by a call for another operation. Care should
be taken that sequences of PUT operations are not interrupted by other actions, since
each such interruption causes the contents of the I/O area to be written as a new data
block and this can lead to blocks with relatively small amounts of data.

For NK-ISAM in move mode, the user can dispense with an I/O area (IOAREA1=NO in the
FCB). In this case, each action macro call leads to an SVC.

ISAM – Indexed Sequential Access Method Programming notes

78 U4250-J-Z125-12-76

ISAM pointers

Macros which refer to a record that was processed by a preceding macro use internal
“pointers” to determine the current position within the file.

A separate pointer is maintained for the primary key and for each secondary key defined
for the file. A successful positioning or read operation via a secondary key (using SETL,
GET, GETKY or GETR) first modifies the pointer for the secondary key and then, with the
aid of the updated secondary key value, sets the pointer for the primary key to the appro-
priate record.

Macros which evaluate the ISAM pointers are all sequential macros or, for example, PUTX,
which writes a previously read record back to the file.

If a macro cannot be executed completely, e.g. because an error or a PGLOCK condition
occurs, then the pointer is reset, for NK-ISAM, to the value it had before the macro was
called. The only exception to this is the error “NOFIND”: since the desired record could not
be found, it is not possible to position the pointer to this key.

ISAM pointers are generally updated before the macro is executed. However, for sequential
read operations (GET, GETR), the preceding macro must be taken into account: if a
sequential read operation is preceded by a SETL macro, then this SETL acts as a
“positioning macro”.

The ISAM actions OSTAT (Open STATus) and ISREQ have no effect on the pointer position
since they do not initiate any actions in the file.

When a file is opened, a “SETL B” is initiated internally as the first action for an ISAM file,
i.e. the pointer is positioned to the first record in the file.

Programming notes ISAM – Indexed Sequential Access Method

U4250-J-Z125-12-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Rules for ISAM pointers

Action
macro

Pointer Action Comments

ELIM KEY not specified:
Pointer is not moved.
KEY specified:
Pointer is moved to the
first record with the
specified key.

Eliminates a record
from the file.

ELIM can be regarded as a “left-shift”
operation on that portion of the file to the
right of the defined record. Thus, if ELIM
is successful, the pointer does not have
to be updated.

GET The pointer for the
primary or secondary
key specified in the
macro is moved one
record towards the end
of the file.

Retrieves the
record referenced
by the pointer.

If the pointer points to a record outside
the file, the user is given control at the
EOFADDR exit.
If the preceding macro was a SETL or
ELIM (with KEY), the pointer is not
updated until the record is retrieved.

GETFL The pointer is moved to
the record retrieved, or
to the last record in the
defined area.

Retrieves the next
sequential record
which satisfies the
flag criteria.

The record which would have been
retrieved by a corresponding GET or
GETR macro is the first record
examined for the flag criteria.

GETKY The pointer is set to the
record with the specified
primary or secondary
key or to the position in
the file where this record
should be.

Retrieves the
record pointed to by
the pointer,
assuming the
record with the
specified key exists.

A GETKY for a key without a corre-
sponding record is equivalent to a
GETKY for a record of zero length that is
assumed to be located between two
existing records.
Thus, a subsequent GET or GETR will
work correctly (see GET).

GETR The pointer for the
primary or secondary
key specified in the
macro is moved one
record towards the
beginning of the file.

Retrieves the
record referenced
by the pointer (see
reverse read)

If the pointer points to a record situated
before the beginning of the file, the user
is given control at the EOFADDR exit
(see GET).

INSRT The pointer is moved to
the position specified by
the record key.

Inserts the record at
the location
indicated by the
pointer.

The record is not inserted if a record with
the same key already exists. However,
the pointer still points to the position in
the file at which the record was to be
inserted.
A GET macro issued after an unsuc-
cessful INSRT retrieves the duplicate
record.

OPEN The pointer is positioned
before the first record in
the file.

See page 749

ISAM – Indexed Sequential Access Method Programming notes

80 U4250-J-Z125-12-76

PUT The pointer is positioned
immediately after the
current end of the file.

Places the record in
the file at the
position indicated
by the pointer.

PUTX The pointer does not
change its position.

Places the record in
the file at the
position indicated
by the pointer.

A check is made to verify that a GET,
GETR, GETFL or GETKY macro was
called immediately prior to PUTX. This
ensures that no errors occur even
though the pointer was not updated.

RETRY Contingent on the
operation to be
repeated, or on the
positioning operation.

Repeats the last
action macro for the
file or positions the
pointer to the origin
or places the
program in a queue.

RETRY itself does not affect the pointer
except when it results in the execution of
an action macro which does move the
pointer.

SETL SETL B: The pointer is
positioned in front of the
first record in the file.

SETL E: The pointer is
positioned after the last
record in the file.

SETL KEY: The pointer is
set to the first record
with the specified
primary or secondary
key or to the record with
the next-higher key
value.

No action Inhibits the pointer update by a following
GET or GETR macro.

Under the pointer concept, a SETL for a
non-existent record can, when followed
by a GET or GETR macro, be inter-
preted as a SETL for a record of zero
length at the correct position. In this
case the SETL does not cancel updating
of the pointer by the following GET or
GETR macro.

STORE The pointer is moved to
the position specified by
the key.
DUPEKY=YES: If a
duplicate key is encoun-
tered, the pointer is
positioned after the
existing record.

Writes the record at
the desired
location.

If a record with the same key already
exists in the file, it is overwritten (unless
DUPEKY=YES was specified).
If DUPEKY=YES applies, the new
record is written after the “old” record.

Action
macro

Pointer Action Comments

Programming notes SAM – Sequential Access Method

U4250-J-Z125-12-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

3.6 SAM – Sequential Access Method

SAM is a record-oriented access method used to process files sequentially. SAM can be
used to write to, update and read records. SAM also features a positioning function which
permits positioning at the logical start or end of a file or at any existing record.

As SAM is a record-oriented access method, it carries out the blocking, deblocking and
buffering of the records for the user. If two I/O areas are available in the user program,
exchange buffer operation can be used. If only one I/O area is provided, no overlapped
processing is possible.

SAM is virtually device-independent and permits the processing of files on disks and tapes;
tape cartridges are essentially handled like normal magnetic tapes.

From BS2000 Version 10.0 onwards, the access method SAM is capable of processing files
with different block formats (see the section dealing with access methods in the “Intro-
ductory Guide to DMS” [1]).

– K-SAM files, i.e. files with a PAM key, have the conventional block format “PAMKEY”.
They are characterized by the fact that DMS management information for each PAM
page is held in a separate PAM key located outside the page.

– NK-SAM files, i.e. PAM files without a PAM key (non-key PAM files), have the block
format “DATA” or “NO”. They do not contain separate PAM keys. With the block format
“DATA”, the DMS management information is kept in a block control field within the PAM
page.
No such block-specific management information is supported for the block format “NO”.

By way of the BLKCTRL operand in the macros FILE and FCB, the user can select whether
a K file or an NK file is to be processed: BLKCTRL=PAMKEY defines a K-SAM file,
BLKCTRL=DATA or BLKCTRL=NO specifies an NK-SAM file.

SAM – Sequential Access Method Programming notes

82 U4250-J-Z125-12-76

Macros for the SAM access method

The following action macros are available for processing files with SAM:

OPEN modes

Macro Function

FCB set up file control block.

FEOV for tape files: initiate tape swap.

GET read sequentially; records are retrieved one after the other.

PUT write sequentially: in move mode, record blocking is handled by the logical routines of
the access methods i.e. output to the data volume is delayed until the output buffer is full;
the buffers are served automatically by the system; in locate mode, blocking must be
handled by the user.

PUTX a record that has been read is replaced (for disk files in locate mode only).

RELSE terminate a data block i.e. for input files:
the next GET causes the next data block to be read;
for output files: the next PUT causes the buffer contents to be written as a data block,
the next record becoming the first record in the new data block (this is necessary in
locate mode if the next record no longer fits in the current buffer).

SETL position to a certain record in the file, to beginning-of-file or to end-of-file.

INPUT read sequentially towards the end of the file; the file must exist.

OUTPUT create a new file sequentially or overwrite an existing file.

EXTEND extend file.

UPDATE for disk files in locate mode only: update records; the record to be updated must be
retrieved by means of GET; the length of the record must not be changed during
processing; the updated record is replaced by means of PUTX.

REVERSE read sequentially towards the beginning of the file; the file must exist; tape files which
extend over more than one volume can only be read volume by volume with the aid
of the VSEQ operand (see page 506); no automatic tape swap.

Programming notes SAM – Sequential Access Method

U4250-J-Z125-12-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

The following table shows which OPEN modes are possible for which SAM action macros.

If files are opened as output files (OPEN OUTPUT/EXTEND), SAM interprets each PUT or
SETL macro as an end-of-file (EOF) indicator. The last PUT or SETL macro prior to a
CLOSE macro for a file thus automatically indicates EOF to the system. If the user wishes
to delete all records after a specific record in a file, he/she can use the SETL macro to
position to the desired point in the file, and then issue a CLOSE macro to close the file.

For direct access, a retrieval address is made available to the user. The format of this
retrieval address is described in detail in the “SAM” chapter of the “Introductory Guide to
DMS” [1]. When a record is written, its retrieval address is made available in the FCB. If the
user wishes, he/she can create a new file from this retrieval address data to serve as a
basis for subsequent non-sequential processing of this file. The retrieval address is also
made available in the FCB after execution of a GET macro. In this case too, therefore, even
if the user did not create the file, he/she can still create a secondary file from the retrieval
addresses in order to perform subsequent non-sequential processing of the file.

If, in move mode with two output buffers, physical end-of-volume is detected when a data
block is written to a tape file, the other buffer (which contains only one record) is written to
the other tape. A tape swap is not executed until this has been done.

If a file is to be created in locate mode (OPEN OUTPUT/EXTEND), the start address of the
first record to be written is returned to the user, after OPEN, in the register specified in the
operand IOREG in the FCB macro. After execution of the PUT macro, this register contains
the address for the next higher record.
In the case of a file with variable-length records (RECFORM=V), the user also always
receives the number of free bytes in the current block. This information is passed in the
register he/she specified in the VARBLD operand of the FCB macro.

Action macro
(SAM access method)

OPEN type

INPUT OUTPUT EXTEND UPDATE REVERSE

GET x x x

PUT x x

PUTX x

RELSE x x x x x

SETL x x x x x

SAM – Sequential Access Method Programming notes

84 U4250-J-Z125-12-76

Primary and secondary allocations (disk files)

When a SAM file is created or overwritten (OPEN OUTPUT) or extended (OPEN EXTEND),
both the primary and secondary allocations must be at least the same as the block size.

If a file for which RECFORM=F or RECFORM=V is specified is to be created or extended
in move mode (OPEN OUTPUT/EXTEND) and is to have more than one record per data
block, then the following conditions apply:

– The primary allocation must be at least twice as long as the data block (primary
allocation Ï 2 * BLKSIZE). Otherwise control will be passed to the EXLST exit
NOSPACE (insufficient storage space).

– The secondary allocation defined by SAM is implemented as of the first record of the
last block that can still be written in the assigned area. If the secondary allocation
cannot be implemented, control passes to the EXLST exit NOSPACE (provided it is
available in the program), thereby giving the user the opportunity to write the remaining
records of the last block.

Effects of the LABEL operand (tape files)

1) Length specified in decimal form in the case of D-records.

NO / NSTD Specification of the BUFOFF operand will lead to an OPEN error with
CODE=ISO/OWN and BLKSIZE=STD.

(STD,0) Specification of the BUFOFF operand and CODE=ISO/OWN will lead to an OPEN
error.

(STD,1) Specification of the BUFOFF operand and the entry CODE=ISO/OWN will lead to an
OPEN error.

(STD,2) Standard blocks are converted into nonstandard blocks (BLKCTRL=DATA/NO) and
V-records are converted to D-records;
RECSIZE > 9999 together with RECFORM=V will lead to an OPEN error.

(STD,3) Standard blocks are converted into nonstandard blocks (BLKCTRL=DATA/NO) and
V-records are converted to D-records;
RECSIZE > 9999 together with RECFORM=V will lead to an OPEN error.

STD /
no LABEL
operand
specified

Specification of the BUFOFF operand will lead to an OPEN error.

Programming notes SAM – Sequential Access Method

U4250-J-Z125-12-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

The combination of the specifications for the operands CODE, RECSIZE and RECFORM
result in the following values for LABEL if the file to be created is the first file on a tape:

The combination BUFOFF and RECFORM=U or BLKCTRL=DATA is not permitted.

In the case of LABEL=(STD,1), it is not possible to write a file with CODE=EBCDIC, with
nonstandard blocks and D-records. However, it is possible to read such a file.

An OPEN error will occur if the standard label level requested via the LABEL operand does
not match that specified in the VOL1 label.

If LABEL=STD is specified or the LABEL operand is omitted, the label level is determined
as shown in Table 55. If the resulting label level is higher than that in the VOL1 label, the
label level defined in the VOL1 label is used. If the resulting label level is lower than that in
the VOL1 label, or if the VOL1 label specifies LABEL=(STD,0), and if CODE=ISO/OWN is
specified, an OPEN error will result.

SAM file record formats

The SAM access method permits the record formats: F (fixed record length), V (variable
record length) and U (undefined record length).
When format U is used, SAM reads or writes only one record per data block (buffer).
For example, the definition RECFORM=U in combination with BLKSIZE=STD,
BLKCTRL=PAMKEY and a current record length of 48 bytes would mean that 2000 bytes
in each PAM page would be “wasted”.

If the full capacity of a standard block is not used (e.g. after the action macro RELSE, SETL,
FEOV or CLOSE), the remaining bytes in the block are unchanged, which means that their
contents are undefined.
The size of the record must not exceed the block size (see the BLKSIZE operand in the
FILE/FCB macro).

Further information on record format can be found in the section dealing with access
methods in the “Introductory Guide to DMS” [1].

CODE Block format RECFORM LABEL value (implicit)

EBCDIC
EBCDIC
EBCDIC
ISO/OWN
ISO/OWN
ISO/OWN
ISO/OWN

PAMKEY
DATA/NO
DATA/NO
PAMKEY
DATA/NO
DATA/NO
DATA/NO

-
U

F/V
-
U
F
V

(STD,1)
(STD,2)
(STD,3), V-records -> D-records
OPEN error
(STD,2)
(STD,3)
V-records -> D-records (STD,3)
OPEN error if BLKSIZE > 9999

SAM – Sequential Access Method Programming notes

86 U4250-J-Z125-12-76

FCB retrieval address

When creating a SAM file, DMS places a retrieval address in the FCB. This address can be
used for positioning by means of SETL. It consists of block numbers and record numbers.
The block number always refers to a logical data block (not to a PAM page), while the record
number indicates the position of the record within the indicated block. For multivolume files,
it should be noted that the block number is maintained only within each volume.

In the 31-bit TU FCB, i.e. for XS programming, the retrieval address is split into two fields,
each one word long: the field ID1BLK# contains the block number within the file and the
field ID1REC# contains the record number within this block. Both fields are incremented
automatically by the system. Whenever a data transfer operation is initiated, the record
counter is automatically reset.

For non-XS programming, the retrieval address is kept in field ID1RPTR of the 24-bit
TU FCB in the form “bbbbbbrr”, where “bbbbbb” is the number of the data block in the file
and “rr” is the number of the record within the block. The record counter is not automatically
incremented by the system; the user must do this in his program if he/she wants to use the
retrieval address. However, the record counter is automatically reset whenever a data
transfer operation is initiated.
For tape files, it should be noted that the retrieval address is returned only for files with
standard blocks, which means that SETL R (see the SETL macro, page 810) cannot be
used for files with nonstandard blocks.

Structure of the retrieval address:

The first record in a file thus has the following retrieval address:

in the 31-bit TU FCB 00000001 in field ID1BLK# and 00000001 in field ID1REC#

in the 24-bit TU FCB 00000101 in field ID1RPTR

XS interface: 31-bit TU FCB Non-XS interface: 24-bit TU FCB

ID1BLK# ID1REC# ID1RPTR (1 word)

(1 word) (1 word) Bytes 1-3 Byte 4

Block number Record number Block number Record number

Programming notes SAM – Sequential Access Method

U4250-J-Z125-12-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Retrieval address values for SETL B and SETL E, depending on the OPEN type:

where:

– Field contents unchanged.

max Highest block number.

Field IDRPTR contains both the block and record counters.

The action macros return the retrieval address as follows:

GET

if a data transfer is necessary for the requested record, the block counter contains the
logical block number and the record counter is reset. For 31-bit FCB, the record counter is
updated by each action macro.

PUT

if the PUT macro results in a data transfer, the block counter is updated and the record
counter is reset. The block counter thus contains the number of the new data block which
will receive the record. For 31-bit FCB, the record counter is updated by each action macro.

RELSE

if a file is being created or extended (OPEN OUTPUT/EXTEND), the block counter contains
the number of the block which will receive the following record and the record counter is set
to zero.

FEOV

after a tape swap, the block and record counters are reset for the new tape by the system.

OPEN type SETL B SETL E

ID1BLK# ID1REC# ID1RPTR ID1BLK# ID1REC# ID1RPTR

INPUT, UPDATE – – – max. 1 max. 1

OUTPUT 1 0 1 0 error error error

EXTEND 1 0 1 0 error error error

REVERSE – – – – – –

SAM – Sequential Access Method Programming notes

88 U4250-J-Z125-12-76

Example

File attributes: BLKCTRL=PAMKEY, BLKSIZE=(STD,2), RECFORM=F,
RECSIZE=512

Retrieval address

31-bit TU FCB 24-bit TU FCB

ID1BLK# ID1REC# IDRPTR

Record 10 00000002 00000002 00000202

Record 20 00000003 00000004 00000304

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

3.7 UPAM – User Primary Access Method

UPAM is the primary, block-oriented access method in BS2000 for random access to disk
files. Read or write access to any block of a file is possible at any time.

Tape files may likewise be processed using UPAM (see below).

By way of the BLKCTRL operand in the macros FILE and FCB, the user can select whether
a K file or an NK file is to be processed: BLKCTRL=PAMKEY defines a K-PAM file,
BLKCTRL=DATA or BLKCTRL=NO specifies an NK-PAM file.

The format of the file created on an NK2 disk depends on how the block size is specified.
If the block size is specified as BLKSIZE=(STD,n), and n is even, an NK4-PAM file is
created; if n is odd, an NK2-PAM file is created.
An NK4 disk can only be used for an NK4-PAM file (see also the section dealing with access
methods in the “Introductory Guide to DMS” [1]).

Multiple 2048-byte standard blocks can be combined to form a single data block (logical
block) by specifying BLKSIZE=(STD,n) (with n > 1) in the FCB or FILE macro.
In the case of a K-PAM file, each standard block within the logical data block can be
addressed in the program.

For an NK-PAM file, it is only possible to address a complete data block from within a
program; separate processing of the individual 2048-byte blocks which make up the data
block is not possible.

UPAM – User Primary Access Method Programming notes

90 U4250-J-Z125-12-76

Figure 4: Principles of UPAM operation

BS2000 disk file

Block number:

1 2 3

4 5 6

7 8 9

n-2 n-1 n

UPAM

Access to
blocks

User program

CLOSE file

File control block

I/O areas

OPEN file (OPEN macro)

(CLOSE macro)

(FCB macro)

(IOAREA 1/2)

Data transfer

Initiate UPAM I/O operation

A second I/O area may be used if desired

READ or WRITE
block no. k (PAM macro)

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Macros for UPAM access methods

Service macros

Macro Operation Function

OPEN open file.

CLOSE close file.

FCB define file control block.

EXLST define error exits.

PAM CHK check status of I/O processing.

LOCK lock a PAM page.

LRD lock a PAM page and read its contents into main memory.

LRDWT lock a PAM page, read its contents into main memory and wait for
completion of I/O.

RD read PAM page into main memory.

RDEQU same as RDWT (see below), but the copy is also updated in the case of files
with DRV (Dual Recording by Volume; see (the “DRV” manual [15]).

RDWT read PAM page into main memory and wait for completion of I/O.

SETL set file pointer.

SETLPP change last-page pointer (EOF pointer); this enables files to be reduced in
length, i.e. after the CLOSE call has been issued, PAM pages which are no
longer required can be released. This operation is not permitted for files
which have been opened with SHARUPD=WEAK/YES or OPEN=INPUT.
SETLPP is ignored in conjunction with tape files.

SYNC wait for completion of I/O operation and write the contents of the tape
cartridge buffer to tape.

UNLOCK unlock PAM page.

WRT write data from main memory to a PAM page.

WRTWT write data from main memory to a PAM page and wait for completion of I/O.

WRTWU write from main memory to a PAM page, wait for completion of I/O operation
and unlock the PAM page that has been written.

WT wait for completion of I/O operation.

UPAM – User Primary Access Method Programming notes

92 U4250-J-Z125-12-76

Macros used for eventing

The ENAEI, DISEI and SOLSIG macros must be used in all types of eventing. For further
information on the macros listed below, refer to the “Executive Macros” manual [2].

OPEN modes

PAM operations and OPEN modes

Multiuser operation

A UPAM file can be created and processed with the UPAM, FASTPAM (see page 61) or DIV
(see page 39) access methods. FASTPAM and DIV can, however, only process UPAM files
with the attribute BLKCTRL=NO.

CHKEI checks the status of an event item.

CONTXT enables read or write access to the register set and program counter (the “context”) of
an interrupted contingency process or of the basic task.

DISEI detaches a job from an event item.

DISCO prevents a contingency definition from controlling contingency processes.

ENACO allows a contingency definition to control contingency processes.

ENAEI assigns an event item to a job.

LEVCO changes the priority level of a contingency process or of the basic task.

RETCO terminates a contingency process.

SOLSIG sends a request to an event item.

INPUT read blocks from an existing file.

OUTIN create a new file and, if required, read blocks from this file.

INOUT read blocks from an existing file and, if required, add and/or exchange blocks.

PAM macro functions OPEN mode

INPUT OUTIN INOUT

RD, RDWT, RDEQU, LRD, LRDWT X X X

WRT, WRTWT, WRTWU - X X

WT, CHK, SYNC X X X

LOCK, UNLOCK, SETL X X X

SETLPP - X X

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Authorization for parallel file processing is dependent on the FCB operand open values
specified for SHARUPD, MODE, LOCKENV and LOCVIEW (the FCB OPEN operand
corresponds to the MODE operand of macros DIV and FPAMSRV).

The allowed parallel opens are shown in the following table:

Compatibility matrix with UPAM-OPEN

Comments

– Read operations with SHARUPD=*WEAK may have opened a file simultaneously with
any write operation.

Exception:
Read operations with DIV-SHARUPD=*WEAK which specified LOCVIEW=*NONE with
OPEN possess the same compatibility as read operations with UPAM/FASTPAM-
SHARUPD=*WEAK.

– Openers with DIV-SHARUPD=*YES are not compatible with openers with UPAM/
FASTPAM-SHARUPD=*YES.

USER B

SHARUPD =

*YES *NO *WEAK

OPEN mode

I
N
P
U
T

I
N
O
U
T

O
U
T
I
N

I
N
P
U
T

I
N
O
U
T

O
U
T
I
N

I
N
P
U
T

I
N
O
U
T

O
U
T
I
N

U
S
E
R

A

SHARUPD
=*YES

INPUT
INOUT
OUTIN

X
O
O

O
O
O

X X
X
X

SHARUPD
=*NO

INPUT
INOUT
OUTIN

X X X
X
X

SHARUPD
=*WEAK

INPUT
INOUT
OUTIN

X X X X X
X
X

X

X: OPEN permissible

O: OPEN only permissible if the openers employ the same block-oriented
access method (only UPAM/FASTPAM or only DIV)

and use the same value for the LOCKENV operand (all
LOCKENV=*HOST or LOCKENV=*XCS)

and all run in the same HOST or in an XCS network using
LOCKENV=*XCS

UPAM – User Primary Access Method Programming notes

94 U4250-J-Z125-12-76

– Read operations are always compatible with each other (regardless of access method,
SHARUPD specification, LOCKENV specification and host).

– Illegal combinations lead to an OPEN error.

– An attempt to open a tape file with SHARUPD=YES or WEAK also leads to an OPEN
error.

– If the block size of a tape file without PAM key is not a multiple of 2048, any attempt to
open it with FCBTYPE=PAM is also rejected by UPAM with an OPEN error.

– SHARUPD=*YES:
The file size is checked whenever the allocator is called. If this check indicates a file
size Ï 32 GB and the attribute LARGE_FILE=*FORBIDDEN is set in the associated
FCB then processing is canceled.
In this case, UPAM issues the return code X'000009AD' (FILE SIZE GREATER 32
GIGABYTES IS NOT ALLOWED).

UPAM formats

UPAM is a block-oriented access method. The basic processing unit is the 2-Kbyte
standard block for K-PAM files and the logical block for NK-PAM files (its size being deter-
mined by the BLKSIZE operand in the FCB or FILE macro.
UPAM can read in or output up to 16 2-Kbyte standard blocks at the same time
(LEN=(STD,n) or LEN=n*2048, where n Î 16).

The following point applies to K-PAM files:

If the value specified for the LEN operand in the PAM macro is not an integer multiple
of 2048, it is rounded up to the next higher integer multiple of 2048.
In the case of a write operation, the remainder of the last PAM page to be written in the
file is undefined; for a read operation, the remainder of the last PAM page to be read is
not passed to the buffer.

The following point applies to NK-PAM files:

If the value specified for the LEN operand in the PAM macro is not an integer multiple
of the size of a logical block, it is rounded up to the next higher integer multiple of the
logical block size.
In the case of a write operation, the remainder of the logical block in the file is undefined;
for a read operation, the remainder of the last logical block to be read is not passed to
the buffer and the remainder of the buffer contents is undefined.

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Example

The operands WRT and LEN=5000 are specified in a PAM call for a file with BLKCTRL=NO
and BLKSIZE=(STD,2). 5000 bytes are transferred from the buffer, and the remainder (up
to the next higher integer multiple of the logical block size (8192 bytes)) is undefined.

UPAM for disk files

UPAM offers the following functions for disk files:

Creation of disk files; users themselves must program access to records (e.g. sequential
access or associative access using hashing techniques).

Reading of SAM and ISAM files (OPEN=INPUT) and their transfer to other volumes (e.g. from
disk to tape); the file attributes, e.g. BLKSIZE, RECSIZE, RECFORM, are stored in the
associated FCB. This enables the user to program access to records.

UPAM cannot open SAM or ISAM files in UPDATE mode.

Because of the complex relationships between index blocks and data blocks, ISAM files
cannot be effectively processed using UPAM. UPAM can, however, be used for the block-
oriented transfer of ISAM files to tape.

Shared-update processing: a number of parallel jobs can process a PAM file concurrently.
The OPEN modes permitted in the shared-update processing of a PAM FILE (mono
system) are described in detail in the “UPAM” chapter of the “Introductory Guide to DMS”
[1].

2 logical blocks: 8192 bytes

1st logical block: 4096 bytes 2nd logical block: 4096 bytes

5000 data bytes 3192 (undefined) bytes

Buffer

UPAM – User Primary Access Method Programming notes

96 U4250-J-Z125-12-76

PAM macros in list form (up to 255, not necessarily all referring to the same file) can be
handled with a single UPAM I/O request, i.e. only one SVC is required. The chaining of PAM
macros (just like chained I/O) serves to optimize the runtime performance of user programs.

Eventing mechanism: the user job is notified when a UPAM I/O operation terminates and a
contingency process starts.

For files with DRV (Dual Recording by Volume; see the “DRV” manual [15]): user information is
output on the current status (e.g. loss of a copy of a disk). This information is requested by
UPAM when an I/O operation is performed, and stored in the FCB (field ID1DRVST).
However, this field is not updated unless the DRV status is modified.

When using UPAM for a disk file without a PAM key (BLKCTRL=DATA or BLKCTRL=NO), the
following points should be borne in mind:

– the file must have standard blocks (BLKSIZE=(STD,n))
– if the file is not an ISAM file (FCBTYPE=SAM or FCBTYPE=PAM), the secondary

allocation must be at least as large as the defined block size (BLKSIZE).

Chained I/O

Chained I/O permits the simultaneous input/output of up to 16 logically consecutive
PAM pages using a single PAM macro (not to be confused with the chaining of PAM macros
in list form with the CHAIN= operand). This reduces the number of I/O operations (and inter-
rupts) and thus reduces processing time. On the downside, however, it increases main
memory requirements and the paging rate.

– UPAM uses chained I/O if the LEN operand of the PAM macro contains a value greater
than STD or greater than 2048.

End-of-file (EOF) processing

If the end-of-file condition is encountered during a write operation, a secondary allocation
is performed and the specified number of PAM pages are appended to the file.

If the end-of-file condition is detected during a read operation, UPAM merely transfers the
PAM pages belonging to the file into the buffer.

UPAM notifies the calling job of end-of-file processing as follows:

– If eventing is not used:
the user job receives control at the EXLST exit USERERR with error code X'0922' in
field ID1ECB of the FCB. The number of PAM pages transferred is contained in field
ID1NBPP of the FCB. The value X'00' in this field means that all the PAM pages to be
read are located outside the file. A value greater than X'00' means that the user job must
perform a wait operation, unless this was implicitly included in the read operation (i.e.
in a RDWT operation).

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

– If eventing is used:
if all the PAM pages to be read are located outside the file, UPAM passes control to the
user job at the EXLST exit USERERR with error code X'0922' in field ID1ECB of the
FCB. If at least one of the PAM pages to be read belongs to the file, UPAM either
resumes the basic task or initiates a contingency process (see “TU eventing: event-
driven processing” on page 105). Field IDECBNPA of the FECB (File Event Control
Block, see page 106) now contains a value indicating the number of PAM pages trans-
ferred.

X'00' All PAM pages to be read were transferred to the buffer

X'0n' n = number of PAM pages belonging to the file that were transferred to the
buffer.

Locking and unlocking of PAM pages

Only the first in a series of PAM pages to be locked/unlocked needs to be specified in a PAM
macro; the number of pages to be locked/unlocked is derived from the value of the LEN
operand. It should, however, be noted that after a lock or unlock operation, the file pointer
points to the last PAM page that was locked/unlocked. This page may lie outside the file
(see “End-of-file (EOF) processing” above).

A LOCK or UNLOCK operation applied to a file opened as SHARUPD=NO or SHARUPD=
WEAK is treated as a no-op, i.e. the only action taken is to update the pointer to indicate
the last page processed. The LEN operand is interpreted in this case.

Processing of PAM keys

There are two possible ways of processing PAM keys:

– The user reads/writes each individual key of a series of PAM pages: MKEY=YES
operand in the PAM macro; the KEYFLD operand must contain the address of a suffi-
ciently large area.

– The user reads/writes only the first key of a series of PAM pages. During writing,
succeeding blocks are assigned the same key as the first, with just the logical block
number being incremented by 1 each time.

UPAM – User Primary Access Method Programming notes

98 U4250-J-Z125-12-76

Notes on the processing of disk files with UPAM

Blocks are not transferred to the user buffer until an explicit action macro is issued. As this
causes a delay, asynchronous I/O operations have to be terminated by means of the
WT action macro. For TU eventing, the SOLSIG macro should be used (synchronously or
asynchronously).

Any unsuccessful branch to the UPAM routines causes control to be passed to the routine
specified in the EXIT operand of the FCB macro, or to the corresponding EXLST routine.
An indicator is stored in the FCB.

Whenever UPAM induces a program termination, it supplies registers 0, 1 and 15 with the
following contents, which can be easily identified and evaluated in memory dumps:

Register 0 Address at which the termination occurred.

Register 1 Address of the element in the UPAM operand list chain in which the error
was detected.

Register 15 UPAM error code.

If register 1 contains an invalid address when the PAM macro is issued for the first time, this
address will be contained in register 0 when the dump is taken, and register 1 will contain
zeros (i.e. the error occurred before the first element in the operand list chain was located).

UPAM uses the following EXLST exits:

ERRADDR Hardware fault or abnormal I/O termination.

USERERR Invalid use of a macro in the program or attempt to read a PAM page not
belonging to the file (EOF).

EOFADDR Attempt to read a dummy file.

PGLOCK Not all of the requested locks become available within the specified time,
and the job currently has no blocks locked.

DLOCK The request to set up a lock is rejected and the job already has locks set.

PAM pages which have been allocated to a file but have not yet been written by the file
owner are identified by an internal file name code assigned by the system (CFID = Coded
File ID, bytes 0-3 of the PAM key or block control field), which does not correspond to the
current file name. The name comparison must be performed by the user, taking the
following points into account (see also the KEYFLD operand of the PAM macro, page 757):

– At OPEN time, the current CFID is written to the first word of field ID1KEY1 in the FCB.

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

The following points apply solely to the processing of K-PAM files (BLKCTRL=PAMKEY):

– After execution of a RDWT, LRDWT or RDEQU operation, the CFID of the block just
read is located in the first word of FCB field ID1KEY2.

– After execution of one of the operations WRT, WRTWT, WRTWU, or WT, the CFID of
the PAM page concerned is located in the first word of FCB field ID1KEY1. As the entry
generated by OPEN will be overwritten, it should be saved prior to processing so that
subsequent comparisons can be made.

– After execution of an LRD or RD operation, the contents of fields ID1KEY1 and
ID1KEY2 are not changed.

– With event-driven processing, the CFID of the relevant PAM page is in the first word of
FCB field ID1KEY1 after completion of an I/O operation.

The fields ID1LWB (PARMOD=24) and ID1LWBPT (PARMOD=31) in the FCB are used to
store the address of the last block on which UPAM successfully performed an I/O operation.
The leftmost byte of field ID1LWB is used as an indicator for an outstanding WT operation.

If the last UPAM operation on the file was a successful WT, then the indicator byte in
ID1LWB is set to X'00' and the three least significant bytes of ID1LWB or ID1WBPT contain
the address of the block affected by the WT operation. This occurs regardless of whether
or not the operation which initiated the WT was successfully completed.

If the last UPAM operation on that file did not initiate a WT operation, the indicator byte in
ID1LWB is set to X'FF'. The contents of the remaining three bytes in ID1LWB or ID1LWBPT
are of no significance.

UPAM – User Primary Access Method Programming notes

100 U4250-J-Z125-12-76

UPAM processing of tape files

UPAM offers the following functions for tape files:

Creation of tape files not extending over more than one tape; the user is responsible for
programming access to logical records in these files.

Reading of SAM files with standard blocks; the file attributes are stored in the FCB by OPEN
processing (see the chapter “OPEN processing” in the “Introductory Guide to DMS” [1]),
e.g. BLKSIZE, RECSIZE, RECFORM. This enables the user to program access to logical
records.

Chained I/O is not possible for tape files.

Informing the user job upon termination of a UPAM I/O operation and start of a contingency
process (eventing mechanism).

When using UPAM, the following basic points must be noted:

– UPAM is a block-oriented access method, i.e. the system is unaware of any logical
structure within the blocks. The user must program his own record handling.

The following points apply to the use of UPAM with tape files:

– The file must reside on a single tape.

– Every read/write operation processes exactly one physical block.

– In the case of a file with the format BLKCTRL=PAMKEY (explicit or implicit), this must
be a 2064-byte standard block. The first 16 bytes contain the PAM key and the
remaining 2048 bytes contain the user data. Only STD or 2048 may be specified for the
LEN operand of the PAM macro.

– In the case of a file with the format BLKCTRL=DATA or BLKCTRL=NO, BLKSIZE can
be specified in bytes, in which case the value must be a multiple of 2048. The LEN value
must not be greater than the BLKSIZE value. Blocks of the length specified by LEN and
containing either only user data (with BLKCTRL=NO) or a 12-byte block control field
plus the LEN value minus 12 bytes of user data (with BLKCTRL=DATA) are written to
the tape. These blocks can be read by means of the UPAM function RD, in which case
the value for LENRD in the read call must lie within the range:
LENWR Î LENRD Î BLKSIZE. (LENWR = value for LEN when writing to the file.)

In this context, the following special feature applies to files with FCBTYPE=ISAM:
regardless of the value specified for BLKSIZE, UPAM always works with a block size of
2048 bytes. This is because, for ISAM, each 2K block has a block control field and thus
constitutes a separate entity. In this case, the LEN value must not be more than 2048.

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Due to its different block format, a tape file without a PAM key created by UPAM in
Version 10.0 cannot be read or processed by UPAM in earlier BS2000 versions.
However, it can be processed using BTAM. This also applies to NK-ISAM files created
in V10.0 and due to be read in V9.5.

– The following errors may arise in the context of a UPAM access to a tape file with
BLKCTRL=PAMKEY and nonstandard blocks (î 2064 bytes):

– hardware error (error code = 927)
– the data may be stored in the buffer incorrectly
– the PAM key may be corrupted.

– Tape files must not be accessed by several jobs at once, or by one job several times
(this is due directly to the properties of magnetic tape). This means that:

– a tape file must not be opened with SHARUPD=YES/WEAK
– a tape file which is already open cannot be opened again, even when both OPEN

operations are in INPUT mode
– a tape file must not be opened with an FCB operand whose PAMREQS value is

greater than one.

– It is possible to read a tape file with UPAM using random access. However, the time
outlay involved can be considerable.

– It is possible to write PAM blocks as of a specific point in an existing tape file. The last
newly written block automatically becomes the last block in the file, even if the existing
file contained more blocks. The file can then only be read up to this block. If a block
nearer the start of the file is then read and the file is then closed, the most recently read
block becomes the last block in the tape file.

Programming notes

Magnetic tape cartridges are treated just like normal magnetic tapes.

Whenever UPAM causes program termination, it places the address which was responsible
for the abortion in register 0, while the address of the element in the UPAM operand list
chain at which the error was detected is placed in register 1, and the UPAM error code is
placed in register 15. This facilitates location of this information in memory dumps.

If register 1 contains an invalid address after the first PAM macro is issued, register 0 in the
memory dump will also contain this address; register 1 will then contain the value 0, i.e. the
error occurred before the first element of the operand list chain could be located.

UPAM – User Primary Access Method Programming notes

102 U4250-J-Z125-12-76

UPAM uses the following EXLST exits:

ERRADDR Hardware error or abnormal I/O termination.

USERERR Invalid operation, such as an attempt to read a PAM page which does not
belong to the file (end-of-file).

Fields ID1LWB (PARMOD=24) and ID1LWBPT (PARMOD=31) in the FCB are used to store
the address of the last block on which a WT operation was carried out successfully by
UPAM. The leftmost byte of field ID1LWB is used as an indicator byte.

If the last UPAM operation on the file was a successful WT, then the indicator byte in
ID1LWB is set to X'00' and the three least significant bytes of ID1LWB/ID1LWBPT contain
the address of the block affected by the WT operation. This occurs regardless of whether
or not the operation which initiated the WT was successfully completed.

If the last UPAM operation on that file did not initiate a WT, the indicator byte in ID1LWB is
set to X'FF'. The contents of the rightmost three bytes in ID1LWB/ID1LWBPT are of no
significance.

Chaining PAM macros in list form

PAM macros which are to be chained, and which do not necessarily have to refer to the
same file, must be generated in list form by means of the operand MF=L and then stored in
a constant area; chaining is implemented by specifying the CHAIN= operand.

All the macros (except the last) have the following format:

In the last element of the chain, the CHAIN operand is omitted.

A chain of PAM macros in list form is called by means of a PAM macro with the following
format:

Only one SVC instruction is required for each chain, i.e. by chaining UPAM requests the
user avoids the overhead of multiple SVC processing.

elementn PAM fcbaddr,operation,...,MF=L,CHAIN=elementn+1

PAM MF=(E,element1)

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Example of coding

 START
 LDBASE 10
 USING *,10
 .
 .
 PAM MF=(E,ELEM1)
 .
 .
 .
 TERM

*CONSTANT-AREA
ELEM1 PAM ,MF=L,CHAIN=ELEM2
ELEM2 PAM ,MF=L,CHAIN=ELEM3
ELEM3 PAM ,MF=L
 .
 .
 .
 END

If execution is successful, the user regains control at the statement following the PAM
macro which requested processing of an operand list chain.

All operations are carried out in exactly the same order in which the PAM macro lists appear
within the chain – with one exception: when the first operation to request a lock is encoun-
tered, the rest of the chain is examined and all operations requesting locks are registered.
If all the requested locks cannot be imposed within the specified time, the chain is termi-
nated at the operation which requested the first lock.
If an action requested in the chain is not performed successfully, none of the following
actions in the chain is executed (including locks).
Control is passed to the appropriate EXLST exit; register 1 points to the FCB of the file in
which the error occurred. The error code (ID1ECB) and the sense byte (ID1XITB) are set
in this FCB in the normal way, and field ID1CHERR in the FCB is set to the address of the
element in the operand list chain that caused the error.
A check on an unfinished I/O operation also causes control to be transferred from the
operand list chain to the user program at the specified address. The remaining requests in
the chain (including locks) are not executed, and field ID1CHERR in the FCB is set to the
address of the operand list element which contains the CHK operation. It is therefore not
advisable to use check operations in operand list chains.
The user must ensure that the lock, read, write, wait, check and unlock operations are
applied appropriately within a chain. Buffers and key fields are utilized by UPAM according
to the request. A check is made to verify that a buffer exists and that access is authorized,
but there is no guarantee that a buffer or a key field filled by an operation in a chain will not
be overwritten by a later operation involving this chain.

UPAM – User Primary Access Method Programming notes

104 U4250-J-Z125-12-76

The format of the PAM operand list can be described by means of a dummy program
section (DSECT) generated with the IDPPL macro.
In all cases where a chain of UPAM operand lists cannot be processed in full (e.g. I/O
operation failed, error detected, lock not accepted, EOF condition encountered, or CHK
operation attempted on currently executing I/O request), the address of the first unexecuted
chain entry is moved to field ID1CHERR of the FCB. The user can assume that all
preceding entries were executed correctly.
UPAM does not report errors via FCB-EXIT and EXLST

– if the UPAM SVC is executed and neither register 1 nor any chain operand contains a
valid address (e.g. the address is not aligned on a word boundary or refers to a field
which is not entirely within the user's virtual address space and is not large enough to
accommodate a UPAM macro operand list, etc.);

– if the FCB address in the UPAM macro operand list is either missing or invalid.

In both these cases, there is no FCB to which the error could be reported, and therefore
UPAM aborts the program.
A UPAM operand list chain is validated in full before any function is initiated. If a CHAIN
address or FCB address is found to be invalid, the job is aborted before any chain element
is executed.

Where the eventing mechanism is used, the user program is likewise aborted if the
I/O operation is completed and there is no event item available to which the event can be
reported.

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

TU eventing: event-driven processing

This section describes event-driven processing using certain macros. For a more detailed
explanation of “eventing”, see the “Executive Macros” manual [2].

Eventing is used by UPAM to report the completion of an I/O request to a job. The job can

– be continued in parallel with the UPAM I/O operation and, when the expected event
occurs (in this case, termination of the requested I/O operation), proceed with a contin-
gency process (asynchronous processing).

– wait for termination of the requested I/O operation and then proceed (synchronous
processing; this is, of course, equally feasible without eventing).

Upon completion of an I/O operation, UPAM sends a message to the associated event item
(using the POSSIG macro). Sooner or later this message encounters the request issued by
the user (by means of the SOLSIG macro).
When both request and message are present (for the same event item), a contingency
process is started or the basic task resumed.

Figure 5: Coordination of user job and UPAM processing

Event item

Queues for

messages requests

Initiate a UPAM I/O
operation (PAM macro)

Post entry in the
request queue (SOLSIG
macro)

Further processing
parallel to the I/O activity

When request and
message are both
present: start a
contingency process
or resume the basic
task

JobUPAM processing

Execute the requested
I/O operation; upon
termination
of the I/O operation,
post entry in the
message queue

UPAM – User Primary Access Method Programming notes

106 U4250-J-Z125-12-76

Basic task

The system must be informed of the event items and contingency definitions that are to be
used (ENAEI, ENACO macros).

For each I/O operation, the system must be supplied with the address of a file event control
block (FECB). I/O operations running in parallel must refer to different FECBs. The
maximum number of parallel I/O operations is defined via the FCB operand PAMREQS; for
tape files, only PAMREQS=1 may be specified.

The number of contingency definitions depends on whether different procedures are
required after execution of I/O operations. If, for instance, the same procedure is to be used
in all cases, the contingency definition needs to be coded once only.

A 14-byte FECB (File Event Control Block) must be set up for each event item.

The FCB macro for each file must specify a valid PAMREQS operand; PAMREQS defines
the maximum number of concurrent I/O operations which may be requested for that file.

Until the first I/O operation with an FECB is terminated, the FECB must not be used for other
I/O operations.

The address of the associated FECB must be specified for each UPAM I/O request (FECB
operand in the PAM macro). No wait operations may be requested either explicitly or
implicitly by the PAM macro. The instruction sequence read (RD) → write (WRT) → wait
(WT) for the same block would thus yield an undefined result. The user must wait for the
event (I/O termination) before issuing the WRITE call.

After each UPAM I/O request, precisely one request must be issued to the associated event
item (SOLSIG macro). The request may also be used to specify whether the basic task is
to continue in parallel with the I/O operation or is to wait for it to terminate.

At the start of a contingency process, it is passed the following information via registers 2
and 3:

For PARMOD=31: the I/O operation is initiated using the 31-bit operand list; the required
information is transferred in registers 2, 3 and 4:

Register Information

2 contains the event information code.

3 the two rightmost bytes contain a post code supplied by the user at the start of the I/O
operation, the leftmost byte contains an identifier indicating a UPAM event (X'10').

4 contains the address of the operand list for the operation which has just been completed.

Programming notes UPAM – User Primary Access Method

U4250-J-Z125-12-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

For PARMOD=24: the I/O operation is initiated using the 24-bit operand list; the required
information is held in registers 2 and 3 (as in earlier versions of BS2000):

If a SOLSIG macro generated with PARMOD=24 or a 24-bit contingency definition is
addressed via an operand list created with PARMOD=31, the secondary return code
(leftmost byte in register 15) indicates that the sending and receiving lengths are not
consistent.

Format of the file event control block (FECB)

The FECB must be aligned on a word boundary. It can be given a symbolic name by means
of the IDECB macro.

Executive flag byte

A UPAM I/O operation can be terminated in a number of different ways (EFB = Executive
flag byte; see FECB):

In a contingency process, the user can program appropriate responses to the various ways
in which an I/O operation can terminate.

Register Information

2 contains the event information code.

3 the three rightmost bytes contain the address of the operand list for the operation just
terminated, the leftmost byte contains the value X'10'.

Meaning of field Field length
(in bytes)

Field name

Internal ID of event item 4 CBEVID

Address of FCB 4 CBP1LNK

Standard device byte 1 CBSDB

Sense bytes 3x1 CBSB1, CBSB2, CBSB3

Executive flag byte 1 CBEFB

Number of PAM pages transferred 1 CBNPA

Normal I/O termination EFB=X'80'

I/O operation led to exception condition EFB=X'C0'

Unrecoverable error (e.g. hardware fault) EFB=X'A0'

Files larger than 32 GB Programming notes

108 U4250-J-Z125-12-76

3.8 Files larger than 32 GB

As of BS2000/OSD-BC V5.0, BS2000 supports files and volumes with a capacity of up to
4 Terabytes. These files and volumes are known as “large files” and “large volumes”.

The limit values supported by BS2000 are now as follows:

– the maximum capacity of a disk is approx. 4 TB (2 147 483 647 PAM pages)
– the maximum file size is also approx. 4 TB (2 147 483 647 PAM pages)

Large files and large volumes are only supported in special pubsets whose attributes must
have been set up for the use of these large objects by systems support.
Such pubsets cannot be imported into BS2000/OSD-BC versions < V5.0.

Extension to the catalog entry

The introduction of 4-byte fields for the following data stored in the catalog entry is a key
aspect in the lifting of the 32-GB limit for volume and data sizes:

– FILE-SIZE, the storage space allocated for the file

– HIGHEST-USED-PAGE, the amount of storage that currently contains data

– LHP (Logical halfpage number) and PHP (physical halfpage number) of the individual
extents in the extent list, that allocate “physical” halfpages of volumes to the logical
halfpages

3-byte and 4-byte fields

Block numbers and block counters are visible at various BS2000 user interfaces. Although
4-byte fields have been used exclusively in all new versions of these interfaces, some old
interface versions may still use 3-byte fields. If files Ï 32 GB exist, you may experience
compatibility problems. This may also occur in rare cases when only volumes Ï 32 GB exist.

New format for the extent list

The introduction of 4-byte LHPs and 4-byte PHPs means that a new (additional) format has
been introduced for the extent list.

The correlation between the maximum size of volumes and files and the field width of LHP
and PHP is depicted in figure 6:

Programming notes Files larger than 32 GB

U4250-J-Z125-12-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

Figure 6: Correlation between file and volume sizes and the field width of LHP and PHP

This new format cannot be interpreted in older BS2000/OSD-BC versions. In order to
achieve as much downward compatibility as possible, both formats of the extent list are
supported by BS2000:

– In general, the “old” format with 3-byte block numbers will be used.

– Only in the case of large files or of files that have to be addressed via PHPs >
X'FFFFFF' will the new format with 4-byte block numbers be used.

Extent lists therefore contain either extents with 3-byte block numbers or extents with 4-byte
block numbers.

4. Ext.1. Ext. 2. Ext. 3. Ext. 5. Ext.VSN_1 2 Ext. VSN_2 4 Ext.
IDEEIDEEIDEEIDEEIDEEIDVT IDVT

LHP

LHP

PHP

PHP

as of OSD-BC 5.0:

3-byte extent

Extent list:

PHP: the physical page

max. volume size 4 TB

max. file size 32 GB

page of the extent;

max. volume size 32 GB

assigned to the LHP:

max. file size 4 TB

LHP: highest logical

file size limit volume size limit

4-byte extent

Files larger than 32 GB Programming notes

110 U4250-J-Z125-12-76

Restrictions for large files

– No large files can exist on the home pubset.

– The dump file $TSOS.SLEDFILE (SLED file) cannot be Ï 32 GB.

– The paging file cannot be Ï 32 GB.

– A SYSEAM file cannot be Ï 32 GB.

– SIR does not support large files when reading from ARCHIVE tapes.

– Files with BLKCTRL=PAMKEY
The logical page number is stored as a 3-byte field in the system section of the
PAMKEY. This cannot be modified for all access methods.

Summary of the DMS macro interfaces affected by 32-byte objects

Interface Change

FCB New operand for large files

FILE New operand for large files

FSTAT Effort involved in check and conversion if VERSION=0/1

OPEN Takes account of semantic problems

RDTFT Attribute of the “large file” file attribute

DIV New operand for large files;
extended range of values for BLOCK and SPAN

FPAMACC Extended range of values for BLOCK

FPAMSRV New operand for large files

Programming notes Files larger than 32 GB

U4250-J-Z125-12-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

4
. M

a
y

20
16

 S
ta

nd
 1

5:
09

.3
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

k0
3

User programs

As stated above, it cannot be assumed that all programs have been prepared for accessing
large objects, i.e. that they can address 4-byte block numbers and block counters and it
must be borne in mind that the interfaces available to user applications only relate to
accessing and processing files and their metadata.

Program behavior can thus be classified as follows:

Class A: A program is able to process large files without restrictions. This behavior is
defined as LARGE_FILES-capable.

Class B: A program has not been prepared for processing large files and/or their
metadata. It is, however, able to perform defined rejections of corresponding
access attempts that it regards as illegal. Alternatively, there are no access files
or their metadata within the program. This behavior is defined as
LARGE_FILES-capable.

Class C: A program has not been prepared for processing large files and cannot perform
a defined rejection of corresponding access attempts. This behavior is defined
as LARGE_FILES-incompatible.

In configurations that contain large files, programs that are compatible with or capable of
LARGE_FILES are required. LARGE_FILES compatibility is to be regarded as the norm.
Growth over 32 GB will initially be limited to a relatively small number of files. Only the
programs that access these require LARGE_FILES capability.

For concrete examples of this classification for the relevant DMS interfaces in BS2000 and
further, detailed information on this subject, refer to the manual “Files and Volumes larger
than 32 GB” [19].

U4250-J-Z125-12-76 112

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Macros ADDPLNK

U4250-J-Z125-12-76 113

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

4 Macros

ADDPLNK – Define pool link name

Macro type: type S (E form/L form/D form/C form); see page 866

The ADDPLNK macro is used to assign a pool link name to an ISAM pool for a user job and
to enter this name in a pool table. This pool

link name must have been entered in the task file table by means of the FILE command
(operands LINK and POOLLNK) or specified in the FCB (field POOLLNK). During OPEN
processing, the system checks whether a pool link name exists for the file and whether an
ISAM pool exists for the name.

Format

Operation Operands

ADDPLNK POOLNME=poolname

,LINKNME=name

[,CATID=catid]

MF=L,POOLNME=poolname

MF=D[,PREFIX=pre]

MF=C[,PREFIX=pre][,MACID=macid]

[,SCOPE=

TASK

USERID

USERGROUP

HOST
 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

ADDPLNK Macros

114 U4250-J-Z125-12-76

Operand descriptions

CATID = catid
Specifies the pubset to which the ISAM pool belongs. This must match the “catid”
specification in the CREPOOL macro.

Default value: the default catalog ID of the task.

LINKNME = name
Assigns the pool link name “name” to the ISAM pool “poolname”. “name” may be
1-8 characters long and may contain all letters and digits and the special characters $, #
and @ (in accordance with the rules for file names).

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
the field names and equates generated in the data area when the macro is expanded.

Default value: MACID = ISA

= macid
Three-character string defining the second through fourth characters of each field name
and equate generated.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

PARAM
Specifies the address of the operand list; evaluated only in conjunction with MF=E (see
page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register containing the address of the operand list. The register must be
loaded with this address value before the macro is called.

POOLNME = poolname
Specifies the ISAM pool to be used for file processing. “poolname” is the name with which
the ISAM pool was created (see the CREPOOL macro, page 241).

Macros ADDPLNK

U4250-J-Z125-12-76 115

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

PREFIX
evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default value: PREFIX = D

= pre
One-character prefix with which the field names and equates generated by the
assembler are to begin.

SCOPE
Specifies the scope of the ISAM pool. This must have the same value as in the CREPOOL
macro.

= TASK
The pool link name is assigned to the task-local ISAM pool “poolname”.

= USERID
This scope is still supported only for reasons of compatibility (see the CREPOOL
macro, page 241).

= USERGROUP
This scope is still supported only for reasons of compatibility (see the CREPOOL
macro, page 241).

= HOST
The pool link name is assigned to the cross-task ISAM pool “poolname”.

ADDPLNK Macros

116 U4250-J-Z125-12-76

Return codes

Unless otherwise specified, the field names and EQU statements for return codes
generated by the C and D forms of the macro begin with the string DISA; this string can be
modified by means of PREFIX and MACID.

The return codes are entered in the standard header of the operand list.

Main return code Meaning

DISAOK X'0000' The macro call was successful

DISANPAR X'0001' Access to the operand list was not possible

DISANREM X'0002' The pubset identified by “catid” is on a host system running a version of
BS2000 which does not support ISAM pools

DISANCAT X'0003' The catalog ID “catid” is unknown in the system

DISANACC X'0004' There is no connection to pubset “catid”

DISAINVN X'0005' The pool name or pool link name is invalid

DISANCLA X'000A' The pool name already exists and the existing assignment cannot be cleared

DISASYSE X'000B' An internal error occurred during macro processing

DISANOPL X'000D' There is no pool with the specified name

DISARNLK X'FFFF' The macro call could not be executed: evaluate subsidiary return code 1
(linkage error)

Macros BTAM

U4250-J-Z125-12-76 117

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

BTAM – Process tape files (type S)

Macro type: type S (E form/L form); see page 866

All user requests for BTAM are handled using this macro. In the operand descriptions, the
abbreviation “MTC” is used for “magnetic tape cartridge”.

Format

Operation Operands

BTAM fcbadr

(Teil 1 von 2)

[,

RDWT

RBID

RD

RDBF

CHK

MINF

POS

REV

REVWT

RNT

RNTL

RT

RTL

SYNC

WRT

WRTWT

WT

ERG

BSF

BSR

FSF

FSR

REW

RUN

WTM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

][,LEN=length][,LOC=

1

2

relexp
 
 
 
 
 

]

BTAM Macros

118 U4250-J-Z125-12-76

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

RDWT
Reads the tape forwards and waits until the operation is completed before returning control
to the user program (default function).

CHK
Checks whether the previous I/O operation has been completed. If not, control is
transferred to the address specified in LOC. Otherwise, the operation is equivalent to WT.

MINF
Fetches information about the medium during the processing of optical disks. In BS2000,
optical disks are operated via an MTC emulation.
The area to which the information is to be written and its length (currently 128 bytes) must
be specified via the LOC and LEN operands. The layout of the output information is
described with GC NDWMINF.

POS
Permissible only with PARMOD=31; positions the tape (see “Operation codes” on
page 122).

RBID
Permissible only with PARMOD=31; determines the tape position (see “Operation codes”
on page 122).

MF=L

Operation Operands

(Teil 2 von 2)

[,PARMOD=
24

31 
 
 

][,REQNO=number]

MF=(
E,addr

E,(r) 
 
 

)

Macros BTAM

U4250-J-Z125-12-76 119

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

RD
Reads the tape in a forward direction.

RDBF
For tape cartridges, permissible only with PARMOD=31; transfers data block-by-block from
the save area of the MTC buffer to the user area (see “Operation codes” on page 122).

REV
Reads the tape backwards (towards BOT).

REVWT
Reads the tape backwards and waits until the operation has been completed before
returning control to the user program.

RNT
Reads without data transfer; a message is issued if the length is shorter than expected.

RNTL
Reads without data transfer; no message is issued if the length is shorter than expected.

RT
Reads with data transfer; a message is issued if the length is shorter than expected.

RTL
Reads with data transfer; no message is issued if the length is shorter than expected.

SYNC
Permissible only with PARMOD=31; determines the tape position and synchronizes
(see “Operation codes” on page 122).

WRT
Writes to a magnetic tape.

WRTWT
Writes to a magnetic tape, waiting until the operation has been completed before returning
control to the user program.

BTAM Macros

120 U4250-J-Z125-12-76

WT
Waits until the previous I/O operation has been completed. Control is not returned to the
user program until the operation has been completed or the necessary error recovery
functions have been performed.

ERG
Generates an interblock gap; if repeated, the tape is erased.
The operation triggered by ERG is physically a write operation. However, instead of a bit
pattern, an “interblock gap” pattern is generated. The length of this pattern is defined by the
user (although for some magnetic tape types, the length is preset).

BSF
Rewinds (backspaces) the tape by one tape mark.

BSR
Rewinds (backspaces) the tape by one block.

FSF
Forward-spaces the tape by one tape mark.

FSR
Forward-spaces the tape by one block.

REW
Rewinds the tape to the BOT marker.

RUN
Rewinds and unloads the tape; subsequently, only CLOSE is possible.

WTM
Writes a tape mark.

LEN = length
Specifies the length of the individual blocks or, for chained I/O (CHAINIO operand in FILE/
FCB), the length of the transport unit.
If LEN is not specified, the length of a transport unit is the product of the block size and the
chaining factor, where the block size is defined by BLKSIZE if RECFORM=F is specified,
and by the contents of the register specified for RECSIZE if RECFORM=U applies.

Macros BTAM

U4250-J-Z125-12-76 121

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Without chaining, the system takes the specifications only from the RECSIZE operand
when writing with RECFORM=U; otherwise, they are taken from the BLKSIZE operand.
If RECFORM=U is specified, a length specification entered via the LEN operand may be
such that the last block within a transport unit is shorter than the previous blocks.
If RECFORM=F is specified, the given length should be a multiple of the BLKSIZE specified
(but the job will not be rejected if this is not the case).
The length to be read is always taken from the current length specification and only from
this. After a successful READ, the actual block size is returned in the RECSIZE register.
If specified in conjunction with operation code RDBF, LEN specifies the length of the blocks
to be saved from the buffer. If RECFORM=U/V applies, the current block length is stored in
the RECSIZE register.

LOC
Specifies the area from which data is to be read or to which data is to be written.

= relexp
Address of an area in the macro.
The LOC operand must be specified in the form LOC=relexp if a CHK operation is
required. It specifies the address to which control is to be passed if the operation being
checked has not yet been completed. The addressed area must not coincide with
IOAREA1/2.

= 1
Points to the address IOAREA1 in the FCB.

= 2
Points to the address IOAREA2 in the FCB.
The used I/O area is indicated in the TU FCB:
– in field ID1BLWB of the 31-bit TU FCB, or
– in field ID1LWB of the 24-bit TU FCB.
When used with the operation codes POS, RBID, RDBF, and SYNC, LOC has the
following functions:
– POS:address of the specified tape position (9 bytes)
– RBID:address at which the specified tape position (9 bytes) is output
– RDBF:address of the area into which the saved block is to be placed
– SYNC:address at which the specified tape position (9 byes) is output
The pointer in the TU FCB (ID1BLWB or ID1LWB) is set to the last used area for these
operation codes as well.

Default value: IOAREA1

IOAREA2

– for the first input or output
– when switching from LOC=relexp to an IOAREA
– if IOAREA2 was used last
– if IOAREA2 is not defined
– if IOAREA1 was used last

BTAM Macros

122 U4250-J-Z125-12-76

MF
The formats of the MF operand are described in detail in the appendix, page 865.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

REQNO = number
Number Î 8; the number of the input/output request or of the associated macro. Several
asynchronous read or write operations, identified by different numbers, can be started.
Each of these read/write operations must be terminated by the WT operand (together with
the relevant number). The maximum number of concurrent I/O operations is specified in the
BTAMRQS operand of the FCB.

Operation codes

POS – Position the tape

This is useful for restarting, e.g. after a write error with loss of data: the user can specify the
block number (2 bytes) which he/she obtained from an earlier RBID operation at the
address defined by LOC and the tape is then positioned to the corresponding block.

RBID – Determine current tape position (block number)

Each block on a tape, including the tape marks, can be identified by means of its position
on the tape.
In the case of conventional magnetic tapes, the tape position is returned to the user as a
pair of values (TM and record counters). This information is returned to the user after an
RBID instruction (or SYNC instruction, see page 124) at the address defined by means of
the LOC operand (see the operand description) or, if LOC is not specified, in one of the I/O
areas defined in the FCB. The position information (first 8 bytes) depends on the processing
status and returns the information listed in the table on page 123 in field ID1ECB of the FCB
in the case of an error.

Macros BTAM

U4250-J-Z125-12-76 123

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

The 9th byte specifies how the position information is to be interpreted.

Before an RBID instruction is issued, all outstanding asynchronous read/write operations
(in MAV mode) must be terminated with a WAIT. In the case of synchronous file processing,
BTAM executes the WAIT automatically.

For magnetic tape cartridges, the tape position is defined as a “block number” (or block ID).

Information returned

RDBF – for MTC only – after an unrecoverable write error, read data from the save area of the MTC
buffer into a user area.

When writing is buffered, it is possible for errors to occur for data blocks for which the user
has already received a positive acknowledgment. DMS attempts to save the data already
passed to the MTC buffer and the tape position so that the user can carry out normal error
handling. (S)he can retrieve the block causing the error and subsequent blocks (which have
been acknowledged but not yet written to tape) from the save area of the buffer and process
them again, for example by sending them to a different volume.

2**7 = 1: TM and record counters

2**6 = 1: block ID

2**0 = 1: no valid position specified

Event Information Meaning Action

Successful
execution

Block number Indicates the position of the next
block to be written to or read out of
the MTC buffer

Unsuccessful
execution

Block number
+ error DC7C

The tape position has been saved;
the block number shows which block
was written last without error

Reposition using
POS

Block number undefined
+ error DC7B

The tape position could not be saved Reposition to
checkpoint or
program is
aborted

Block number undefined
+ error DC79

The tape position could not be saved Program is
aborted

Block number
+ error DC77

I/O error; the block number is the one
that existed after error handling

Block number undefined
+ error DC77

I/O error with “loss of position” Reposition to
checkpoint or
program is
aborted

BTAM Macros

124 U4250-J-Z125-12-76

Before the file is closed (CLOSE) or a tape swap is initiated by FEOV, the user must use
the POS function to position the tape after the last block which was written successfully. The
blocks are read on the principle “last in, first out” and the number of blocks stored in the
buffer is kept in field ID1BLANZ in the TU FCB. A separate RDBF instruction must be issued
for each block, in which case the input area is specified as for normal read operations: the
address is given by the LOC operand in the BTAM macro or by IOAREA in the FCB and the
length in the LEN operand or in the FCB, in the same way as for reading from tape. The
blocks are transferred with the specified length. If RECFORM=V/U is specified for the file,
the actual length of the saved block is indicated in the register specified by means of
RECSIZE in the FILE or FCB macro.

SYNC – Synchronize and set marker points

The data contained in the MTC buffer is written to tape. For synchronous processing (not
MAV mode), BTAM initiates any outstanding WAIT. For asynchronous processing (MAV
mode), the user must ensure that any outstanding WAITs are executed before the SYNC
instruction is issued. The SYNC call implicitly includes an RBID call, i.e. the current tape
position is returned to the user in the I/O area. The user can utilize this fact to set check-
points, e.g. for handling subsequent errors: he/she can then restart at one of these points
and continue processing.

Programming notes

1. The BTAM macro destroys the contents of registers 0, 1, 14 and 15.

2. Misuse of FSF or FSR can cause the tape to run to end-of-volume, in which case it must
be rewound by the operator (offline).

3. Whenever a branch to BTAM is unsuccessful, control is passed to the address specified
in the EXIT operand of the FCB. An appropriate hexadecimal error code is stored in the
FCB.

4. If the user specifies fixed-length blocks (format F) but reads blocks of a different length,
control is passed to the ERRADDR exit in the EXLST macro.

If the record length exceeds the specified length, an “abnormal termination” bit is set in
the Executive flag byte, and the “record-length error” bit is set in the sense byte,
provided no RTL or RNTL operation with the simultaneous use of chaining and/or
MAV mode is involved (in which case the user is not informed).

If the block is shorter than the specified length, however, the “abnormal termination” bit
is set, but no error byte is returned (the residual count is stored in sense bytes 2 and 3;
see the NDWERINF macro, page 748). No notification is provided to the user if an RTL
or RNTL operation is involved.

Macros BTAM

U4250-J-Z125-12-76 125

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

5. If the user specifies variable-length blocks (format U or V) or uses the operation codes
RTL or RNTL, but reads blocks of a greater length than specified, control is passed to
the ERRADDR exit in the EXLST macro, provided chaining and MAV mode are not
used. The ERRADR exit is always activated for RT and RNT operations. In all other
cases, no information is returned to the user for the U/V format.

The various cases and situations in which the user is notified are summarized in the
table below:

*) yes if chaining and MAV mode are not used

6. The user need not specify wait operations explicitly, provided that he/she is not working
in MAV mode. BTAM automatically outputs a WAIT before each new operation.
However, if an error occurs during this WAIT operation, error code X'0C77' is output.
The new operation is not executed.

Note that this implicit WAIT is only meaningful when working with multiple I/O areas.
Since the data in the output area must essentially be retained when writing until the
completion of a WAIT, and since the input area is correctly filled when reading only after
completion of a WAIT, users who work with only one I/O area must ensure that a WAIT
is issued as soon as they wish to reuse this single area.

7. BTAM does not use the EOFADDR exit of the EXLST macro (end of file). If a tape mark
is read by a RD, RDWT, RNT, RNTL, RT, RTL, REV or REVWT, control is transferred to
the ERRADDR address.

The program can evaluate the 5 status bytes in the FCB (SDB, FB1, FB2, FB3, AMB)
after the WAIT. Control is also transferred to the ERRADDR address if an attempt is
made to reverse-read a tape that is positioned at the beginning of the tape.

8. In the case of the REV and REVWT operations, the address for the first byte into which
data is read is defined by:

LOC + LEN - 1

9. The SAM macro FEOV can be used for a file opened by BTAM. If end-of-file (on the
current tape) is encountered, BTAM branches to the otherwise unused exit EOFADDR.

Operation Format

RECFORM=F RECFORM=U/V

Block < specified
length

Block > specified
length

Block < specified
length

Block > specified
length

RD(WT) yes yes no conditional *)

R(N)T yes yes yes yes

R(W)TL no conditional *) no conditional *)

BTAM Macros

126 U4250-J-Z125-12-76

10. CHAINIO with tape cartridges: the transport unit should not be larger than the buffer
size, and the buffer size should be an integral multiple of BLKSIZE. In the case of an
error, the indicated number of blocks in the buffer (TU FCB: ID1BLANZ) always refers
to individual blocks, not to transport units. The RDBF operations also process only
individual blocks.

11. MAV mode with tape cartridges: the value specified for BTAMREQS in the FCB can be
smaller than for tapes, since the user I/O areas become free again more rapidly in the
case of tape cartridges.

12. In the event of an error, it is possible that the entire contents of the MTC buffer cannot
be written to the cartridge. The user can access the blocks transferred by the operating
system from the MTC buffer to a save area, which is equivalent to reading a tape in the
reverse direction. After this, the user should attempt to position the MTC after the last
block which was written correctly.

The user must ensure that the tape is positioned correctly (by means of POS) before
further write operations are started (particularly before writing the EOV/EOF labels).
Otherwise, data on the tape may be overwritten. An RBID operation after error DC7C
returns the tape position after the last block which was written correctly.

The tape can be closed correctly by writing the end labels if it is first read backwards for
a few blocks or positioned backwards (if the user does not need the data already
written).

13. If, due to a write error, some blocks were not written from the MTC buffer to tape, but
are still saved in the save area of the buffer, the user must first execute an RDBF or
RBID operation in order to tell the system that he/she does not want to discard this data;
otherwise, it will not be available later. RDBF and RBID may be issued in any sequence;
the contents of the buffer are retained as long as the user starts no other operations,
with the exception of any outstanding WAITs. The user may issue these before issuing
the RBID and/or RDBF instructions (and must issue them before the RBID); naturally,
all of these WAITs will result in error code DC7C.

If the user does not position the tape after the DC7C error message, the tape position
becomes “UNDEFINED” and this state can be cleared only by positioning the tape (or
with REW and UNL).

14. Before checkpoints are written by means of the SYNC instruction, all previously initiated
I/O operations must be terminated by means of WAIT.

15. If a calling sequence in which a “write” operation follows a “reverse read” is used when
in MAV mode, all outstanding WAITS must be issued before the “write” operation.

Macros BTAM

U4250-J-Z125-12-76 127

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

16. A characteristic feature of tape cartridge devices is that errors which occur during output
operations are reported only when the buffer contents are transferred to tape. The user
may thus be informed that an error has occurred only when (s)he starts another
request. Consequently, the user may receive the message “end of tape” before the
message indicating that an error has occurred. The “end-of-tape” message means that
the user should not start any more write operations, in order to ensure that all data still
in the buffer and the end labels will fit on the current tape. In the case of tape cartridges,
this “end-of-tape” message does not result from detection of an end-of-volume label on
the tape; rather it is generated during the transfer of data into the buffer, contingent on
the amount of data already in the buffer and other criteria.

17. When the FEOV or CLOSE macro is issued for a BTAM file which was opened in INOUT
mode, the file is treated as an output file if a WRITE-and-WAIT operation was requested
for it during processing (WRT, WRTWT, WTM). If no WRITE-and-WAIT operation was
requested, the file is treated as an input file.

18. BTAM issues the error code X'0C95' if:

– an invalid device type is specified

– the operation code is invalid

– one of the registers 0, 1, 13, 14 or 15 is specified in the FCB RECSIZE operand

– the value of the LEN operand in the BTAM macro is less than or equal to 0 or, if
LOC=relexp is not specified, greater than BLKSIZE (in which case IOAREA1/2 will
be used, which is the same size as BLKSIZE)

– a read operation is requested for a file opened in OUTPUT mode

– the REQNO specification in MAV mode exceeds the maximum permissible value

– a WAIT macro has not been issued before a read/write call for the same REQNO,
when in MAV mode

– a BTAM call is specified after RUN (only CLOSE is possible) or after an unsuc-
cessful FEOV operation

– BTAM calls are issued for a file which has not been opened for BTAM (except in
EXLST routines for label handling)

BTAM Macros

128 U4250-J-Z125-12-76

19. When extending a tape file, a direct switch from “write” to “read” should be avoided.
Discrepancies in deletion overlaps can lead to problems on certain magnetic tape
devices.

The following sequence of operations always guarantees error-free execution:

20. An incorrect block length is not indicated in some cases, e.g. when reading data with
chaining specified (see page 124).

The chain for the input of CCWs continues to run. However, the areas to which the
individual blocks are transferred are incremented at the customary rate for blocks of
normal size; in other words there will be gaps in the input/output areas in those cases
where blocks of shorter length occur.

21. Information relating to the buffers used is provided in the TUFCB field ID1LWB when
PARMOD=24, and in the field ID1BLWB when PARMOD=31, when a WAIT is executed
in the following manner (asynchronous processing): for an input operation, a note is
made of the buffer affected by the last WAIT operation without an error message. For
output operations, the buffer indicated is the one which was used for the last output
(which may not necessarily have terminated).

For synchronous processing, the following applies: for PARMOD=24, the value
specified in the FCB field ID1LWB refers to the buffer which was last used, and for which
a successful WAIT was issued; if PARMOD=31 applies, the FCB field ID1BLWB is
used.

22. When the block and transport unit sizes are defined by the user, the following point
should be borne in mind: Each I/O operation initiated by the device driver involves
defining block and transport unit sizes for the pages affected. In the case of chained
input/output, these definitions are effected for every CCW of the chain. For memory
management reasons, however, this is only possible for up to 63 definitions per page;
that is, if a job is issued in such a way that more than 63 CCWs referring to the same
page may be created (e.g. when using small block sizes and large transport unit
lengths), a CSTAT error may be the result.

23. In the case of tapes with standard labels, BTAM checks whether a planned write
operation is actually allowed by the current tape position. If not, the request is rejected
with USERERR and error code 0C9D.

BTAM macro Meaning

BSR, FSR, ... Position tape before block n

RD Read (save) block n

BSR Reposition tape before block n

WRT Write block n back to the tape

WRT/WRTM Write block n+1 (or tape mark)

Macros BTAM

U4250-J-Z125-12-76 129

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Return codes

Five FCB sense bytes (SDB, FB1, FB2, FB3 and AMB) are loaded in the TU FCB.
In addition, the following information is issued in field ID1LRCRB:

Byte 1: X'04' End-of-tape/beginning-of-tape encountered
X'02' Block shorter than value from BLKSIZE
X'05' Block longer than value from BLKSIZE
X'01' Tape mark detected
X'08' Undefined error (unrecoverable)
X'09' Parity error (inoperable)
X'0C' Device defective
X'0D' Device in operation
X'0E' Continuation error on tape cartridge; position to defective block
X'0F' Tape format not compatible with device type

Byte 2: Request number (required, since EXIT ERRADR can be issued only once
per FCB).

Bytes 3/4: Block number within a chained input/output job during which an error
occurred, or number of the block at which the end of the tape was reached
(this block will still be written).

A DSECT (DLRC macro) is supplied to interrogate the values set in the first byte of the
ID1LRCLB field.

With operations in asynchronous mode (REQNO operand), any further input/output jobs
which have already been accepted are no longer started if an error occurs during input/
output. Instead, these jobs are terminated logically after a WAIT command has been issued
by the user. When this is the case, the block number in bytes 3 and 4 of field ID1LRCLB
and the error information for the errored I/O operation both have a value of 1, and the value
in the RECSIZE register (for RECFORM=U) is 0.

The user can issue a CLOSE macro at any time, even before all outstanding WAITS have
been issued. All outstanding input/output requests which may not yet have been completed
at this point in time are then terminated logically. However, this does not necessarily mean
that all these requests have been honored.

CATAL Macros

130 U4250-J-Z125-12-76

CATAL – Process catalog entry

Macro type: type S (E form/L form/D form/C form/M form); see page 866

The CATAL macro creates or modifies catalog entries. It can be used to define attributes for
file and data protection, to specify the coded character set and performance attributes, and
to convert temporary files to permanent files and vice versa.

If attributes in existing catalog entries are to be modified, the operand STATE=*UPDATE
must be specified. Only those file attributes, i.e. fields in the catalog entry, whose
associated operands are specified with valid operand values are updated.

A catalog entry can be updated only if write access is not prevented by means of a
password. Otherwise, the password must be entered in the password table of the job by
means of the PASSWORD command (see the “Introductory Guide to DMS” [1]).

CATAL can be used to catalog files, file generations and file generation groups. The
protection attributes for files and file generation groups can be modified; the protection attri-
butes for file generations are defined by the related group entry.

The CATAL macro supports the “Default-Protection” function.

The encryption attributes of a file cannot be modified using the CATAL macro.

Macros CATAL

U4250-J-Z125-12-76 131

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Temporary files

Since temporary files are job-specific, it is not possible to define file protection for them, i.e.
the applicable default attributes cannot be modified. The following points must be noted
when setting up a temporary file or if a permanent file is recataloged as a temporary file
(or vice versa).

Nonprivileged users can only create temporary files on the default pubsets relating to their
user IDs.

– Setting up a temporary file:

The temporary file is assigned the following values (explicit specification of other values
is generally not permitted):

The attribute DISK-WRITE is set as default to *BY-CLOSE but may, however, be
explicitly set to *IMMEDIATE. The attribute MIGRATE, which is set to the default value
*INHIBITED, may also be set explicitly to *FORBIDDEN.

– Recataloging from temporary to permanent:

The permanent file is assigned the following values if no explicit entries are made:

The remaining attributes are taken over unchanged from the temporary file.

EXPIRATION-DATE = <date> BACKUP-CLASS = *E

USER-ACCESS = *OWNER-ONLY READ-PASSWORD = *NONE

WRITE-PASSWORD = *NONE EXEC-PASSWORD = *NONE

ACL = *NO GUARDS = *NONE

BASIC-ACL = *NONE ACCESS = *WRITE

FREE-FOR-DELETION = *NONE AVAILABILITY = *STD

MANAGEMENT-CLASS = *NONE

BACKUP-CLASS = value of the class 2 option BACKUP

DISK-WRITE = *IMMEDIATE

MIGRATE *ALLOWED is set for the permanent file if
MIGRATE=*INHIBITED was set for the temporary file
(MIGRATE=*FORBIDDEN remains unchanged).

CATAL Macros

132 U4250-J-Z125-12-76

– Recataloging from permanent to temporary:

The temporary file is assigned the same values as when a temporary file is set up.

The only difference is the value for MIGRATE:
If MIGRATE=*ALLOWED was set for the permanent file, *INHIBITED is set for the
temporary file (MIGRATE=*FORBIDDEN or *INHIBITED remains unchanged).

– Renaming from temporary to permanent and vice versa is rejected in an SM pubset if
simultaneous changing of the file attributes requires reallocation to another volume set
(S0 migration).

– Recataloging a work file or a file on a Net-Storage volume to a temporary file or vice
versa is not allowed.

File generation groups (FGG)

The following points must be noted when creating or accessing file generation group
catalog entries:

– If the user wishes to work with a file generation group (FGG), he must create the group
entry before he catalogs the first generation. In contrast to files and file generations,
which can be cataloged by means of FILE, the group entry can be created at the
program level only by means of the CATAL macro.

– If the file generation group is indexed on public volumes (no VOLUME and/or DEVICE
specification), the generations can be created on both public volumes and on tapes
(FILE program interface).
If the file generation group is indexed on a private disk (VOLUME/DEVICE specifi-
cation), the generations can then also only be created on private disks (FILE program
interface).

– Files can be recataloged as file generations if the file generations do not already exist.
A file on a Net-Storage volume cannot be renamed as a file generation. However, file
generations cannot be recataloged as files.

– The attributes (operands) STOCLAS, IOPERF, IOUSAGE, DISKWR and SOMIGR can
be assigned or modified for the separate file generations of a file generation group.
The entries of the user or system administration metainformation (USRINFO and
ADMINFO operands) can be defined separately for the index of the file generation
group and each individual file generation.
The remaining attributes can only be defined for the complete file generation group.
They are inherited automatically from the index by all cataloged generations.

– The USER-ACCESS attribute must not be set to SPECIAL for file generation groups.

– It is not possible or meaningful to assign execution rights for file generation groups
since generations cannot be executed (/CALL-PROCEDURE or /START-PROGRAM is
rejected).

Macros CATAL

U4250-J-Z125-12-76 133

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

– The protection attributes READ-PASSWORD, WRITE-PASSWORD and EXPIRATION-
DATE do not protect the index of a file generation group against new generations being
created using CATAL. This means that new generations can be cataloged and,
dependent on the selected OVERFLOW-OPTION, old generations deleted regardless
of the protection attributes.

– A new generation cannot be created in a generation group with the attribute
ACCESS=READ using CATAL <generation name>,STATE=*NEW;
CATAL <file><generation name>,STATE=*UPDATE must be used instead.

– The protection attributes BASIC-ACL and GUARDS protect the file generation group
(index) as well as each individual file generation. This means that a caller who does not
posses write authorization cannot create a new file generation in a file generation group
which is write-protected with these attributes.

– File generation groups which are stored on private volumes and for which no catalog
entries exist are called foreign file generation groups. If such FGGs are to be cataloged
again, the group entry must first be created. For file generation groups on private disks,
the operand STATE=*FOREIGN can be used for this purpose if the F1 label on the disk
contains the group entry. The system then creates the catalog entry from the infor-
mation in the F1 label of the private disk specified via the DEVICE and VOLUME
operands. The associated file generations must then be imported (e.g. FILE macro,
operand STATE=*FOREIGN).

– If a file generation group whose generations are stored on a tape or private disk is to be
imported, and if the F1 label of the disk does not contain the group entry, the operand
FIRST and at least one of the operands BASE or LAST must be specified in the CATAL
macro to enable reconstruction of the group entry.

– When a file generation group is set up in the SM pubset, this must be defined as either
a group of permanent generations or a working generation group (WORK-FILE
attribute) by either implicitly assigning a default storage class or explicitly specifying the
WORKGRP operand. It is not possible to subsequently change the attribute.
If the generation concerned is assigned a storage class (during initial allocation via the
FILE program interface) or the storage class is exchanged, the WORK-FILE attribute in
the storage class must match the attribute of the group.

Files on tapes and tape cartridges

When creating or updating the catalog entries for tape files, some special features which
result from the use of tapes must be observed.

– Details of shareability (SHARE), access type (ACCESS) and passwords are trans-
ferred, for files with standard labels, from the catalog entry to the file labels when the
file is created. For foreign files the details of the access rights are transferred from the
file labels into the catalog entry when the file is opened.

CATAL Macros

134 U4250-J-Z125-12-76

– Since file labels on a tape cannot be modified without destroying the file (this is a
hardware restriction), and the contents of the catalog entry for a file must match the
contents of the file labels, the access rights and the expiration date of a tape file cannot
be modified by means of the CATAL macro once the file has been opened and closed
correctly.

– If the tape file was cataloged by means of a FILE macro, the file protection attributes
can be modified by means of the CATAL macro before the file is opened for the first
time. These attributes are then transferred without further checking to the file labels
when the file is created. In this way, it is possible to define write protection
(ACCESS=READ) for a file which is still to be created. The file can then be opened as
an output file and created; the write-protection then becomes effective.

Note

If a tape file is cataloged using FILE, it is shareable unless SHARE=NO is set by
means of a CATAL macro before it is opened for the first time.

– If password protection is specified for a tape file, the label processing routines transfer
the passwords to the HDR3 label from the catalog entry when the file is created, without
checking them (the reverse applies when a file is imported, i.e. passwords are trans-
ferred from the HDR3 label into the catalog entry).
The passwords are not checked for a file for which SECLEV=LOW is specified.
If the system administrator selected password encryption when the system was
generated, the encryption indicator in the HDR3 label is set to '1' when the file is
opened.

– If a file (FILE=...) is to be renamed (NEWNAME=...), the new name may only consist of
the old name plus a version designation enclosed in parentheses. The version desig-
nation must differ from any other version designation that may already be present.
This restriction results from the tape label processing: for hardware reasons, the
separate blocks of a tape file cannot be overwritten and the file name in the label is
compared with the file name in the catalog entry when the file is opened.

– ACCESS types for tape files:

– All OPEN modes are permitted with ACCESS=*WRITE.
– Only the OPEN modes INPUT and REVERSE are permitted with

ACCESS=*READ.
– The access type is entered in the HDR1 label according to the entries in the

ACCESS operand, as follows:
ACCESS=*READ → access type 1
ACCESS=*WRITE → access type 2

– The ACCESS operand is used mainly for securing a file against destruction
(ACCESS=*READ). Only the owner of a tape file can bypass checking of the
access authorization by specifying SECLEV=LOW in the FCB macro.

Macros CATAL

U4250-J-Z125-12-76 135

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

– Shareability (USER-ACCESS/SHARE) for tape files:

– The access type is entered in the HDR1 label according to the entries in the SHARE
operand, as follows:
SHARE=*NO (USER-ACCESS=*OWNER-ONLY) → access type 1
SHARE=*YES (USER-ACCESS=*ALL-USERS) → access type 2

– USER-ACCESS=*ALL-USERS is assumed as default if the catalog entry was
created with the FILE call.

– DESTROY operand:
If DESTROY=*YES was specified, the remaining part of the tape is deleted after the file
is closed (CLOSE).

Using wildcard file names

– If a wildcard file name (selection and/or construction specification) is to begin with an
asterisk and contains no further wildcards, the leading asterisk must be entered twice.
Otherwise, the request is rejected.
Examples: '**A' and '*A/Z' are valid, '*ABC' and 'P(A)' are invalid.

– If a wildcard file name (selection or construction) is to begin with two asterisks, these
are handled with respect to the construction as a single asterisk.
Example: a CATAL call with the parameters FILE='A.*.* and NEWNAME='**.OLD.*'
renames an existing file 'A.TEST.1' to 'TEST.OLD.1'

– The contents of the class 2 option TEMPFILE do not represent a partially qualified file
name in this case (in contrast to FSTAT). '.*' can or must be used instead.

Note on SM pubsets

The following specifications are ignored for files/generations/FGGs on volume sets with
permanent data storage if the file identifier in the SM pubset in question has a default
storage class and physical allocation is forbidden:
AVAIL, DISKWR, IOPERF, IOUSAGE, S0MIGR=*ALLOWED, STOCLAS=*NONE.

CATAL Macros

136 U4250-J-Z125-12-76

Overview of the macro functions

Function FGG
(Index)

Generation Permanent file Temp. file Operand

PUB PRV PUB PRV TAP PUB PRV TAP PUB TAP

Identify catalog entry x x x x x x x x x x pathname

Rename file or FGG x x x x x x x pathname2

Catalog entry
– create
– change
– import

x
x

x
x
x

x
x

x
x x x

x
x x

STATE
=NEW
=UPDATE
=FOREIGN

Permit read or write
access

x x x x x ACCESS

Access control with
BASIC-ACL

x x BASACL

x
x
x

x
x
x
x

OWNERAR
READ
WRITE
EXEC

x
x
x

x
x
x
x

GROUPAR
READ
WRITE
EXEC

x
x
x

x
x
x
x

OTHERAR
READ
WRITE
EXEC

Access control with
GUARDS

x
x
x

x
x
x
x

GUARDS
READ
WRITE
EXEC

Transfer of protection
attributes

x x x x x x x PROTECT

Shareability x x x x x SHARE

Password protection:
– write
– read
– execute

x
x

x
x

x
x
x

x
x
x

x
x
x

WRPASS
RDPASS
EXPASS

Expiration date
(retention period)

x x x x EXDATE
(RETPD)

Release for deleting x x x x DELDATE

Macros CATAL

U4250-J-Z125-12-76 137

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Automatic data
destruction

x x x x x x x DESTROY

Audit monitoring x x x x x AUDIT

Frequency of ARCHIVE
backups

x x x x BACKUP

Scope of ARCHIVE
backups

x x x x LARGE

HSMS migration
permitted/not permitted

x x x x x MIGRATE

SM pubset migration
permitted/not permitted

x x x S0MIGR

Availability x x AVAIL

HSMS management class x x MANCLAS

Storage class x x STOCLAS

Enable/disable character
set

x x x x x CCS

Define performance attri-
butes

x x x IOPERF

Performance required for
I/O operations

x x x IOUSAGE

Suitability for processing
in cache (DAB)

x x DISKWR

User metainformation x x x x USRINFO

System administration
metainformation

x x x x ADMINFO

Define file generation
groups:
Oldest generation
First generation
Base generation
Overflow handling
Define volume
– volume
– device
Work group

x
x
x
x
x

x

x
x
x
x
x

x
x

GEN
FIRST
LAST
BASE
DISP

VOLUME
DEVICE
WORK

Function FGG
(Index)

Generation Permanent file Temp. file Operand

PUB PRV PUB PRV TAP PUB PRV TAP PUB TAP

CATAL Macros

138 U4250-J-Z125-12-76

Key

PUB : public volume

PRV : private volume (private disk)

TAP : tape

x: the attribute can be set or modified with CATAL

Macros CATAL

U4250-J-Z125-12-76 139

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Format

Operation Operands

CATAL VERSION = 1 / 2 / 3

,MF = C / D / E / L / M

,PARAM = <name 1..8>

,PREFIX = I/ <pre>

,MACID = DK/ <macid>

,ACCESS = *WRITE / *READ / *UNCHANGED

,ACLPROT = *NO / *YES

,ADMINFO = *NONE / <c-string 1..8> / (<reg: A(char:8)>) /
<var: char:8>

,AUDIT = *NONE / *FAILURE / *SUCCESS / *ALL

,AVAIL = *STD / *HIGH

,BACKUP = *A / *B / *C / *D / *E

,BASACL = *NONE / *STD / *UNCHANGED

,BASE = <integer -99..9999> / (<reg: int:2>) / <var: int:2>

,CCS = *NONE / *STD / <c-string 1..8> / (<reg: A(char:8)>) /
<var: char:8>

,CHECK = *NO / *MULTIPLE / *ERROR / *SINGLE / *CATALOG / *USERID

,DELDATE = *NONE / *UNCHANGED / <c-string 1..10> /
(<reg: A(char:10)>) / <var: char:10> /
[(<c-string 8..8> / (<reg: A(char:8)>) / <var: char:8>)]

,DESTROY = *NO / *YES / *UNCHANGED

,DEVICE = <c-string: device> / (<reg: A(char:8)>) / <var: char:8>

,DISKWR = *IMMEDIATE / *BY-CLOSE

,DISP = *CYCLE / *REUSE / *DELETE / *KEEP

(Teil 1 von 4)

CATAL Macros

140 U4250-J-Z125-12-76

,EXDATE = *UNCHANGED /
<c-string 1..10> / (<reg: A(char:10)>) / <var: char:10>
[(<c-string 8..8> / (<reg: A(char:8)>) / <var: char:8>)]

,EXPASS = *NONE / *UNCHANGED / <c-string 1..4> / <x-string 1..8>/
<integer -2147483648..2147483647>
(<reg: A(char:4)>) / <var: char:4>

,FILE = <c-string 1..80: filename 1..54 with-wild(80)> /
(<reg: A(char:80)>) / <var: char:80>

,FIRST = <integer 1..9999> / (<reg: int:2>) / <var: int:2>

,GEN = <integer 0..255> / (<reg: int:2>) / <var: int:2>

,GROUPAR = *NO-ACCESS / (
[READ = *NO / READ = *YES / R = *N / R = *Y]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[,EXEC = *NO / EXEC = *YES / X= *N / X = *Y])

,GUARDS = *NONE / (
[READ = *NONE /

<c-string: filename 1..18 without cat-gen-vers>/
<var: char:18> / (<reg: A(char:18)>)]

[,WRITE = *NONE /
<c-string: filename 1..18 without cat-gen-vers>/
<var: char:18> / (<reg: A(char:18)>)]

[,EXEC = *NONE /
<c-string: filename 1..18 without cat-gen-vers>/
<var: char:18> / (<reg: A(char:18)>)]) /

*UNCHANGED

,IOPERF = *STD / *HIGH / *VERY-HIGH / *USER-MAX

,IOUSAGE = *READ-WRITE / *WRITE / *READ

,LARGE = *NO / *YES

,LAST = <integer 1..9999> / (<reg: int:2>) / <var: int:2>

,LIST = *NO / *SYSOUT / *ERRORS-TO-SYSOUT

,MANCLAS = *NONE / <c-string: struct-name 1..8> /
(<reg: A(char:8)>) / <var: char:8>

Operation Operands

(Teil 2 von 4)

Macros CATAL

U4250-J-Z125-12-76 141

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

,MIGRATE = *ALLOWED / *INHIBITED / *FORBIDDEN

,NEWNAME = c-string 1..80: filename 1..54 with-constr-wild(80)> /
(<reg: A(char:80)>) / <var: char:80>

,OPNBACK = *NO / *YES

,OTHERAR = *NO-ACCESS / (
[READ = *NO / READ = *YES / R = *N / R = *Y]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[,EXEC = *NO / EXEC = *YES / X= *N / X = *Y])

,OWNERAR = *NO-ACCESS / (
[READ = *NO / READ = *YES / R = *N / R = *Y]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[,EXEC = *NO / EXEC = *YES / X= *N / X = *Y])

,PROTECT = *STD / *BY_DEF_PROT_OR_STD /
(*FROM_FILE,<c-string: filename 1..54>) /
(*FROM_FILE,(<reg: A(char:54)>)) /
(*FROM_FILE,<var: char:54>)

,RDPASS = *NONE / *UNCHANGED / <c-string 1..4> /
<x-string 1..8> / <integer -2147483648..2147483647>
(<reg: A(char:4)>) / <var: char:4>

,RELSPAC = *ALLOWED / *IGNORED / *UNCHANGED

,RETPD = <integer 0..32767> / (<reg: int:2>) / <var: int:2>

,S0MIGR = *ALLOWED / *FORBIDDEN

,SHARE = *NO / *YES / *SPECIAL / *UNCHANGED

,STATE = *NEW / *UPDATE / *FOREIGN

,STOCLAS = *STD / *NONE / *UPDATE / <c-string: struct-name 1..8>/
(<reg: A(char:8)>) / <var: char:8>

,TIMBASE = *UTC / *LTI

,USRINFO = *NONE / <c-string 1..8> / (<reg: A(char:8)>) /
<var: char:8>

,VOLUME = <c-string: vsn 1..6> / (<reg: A(char:6)>) /
<var: char:6>

Operation Operands

(Teil 3 von 4)

CATAL Macros

142 U4250-J-Z125-12-76

Operand descriptions

ACCESS
The ACCESS operand can be used to protect a file against overwriting. It specifies whether
write/read or only read access is permitted for the file or file generation. This protection
attribute is only relevant if no BASIC-ACL or GUARDS protection is activated.

Tape files:
when the file is opened for the first time, DMS places the ACCESS indicator in its HDR3
label. For subsequent accesses, the file owner can bypass access type checking by speci-
fying SECLEV=LOW (see pages 438 and 492).

= *WRITE
All access types are permitted for the file or file generations.
Tape files, HDR3 label: access type = 0.

= *READ
Only read access is permitted for the file or the file generations, i.e. only the OPEN
modes INPUT and REVERSE are permitted.
Temporary files: write access cannot be prevented; ACCESS=READ is rejected.
Tape files, HDR3 label: access type = 1.

,WORKGRP = *YES

,WRPASS = *NONE / *UNCHANGED / <c-string 1..4> /
<x-string 1..8> / <integer -2147483648..2147483647>
(<reg: A(char:4)>) / <var: char:4>

Default setting – only in conjunction with STATE=*NEW: ACCESS=*WRITE

Operation Operands

(Teil 4 von 4)

Macros CATAL

U4250-J-Z125-12-76 143

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= *UNCHANGED
Only relevant if PROTECT is specified:
If STATE=*UPDATE is specified at the same time, the value of ACCESS remains
unchanged. If STATE=*NEW is specified at the same time, the value
ACCESS=*WRITE is entered.

Specification of *UNCHANGED has the following effects:
– if PROTECT=*FROM-FILE is specified:

the value *UNCHANGED prevents the corresponding value from being taken over
from the reference file

– if PROTECT=*BY_DEF_PROT_OR_STD is specified and if STATE=*NEW is
specified without a value for PROTECT:
the value *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over

– if PROTECT=*STD and STATE=*UPDATE are specified together:
the value *UNCHANGED prevents the value in the catalog entry from being reset
to the value ACCESS=*WRITE

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
ACCESS=*WRITE (irrespective of what is specified for PROTECT).

ACLPROT
Reserved for the system administrator; called under the user ID TSOS):
sets or resets the ACL indicator and thus activates or deactivates access control via ACL
(see the “SECOS” manual [8]).

i Access control via ACL has not been supported since SECOS V4.0.
Instead access control with GUARDS must be used.

This operand can lead to inconsistencies in the system and should therefore only be used
to enable access to a file protected with ACL.
This operand is not permitted for temporary files, tape files or files on private volumes.

= *NO
The ACL indicator is reset, thus deactivating access control via ACL.

= *YES
Should no longer be used as files protected with ACL cannot be accessed:
The ACL indicator is set. Any GUARDS protection which is defined is deleted.
If the default protection function supplies a value for GUARDS, it is ignored.

CATAL Macros

144 U4250-J-Z125-12-76

ADMINFO
Reserved for system administrators (called under the TSOS ID):
Enters system administration metainformation into the file catalog entry. The entry can have
a maximum of 8 bytes, with any contents; the system administrator defines the meaning.
The operand is ignored for files on private volumes.

= *NONE
The entry is deleted.

= <c-string 1..8>
The specified characters are entered.

= (<reg: A(char:8)>)
Only possible with MF=M:
The specified register contains the address of an 8-byte memory area containing the
metainformation to be entered.

= <var: char:8>
Only possible with MF=M:
Symbolic address of an 8-byte memory area containing the metainformation to be
entered.

AUDIT
Reserved for user IDs with AUDIT=YES rights:
Defines whether DMS accesses to files or file generations are to be monitored with the aid
of system exit routines. Monitoring applies to the operations CATAL, FILE, OPEN and
ERASE.
If the user does not have the authorization AUDIT=YES, a CATAL macro specifying AUDIT
will be rejected.

= *NONE
No monitoring.

= *All
All DMS operations for the file/generation are monitored.

= *SUCC
All successful DMS operations for the file/generation are monitored.

= *FAIL
All unsuccessful DMS operations for the file/generation are monitored.

Default setting – only in conjunction with STATE=*NEW: AUDIT=*NONE

Macros CATAL

U4250-J-Z125-12-76 145

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

AVAIL
Only relevant with STATE=*UPDATE for files on public volumes or on a Net-Storage volume:
The file availability requirements are modified. Files that are to have an increased
availability are reallocated to an appropriate volume set (e.g. DRV – Dual Recording by
Volume).
An existing storage class entry in the SM pubset file catalog entry is removed by specifying
the operand.

The operand must not be specified simultaneously with the STOCLASî*NONE operand.

The operand is ignored for files and generations on volume sets with permanent data
storage if the file identifier on the SM pubset concerned has a default storage class and
physical allocation is forbidden.

= *STD
No special availability requirements are set.

= *HIGH
The file is to have increased availability. It is ensured that the file is allocated to a
corresponding volume set. If the current storage location does not provide the
requirements of increased availability, the request is rejected for SF pubsets. The
request is only rejected in an SM pubset if no suitable volume set is available or if the
permitted user ID allocations are exceeded. Otherwise, the storage space is reallocated
to a suitable volume set.

If the file is stored on a private volume, if it is a work file, or if it has been migrated to a
background level, the request is rejected with a return code. The request is also
rejected for temporary files, even if a temporary file is renamed to a permanent file. In
this case, the file must be renamed first and then increased availability can be assigned
with an additional CATAL call.

Files in SM pubsets:
If the current storage location (volume set) does not provide the requirements of high
availability and a suitable volume set is in the SM pubset, the data or storage space is
automatically reallocated. The file is locked (opened) during this reallocation, i.e. all
accesses to the file or its catalog entry are rejected instead of being put into a wait state.

CATAL Macros

146 U4250-J-Z125-12-76

BACKUP
Valid only for files or FGGs on disks:
controls automatic file backup with the archiving system ARCHIVE or HSMS; specifies in
which backup runs the files or the generations of the FGG are to be saved.

Default setting: for permanent files: according to class 2 option BACKUP
for temporary files: BACKUP=*E

= *A
The files/generations are to be saved in each backup run.

= *B
The files/generations are to be saved when a backup run occurs for files with
BACKUP=*B, *C or *D.

= *C
The files/generations are to be saved in backup runs with BACKUP=*C or *D.

= *D
The files/generations are to be saved only in backup runs with BACKUP=*D.

= *E
No automatic backup via ARCHIVE.

BASACL
Activates or deactivates access control via the BASIC-ACL with standard access rights.
Protection is only effective if no GUARDS protection is activated.

The operand must not be specified together with the OWNERAR, GROUPAR or OTHERAR
operand.

= *NONE
Deactivates access control via BASIC-ACL:

= *STD
Enters the following standard access control rights in the basic ACL:

– If STATE=*NEW is specified or if no STATE value is specified, the following access
rights are entered:

OWNER GROUP OTHERS
R W X - - - - - -

This corresponds to the following operand entries:
OWNERAR=(READ=*YES,WRITE=*YES,EXEC=*YES),GROUPAR=*NO-
ACCESS,OTHERAR=*NO- ACCESS.

Default setting – only in conjunction with STATE=*NEW: BASACL=*NONE

Macros CATAL

U4250-J-Z125-12-76 147

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

– If STATE=*UPDATE is specified (i.e. if the file involved is already cataloged), the
valid values for SHARE and ACCESS are converted to BASIC-ACL values if access
control via the basic access control list was not activated before. The values are
converted in accordance with the following table:

Notes

If the operands SHARE, ACCESS and/or PROTECT are specified together with
BASACL=*STD, conversion is carried out according to these entries.
Nothing (no access) is entered for EXEC with file generation groups.

= *UNCHANGED
Only relevant in conjunction with specification of PROTECT:
If STATE=*UPDATE is specified at the same time, the value of BASIC-ACL remains
unchanged. If STATE=*NEW is specified at the same time, no BASIC-ACL is entered.

Specification of *UNCHANGED has the following effects:
– if PROTECT=*FROM-FILE is specified:

the value *UNCHANGED prevents the corresponding value from being taken over
from the reference file

– if PROTECT=*BY_DEF_PROT_OR_STD is specified and if STATE=*NEW is
specified without a value for PROTECT:
the value *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over

– if PROTECT=*STD and STATE=*UPDATE are specified at the same time:
the value *UNCHANGED prevents the value in the catalog entry from being reset
(no BASIC-ACL)

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as no BASIC-
ACL in the catalog entry (irrespective of what is specified for PROTECT).

SHARE ACCESS OWNER GROUP OTHERS

R W X R W X R W X

NO READ R - X - - - - - -

NO WRITE R W X - - - - - -

YES / SPECIAL READ R - X R - X R - X

YES / SPECIAL WRITE R W X R W X R W X

CATAL Macros

148 U4250-J-Z125-12-76

BASE
For file generation groups only:
defines a reference point (a base generation) to which all relative generation numbers are
related and also enables the reconstruction of an index for file generations on private
volumes.
If the BASE operand is not specified when creating an FGG (group index), it is assigned the
value of the FIRST operand if that operand is specified; otherwise, it is assigned the value 0.

Use of the BASE operand for index reconstruction:
If generations of an FGG are to be imported from a private disk, and if the group entry is
neither in the catalog nor in the F1 label of the disk, the group index must first be
reconstructed. A CATAL call with the operands STATE=*NEW, GEN=<num>,
FIRST=<num>, and at least one of the operands BASE or LAST must be executed for this
purpose. If only the BASE operand is specified, it also defines the most recent file
generation, i.e. the value for LAST.

= <integer -99..9999>
The new base generation can be defined in relation to the specified “number” in
absolute or relative form.

Absolute form: value range: 1 Î number Î 9999.
– STATE=*UPDATE: “number” is assigned as the new base value; it must designate

an existing generation according to the index entry.
– STATE=*NEW: “number” is added to the catalog as the base value.

If BASE is specified in conjunction with FIRST and/or LAST, the specified number
must fulfill the following condition: FIRST Î number Î LAST.

Relative form:
– Only possible with STATE=*UPDATE:

value range: -99 Î number Î 0.
Defines the base generation relative to the most recently cataloged generation
(catalog field LAST-GEN) according to the index.
The new base value must designate an existing file generation in accordance with
the index, i.e. it must be Ï the value in the output field FIRST-GEN.

= (<reg: int:2>)
Only possible with MF=M:
The base value (see above for value range and meaning) is stored in the lower half-
word of the specified register.

= <var: int:2>
Only possible with MF=M:
Symbolic address of a half-word in which the base value is stored (see above for value
range and meaning).

Macros CATAL

U4250-J-Z125-12-76 149

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

CCS
Only valid for files/FGGs on public volumes, for files on Net-Storage and for tape files:
Character set to be used for the file.
The coded character set (CCS) defines how the characters of a national character set are
to be stored in binary form. The specified character set has an effect on the representation
of characters on the screen, the collating sequence, etc. (see the “XHCS” manual [22]).

The operand is ignored for files on private volumes; as a result, no return code is supplied.

= *NONE
No character set is to be specified for the file.

= *STD
The character set is taken over from the file owner’s user catalog entry provided a
character set which is not EDF03IRV is entered. Otherwise *NONE applies.

= <c-string 1..8>
Name of the coded character set with which the file is to be processed (e.g.: EDF03IRV
for the international version of EBCDIC.DF.03).
The specified string is not checked, in particular not whether it is the name of a defined
coded character set.

= (<reg: A(char:8)>)
Only possible with MF=M:
The specified register contains the address of an 8-byte memory area containing the
name of the coded character set.

= <var: char:8>
Only possible with MF=M:
Symbolic address of an 8-byte memory area containing the name of the coded
character set.

CHECK
Defines the conditions under which a user dialog is to be started.

When the dialog is started, the user can decide whether the displayed files are processed
or not. He can also call up help text on the reply options and define a new value for LIST
and/or CHECK when processing is resumed.

The value *NO always applies in batch mode.

Default: CHECK=*NO

= *NO
All selected files are processed without a check dialog, i.e. the user cannot intervene.

Default setting – only in conjunction with STATE=*NEW: CCS=*NONE

CATAL Macros

150 U4250-J-Z125-12-76

= *MULTIPLE
A check dialog is only started if more than one file is selected.
If the catalog and/or user ID contain wildcards, a check dialog is executed for each
catalog and/or user ID.
CHECK=*ERROR is also implied.

= *ERROR
An error check dialog is started if an error occurs while a selected file name is being
processed. A file set check dialog is started if the selection entry selects more files than
can be processed in available memory. CHECK=*ERROR is also always implied for
CHECKî*NO.

= *SINGLE
A check dialog is executed for each selected file name. CHECK=*ERROR is also
implied.

= *CATALOG
The user must decide in a check dialog for each catalog whether the files selected on
it are to be processed.
CHECK=*ERROR is also implied.

= *USERID
Reserved for system administrators.
The system administrator must decide in a check dialog for each user ID on each
catalog whether the selected files are to be processed.
CHECK=*ERROR is also implied.

DELDATE
Only for files on public volumes and for files on Net-Storage:
Determines the time after which the file may be deleted regardless of the protection
attributes ACCESS, BASACL, EXDATE, GUARDS, RDPASS, WRPASS and EXPASS or
after which its storage place may be released.

An absolute date is interpreted according to the TIMEBASE operand, either based on local
time (LTI) or the universal time coordinate (UTC), while a relative date is always based on
local time.

= *NONE
The file should not be deleted without taking the protection attribute into account
(corresponds to DELDATE='+0').

Macros CATAL

U4250-J-Z125-12-76 151

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= *UNCHANGED
If STATE=*UPDATE is specified at the same time, the value of DELDATE remains
unchanged. If STATE=*NEW is specified at the same time, the value
DELDATE=*NONE is entered.

If STATE=*UPDATE is specified, then: if PROTECT=*BY_DEF_PROT_OR_STD is
specified, the value *UNCHANGED prevents the transfer of the corresponding value
supplied by the default protection function; otherwise *UNCHANGED has the same
effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as the specifi-
cation *NONE (irrespective of what is specified for PROTECT).

= <c-string 1..10> / (<reg: A(char:10)>) / <var: char:10>
[<c-string 8..8> / (<reg: A(char:8)>) / <var: char:8>]
Defines the time from which the file may be deleted regardless of the protection
attributes, where the variable “...10” stands for the date and “...8” for the time.

The following formats are allowed:
– '+<integer 0..99999>'[('<time 8..8>')]
– '<date 8..10>'[('<time 8..8>')]
– 'yymmdd'[('<time 8..8>')]

It is imperative that the '+' is specified for relative date entries to discriminate them from
absolute ones.

Date entries of less than 10 characters must be terminated with blanks.

Double-digit year entries from 00 through 59 are prefixed by 20, from 60 through 99
by 19.

Examples

...
LA 7,DELTIME

EXAMPLE1 CATAL MF=M,VERSION=3,...,DELDATE='+1'((7))
LA 6,DELDATE

EXAMPLE2 CATAL MF=M,VERSION=3,...,DELDATE=(6)(DELTIME)
EXAMPLE3 CATAL MF=M,VERSION=3,...,DELDATE=DELDATE('00:00:00')

...
DELDATE DC CL10'2011-11-11' 11.11.2011
DELTIME DC CL8'11:11' 11:11:00

DESTROY
In order to improve data protection, the user can specify in the catalog entry that data which
is no longer needed is to be overwritten with X'00' (binary zeros). For disk files, this applies
to erase operations (see the ERASE command); for tape files, it applies to the overwriting
of data remaining on the tape during EOF or EOV processing (see the DESTOC operand

CATAL Macros

152 U4250-J-Z125-12-76

of the FILE macro, page 475).

= NO
Disk files:
The storage space is simply released unless the operand DESTROY=*YES is specified
in the ERASE macro.

Tape files:
Any further data on the tape is not overwritten unless the operand DESTOC=YES is
specified in the FILE macro for the current processing run.

= YES
Disk files:
The storage space which is released is automatically overwritten with binary zeros
(X'00').

Tape files:
Any data remaining on the tape is erased; this can also be done using the FILE macro
for the current processing run by specifying the operand DESTOC=YES.

= *UNCHANGED
Only relevant in conjunction with specification of PROTECT:
If STATE=*UPDATE is specified at the same time, the value of DESTROY remains
unchanged. If STATE=*NEW is specified at the same time, the value DESTROY=*NO
is entered.

Specification of *UNCHANGED has the following effects:
– if PROTECT=*FROM-FILE is specified:

prevents the corresponding value from being taken over from the reference file
– if PROTECT=*BY_DEF_PROT_OR_STD is specified and if STATE=*NEW is

specified without a value for PROTECT:
prevents the corresponding value supplied by default protection from being taken
over

– if PROTECT=*STD and STATE=*UPDATE are specified at the same time:
prevents the value in the catalog entry from being reset to the value
DESTROY=*NO

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
DESTROY=*NO (irrespective of what is specified for PROTECT).

Default setting – only in conjunction with STATE=*NEW: DESTROY=*NO

Macros CATAL

U4250-J-Z125-12-76 153

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

DEVICE
Only for file generation groups on private disks and in conjunction with the VOLUME operand:
Specifies the device type on which the file generation group is to be stored or the device
type from which it is to be imported (see also the DEVICE operand of the FILE macro).

DEVICE does not have to be specified if MAREN is available.

= <c-string: device>
Device type: permissible entries are listed in the device table in „System installation“
manual [16].
Every disk device type specification is handled like the STDDISK specification.

= (<reg: A(char:8)>)
Only possible with MF=M:
The specified register contains the address of an 8-byte memory area containing the
device type.

= <var: char:8>
Only possible with MF=M:
Symbolic address of an 8-byte memory area containing the device type.

DISKWR
Only for files and file generations on public volumes and files on Net-Storage volumes:
Specifies the time at which data consistency is required after a write operation.
If the file is processed via a temporary cache for writing, data in the file will not be in a
consistent state until CLOSE processing has been completed. This means that system
errors during the processing phase could lead to inconsistencies. Immediate data
consistency after each write operation should therefore be requested for files which contain
important data.

Default setting:
DISKWR = *IMMEDIATE for permanent files
DISKWR = *BY-CLOSE for temporary files

If DISKWR is not specified when recataloging from temporary to permanent or vice versa,
the entry is set automatically to the respective default/permitted value.

The operand is ignored (no return code!) if:
– it is specified for files which are not located on a public volume or which are to be

created.
– the file identifier on the SM pubset concerned has a default storage class and physical

allocation is forbidden.

A storage class entered in the file catalog entry in an SM pubset is removed if this operand
is specified. The operand must not be specified simultaneously with the operand
STOCLASî*NONE.

CATAL Macros

154 U4250-J-Z125-12-76

= *IMMEDIATE
Data contained in the file must be in a consistent state immediately after a write
operation, so a volatile write cache should not be used when processing the file (default
value for permanent files).
This entry is ignored for temporary files.

= *BY-CLOSE
Data in the file need not be in a consistent state (i.e. written to disk) until CLOSE
processing has been completed. This is the default value for temporary files.

DISP
Only for file generation groups:
Specifies whether the oldest generations are to be erased and, possibly, their storage space
reused when the maximum number of simultaneously existing generations specified via
GEN= is exceeded. In the case of generations on tape, only the catalog entry is deleted.
Existing expiration dates for the oldest generations, if any, are ignored.

= *CYCLE
The oldest existing generation is erased and its storage space on disk or the tapes it
occupies is/are released. The fields LAST-GEN and FIRST-GEN in the group entry
(youngest and oldest existing generations) are updated accordingly.

= *REUSE
The effects of DISP=*REUSE depend on the type of volume:

For FGGs on public disks:
The oldest generation is erased, its storage space is returned to the system, and the
group entry is updated (see DISP=*CYCLE).

For FGGs on private disks:
The new generation is created, the oldest generation is erased, and the volume of the
oldest generation is used for storing the new generation. If the generation which was
deleted extended over several volumes, the new generation is cataloged only on the
first of these volumes. The catalog entry is updated accordingly. Since the old gener-
ation is erased only after the new generation has been created, insufficient space on
the volume can mean that the new generation cannot be created although
DISP=*REUSE is specified.

For FGGs on tape:
The oldest generation is deleted from the catalog and the new generation is created on
the tapes which become free. The group entry is updated accordingly. DISP=*REUSE
must not be specified for FGGs in MF/MV sets.

Default setting – only in conjunction with STATE=*NEW: DISP=*CYCLE

Macros CATAL

U4250-J-Z125-12-76 155

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= *DELETE
All generations of the FGG are erased and the new generation becomes the oldest
generation of a new series. The group entry is updated accordingly.

= *KEEP
The “superfluous” oldest generations are not erased automatically, but only when the
user, in a further CATAL macro with the operands FIRST and BASE, defines a new
“oldest” and a new base generation, or when the user specifies a new value for DISP=.
As each new generation is created, only the field LAST-GEN in the group entry is
updated.

EXDATE
Specifies the period (EXPIRATION-DATE) during which the file cannot be modified or
deleted, i.e. when it is only available for read access (“read only”).

An expiration date can only be set for existing files, i.e. the catalog fields CRE-DATE and
FILE-STRUC must have a value î NONE. This also means that the CATAL operands
EXDATE and STATE=*NEW or STATE=*FOREIGN cannot be combined (EXDATE is
ignored).

An absolute date is interpreted according to the TIMEBASE operand, either based on local
time (LTI) or the universal time coordinate (UTC), and a relative date is always based on
local time.

A time of 00:00:00 is always assumed in conjunction with TIMBASE=*LTI or a relative time
entry. An explicit time specification is only accepted in conjunction with TIMBASE=*UTC.
The minutes and seconds are, however, always set to zero.

Note

If the specified expiration date is earlier than the current date, it is not entered. Instead
the current date is entered with 0.00 hours local time.

Simultaneous use of the EXDATE and RETPD operands is not permitted.

CATAL Macros

156 U4250-J-Z125-12-76

= <c-string 1..10> / (<reg: A(char:10)>) / <var: char:10>
[(<c-string 8..8> / (<reg: A(char:8)>) / <var: char:8>)]
Defines the time from which the file may be modified, where the variable “...10” stands
for the date and “...8” for the time.

The following formats are permitted:
– '+<integer 0..99999>'
– '<date 8..10>'[('<time 8..8>')]
– 'yymmdd'[('<time 8..8>')]

It is imperative that the '+' is specified for relative date entries to distinguish them from
absolute ones.

Date entries of less than 10 characters must be terminated with blanks.

Double-digit year entries from 00 through 59 are prefixed by 20, from 60 through 99
by 19.

Examples

...
LA 6,EXPDATE
LA 7,EXPTIME

EXAMPLE1 CATAL MF=M,VERSION=3,...,EXDATE=(6)((7))
EXAMPLE2 CATAL MF=M,VERSION=3,...,EXDATE=(6)('23:00:00')
EXAMPLE3 CATAL MF=M,VERSION=3,...,EXDATE=EXPDATE(EXPTIME)

...
EXPDATE DC CL10'111231' 31.12.2011
EXPTIME DC CL8'00:00:00' 00:00:00

= *UNCHANGED
Only relevant in conjunction with specification of PROTECT:
If STATE=*UPDATE is specified at the same time, the value of EXDATE remains
unchanged.

The value *UNCHANGED has the following effects for permanent files with a creation
date and for file generation groups with a cataloged group entry:
– if PROTECT=*FROM-FILE is specified:

prevents the corresponding value from being taken over from the reference file
– if PROTECT=*BY_DEF_PROT_OR_STD is specified:

prevents the corresponding value supplied by default protection from being taken
over

– if PROTECT=*STD is specified:
prevents the value in the catalog entry from being reset to the current date

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

Macros CATAL

U4250-J-Z125-12-76 157

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

EXPASS
Only for files; not for FGGs or file generations:
This operand is used to define or delete the execute password. Execute protection is
provided for the call of a program or a procedure file by means of the command START-
PROGRAM, LOAD-PROGRAM, CALL-PROCEDURE or ENTER-PROCEDURE.

Tape files:
The password protection is recorded in the HDR3 label.

Encrypted files:
All EXPASS specifications are handled like *UNCHANGED.

= *NONE
No execute password is defined or an existing password is deleted.

= *UNCHANGED
If STATE=*UPDATE is specified at the same time, the value of EXPASS remains
unchanged. If STATE=*NEW is specified at the same time, the value EXPASS=*NONE
is entered.
If PROTECT=*BY_DEF_PROT_OR_STD or STATE=*NEW is specified without a value
for PROTECT, *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over.
If STATE=*UPDATE is specified, then: if PROTECT=*BY_DEF_PROT_OR_STD is not
specified, *UNCHANGED has the same effect as no specification.
If STATE=*NEW is specified, then: *UNCHANGED has the same effect as the
specification *NONE (irrespective of what is specified for PROTECT).

= <c-string 1..4> / <x-string 1..8> / <integer -2147483648..2147483647>
Defines a password required for calling the program or procedure.

The specification EXPASS=X'00000000' is treated in the same way as *NONE.

Before writing to the file, “password” must be entered in the password table of the job
by means of the ADD-PASSWORD command (see the corresponding description in the
“Commands” [3] manual).
If password assignment is logged, the passwords are not shown in plaintext.

= (<reg: A(char:4)>)
Only possible with MF=M:
The specified register contains the address of a 4-byte memory area containing the
execution password.

= <var: char:4>
Only possible with MF=M:
Symbolic address of a 4-byte memory area containing the execution password.

Default setting – only in conjunction with STATE=*NEW: EXPASS=*NONE

CATAL Macros

158 U4250-J-Z125-12-76

FILE
Path name of the file, file generation or file generation group catalog entry which is
referenced by the entries of the remaining macro operands.
– With STATE=*NEW (default), a catalog entry is created under the specified name.
– With STATE=*FOREIGN, a file generation group catalog entry is imported which exists

on the private volume specified with the VOLUME and DEVICE operands.
– With STATE=*UPDATE, a catalog entry can be modified which exists under the

specified path name. If wildcards are specified, all catalog entries selected can be
modified.

= <c-string 1..80: filename 1..54 with-wild(80)>
The path name consists of [:catid1:][$userid1.]<filename1>.

catid1
ID of the catalog which contains or is to contain the file catalog entry. Wildcards may be
used if STATE=*UPDATE is specified. However, only those files in the catalog are then
selected that are locally available.
The default catalog ID of the caller (DEFAULT-PUBSET) is assumed if no catalog ID is
specified.

userid1
User ID under which the file is stored or is to be created. Only the system administrator
may also specify wildcards with STATE=*UPDATE.
– The logon ID is assumed if no user ID is specified.
– The system administrator may specify a foreign user ID if no TSOS restriction has

been declared for the file (see the “SECOS” manual [8]) or if STATE=*UPDATE is
not specified.

– Nonprivileged users may specify a foreign user ID if they are co-owners of the file.

filename1
Name of the temporary or permanent file, the file generation or file generation group.
The file may contain wildcards or be partially qualified (i.e. end with a period) if
STATE=*UPDATE is specified.

= (<reg: A(char:80)>)
Only possible with MF=M:
The specified register contains the address of an 80-byte memory area containing the
path name. If the path name is shorter than the maximum length of 80 bytes, it must be
terminated with at least one blank (X'40').

= <var: char:80>
Only possible with MF=M:
Symbolic address of an 80-byte memory area containing the path name. If the path
name is shorter than the maximum length of 80 bytes, it must be terminated with at least
one blank (X'40').

Macros CATAL

U4250-J-Z125-12-76 159

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

FIRST = num
Only for file generation groups:
This operand may only be specified with STATE=*NEW.
It defines the absolute generation number of the oldest cataloged file generation. It is
needed in order to reconstruct the index entry of a file generation group on private volumes
(foreign file generation group) and should be used only for this purpose. The FIRST
operand specifies the number of the oldest file generation to be imported.
File generations stored on tape must be cataloged individually using FILE (operand
STATE=FOREIGN).
Generations stored on private disk can be imported by using IMPORT or individually by
means of FILE (operand STATE=FOREIGN).

= <integer 1..9999>
The file generation specified by FIRST can only be imported, not recataloged. This
means that if the created index entry is not to be used for the reconstruction of a file
generation group, there is no way of actually creating the file generation group specified
here (or any other file generations Î LAST or Î BASE; see also the description of those
operands).

= (<reg: int:2>)
Only possible with MF=M:
The specified register contains the generation number of the oldest cataloged file
generation in the lower half-word.

= <var: char:2>
Only possible with MF=M:
Symbolic address of a half-word containing the generation number of the oldest
cataloged file generation.

CATAL Macros

160 U4250-J-Z125-12-76

GEN = num
Only for file generation groups:
Specifies how many generations of a file generation group may be cataloged concurrently
(see also the DISP operand).

GEN may be specified for a new (STATE=*NEW) or an existing file generation group
(STATE=*UPDATE).

Default value: GEN = 0

= <integer 0..255>
Maximum number of concurrently cataloged file generations.
If GEN=0 is specified together with STATE=*NEW, a “normal” file rather than a file
generation group is created; if it is specified together with STATE=*UPDATE, GEN=0 is
ignored.

= (<reg: int:2>)
Only possible with MF=M:
The specified register contains the maximum number of concurrently cataloged file
generations in the lower half-word.

= <var: char:2>
Only possible with MF=M:
Symbolic address of a half-word containing the maximum number of concurrently
cataloged file generations.

GROUPAR
Only for files on public volumes and on Net-Storage:
Activates access control via the BASIC-ACL and specifies how a user who is not the file
owner but who belongs to the same user group as the file owner may access the file when
no GUARDS protection is active.
User groups can be defined in a system only if the software product SECOS is installed (see
the “SECOS” manual [8]). In a system without user groups and in which SECOS has not
been installed, the value for GROUPAR applies to all users except the file owner (and the
system administrator). When user groups are defined in the system, this value is evaluated
for the members of the file owner's user group.

The operand must not be specified together with the BASACL operand.

= *NO-ACCESS
No access to the file is permitted for the user group.

Macros CATAL

U4250-J-Z125-12-76 161

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= ([READ = *NO / READ = *YES / R = *N / R = *Y]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[,EXEC = *NO / EXEC = *YES / X= *N / X = *Y])
The access types for which *YES or *Y is specified in the list are permitted. The
parentheses are component parts of the access list and must be specified.

The various elements of the access list have the following meanings:

GUARDS
Activates/deactivates access control using GUARDS (Generally Usable Access contRol
aDministration System). GUARDS protects the file by means of a special access profile.
This access protection will be effective only if the GUARDS function unit of the software
product SECOS is loaded (see the “SECOS” manual [8]).

File protection with GUARDS is activated if at least one access mode (READ/WRITE/
EXEC) is linked with a “guard” entry in the “guard” catalog. The specification of READ/
WRITE/EXEC=*NONE is also considered to be a “guard” entry and activates the GUARDS
file protection mechanism (thus preventing read, write, or execute access to the file).
This specification can be given even if the access profile has not yet been defined and even
if the GUARDS function unit is not being used. In both cases, all attempts to access the file
will be rejected.

It is only at the time of accessing a file protected with GUARDS that a check is performed
to determine whether the specified guard entry (guard name) exists, whether it may be
used, and whether the corresponding access profile permits the user to access the file in
the desired access mode.

Notes

– If GUARDS protection is entered for a file in the file catalog but no access profile has
been defined for the specified guard name in the guard catalog, the file in question
cannot be accessed.

READ=NO or R=N Read access is forbidden (default value).

READ=YES or R=Y Read access is permitted. In contrast to access control via the
ACCESS operand, this does not automatically imply the right to
execute the file.

WRITE=NO or W=N Write access is forbidden (default value).

WRITE=YES or W=Y Write access is permitted. In contrast to access control via the
ACCESS operand, this does not automatically imply the right to
read or execute the file.

EXEC=NO or X=N Execution of the file is forbidden (default value).

EXEC=YES or X=Y Execution of the file is permitted (not for file generation groups).

CATAL Macros

162 U4250-J-Z125-12-76

– If GUARDS protection is enabled, the access protection defined previously using
BASIC-ACL or USER-ACCESS and ACCESS is retained.

– For more information on access protection using the GUARDS function unit, see the
section on “File protection” in the “Introductory Guide to DMS” [1].

= *NONE
Deactivates GUARDS protection, thus disabling any existing access protection
provided by a guard. In other words, the file will no longer be protected by the GUARDS
protection mechanism.

= ([READ...] [,WRITE...] [,EXEC...])
Each of the three access modes (read, write, execute) can be protected by means of a
separate guard entry. When GUARDS protection is activated for a file, all access modes
not explicitly specified are set to *NONE, which means that they are not permitted.

[READ = *NONE / <c-string: filename 1..18 without cat-gen-vers> /
<var: char:18> / (<reg: A(char:18)>)]
Activates read access control using GUARDS.

= *NONE
Disables GUARDS protection for read access (i.e. cancels the link between read
access control and the access profile). File protection via GUARDS remains active,
but the file cannot be read.

= <c-string: filename 1..18 without cat-gen-vers>
Name of the access profile (guard entry in the guard catalog) that provides read
protection via GUARDS.
Read access to the file is granted only if the conditions specified in the access
profile are fulfilled.
The name must not exceed a maximum length of 8 characters (18 characters if
specified with the user ID). It is not possible to specify a catalog ID.

= (<reg: A(char:18)>)
Only possible with MF=M:
The specified register contains the address of an 18-byte memory area containing
the name of the READ-GUARD.

= <var: char:18>
Only possible with MF=M:
Symbolic address of an 18-byte memory area containing the name of the READ-
GUARD.

Default value: READ = *NONE, If GUARDS protection was activated via another
access mode.

Macros CATAL

U4250-J-Z125-12-76 163

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

[,WRITE = *NONE / <c-string: filename 1..18 without cat-gen-vers> /
<var: char:18> / (<reg: A(char:18)>)]
Activates write protection using GUARDS.

Note
Unlike password protection, write access does not automatically imply read access.

= *NONE
Disables GUARDS protection for write access (i.e. cancels the link between write
access control and the access profile). File protection via GUARDS remains active,
but no write access to the file is possible.

= <c-string: filename 1..18 without cat-gen-vers>
Name of the access profile (guard entry in the guard catalog) that provides write
protection via GUARDS.
Write access to the file is granted only if the conditions specified in the access
profile are fulfilled.
The name must not exceed a maximum length of 8 characters (18 characters if
specified with the user ID). It is not possible to specify a catalog ID.

= (<reg: A(char:18)>)
Only possible with MF=M:
The specified register contains the address of an 18-byte memory area containing
the name of the WRITE-GUARD.

= <var: char:18>
Only possible with MF=M:
Symbolic address of an 18-byte memory area containing the name of the WRITE-
GUARD.

[,EXEC = *NONE / <c-string: filename 1..18 without cat-gen-vers> /
<var: char:18> / (<reg: A(char:18)>) / *UNCHANGED])
Activates execute protection using GUARDS.

= *NONE
Disables GUARDS protection for execute access (i.e. cancels the link between
execute access control and the access profile). File protection via GUARDS
remains active, but no execute access to the file is possible.

Default value: WRITE = *NONE, if GUARDS protection was activated via another
access mode.

Default value: EXEC = *NONE, if GUARDS protection was activated via another
access mode.

CATAL Macros

164 U4250-J-Z125-12-76

= <c-string: filename 1..18 without cat-gen-vers>
Name of the access profile (guard entry in the guard catalog) that provides execute
protection via GUARDS.
Write access to the file is granted only if the conditions specified in the access
profile are fulfilled.
The name must not exceed a maximum length of 8 characters (18 characters if
specified with the user ID). It is not possible to specify a catalog ID.

= (<reg: A(char:18)>)
Only possible with MF=M:
The specified register contains the address of an 18-byte memory area containing
the name of the EXEC-GUARD.

= <var: char:18>
Only possible with MF=M:
Symbolic address of an 18-byte memory area containing the name of the EXEC-
GUARD.

= *UNCHANGED
Only relevant in conjunction with specification of PROTECT:
If STATE=*UPDATE is specified at the same time, the value of GUARDS remains
unchanged. If STATE=*NEW is specified at the same time, the value GUARDS=*NONE
is entered.

The value *UNCHANGED has the following effects:
– if PROTECT=*FROM-FILE is specified:

prevents the corresponding value from being taken over from the reference file
– if PROTECT=*BY_DEF_PROT_OR_STD is specified and if STATE=*NEW is

specified without a value for PROTECT:
prevents the corresponding value supplied by default protection from being taken
over

– if PROTECT=*STD and STATE=*UPDATE are specified at the same time:
prevents the value in the catalog entry from being reset to the value
GUARDS=*NONE

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
GUARDS=*NONE (irrespective of what is specified for PROTECT).

Macros CATAL

U4250-J-Z125-12-76 165

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

IOPERF
Only for files and file generations on public volumes and files on Net-Storage volumes:
Requested performance attribute of the file for I/O processing. There are three performance
attributes: “*VERY-HIGH”, “*STD”, and “*HIGH”. The highest permissible value depends on
the user ID.

If a performance higher than the maximum permitted value is required, the maximum value
from the catalog entry is taken over (no return code).

The operand is ignored (no return code!) if:
– it is specified for files which are not located on a public volume or which are to be

created.
– the file identifier on the SM pubset concerned has a default storage class and physical

allocation is forbidden.

A storage class entered in the file catalog entry in an SM pubset is removed if this operand
is specified. The operand must not be specified simultaneously with the operand
STOCLASî*NONE.

= *STD
The file should not be processed via a cache.

= *HIGH
The file has a high performance priority and should therefore be processed via a cache
if possible.

= *VERY-HIGH
The file has a very high performance priority, so all pages of the file should be
maintained in global memory if possible.

= *USER-MAX
The file is processed in accordance with the highest performance attribute permitted for
the user ID.
This entry ensures that the maximum value is always used without program changes
even if the value range is extended above *VERY-HIGH.

Default setting – only in conjunction with STATE=*NEW: IOPERF=*STD

CATAL Macros

166 U4250-J-Z125-12-76

IOUSAGE
Only for files and file generations on public volumes and files on Net-Storage volumes:
Specifies the I/O operations to which the performance attribute of the file (operand IOPERF)
applies.

The operand is ignored (no return code!) if:
– it is specified for files which are not located on a public volume or which are to be

created.
– the file identifier on the SM pubset concerned has a default storage class and physical

allocation is forbidden.

A storage class entered in the file catalog entry in an SM pubset is removed if this operand
is specified. The operand must not be specified simultaneously with the operand
STOCLASî*NONE.

= *RDWRT
The performance attribute applies to read and write operations.

= *WRITE
The performance attribute applies to write operations only.

= *READ
The performance attribute applies to read operations only.

LARGE
Only for files and FGGs on disk:
similar to BACKUP, LARGE refers to the saving of files with ARCHIVE or HSMS. It specifies
whether the complete file (or generations) is to be saved or only the blocks which have been
changed since the last save operation.

= *NO
A complete backup is to be made.

= *YES
A partial backup is to be made (only blocks which have been changed); this setting is
useful for large files.

Default setting – only in conjunction with STATE=*NEW: IOUSAGE=*RDWRT

Default setting – only in conjunction with STATE=*NEW: LARGE=*NO

Macros CATAL

U4250-J-Z125-12-76 167

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

LAST
Only for file generation groups:
This operand may only be specified in conjunction with STATE=*NEW and the FIRST
operand. It defines the absolute generation number of the most-recently cataloged (i.e.
youngest) file generation and is required when reconstructing the index entry of a file
generation group on private volumes. The LAST operand determines the number of the
most recent file generation to be imported.

= <integer 1..9999>
The file generation specified by LAST can only be imported, not recataloged.
This means that if the created index entry is not to be used for the reconstruction of a
file generation group, there is no way of actually creating the file generation group
specified here (or any other file generations Ï FIRST; see also the description of the
FIRST operand).

= (<reg: int:2>)
Only possible with MF=M:
The specified register contains the generation number of the latest cataloged file
generation in the lower half-word.

= <var: char:2>
Only possible with MF=M:
Symbolic address of a half-word containing the generation number of the latest
cataloged file generation

LIST
Defines whether a log is to be written to SYSOUT for the processed file name.

= *NO
The file is not to be logged.

= *SYSOUT
Each processed file name and any errors are logged in a report.

= *ERRORS-TO-SYSOUT
Only file names whose processing leads to errors are logged in a report.

MACID
Only evaluated in conjunction with MF=C/D/M; defines the second and third characters of
the field names and equates which are generated during macro expansion in the data area.

Default: MACID = DK

= <macid>
One- or two-character string defining the second and third characters of the generated
field names and equates.

CATAL Macros

168 U4250-J-Z125-12-76

MANCLAS
Only for permanent files and file generation groups on public volumes in SM pubsets and for files
on the Net-Storage of an SM pubset if the software product HSMS is loaded:
Specifies whether data backup and migration are to be controlled via a management class
(see the manual “HSMS” [10] for further details).

= *NONE
A management class is not assigned. Only the corresponding operand specifications
are relevant for file backup and migration.

= <c-string: structured-name 1..8>
File backup and migration are controlled via the specified management class.
The management class must exist and the user must posses the right to use it.
The entry is ignored for files in SM pubsets or on private volumes and rejected for
temporary files.

= (<reg: A(char:8)>)
Only possible with MF=M:
The specified register contains the address of an 8-byte memory area containing the
name of the management class.

= <var: char:8>
Only possible with MF=M:
Symbolic address of an 8-byte memory area containing the name of the management
class.

MF
The forms of the MF operand are described in detail in the appendix (page 865). In all
macros differentiated by MF operands (MF=L/E/D/C), the version operand must contain the
same value.

MIGRATE
Only for files on public disks and for files on Net-Storage:
is interpreted by means of the software product HSMS (Hierarchical Storage Management
System).
Using MIGRATE, the user can specify whether files which he/she has not accessed for
some time may be migrated to a storage level with slower access. The files are migrated
from online processing level S0 to online background level S1 or offline background
level S2 (e.g. tape). For further details see the “HSMS” manual [10].

File generation groups:
the MIGRATE value specified for an FGG index is representative of the whole group.

Default value:
MIGRATE = *ALLOWED for permanent files
MIGRATE = *INHIBITED for temporary files

Macros CATAL

U4250-J-Z125-12-76 169

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= *ALLOWED
The file may be migrated from S0 to storage level S1 or S2.

= *INHIBITED
The file is not to be migrated but may, however, be temporarily stored to a background
level, e.g. for reorganization purposes.

= *FORBIDDEN
Only for users with the right for physical allocation:
The file must not be migrated to a background level.
This entry is rejected if the file is migrated to a background level or if no authorization
for physical allocation exists.

NEWNAME
Only permitted with STATE=*UPDATE:
The file specified in the FILE operand is renamed to this name. It is thereby not possible to
change either the pubset (catalog) or the user ID. A file on a Net-Storage volume cannot be
renamed as a temporary file or as a file generation. See also the sections “Temporary files”
on page 131 and “File generation groups (FGG)” on page 132.

= <c-string 1..80: filename 1..54 with-wild(80)>
The path name consists of [:catid2:][$userid2.]<filename2>.

catid2
ID of the catalog containing the file catalog entry. If an entry is made here, it must be
identical to the catid1 specified in FILE.

userid2
User ID under which the file is stored. If an entry is made here, it must be identical to
the userid1 specified in FILE.

filename2
File name to which filename1, which is specified in the FILE operand, is to be renamed.
A suitable construction can be specified if filename1 contains wildcards. If filename1
ends with a period, filename2 may also end with a period.
filename2 must be specified if a file/FGG is to be renamed. filename1 and filename2
must be different.

In the case of tape files, filename1 must differ from filename2 by the added or modified
version designation.

If HSMS is used then files that were migrated to storage level S1 or S2 cannot be
renamed.

CATAL Macros

170 U4250-J-Z125-12-76

= (<reg: A(char:80)>)
Only possible with MF=M:
The specified register contains the address of an 80-byte memory area containing the
new path name. If the path name is shorter than the maximum length of 80 bytes, it must
be terminated with at least one blank (X'40').

= <var: char:80>
Only possible with MF=M:
Symbolic address of an 80-byte memory area containing the new path name. If the path
name is shorter than the maximum length of 80 bytes, it must be terminated with at least
one blank (X'40').

OPNBACK
Is provided specially for database files (UDS files) and permits the user to back up the file
with ARCHIVE (see the “ARCHIVE” manual [9]) while it is still open. This may lead to
inconsistencies in the file; it is the user's responsibility to avoid this.

= *NO
Only the closed file is saved.

= *YES
The file may be backed up while it is open.

OTHERAR
Only for files on public volumes and for files on Net-Storage:
Activates access control via the BASIC-ACL and specifies how a user who is neither the file
owner nor belongs to the same user group as the file owner may access the file if no
GUARDS protection is active.
User groups can be defined in a system only if the software product SECOS is installed
(see the “SECOS” manual [8]).
In a system without user groups and in which SECOS is not installed, the value for
OTHERAR applies to all user IDs except the file owner.

The operand must not be specified together with the BASACL operand.

= *NO-ACCESS
No access to the file is permitted for the user group.

= ([READ = *NO / READ = *YES / R = *N / R = *Y]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[,EXEC = *NO / EXEC = *YES / X= *N / X = *Y])
The access types for which *YES or *Y is specified in the list are permitted. The
parentheses are component parts of the access list and must be specified.

Default setting – only in conjunction with STATE=*NEW: OPNBACK=*NO

Macros CATAL

U4250-J-Z125-12-76 171

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

The various elements of the access list have the following meanings:

OWNERAR
Only for files on public volumes and for files on Net-Storage:
Activates access control via the BASIC-ACL and specifies how the file owner (and the
system administrator) may access the file if no GUARDS protection is active.

The operand must not be specified together with the BASACL operand.

= *NO-ACCESS
No access to the file is permitted for the user group.

= ([READ = *NO / READ = *YES / R = *N / R = *Y]
[,WRITE = *NO / WRITE = *YES / W = *N / W = *Y]
[,EXEC = *NO / EXEC = *YES / X= *N / X = *Y])
The access types specified with *YES or *Y in the list are permitted. The parentheses
are component parts of the access list and must be specified.

The various elements of the access list have the following meanings:

READ=NO or R=N Read access is forbidden (default value).

READ=YES or R=Y Read access is permitted. In contrast to access control via the ACCESS
operand, this does not automatically imply the right to execute the file.

WRITE=NO or W=N Write access is forbidden (default value).

WRITE=YES or W=Y Write access is permitted. In contrast to access control via the ACCESS
operand, this does not automatically imply the right to read or execute
the file.

EXEC=NO or X=N Execution of the file is forbidden (default value).

EXEC=YES or X=Y Execution of the file is permitted (not for file generation groups).

READ=NO or R=N Read access is forbidden (default value).

READ=YES or R=Y Read access is permitted. In contrast to access control via the ACCESS
operand, this does not automatically imply the right to execute the file.

WRITE=NO or W=N Write access is forbidden (default value).

WRITE=YES or W=Y Write access is permitted. In contrast to access control via the ACCESS
operand, this does not automatically imply the right to read or execute
the file.

EXEC=NO or X=N Execution of the file is forbidden (default value).

EXEC=YES or X=Y Execution of the file is permitted (not for file generation groups).

CATAL Macros

172 U4250-J-Z125-12-76

PARAM
Designates the address of the operand list and is only evaluated in conjunction with MF=E
(see also page 865).

= <name 1..8>
Symbolic address (name) of the operand list.

PREFIX
Evaluated only in conjunction with MF=C/D/M. Defines the first character of each field name
and equate generated in the data area when the macro is expanded.

= I
Default prefix with which the field names and equates generated by the assembler
begin.

= pre
Single-character prefix with which the field names and equates generated by the
assembler are to begin.

= *
No prefix is generated.

Macros CATAL

U4250-J-Z125-12-76 173

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

PROTECT
Defines where the protection attribute is to be taken over from, that cannot be explicitly
defined with the respective operand.
The following protection attributes (operands) can be assigned with PROTECT (depending
on the operand values):

The values of these protection attributes may be preset differently depending on the value
of the STATE operand (NEW or UPDATE); (see tables).

Access protection Protection attribute CATAL
operand

Standard access control (access type) ACCESS ACCESS

Standard access control (access by other users) USER-ACCESS SHARE

Basic access control list BASIC-ACL BASACL,
OWNERAR,
GROUPAR,
OTHERAR

Access control via GUARDS GUARDS GUARDS

Passwords READ-PASSWORD,
WRITE-PASSWORD,
EXEC-PASSWORD

RDPASS,
WRPASS,
EXPASS

Binary deletion DESTROY-BY-DELETE DESTROY

Memory space lock SPACE-RELEASE-LOCK RELSPAC

Release date for deletion FREE-FOR-DELETION DELDATE

Expiration date EXPIRATION-DATE EXDATE
or
RETPD

CATAL Macros

174 U4250-J-Z125-12-76

Protection attributes when cataloging new files

No expiration date (EXPIRATION-DATE) can be defined for the first entry. In the case of
files, it is implicitly preset to *NONE, and in the case of file generation groups to *TODAY.

PROTECTION-ATTR= *FROM_FILE *STD *BY_DEF_PROT_OR_STD

Def Prot. not
active

Default
Protection

active Protection attribute (System default values

ACCESS

Value
transferred

from
reference file

WRITE

Value
supplied by

default
protection

USER-ACCESS OWNER-ONLY

BASIC-ACL NONE

DESTROY-BY-DELETE NO

GUARDS NONE

SPACE-RELEASE-LOCK NO

READ-PASSWORD

WRITE-PASSWORD

EXEC-PASSWORD NONE

FREE-FOR-DELETION

AUDIT

Macros CATAL

U4250-J-Z125-12-76 175

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Protection attributes when changing file attributes

*) The expiration date is only entered for permanent files with creation dates or for file
generation groups. If the referende file has no expiration date, *TODAY is entered.

= *STD
The following system defaults are set:

PROTECT=*STD is rejected for individual file generations.

PROTECTION-ATTR= *UNCH *FROM_FILE *STD *BY_DEF_PROT_OR_STD

Def Prot. not
active

Default
Protection

active Protection attribute (System default values

ACCESS

Value
transferred

from
reference file

WRITE

Value
supplied by

default
protection

USER-ACCESS OWNER-ONLY

BASIC-ACL NONE

DESTROY-BY-DELETE NO

GUARDS NONE

SPACE-RELEASE-LOCK NO

EXPIRATION-DATE *) TODAY

READ-PASSWORD

NONE
WRITE-PASSWORD

EXEC-PASSWORD UNCHANGED

FREE-FOR-DELETION

AUDIT

ACCESS = *WRITE

BASIC-ACL = *NONE

USER-ACCESS = *OWNER-ONLY (also for tape files)

DESTROY = *NO

SPACE-RELEASE-LOCK = *NO

GUARDS = *NONE

EXPIRATION-DATE = *TODAY (only for permanent files with a creation date and
for file generation groups)

CATAL Macros

176 U4250-J-Z125-12-76

= *BY_DEF_PROT_OR_STD
The protection attributes are assigned depending on the use of the “default protection”
function.
If default protection is activated, it provides values for all the protection attributes listed
above, unless these have been specified explicitly.
If default protection has not been activated, the protection attributes are entered as for
PROTECT=*STD. In addition, the following system default values apply:

If STATE=*NEW is specified, PROTECT=*BY_DEF_PROT_OR_STD has the same
effect as no specification.

= (*FROM_FILE,<c-string: filename 1..54>)
All the protection attributes listed for *STD that are not explicitly specified by the caller
are imported from the reference file. The protection attributes taken over from the
reference file are treated as if they had been specified explicitly.

Exceptions:
– In the case of a file generation group, the execution rights are ignored rather than

rejected.
– In the case of temporary files, EXDATE is ignored rather than rejected.

If the reference file does not have an expiration date, EXDATE=*TODAY is used for file
generation groups and for permanent files with a creation date.

Passwords and the release date of the reference file are not copied: if CATAL
STATE=*NEW applies, they have the system default value *NONE (see also
“Protection attributes when cataloging new files” on page 174), if STATE=*UPDATE
applies, they have the value *UNCHANGED (see the table “Protection attributes when
changing file attributes” on page 175).

The reference file must be located on the same pubset as the file specified by FILE. If
no catalog ID is specified then the user ID's default catalog is assumed. For this reason
it is always necessary to specify the catalog ID if file does not refer to the default ID.

= (*FROM_FILE,(<reg: A(char:54)>))
Only possible with MF=M:
The specified register contains the address of a 54-byte memory area containing the
path name. If the path name is less than the maximum of 54 bytes long, it must be
terminated with at least one blank (X'40').

FREE-FOR-DELETION = *NONE

READ-PASSWORD = *NONE

WRITE-PASSWORD = *NONE

EXEC-PASSWORD = *NONE

Macros CATAL

U4250-J-Z125-12-76 177

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= (*FROM_FILE,<var: char:54>)
Only possible with MF=M:
Symbolic address of a 54-byte memory area containing the path name. If the path name
is less than the maximum of 54 bytes long, it must be terminated with at least one blank
(X'40').

RDPASS
This operand is used to define, modify or delete a read password.

Temporary files: Password protection is not possible.
Tape files: The password is recorded in the HDR3 label.
For encrypted files: All RDPASS specifications are handled like *UNCHANGED

= *NONE
No read password is assigned or an existing read password is deleted.

= *UNCHANGED
If STATE=*UPDATE is specified at the same time, the value of RDPASS remains
unchanged. If STATE=*NEW is specified at the same time, the value RDPASS=*NONE
is entered.
If PROTECT=*BY_DEF_PROT_OR_STD or STATE=*NEW is specified without a value
for PROTECT, *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over.

If STATE=*UPDATE is specified, then: if PROTECT=*BY_DEF_PROT_OR_STD is not
specified, *UNCHANGED has the same effect as no specification.

if STATE=*NEW is specified, then: *UNCHANGED has the same effect as the specifi-
cation *NONE (irrespective of what is specified for PROTECT).

= <c-string 1..4> / <x-string 1..8> / <integer -2147483648..2147483647>
Defines a password required for read access.

If a program is protected by a read password, this also applies to the load module in
main memory. The LOAD-PROGRAM command is rejected, as are the IDA commands
DISPLAY and AT. If a source program is protected by a read password, it cannot be
assembled or compiled.

= (<reg: A(char:4)>)
Only possible with MF=M:
The specified register contains the address of a 4-byte memory area containing the
read password.

= <var: char:4>
Only possible with MF=M:
Symbolic address of a 4-byte memory area containing the read password.

Default setting – only in conjunction with STATE=*NEW: RDPASS=*NONE

CATAL Macros

178 U4250-J-Z125-12-76

RELSPAC
Specifies whether or not storage space may be released by using the MODIFY-FILE-
ATTRIBUTES command or the FILE macro.

= *ALLOWED
The storage space may be released.

= *IGNORED
The request to release space is ignored.

= *UNCHANGED
Only relevant in conjunction with specification of PROTECT:
If STATE=*UPDATE is specified at the same time, the value of RELSPAC remains
unchanged. If STATE=*NEW is specified at the same time, the value
RELSPAC=*ALLOWED is entered.

The value *UNCHANGED has the following effects:
– if PROTECT=*FROM-FILE is specified:

prevents the corresponding value from being taken over from the reference file
– if PROTECT=*BY_DEF_PROT_OR_STD is specified and STATE=*NEW is

specified without a value for PROTECT:
prevents the corresponding value supplied by default protection from being taken
over

– if PROTECT=*STD and STATE=*UPDATE are specified together:
prevents the value in the catalog entry from being reset to the value
RELSPAC=*ALLOWED

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
RELSPAC=*ALLOWED (irrespective of what is specified for PROTECT).

Default setting – only in conjunction with STATE=*NEW: RELSPAC=*ALLOWED

Macros CATAL

U4250-J-Z125-12-76 179

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

RETPD
Defines an EXPIRATION DATE before which the file must not be updated or erased, i.e.
during which it can only be read.

An expiration date can only be defined for an existing file, i.e. the catalog fields CRE-DATE
and FILE-STRUC must contain a value î NONE. This also means that RETPD cannot be
specified together with the CATAL operand STATE=*NEW or STATE=*FOREIGN (RETPD
is ignored).

The expiration date is calculated from the number of specified days and is always based on
local time with the date and a time of 00:00:00.

The expiration date can be canceled or modified by means of a further CATAL macro
containing the RETPD operand. Once the expiration date has elapsed, write access is
again possible.

An existing generation of an FGG can be erased when creating a new generation even if
the expiration date has not expired (see the DISP operand for details).

Simultaneous use of the EXDATE and RETPD operands is not possible.

If the RETPD operand is specified, the EXDATE value returned by the default protection
function is ignored.

= <integer 0..32767>
Number of days for which the file is to be protected.

= (<reg: int:2>)
Only possible with MF=M:
The specified register contains the number days for which the file is to be protected in
the lower half-word.

= <var: char:2>
Only possible with MF=M:
Symbolic address of a half-word containing the number days for which the file is to be
protected.

S0MIGR
Only relevant with STATE=*UPDATE for files in SM pubsets that already occupy storage:
Defines whether the file within the SM pubset (storage hierarchy level S0) may be
reallocated to another volume set.

A storage class entered in the file catalog entry in an SM pubset is removed if this operand
is specified. The operand must not be specified simultaneously with the operand
STOCLASî*NONE.

Default value: only if STATE=*NEW: RETPD = 0, i.e. the file or generation can be
updated or erased at any time.

CATAL Macros

180 U4250-J-Z125-12-76

= *ALLOWED
The file may be reallocated within the SM pubset.

The value is ignored for files and generation on volume sets with permanent data
storage if the file identifier on the SM pubset concerned has a default storage class and
physical allocation is forbidden.

= *FORBIDDEN
Only for users with the right for physical allocation:
Automatic reallocation is not permitted. The file is to remain on the volume set to which
it is currently allocated.
This entry is rejected in the following cases:
– No authorization for physical allocation exists.
– The file is on an SM pubset but does not occupy storage.
– The file is cataloged on an SM pubset, but resides on a Net-Storage volume.

SHARE
Specifies whether the file or file generation may be processed under a user ID other than
that of the owner if no BASIC-ACL or GUARDS protection is active. The type of access
which is permitted is determined by the other file protection attributes (see the operands
ACCESS, WRPASS etc.).

Tape files:
when the file is opened for the first time, DMS writes the SHARE indicator in the HDR1 label
(“access indicator”).

= *NO
The file is not shareable.
Tape files, HDR1 label: access indicator = 1

= *YES
File access is permitted for any user ID, i.e. the file or generation is shareable.
Temporary files, SHARE=*YES is not permitted
Tape files, HDR1 label: access indicator = X'40'

= *SPECIAL
File access is permitted for the user ID with HW-MAINTENANCE privileges.
SHARE=*YES is implied.
This value must not be specified for file generation groups.

Default setting – only in conjunction with STATE=*NEW: SHARE=*NO for disk files
SHARE=*YES for tape files

Macros CATAL

U4250-J-Z125-12-76 181

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= *UNCHANGED
Only relevant in conjunction with specification of PROTECT:
If STATE=*UPDATE is specified at the same time, the value of SHARE remains
unchanged. If STATE=*NEW is specified at the same time, the value SHARE=*NO is
entered.

The value *UNCHANGED has the following effects:
– if PROTECT=*FROM-FILE is specified:

prevents the corresponding value from being taken over from the reference file
– if PROTECT=*BY_DEF_PROT_OR_STD is specified and STATE=*NEW is

specified without a value for PROTECT:
prevents the corresponding value supplied by default protection from being taken
over

– if PROTECT=*STD and STATE=*UPDATE are specified at the same time:
prevents the value in the catalog entry from being reset to the value SHARE=*NO

If STATE=*UPDATE is specified, then: if PROTECT is not specified, *UNCHANGED
has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as
SHARE=*NO (irrespective of what is specified for PROTECT).

STATE
Specifies whether a new catalog entry is to be created, an existing catalog entry is to be
updated or a catalog entry is to be imported.

= *NEW
A new catalog entry is to be created.

= *UPDATE
An existing catalog entry (FILE=...) is to be updated. STATE=*UPDATE must be
specified for each access to an existing catalog entry. The attributes whose associated
operands are specified in this CATAL macro are updated. If password protection exists
for the file, the write password must be entered in the password table of the job by
means of a PASSWORD command before the catalog entry can be updated.

= *FOREIGN
Only for exported FGGs on private disks:
A group entry (that is only in the F1 label of a private disk) of a file generation group
stored on private disks is to be imported. The VOLUME and DEVICE operands must be
specified with this operand; all other operands are ignored or rejected. The generations
to be transferred must then be imported individually or collectively by using the FILE
macro (operands STATE=*FOREIGN, DEVICE and VOLUME) or IMPORT,
respectively.

CATAL Macros

182 U4250-J-Z125-12-76

STOCLAS
The operand is only relevant for files, file generations and file generation groups on public volumes
in SM pubsets and files on a Net-Storage volume which are cataloged on an SM pubset.

It defines whether the data storage location selection (volume set) within the SM pubset is
to be controlled via a storage class for files and file generations with STATE=*UPDATE for
which storage has been allocated.
A storage class must not be assigned (i.e. by specifying the operand STOCLASî*NONE)
simultaneously with assignment of the separate attributes it contains (AVAIL, DISKWR,
IOPERF or IOUSAGE operand) or together with the S0MIGR operand.
The request is also rejected if the file does not occupy storage space or if the storage class
contains the attribute AVAILABILITY=*HIGH and the file is currently migrated to a
background level (S1 or S2 migration with HSMS).

The operand defines the default storage class for file generation groups, which is used for
the first storage assignment to a generation if no explicit storage class or one of the
separate attributes is specified.

With STATE=*NEW, a storage class must not be assigned (i.e. by specifying the
STOCLASî*NONE operand) together with the WORKGRP operand.
With STATE=*UPDATE, it is only possible to assign a storage class whose WORK-FILE
attribute matches the WORK-FILE attribute of the file generation group.
A file on a Net-Storage volume can be assigned a storage class. In this case no work file
and no file with the preliminary file format K can be created.

Note

Specifying a value which is not equal to *NONE for the STOCLAS operand can result
in the file being displaced (reallocated) from its current volume set to another volume
set which suits the storage class better. The following cases can occur here:

– If the storage class contains AVAILABILITY=*HIGH and AVAILABILITY=*STD
applies for the current volume set, the file must be reallocated to a colume set with
the attribute AVAILABILITY=*HIGH. If reallocation is not possible, the CATAL call is
rejected.

– If the storage class contains a volume set list and the file is not located on a volume
set in the volume set list, the file will, if possible, be reallocated to a volume set from
the list. If reallocation is not possible, the CATAL call is executed without reallo-
cation taking place.

The file is locked (opened) during this reallocation, i.e. all accesses to the file or its
catalog entry are rejected instead of being put into a wait state.

Macros CATAL

U4250-J-Z125-12-76 183

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= *NONE
No storage class is assigned. The corresponding separate attributes are evaluated for
selecting the storage location.

The value is ignored for files and generation on volume sets with permanent data
storage if the file identifier on the SM pubset concerned has a default storage class and
physical allocation is forbidden.

= *UPDATE
Only relevant for files that have been assigned a storage class whose attributes have been
modified
The file attributes are modified according to the assigned storage class. If the entry is
made for file generation groups, the only check made is whether the WORK-FILE
attribute of the storage class still matches the WORK-FILE attribute of the file
generation group. The request is rejected with a return code if this is not the case.

= *STD
The default storage class of the user ID for the respective pubset is used for files and
file generation groups.
The default storage class of the file generation group is used for file generations, in
other words the storage class that was assigned to the file generation group index.

= <c-string: structured-name 1..8>
The specified storage class defines selection of the file storage location.
The storage class must exist and the user must have the right to use it.
The file attributes are not updated if the file was not already assigned the specified
storage class, i.e. intermediate storage class modifications are not effective, see
*UPDATE.
The entry is ignored for files in SF pubsets or on private volumes. The entry is rejected
with STATE=*NEW and for cataloged files without allocated storage space.

= (<reg: A(char:8)>)
Only possible with MF=M:
The specified register contains the address of an 8-byte memory area containing the
name of the storage class.

= <var: char:8>
Only possible with MF=M:
Symbolic address of an 8-byte memory area containing the name of the storage class.

CATAL Macros

184 U4250-J-Z125-12-76

TIMBASE
Defines the basis on which absolute dates specified with the EXDATE and DELDATE
operands are to be interpreted (relative dates always refer to local time).

The TIMBASE operand has no effect on dates supplied by the default protection function.
These always refer to the local time.

= *UTC
Absolute dates are interpreted based on UTC world time (universal time coordinate).

= *LTI
All dates are interpreted based on LTI (local time).

USRINFO
Enters user metainformation into the file catalog entry. The entry can be a maximum of
8 bytes long, with any contents, whose meaning is defined by the user. The operand is
ignored for files on private volumes.

= *NONE
No entry or the entry will be deleted.

= <c-string 1..8>
The specified characters are entered.

= (<reg: A(char:8)>)
Only possible with MF=M:
The specified register contains the address of an 8-byte memory area containing the
metainformation to be entered.

= <var: char:8>
Only possible with MF=M:
Symbolic address of an 8-byte memory area containing the metainformation to be
entered.

VERSION
Specifies which version of the parameter list is to be generated. The latest version should
always be used.
The default setting cannot be specified explicitly!

Implicit default setting: VERSION=0

The parameter list format that was supported prior to BS2000 V9.5A is generated, but only
for the parameters recognized at the time.
The supported operands and operand values are listed in table “Variations in different
versions – VERSION=0/1/2/3” on page 193.

Macros CATAL

U4250-J-Z125-12-76 185

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= 1
Generates the parameter list format that was supported in BS2000 V9.5 and V10.0, but
only for the parameters recognized at the time.
The supported operands and operand values are listed in table “Variations in different
versions – VERSION=0/1/2/3” on page 193.

= 2
Generates the parameter list format for versions BS2000/OSD-BC V1.0 and V2.0.

= 3
Generates the parameter list format for versions as of BS2000/OSD-BC V3.0.

Note

If existing software which manipulates the generated parameter list is to be
reassembled, the old format (0, 1 or 2) must be requested. In all other respects,
source code compatibility is ensured.

VOLUME
Only for FGGs on private disks:
Specifies the volume serial number (“vsn”) of a private volume (private disk).

The operands VOLUME and DEVICE must be specified when an FGG is created or recon-
structed on private disks (STATE=*NEW) or when an FGG kept on private disks is to be
imported (STATE=*FOREIGN).

If the software product MAREN is being used, a VOLUME may be specified without a
DEVICE.

= <c-string 1..6>
Archive number

= (<reg: A(char:6)>)
Only possible with MF=M:
The specified register contains the address of a 6-byte memory area containing the
volume serial number.

= <var: char:6>
Only possible with MF=M:
Symbolic address of a 6-byte memory area containing the volume serial number.

CATAL Macros

186 U4250-J-Z125-12-76

WORKGRP
Only relevant when setting up a file generation group in SM pubsets:
Defines whether the file generation group is to be a permanent or work file generation
group.
Work file generation groups can be deleted by system administration at a time specified by
system administration.

= *YES
The file generation group is set up as a work file generation group.

WRPASS
The user can define, update or delete a write password with this operand.

Temporary files:
Password protection is not permitted.

Tape files:
The password is stored in the HDR3 label.

= *NONE
No password is defined or an existing password is deleted.

= *UNCHANGED
If STATE=*UPDATE is specified at the same time, the value of WRPASS remains
unchanged. If STATE=*NEW is specified at the same time, the value WRPASS=*NONE
is entered.

If PROTECT=*BY_DEF_PROT_OR_STD or STATE=*NEW is specified without a value
for PROTECT, *UNCHANGED prevents the corresponding value supplied by default
protection from being taken over.

If STATE=*UPDATE is specified, then: if PROTECT=*BY_DEF_PROT_OR_STD is not
specified, *UNCHANGED has the same effect as no specification.

If STATE=*NEW is specified, then: *UNCHANGED has the same effect as the specifi-
cation *NONE (irrespective of what is specified for PROTECT).

= <c-string 1..4> / <x-string 1..8> / <integer -2147483648..2147483647>
Defines the password needed for write access.

= (<reg: A(char:4)>)
Only possible with MF=M:
The specified register contains the address of a 4-byte memory area containing the
write password.

Default setting – only in conjunction with STATE=*NEW: WRPASS=*NONE

Macros CATAL

U4250-J-Z125-12-76 187

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= <var: char:4>
Only possible with MF=M:
Symbolic address of a 4-byte memory area containing the write password.

Programming notes

1. Calling the CATAL macro with the new operand list:
label CATAL <operands,...>,VERSION=3

2. Register 1 Address of the operand list.

3. The error code is only returned in the standard header of the parameter list (IDKRET
field) and no longer in general-purpose register 15 as in version 2.

Return codes

Standard
header:

The following code relating to execution of the CATAL macro
is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' No error

X'01' X'00' X'0000' Only with check dialogs:
Request was fully or partially retracted in dialog, i.e. at least one check
dialog was answered with *NO.

X'02' X'00' X'0000' Only in conjunction with CHECKî*NO:
An error has occurred but continuation of the function was requested
in an error dialog.

X'40' X'0501' Requested catalog not available

X'82' X'0502' Requested catalog in the wait state

X'40' X'0503' Incorrect information in MRSCAT

X'82' X'0504' Error in catalog management system

X'40' X'0505' Error during computer communication (MRS)

X'80' X'0506' Operation canceled because of master switch

X'40' X'0510' Error when calling an internal function

X'40' X'0512' Requested catalog unknown

X'40' X'0513' Call rejected by system exit routine

X'40' X'051B' User ID not known in specified pubset

X'40' X'051C' No access right to specified pubset

X'40' X'051D' LOGON password to specified pubset is different

X'20' X'0527' I/O error while reallocating the data in an SM pubset

CATAL Macros

188 U4250-J-Z125-12-76

X'20' X'0530' CMS reports error during a request for storage space

X'20' X'0531' Unexpected error during catalog access

X'82' X'0532' File locked because it is in use

X'82' X'0534' Private volume cannot be assigned

X'40' X'0535' No access right to the file catalog entry (only in conjunction with CCS
assignment to a foreign user ID)

X'20' X'0536' Error in file management system

X'40' X'053A' Error while modifying the F1 label on a private disk

X'20' X'053B' System error during file access

X'82' X'053C' Catalog file of the pubset is full

X'40' X'053D' Catalog of F1 label block is destroyed

X'40' X'053E' File on private volume is already cataloged

X'82' X'053F' File is reserved by another task

X'40' X'0540' No volume set that matches the required file attributes is available in
the specified pubset

X'82' X'0541' Data reallocation is not possible because there is no suitable volume
set with enough free storage space

X'40' X'0546' File catalog entry is full

X'82' X'054D' Storage allocation exceeded

X'20' X'054F' Unexpected error while accessing JOIN file

X'40' X'0555' STATE=*FOREIGN: specified file already exists in the catalog of the
user

X'82' X'055A' Device currently reserved

X'40' X'055C' Catalog entry on private disk not found

X'40' X'055D' User has no right for physical allocation

X'40' X'055F' Volume could not be reserved

X'01' X'0576' Contradictory operand combination or reserved parameter area fields
used

X'20' X'0577' Internal error while accessing job environment

X'20' X'0578' Internal error while checking access rights

X'01' X'0579' Invalid operand specified for temporary file

X'40' X'057A' Attribute cannot be assigned for work file

X'40' X'057E' HSMS not available

X'40' X'057F' File is migrated, renaming not possible

X'01' X'0590' Volume specification not permitted without device specification

X'cc' X'bb' X'aaaa' Meaning

Macros CATAL

U4250-J-Z125-12-76 189

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

X'82' X'0594' Insufficient virtual memory available (also if wildcards are used and too
many files are selected)

X'01' X'0599' Operand is not supported in the RFA-BS version

X'40' X'05A0' Updating the performance attributes (DISKWR, IOPERF,
IOUSAGE) is not permitted if data in the write cache has not been
written yet

X'01' X'05A8' Requested device type not found in system

X'40' X'05AD' Only when renaming with simultaneous S0 migration:
File attributes were modified but the file could not be renamed because
of CMS problems

X'82' X'05B0' No suitable device is currently available

X'40' X'05B4' Only in conjunction with VOLUME/DEVICE:
A MOUNT message for the requested volume was answered with 'NO'
by the operator

X'40' X'05B5' Guard not available

X'40' X'05BD' Illegal combination of file and volume set attributes

X'20' X'05C7' Internal error in DMS

X'82' X'05C8' Maximum number of files reached for user ID

X'20' X'05CA' Internal error while modifying the CE allocation

X'01' X'05CB' Incorrect or illegal first file name

X'40' X'05CC' File name already cataloged

X'01' X'05CD' Incorrect or illegal new file name

X'40' X'05CE' First file name not cataloged

X'40' X'05CF' File is protected with a password

X'82' X'05D0' File locked because it is in use

X'40' X'05D1' Error while requesting a device

X'40' X'05D2' EXPIRATION-DATE was specified for an empty file

X'01' X'05D3' GUARDS name incorrect

X'40' X'05D4' GUARDS catalog must not be protected by a guard

X'01' X'05E8' File name illegal for disk file

X'01' X'05EE' File name too long

X'01' X'05EF' BASIC-ACL or guard cannot be assigned

X'01' X'05FA' Access to REMOTE-IMPORTED pubset not possible

X'40' X'05FC' Specified user ID not in home pubset

X'cc' X'bb' X'aaaa' Meaning

CATAL Macros

190 U4250-J-Z125-12-76

X'40' X'05FD' File is write-protected with USER-ACCESS or EXPIRATION-DATE
(only for CCS assignment to foreign user ID)

X'40' X'0606' Volume request rejected by MAREN

X'40' X'0609' Action not permitted for system file

X'40' X'060D' Error while reading reference file attributes (PROTECT operand)
– Syntax error in file name, possibly also in conjunction with an ACS

replacement
– Specified reference file not accessible

X'40' X'0610' Function execution supplies a return code for at least one of the
selected file names

X'01' X'0611' Incorrectly specified construction (NEWNAME operand with wildcards)

X'40' X'0613' Unknown management class

X'40' X'0614' No access right for management class

X'40' X'0616' Specified attributes require an S0 migration, but the file is locked
against reallocation

X'40' X'0618' Unknown storage class

X'40' X'0619' No access right for storage class

X'40' X'0640 Access to Net-Storage is rejected by the ONETSTOR subsystem
because of communication problems with the net client

X'40' X'0643' Net client reports access error

X'40' X'0644' Net client reports internal error

X'40' X'0645' File does not exist on Net-Storage

X'40' X'0646' FGG not permitted on Net-Storage volume

X'40' X'0649' Net server reports POSIX ACL error

X'40' X'064A' Net client reports that access to files on the Net-Storage volume is
forbidden

X'40' X'064B' Access to node files from the net client not supported

X'40' X'0666' File is write-protected by ACL or GUARDS (only with CCS assignment
to foreign user ID)

X'40' X'0685' File occupies no storage space and AVAIL=*HIGH, a storage class or
an S0 migration lock is to be set

X'20' X'069D' Incorrect catalog entry structure

X'40' X'06A6' AUDIT specification not permitted for user ID

X'cc' X'bb' X'aaaa' Meaning

Macros CATAL

U4250-J-Z125-12-76 191

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

X'02' X'00' X'06A9' Generations missing from the file generation group

X'40' X'06B6' File attributes unsuitable for the file generation group

X'01' X'06C1' More than 255 generations requested or conflict with BASE, LAST or
FIRST operand

X'01' X'06C3' Illegal name for a file generation group

X'40' X'06C4' File generation group not cataloged

X'01' X'06C5' File generation group name too long

X'01' X'06C6' Tape file name or attribute cannot be modified

X'01' X'06C7' Invalid generation number specified

X'01' X'06C8' Attribute can only be modified for the complete file generation group

X'01' X'06C9' Generation-specific operand in incorrect context

X'cc' X'bb' X'aaaa' Meaning

CATAL Macros

192 U4250-J-Z125-12-76

X'02' X'00' X'06CA' Command executed, apart from incorrect BASE specification

X'40' X'06CC' Only with wildcard selection:
No file matches the specified selection entry

X'40' X'06CD' Specified file generation group locked with write protection against
extensions

X'01' X'06CE' Retention date (RETPD, EXDATE) or delete date (DELDATE) incor-
rectly specified

X'40' X'06D5' Deleting of superfluous file generations is prevented by write protection

X'01' X'06DA' Illegal combination of private and public volumes for a file generation
group

X'01' X'06DB' Incorrect VOLUME and DEVICE specification

X'01' X'06FA' New file name only permitted with STATE=*UPDATE

X'01' X'06FB' Granting of execution rights not possible for file generation groups

X'01' X'06FD' Parameter range invalid or not accessible

X'40' X'06FF' BCAM connection interrupted

X'01' X'FFFF' Incorrect function number in parameter range header

X'03' X'FFFF' Incorrect version number in parameter range header

X'cc' X'bb' X'aaaa' Meaning

Macros CATAL

U4250-J-Z125-12-76 193

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Variations in different versions – VERSION=0/1/2/3

MF= Operand ohne Vers Vers=1 Vers=2 Vers=3 Remarks

MF=E (1) (1) (1) x

VERSION x x x

PARAM - - - x

MF=D/
MF=C

x x x x

PREFIX x x x x

MACID - - - x

VERSION - x x x

MF=M - - - x

PREFIX - - - x

MACID - - - x

all operands
of MF=I/L

- - - x

MF=I/
MF=L

x x x x

pathname1 (2) (2) (2) -

pathname2 (3) (3) (2) -

ACCESS x x x x

ACLPROT - (x) x x

ADMINFO - - - x

AUDIT x x x x

BACKUP x x x x

BASACL - (x) x x

BASE x x x x

CCS - - x x

CHECK - - - x

DELDATE - - - x

DESTROY x x x x

DEVICE x x x x (5)

DISKWR - - x x

DISP x x x x

EXDATE - - - x

EXPASS x x x x

FILE (2) (2) (2) (4)

CATAL Macros

194 U4250-J-Z125-12-76

MF=I/
MF=L
(cont.)

FIRST x x x x

GEN x x x x

GROUPAR - (x) x x

GUARDS - - x x

IOPERF - - x x

IOUSAGE - - x x

LARGE x x x x

LAST - - x x

LIST - - - x

MANCLAS - - - x

MIGRATE - x x x (6)

NEWNAME 3 2 2 4

OPNBACK - (x) x x

OTHERAR - (x) x x

OWNERAR - (x) x x

PROTECT - - - x

RDPASS x x x x

RELSPAC - - x x

RETPD x x x x

SHARE x x x x

STATE x x x x

STOCLAS - - - x

S0MIGR - - - x

TIMBASE - - - x

USRINFO - - - x

VERSION - x x x

VOLUME x x x x

WORKGRP - - - x

WRPASS x x x x

MF= Operand ohne Vers Vers=1 Vers=2 Vers=3 Remarks

Macros CATAL

U4250-J-Z125-12-76 195

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Key

x The operand is available in the macro version.

(x) Operand is available in the macro version, but not as of the first release.

- The operand is not available in the macro version.

Vers Version

(1) Format MF=(E,<addr>)

(2) Path name with a maximum of 54 characters , format: [:catid:][$userid.]filename

(3) File name without catalog ID and user ID (44 characters maximum)

(4) Selection or construction specifications (analogous to 2), 80 characters maximum

(5) Only the respectively supported device types

(6) Vers=1: operand value is called INHIBIT instead of INHIBITED (Vers=2)

In the above table, positional operands are listed before keyword operands under MF=L.

CHKFAR Macros

196 U4250-J-Z125-12-76

CHKFAR – Check file access rights

Macro type: type S (E form/L form/D form/C form/M form); see page 866

The CHKFAR macro checks the access rights for the file specified in the call and informs
the caller which access rights he/she has for this file. The user may select

– whether all access facilities he/she has for the file are to be shown (ignoring any
passwords or retention period which may exist) or

– whether he/she desires information on a specific access right (including any password
protection or retention period defined for the file).

The information is returned to the caller in an output area of the operand list.

For private files: the CHKFAR macro evaluates information from the user catalog only, not
from the F1 label.

For tape files: the CHKFAR macro evaluates information from the user catalog, but not from
the header record on the tape.

Macros CHKFAR

U4250-J-Z125-12-76 197

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Format

Operation Operands

CHKFAR

MF=D,[,PREFIX=pre]

MF=C,[,PREFIX=pre][,MACID=macid]

,FILE=

′pathname′
adr1

(r) 
 
 
 
 

,ACCESS=

*ANY

*READ

*WRITE

*UPDATE

*DELETE

*EXEC

adr2 
 
 
 
 
 
 
 
 
 
 

MF=
L

M  
 
 

MF=E,PARAM=
addr

(r) 
 
 

CHKFAR Macros

198 U4250-J-Z125-12-76

Operand descriptions

FILE
Specifies the file for which the user wishes to determine or check his/her access rights.

= pathname
Name of the file whose access rights are to be checked, where
<c-string 1..54: filename 1..54>

Pathname means [:catid:][$userid.]filename

catid
Catalog ID: if omitted, the default catalog ID for the current user ID is assumed.

userid
User ID: if omitted, the user ID in the SET-LOGON-PARAMETERS or LOGON
command is assumed.

filename
A fully qualified file name.

= addr1
Symbolic address (i.e. the name) of a 54-byte field in the user program which contains
the path name of the file to be checked.

= (r)
Number of a register which contains the address of the “addr1” field. The register must
be loaded with this address value before the macro is called.

ACCESS
Specifies whether all access rights enjoyed by the user for the specified file are to be
returned or whether the file is to be checked for a specific access right for the user. The
information is returned in an output area of the operand list.

= *ANY
Information on all access rights which the user possesses for the specified file is placed
in an output area of the operand list. Any other possible protection attributes of the file,
such as passwords or a retention period, are not evaluated.

= *READ
The system checks whether the caller may read the specified file. Any existing
password for the file is also taken into account.

= *WRITE
The system checks whether the caller may write to the specified file. Any existing
password or retention period for the file is also taken into account.

Macros CHKFAR

U4250-J-Z125-12-76 199

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= *UPDATE
The system checks whether the caller may read from and write to the specified file. Any
existing password or retention period for the file is also taken into account.

= *DELETE
The system checks whether the caller may delete the specified file. Any existing
password or retention period for the file is also taken into account.

= *EXEC
The system checks whether the caller may execute the specified file. Any existing
password for the file is also taken into account.

MACID
Defines the second through fourth characters of each field name and equate generated
when the macro is expanded.

Default value: MACID = RMZ

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

PARAM
Specifies the address of the operand list; it is evaluated only if MF=E applies
(see page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register which contains the address of the operand list. The register must
be loaded with this address value before the macro is called.

PREFIX
Specifies the first character of each field name or equate which the assembler generates in
the data area when expanding the macro.

Default value: PREFIX=S.

= pre
Single-character prefix with which the field names and equates generated by the
assembler are to begin.

CHKFAR Macros

200 U4250-J-Z125-12-76

Return codes

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

Standard
header:

The following code relating to execution of the CHKFAR
macro is returned in the standard header
(bb = SUBCODE1, aaaa = MAINCODE):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' The function was executed successfully.

X'01' X'6000' The function could not be executed: the operand list contains an invalid value.

X'40' X'6001' The function could not be executed: the specified file was not found in the
catalog.

X'40' X'6008' The function could not be executed: the specified catalog is unknown or was not
available.

X'20' X'6014' The function could not be executed: system error.

X'40' X'6021' BCAM connection error

X'40' X'6022' BCAM connection interrupted

X'01' X'6040' The function could not be executed: The operand list was not available or
assigned with the necessary length.

Macros CHKFAR

U4250-J-Z125-12-76 201

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Description of the output fields

– The following information is returned for ACCESS = *ANY:

Access rights: the caller's access rights for the file. Passwords and retention periods are
not taken into account.

– If access control using GUARDS is defined, the guards for the caller are evaluated.

– If a BASIC-ACL is in effect, the values from the entry applicable to the caller are
used.

– If an ACL is in effect then the “null” value is supplied in the ACCESS-RIGHTS field.

I Access control using ACL has no longer been supported since SECOS
V4.0.

– If SHARE/ACCESS is in effect, the values are set as follows:

Key: R: READ, W: WRITE, X: EXECUTE, Y: YES, N: NO

If the file to be checked exists, but the caller has no access rights for it, the CHKFAR
macro returns the access rights in the ACCESS-RIGHTS field and the return code null.

– Where ACCESS = *READ/*WRITE/*UPDATE/*DELETE/*EXEC:
CHECK-RESULT: specifies whether or not the desired access is permitted.

ACCESS SHARE
Owner. Other

R W X R W X

WRITE NO Y Y Y N N N

WRITE YES Y Y Y Y Y Y

READ NO Y N Y N N N

READ YES Y N Y Y N Y

CHKFAR Macros

202 U4250-J-Z125-12-76

Layout of the operand list

(macro expansion with MF=D and default values for PREFIX and MACID)

 CHKFAR MF=D
1 MFCHK MF=D,PREFIX=S,MACID=RMZ,PARAM=, C
1 SUPPORT=(C,D,E,L,M),DMACID=RMZ,SVC=8
2 SRMZ DSECT ,
2 *,##### PREFIX=S, MACID=RMZ #####
1 **
1 * CHKFAR - PARAMETER AREA *
1 **
1 #INTF REFTYPE=REQUEST,INTNAME=CHKFAR,INTCOMP=001
1 *
1 SRMZPA DS 0F BEGIN of PARAMETER AREA _INOUT
1 *
1 FHDR MF=(C,SRMZ),EQUATES=NO
2 DS 0A
2 SRMZFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 SRMZIFID DS 0A 0 INTERFACE IDENTIFIER
2 SRMZFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 SRMZFCT DS AL1 2 FUNCTION NUMBER
2 SRMZFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 SRMZRET DS 0A 4 GENERAL RETURN CODE
2 SRMZSRET DS 0AL2 4 SUB RETURN CODE
2 SRMZSR2 DS AL1 4 SUB RETURN CODE 2
2 SRMZSR1 DS AL1 5 SUB RETURN CODE 1
2 SRMZMRET DS 0AL2 6 MAIN RETURN CODE
2 SRMZMR2 DS AL1 6 MAIN RETURN CODE 2
2 SRMZMR1 DS AL1 7 MAIN RETURN CODE 1
2 SRMZFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 *
1 SRMZACC DS XL1 ACCESS 001
1 SRMZANY EQU 0 = *ANY 001
1 SRMZREA EQU 1 = *READ 001
1 SRMZWRI EQU 2 = *WRITE 001
1 SRMZUPD EQU 3 = *UPDATE 001
1 SRMZDEL EQU 4 = *DELETE 001
1 SRMZEXE EQU 5 = *EXEC 001
1 *
1 SRMZFILE DS CL54 FILE = pathname 001

Macros CHKFAR

U4250-J-Z125-12-76 203

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

1 *
1 SRMZRIF DS XL1 RETURN_INFO 001
1 * Here after: ACCESS_RIGHTS bits returned when ACCESS = *ANY
1 SRMZARR EQU X'80' READ 001
1 SRMZARW EQU X'40' WRITE 001
1 SRMZARE EQU X'20' EXEC 001
1 SRMZARU EQU X'1F' UNUSED 001
1 * Here after: AUTHORIZATION bin-value returned when ACCESS NE *ANY
1 SRMZALW EQU 0 ALLOWED 001
1 SRMZFBD EQU 1 FORBIDDEN 001
1 *
1 SRMZUNU DS XL4 -- MUST BE ZERO -- 001
1 SRMZPA# EQU *-SRMZPA LENGTH OF PARAMETER AREA 001

CHNGE Macros

204 U4250-J-Z125-12-76

CHNGE – Change TFT entry

Macro type: type S (E form/L form); see page 866

The CHNGE macro changes the file link name in an entry in the task file table (TFT), i.e. a
new file link name is assigned to the file. All other values in the TFT entry remain
unchanged.

CHNGE cannot be used on the TFT entry of a file which is currently open.

Format

Operand descriptions

The forms of the MF operand are described in detail in the appendix, page 865.

name1
The file link name (1-8 characters long) which is to be replaced by “name2”.

Default setting: the first TFT entry with file link name C'ËËËËËËËË' is processed
(e.g. created via the LOCK-FILE-LINK function).

name2
The new file link name (1-8 characters long) which is to replace the old name “name1”.

Programming note

The following return codes are placed in register 15:

Operation Operands

CHNGE [name1],name2[,MF=L]

X'00' - call was executed successfully

X'05A6' - second operand errored

X'05C2' - file link name contains illegal binary zeros

X'05D5' - file link name not found

X'05D6' - file with specified file link name is currently open

X'05DD' - second file link name already exists

MF=(E,
addr

(r) 
 
 

)

Macros CLOSE

U4250-J-Z125-12-76 205

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

CLOSE – Close file

The CLOSE macro closes files, i.e. it disconnects them from the user program in which they
were opened. All input/output buffers which the system generated automatically when the
file was opened are now released. The FCB is restored to the state it was in before the file
was opened.

During CLOSE processing, the user program can make use of EXLST exits, as with OPEN
processing, in order to position the tape (CLOSPOS) or write user labels (LABEND).

A CLOSE macro issued for a file which is not open is ignored.

Format

Operation Operands

CLOSE

ALL

fcbaddr

(1) 
 
 
 
 

[,

RWD

REPOS
DISCON

LEAVE

INVAL

KEEP-DATA-IN-CACHE

(0)
 
 
 
 
 
 
 
 
 
 
 
 
 

][,PARMOD=
24

31 
 
 

]

CLOSE Macros

206 U4250-J-Z125-12-76

Operand descriptions

fcbaddr
Address of the FCB for the file to be closed.

(0)
Register 0 contains the positioning key and CLOSE mode in the right-hand byte:

(1)
Register 1 contains the FCB address.

ALL
Closes all files which were opened in the current program and have not yet been closed.
System files and EAM files are not affected. If a file is not closed normally, a warning is
issued.

DISCON
For tape files:
The tape is positioned to the start and unloaded/released. A device which may have been
reserved using FILE remains assigned to the task; it is not released until a subsequent
RELEASE command (REL macro) is issued.

INVAL
For disk files:
The cached pages of the file are to be invalidated, but not written back to the disk, i.e. the
data is lost after CLOSE. INVAL can only be specified if PARMOD=31 applies.

KEEP-DATA-IN-CACHE
For disk files:
The data that was buffered in a cache is not saved to the disk at CLOSE. A subsequent
OPEN on the same file can then use this data immediately.

X'00'
X'01'
X'02'
X'03'
X'05'
X'06'

LEAVE
DISCON
REPOS
RWD
INVAL (only for PARMOD=31)
KEEP-DATA-IN-CACHE

Macros CLOSE

U4250-J-Z125-12-76 207

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Note

Files that have been closed in this way can be displayed using the SHOW-FILE-ATTRI-
BUTES command (CACHE-NOT-SAVED operand). A backup of the data from the
cache onto the disk can be forced either by means of a further OPEN/CLOSE cycle
without this function or implicitly when the cache is dissolved with the system adminis-
trator command STOP-PUBSET-CACHING or EXPORT-PUBSET. A file-specific cache
backup for closed files is not possible.

LEAVE
For tape files:
The tape is positioned to the logical end of the file, depending on the LABEL specification
in FILE or FCB.

If the BYPASS operand was specified in the FILE command, the tape position is not
changed and the CLOSPOS routine is not activated. Otherwise the LEAVE functions are as
indicated in the “REPOS” table: REPOS for OPENîREVERSE corresponds to LEAVE for
OPEN=REVERSE, and vice versa.

In the case of LEAVE for OPEN OUTPUT, it should be noted that no CLOSPOS routine is
activated, and the tape position is not changed.

For multifile tapes, the tape is rewound to the start by CLOSE unless LEAVE is specified.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

REPOS
For tape files:
positions a tape to the logical beginning of the file, depending on the LABEL specification
in FILE or FCB.

CLOSE Macros

208 U4250-J-Z125-12-76

If the BYPASS operand was specified in the FILE macro, the tape is rewound and the
CLOSPOS routine is not activated. In all other cases, the following table applies (position
tape):

For OPEN OUTPUT: no CLOSPOS routine, no positioning.

RWD
Default setting for tape files:
the tape is rewound and positioned to the start; FSEQ is set to zero (this also applies to files
with NSTD labels), i.e. FSEQ points to the first file of the file set or tape volume.

Programming note

The CLOSE macro destroys the contents of registers 0, 1, 14 and 15.

LABEL-Angabe OPEN ≠ REVERSE OPEN = REVERSE

LABEL=(STD,n) The tape is automatically positioned
to HDR1;
FSEQ is not changed.

The tape is positioned to the tape mark
after the last EOF label of the file;
FSEQ is incremented by 1.

LABEL=NSTD EXLST: CLOSPOS=NO, the tape is
automatically positioned to the start
of tape mark;
FSEQ is not changed.

EXLST: CLOSPOS=NO, the tape is
positioned to the start of tape mark;
FSEQ=0

EXLST: CLOSPOS≠NO, the user
must program a routine to position
the tape;
FSEQ is not changed

EXLST: CLOSPOS≠NO the user himself
positions the tape in the CLOSPOS
routine;
FSEQ is not changed.

LABEL=NO EXLST: CLOSPOS=NO, the tape is
automatically positioned to the tape
mark after the last block;
FSEQ is incremented by 1.

Macros COMPFIL

U4250-J-Z125-12-76 209

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

COMPFIL – Compare disk files

Macro type: type S (E form/L form/D form/C form/M form) (see page 865)

The COMPFIL macro, like the COMPARE-DISK-FILES command, compares two disk files
block by block (UPAM) or record by record (SAM, ISAM) and informs the user of the result
of the comparison.

Temporary or work files can also be compared. The files can reside on public volumes, Net-
Storage or private disks.

The files to be compared must be identical with respect to the following properties:

● Access method (FILE-STRUCTURE or FCBTYPE)

● Block format (BLOCK-CONTROL-INFO)
When BLKCTRL=*IGNORE, different block formats are also permissible.

● Coded character set (CODED-CHARACTER-SET, EXTENDED_HOST_CODE)

● For SAM files:
– RECORD-SIZE (RECSIZE) when RECORD-FORM=F (RECFORM=F)

● For ISAM files:
– RECORD-SIZE (RECSIZE) when RECORD-FORM=F (RECFORM=F)
– Structure of the ISAM key (KEY-LEN, KEY-POS, LOG-LEN and VAL-FL-LEN)
– Structure of the secondary key (KEY-LEN, KEY-POS, DUPKEY) for NK-ISAM

● For UPAM files:
– BUFFER-LENGTH (BLKSIZE)
– HIGHEST-USED-PAGE (LPP)

Files with the following properties cannot be compared:

● empty files

● opened files

● locked files (e.g. SECURE lock)

● REPAIR-NEEDED label set

● NO-DMS-ACCESS label set

Entire file generation groups cannot be compared, although individual file generations can.

PLAM libraries can be compared block by block. The members they contain cannot be
compared.

COMPFIL Macros

210 U4250-J-Z125-12-76

The TPCOMP2 utility routine is available to compare tape files, see the “Utility Routines”
manual [14].

Privileged functions

Systems support (TSOS privilege) can compare files of all user IDs. Wildcards are not
permissible in the user ID here.

Format

Operand descriptions

PATHNM1
Selects the first file to be compared.

=<c-string 1..54: filename 1..54>
Name of the first file.

=<var: char:54>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the name of the first file is
stored.

Operation Operands

COMPFIL ,PATHNM1=<c-string 1..54: filename 1..54> / <var: char:54>
,PATHNM2=<c-string 1..54: filename 1..54> / <var: char:54>
,BLKCTRL=*IGNORE / *INCLUDE
,PAMINFO=*INCLUDE / *IGNORE
,OUTAREA=(NULL / <var: pointer>,
 0 / <integer 0..32767> / <var: int:4>)
,CALLER=USER / SYSTEM
,EQUATES=YES / NO
,XPAND=PARAM / OUTPUT

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAM / <macid>

Macros COMPFIL

U4250-J-Z125-12-76 211

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

PATHNM2
Selects the second file which is to be compared.

=<c-string 1..54: filename 1..54>
Name of the second file.

=<var: char:54>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the name of the second file is
stored.

BLKCTRL=*IGNORE / *INCLUDE
Specifies whether the files’ block format is included in the comparison (*INCLUDE) or
ignored (*IGNORE).

PAMINFO=*INCLUDE / *IGNORE
Specifies whether the user information in the PAM key of UPAM files is included in the
comparison (*INCLUDE) with BLOCK-CONTROL-INFO=*PAMKEY or ignored (*IGNORE).

OUTAREA=(<address>,<length>)
Determines the address and length of the output area in which the information concerning
the file comparison is to be stored.

<address>=NULL / <var: pointer>
Specifies the address of the output area.

<length>=0 / <integer 0..32767>
Specifies the length of the output area.

<length>=<var: int:4>)
Only possible with MF=M:
Symbolic address of a memory area of 4 bytes in which the length of the output area is
stored.

CALLER
Control operand; for MF=E and MF=M only:
Specifies whether an SVC or a direct call is to be generated when the function is called.

= USER
The function call is generated via SVC 144.

= SYSTEM
Control operand; for callers from TPR only:
A direct call is generated with BASR. The DSL conventions apply for the interface.
When TU programs are linked, the entry generated cannot be satisfied.

COMPFIL Macros

212 U4250-J-Z125-12-76

EQUATES
Control operand; for MF=C and MF=D only:
Specifies whether equates are also to be generated for the values in the fields of the
parameter or output area when the parameter or output area is expanded.

= *YES
Equates are also generated for the values in the fields of the parameter or output area
when the parameter or output area is expanded.

= *NO
No equates are generated for the values in the fields of the parameter or output area
when the parameter or output area is expanded.

XPAND
Control operand; for MF=C and MF=D only:
Determines which structure is to be expanded (generated). Specifications for this operand
are ignored for other MF values.

= PARAM
The layout of the parameter list is expanded.

= OUTPUT
The layout of the output area is expanded.

Programming notes

1. Before the layout of the parameter area is generated, the standard header must be
cleared.

2. All RESERVED fields of the parameter area must have been deleted with binary zeros.

3. The caller is responsible for the consistency of the parameter area whenever modifica-
tions are made to the parameter area without the help of GCs.

4. The caller is responsible for deleting the output area.

5. In the event of a nonprivileged call (function status TU), register 1 points to the
parameter area. In the event of a privileged call (function status TPR), the register
assignment complies with the DSL convention.

Macros COMPFIL

U4250-J-Z125-12-76 213

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Return codes

The return code is returned in the standard header of the parameter area. The parameter
area may then not be located in the read-only area, otherwise the program terminates.

The following return codes are generated by COMPFIL:

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (Standard header).

X'cc' X'bb' X'aaaa' Explanation

X'00' X'00' X'0630' No error. The files are identical.

X'00' X'00' X'0631' No error. The files are not identical.

X'00' X'40' X'0501' File catalog not available

X'00' X'40' X'0505' Error in host communication

X'00' X'40' X'0512' File catalog not found

X'00' X'40' X'051B' User ID not on the pubset

X'00' X'20' X'0531' Unexpected error during file catalog access

X'00' X'01' X'0554' Format of file name invalid

X'00' X'01' X'0576' Incorrect operand combination or UNUSED fields not deleted

X'00' X'82' X'0594' Insufficient virtual memory available

X'00' X'20' X'05AB' Address of output area incorrect or not specified

X'00' X'20' X'05C7' Internal error in DMS

X'00' X'40' X'05F4' Specified file names are identical

X'00' X'40' X'05FC' User ID not in home pubset

X'00' X'01' X'0624' Invalid file name

X'00' X'40' X'0636' File attributes are incompatible

X'02' X'00' X'06CB' Output information not completely transferred

COMPFIL Macros

214 U4250-J-Z125-12-76

Layout of the parameter area

The parameter area must be aligned on a word boundary. It begins with a standard header
which COMPFIL initializes as follows:

Macro expansion with MF=D and XPAND=PARAM and default values for EQUATES,
PREFIX and MACID:

COMPFIL MF=D,XPAND=PARAM
DMAVGLPL DSECT ,
DMAVHDR DS 0A
DMAVFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
DMAVIFID DS 0A 0 INTERFACE IDENTIFIER
DMAVFCTU DS AL2 0 FUNCTION UNIT NUMBER
DMAVFCT DS AL1 2 FUNCTION NUMBER
DMAVFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
DMAVRET DS 0A 4 GENERAL RETURN CODE
DMAVSRET DS 0AL2 4 SUB RETURN CODE
DMAVSR2 DS AL1 4 SUB RETURN CODE 2
DMAVSR1 DS AL1 5 SUB RETURN CODE 1
DMAVMRET DS 0AL2 6 MAIN RETURN CODE
DMAVMR2 DS AL1 6 MAIN RETURN CODE 2
DMAVMR1 DS AL1 7 MAIN RETURN CODE 1
DMAVFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*
DMAVPNAM1 DS CL54 Pathname1
DMAVPNAM2 DS CL54 Pathname2
DMAVBCTRL DS FL1 blockctrl operand
* values of operand blckctrl_info
DMAVBLKIG EQU 0 ignore
DMAVBLKIN EQU 1 include
*
DMAVPINFO DS FL1 paminfo operand
* values of operand paminfo
DMAVPIIG EQU 0 ignore
DMAVPIIN EQU 1 include
*
DMAVRES1 DS XL6 RESERVED
DMAVARAD DS A Outarea=(<addr>,...)
DMAVARLN DS F Outarea=(...,<length>)
DMAV# EQU *-DMAVHDR

Function Unit Number 22

Function Number 33

Interface Version Number 1

Return Code -1

Macros COMPFIL

U4250-J-Z125-12-76 215

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Layout of the output area

The output area must be aligned on a word boundary.

Macro expansion with MF=D and EXPAND=OUTPUT and default values for EQUATES,
PREFIX and MACID:

COMPFIL MF=D,XPAND=OUTPUT
DMAVOUTP DSECT ,
* Compfile Output
DMAVMSGNR DS F MESSAGENUMBER
*
DMAVMSGINF DS 0XL80 MESSAGEINFO
DMAVMSG_DETAILS DS 0XL80 MESSAGEDETAILS
DMAVPNAM DS CL80 PATHNAME
 ORG DMAVMSG_DETAILS
*
DMAVCMPINF DS 0XL12 COMPAREINFO
DMAVPAGNR DS F PAGENUMBER
DMAVRECNR DS F RECORDNUMBER
DMAVBYTENR DS F BYTENUMBER
DMAVABSRECNR DS F ABSOLUT RECORDNUMBER FOR SAM
* FILES
DMAVERRNR DS FL1 ATTRIBUT ERROR
* type of file attribut error
DMAVBKCTR EQU 1 blk-contr
DMAVFISTR EQU 2 file-struc
DMAVFITYP EQU 3 file-type
DMAVHIUSP EQU 4 high-us-pa
DMAVRECFR EQU 5 rec-form
DMAVRECSZ EQU 6 rec-size
DMAVKEYPO EQU 7 key-pos
DMAVKEYLN EQU 8 key-len
DMAVVALLN EQU 9 val-len
DMAVLOGLN EQU 10 log-len
DMAVALTIX EQU 11 alternate-index
DMAVLBP EQU 12 last-byte-pointer
DMAVBKSZ EQU 13 block-size
DMAVPKUI EQU 14 pamkey-user-info
DMAVLASTP EQU 14 last-position
*
 ORG DMAVMSG_DETAILS+80
*
DMAVUNUS DS XL8 UNUSED
DMAVOUTPUT# EQU *-DMAVMSGNR

COMPFIL Macros

216 U4250-J-Z125-12-76

The following cases are distinguished when the COMPFIL information is output to the
user’s output area:

● No output was possible
No output area was made available by the caller or the output area was write-protected.
In the standard header of the output area the user receives the return code X'05AB'
following validation of the output area or of the address. If the output area was too small
to transfer the output information, the caller receives the return code X'06CB'.

● Error when accessing one or both of the files to be compared
The first file in which an access error occurs is output in the DMAVPNAM field in the
format :<cat-id>:$<user-id>.<filename>. In addition, message number X'0681',
indicating a general file access error, is output in the DMAVMSGNR field. The precise
reason for this access error can be found in the return code placed in the parameter
area’s standard header.

● The comparison of the two files is not possible because of the incompatibility of their file
attributes
Message number X'0636' is output in the standard header of the parameter area and in
the DMAVMSGNR field of the output area. In addition, the DMAVERRNR field indicates
which file attribute led to the comparison aborting.

● The same name was specified for both files
The same return code is displayed in the standard header of the parameter area and in
the DMAVMSGNR field of the output area.

● The two files are identical
Return code X'0630' is displayed in the standard header of the parameter area. The
DMAVMSGNR field of the output area contains X'0000'.

● The two files are not identical
Return code X'0631' is displayed in the standard header of the parameter area.
Depending on the access method, the following correlation exists between MESSAGE-
NUMBER in the DMAVMSGNR field and the COMPARINFO in the DMAVPAGNR
(PAGENUMBER), DMAVRECNR (RECORDNUMBER), DMAVBYTENR
(BYTENUMBER) and DMAVABSRECNR (ABSOLUT RECORD NUMBER FOR SAM
FILES) fields.

Access
method

MESSAGE
NUMBER

PAGE
NUMBER

RECORD
NUMBER

BYTE
NUMBER

ABSOLUTE
RECORD
NUMBER

Meaning

SAM X'0632' <p> <r> <a> 1

1 The two SAM files differ as of record <a>. That is record <r> within the 2k data block <p>.

ISAM X'0633' <r> 2

UPAM X'0634' <p> 3

UPAM X'0635' <p> 4

Macros COMPFIL

U4250-J-Z125-12-76 217

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Sample calling sequence

 MVC COMPMFC(DMAV#),COMPMFL
 COMPFIL MF=M,OUTAREA=(A(COMPOAC),OUTLEN),PARAM=COMPMFC, -

PATHNM1=':X:SAM.1',PATHNM2=':X:SAM.2'
 COMPFIL MF=E,PARAM=COMPMFC
 .
 .
COMPMFC COMPFIL MF=C,XPAND=PARAM
COMPOAC COMPFIL MF=C,XPAND=OUTPUT
COMPMFL COMPFIL MF=L,PATHNM1='AAA',PATHNM2='BBB'
OUTLEN DC A(DMAVOUTPUT#)

2 The two SAM files differ as of record <r>.
3 The two UPAM files differ as of data byte within the 2k data block <p>.
4 The two UPAM files differ in the user information in the PAM key of the 2K data block <p>, but their contents

are identical (specification PAMINFO=*INCLUDE).

COPFILE Macros

218 U4250-J-Z125-12-76

COPFILE – Copy file

Macro type: type S (C form/D form/E form/L form/M form); see page 866

The COPFILE macro copies files, file generations and file generation groups in blocks from
disk to disk, from disk to tape and from tape to disk without modifying them. Consequently
it cannot normally be used to modify file attributes. The only exception concerns the block
control attribute, which can be modified during copying in certain cases (see “File link
names” on page 220 and the description of the operand “BLKCTRL” on page 223).

If the output (or target) file is not yet cataloged, it is automatically created on a public volume
(as with a FILE with default values for the specified output file) when COPFILE is executed.

If the target file is to be on a different Speichertyp (Public-Storage oder Net-Storage) oder
volume (private disk, Net-Storage or tape), it must be set up using FILE (operands DEVICE,
VOLUME) before the COPFILE macro is called.

If the target file is a disk file which has not yet been cataloged, the primary and secondary
allocations are taken from the original disk file.

If the target file is a disk file, its primary and secondary allocations are not modified unless
they are smaller than those of the original file.

If the original file is on tape, a default value is used for the target file.

Note

The COPFILE macro is the earlier COPY macro extended by the use of wildcards in
pathname1 (selection) and pathname2 (construction). The additional operands CHECK
and LIST have also been provided. The function of the earlier COPY is still supported.
The format of the COPY macro is therefore still included in the appendix (see
page 896). Its operands, however, are the same as those of the COPFILE macro and
are therefore only described here.

Macros COPFILE

U4250-J-Z125-12-76 219

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

File generation groups

A file generation group can be copied into another file generation group only if one of the
following conditions is fulfilled:

– The group entries for the two file generation groups match (i.e. the values for GEN,
FIRST, LASTGN and BASE are the same). In the file generation group into which DMS
is to write the copy, the generations from FIRST to LASTGN must already be cataloged
and have storage space allocated.

– The value for GEN is the same for both file generation groups, and the file generation
group into which DMS is to write the copy contains no generations (i.e. FIRST, LASTGN
and BASE have the value zero).

The file generation group to be copied may not contain tape file generations (COPFILE
does not support copying of tapes).

A file generation group can be copied into a single file or file generation only if the following
conditions are satisfied:

– The file generation group consists of SAM file generations with identical attributes (e.g.
the same record and block lengths, the same record format, the same block control
attribute).

– The file generation to which the copy is to be made does not belong to the file gener-
ation group to be copied.

A single file or file generation can only be copied into a file generation group if the following
condition is fulfilled:

– The file or file generation must possess the same CODED-CHARACTER-SET as the
file generation group.

Files on private disks

If a file on private disk only has an entry in the system catalog but no F1 label, the catalog
entry is deleted. If the file is the input file, COPFILE is rejected.

A COPFILE call for an ISAM file on private disk with index and data sections on different
disks is rejected.

COPFILE Macros

220 U4250-J-Z125-12-76

Tape files

Internally, COPFILE uses the UPAM access method, which does not support continuation
tape processing. This means that it is possible to copy several files to the same tape (FILE
macro, FSEQ operand), but not files that extend over more than one tape.

– K tape files (BLKCTRL=PAMKEY) must have standard block format
(BLKSIZE=(STD,n)) if they are to be processed by the COPFILE macro.

– NK tape files (BLKCTRL=DATA/NO) can be processed by COPFILE if their BLKSIZE
value is a multiple of 2048 bytes.

If NK files are copied to tape, the BLKCTRL information is lost when the catalog entry
is deleted. If the file is to be copied back again, the COPFILE macro must be preceded
by a FILE macro with the operands LINK and STATE=FOREIGN and with the correct
value for the BLKCTRL operand, i.e. either NO or DATA, to match the actual data format
of the file.

If a K file (BLKCTRL=PAMKEY) is inadvertently copied in this manner into an NK file
(BLKCTRL=DATA), the resulting disk file cannot be read, because the first 16 bytes of each
logical block, which contain data when BLKCTRL=PAMKEY applies, are overwritten with
management information.

– Foreign files on tape: if an uncataloged tape file is to be copied, a TFT entry with the
file link name valid for COPFILE must be created before copying in order to define the
file attributes (see “File link names” on page 220).
FILE pathname1,LINK=DMCOPY11,STATE=FOREIGN,BLKCTRL=...

File link names

Internally, COPFILE uses the file link names DMCOPY11 (for the original file pathname1)
and DMCOPY22 (for the target file pathname2). On completion of processing, the file link
names are implicitly released (implicit REL macro).

The option of selecting an original and a target file for COPFILE processing by means of a
FILE macro with appropriate file link names can be used, for example, in order to modify
the file's block control attribute during copying. Specifying the BLKCTRL operand in the
FILE macro together with BLKCTRL=*IGNORE/*CHECK in the COPFILE macro enables
the definition of different BLKCTRL attributes for original and target file in the course of
copying (see the description of the operand “BLKCTRL” on page 223).

When there are wildcards in the file name, an existing TFT entry (DMCOPY11/DMCOPY22)
only becomes effective when the first file to be processed is copied.

Macros COPFILE

U4250-J-Z125-12-76 221

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Remote file access (see also the “RFA” manual [6])

Copying from one remote system to another, with input and output on different systems, is
supported by a higher-level execution routine. In this case, the local system acts only as an
intermediate station for data transfer. A SET-RFA-CONNECTION command must be issued
for each of the remote systems before copying is started.

If a remote file is copied to a local file with the PROTECT=*SAME operand, the passwords
are not copied with the file.

SM pubsets

If the target file does not yet exist, an attempt is made to create it on a suitable volume set
using the source file attributes for selecting the volume set (performance, availability).

File encryption

Normally no crypto password is required to copy an encrypted file. COPFILE transfers the
contents of an encrypted file without decrypting the file, and the target file is assigned the
same encryption attributes as the source file, in particular the crypto password.

The exceptions here are copy operations which require file decryption:
– An encrypted file is to be copied to tape or private disk.
– An encrypted file is to be copied to a file generation.
– A shared update was declared via the TFT entry DMCOPY11 or DMCOPY22.

COPFILE Macros

222 U4250-J-Z125-12-76

Macro forma

Operation Operands

COPFILE BLKCTRL = *IGNORE / *CHECK / <var: blkctrl>

,CHDATE = *STD / *SAME / <var: bit: 1>

,CHECK = *MULTIPLE / *NO / *ERROR / *SINGLE / *CATALOG /
*USERID /<var: check>

,IGNORE = *SOURCE / *TARGET / (*SOURCE,*TARGET)

,LIST = *NO / *SYSOUT / *ERRORS_TO_SYSOUT / <var: list>

,PATHNM1 = <c-string 1..80: filename 1..54 with-wild(80)> /
<var: char: 80>

,PATHNM2 = <c-string 1..80: filename 1..54 with-constr-wild(80)>/
<var:char: 80>

,PROTECT = *STD / *SAME / *SAME-AND-CHANGE-DATE /
<var: prot>

,REPLACE = *YES / *NO / <var: replace>

,MF = C / D / E / L / M

,PARAM = DMACOPPL / <addr> / <(r)>

,PREFIX = D / <pre>

,MACID = MAC / <macid>

Macros COPFILE

U4250-J-Z125-12-76 223

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Operand descriptions

BLKCTRL
Specifies whether the target file (or the TFT entry DMCOPY22) may have a different
BLKCTRL attribute than the source file pathname1.

TFT entry or target file (with null operands in the TFT) must have the same BLKCTRL
attribute as the source file.

Default value: pathname1 and the TFT entry for DMSCOPY22 must have the
same BLKCTRL attribute.

= *IGNORE
Even if the BLKCTRL attributes of pathname1 and the TFT entry for DMCOPY22 do not
match, pathname1 can be copied to pathname2 in the following cases:

Note

It is the user's responsibility to ensure that no data is lost in the course of copying. This
danger exists when copying a file with BLKCTRL=PAMKEY to a file with
BLKCTRL=DATA or BLKCTRL=NO: in both cases, the information in the user section
of the PAM key is lost. Furthermore, if the target file has the attribute BLKCTRL=DATA,
the first 12 bytes of each logical block (in the case of ISAM files, the first 16 bytes) are
overwritten by the block control field.

= *CHECK
Even if the BLKCTRL attributes of pathname1 and the TFT entry for DMCOPY22 do not
match, it is possible to copy pathname1 to pathname2 whenever this can be done
without losing any user information in the user section of the PAM key. If the user part
of the PAM key does not contain any user information (this is checked here), pathname1
can be copied to pathname2 when the following BLKCTRL attributes apply; otherwise,
the command is rejected.

BLKCTRL attribute of the file pathname1 BLKCTRL attribute of the file pathname2

PAMKEY DATA (disk files only)

PAMKEY NO

DATA (disk files only) PAMKEY

NO PAMKEY

BLKCTRL attribute of the file pathname1 BLKCTRL attribute of the file pathname2

PAMKEY DATA (disk files only)

PAMKEY NO

COPFILE Macros

224 U4250-J-Z125-12-76

CHDATE
Specifies whether the target file will be given the same change date (CHANGE-DATE) as
the source file.

= *STD
Only for PROTECT=*STD or *SAME:
The change date of the target file is updated.

i The specification PROTECT=*SAME-AND-CHANGE-DATE is still supported
for reasons of compatibility and causes the source file’s change date to be
transferred to the target file.

= *SAME
The source file’s change date is transferred to the target file. The specification
CHDATE=*SAME also applies in the following cases:
– The target file is located under a foreign user ID.
– The target file is a file generation.

CHECK
Only for wildcard entries:
Defines the conditions in interactive mode under which a user dialog is to be started if
multiple files are selected using wildcards.

If the dialog is started, the user can decide whether or not processing is to be executed on
the displayed file(s). He can also call up help text on the reply options and define a new
value for CHECK and/or LIST when processing is resumed.

The value 'NO' always applies in batch mode.

The operand has no effect if pathname1 contains no wildcards or is not partially qualified.

= *MULTIPLE
A check dialog is only started if multiple files are selected.
If the catalog and/or user ID contain wildcards, a check dialog is executed for each
catalog and/or user ID.
CHECK=*ERROR is also implied.

= *NO
All selected files are processed without a check dialog, i.e. without any possible user
intervention.

= *ERROR
An error check dialog is started if an error occurs during processing of a selected file
name. A file set check dialog is started if the selection entry selects more files than can
be processed in available memory. CHECK=*ERROR is also always implied for all
entries where CHECKî*NO.

Macros COPFILE

U4250-J-Z125-12-76 225

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= *SINGLE
A check dialog is executed for each selected file name. CHECK=*ERROR is also
implied.

= *CATALOG
The user must decide in a check dialog for each catalog whether the files selected in
them are to be processed.
CHECK=*ERROR is also implied.

= *USERID
Reserved for system administrators:
The system administrator must decide in a check dialog for each user ID and each
catalog whether the selected files are to be processed.
CHECK=*ERROR is also implied.

IGNORE
For the system administrator only:
Allows the system administrator to ignore file protection for the source and/or target file.
This operand has no effect on files located on a remote computer (RFA). If a TSOS
restriction exists for a file under a foreign user ID then the ACCESS protection attribute is
ignored.

= *SOURCE
The protection attributes READ-PASSWORD and EXEC-PASSWORD of the source file
are ignored when copying (also applies to BASIC-ACL and GUARDS protection).

= *TARGET
The protection attributes ACCESS and EXPIRATION-DATE and the READ-/WRITE-/
EXEC-PASSWORD attributes of the target file are ignored when copying (also applies
to BASIC-ACL and GUARDS protection).

LIST
Defines whether a log is to be written to SYSOUT for all file names selected with wildcards
after their processing.

The operand has no effect if pathname1 contains no wildcards or is not partially qualified.

= *NO
No log is kept.

= *SYSOUT
Each processed file and any errors that occur are logged in a report.

= *ERRORS_TO_SYSOUT
Only those files whose processing led to errors are logged in a report.

COPFILE Macros

226 U4250-J-Z125-12-76

MACID
Only evaluated in conjunction with MF=C; defines the second through fourth characters of
the field names and equates which are generated during macro execution in the data area.

Default: MACID = MAC

= macid
“macid” is a three-character string which defines the second through fourth characters
of the generated field names and equates.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

PARAM
Defines the address of the operand list and is only evaluated in conjunction with MF=E
(see also page 865).

= addr
The symbolic address (the name) of the operand list.

= (r)
The number of the register containing the address of the operand list. This register must
be loaded with the appropriate address value before calling the macro.

PATHNM1 =
Pathname of the original file

= <c-string 1..80: filename 1..54 with-wild(80) without-gen>
pathname1 (enclosed in single quotes)

= <var: char: 80: filename 1..54 with-wild(80) without-gen>
Name of a variable that contains pathname1

Pathname1 means [:catid1:][$userid1.]filename1

catid1
Catalog ID of the original file; default value: the catalog ID belonging to the user ID.

userid1
User ID of the original file; default value: the user ID specified in the SET-LOGON-
PARAMETERS/LOGON command.

filename1
Name of the original file, file generation or file generation group.

Read permission must exist for the original file.

Macros COPFILE

U4250-J-Z125-12-76 227

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

If pathname1 is an FGG, pathname2 must also be an FGG, unless the FGG pathname1
consists of SAM file generations with the same attributes with respect to record format,
record length, block size, and block control information. In this case, it is possible to copy
into a single file or into a file generation, but this file generation must not belong to the FGG
which is to be copied.

Wildcard use
Selection criteria for the files to be copied. The nonprivileged user may only use wildcards
in the catalog ID and file name.

PATHNM2
Pathname of the output/target file.

= <c-string 1..80: filename 1..54 with-wild(80) without-gen>
pathname2 (enclosed in single quotes)

= <var: char: 80: filename 1..54 with-wild(80) without-gen>
Name of a variable that contains pathname2

pathname2 means [:catid2:][$userid2.]filename2

catid2
Catalog ID of the output file; default value: the catalog ID belonging to the user ID.

userid2
User ID of the output file; default value: the user ID specified in the SET-LOGON-
PARAMATERS or LOGON command.

filename2
Fully qualified name of the output file, file generation or file generation group.

pathname1 and pathname2 must not be identical.

If pathname2 is not yet cataloged, only the user's own user ID may be specified, i.e. the user
ID of the SET-LOGON-PARAMETERS/LOGON command or a user ID of which the user is
co-owner.

If pathname2 is already cataloged, write access must be permitted.

The COPFILE macro call is rejected if pathname2 is read-only (e.g. ACCESS=READ or
EXDATE > current date) or if the secondary allocation for disk file pathname2 is 0 and the
primary allocation is too small to accommodate the file to be copied.

If pathname2 is cataloged under a foreign user ID, this user ID must also be specified.

If pathname2 is a file generation group, pathname1 must also be a file generation group.

Wildcard use
Construction entry for the files to be copied to as a result of the selection criteria
(pathname1).

COPFILE Macros

228 U4250-J-Z125-12-76

SM pubsets
If the output/target file is not yet cataloged, an attempt is made to create it on a suitable
volume set using the attributes of the original file.

PREFIX
Only evaluated in conjunction with MF=C or MF=D; this defines the first character of field
names and equates which are generated in the data area with macro execution.

Default: PREFIX = D

= pre
A single-character prefix with which field names and equates generated by the
assembler are to begin.

PROTECT
Defines whether the copy pathname2 receives the same file backup and protection
attributes as pathname1.
As far as is possible and permitted, the encryption attributes are taken over into the target
file when copying takes place regardless of the PROTECT specifications (see also “File
encryption” on page 221).

= *STD
If pathname2 is not yet cataloged, the new file is set up with the default attributes (see
operand defaults in the CATAL macro, page 130, e.g. SHARE=NO, ACCESS=WRITE
for disk files etc.).

= *SAME
The copy pathname2 receives the same file backup and file protection attributes as
pathname1 (identical values for ACCESS, BACKUP, DELDATE, DESTROY, LARGE,
MANCLAS, MIGRATE (FORBIDDEN is set to INHIBIT), OPNBACK, RETPD, SHARE
and the same passwords). The following are not transferred: AUDIT, AVAIL,
PREFORM, S0MIGR, STOCLAS, VOLSET and WORKFIL.

The entry PROTECT=*SAME is ignored if pathname2 is cataloged under a foreign user
ID or is a file generation (its file attributes are then defined in the group entry).

If a temporary file is copied into a permanent file, only the attribute BACKUP=E is taken
over for the specification PROTECT=*SAME. The new file is ignored for ARCHIVE save
runs. If the new file is to be saved automatically with ARCHIVE, the BACKUP value
must be changed by means of CATAL.

Macros COPFILE

U4250-J-Z125-12-76 229

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

When pathname1 is protected by a BASIC-ACL entry (see the “Introductory Guide to
DMS” [1]), or GUARDS entry, the following points apply to copying with
PROTECT=*SAME:

– If the target file was created on a public disk, the access rights of BASIC-ACL or
GUARDS are copied.

If the target file pathname2 is created on a private disk, and if pathname1 is
protected by BASIC-ACL, the protection attributes from the BASIC-ACL are used
for pathname2. If a GUARDS entry has been created for pathname1, pathname2 is
assigned the default protection attributes SHARE=NO and ACCESS=WRITE.

– If the target file pathname2 is created on a magnetic tape, it is assigned the default
protection attributes SHARE=YES and ACCESS=WRITE, regardless of the
protection attributes defined for pathname1 by the BASIC-ACL or GUARDS.

– If the source file pathname1 is not cataloged under the user ID under which
COPFILE was called, pathname2 is assigned default protection attributes,
regardless of the protection attributes defined by the BASIC-ACL or GUARDS for
pathname1. These default protection attributes are USER-ACCESS=OWNER-
ONLY and ACCESS=WRITE for disk files, USER-ACCESS=ALL-USERS and
ACCESS=WRITE for tape files.

When copying to tape, the retention period (EXDATE) can only accept values up to a
difference of 32767 (for larger values the maximum value is assumed).

= *SAME-AND-CHANGE-DATE
This specification has the same effect as PROTECT=*SAME. In addition, the source
file’s change date (CHANGE-DATE) is transferred to the target file.

i The specification PROTECT=*SAME-AND-CHANGE-DATE is only still
supported for reasons of compatibility. The CHDATE=*SAME operand should
be used to transfer the change date of the source file.

REPLACE
The user can specify whether an existing output file pathname2 is to be overwritten.
If pathname2 is a tape file or if it is empty, the operand is ignored and the “old” file is
overwritten without output of a message.

= *YES
“pathname2” is overwritten without output of a message.

= *NO
“pathname2” is not overwritten. The call is rejected with the error code X'051A'.

COPFILE Macros

230 U4250-J-Z125-12-76

Return codes

The error code is only returned in the standard header and no longer in general-purpose
register 15 as with the COPY macro. If the parameter area is not accessible or shorter than
the length of the standard header or if a setup error occurs, program termination is initiated
via STXIT. The error codes are described in the DMAIDEM/DCOIDEM macros.

Standard
header:

The following code relating to execution of the COPFILE
macro is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' No error

X'01' X'00' X'0000' Only in conjunction with check dialogs: the job was completely or
partially withdrawn in interactive mode, i.e. at least one check dialog
was answered with *NO.

X'02' X'00' X'0000' Only in conjunction with CHECK≠NO: an error has occurred, but
continuation of the function was requested in an error dialog

X'40' X'0501' Requested catalog not available

X'82' X'0502' Requested catalog in the rest state

X'40' X'0503' Incorrect information in the MRSCAT

X'82' X'0504' Error in catalog management system

X'40' X'0505' Computer communication error (MRS)

X'80' X'0506' Operation canceled because of master change

X'40' X'0510' Error while calling an internal function

X'40' X'0512' Requested catalog unknown

X'40' X'051A' File already exists

X'40' X'051B' User ID not known in specified pubset

X'40' X'051C' No access right to specified pubset

X'40' X'051D' LOGON password different on specified pubset

X'20' X'0530' Error in storage space request

X'20' X'0531' Unexpected catalog access error

X'40' X'0533' File not found

X'82' X'0534' Private volume cannot be allocated

X'40' X'0535' No access right to the file catalog entry (only in conjunction with CCS
assignment on foreign user ID)

X'20' X'053B' System error during file access

Macros COPFILE

U4250-J-Z125-12-76 231

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

X'82' X'053C' Catalog file of the pubset is full

X'40' X'053D' Catalog or F1 label block is destroyed

X'40' X'053E' File on private volume already cataloged

X'82' X'053F' File reserved by another task

X'01' X'0576' Contradictory operand combination or reserved fields of the parameter
area used

X'20' X'0577' Internal error during access to job environment

X'82' X'0594' Not enough virtual memory available. This return code can also occur
in particular in conjunction with a selection specification (wildcard) if too
many files are selected

X'01' X'0599' Operand is not supported in the RFA-BS version

X'01' X'05A7' First file name incorrect

X'01' X'05A9' Second file name incorrect

X'20' X'05C7' Internal error in DMS

X'01' X'05EE' File name too long

X'01' X'05F0' Foreign user ID not permitted for file2

X'01' X'05F1' Copying to the specified file not possible

X'01' X'05F2' Illegal specification of *DUMMY

X'40' X'05F3' First or second file protected

X'01' X'05F4' First and second file name are identical

X'20' X'05F5' Some blocks could not be copied

X'01' X'05F6' File cannot be copied

X'40' X'05F9' Incompatible attributes of source and target file

X'40' X'05FC' Specified user ID not in home pubset

X'40' X'0610' The function execution sent a return code for at least one of the
selected file names

X'01' X'0611' Incorrect constructor specification (PATHNM2 operand in conjunction
with wildcards)

X'40' X'0666' The file is write-protected by ACL or GUARDS (only in conjunction with
CCS assignment on foreign user ID)

X'40' X'0698' File generation groups do not have the same attributes

X'40' X'06B5' File is not properly closed

X'40' X'06B6' Attributes of the file are not compatible with the file generation group

X'40' X'06C4' File generation group not yet cataloged

X'cc' X'bb' X'aaaa' Meaning

COPFILE Macros

232 U4250-J-Z125-12-76

X'01' X'06C7' Invalid generation number specified

X'40' X'06CC' only with selection specification (wildcard): no file matches the
selection specification

X'01' X'06D7' Generation group cannot be copied to an individual generation of this
group

X'01' X'06D8' Generations of the specified group have different file characteristics

X'01' X'06DE' File or generation cannot be copied to a group

X'01' X'06FD' Parameter area invalid or not accessible

X'40' X'06FF' BCAM connection aborted

X'01' X'FFFF' Wrong function number in parameter area header

X'03' X'FFFF' Wrong version number in parameter area header

X'cc' X'bb' X'aaaa' Meaning

Macros CREAIX

U4250-J-Z125-12-76 233

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

CREAIX – Create secondary keys for ISAM file

Macro type: type S (E form/L form/D form/C form); see page 866

The CREAIX macro defines one or more secondary keys for an NK-ISAM file. Up to
30 secondary keys may be declared for one file; each must be identified by a name defined
in the CREAIX macro. Each of these secondary keys can then be addressed via its name
in the macros GET, GETR, GETKY and SETL, thus permitting the user to access records
on the basis of secondary key values.

In order to create a secondary key, all the records in the file are first read sequentially. For
each record, a triplet is formed from the index in the list of secondary keys to be created,
the current secondary key itself and the current primary key. These triplets are then sorted
for each secondary key, in ascending order of the secondary key values, a time stamp is
added to each and they are transferred to the secondary index blocks created for this
secondary key.

Secondary keys can be created only for existing NK-ISAM files, i.e. for files which have
already been opened at least once with OUTPUT or OUTIN. Furthermore, there must be
no duplicate primary keys in a file for which a secondary key is to be created (no DUPKEYs)
and neither logical nor value flags may be defined for the file. When the macro is called,
neither SHARED-UPDATE=*YES (via an ADD-FILE-LINK command), nor
SHARUPD=YES (by a macro) must have been set for the NK-ISAM file, and no other user
can access it while the secondary key is being set.

If the program is aborted during creation of the secondary key, the secondary key is flagged
as incomplete in the control block of the file. If the user then attempts to open the file, control
branches to the OPENER exit (assuming it has been defined in the program) and error code
0D84 is placed in the FCB. The file cannot be opened again until the incomplete secondary
key has been deleted (and, if applicable, defined again by means of CREAIX).

For performance reasons, it is advisable not to define secondary keys for a file until it has
been filled with records.

CREAIX Macros

234 U4250-J-Z125-12-76

Format

Operation Operands

CREAIX

,KEYLEN=(keylen1 [,keylen2,...])

,KEYNAME=(keyname1 [,keyname2,...])

,KEYPOS=(keypos1 [,keypos2,...])

[,SORTLNK=linkname2]

MF=L

[,DUPKEY=(
YES

NO 
 
 

[,
YES

NO 
 
 

,...])]

,
LINK=linkname1

FILE=pathname 
 
 

[,VERSION=
1

2 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
D

pre 
 
 

] [,VERSION=
1

2 
 
 

]

MF=C[,PREFIX=
D

pre 
 
 

][,MACID=
ISS

macid 
 
 

] [,VERSION=
1

2 
 
 

]

Macros CREAIX

U4250-J-Z125-12-76 235

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Operand descriptions

DUPKEY
Specifies whether duplicate values may exist in different records for each secondary key to
be created (KEYNAME operand).

The parentheses in this entry can be omitted if the list only contains one specification for
DUPKEY. A list can only be specified for VERSION=2; for VERSION=1, only an entry
without parentheses is allowed.

= YES
Default value; the same value of the secondary key may occur in more than one record
in the file.

= NO
Different records in the file must not have the same value for the secondary key.

FILE = pathname
Denotes the NK-ISAM file for which a secondary key is to be created, with:
<c-string 1..54: filename 1..54>.

When the CREAIX macro is called, the file must have been opened at least once with
OUTPUT or OUTIN and it must not contain duplicate primary key values, logical or value
flags. The value specified for the FILE operand is ignored if the LINK operand is also
specified.

Pathname means [:catid:][$userid.]filename

catid
Catalog ID: if omitted, the default catalog ID for the user ID is assumed.

userid
User ID: if omitted, the user ID in the SET-LOGON-PARAMETERS or LOGON
command is assumed.

filename
Fully qualified file name.

KEYLEN = (keylen1 [,keylen2,...])
Specifies the length of each secondary key (KEYNAME operand) to be created (in bytes).
“keylen” is any whole number where 1 Î keylen Î 127.
KEYPOS and KEYLEN must be selected such that the secondary key
– is completely contained in even the shortest record of the file and
– lies entirely within a data block and does not extend into an overflow block.

CREAIX Macros

236 U4250-J-Z125-12-76

The parentheses in this entry can be omitted if the list only contains one specification for
KEYLEN. A list can only be specified for VERSION=2; for VERSION=1, only an entry
without parentheses is allowed.

KEYNAME = (keyname1 [,keyname2,...])
Specifies the name of the secondary key to be created. A maximum of 30 names may be
specified in the list and it must be noted that a maximum total of 30 secondary keys can be
created for an NK-ISAM file.

The name must not already have been defined for another secondary key. “keyname” may
be up to eight characters long and may contain any letters or digits and the special
characters “$”, “#” and “@”; it must begin with a letter or special character.

The parentheses in this entry can be omitted if the list only contains one name. A list can
only be specified for VERSION=2; for VERSION=1, only an entry without parentheses is
allowed.

KEYPOS = (keypos1 [,keypos2,...])
Specifies the position within a record, of the first character of each secondary key
(KEYNAME operand) to be created.
“keypos” may be any integer in the range 1 Î keypos Î 32496.
In variable-length records, the four bytes used for the record length and control field must
be taken into account.
KEYPOS and KEYLEN must be selected such that the secondary key
– is completely contained in even the shortest record of the file and
– lies entirely within a data block and does not extend into an overflow block.

The parentheses in this entry can be omitted if the list only contains one specification for
KEYPOS. A list can only be specified for VERSION=2; for VERSION=1, only an entry
without parentheses is allowed.

LINK = linkname1
Specifies the link name for the file for which a secondary key is to be created. When the
program is executed, an NK-ISAM file must be assigned to this link name. When CREAIX
is called, this file must have been opened at least once with OUTPUT or OUTIN and it must
not contain duplicate primary key values, logical flags or value flags.
“linkname1” may be up to eight characters long. If the file link name is to be accessible via
the command interface, it must comply with the data type <structured_name 1..8> (see the
“Commands” manual [3]).

Macros CREAIX

U4250-J-Z125-12-76 237

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

MACID
Defines the second through fourth characters of each field name and equate generated
when the macro is expanded.

Default value: MACID = ISS

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

PARAM
Specifies the address of the operand list; it is evaluated only if MF=E applies
(see page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register which contains the address of the operand list. The register must
be loaded with this address value before the macro is called.

PREFIX
Defines the first character of each field name and equate generated when the macro is
expanded.

Default value: PREFIX = D

= pre
One-character prefix with which the generated field names and equates are to begin.

SORTLNK = linkname2
Specifies the file link name of a work file for the sort program. This work file is used only if
there is not enough virtual address space for sorting the entries for the secondary index
block.
If a work file is needed for sorting and SORTLNK was not specified, or if no file is assigned
to the file link name when the program is executed, the macro creates a work file with the
name DISWORK.tsn (where “tsn” is the task sequence number of the task which called the
macro).
“linkname2” may be up to eight characters long and must be formed from letters, digits and
special characters in accordance with the rules governing the format of file names.

CREAIX Macros

238 U4250-J-Z125-12-76

VERSION
Defines the version of the generated CREAIX macro.

= 1
The “old” macro version is generated.

= 2
The version of the CREAIX macro, which is valid as of BS2000/OSD-BC V3.0, is
generated.

Programming notes

1. The C and D forms of the macro generate field names and equates for return codes.
They begin with the string DISS..., which can be modified with the PREFIX and MACID
operands.

2. If no symbolic address is specified with the D form, the DSECT name DISCRAIX is
generated, where the first character is modified by a PREFIX entry.

3. When the CREAIX macro is expanded, a field is created in the parameter list with the
name KEY# (with the default prefix DISS or correspondingly modified by the PREFIX
and MACID operands). This field contains the number of secondary indices to be
created (maximum 30), supplied by the macro expansion. If, however, the parameter
list is built up dynamically at program runtime, the KEY# field must be supplied explicitly
by the program.

4. If an error occurs, the parameter list contains the index of the secondary index in the
specified list with which the error occurred. In addition to this, any DMS error that occurs
is also stored in the parameter list (the name of the field containing the index of the
secondary index with which the error occurred is DISAERR or <xxxy>AERR depending
on PREFIX and MACID)

5. A total of up to 30 secondary indices can be created for an NK-ISAM file. It must
therefore be noted that, on the one hand, the list of names in specified in the macro for
the secondary indices to be defined may not contain more than 30 elements. On the
other hand, the sum of existing secondary indices and those to be created may also not
exceed 30 (both cases lead to a corresponding return code).

6. It must be ensured that for a parameter list VERSION is consistently given a value for
calls with different MF formats.

Macros CREAIX

U4250-J-Z125-12-76 239

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Return codes

The return codes output by the CREAIX macro are stored in the standard header of the
operand list. The standard header must be defined for the CREAIX parameter list before
generating the DSECT.

By default, the return codes generated with the C or D form of the macro start with the string
DISS, which can be modified by specifying PREFIX (first character) and/or MACID (second
through fourth characters).

Standard
header:

The following code relating to execution of the CREAIX
macro is returned in the standard header
(bb = SUBCODE1, aaaa = MAINCODE):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' The function was executed successfully.

X'01' X'0001' The operand list is not available.

X'40' X'0002' Secondary keys are not supported in the remote system (if the macro is called
via RFA).

X'40' X'0003' The specified catalog ID does not exist.

X'40' X'0004' The catalog cannot be accessed.

X'01' X'0005' The operand list contains an invalid name.

X40' X'0006' The specified file contains duplicate keys.

X'40' X'0007' The secondary key to be created already exists.

X'01' X'0009' The value specified for KEYLEN is invalid.

X'40' X'000A' The specified file contains logical or value flags.

X'20' X'000B' System error.

X'40' X'000C' The user address space is too small.

X'01' X'000D' The value specified for KEYPOS is invalid.

X'40' X'000E' The control block of the file is incorrect.

X'40' X'000F' A record in the specified file is too short for the secondary key to be defined

X'40' X'0010' There are already 30 secondary keys defined for the file.

X'40' X'0011' The file contains incomplete secondary index blocks.

X'40' X'0012' The ISAM pool is overloaded.

X'40' X'0013' The secondary key has already been defined with other attributes.

X'40' X'0014' Interruption via CANCEL.

X'40' X'0015' Interruption via BREAK.

X'01' X'0017' There was no file specified in the operand list.

CREAIX Macros

240 U4250-J-Z125-12-76

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the called
– the list is not aligned on a word boundary
– the list is write-protected.

X'40' X'0018' The file was set to SHARUPD=YES when the macro was called.

X'40' X0019' The file link name is invalid.

X'40' X'001A' Although DUPKEY=NO was specified, duplicate secondary key values exist in
different records.

X'40' X'001B' Invalid list element.

X'40' X'001C' Invalid number of secondary indices in the list.

X'40' X'0040' OPEN error.

X'40' X'0041' CLOSE error.

X'40' X'0042' An error occurred when writing the secondary index blocks.

X'40' X'0043' An error occurred when reading the file.

X'40' X'0044' The file is not an NK-ISAM file.

X'40' X'0081' A DMS special status occurred when sorting the secondary index entries.

X'40' X'0082' An internal error occurred when sorting the secondary index entries.

X'01' X'FFFF' Linkage error (function not supported).

X'02' X'FFFF' Linkage error (function not available).

X'03' X'FFFF' Linkage error (version not supported).

X'bb' X'aaaa' Meaning

Macros CREPOOL

U4250-J-Z125-12-76 241

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

CREPOOL – Create ISAM pool

Macro type: type S (E form/L form/D form/C form); see page 866

The CREPOOL macro creates a task-specific, host-specific, or user ID-specific ISAM pool
or links a job to an existing ISAM pool. The ISAM pool is unambiguously identified by the
following characteristics:

– its pool name: operand NAME

– its catalog ID: operand CATID

– its scope: operand SCOPE

– its size: operand SIZE

– type of buffering: operand WROUT

– performance characteristic of the ISAM pool: operand RESDNT

The CREPOOL macro may be used only for XS programming (31-bit interface).

Note

Cross-task ISAM pools are created automatically in a data space on a file-specific basis
when the file is opened.
SCOPE=USERID and SCOPE=USERGROUP, which were available up to BS2000/
OSD V6.0A, are still accepted for reasons of compatibility, but are mapped internally to
SCOPE=HOST (cross-task ISAM pool).
For further information on ISAM pools in data spaces please refer to the “Introductory
Guide to DMS” [1].

CREPOOL Macros

242 U4250-J-Z125-12-76

Format

Operation Operands

CREPOOL [,CATID=catid]

NAME=poolname

MF=L

MF=D[,PREFIX=pre]

MF=C[,PREFIX=pre][,MACID=macid]

[,MODE=
ANY

NEW 
 
 

]

[,SCOPE=

TASK

USERID

USERGROUP

HOST
 
 
 
 
 
 
 

]

[,SIZE=
STD

num 
 
 

]

[,RESDNT=
NO

YES 
 
 

]

[,WROUT=

YES

NO

UNCOND-NO 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

Macros CREPOOL

U4250-J-Z125-12-76 243

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

Operand descriptions

CATID = catid
Specifies the catalog ID of the pubset to which the ISAM pool is to be assigned. The
ISAM pool is created on the host computer to which this pubset belongs. The catalog ID
can – as in the file name – be regarded as part of the name, i.e. different catalog IDs identify
different ISAM pools.

Default value: the default catalog ID of the calling job.

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
each field name and equate generated in the data area when the macro is expanded.

Default setting: MACID = ISC

= macid
Three-character string defining the second through fourth characters of each field name
and equate generated.

MF
The forms of the MF operand are described in detail in the appendix (see page 865).

MODE
Specifies, for cross-task ISAM pools, whether the user wants to create a new ISAM pool or
whether a link to any existing ISAM pool with the same name and the same catalog ID may
be established.

By default, DMS always links the job to an existing ISAM pool with the specified name.

= ANY
If a cross-task ISAM pool with the same name and the same catalog ID has already
been created by another task, the job is linked to this pool, even if the value specified
for SIZE does not match the actual pool size.
If no such ISAM pool exists, a new pool with the size specified in SIZE is created.

The parameter CREATION-MODE=ANY can be used to set up an exclusive
connection to an ISAM pool that was created by some other task. This means that if a
task issues a CREPOOL with CREATION-MODE=ANY more than once in succession
for one ISAM pool, the second call (and all others) will be rejected with an error
message even if the ISAM pool already exists as a result of the first call. This in turn
implies that an exclusive ISAM pool can be created within a task only if the pool does
not exist for that task.

CREPOOL Macros

244 U4250-J-Z125-12-76

= NEW
A new cross-task ISAM pool is to be created. If, in this case, a host-specific ISAM pool
with the same name and the same catalog ID already exists, the command is rejected
with an error message.

NAME = poolname
Assigns a name to the ISAM pool. This, together with the catalog ID and the scope, uniquely
identifies the pool.

“poolname” may be 1-8 characters long and may contain all letters and digits and the
special characters $, # and @; the first character of “poolname” must be a letter or the
special character # or @.

PARAM
Specifies the address of the operand list; evaluated only in conjunction with MF=E
(see page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register containing the address of the operand list. The register must be
loaded with this address value before the macro is called.

PREFIX
Evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default setting: PREFIX = D

= pre
Single-character prefix with which the field names and equates generated by the
assembler are to begin.

Macros CREPOOL

U4250-J-Z125-12-76 245

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

RESDNT
Specifies whether the pages of an ISAM pool are to be maintained in resident working
memory (as defined in the function $CSTAT):

= NO
Specifies that the pages of the ISAM pool to be created are not to be maintained in
resident memory.

= YES
Specifies that the pages of an ISAM pool are to be maintained in resident memory.
A PFA (Performant File Access) privilege is required in order to execute this function.

The call is rejected for existing ISAM pools if there is a conflict between the RESDNT
attribute of the pool and the requested RESDNT attribute.

SCOPE
Specifies the scope of the ISAM pool.

All the operand values except TASK are only still supported for reasons of compatibility (see
the “Note” on page 241).

= TASK
The ISAM pool can be used only by the calling job: it is task-local.

= USERID
= USERGROUP
SCOPE=USERID and SCOPE=USERGROUP, which were available up to BS2000/
OSD V6.0A, are still accepted for reasons of compatibility, but are mapped internally to
SCOPE=HOST (cross-task ISAM pool).

= HOST
The ISAM pool is cross-task and may be used by all jobs.

In the case of SCOPE=HOST, the MODE operand is evaluated. At the same time,
SCOPE=HOST affects the WROUT operand: the default value WROUT=YES applies
to all files in the ISAM pool and cannot be changed by the user.

SIZE
Specifies the size of the ISAM pool to be created.

= STD
The ISAM pool is to be created with the standard size defined during system
installation.

If the parameter CREATION-MODE=ANY is specified, the following applies: if a new
pool is being created, the specified SIZE is evaluated as described above. If the
ISAM pool already exists, the size of the existing pool is used. The values specified for
RESDNT and WROUT, by contrast, must match the attributes of the existing pool.

CREPOOL Macros

246 U4250-J-Z125-12-76

= num
Specifies the size of the new ISAM pool in PAM pages:
32 Î num Î 32767 for systems with 31-bit addressing
32 Î num Î 2048 for all other systems.
If appropriate, the maximum size of the user address space specified by the system
administrator represents an upper limit.

An ISAM pool that is used to buffer files which were created with both
BLKCTRL=DATA2K and =DATA4K is dynamically allocated a second extent and thus
consists of a 2K extent as well as a 4K extent of the size defined by “num”.

Note that the minimum pool size of 32 PAM pages can only be used to process files with
a block size of up to (STD,6).

The minimum pool size is thus 32 PAM pages, which is sufficient for processing only
files with a blocking factor Î 6 (BLKSIZE Î (STD,6)), unless the files are opened for
read-access only (i.e. with MODE=INPUT).

WROUT
Specifies for the pool whether modified blocks of a file are to be written to disk immediately:

= YES
Modified blocks are written to disk immediately, regardless of the value specified for the
WROUT operand in the FILE or FCB macro for the associated file.

= NO
Specifies that the updated blocks are not to be written back to disk immediately.
Modified blocks are written back to disk immediately despite a WROUT=NO
specification in CREPOOL if
– WROUT=YES is specified for the associated file (using FILE, FCB or ADD-FILE-

LINK) or when
– SCOPEîTASK is specified for the pool.

Default value: – WROUT=NO for a task-local ISAM pool
(SCOPE=TASK)

– WROUT=YES for a cross-task ISAM pool (SCOPE=USERID/
USERGROUP/HOST)

Macros CREPOOL

U4250-J-Z125-12-76 247

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16

S
ta

nd
 1

1
:4

1.
58

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
1

0_
d

vs
m

a
kr

o\
en

_
pr

od
\d

vs
m

ak
_e

.v
04

\a
d-

cr
.d

o
c

= UNCOND-NO
Specifies that updated blocks need not be written back to disk immediately. The
restrictions of WROUT=NO do not apply in the following cases:
– For a cross-task pool (SCOPE=USERID/USERGROUP/HOST), too, updated

blocks are not written back to disk immediately;
– An OPEN for files to be opened with SHARUPD=YES will only be executed if

WRITE-IMMEDIATE=NO or WROUT=NO was explicitly specified in an associated
ADD-FILE-LINK command or FILE macro.

If WROUT is not specified for a pool, WROUT=YES is assumed for a task-local pool
(SCOPE=TASK) and for a cross-task pool (SCOPE=USERID,USERGROUP, HOST).

Return codes

The field names and the EQU statements for return codes generated with the C and D
forms of the macro start with the string DISC. The first character of this string can be
changed by PREFIX, characters 2-4 by MACID.

The return codes are placed in the standard header of the operand list.

Main return code Meaning

DISCOK X'0000' The macro was executed successfully.

DISCNPAR X'0001' Access to the operand list is not possible.

DISCNREM X'0002' The pubset identified by “catid” is on a host system running a version of
BS2000 which does not support ISAM pools.

DISCNCAT X'0003' The catalog ID “catid” is unknown in the system.

DISCNACC X'0004' There is no link to the pubset “catid”.

DISCINVN X'0005' The pool name is invalid.

DISCSPAC X'0007' There is not enough free address space to create a pool (SIZE specifi-
cation is too large).

DISCPLEX X'0008' The specified ISAM pool already exists;
MODE=NEW was already used for creation by another task; MODE-ANY
was already used by the same task

DISCSYSE X'000B' A system error occurred during macro processing.

DISCSIZE X'000C' The SIZE specification is invalid.

DISCINVW X'000E' The WROUT specification is invalid.

DISCINVS X'000F' The SCOPE specification is invalid.

DISCINVM X'0010' The MODE specification is invalid.

DISCPRIV X'0011' Missing privilege with a RESDNT=YES specification

DISCPRES X'0012' The RESDNT specification in the parameter list and the one for the
existing pool are in conflict.

CREPOOL Macros

248 U4250-J-Z125-12-76

DISCPERR X'0013' Parameter error.

DISCSPEX X'0014' Contingent for ISAM pools exceeded.

DISCRLNK X'FFFF' Macro could not be executed (linkage error):
evaluate sub return code 1.

Main return code Meaning

Macros DECFILE

U4250-J-Z125-12-76 249

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DECFILE – Convert encrypted file into unencrypted file

Macro type: type S (E Form/M Form/L Form/C Form/D Form) (see page 866)

The DECFILE macro converts an encrypted file into an unencrypted file (see the ENCFILE
macro on page 316).

After DECFILE has run all encryption attributes (procedure and check string for crypto
password) are deleted in the catalog entry.

File generations

DECFILE cannot be used for individual file generations but only for complete file generation
groups. Within a file generation group, all generations with the exception of tape genera-
tions have the same encryption attributes as the group entry.

Format

Operand descriptions

PATHNAM
Specifies the file which is to be decrypted. The file’s crypto password must be contained in
the crypto password table of the calling task.

=<c-string 1..54: filename 1..54>
Path name of the file.

=<var: char:54>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the file’s path name is stored.

Operation Operands

DECFILE ,PATHNAM=<c-string 1..54: filename 1..54> / <var: char:54>

,EQUATES=YES / NO

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M

,PREFIX=D / <pre>

,MACID=MAE / <macid>

DECFILE Macros

250 U4250-J-Z125-12-76

EQUATES
Specifies whether equates are also to be generated for the values of the parameter area
fields when the parameter area is expanded.

= YES
Equates are also generated for the values of the parameter area fields when the
parameter area is expanded.

= NO
No equates are generated for the values of the parameter area fields when the
parameter area is expanded.

Example

:
MVC DECFMFC(YMAD#),DECFMFL
DECFILE MF=M,PREFIX=Y,PATHNAM='UMSATZ.3.QUARTAL.2004'
DECFILE MF=E,PARAM=DECFMFC
:
DECFMFC DECFILE MF=C,PREFIX=Y
DECFMFL DECFILE MF=L

:

Programming notes

1. Before the layout of the parameter area is generated the standard header must be
cleared.

2. All RESERVED fields in the parameter area must be deleted with binary zeros.

3. The caller is responsible for the consistency of the parameter area whenever modifica-
tions are made to the parameter area without with the aid GCs.

4. In the event of a nonprivileged call (function status TU) register 1 points to the
parameter area.

5. The names in the parameter area are not converted from lower- to upper-case letters
while the function is executed. In the case of GC expansion, on the other hand,
conversion from lower- to upper-case letters can take place, depending on the compiler
setting.

Macros DECFILE

U4250-J-Z125-12-76 251

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Notes on function execution

– File locks and file protection attributes which forbid write access to the catalog entry or
the content of a file thus also prevent conversion of the file using DECFILE.

– Conversion of a file with DECFILE requires the calling task to have ownership rights for
the file. Conversion therefore takes place when:

– the file is under the user ID of the calling task.
– the calling task is running under a user ID with TSOS privilege.
– the user ID of the calling task is co-owner of the file and the file is not temporary.

– Additional functions for tasks with TSOS privilege:
If the calling task has TSOS privilege, the following additional functions are possible:

– Temporary files which do not belong to the calling task but to another task can also
be specified.

– Temporary files can also be specified on a pubset other than the default pubset of
the user ID. (These are not deleted automatically when the calling task terminates.)

– Conversion of the encrypted file is logged with SAT.
The AUDIT attribute output here is taken from the catalog entry of the file to be
converted (see the CREATE-FILE command, AUDIT operand, in the “Commands”
manual [3]).

– RFA:
DECFILE is rejected if the file to be converted can only be accessed via RFA.

– Help file:
When converting with DECFILE a help file is created and then automatically deleted
when the function has been completed. The converted file content is written to the help
file. The help file needs as much disk storage space as the file to be converted.
The file name of the help file has the following format:
S.DMS.<tsn>.<date><time>.CRYPTO

DECFILE Macros

252 U4250-J-Z125-12-76

Return codes

The return code is returned in the standard header of the parameter list. The standard
header may not be located in the read-only area, otherwise the program is terminated.

Standard
header:

The following return code concerning the execution of
the DECFILE macro is transferred in the standard
header
(cc = SUBCODE2, bb = SUBCODE1, aaaa =
MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Explanation

X'00' X'00' X'0000' No error

X'01' X'0554' Format of the file name not permitted

X'01' X'0576' a) Incorrect operand combination
b) Undeleted UNUSED fields

X'20' X'0578' Internal error when checking the access rights

X'82' X'0594' Not enough virtual memory available

X'20' X'05C7' Internal error in DMS

X'01' X'05CB' Incorrect/inadmissible first file name

X'40' X'05CF' Password not in password table

X'40' X'05FD' File is write-protected

X'40' X'0609' Action not permitted for system file

X'40' X'0666' File protection prevents access

X'01' X'00' X'066B' File is already decrypted

X'00' X'00' X'066E' Use help file

X'01' X'FFFF' Wrong function number in standard header

X'03' X'FFFF' Wrong version number in standard header

Macros DELAIX

U4250-J-Z125-12-76 253

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DELAIX – Delete secondary key of ISAM file

Macro type: type S (E form/L form/D form/C form); see page 866

The DELAIX macro deletes a selected secondary key or all secondary keys in an NK-ISAM
file.

Deleting a secondary key does not mean that the values of this key are deleted from the
records. Instead, the secondary index blocks belonging to the secondary key(s) are
deleted, which means that access to the records via the secondary key(s) is no longer
possible.

Format

Operation Operands

DELAIX

MF=L

MF=D[,PREFIX=pre]

MF=C[,PREFIX=pre][,MACID=macid]

,KEYNAME=
(keyname1[,keyname2,...])

*ALL 
 
 

,
FILE=pathname

LINK=linkname 
 
 

MF=E,PARAM=
addr

(r) 
 
 

DELAIX Macros

254 U4250-J-Z125-12-76

Operand descriptions

FILE = pathname
Specifies the NK-ISAM file from which the secondary key(s) specified for KEYNAME is/are
to be deleted, with: <c-string 1..54: filename 1..54>.

The value specified for the FILE operand is ignored if the LINK operand is also specified.

pathname means [:catid:][$userid.]filename

catid
Catalog ID: if omitted, the default catalog ID for the current user ID is assumed.

userid
User ID: if omitted, the user ID in the SET-LOGON-PARAMETERS or LOGON
command is assumed.

filename
Fully qualified file name.

KEYNAME
Specifies which secondary key(s) is/are to be deleted.

= (keyname1[,keyname2,...])
All secondary keys whose names are included in the list are deleted. The secondary
keys with the names “keyname1”, “keyname2”, etc. must have been defined for the file
specified in the FILE or LINK operand. The user can determine the names and
attributes of all secondary keys defined for a file with the aid of the SHOWAIX macro or
of the SHOW-INDEX-ATTRIBUTES command.
The parentheses in the list format may be omitted if the list contains only one name.

= *ALL
All secondary keys defined for the file specified in the FILE or LINK operand are
deleted.

LINK = linkname
Specifies the link name for the file from which the secondary key(s) specified in the
KEYNAME operand is/are to be deleted.
“linkname” may be up to eight characters long. If the file link name is to be addressed via
the command interface, it must correspond to the data type <structured_name 1..8> (see
the “Commands” manual [3]).

Macros DELAIX

U4250-J-Z125-12-76 255

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

MACID
Defines the second through fourth characters of each field name and equate generated
when the macro is expanded.

Default value: MACID = IST

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

PARAM
Specifies the address of the operand list; it is evaluated only if MF=E applies
(see page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register which contains the address of the operand list. The register must
be loaded with this address value before the macro is called.

PREFIX
Defines the first character of each field name and equate generated in the data area when
the macro is expanded.

Default value: PREFIX = D

= pre
One-character prefix with which the generated field names and equates are to begin.

DELAIX Macros

256 U4250-J-Z125-12-76

Return codes

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

Standard-
header:

The following code relating to execution of the DELAIX
macro is returned in the standard header
(bb = SUBCODE1, aaaa = MAINCODE):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' The function was executed successfully.

X'01' X'0001' The function could not be executed: the operand list is not available.

X'40' X'0002' The function could not be executed: secondary keys are not supported in the
remote system (if the macro is called via RFA).

X'40' X'0003' The function could not be executed: the specified catalog ID does not exist.

X'40' X'0004' The function could not be executed: the catalog cannot be accessed.

X'01' X'0005' The function could not be executed: the operand list contains an invalid name.

X'40' X'0008' The function could not be executed: the specified secondary key does not exist.

X'20' X'000B' The function could not be executed: system error.

X'40' X'000C' The function could not be executed: the user address space is too small.

X'40' X'000E' The function could not be executed: the control block of the file is errored.

X'40' X'0012' The function could not be executed: the ISAM pool is overloaded.

X'40' X'0016' The function could not be executed: an invalid number of key names was
specified for KEYNAM.

X'01' X'0017' The function could not be executed: there was no file specified in the operand
list.

X'40' X'0018' The function could not be executed: the file was set to SHARUPD=YES when
the macro was called.

X'40' X'0019' The function could not be executed: the file link name is invalid.

X'40' X'0040' The function could not be executed: OPEN error.

X'40' X'0041' The function could not be executed: CLOSE error.

X'40' X'0044' The function could not be executed: the file is not an NK-ISAM file.

Macros DELPOOL

U4250-J-Z125-12-76 257

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DELPOOL – Delete/release ISAM pool

Macro type: type S (E form/L form/D form/C form); see page 866

With the aid of the DELPOOL macro, the user can delete ISAM pools he/she has created
or clear the link between his/her job and ISAM pools. When the link between an ISAM pool
and the last job connected to it is cleared, the ISAM pool is automatically deleted.

If the specified ISAM pool does not exist, the macro is rejected with an error message.

Before an ISAM pool or the link between a job and an ISAM pool can be deleted, all entries
in the pool table for the affected ISAM pools must be deleted by means of REMPLNK. If a
pool is still linked to a pool table via its link name, DELPOOL is rejected with an error
message.

Note

Cross-task ISAM pools which are not task-specific are created automatically in a data
space on a file-specific basis when the file is opened and released again when the file
is closed.
COPE=USERID and SCOPE=USERGROUP, which were available up to BS2000/OSD
V6.0A, are still accepted for reasons of compatibility, but are mapped internally to
SCOPE=HOST (cross-task ISAM pool). For further information on ISAM pools in data
spaces please refer to the “Introductory Guide to DMS” [1].

Format

Operation Operands

DELPOOL

MF=D[,PREFIX=pre]

MF=C[,PREFIX=pre][,MACID=macid]

MF=L,MODE=
SINGLE ,NAME=poolname[,CATID=catid][,SCOPE=

TASK

USERID

USERGROUP

HOST 
 
 
 
 
 
 

ALL

]

 
 
 
 
 
 
 
 
 
 
 

MF=E,PARAM=
addr

(r) 
 
 

DELPOOL Macros

258 U4250-J-Z125-12-76

Operand descriptions

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
each field name and equate generated when the macro is expanded.

Default value: MACID = ISD

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

MODE
Specifies whether only a specific pool or all pools linked to the job are to be released.

MODE = SINGLE
At least one pool name must be specified. Only the ISAM pool identified by NAME, CATID
and SCOPE is to be deleted/released.

NAME=poolname
Specifies the name with which the pool was created by means of the CREPOOL macro.

CATID=catid
Specifies the pubset to which the pool was assigned by means of the CREPOOL macro.

Default value: the default catalog ID of the job.

SCOPE
Specifies the scope of the ISAM pool as defined in the CREPOOL macro.

All the operand values except TASK are only supported still for reasons of compatibility
(see the note on page 257).

= TASK
The task-local ISAM pool is deleted or released if there is no pool link name still
active for it; otherwise, the macro is aborted with an error message.

= USERID
= USERGROUP
SCOPE=USERID and SCOPE=USERGROUP, which were available up to
BS2000/OSD V6.0A, are still accepted for reasons of compatibility, but are mapped
internally to SCOPE=HOST (cross-task ISAM pool).

Macros DELPOOL

U4250-J-Z125-12-76 259

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

= HOST
The cross-task ISAM pool “poolname” is deleted or released if no further pool link
names exist for the job; otherwise, the macro is aborted with an error message.

MODE = ALL
Specifies that all (task-local and cross-task) ISAM pools linked to this job are to be deleted.

PARAM
Specifies the address of the operand list; evaluated only in conjunction with MF=E
(see page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register containing the address of the operand list. The register must be
loaded with this address value before the macro is called.

PREFIX
Evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default setting: PREFIX = D

= pre
Single-character prefix with which the field names and equates generated by the
assembler are to begin.

DELPOOL Macros

260 U4250-J-Z125-12-76

Return codes

Unless otherwise specified, the field names and the EQU statements for the return codes
generated by the C and D forms of the macro begin with the string DISD. This string can be
modified by PREFIX and MACID.

The return codes are placed in the standard header of the operand list.

Main return code Meaning

DISDOK X'0000' The macro was executed successfully.

DISDNPAR X'0001' Access to the operand list is not possible.

DISDNREM X'0002' The pubset identified by “catid” is on a host system running a version of
BS2000 which does not support ISAM pools.

DISDNCAT X'0003' The catalog ID “catid” is unknown in the system.

DISDNACC X'0004' There is no link to the pubset “catid”.

DISDINVN X'0005' The pool name is invalid.

DISDNANF X'0006' There is no ISAM pool with the specified name, catalog ID and scope.

DISDPUSE X'0009' The task pool table still contains entries with pool link names for this ISAM
pool.

DISDSYSE X'000B' A system error occurred during macro processing.

DISDSPEX X'0014' Allocation for ISAM pools exceeded.

DISDRNLK X'FFFF' Macro could not be executed (linkage error):
evaluate sub return code 1.

Macros DIV

U4250-J-Z125-12-76 261

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DIV – Access files via virtual address space

Macro type: type S (E form /L form /D form /C form /M form); see page 866

General

All operands can be specified in a DIV macro, regardless of the DIV function (operand
FCT). The evaluation of the operands depends upon the selected DIV function.
First, all operands are presented in an overview. The format and the operands evaluated
for the respective functions are described for each function unit. The format overview is
follwed by a summary description of the DIV macro funtions.

Operand values which are neither address nor register entries are referred to as “direct
specification” in the operand description.

The operand value “addr” defines a symbolic address that can be stored in an A constant,
i.e. the symbolic address must be evaluatable at compile time and must not be included in
a DSECT.

The various forms of the MF operand are described in detail in the appendix (page 865).

Parameter list

The parameter list of the macro contains a header with fields that can be automatically
supplied with values by means of the L form when the parameter list is generated.

If the parameter list is dynamically generated with the D or C forms, it must first be initialized
with a parameter list that has been generated with the L form. This is the only way of
ensuring that the header of a parameter list is correctly supplied with values.

Wherever fields of a parameter list are referred to in the following description, the names of
the parameter list have been indicated as they are generated by MF=D (without a PREFIX
specification).

Special parameters in the parameter list

The following parameters are return parameters which can only be accessed directly via
the parameter list.

DIVPID

The ID of the OPEN is returned in DIVPID. It must be contained in the parameter list in order
to call other DIV functions that belong to the same OPEN. If the same parameter list is used,
the DIVPID will have already been entered.

DIV Macros

262 U4250-J-Z125-12-76

DIVPSIZE

DIVPSIZE returns the logical file size of OPEN in 4096-byte page units. DIVPSIZE contains
the number of the last logical 4K page (1 means that the first file page is the last logical
page, and 0 means that the file is empty). DIVPSIZE can be evaluated to request memory
for a window.

If a file has already been accessed using the UPAM access method, it is possible that the
logical end-of-file may not lie on a 4K page boundary. In such cases, DIVPSIZE returns the
rounded value. The last half-page before the logical EOF will then appear in the window
initialized with X'00'.

Since the file can be logically extended or truncated by SAVE, DIVPSIZE is updated after
every successful call to SAVE. DIVPSIZE will then contain the number of the last logical
4K page of the file (1 means that the first page of the file is the last logical page; 0 means
that it is empty).

Modifying file characteristics via a command or macro

SHARUPD mode (NO | WEAK | YES) can be changed via the ADD-FILE-LINK command
(or via the FILE macro).

OPEN mode (INPUT | INOUT | OUTIN) cannot be changed via the ADD-FILE-LINK
command or via the FILE macro.

With the ADD-FILE-LINK command, the operands ACCESS-METHOD and BLOCK-
CONTROL-INFO must not be specified in a way which contradicts the file structure attri-
butes FILE_STRUC=PAM or BLK-CONTR=PAM. The same applies for the operands
FCBTYPE and BLKCRTL of the FILE macro.

Macros DIV

U4250-J-Z125-12-76 263

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Format overview

Operation Operands

DIV

(Teil 1 von 2)

,FCT=

*OPEN

*CLOSE

*MAP

*UNMAP

*SAVE

*RESET

addr

(r) 
 
 
 
 
 
 
 
 
 
 
 
 

[,ID=
addr

(r) 
 
 

]

[,LINK=

′name′
addr

(r) 
 
 
 
 

][,FILE=

′name′
addr

(r) 
 
 
 
 

]

[,MODE=

*INPUT

*INOUT
*OUTIN
addr
(r)

 
 
 
 
 
 
 
 
 

][,SHARUPD=

*NO

*WEAK
*YES
addr
(r)

 
 
 
 
 
 
 
 
 

][,LOCVIEW=

*NONE

*MAP

addr

(r) 
 
 
 
 
 
 

]

[,SPID=
addr

(r) 
 
 

][,AREA=
addr

(r) 
 
 

][,OFFSET=

number
addr
*equ
(r)

 
 
 
 
 
 
 

]

[,SPAN=

number
addr

*equ
(r)

 
 
 
 
 
 
 

][,DISPOS=

*OBJECT

*UNCHNG
*FRESH
addr
(r)

 
 
 
 
 
 
 
 
 

]

[,PFCOUNT=

number
addr
*equ
(r)

 
 
 
 
 
 
 

][,RELEASE=

*NO

*YES

addr

(r)
 
 
 
 
 
 
 

]

DIV Macros

264 U4250-J-Z125-12-76

Function overview

MF=L

Function Brief description See

FCT = *OPEN Open DIV / PAM file page 265

FCT = *MAP Create window in address space page 273

FCT = *SAVE Write back modified window pages to the disk file page 280

FCT = *RESET Undo changes to window pages page 285

FCT = *UNMAP Delete window page 291

FCT = *CLOSE Close disk file page 295

Operation Operands

(Teil 2 von 2)

[,ENV=

*HOST

*XCS
addr
(r)

 
 
 
 
 
 
 

]

[,LARGE_FILE=

*FORBIDDEN

*ALLOWED
addr
(r)

 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
D

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
D

pre 
 
 

][,MACID=
IVP

macid 
 
 

]

Macros DIV - OPEN

U4250-J-Z125-12-76 265

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DIV function: OPEN

A file is opened, and an ID is entered in the parameter list. This ID must be used in subse-
quent calls in order to identify the OPEN association of these calls.

If the same parameter list is used for every DIV call that is associated with a DIV OPEN, the
ID will have already been entered into the parameter list and need not be taken into
account.
The size of the file is returned in the parameter list after the call.

The OPEN function evaluates only the function operands described below. However,
additional operands can be used even at this stage, to prepare the parameter list for other
DIV function calls.

Format FCT=*OPEN

Operation Operands

DIV

(Teil 1 von 2)

[,FCT=

*OPEN

addr

(r) 
 
 
 
 

]

[,LINK

′name′
addr

(r) 
 
 
 
 

]

[,FILE=

′name′
addr

(r) 
 
 
 
 

]

[,MODE=

*INPUT

*INOUT
*OUTIN
addr
(r)

 
 
 
 
 
 
 
 
 

]

DIV - OPEN Macros

266 U4250-J-Z125-12-76

MF=L

Operation Operands

(Teil 2 von 2)

[,SHARUPD=

*NO

*WEAK
*YES
addr
(r)

 
 
 
 
 
 
 
 
 

]

[,LOCVIEW=

*NONE

*MAP

addr

(r)
 
 
 
 
 
 
 

]

[,ENV=

*HOST

*XCS
addr
(r)

 
 
 
 
 
 
 

]

[,LARGE_FILE=

*FORBIDDEN

*ALLOWED
addr
(r)

 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
D

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
D

pre 
 
 

][,MACID=
IVP

macid 
 
 

]

Macros DIV - OPEN

U4250-J-Z125-12-76 267

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operand descriptions

ENV
Influences the compatibility of parallel openers dependent on their execution location
(see “Compatibility matrix for DIV-OPEN” on page 42).

Only direct specification is permitted with the MF=L form.

= *HOST
The maximum possible parallelism is restricted to openers running in the same host.

= *XCS
The openers can run in different hosts in an XCS network without restricting the
compatibility (e.g. write operations with SHARUPD=*YES can run in parallel).

= addr
The symbolic address of a one-byte field containing the value of ENV.

= (r)
A register containing the value of ENV.

FCT
Specifies the DIV function to be executed.

Only a direct specification is allowed for the MF=L form.

= *OPEN
A file is opened, and an ID is entered into the parameter list. This ID must be used in
subsequent calls in order to indicate the OPEN association of these subsequent calls.

If the same parameter list is used for every DIV call that is associated with a DIV OPEN,
this ID will have already been entered into the parameter list and need not be taken into
account.

Following the call to OPEN, the OPEN ID and the size of the file will be contained in the
DIVPSIZE field of the parameter list, respectively.

= addr
Symbolic address of a 1-byte field containing the value for the OPEN function (for more
information on the DIVPOPEN value, see the layout of the parameter list on page 301).

= (r)
Register containing the value for the OPEN function.

DIV - OPEN Macros

268 U4250-J-Z125-12-76

FILE
Specifies the name of the file. The FILE specification is not evaluated if a value has been
specified for the LINK operand.

Only a direct specification is allowed for the MF=L form.

= 'name'
The name must be enclosed within single quotes.
Length of file name: 1-54 characters (including the catalog ID).

= addr
Symbolic address of a 54-byte field containing the file name.

= (r)
Register containing the address of a 54-byte field with the file name.

LARGE_FILE
The LARGE_FILE operand determines whether or not the file size may grow beyond 32 GB
during data processing (see page 108). The operand is entered in the TFT (Task File Table)
and is not evaluated until the file is opened with OPEN.

Default value: LARGE_FILE = *FORBIDDEN

In the case of MF=L, only direct specification is permitted.

= FORBIDDEN
The default value means that the specifications in the TU-FCB are to be used.

= ALLOWED
The file is created as a “large file”: the file size may exceed 32 GB.

= addr
The address of an 8-byte field that contains the value for LARGE_FILE.

= (r)
Register containing the address of an 8-byte field with the value for LARGE_FILE.

Macros DIV - OPEN

U4250-J-Z125-12-76 269

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

LINK
Specifies the link name of the file.

The file link name/TFT links the program and file (for information on the file link name/TFT,
see the “Introductory Guide to DMS” [1]).

Only a direct specification is allowed for the MF=L form.

= 'name'
If the file link name is enclosed in single quotes “name” may be up to 8 characters long.
If the file link name can be addressed via the command interface, it must correspond to
the data type <structured_name 1..8> (see the “Commands” manual [3]).

= addr
Address of an 8-byte field containing the file link name.

= (r)
Register which contains the address of an 8-byte field containing the file link name.

LOCVIEW
Operand that specifies whether pages are to be read into a window as soon as MAP is
called, or only when the page is accessed.

Default value: LOCVIEW = *NONE

The LOCVIEW operand is only effective for windows created with DISPOS=*OBJECT

Only a direct specification is allowed for the MF=L form.

= *MAP
When a window is defined (function FCT=*MAP), all file pages are read into the window
as soon as MAP is called. When the file is being read by a SHARUPD=*WEAK user,
DIV prevents the file pages from being updated by a parallel write operation from a
SHARUPD=*WEAK user who calls SAVE.

= *NONE
A page will be read from the file into the window when first accessed (default setting).

= addr
Symbolic address of a 1-byte field containing a value for LOCVIEW (DIVPLNON |
DIVPLMAP; see the layout of the parameter list on page 301).

= (r)
Register containing a value for LOCVIEW.

DIV - OPEN Macros

270 U4250-J-Z125-12-76

MACID
Defines the second through fourth characters of each field name and equate generated
when the macro is expanded.

= IVP
Default value: MACID=IVP

= macid
“macid” is three-character string that defines the second to the fourth character
(inclusive) of the generated field names and equates.

MF
The forms of the MF operands are described in detail in the appendix (see page 865).

MODE
Specifies OPEN mode (see “Multiuser operation” on page 41):
OPEN mode cannot be changed by an ADD-FILE-LINK command (return code DIVPICFS
(INCOMPATIBLE_FILE_SPEC)).

Default value: MODE=*INPUT

Only a direct specification is allowed for the MF=L form.

= *INPUT
The file can only be read, so the SAVE function cannot be executed in this OPEN mode.

Parallel INPUT opens are possible, even with the UPAM access method, regardless of
the SHARUPD mode.

The file must exist, i.e. must have been opened once with OUTIN.

= *INOUT
The file can be modified, i.e. can be saved with the DIV function SAVE.

The file must exist, i.e. must have been opened once with OUTIN.

Parallel OPEN calls are possible, depending upon the SHARUPD mode.

= *OUTIN
A new file will be created, i.e. the file will be “empty” after the OPEN, and may then be
written to. As with MODE=*INOUT, the file can be written to by the SAVE function.

Parallel OPEN calls are possible, depending upon the SHARUPD mode.

In multiuser mode (SHARUPD=*WEAK|*YES), a MODE=*OUTIN user must always be
the first to open the file; otherwise, the OPEN call will be rejected.

Macros DIV - OPEN

U4250-J-Z125-12-76 271

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

= addr
Symbolic address of a 1-byte field containing a value for MODE (DIVPINPT | DIVPINOT
| DIVPOUTI; see layout of the parameter list, page 301).

= (r)
Register containing a value for MODE.

PARAM
Indicates the address of the operand list. This operand is only evaluated in conjunction with
MF=E (see also page 865).

PREFIX
Specifies the first character of each field name and equate generated when the macro is
expanded.

= D
Default value: PREFIX=D

= pre
“pre” is a one-character prefix with which the generated field names and equates are to
begin.

SHARUPD
Controls parallel access by a number of users (see the section “Multi-user mode on a single
computer” in the “Introductory Guide to DMS” [1].

Default value: SHARUPD = *NO

Only a direct specification is allowed for the MF=L form.

= *NO
Allows multiple concurrent reads with MODE=*INPUT or one write with
MODE=*INOUT | *OUTIN.

= *WEAK
Allows multiple concurrent reads with MODE=*INPUT and one write with
MODE=*INOUT | *OUTIN.
The data in the window of a read-authorized user (MODE=*INPUT) will therefore
depend on the changes that are made by a parallel write-authorized user
(MODE=*INOUT | *OUTIN) and on the time at which a page is read into the window.
Users with read and write authorization must therefore coordinate their activities.
If LOCVIEW=*MAP is specified, the consistency of data in a window is not affected by
parallel write operations even if the tasks are not coordinated.

= *YES
Multiple write-authorized users may open a file.

DIV - OPEN Macros

272 U4250-J-Z125-12-76

Notes

In this case, data consistency is not maintained by DIV, but must be ensured by the
users themselves, e.g. by sequential calls to SAVE.

The file size is checked whenever the allocator is called.
If this check indicates a file size Ï 32 GB and the attribute
LARGE_FILE=*FORBIDDEN is set in the associated FCB or the attribute
EXCEED-32GB=*FORBIDDEN is set in the TFT then processing is canceled.
In this case, DIV returns the code X'00400030' in its local parameter list DIV(I).

The SHARUPD mode can be changed by means of an ADD-FILE-LINK command.

= addr
Symbolic address of a 1-byte field containing a value for SHARUPD (value DIVPSNO |
DIVPSWEA | DIVPSYES; see layout of the parameter list, page 301).

= (r)
Register containing a value for SHARUPD.

Note

DIVPID and DIVPSIZE are return parameters that can only be accessed directly via the
parameter list. See subsection “Parameter list” on page 261 for details.

Macros DIV - MAP

U4250-J-Z125-12-76 273

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DIV function: MAP

The MAP function creates a window in an address space (program or data space).
A window is assigned to a file region or an entire file.

The address space must be allocated before calling the MAP function (explicitly by REQM,
implicitly by the linking loader). The address space in which a window is located cannot be
released until the window has been disabled (using UNMAP).

The window region should not include a READ-ONLY page, and at the time of MAP, no
I/O fixed page, i.e. no page on which I/O is enabled (e.g. asynchronous I/O by UPAM during
the MAP function).

The address space must not be shareable.

When the MAP function is executed, DIV ensures that all pages of the file which are repre-
sented by the window are allocated for. If part or all of a window lies beyond the physical
end-of-file, the required additional pages are allocated. No allocation is made for a user
opening the file in INPUT mode.

The DISPOS operand can be used to specify whether pages of the file are to be displayed
in the window, or whether the data in the address space should be retained.

MAP only evaluates the function operands described below.

DIV - MAP Macros

274 U4250-J-Z125-12-76

Format FCT=*MAP

Operation Operands

DIV

MF=L

[,FCT=

*MAP

addr

(r) 
 
 
 
 

][,ID=
addr

(r) 
 
 

][,SPID=
addr

(r) 
 
 

]

[,AREA=
addr

(r) 
 
 

][,OFFSET=

number

addr
*equ
(r)

 
 
 
 
 
 
 

][,SPAN=

number

addr
*equ
(r)

 
 
 
 
 
 
 

]

[,DISPOS=

*OBJECT

*UNCHNG

addr

(r) 
 
 
 
 
 
 

][,PFCOUNT=

number

addr
*equ
(r)

 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
D

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
D

pre 
 
 

][,MACID=
IVP

macid 
 
 

]

Macros DIV - MAP

U4250-J-Z125-12-76 275

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operand descriptions

AREA
Specifies the starting address of the window within the address space defined by the SPID
operand (data or program space).

The address space must be allocated before calling the MAP function (macro REQM,
DSPSRV, linking loader) and cannot be released until the window is disabled (UNMAP).

The window must lie on a 4K page boundary. Its length is specified by the SPAN operand.

Each page in the virtual address space may only belong to a single window. Once a page
is assigned to a window, any request to use it for another window is rejected.
In the MF=L form, the starting address of the window can only be specified by a symbolic
address.

= addr
Symbolic address of a 4-byte field containing the starting address of the window.

= (r)
Register containing the starting address of the window.

DISPOS
Determines what data should be visible in the window after MAP: unchanged data in the
address space (as before MAP), or the data of the corresponding pages of the file.

Default value: DISPOS = *OBJECT

Only a direct specification is allowed for the MF=L form.

= *OBJECT
The file pages appear in the window. Pages behind the last logical page appear filled
with X'00'.

= *UNCHNG
The window pages retain their contents and are not replaced by pages from the file.

A window defined with DISPOS=*UNCHNG can be used to initialize the corresponding
file pages with the page contents of the virtual address space when SAVE is called (see
the SAVE function and the logical extension of filesas described in the “Introductory
Guide to DMS” [1]).

DISPOS=*FRESH must not be specified with FCT=*MAP.

= addr
Symbolic address of a 1-byte field containing a value for DISPOS
(DIVPOBJ | DIVPUNCH; see layout of the parameter list, page 301)).

= (r)
Register containing a value for DISPOS.

DIV - MAP Macros

276 U4250-J-Z125-12-76

FCT
Specifies the DIV function to be executed.
Only a direct specification is allowed for the MF=L form.

= *MAP
The MAP function is used to define a window in an address space (program or data
space). See page 273 for details.

= addr
Symbolic address of a 1-byte field containing the value for the MAP function (value
DIVMAP, see the layout of the parameter list on page 301).

= (r)
Register containing a value for the MAP function.

ID
Specifies the OPEN for which the DIV function is to be executed.

If the same parameter list is used as in OPEN, the ID need not be specified, since the ID of
the OPEN will already be in the parameter list. The ID is contained in the DIVPID field of the
parameter list.

If a different parameter list is used than the one for OPEN, the ID can be specified here and
be transferred to the new parameter list by using the MF=M form of the DIV macro.

ID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification.

= (r)
Register containing the address of the 8-byte field.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

Macros DIV - MAP

U4250-J-Z125-12-76 277

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

OFFSET
The operands OFFSET and SPAN specify the file region for which the window is created.
– OFFSET specifies the beginning of the file region. It indicates from which block

(i.e. which 4-Kbyte page) the file region begins.
– SPAN defines the number of 4-Kbyte blocks in the file region (i.e. the length of the

region).

The file region defined by OFFSET and SPAN is assigned to the window in virtual address
space.

Default value: OFFSET = 0

If OFFSET = 0, the first window page corresponds to the first page of the file. The file is read
into the window from the beginning of the file up to the length defined by SPAN.

If SPAN is not specified (or SPAN=0), the window size is selected such that the last window
page corresponds to the logical last page of the file. If neither OFFSET nor SPAN is defined,
an appropriate window size that can accommodate the entire file (until the logical last page)
in the window is selected.

If the file is empty and SPAN has been assigned default values, the call will be rejected.

SPAN and OFFSET can be selected such that pages lying beyond the logical EOF appear
in the window. Pages which follow the logical EOF are displayed in the window filled with
X'00'.

SPAN and OFFSET can also be selected such that pages which follow the physical EOF
appear in the window. If OPEN OUTIN | INOUT is then called, MAP will allocate additional
blocks for the file, ending with the file page that corresponds to the last window page.

Note

A file can be physically extended with MAP, and SAVE can be used to extend
(or reduce) it logically.
The logical EOF is not changed by MAP (only by SAVE).

A file page can be assigned to only one window for the same OPEN, but may be assigned
to multiple windows if they are part of different OPEN calls.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value of OFFSET is limited by the maximum size of a file in 4-KB pages minus 1:

0 Î number Î 8388606 for LARGE_FILE=*FORBIDDEN

0 Î number Î 1073741823 for LARGE_FILE=*ALLOWED

DIV - MAP Macros

278 U4250-J-Z125-12-76

= addr
Symbolic address of a 4-byte field containing the numeric value (binary) of the
specification for the first block of the file region to be mapped in virtual address space.

= *equ
Equate representing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space. The '*' character must precede the name
of the equate.

= (r)
Register containing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space.

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

PFCOUNT
If pages of a window are accessed sequentially (in ascending order), the number of page
fault interrupts can be reduced by specifying a PFCOUNT. If a file page is read into a
window as a consequence of a page fault interrupt, and if PFCOUNT has been specified
for the window, all following pages are read in a single read operation until the number of
pages specified in PFCOUNT, the end of the window, or a previously read page is reached.

Only a direct specification is allowed for the MF=L form.

= number
Specifies how many additional pages are to be read.
0 Î number Î 15

= addr
Symbolic address of a 4-byte field containing a numeric value (binary) for the number
of pages.

= *equ
Equate, representing the numeric value. The '*' character must precede the name of the
equate.

= (r)
Specifies a register containing the numeric value.

Macros DIV - MAP

U4250-J-Z125-12-76 279

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

SPAN
The operands OFFSET and SPAN define the file region for which the window is created.
The file region specified by SPAN and OFFSET is assigned to the window in virtual address
space.

Default value: SPAN = 0

For a description of SPAN see the OFFSET operand.
Only a direct specification is allowed for the MF=L form.

= number
Specifies the length of the file region in 4K blocks. The value for SPAN is restricted to
the maximum address space (2 Gbytes) in units of 4K pages.
0 Î number Î 524287

= addr
Symbolic address of a 4-byte field which specifies the length of the data area in
4KB blocks (binary).

= *equ
Equate to define the length of the file region in 4K blocks (binary). The '*' character must
precede the name of the equate.

= (r)
Register containing the length of the file region in 4K blocks (binary).

SPID
Specifies the address space (program or data space) in which the window is to be created.

Default value: SPID = 0

If SPID is omitted or SPID = 0 is specified, the window is created in program space;
otherwise, SPID defines a data space.

SPID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification of the data space.

= (r)
Register with the address of an 8-byte field containing the identification of the data
space.

DIV - SAVE Macros

280 U4250-J-Z125-12-76

DIV function: SAVE

The SAVE function writes modified window pages to a file, if they lie in a file region defined
by SPAN and OFFSET.

If modified window pages exist in the defined region and these pages lie beyond the logical
end-of-file, the file is extended: the last modified page defines the new logical EOF. When
a file is extended, unmodified window pages that lie between the previous and the new
logical EOF are also written to the file. If no window has been defined for file segments that
need to be added, no pages are written to the file for these segments, and the contents of
the corresponding file pages are undefined (see also the logical extension of files as
described in the “Introductory Guide to DMS” [1]).

If the logical last page of the file is in a window that was defined with DISPOS=*UNCHNG,
and if no conditions exist for logical file extension, then the file is truncated if the logical last
page was not accessed, i.e. if the logical last page is still in its initial state. Truncation ends
when a page which is no longer in the initial state, a previously saved page (with SAVE), or
a page which does not belong to a DISPOS=*UNCHNG window is encountered (see also
the logical truncation of files as described in the “Introductory Guide to DMS” [1]).

A page that is written to file with SAVE is no longer considered modified, i.e. will not be
written to the file by a subsequent SAVE unless it is modified again after the last SAVE.

The SAVE function cannot be used if the file is opened with MODE=*INPUT.

The SAVE function evaluates only the function operands described below.

Macros DIV - SAVE

U4250-J-Z125-12-76 281

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Format FCT=*SAVE

Operation Operands

DIV

MF=L

[,FCT=

*SAVE

addr

(r) 
 
 
 
 

][,ID=
addr

(r) 
 
 

]

[,OFFSET=

number

addr
*equ
(r)

 
 
 
 
 
 
 

][,SPAN=

number

addr
*equ
(r)

 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
D

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
D

pre 
 
 

][,MACID=
IVP

macid 
 
 

]

DIV - SAVE Macros

282 U4250-J-Z125-12-76

Operand descriptions

FCT
Specifies the DIV function to be executed.

Only a direct specification is allowed for the MF=L form.

= *SAVE
The DIV function SAVE writes modified window pages in the file back to disk
(see also page 280).

= addr
Symbolic address of a 1-byte field containing the value for the SAVE function (DIVPSAVE;
see the layout of the parameter list on page 301).

= (r)
Register containing the value for the SAVE function.

ID
Specifies the OPEN for which the DIV function is to be executed.

If the same parameter list is used as in OPEN, the ID need not be specified, since the ID of
the OPEN will already be in the parameter list. The ID is contained in the DIVPID field of the
parameter list.

If a different parameter list is used than the one for OPEN, the ID can be specified here and
be transferred to the new parameter list by using the MF=M form of the DIV macro.

ID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification.

= (r)
Register containing the address of the 8-byte field.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

Macros DIV - SAVE

U4250-J-Z125-12-76 283

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

OFFSET
The operands OFFSET and SPAN specify the file region to which the SAVE function
applies.
– OFFSET specifies the beginning of the file region. It indicates from which block

(i.e. which 4-Kbyte page) the file region begins.
– SPAN defines the number of 4-Kbyte blocks in the file region (i.e. the length of the

region).

The SAVE function applies to all window pages of the file region defined by OFFSET and
SPAN.

Default value: OFFSET = 0

If SPAN is omitted or SPAN = 0 is specified, the file region is selected so as to enable the
last page of the last window defined for the OPEN to be included in the region. If neither
OFFSET nor SPAN is specified, all pages of all windows defined for the OPEN are taken
into account.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value of OFFSET is limited by the maximum size of a file in 4-KB pages minus 1:

0 Î number Î 8388606 for LARGE_FILE=*FORBIDDEN

0 Î number Î 1073741823 for LARGE_FILE=*ALLOWED

= addr
Symbolic address of a 4-byte field containing the numeric value (binary) of the
specification for the first block of the file region to be mapped in virtual address space.

= *equ
Equate representing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space. The '*' character must precede the name
of the equate.

= (r)
Register containing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space.

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

DIV - SAVE Macros

284 U4250-J-Z125-12-76

SPAN
SPAN and OFFSET define the file region to which the SAVE function applies.

Default value: SPAN = 0

For a description of SPAN see the OFFSET operand.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value of SPAN is limited by the maximum size of a file in 4-KB pages:

0 Î number Î 8388607 for LARGE_FILE=*FORBIDDEN

0 Î number Î 1073741824 for LARGE_FILE=*ALLOWED

= addr
Symbolic address of a 4-byte field containing the length of the file region in 4-Kbyte
blocks (binary).

= *equ
Equate that specifies the length of the file region in 4-Kbyte blocks (binary).
The '*' character must precede the name of the equate.

= (r)
Register containing the length of the file region in 4-Kbyte blocks (binary).

Special parameters in the parameter list

The following parameter is a return parameter that can only be accessed directly via the
parameter list. The name of the parameter list generated by means of MF=D (without a
PREFIX specification) is specified:

DIVPSIZE

Since the file may be logically extended or truncated by SAVE, DIVPSIZE is updated after
every successful call to SAVE and contains the number of the last logical 4K page of the file
(1 means that the first file page is the last logical page; 0 means that the file is empty).

Macros DIV - RESET

U4250-J-Z125-12-76 285

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DIV function: RESET

The RESET function can be used to undo changes in window pages which belong to a
region defined by SPAN and OFFSET.

This is done by setting each modified page to the initial state so that the page will be read
from the file when accessed. If the page belongs to a window that is defined with
DISPOS=*UNCHNG, it will be read from the file upon access only if it has already been
written to the file with SAVE; otherwise, it is initialized with X'00'.

Specifying RELEASE=*YES resets not only unmodified pages, but all pages of the defined
region to the initial state. This allows file pages that have been updated by a parallel write-
authorized user to be displayed in the window.

The RESET function evaluates only the function operands described below.

DIV - RESET Macros

286 U4250-J-Z125-12-76

Format FCT=*RESET

Operation Operands

DIV

MF=L

[,FCT=

*RESET

addr

(r) 
 
 
 
 

]

[,ID=
addr

(r) 
 
 

]

[,OFFSET=

number

addr
*equ
(r)

 
 
 
 
 
 
 

]

[,SPAN=

number

addr
*equ
(r)

 
 
 
 
 
 
 

]

[,RELEASE=

*NO

*YES

addr

(r) 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
D

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
D

pre 
 
 

][,MACID=
IVP

macid 
 
 

]

Macros DIV - RESET

U4250-J-Z125-12-76 287

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operand descriptions

FCT
Specifies the DIV function to be executed.

Only a direct specification is allowed for the MF=L form.

= *RESET
The DIV function RESET is used to undo changes in window pages that belong to a file
region defined by SPAN and OFFSET (for further details, see page 285).

= addr
Symbolic address of a 1-byte field containing the value for the RESET function (field
DIVPRES, see the layout of the parameter list on page 301).

= (r)
Register containing the value for the RESET function.

ID
Specifies the OPEN for which the RESET function is to be executed.

If the same parameter list is used as in the OPEN, the ID need not be specified, since the
ID of OPEN will already be in the parameter list.

If a different parameter list is used than the one for OPEN, the ID can be specified here and
be transferred to the new parameter list by using the MF=M form of the DIV macro.

ID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification.

= (r)
Register containing the address of the 8-byte field.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

DIV - RESET Macros

288 U4250-J-Z125-12-76

OFFSET
OFFSET and SPAN specify the file region (in the window) for which window pages are to
be reset to their initial state.
– OFFSET specifies the first 4K page of the file region; SPAN specifies the length of that

region in 4K pages.
– SPAN defines the number of 4-Kbyte blocks in the file region (i.e. the length of the

region).

The RESET function applies to all window pages in the file region defined by SPAN and
OFFSET.

Default value: OFFSET = 0

If no value is specified for SPAN (or SPAN = 0), the file region is selected so as to enable
the last page of the last window to be included in the region. If neither OFFSET or SPAN is
specified, all pages of all windows defined for the OPEN are taken into account.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in 4KB blocks. The value of
OFFSET is limited by the maximum size of a file in 4-KB pages minus 1:

0 Î number Î 8388606 for LARGE_FILE=*FORBIDDEN

0 Î number Î 1073741823 for LARGE_FILE=*ALLOWED

= addr
Symbolic address of a 4-byte field containing the length of the file region in 4K blocks
(binary).

= *equ
Equate that specifies the length of the file region in 4K blocks (binary). The '*' character
must precede the name of the equate.

= (r)
Register containing the length of the file region in 4K blocks (binary).

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

Macros DIV - RESET

U4250-J-Z125-12-76 289

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

RELEASE
Defines whether only modified pages are to be reset to the initial state.

Default value: RELEASE=*NO

Only a direct specification is allowed for the MF=L form.

= *NO
All modified pages are returned to the initial state.

As a result, when such a page is accessed, the corresponding page is read in from the
file if the page lies in a DISPOS=*OBJECT window. If the page lies in a window that is
defined with DISPOS=*UNCHNG, it is initialized with X'00' upon access if it has not yet
been written to file with SAVE. Otherwise, it is read from the file when accessed.

Pages in the initial state that follow the logical last page of the file are always initialized
with X'00' when accessed.

= *YES
All window pages – both modified and unmodified – in the specified region are reset to
the initial state, with the consequences described above.

= addr
Symbolic address of a 1-byte field containing a value for RELEASE (DIVPRNO |
DIVPRYES; see the layout of the parameter list on page 301).

= (r)
Register containing a value for RELEASE.

DIV - RESET Macros

290 U4250-J-Z125-12-76

SPAN
SPAN and OFFSET define the file region to which the RESET function applies.

Default value: SPAN = 0

For a description of SPAN see the description of the OFFSET operand.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value of SPAN is limited by the maximum size of a file in 4-KB pages:

0 Î number Î 8388607 for LARGE_FILE=*FORBIDDEN

0 Î number Î 1073741824 for LARGE_FILE=*ALLOWED

= addr
Symbolic address of a 4-byte field which defines the length of the file region in 4K blocks
(binary).

= *equ
Equate to define the length of the file region in 4K blocks (binary). The '*' character must
precede the name of the equate.

= (r)
Register containing the length of the file region in 4K blocks (binary).

Macros DIV - UNMAP

U4250-J-Z125-12-76 291

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DIV function: UNMAP

The UNMAP function disables a window created by MAP.

UNMAP does not result in any changes to file pages.

The state of the unmapped window pages is determined by the DISPOS operand:

– If DISPOS=*UNCHNG is specified, the pages in the window will have the same
contents before and after UNMAP, from the program's point of view. This means that all
pages that would be read from the file if accessed prior to UNMAP must be read in from
the file at the time of UNMAP, since no data can be read from the file after the window
is disabled.

– If DISPOS=*FRESH is specified, all pages of the window will be reset to the initial state.
If accessed after UNMAP, they will appear in the window initialized with X'00'.

UNMAP only evaluates the function operands described below.

DIV - UNMAP Macros

292 U4250-J-Z125-12-76

Format FCT=*UNMAP

Operation Operands

DIV

MF=L

[,FCT=

*UNMAP

addr

(r) 
 
 
 
 

]

[,SPID=
addr

(r) 
 
 

]

[,AREA=
addr

(r) 
 
 

]

[,DISPOS=

*FRESH

*UNCHNG

addr

(r) 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
D

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
D

pre 
 
 

][,MACID=
IVP

macid 
 
 

]

Macros DIV - UNMAP

U4250-J-Z125-12-76 293

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operand descriptions

AREA
Specifies the starting address of the window within the address space defined by SPID
(data space or program space if no data space is defined).

In the MF=L form, the starting address of the window can only be specified by a symbolic
address.

= addr
4-byte (symbolic) starting address of the window.

= (r)
Register containing the starting address of the window.

DISPOS
Determines the contents (state) of the window pages on disabling the window:

Default value: DISPOS = *FRESH

Only a direct specification is allowed for the MF=L form.

= *UNCHNG
The pages appear as they were before the window was disabled.

This variant could have an adverse effect on performance if pages which have never
been accessed since UNMAP are read from the file.

= *FRESH
All pages of the window are reset to their initial state. They appear initialized with X'00'.

If a parameter list that was used by a preceding *MAP function is used for
FCT=*UNMAP, it should be noted that a value will have already been entered for the
DISPOS operand. This value may need to be redefined, since DISPOS=*OBJECT is
an illegal value for UNMAP.

= addr
Symbolic address of a 1-byte field containing a value for DISPOS (DIVPFRSH |
DIVPUNCH; see parameter list, page 301).

= (r)
Register containing a value for DISPOS.

DIV - UNMAP Macros

294 U4250-J-Z125-12-76

FCT
Specifies the DIV function to be executed.

= *UNMAP
The UNMAP function disables a window created by MAP (for a detailed description of
the function, see page 291).

Only a direct specification is allowed for the MF=L form.

= addr
Symbolic address of a 1-byte field containing the value for the UNMAP function (field
DIVUNMP, see the layout of the parameter list on page 301).

= (r)
Register containing the value for the UNMAP function.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

SPID
Specifies the address space (program or data space) in which the window is located.

SPID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification of the address space.

= (r)
Register with the address of an 8-byte field containing the identification of the address
space (program or data space).

Macros DIV - CLOSE

U4250-J-Z125-12-76 295

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DIV function: CLOSE

The CLOSE function closes a file.

If windows that were defined for the OPEN still exist, they are disabled using default values
for the operands.

The CLOSE function only evaluates the function operands described below.

Format FCT=*CLOSE

Operation Operands

DIV

MF=L

[,FCT=

*CLOSE

addr

(r) 
 
 
 
 

]

[,ID=
addr

(r) 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
D

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
D

pre 
 
 

][,MACID=
IVP

macid 
 
 

]

DIV - CLOSE Macros

296 U4250-J-Z125-12-76

Operand descriptions

FCT
Specifies the DIV function to be executed.

= *CLOSE
The CLOSE function closes the file.

Only a direct specification is allowed for the MF=L form.

= addr
Symbolic address of a 1-byte field containing the value for the CLOSE function (field
DIVPCLS; see the layout of the parameter list on page 301).

= (r)
Register containing the value for the CLOSE function.

ID
Specifies the OPEN for which the CLOSE function is to be executed.

If the same parameter list is used as in OPEN, the ID need not be specified, since the ID of
the OPEN will already be in the parameter list. The ID is contained in the DIVPID field of the
parameter list.

If a different parameter list is used than the one for OPEN, the ID can be specified here and
be transferred to the new parameter list by using the MF=M form of the DIV macro.

ID cannot be specified with the MF=L form.

= addr
Symbolic address of an 8-byte field containing the identification.

= (r)
Register with the address of an 8-byte field containing the identification.

MACID
See the description under the format FCT=*OPEN on page 270.

MF
The forms of the MF operands are described in detail in the appendix (page 865).

PARAM
See the description under the format FCT=*OPEN on page 271.

PREFIX
See the description under the format FCT=*OPEN on page 271.

Macros DIV

U4250-J-Z125-12-76 297

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Return codes

Return codes are placed in the header of the parameter list. All DIV-specific return codes
are explained in the table below. Other return codes and their meanings as well as the
structure of the default header are defined by conventions applicable to all macros and are
described on page 869.

Standard
header:

The following code relating to execution of the DIV macro
is returned in the standard header
(cc=SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully.

X'01' X'0001' At least one part of the parameter list is not accessible. If the header of
the parameter list (or a portion thereof) cannot be accessed, or if the
parameter list is not aligned on a word boundary, the program will be
aborted with an error message.

X'01' X'0002' The window address specified by AREA (in MAP or UNMAP) is not
aligned on a 4K page boundary.

X'01' X'0003' For MAP, SAVE and RESET: the size of the region (SPAN, possibly in
conjunction with the specified OFFSET) results in a disk address that
is too large.
Possible cause with MAP:
the window size (SPAN) is greater than 2 Gbytes.

X'01' X'0004' For MAP, SAVE and RESET:
the OFFSET value corresponds to a disk address that is too large.

X'01' X'0005' For MAP: the DISPOS value is neither *OBJECT nor *UNCHNG.
For UNMAP: the DISPOS value is neither *FRESH nor *UNCHNG.

X'01' X'0006' The value for PFCOUNT is not in the range of 0 to 15 (MAP).

X'01' X'0007' The value for RELEASE is neither *NO nor *YES (RESET).

X'01' X'0008' The value for MODE (OPEN) is neither *INPUT, nor *INOUT or
*OUTIN.

X'01' X'0009' The value for SHARUPD (OPEN) is neither *NO, nor *WEAK or *YES.

X'01' X'000A' The value for LOCVIEW (OPEN) is neither *NONE nor *MAP.

X'01' X'000B' The value for ENV (OPEN) is neither *HOST nor *XCS.

X'01' X'000C' The value for LARGE_FILE (OPEN) is neither *ALLOWED nor
*FORBIDDEN.

X'01' X'000D' DIV is not supported on SPARC-HSI.

DIV Macros

298 U4250-J-Z125-12-76

X'40' X'0014' DIV calls from TPR are not permitted.

X'40' X'0015' An error was detected during (general) OPEN handling by DMS. The
DIVPDMSC field contains the DMS error code.

X'40' X'0016' An error was detected during (general) CLOSE handling by DMS. The
DIVPDMSC field contains the DMS error code.

X'40' X'0017' The file is already open.
The OPEN request is rejected because the MODE value and/or the
SHARUPD value of the current OPEN request, and the existing values
under which the file is opened do not permit parallel processing.

X'40' X'0018' The OPEN request is rejected due to one of the following situations:
– An OPEN mode specified in the ADD-FILE-LINK command is not

supported by DIV (e.g. OUTPUT).
– The OPEN mode specified in the ADD-FILE-LINK command

differs from the one specified by the program.
– ACCESS-METHOD=*UPAM was not specified in the ADD-FILE-

LINK command.
– An impermissible value for ACCESS-METHOD was specified in

the ADD-FILE-LINK command.
– The BUFFER-LENGTH operand in the ADD-FILE-LINK command

was explicitly set to a value not equal to 2 in the case of a new file
(MODE=*OUTIN).

– The operand BLOCK-CONTROL-INFO was not specified correctly
in the ADD-FILE-LINK command, or an attempt was made to open
an existing file that does not have the attribute BLKCTRL=NO.

X'40' X'0019' Neither a link name nor a file name is specified (OPEN).

X'40' X'001A' The file to be opened is located on a shared private disk (SPD).
Files on shared private disks are not processed by DIV.

X'40' X'001B' A window with the DISPOS=*UNCHNG attribute is not permitted for a
file opened with MODE=*INPUT (MAP).

X'40' X'001C' The privileges of the user (USER or SYSTEM) who opened the file are
not the same as those of the user calling the MAP, UNMAP, SAVE,
RESET or CLOSE function.

X'40' X'001D' The ID supplied with one of the functions MAP, UNMAP, RESET or
CLOSE to identify the OPEN is not known (any longer) by DIV.
The parameter list is possibly different from that of the OPEN and the
ID was not indicated, or the file has already been closed.

X'40' X'001E' SPID was specified but does not indicate a data space for the window,
or indicates a data space that the caller is not permitted to access
(MAP, UNMAP).

X'cc' X'bb' X'aaaa' Meaning

Macros DIV

U4250-J-Z125-12-76 299

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

X'40' X'001F' At least part of the address space specified for a window is already
being used by an existing window (MAP).

X'40' X'0020' At least part of the file region specified for a window is already mapped
in another window of the opener (MAP).

X'40' X'0021' SPAN is not specified (or SPAN=0), and cannot be determined by DIV
for window definition (MAP) because either
– the file is empty or
– the OFFSET points beyond the logical last page.

X'40' X'0022' The window area contains multiple memory classes (e.g. class 5 and
class 6 memory) (MAP).

X'40' X'0023' A page in the virtual address space has been requested as a window
page, but that page has been fixed for an I/O (MAP).

X'40' X'0024' A page in virtual address space that is intended for a window is resident
(MAP).

X'40' X'0025' A page in virtual address space that is intended for a window is marked
READ-ONLY (MAP).

X'40' X'0026' At least part of the address space that is defined for a window is not
allocated (e.g. a REQM was not executed) (MAP).

X'40' X'0027' The address space specified for a window is shareable (MAP).

X'40' X'0028' The address space specified for a window is not accessible to
nonprivileged users and the caller is not privileged (MAP).

X'40' X'0029' An internal DIV table cannot be created due to insufficient user address
space (MAP).

X'40' X'002A' The file cannot be physically extended (MAP) because
– either no more disk space is available to the user or
– a secondary allocation has not been defined for the file (operand

SPACE... SEC-ALLOC in the CREATE-FILE or MODIFY-FILE-
ATTRIBUTES command).

X'40' X'002B' An error occurred when reading a block (MAP, UNMAP).

X'40' X'002C' An error occurred when writing a block (SAVE).

X'40' X'002D' The window defined by AREA (and SPID) does not exist for the current
OPEN (UNMAP).

X'40' X'002E' No window exists for the file region defined by OFFSET and SPAN
(SAVE, RESET).

X'40' X'002F' Read-authorized users are not allowed to call SAVE.

X'cc' X'bb' X'aaaa' Meaning

DIV Macros

300 U4250-J-Z125-12-76

Explanations for the return codes

Return codes are placed in the header of the parameter list:

– The main return code is stored in a half-word with the name DIVPMRET.
– Subcode1 is stored in a byte with the name DIVPSR1.

Subcode1 describes error classes, which allow the caller to respond to them (see table
on page 869). The caller can refer both to the main code as well as to subcode1.

– Subcode2 is currently not used. It is always zero (X'00').

Return codes cannot be placed in the header if:

– the list is not assigned to the user
– the list is not aligned on a word boundary
– the list is write-protected.

The calling program is aborted with an error message (see section “DMS error codes” on
page 871) and the STXIT event for a “non-recoverable program error” is generated in such
cases.

The field names generated by the C or D forms of the macro and EQU instructions for the
return codes begin with the string DIVP by default, and can be changed using PREFIX and
MACID.

X'40' X'0030' On file access in mode SHARUPD=YES, it was detected that the file
size exceeds the value of 32 GB even though there is no permission to
exceed this value when using OPEN together with this file.

X'80' X'003C' The DIV subsystem was stopped by a command.
Subsequent OPEN requests will be rejected.

X'80' X'003E' The system address space required to create internal DIV tables is not
available (OPEN, MAP).

X'20' X'0046' Internal DIV error.

X'20' X'0047' Possibly due to an internal DIV error, a wait for the release of a locked
system resource was unsuccessful.

X'cc' X'bb' X'aaaa' Meaning

Macros DIV

U4250-J-Z125-12-76 301

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Layout of the parameter list

The following parameter list is returned by a DIV macro with MF=D:

DIV MF=D
1 MFCHK MF=D,PREFIX=D,MACID=IVP,PARAM=,
1 SVC=126,DMACID=IVP,DNAME=IVPLIST,SUPPORT=(C,D,E,L,M)
2 DIVPLIST DSECT ,
2 *,##### PREFIX=D, MACID=IVP #####
1 #INTF REFTYPE=REQUEST,INTNAME=DIV,INTCOMP=002
1 *
1 DIVPPA DS 0F BEGIN of PARAMETERAREA
1 FHDR MF=(C,DIVP),EQUATES=YES
2 DS 0A
2 DIVPFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 DIVPIFID DS 0A 0 INTERFACE IDENTIFIER
2 DIVPFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 DIVPFCT DS AL1 2 FUNCTION NUMBER
2 DIVPFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 DIVPRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 DIVPSRET DS 0AL2 4 SUB RETURN CODE
2 DIVPSR2 DS AL1 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode2 values as defined by convention:
2 DIVPR2OK EQU X'00' All correct, no additional info
2 DIVPR2NA EQU X'01' Successful, no action was necessary
2 DIVPR2WA EQU X'02' Warning, particular situation
2 DIVPSR1 DS AL1 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' - X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2 *
2 DIVPRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED

DIV Macros

302 U4250-J-Z125-12-76

2 DIVPRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'
2 DIVPRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 DIVPRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 DIVPRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 DIVPRAER EQU X'04' ALIGNMENT ERROR
2 DIVPRIER EQU X'20' INTERNAL ERROR
2 DIVPRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 DIVPRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 DIVPRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 DIVPRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 DIVPRWLR EQU X'81' " LONG "
2 DIVPRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' - X'82'
2 DIVPRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 DIVPRDH EQU X'82' SS IN DELETE / HOLD
2 *
2 DIVPMRET DS 0AL2 6 MAIN RETURN CODE
2 DIVPMR2 DS AL1 6 MAIN RETURN CODE 2
2 DIVPMR1 DS AL1 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'00XXYYYY')
2 *
2 DIVPRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 DIVPFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 * DIV-FUNCTIONS:
1 DIVPOPEN EQU 1 OPEN
1 DIVPCLS EQU 2 CLOSE
1 DIVPMAP EQU 3 MAP
1 DIVPUNMP EQU 4 UNMAP
1 DIVPSAVE EQU 5 SAVE
1 DIVPRES EQU 6 RESET
1 * DIV-MAINCODES:
1 DIVPPNAC EQU 1 PARLIST NOT ACCESSIBLE
1 DIVPIWAD EQU 2 INVALID WINDOW ADDRESS
1 DIVPISPA EQU 3 INVALID SPAN
1 DIVPIOFF EQU 4 INVALID OFFSET
1 DIVPIDSP EQU 5 INVALID DISPOS
1 DIVPIPFC EQU 6 INVALID PFCOUNT
1 DIVPIREL EQU 7 INVALID RELEASE
1 DIVPIOM EQU 8 INVALID OPEN MODE
1 DIVPISUM EQU 9 INVALID SHARUPD MODE

Macros DIV

U4250-J-Z125-12-76 303

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

1 DIVPILVM EQU 10 INVALID LOCVIEW MODE
1 DIVPIENV EQU 11 INVALID LOCKENV
1 DIVPILRF EQU 12 INVALID LARGE_FILE
1 DIVPNSPA EQU 13 DIV NOT SUPPORTED ON SPARC-HSI
1 DIVPPRVC EQU 20 PRIVILEGED DIV CALL
1 DIVPDOER EQU 21 DMS OPEN ERROR
1 DIVPDCER EQU 22 DMS CLOSE ERROR
1 DIVPICOM EQU 23 INCOMPATIBLE OPEN MODE
1 DIVPICFS EQU 24 INCOMPATIBLE FILE SPEC
1 DIVPNLNF EQU 25 NEITHER LINK NOR FILE
1 DIVPPD EQU 26 PRIVATE DISK
1 DIVPDOI EQU 27 DISPOS OPEN INCONSISTENCY
1 DIVPPRVI EQU 28 PRIV INCONSISTENCY
1 DIVPWRID EQU 29 WRONG ID
1 DIVPSIDU EQU 30 SPID UNDEFINED
1 DIVPSPOV EQU 31 SPACE OVERLAP
1 DIVPFOV EQU 32 FILE OVERLAP
1 DIVPUSNP EQU 33 UNDEF SPAN NOT POSSIBLE
1 DIVPINHM EQU 34 INHOMOG MEM
1 DIVPPFIX EQU 35 PAGE FIXED
1 DIVPRESP EQU 36 RESIDENT PAGE
1 DIVPROP EQU 37 READ ONLY PAGE
1 DIVPMNA EQU 38 MEM NOT ALLOC
1 DIVPSHRM EQU 39 SHARABLE MEMORY
1 DIVPPRSP EQU 40 PRIVILEGED SPACE
1 DIVPNOAS EQU 41 NO ADDRESS SPACE
1 DIVPALER EQU 42 ALLOC ERROR
1 DIVPRDER EQU 43 READ ERROR
1 DIVPWRER EQU 44 WRITE ERROR
1 DIVPWNF EQU 45 WINDOW NOT FOUND
1 DIVPNWIR EQU 46 NO WINDOW IN RANGE
1 DIVPSAVN EQU 47 SAVE NOT ALLOWED
1 DIVPLFNS EQU 48 LARGE_FILE NOT SPECIFIED
1 DIVPSSS EQU 60 SUBSYSTEM STOPPED
1 DIVPSOR EQU 61 SHORTAGE OF RESOURCES
1 DIVPIERR EQU 70 INTERNAL ERROR
1 DIVPTOUT EQU 71 TIME RUNOUT
1 *
1 DIVPID DS XL8 ID
1 DIVPLARF DS AL1 LARGE_FILE
1 DIVPFRBD EQU 0 LARGE_FILE=FORBIDDEN
1 DIVPALWD EQU 1 LARGE_FILE=ALLOWED
1 DIVPUNUS DS AL1 UNUSED BYTE
1 DIVPDMSC DS H DMS-CODE
1 DIVPLINK DS CL8 LINK
1 DIVPFILE DS CL54 FILE
1 DIVPOMOD DS AL1 MODE
1 DIVPINPT EQU 1 MODE=INPUT

DIV Macros

304 U4250-J-Z125-12-76

1 DIVPINOT EQU 2 MODE=INOUT
1 DIVPOUTI EQU 3 MODE=OUTIN
1 DIVPSUPD DS AL1 SHARUPD
1 DIVPSNO EQU 1 SHARUPD=NO
1 DIVPSWEA EQU 2 SHARUPD=WEAK
1 DIVPSYES EQU 3 SHARUPD=YES
1 DIVPLOCV DS AL1 LOCVIEW
1 DIVPLNON EQU 1 LOCVIEW=NONE
1 DIVPLMAP EQU 2 LOCVIEW=MAP
1 DIVPDISP DS AL1 DISPOS
1 DIVPOBJ EQU 1 DISPOS=OBJECT
1 DIVPUNCH EQU 2 DISPOS=UNCHNG
1 DIVPFRSH EQU 3 DISPOS=FRESH
1 DIVPREL DS AL1 RELEASE
1 DIVPRNO EQU 1 RELEASE=NO
1 DIVPRYES EQU 2 RELEASE=YES
1 DIVPLENV DS AL1 LOCKENV
1 DIVPHOST EQU 1 LOCKENV=HOST
1 DIVPXCS EQU 2 LOCKENV=XCS
1 DIVPSIZE DS F SIZE
1 DIVPSPID DS XL8 SPID
1 DIVPAREA DS A AREA
1 DIVPOFFS DS F OFFSET
1 DIVPSPAN DS F SPAN
1 DIVPPFC DS F PFCOUNT
1 DIVP# EQU (*-DIVPPA) LENGTH OF STRUCTURE

Macros DIV

U4250-J-Z125-12-76 305

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Examples

Example 1: Reading and updating an existing file

xxx
* Example 1: Reading and updating an existing file *
xxx
D1 DIV MF=D
*
BSP001 START
 BALR R10,0
 USING *,R10
 USING D1,R9
 LA R9,PA
xxx
* Open a file with INOUT *
xxx
 DIV MF=E,PARAM=PA
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
xxx
* Determine the file size and request pages for a window. *
* REQM supplies the starting address in R1. *
xxx
 L R3,DIVPSIZE FILE SIZE IN 4K PAGES -> R3
 REQM (R3),PARMOD=31
 LTR R15,R15
 BNZ ERROR
 LR R8,R1
xxx
* Create a window in which the pages of the file appear only after *
* an access (DISPOS=*OBJECT and LOCVIEW=*NONE are default settings). *
* A window of the same size as the file is created (OFFSET and SPAN *
* are not specified). *
xxx
 DIV MF=M,PARAM=PA,FCT=*MAP,AREA=(R8)
 DIV MF=E,PARAM=PA
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
xxx
* Write modified window pages to file. *
xxx
 DIV MF=M,PARAM=PA,FCT=*SAVE
 DIV MF=E,PARAM=PA
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR

DIV Macros

306 U4250-J-Z125-12-76

xxx
* Disable a window and close the file. *
* After the window is disabled, the pages are in the same state *
* as just before REQM. *
xxx
*
 DIV MF=M,PARAM=PA,FCT=*UNMAP,DISPOS=*FRESH
 DIV MF=E,PARAM=PA
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
*
 DIV MF=M,PARAM=PA,FCT=*CLOSE
 DIV MF=E,PARAM=PA
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
*
*
ERROR DS 0Y
*
*
PA DIV MF=L,FCT=*OPEN,LINK='TST001',MODE=*INOUT
 END

Example 2: Copying and modifying a file

xxx
* Example 2: Copying and modifying a file. *
xxx
*
D1 DIV MF=D
*
BSP002 START
 BALR R10,0
 USING *,R10
 USING D1,R9
 LA R9,PA1
xxx
* Open an existing file. *
xxx
DIV MF=E,PARAM=PA1
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
xxx
* Determine the file size and request pages for a window *
* REQM supplies the starting address in R1. *

Macros DIV

U4250-J-Z125-12-76 307

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

xxx
L R3,DIVPSIZE FILE SIZE IN 4K PAGES -> R3
 REQM (R3),PARMOD=31
 LTR R15,R15
 BNZ ERROR
 LR R8,R1
xxx
* Create a window. The pages of the file are immediately read into *
* the window (file pages appear in the window because DISPOS=*OBJECT *
* (default); the pages are read immediately because LOCVIEW=*MAP). *
* A window of the same size as the file is created (OFFSET and SPAN *
* are not specified). *
xxx
DIV MF=M,PARAM=PA1,FCT=*MAP,AREA=(R8)
 DIV MF=E,PARAM=PA1
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
xxx
* Modify window pages. *
xxx
*
*
xxx
* Disable the window and close the file. *
* The contents of the window pages are retained (DISPOS=*UNCHNG). *
xxx
*
 DIV MF=M,PARAM=PA1,FCT=*UNMAP,DISPOS=*UNCHNG
 DIV MF=E,PARAM=PA1
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
*
 DIV MF=M,PARAM=PA1,FCT=*CLOSE
 DIV MF=E,PARAM=PA1
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
*
xxx
* Open the new file. *
xxx
LA R9,PA2
 DIV MF=E,PARAM=PA2
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR

DIV Macros

308 U4250-J-Z125-12-76

xxx
* Create a window. Data remains unchanged (because DISPOS=*UNCHNG). *
* The address of the region is still in R8; the window size in R3. *
xxx
DIV MF=M,PARAM=PA2,FCT=*MAP,AREA=(R8),DISPOS=*UNCHNG,SPAN=(R3)
 DIV MF=E,PARAM=PA2
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
xxx
* Write window pages to the new file. *
xxx
DIV MF=M,PARAM=PA2,FCT=*SAVE
 DIV MF=E,PARAM=PA2
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
xxx
* Delete the window and close the file. *
xxx
DIV MF=M,PARAM=PA2,FCT=*UNMAP,DISPOS=*FRESH
 DIV MF=E,PARAM=PA2
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
*
 DIV MF=M,PARAM=PA2,FCT=*CLOSE
 DIV MF=E,PARAM=PA2
 CLI DIVPSR1,DIVPRFSP
 BNE ERROR
*
*
ERROR DS 0Y
*
*
PA1 DIV MF=L,FCT=*OPEN,LINK='TST001',LOCVIEW=*MAP
PA2 DIV MF=L,FCT=*OPEN,LINK='TST002',MODE=*OUTIN
 END

Macros DROPTFT

U4250-J-Z125-12-76 309

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DROPTFT – Release TFT entry

Macro type: type S (C form/D form/E form/L form/M form); see page 866

The DROPTFT macro releases a LOCK-FILE-LINK lock for an entry in the task file table
(TFT). If a REMOVE-FILE-LINK command or RELTFT macro call is still pending for this
entry, it is processed now, i.e. the TFT entry is deleted according to the command/macro
parameters and the private devices connected to it are released.

Format

Operation Operands

DROPTFT ,LINK = <c-string 1..8> / <var: char:8>

,VERSION = <integer 1..1>

,MF = C / D / E / L / M

,PARAM = <addr> / <(r)>

,PREFIX = D / <pre>

,MACID = MAD / <macid>

DROPTFT Macros

310 U4250-J-Z125-12-76

Operand descriptions

LINK
File link name of the TFT entry to be released.

Default value: The first TFT entry with the link name *BLANK is released.

= <c-string 1..8>
File link name (specified in quotes).

= <var: char: 8>
Name of a variable that contains the file link name.

MACID
Only evaluated with MF=C/D/M; this defines the second, third and fourth characters of the
field names and equates that are generated in the data area when the macro is expanded.

Default value: MACID = MAD

= macid
“macid” is a three-character string that defines the second, third and fourth characters
of the generated field names and equates.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

Default value: Operand list and SVC as previously

PARAM
Designates the address of the operand list and is only evaluated in conjunction with MF=E
(see also page 865).

= addr
The symbolic address (name) of the operand list.

= (r)
The number of the register containing the address of the operand list. The register must
be loaded with this address value before calling the macro.

Macros DROPTFT

U4250-J-Z125-12-76 311

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

PREFIX
Only evaluated with MF=C/D/M; this defines the first character of the field names and
equates that are generated in the data area when the macro is expanded.

Default value: PREFIX = D

= pre
Single-character prefix with which the field names and equates generated by the
assembler should begin.

VERSION = <integer 1..1>
Control operand; controls generation.

Programming notes

The error is returned in the standard header of the parameter area. Program termination
with STXIT can be initiated in the following cases:
– parameter address incorrect (e.g. shorter than the standard header)
– parameter address not aligned on a word boundary
– UNIT or FUNCTION in header incorrect
– header is write-protected

Return codes

Standard
header:

The following code relating to execution of the DROPTFT
macro is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'02' X'00' X'0662' Link name missing or invalid. No action necessary

X'40' X'06FF' BCAM connection not operational or is closed

X'01' X'xxxx' RFA not supported for version < 12

EAM Macros

312 U4250-J-Z125-12-76

EAM – Process EAM files

Macro type: R type

All processing requests addressed to the EAM access method are handled via the EAM
macro. The operation to be performed is determined by the contents of the MFCB.

Format

Operand descriptions

mfcbaddr
Address of the MFCB.

(1)
The address of the MFCB is stored in register 1.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The macro is expanded in accordance with the 24-bit interface format. The object code
can thus run only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

Programming note

The EAM macro overwrites the contents of registers 0, 1, 14 and 15.

Operation Operands

EAM
mfcbaddr

(1) 
 
 

[,PARMOD=
24

31 
 
 

]

Macros EAM

U4250-J-Z125-12-76 313

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Return codes

If PARMOD=24, the return code is placed in register 15; for PARMOD=31, it is placed in the
IDMRETCO field in the MFCB.

Return code Meaning

0 Operation completed successfully

4 Operation not completed successfully; check sense byte (IDMFEB)

8 After check operation: checked I/O operation not yet terminated

ELIM Macros

314 U4250-J-Z125-12-76

ELIM – Eliminate record

Macro type: R for PARMOD=24
O for PARMOD=31

The ELIM macro eliminates (deletes) a record from an ISAM file. The second operand
(LAST/KEY/(0)) indicates which record is to be eliminated.

Format

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

(1)
The FCB address is stored in register 1.

LAST
The last record made available by one of the macros GET, GETFL, GETKY and GETR is
processed (default value).

With the exception of OSTAT, no other ISAM macro which refers to the same FCB may be
executed between the macro GET, GETFL, GETR or GETKY and the ELIM macro with
function LAST. If SHARUPD=YES is specified, the preceding read macro must also set a
lock and this lock must still be active when the ELIM macro is issued, i.e. no action, even
for another FCB, which would cancel the lock may be executed.

Operation Operands

ELIM

fcbaddr

(r) 
 
 

[,

LAST

KEY

(0) 
 
 
 
 

][,PARMOD=
24

31 
 
 

]

Macros ELIM

U4250-J-Z125-12-76 315

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

KEY
The key of the record to be deleted is located at the address defined by KEYARG in the
FCB.

If the specified key does not exist, the user program is continued at the address NOFIND
(see page 398). If the file contains several records with the same key, the first of these
records is eliminated.

(0)
The contents of register 0 indicate which record is to be processed:
– If the address in register 0 is not the FCB address, the function “KEY” is executed.
– If the address in register 0 is the FCB address, the “LAST” function is initiated, i.e. the

last record made available is deleted.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space (24-bit addressing
only).

= 31
The object code generated can run in the 2-Gb address space (24-bit or 31-bit
addressing).

Programming note

The ELIM macro overwrites the contents of registers 0, 1, 14 and 15.

ENCFILE Macros

316 U4250-J-Z125-12-76

ENCFILE – Convert unencrypted file into encrypted filen

Macro type: type S (E Form/M Form/L Form/C Form/D Form) (see page 866)

The ENCFILE macro converts an unencrypted file into an encrypted file.

File encryption with a crypto password enables the contents of a file to be protected against
unauthorized access – even against people with TSOS privilege. However, file encryption
does not protect against deletion, overwriting or destruction of the file contents and cannot
replace file protection (e.g. by a write password).

The encryption method used is taken from the class-2 system parameter FILECRYP.

After ENCFILE has run all encryption attributes (procedure and check string for crypto
password) are entered in the catalog entry and the read and execute passwords are
deleted.

Only disk files on pubsets can be encrypted.

When PAM files are encrypted, the last-byte pointer is incremented to the block boundary.

File generations

ENCFILE cannot be used for individual file generations but only for complete file generation
groups. Within a file generation group all generations with the exception of tape generations
have the same encryption attributes as the group entry.

Macros ENCFILE

U4250-J-Z125-12-76 317

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Format

Operand descriptions

PATHNAM
Specifies the name of the file which is to be encrypted.

The file to be encrypted must satisfy the following requirements:
– It must be unencrypted.
– It must already have a catalog entry.
– The pubset on which it is cataloged must be available locally.
– It may not be located on a private disk.
– It may not have a tape type.
– It may not be located under the TSOS user ID on the home pubset.

=<c-string 1..54: filename 1..54>
Fully qualified path name of the file.

=<var: char:54>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the file’s path name is stored.

Operation Operands

ENCFILE ,PATHNAM=<c-string 1..54: filename 1..54> / <var: char:54>

.CRYPASS=<c-string 1..8: filename 1..8> / <var: char:8>

,REFFILE=<c-string 1..54: filename 1..54> / <var: char:54>

,EQUATES=YES / NO

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M

,PREFIX=D / <pre>

,MACID=MAE / <macid>

ENCFILE Macros

318 U4250-J-Z125-12-76

CRYPASS = password
This operand may not be specified together with the REFFILE operand.
Explicit specification of the crypto password which is needed for all accesses to the
decrypted file contents. Instead of being specified here, the crypto password can also be
taken over from an encrypted reference file (see the REFFILE operand).

When a user ID is entered in the class-2 system parameter FREFCRYP, CRYPASS may
only be specified if the file specified under PATHNAM is located on this user ID.

=<c-string 1..8: filename 1..8>
Crypto password.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the crypto password is stored.

REFFILE = filename
Encrypted reference file from which the crypto password is taken over.

The reference file’s crypto password must be entered in the calling task’s crypto password
table. If REFFILE is specified, CRYPASS may not be specified. If REFFILE is not specified,
CRYPASS must be specified.

=<c-string 1..54: filename 1..54>
Fully qualified path name of the reference file.

=<var: char:54>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the reference file’s path name
is stored.

EQUATES
Specifies whether equates are also to be generated for the values of the parameter area
fields when the parameter area is expanded.

= YES
Equates are also generated for the values of the parameter area fields when the
parameter area is expanded.

= NO
No equates are generated for the values of the parameter area fields when the
parameter area is expanded.

Macros ENCFILE

U4250-J-Z125-12-76 319

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Example

:
MVC ENCFMFC(XMAE#),ENCFMFL
ENCFILE MF=M,PREFIX=X,PATHNAM='UMSATZ.3.QUARTAL.2004'
ENCFILE MF=E,PARAM=ENCFMFC
:
ENCFMFC ENCFILE MF=C,PREFIX=X
ENCFMFL ENCFILE MF=L,CRYPASS='KROKODIL'
:

Programming notes

1. Before the layout of the parameter area is generated the standard header must be
cleared.

2. All RESERVED fields in the parameter area must be deleted with binary zeros.

3. The caller is responsible for the consistency of the parameter area whenever modifica-
tions are made to the parameter area without with the aid of the GCs.

4. In the event of a nonprivileged call (function status TU) register 1 points to the
parameter area.

5. The names in the parameter area are not converted from lower- to upper-case letters
while the function is executed. In the case of GC expansion, on the other hand,
conversion from lower- to upper-case letters can take place, depending on the compiler
setting.

ENCFILE Macros

320 U4250-J-Z125-12-76

Notes on function execution

– File locks and file protection attributes which forbid write access to the catalog entry or
the content of a file thus also prevent conversion of the file using ENCFILE.

– Conversion of a file with ENCFILE requires the calling task to have ownership rights for
the file. Conversion therefore takes place when:

– the file is under the user ID of the calling task.
– the calling task is running under a user ID with TSOS privilege.
– the user ID of the calling task is co-owner of the file and the file is not temporary.

– Conversion of the encrypted file is logged with SAT.
The AUDIT attribute output here is taken from the catalog entry of the file to be
converted (see the CREATE-FILE command, AUDIT operand, in the “Commands”
manual [3]).

– Additional functions for tasks with TSOS privilege:
If the calling task has TSOS privilege, the following additional functions are possible:

– Temporary files which do not belong to the calling task but to another task can also
be specified.

– Temporary files can also be created on a pubset other than the default pubset of the
user ID. (These are not deleted automatically when the calling task terminates.)

– RFA:
ENCFILE is rejected if the file to be converted can only be accessed via RFA.

– Help file:
When converting with ENCFILE a help file is created and then automatically deleted
when the function has been completed. The converted file content is written to the help
file. The help file needs as much disk storage space as the file to be converted.
The file name of the help file has the following format:
S.DMS.<tsn>.<date><time>.CRYPTO

Macros ENCFILE

U4250-J-Z125-12-76 321

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Return codes

The return code is returned in the standard header of the parameter list. The standard
header may not be located in the read-only area, otherwise the program is terminated.

Standard
header:

The following return code concerning the execution of
the ENCFILE macro is transferred in the standard
header
(cc = SUBCODE2, bb = SUBCODE1, aaaa =
MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Erläuterung

X'00' X'00' X'0000' No error

X'01' X'0554' Format of the file name not permitted

X'01' X'0576' a) Incorrect operand combination
b) Undeleted UNUSED fields

X'20' X'0578' Internal error when checking the access rights

X'82' X'0594' Not enough virtual memory available

X'20' X'05C7' Internal error in DMS

X'01' X'05CB' Incorrect/inadmissible first file name

X'40' X'05CF' Password not in password table

X'20' X'05EC' Internal error in crypto password handling

X'40' X'05FD' File is write-proteected

X'40' X'0609' Action not permitted for system file

X'40' X'060D' Incorrect file name specified for reference file

X'40' X'0663' Encryption of the file not permitted

X'40' X'0666' File protection prevents access

X'40' X'0667' File cannot be used as reference file

X'02' X'00' X'0669' Protection attribute changed implicitly

X'00' X'40' X'066A' Crypto password cannot be used

X'40' X'066D' Crypto password specification has been restricted

X'00' X'066E' Use help file

X'01' X'06C8' Attribute not permissible for file generation

X'01' X'FFFF' Wrong function number in standard header

X'03' X'FFFF' Wrong version number in standard header

ERASE Macros

322 U4250-J-Z125-12-76

ERASE – Erase files

Macro type: type S (E form/L form/D form); see page 866

Using the ERASE macro, the user can erase his/her own temporary or permanent files, file
generation groups or file generations, depending on the selection criteria specified in the
command. Furthermore, the user can release storage space and export files (= delete their
catalog entries). The operands of the ERASE macro can be divided into five groups which
correspond to the various functional levels (see table on page 323).

Selection operands

By means of the selection operands, the user specifies which files or catalog entries are to
be processed, using attributes stored in the catalog entries as selection criteria. For this
purpose, some operands of the FSTAT macro are integrated in the ERASE macro.
If a selection operand is omitted, the files/catalog entries to be processed are selected
without taking that selection criterion into account.

File protection operands

File protection operands make it unnecessary for the user to reset the protection attributes
in order to erase files for which file protection attributes such as passwords, retention
period, etc. are defined.

Macro execution

Action operands control the internal execution of the ERASE macro. The user can specify
the scope for erasure and also define conditions for erasure.

Control operands permit the user to define, to a certain degree, his/her own user interface.
(S)he can, for example, have a log printed or respond to control questions in a dialog.

Macro generation

Assembler operands control how the macro is generated. The VERSION operand, for
example, controls the generation of the operand list.

Source compatibility is ensured for existing programs since the new format VERSION=3
fully covers the functions of the old formats VERSION=0/1/2. The only exception to this is:
if the generated operand list is modified in the program, the program must be re-assembled.

Files protected by an ACL

If a file is protected by an ACL then it can only be erased by the file owner or the system
administrator (user ID with the TSOS privilege) if the operand IGNORE=*ACCESS is
specified.

Macros ERASE

U4250-J-Z125-12-76 323

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Access control using ACL has not been supported since SECOS V4.0. Files with ACL
protection should therefore be protected by GUARDS. GUARDS protection “overrides”
ACL protection and makes the file available to the file owner once again (and to all the
individuals to whom the owner has permitted access).

Functional overview

Operand Operand value Selection criterion

Selection – file name

*DUMMY Dummy file

pathname Path name (fully qualified, partially qualified,
wildcards)

prefix Temporary user files

*SYSid System files, wildcards permitted

* EAM object module file

Selection – file type

BLKCTRL NONE

PAMKEY/DATA/DATA2K/
DATA4K/NO/NK/NK2/NK4

Catalog entries of unopened files

File format

FCBTYPE NONE

ISAM/SAM/BTAM/PAM

Catalog entries of unopened files

Access method

FILTYPE *ANY/*BS2000/*NODE File type on Net-Storage: BS2000 file or node file

POS AFTER/BEFORE In conjunction with TYPE=FGG; specifies the file
generations to be processed

TYPE FILE

FGG

PLAM

Files, not FGGs or file generations

File generations or FGGs

PLAM libraries

WORKFIL *NO/*YES Work files

ERASE Macros

324 U4250-J-Z125-12-76

Selection – volume

STOTYPE *PUBSPACE/*NETSTOR Storage type

SUPPORT PUBLIC

PRDISC

TAPE

Files on public disks

Files on private disks

Tape files

VOLSET Volume set

VOLUME VSN of the volume

Selection – data security and protection

ACCESS READ/WRITE Write protection

ACL YES/NO ACL protection

AVAIL *STD/*HIGH Availability

BACKUP A/B/C/D/E Backup level

BASACL NONE/YES BASIC-ACL protection

ENCRYPT ANY/NONE/AES/DES Encrypted files

GROUPAR NO-ACCESS/access-list Access rights of the user group

GUARDS (READ...,WRITE...,EXEC...) GUARDS protection

OTHERAR NO-ACCESS/access-list Access rights of the others group

OWNERAR NO-ACCESS/access-list Access rights of the owner

PASS NONE
EXPASS
RDPASS
WRPASS

Password protection

PROTACT ANY/LEVEL-0/
LEVEL-1/LEVEL-2

Protection level of the activated access control
method

SHARE NO/YES/SPECIAL Shareability

Selection – storage space (disk files)

EXTENTS Number of extents

FSIZE Size of reserved but unused storage space

LASTPAG Number of PAM pages used

RELSPAC Lock preventing release of storage space

SIZE Size of reserved storage space

Selection – storage space (tape files)

BLKCNT Number of blocks in the file on tape

Operand Operand value Selection criterion

Macros ERASE

U4250-J-Z125-12-76 325

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Selection – date and time entries

CRDATE Date and time of creation

DELDATE DELETION date and time (implicit: retention
period)

EXDATE Expiration date and time (implicit: retention period)

LADATE Date and time of last access

LCDATE Date and time of last write access

TIMBASE *UTC/*LTI Time base of date entries

Selection – HSMS

MIGRATE ALLOWED/
INHIBIT/
FORBIDDEN

Migration allowed/
briefly allowed/
not allowed

SLEVEL S0/S1/S2 Storage level

S0MIGR *ALLOWED/*FORBIDDEN Migration allowance

Selection – performance and I/O attributes

DISKWR IMMEDIATE/BY-CLOSE Time at which data is written back to disk

IOPERF STD/HIGH/VERY-HIGH Performance attribute

IOUSAGE RDWRT/WRITE/READ Type of I/O operation

Selection – file status

STATE NOCLOS
CLOSED
CACHED
NOT-CACHED
CACHE-NOT-SAVED
REPAIR-NEEDED
DEFECT-REPORTED
OPEN-ALLOWED
NO-OPEN-ALLOWED

Current status of the file

Selection – coding

CCS Code table (coded character set)

Selection – metainformation

ADMINFO *NONE/<c-string 1..8> System administrator metainformation

USRINFO *NONE/<c-string 1..8> User metainformation

Operand Operand value Selection criterion

ERASE Macros

326 U4250-J-Z125-12-76

Selection – SM pubset

MANCLAS *NONE/<c-string 1..8> Management class

PREFORM Intended file format on SM pubsets

STOCLAS *NONE/<c-string 1..8> Storage class

File protection – file protection operands

IGNORE omitted

ACCESS

EXDATE

RDPASS
WRPASS
EXPASS

Defined protection attributes are evaluated

The protection attribute ACCESS=READ,
BASIC-ACL, ACL or GUARDS is ignored

Retention periods are ignored

For system administration only:
Dialog for change of user ID

PASSWORD omitted

password

Password protection is evaluated

The password protection defined by the specified
password is ignored

Macro execution – action operands

CATALOG Files on private volumes are exported

DATA Logical erasure: the data-specific attributes of the
file are deleted, the catalog entry updated accord-
ingly and the allocated storage space is retained

DATA-KEEP-
ATTR

Logical erasure as with DATA, but the data-specific
attributes are retained

DELETE-OR-
EXPORT

Files on private volumes and node files on Net-
Storage volumes are exported, files on public disks
or on Net-Storage volumes are deleted

DESTROY The catalog entry is deleted, the storage space is
released and overwritten

MOUNT Specifies, for files on private disks, whether all
affected disks must be online

SPACE Only storage space is released, the catalog entry is
retained

SPACE-
CATALOG

The catalog entry is deleted and storage space
released

Operand Operand value Selection criterion

Macros ERASE

U4250-J-Z125-12-76 327

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Macro execution – control operands

CHECK NO

MULTIPLE

ERROR

PVS

SINGLE

USERID

No user intervention permitted
(default value for procedures and batch jobs)

Dialog when the catalog or user ID is changed if
“pathname” was not fully qualified (default value for
interactive mode)

Dialog if a user-correctable error occurs

Dialog when the catalog ID is changed

The user decides, in a dialog, whether each
selected file is to be processed by the current
ERASE macro

For system administration only:
Dialog for change of user ID

LIST NO/YES [Do not] log erasure on SYSOUT

NOSTEP errcode Via the DMS error code, the user can specify which
errors are not to trigger the spin-off mechanism

Macro generation – assembler operands

MF Macro generation (operand list/SVC/DSECT)

PREFIX prefix Call-specific prefix

VERSION 0 Macro format for BS2000 versions < V9.5A (see
table “Variations in versions – VERSION=0/1/2” on
page 387)

VERSION 1 Macro format for BS2000 Versions V9.5A and
V10.0A (see table “Variations in versions –
VERSION=0/1/2” on page 387)

VERSION 2 Macro format as of BS2000/OSD-BC V1.0 (see
“Macro format and operand descriptions” below)

VERSION 3 Macro format as of BS2000/OSD-BC V3.0 (see
“Macro format and operand descriptions” below)

Operand Operand value Selection criterion

ERASE Macros

328 U4250-J-Z125-12-76

Operand overview

Operand Operand value Function

*DUMMY Selection operand dummy file

pathname Selection operand - path name (fully qualified, partially
qualified, wildcards)

prefix Selection operand - temporary user files

*SYSid Selection operand - system files, wildcards permitted

* Selection operand - EAM object module file

CATALOG Files on private volumes are exported

DATA Logical erasure: the data-specific attributes of the file are
deleted, the catalog entry updated accordingly and the
allocated storage space is retained

DATA-KEEP-
ATTR

Logical erasure as with DATA, but the data-specific attributes
are retained

DELETE-OR-
EXPORT

Files on private volumes and node files on Net-Storage
volumes are exported, files on public disks or on Net-Storage
volumes are deleted

DESTROY The catalog entry is deleted, the storage space is released
and overwritten

MOUNT Specifies, for files on private disks, whether all affected disks
must be online

SPACE Only storage space is released, catalog entry is retained

SPACE-
CATALOG

The catalog entry is deleted and storage space released

ACCCNT Selection operand - access counter

ACCESS READ/WRITE Selection operand - write protection

ACL YES/NO Selection operand - ACL protection

ADMINFO *NONE/
<c-string 1..8>

Selection operand - system administrator metainformation

AVAIL *STD/*HIGH Selection operand - availability

BACKUP A/B/C/D/E Selection operand - backup level

BASACL NONE/YES Selection operand - BASIC-ACL protection

BLKCNT Selection operand - number of blocks in the file on tape

BLKCTRL NONE

PAMKEY/DATA/
DATA2K/DATA4K/
NO/NK/NK2/NK4

Selection operand - catalog entries of unopened files

File format

Macros ERASE

U4250-J-Z125-12-76 329

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

CCS Selection operand - code table
(coded character set)

CHECK NO

MULTIPLE

ERROR

PVS

SINGLE

USERID

No user intervention permitted (default value for procedures
and batch jobs)

Dialog when the catalog or user ID is changed if “pathname”
was not fully qualified (default value for interactive mode)

Dialog if a user-correctable error occurs

Dialog when the catalog ID is changed

The user decides, in a dialog, whether each selected file is to
be processed by the current ERASE macro

For system administration only:
dialog for change of user ID

Specify which errors are not to trigger the spin-off mechanism

CRDATE Selection operand - date and time of creation

DELDATE Selection operand - DELETION date and time
(implicit: retention period)

DISKWR IMMEDIATE/
BY-CLOSE

Selection operand - time at which data is written back to disk

EXDATE Selection operand - expiration date and time
(implicit: retention period)

EXTENTS Selection operand - number of extents

FCBTYPE NONE

ISAM/SAM/
BTAM/PAM

Selection operand - catalog entries of unopened files

Access method

FILTYPE *ANY/*BS2000/
*NODE

Selection operand – file type on Net-Storage (BS2000 file or
node file)

FSIZE Selection operand - size of reserved but unused storage
space

GROUPAR NO-ACCESS/
access-list

Selection operand - access rights of the user group

GUARDS (READ...,
WRITE...,
EXEC...)

Selection operand - GUARDS protection

Operand Operand value Function

ERASE Macros

330 U4250-J-Z125-12-76

IGNORE omitted

ACCESS

EXDATE

RDPASS
WRPASS
EXPASS

Defined protection attributes are evaluated

The protection attribute ACCESS=READ, BASIC-ACL, ACL
or GUARDS is ignored

Retention periods are ignored

For system administration only:
the defined password is ignored

IOPERF STD/HIGH/
VERY-HIGH

Selection operand - performance attribute

IOUSAGE RDWRT/WRITE/
READ

Selection operand - type of I/O operation

KEEPACL For system administration only:
Access list deletion (ACL)

LADATE Selection operand - date and time of last access

LASTPAG Selection operand - number of PAM pages used

LCDATE Selection operand - date and time of last write access

LIST NO/YES [Do not] log erasure on SYSOUT

MANCLAS *NONE/
<c-string 1..8>

Selection operand - management class

MF Macro generation (operand list/SVC/DSECT)

MIGRATE ALLOWED/
INHIBIT/
FORBIDDEN

Selection operand - migration allowed/
briefly allowed/
not allowed

NOSTEP errcode Via the DMS error code, the user can specify which errors are
not to trigger the spin-off mechanism

OTHERAR NO-ACCESS/
access-list

Selection operand - access rights of the others group

OWNERAR NO-ACCESS/
access-list

Selection operand - access rights of the owner

PASS NONE
EXPASS
RDPASS
WRPASS

Selection operand - password protection

Operand Operand value Function

Macros ERASE

U4250-J-Z125-12-76 331

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

PASSWORD omitted

password

Password protection is evaluated

The password protection defined by the specified password is
ignored

POS AFTER/BEFORE Selection operand - in conjunction with TYPE=FGG;
specifies the file generations to be processed

PREFIX prefix Call-specific prefix

PREFORM Selection operand - intended file format on SM pubsets

PROTACT ANY/LEVEL-0/
LEVEL-1/LEVEL-2

Selection operand - protection level of the activated access
control method

RELSPAC Selection operand - lock preventing release of storage space

SHARE NO/YES/SPECIAL Selection operand - shareability

SIZE Selection operand - size of reserved storage space

SLEVEL S0/S1/S2 Selection operand - storage level

STATE NOCLOS
CLOSED
CACHED
NOT-CACHED
CACHE-NOT
-SAVED
REPAIR-NEEDED
DEFECT
-REPORTED
OPEN-ALLOWED
NO-OPEN
-ALLOWED

Selection operand - current status of the file

STOCLAS *NONE/
<c-string 1..8>

Selection operand - storage class

STOTYPE *PUBSPACE/
*NETSTOR

Selection operand - storage type

SUPPORT PUBLIC

PRDISC

TAPE

Selection operand - files on public disk

Files on private disk

Tape volume

S0MIGR *ALLOWED/
*FORBIDDEN

Selection operand - migration allowance

TIMBASE *UTC/*LTI Selection operand - time base of date entries

Operand Operand value Function

ERASE Macros

332 U4250-J-Z125-12-76

TYPE FILE

FGG

PLAM

Selection operand - files, not FGGs or file generations

File generations or FGGs

PLAM libraries

USRINFO *NONE/
<c-string 1..8>

Selection operand - user metainformation

VERSION 0

1

2

3

Macro format for BS2000 versions < V9.5A
(see table “Variations in versions – VERSION=0/1/2” on
page 387)

Macro format for BS2000 versions V9.5A and V10.0A
(see table “Variations in versions – VERSION=0/1/2” on
page 387)

Macro format as of BS2000/OSD-BC V1.0 (see Macro format
and operand descriptions)

Macro format as of BS2000/OSD-BC V3.0 (see Macro format
and operand descriptions)

VOLSET Selection operand - volume set

VOLUME Selection operand - VSN of the volume

WORKFIL *NO/*YES Selection operand - work files

Operand Operand value Function

Macros ERASE

U4250-J-Z125-12-76 333

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Format

The macro format represented below contains all the operands that are supported as of
BS2000/OSD-BC V3.0. In order to generate this format, VERSION=3 must be specified.

Source code compatibility for existing programs is ensured, since the new format
VERSION=3 completely covers the functions of the old formats VERSION=0/1/2. However,
an operand list generated in the program can only be changed if the program is
reassembled with the updated macro.

– All operands/operand values that were supported up to and including BS2000 Version
V2.0A may be used in the macro format with VERSION=2.

– All operands/operand values that were supported up to and including BS2000 Version
V10.0A may be used in the macro format with VERSION=1.

– Operands/operand values that were supported up to and including BS2000 Version
V9.0A may be used in the macro format with VERSION=0.

The table “Variations in versions – VERSION=0/1/2” on page 387 shows which operands/operand
values are supported with VERSION=2/1/0.

In the format, the representation of operands for which a list of operand values can be
specified has been simplified. The list is shown as an additional value (list-of-operand) in
the format and should be interpreted as follows:

– several operand values can be specified in the form of a list:
(element1, element2, ...)

– if only one operand value is specified, i.e. the list consists of only one element, the
parentheses may be omitted: element or (element).

ERASE Macros

334 U4250-J-Z125-12-76

Operation Operands

ERASE

(Teil 1 von 11)

[

pathname
prefix
*
*SYSid
*DUMMY

][,

SPACE-CATALOG

SPACE

DATA

DATA-KEEP-ATTR

CATALOG

DELETE-OR-EXPORT

DESTROY

[,ACCCNT=

ANY

nmbr

(nmbr[,])
(,nmbr)
(nmbr1,nmbr2)

 
 
 
 
 
 
 
 
 

]

[,ACCESS=

ANY

READ

WRITE 
 
 
 
 

]

[,ACL=

ANY

YES

NO 
 
 
 
 

]

[,ADMINFO=

*ANY

*NONE

<c-string 1..8> 
 
 
 
 

]

[,AVAIL=

*ANY

*STD

*HIGH 
 
 
 
 

]

Macros ERASE

U4250-J-Z125-12-76 335

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operation Operands

(Teil 2 von 11)

[,BACKUP=

ANY

A

B

C

D

E

(list-of-backup)
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,BASACL=

ANY

NONE

YES 
 
 
 
 

]

[,BLKCNT=

ANY

nmbr
(nmbr[,])
(,nmbr)

(nmbr1,nmbr2)
 
 
 
 
 
 
 
 
 

]

[,BLKCTRL=

ANY

PAMKEY
DATA4K

DATA2K

DATA

NO
NONE
NK4

NK2
(list-of-blkctrl)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,CCS=

*ANY

*NONE

ccs-name 
 
 
 
 

]

ERASE Macros

336 U4250-J-Z125-12-76

Operation Operands

(Teil 3 von 11)

[,CHECK=

NO

STD

MULTIPLE

ERROR

PVS

SINGLE

USERID
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,CRDATE=

ANY

NONE

date

date(time[,])

date(time1,time2)

(date[,])

(date(time)[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,DELDATE=

*ANY

*NONE

date

date(time[,])

date(time1,time2)

(date[,])

(date(time)[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

Macros ERASE

U4250-J-Z125-12-76 337

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operation Operands

(Teil 4 von 11)

[,DISKWR=

ANY

IMMEDIATE

BY-CLOSE 
 
 
 
 

]

[,ENCRYPT=

*ANY

*NONE

*AES

*DES

(list-of-encrypt)
 
 
 
 
 
 
 
 
 

]

[,EXDATE=

ANY

NONE

date

date(time[,])

date(time1,time2)

(date[,])

(date(time)[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,EXTENTS=

ANY

nmbr

(nmbr[,])

(nmbr1,nmbr2) 
 
 
 
 
 
 

]

[,FCBTYPE=

ANY

ISAM

BTAM

SAM

PAM

NONE

(list-of-fcbtype)
 
 
 
 
 
 
 
 
 
 
 
 
 

]

ERASE Macros

338 U4250-J-Z125-12-76

Operation Operands

(Teil 5 von 11)

[,FILTYPE=

*ANY

*BS2000

*NODE 
 
 
 
 

]

[,FSIZE=

ANY

SIZE

nmbr

(nmbr[,])

(nmbr)

(nmbr1,nmbr2)
 
 
 
 
 
 
 
 
 
 
 

]

[,GROUPAR=

ANY

NO-ACCESS

list of– groupar– 
 
 
 
 

]

[,GUARDS=

*ANY

*NONE

*YES

([READ=

*ANY

*NONE

fname 
 
 
 
 

][,WRITE=

*ANY

*NONE

fname 
 
 
 
 

][,EXEC=

*ANY

*NONE

fname 
 
 
 
 

])

 
 
 
 
 
 
 
 
 
 
 

]

[,IGNORE=

ANY

ACCESS

EXDATE

RDPASS

WRPASS

EXPASS

(list-of-ignore)
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,IOPERF=

ANY

STD
HIGH
VERY-HIGH
(list-of-ioperf)

 
 
 
 
 
 
 
 
 

]

Macros ERASE

U4250-J-Z125-12-76 339

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operation Operands

(Teil 6 von 11)

[,IOUSAGE=

ANY

RDWRT
WRITE
READ
(list-of-iousage)

 
 
 
 
 
 
 
 
 

]

[,KEEPACL=
*NO

*YES 
 
 

]

[,LADATE=

ANY

NONE

date

date(time[,])

date(time1,time2)

(date(time[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,LASTPAG=

ANY

nmbr
(nmbr[,])
(,nmbr)

(nmbr1,nmbr2)
 
 
 
 
 
 
 
 
 

]

ERASE Macros

340 U4250-J-Z125-12-76

Operation Operands

(Teil 7 von 11)

[,LCDATE=

ANY

NONE

date

date(time[,])

date(time1,time2)

(date[,])

(date(time)[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,LIST=
ERRORS-TO-SYSOUT

(area,len) 
 
 

]

[,MANCLAS=

*ANY

*NONE

<c-string 1..8> 
 
 
 
 

]

[,MIGRATE=

ANY

ALLOWED

INHIBIT

FORBIDDEN

(list-of-migrate)
 
 
 
 
 
 
 
 
 

]

[,MOUNT=
FIRST-DISK

ALL-DISKS 
 
 

]

[,NOSTEP=
errcode

(list-of-nostep) 
 
 

]

Macros ERASE

U4250-J-Z125-12-76 341

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operation Operands

(Teil 8 von 11)

[,OTHERAR=

ANY

NO-ACCESS

list of– otherar– 
 
 
 
 

]

[,OWNERAR=

ANY

NO-ACCESS

list of– ownerar– 
 
 
 
 

]

[,PASS=

ANY

NONE
EXPASS

RDPASS
WRPASS
(list-of-pass)

 
 
 
 
 
 
 
 
 
 
 

]

[,PASSWD=
password

(list-of-passwd) 
 
 

]

[,POS=
AFTER

BEFORE 
 
 

]

[,PREFORM=

*ANY

*NONE

*K

*NK2

*NK4
(list-of-preform)

 
 
 
 
 
 
 
 
 
 
 

]

[,PROTACT=

ANY

LEVEL-0

LEVEL-1
LEVEL-2
(list-of-protact)

 
 
 
 
 
 
 
 
 

]

ERASE Macros

342 U4250-J-Z125-12-76

Operation Operands

(Teil 9 von 11)

[,RELSPAC=

ANY

ALLOWED

IGNORED

(list-of-relspac) 
 
 
 
 
 
 

]

[,SHARE=

ANY

YES
NO

SPECIAL
(list-of-share)

 
 
 
 
 
 
 
 
 

]

[,SIZE=

ANY

FSIZE

nmbr

(nmbr[,])

(,nmbr)

(nmbr1,nmbr2)
 
 
 
 
 
 
 
 
 
 
 

]

[,SLEVEL=

ANY

S0
S1
S2
(list-of-slevel)

 
 
 
 
 
 
 
 
 

]

Macros ERASE

U4250-J-Z125-12-76 343

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operation Operands

(Teil 10 von 11)

[,STATE=

ANY

NOCLOS

CLOSED

CACHED

NOT-CACHED

CACHE-NOT-SAVED

OPEN-ALLOWED

NO-OPEN-ALLOWED

REPAIR-NEEDED

DEFECT-REPORTED

(list-of-state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,STOCLAS=

*ANY

*NONE

<c-string 1..8> 
 
 
 
 

]

[,STOTYPE=

*ANY

*PUBSPACE

*NETSTOR 
 
 
 
 

]

[,SUPPORT=

ANY

PUBLIC
PRDISC
TAPE
(list-of-support)

 
 
 
 
 
 
 
 
 

]

[,S0MIGR=

*ANY

*ALLOWED

*FORBIDDEN

(list-of-s0migr) 
 
 
 
 
 
 

]

[,TIMEBASE=
*UTC

*LTI 
 
 

]

ERASE Macros

344 U4250-J-Z125-12-76

Operation Operands

(Teil 11 von 11)

[,TYPE=

ANY

FILE
FGG
PLAM
(list-of-type)

 
 
 
 
 
 
 
 
 

]

[,USRINFO=

*ANY

*NONE

<c-string 1..8> 
 
 
 
 

]

[,VOLSET=
*ANY

<c-string 1..4> 
 
 

]

[,VOLUME=
*ANY

vsn 
 
 

]

[,WORKFIL=

*ANY

*NO

*YES 
 
 
 
 

]

[,MF=L],VERSION=

0

1

2

3 
 
 
 
 
 
 

[,PREFIX=pre]

MF=(E,
addr

(r) 
 
 

),VERSION=

0

1

2

3 
 
 
 
 
 
 

MF=D,VERSION=

1

2

3 
 
 
 
 

[,PREFIX=pre]

Macros ERASE

U4250-J-Z125-12-76 345

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operand descriptions

pathname
Designates the pathname of the files that are to be erased, with:
<c-string 1..80: filename 1..54 with-wild(80) without-gen>

Only the user's own files or for which the user possesses co-owner rights may be erased.

pathname means [:catid:][$userid.][filename]

catid
Catalog ID of the files that are to be erased; if wildcards are used for “catid”, then these
are evaluated only for catalogs in an MPVS environment. Catalogs in an MSCF
environment can be addressed only via their explicit “catid” (for information on MSCF
see the “HIPLEX MSCF” User Guide [11]).
The default value is the “catid” assigned to the user ID.

userid
User ID: non-privileged users may only delete their own files or files under user IDs for
which they are entered as co-owner. The system administrator can also specify
wildcards.
Default value: the user ID of the current job (i.e. of the SET-LOGON-PARAMETERS or
LOGON command).

filename
Designates the files, file generations, FGGs or temporary files to be erased. The user
may specify a fully or partially qualified file name or use wildcards. The prefix must be
included in the names of temporary files; otherwise, the temporary files are ignored.

Wildcard specifications
Nonprivileged users may only use wildcards in the “catid” and “filename” specifications
whereas the system administrator may also use them in the “userid” (as in the FSTAT
macro; see section “Wildcards” on page 863). If the wildcard '*' is used, it must be entered
twice (**) if it is to include the beginning of the file name (for example: ERASE *SYSLST
erases the system file SYSLST, while ERASE **SYSLST erases all files whose names end
with the string SYSLST).

prefix
With the prefix defined for temporary files, all temporary files of the job can be erased. If the
erase operation is logged, the internal names of the temporary files being processed are
output.

ERASE Macros

346 U4250-J-Z125-12-76

*
The ERASE macro is for the EAM object module file (* file) which is created and used by
compilers. All operands except the control and Assembler operands (CHECK, LIST,
NOSTEP) are checked for syntax errors, but are otherwise ignored. Errors which occur
when erasing the * file are ignored.

*SYSid
Designates the logical system files SYSLST, SYSLSTnn and SYSOUT (00 Î nn Î 99).
Wildcards may be specified for “id”, which means that one ERASE command may be used
for several system files (see section “Wildcards” on page 863 for details of wildcards). All
operands except the control operands (CHECK, LIST, NOSTEP) are checked for syntax
errors, but are otherwise ignored.

The system file SYSOUT can also be erased in dialog mode.

If SYSLST is assigned to a file and has been printed out with PRINT *SYSLST, a subse-
quent ERASE *SYSLST macro logically erases only those pages which have been created
since the printout.

If a LOGOFF command immediately follows an ERASE *SYSOUT or ERASE *SYSLST and
no log is requested via LIST=YES or /OPTION MSG=H, no new SYSOUT or SYSLST file
is created.

*DUMMY
Designates the dummy file *DUMMY, which “always exists” and fulfills all selection criteria.
All operands except the control operands (CHECK, LIST, NOSTEP) are checked for syntax
errors, but are otherwise ignored. If *DUMMY is specified, no catalog or data access is
necessary. *DUMMY is particularly useful for test runs.

CATALOG
Only for files, file generation groups and file generations on private volumes and for files on Net-
Storage:
The catalog entries of the specified or selected files are deleted, but their storage space is
retained. Password protection is observed, but write protection defined with
ACCESS=READ or implied by RETPD (see the CATAL macro) is ignored. Any definition for
“binary deletion” (see DESTROY, CATAL macro) in the catalog entry is also ignored.

For tape files, “CATALOG” is the default value for the execution of ERASE.

The action ERASE ...,CATALOG is equivalent to exporting the file(s) (see the VOLUME
operand). These files can be imported again later, either individually by means of FILE (with
STATE=FOREIGN) or using IMPORT, which can import one or more files on private disks
or on Net-Storage at the same time. Exclusively reserved files cannot be exported.

Macros ERASE

U4250-J-Z125-12-76 347

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

DATA
Only for disk files; the default value CATALOG applies to tape files:
The data of the affected files is “logically erased” (see “Logically erasing a file” in the
”Introductory Guide to DMS” [1]). After this, the user can no longer access the file’s data
since physical access to the relevant volume is not permitted. The catalog entry and the
space allocation still exist. The catalog entry is identical to that for a file which has been
created by means of FILE but not yet opened (FCBTYPE=NONE, CRDATE=NONE).

DATA-KEEP-ATTR
Only for disk files; the default CATALOG applies for tape files:
The files are logically erased as with DATA, but the data-specific attributes are retained. The
data itself can, however, no longer be addressed by the user.

DELETE-OR-EXPORT
Selects files for processing by ERASE on the basis of the type of volume on which the files
are stored:
– Files, FGGs, etc. on public volumes and files are erased, i.e. the catalog entry is deleted

and the storage space is released (corresponds to the specification “SPACE-
CATALOG”).

– For files on Net-Storage the following applies depending on the file type:
– For BS2000 files the catalog entry is deleted and the storage space is released.
– For node files the catalog entry is deleted. The files are retained on the Net-Storage

(corresponds to the EXPORT-NODE-FILE command).
– For files, FGGs, etc. on private volumes, the catalog entry is simply deleted (corre-

sponds to the specification “CATALOG”).

DESTROY
Only for disk files; the default value CATALOG is valid for tape files:
The storage space for the selected files is released, the catalog entry is deleted, and the
storage space being released is overwritten by binary zeros so that if the space is allocated
again, nobody can read the old data (data protection). In the case of files on private disks,
all volumes on which the file was stored must be mounted when erasure takes place.

“Data destruction” during erasure can also be set in the catalog entry (DESTROY=YES) by
means of the CATAL macro. In this case, the storage space being released is automatically
overwritten. When a file is erased, the action operands are evaluated first: if the file is to be
exported (specification CATALOG or DELETE-OR-EXPORT), the data is not overwritten,
since the storage space is not released.

ERASE Macros

348 U4250-J-Z125-12-76

SPACE
Only for files on public disks and on Net-Storage; the default value CATALOG is valid for tape files:
The storage space for the files affected by ERASE is released. The catalog entry is retained
but updated: it is then identical to one created via CATAL. The SPACE operand is rejected
for files on private disks.

SPACE-CATALOG
is the default value for disk files; the catalog entries for the affected files are deleted, and
the storage space used by these files is released.

ACCCNT
Allows the user to select files to be processed on the basis of the access count, which
indicates how often a file has been accessed. The access counter can be assigned values
from 0 to 2147483647.

= ANY
The access counter is not a selection criterion.

= nmbr
Processes files for which the access count exactly matches the specified number of
accesses.

= (nmbr[,])
Processes files for which the access count is greater than or equal to the specified
value.

= (,nmbr)
Processes files for which the access count is less than or equal to the specified value.

= (nmbr1,nmbr2)
Processes files for which the access count lies in the specified interval:
(nmbr1 Î access-count Î nmbr2).

ACCESS
The user can select files for processing depending on his or her access authorization.

= ANY
The access type is not a selection criterion.

= READ
Only files for which write access is forbidden by ACCESS=READ, i.e. read-only files,
are processed.

= WRITE
Selects files for which read and write access is permitted.

Macros ERASE

U4250-J-Z125-12-76 349

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

ACL
Allows the user to select files for processing on the basis of whether or not they are
protected by an access control list (ACL).

= ANY
The ACL entry is not a selection criterion.

= NO
Processes all files that are not protected by an ACL entry.

= YES
Processes files that are protected by an ACL entry.
These files can only be erased if IGNORE=*ACCESS is specified.

I Access control using ACL has not been supported since SECOS V4.0. The ACL
entry therefore normally contains the value NO (no ACL protection).

ADMINFO
The user can select files/file generations for processing dependent on the system
administrator metainformation.

= *ANY
The system administrator metainformation is not a selection criterion.

= *NONE
Only those files are processed that possess no system administrator metainformation.

= <c-string 1..8>
Only those files possessing the specified system administrator metainformation are
processed.

AVAIL
The user can select files/file generations for processing dependent on their availability.

= *ANY
The availability is not a selection criterion.

= *STD
Only those files not on a volume set with high availability are processed.

= *HIGH
Only those files on a volume set with high availability are processed (DRV pubset).

ERASE Macros

350 U4250-J-Z125-12-76

BACKUP
The user can select the files for processing on the basis of the BACKUP level. The backup
defines in which backup runs the file is to be saved.

= ANY
The backup level is not a selection criterion.

= A
Only the files with backup level A are processed.

= B
Only the files with backup level B are processed.

= C
Only the files with backup level C are processed.

= D
Only the files with backup level D are processed.

= E
Only the files with backup level E are processed.

= (list-of-backup)
All files that have one of the specified backup levels are processed. Up to 5 backup
different levels may be specified in a list.

BASACL
Allows the user to select files for processing on the basis of whether they are protected by
a basic access control list (BASIC-ACL).

= ANY
The BASIC-ACL is not a selection criterion.

= NONE
Processes all files for which no BASIC-ACL entry is defined.

= YES
Processes only those files for which a BASIC-ACL entry is defined. The selection
operands OWNERAR, GROUPAR, and OTHERAR can be used to restrict the selection
to specific BASIC-ACL entries.

Macros ERASE

U4250-J-Z125-12-76 351

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

BLKCNT
For tape files only:
Selects files for processing on the basis of the number of blocks on tape.

= ANY
The number of blocks on tape is not a selection criterion.

= nmbr
Processes all tape files with exactly the specified number of blocks.

= (nmbr[,])
Processes all tape files for which the number of blocks is greater than or equal to the
specified value.

= (,nmbr)
Processes all tape files for which the number of blocks is less than or equal to the
specified value.

= (nmbr1,nmbr2)
Processes all tape files for which the number of blocks lies within the specified interval.

Any integers from the range 0 Î value Î 2147483647 may be specified.

BLKCTRL
Allows the user to select files for processing on the basis of the file format. The file format
is defined when creating the file and is based on the existence and position of the block
control field that contains management information for the PAM page.

= ANY
The file format is not a selection criterion.

= PAMKEY
Processes all files which use a separate PAM key for the block control field, i.e. files for
which the block control information is stored in a special key field outside the PAM block.
Such files are created with BLKCTRL=PAMKEY (see the FILE macro).

= DATA
Processes all files for which the block control information is located at the start of the
data block. Such files are created with BLKCTRL=DATA (see the FILE macro).

= NO
Processes all files which contain no block control field. Such files are created with
BLKCTRL=NO (see the FILE macro).

= NONE
Processes all files for which no BLKCTRL value was defined, i.e. files which have not
yet been opened.

ERASE Macros

352 U4250-J-Z125-12-76

= DATA2K
Processes all files which were created with BLKCTRL=DATA2K (see the FILE macro).

= DATA4K
Processes all files that were created with BLKCTRL=DATA4K (see the FILE macro).

= NK2
Processes all NK2 files (files which can be stored on NK2 volumes).

= NK4
Processes NK4 files only (files which can be stored on NK4 volumes).

= (list-of-blkctrl)
Processes all files that match one of the specified file formats. All values except ANY
may be specified in a list.

CCS
Allows the user to select files for processing on the basis of the specified coded character
set.
The coded character set (CCS) defines how the characters of a national character set are
to be stored in binary form. The specified character set has an effect on the representation
of characters on the screen, the collating sequence, etc. (see the “XHCS” manual [22]).

= *ANY
The code table is not a selection criterion for files to be processed with ERASE.

= *NONE
Only files for which no character set is defined are erased.

= ccs-name
Only the files for which the specified code table was defined are processed. The name
of the code table may consist of up to 8 alphanumeric characters.

CHECK
As in interactive mode, the user can specify that a control check be performed by issuing a
prompt to SYSOUT before a file set is processed. The file set for which the prompted dialog
is to be executed can be specified by the user (e.g. for all files to be processed). The issued
prompt must be answered by the user as follows:

– “Y” confirms that the specified file set is to be processed.
– “N” excludes the specified file set from the operation.
– “T” terminates the entire ERASE processing operation.

Any response that consists of only blanks or the “null string” will be interpreted as “N”.

In batch mode, CHECK=NO always applies.

Macros ERASE

U4250-J-Z125-12-76 353

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

= STD
The default setting depends on the operating mode:
– In an interactive dialog (SYSCMD is assigned to the terminal), CHECK=MULTIPLE

is the default.
– In procedures and in batch mode, the default value is CHECK=NO.

= NO
The user cannot intervene in the ERASE processing; all specified or selected files are
erased.

= MULTIPLE
If “pathname” is partially qualified, which means that more than one file is selected, or
if “pathname” contains wildcards, the user can decide, each time the catalog ID
changes, whether or not files from the new catalog are to be erased. He/she must
respond with “YES” or “NO” to the question issued by the system. CHECK=MULTIPLE
is useful if wildcards are specified for “catid” in the “pathname”. In the dialog, ERASE
processing can be terminated by responding with “TERMINATE” to the question, or the
CHECK mode can be changed (→ NO/ERROR/SINGLE/PVS).

= ERROR
By means of CHECK=ERROR, the user specifies that a dialog as for CHECK=SINGLE
is to be started if user-correctable errors occur. As long as no errors occur,
CHECK=ERROR is equivalent to CHECK=NO (i.e. no dialog). CHECK=ERROR is set
implicitly if CHECK=SINGLE is selected.

In the case of an error, the user can acknowledge the error message, abort ERASE
processing or attempt to recover the error. If desired, he/she can also change the
CHECK mode.

= PVS
As for CHECK=MULTIPLE, ERASE processing starts a dialog if files in different
catalogs are affected by the ERASE macro. The user can respond with “YES” or “NO”
to the system question, abort ERASE processing (“TERMINATE”) or change the
CHECK mode.

= SINGLE
For each file which is processed, the user can decide in a dialog whether or not it is to
be erased (response YES/NO). If, in the dialog, (s)he specifies protection attributes or
one or more passwords together with “IGNORE”, these specifications are evaluated
and any file which fulfills them is erased without further questions (“YES” must also be
specified). The user can also abort ERASE processing or change the CHECK mode.

The affected files are listed in alphabetical order. If file generation groups are affected,
the generations are listed separately in the order of their generation numbers. If the user
elects not to erase a file generation, processing of the file generation group is termi-
nated and the current status is saved (there must be no gaps in the sequence of file
generations).

ERASE Macros

354 U4250-J-Z125-12-76

If only parts of a generation group are to be erased, the order of the generations
depends on the value of the POS operand: with POS=AFTER, the generations are
listed in descending order of their generation numbers, starting with the youngest
generation; with POS=BEFORE, they are listed in ascending order of their generation
numbers, starting with the oldest generation.

= USERID
For system administration only:
ERASE processing branches to an interactive dialog if files of various user IDs are
involved. Whenever the user ID changes, a prompt is issued to determine whether the
next user ID is to be processed.
The system administrator can accept (“YES”), deny (“NO”), or end (“TERMINATE”) the
ERASE operation, or switch to CHECK mode.

CRDATE
Allows the user to select files for processing on the basis of their creation dates. File
generation groups and file generations are not taken into account.

Date values may be supplemented by specifying a time. The rules for date and time speci-
fications are described on page 864.
Range specifications are inclusive of both specified limits.

= ANY
The creation date is not a selection criterion.

= NONE
Processes all files for which no creation date has been entered in the catalog, i.e. files
which have not yet been opened.

= date
Processes all files that were created on the specified date.

= (date[,])
Processes all files that were created on or after the specified date
(creation date Ï current date).

= (,date)
Processes all files that were created on or before the specified date
 (creation date Î current date).

= (date1,date2)
Processes all files that were created within the specified period
(date1 Î creation date Î date2).

= date(time[,])
Processes all files that were created on the specified date on or after the specified time.

Macros ERASE

U4250-J-Z125-12-76 355

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

= date(time1,time2)
Processes all files that were created on the specified date within the specified period.

= (date(time)[,])
Processes all files that were created on or after the specified date and time.

= (,date(time))
Processes all files that were created before the specified date and time.

(date1(time),date2(time))
Processes all files that were created within the specified period. The upper and lower
limits of the specified period are defined more precisely by a time specification in both
cases.

DELDATE
Allows the user to select files on the basis of the DELETION-DATE (the time from which the
file may be deleted irrespective of the protection attributes).

The user can supplement the date values by specifying a time. It must be noted in this
respect that the deletion time of 00:00:00 is currently always entered in the file catalog.

The rules for date and time specifications are described on page 864. Range specifications
are inclusive of both specified limits.

= *ANY
The DELETION-DATE is not a selection criterion.

= *NONE
Processes all files for which no DELETION-DATE is entered in the catalog.

= date
Processes all files for which the specified DELETION-DATE is defined.

= (date[,])
Processes all files whose DELETION-DATE is later or equal to the specified date.

= (,date)
Processes all files whose DELETION-DATE is earlier or equal to the specified date.

= (date1,date2)
Processes all files whose DELETION-DATE lies within the specified time period
(date1 Î release date Î date2).

= date(time[,])
Processes all files for which the specified DELETION-DATE is defined and for which the
release time is later or equal to the specified time. The release time (referred to the
DELETION-DATE) is always entered in the catalog as 00:00:00.

ERASE Macros

356 U4250-J-Z125-12-76

= date(time1,time2)
Processes all files for which the specified DELETION-DATE is defined and for which the
release time is within the specified time period. The release time (referred to the
DELETION-DATE) is always entered in the catalog as 00:00:00.

= (date(time)[,])
Processes all files whose DELETION-DATE and time is later than or equal to the
specified time. The release time (referred to the DELETION-DATE) is always entered
in the catalog as 00:00:00.

= (,date(time))
Processes all files whose DELETION-DATE and time is earlier than or equal to the
specified time. The release time (referred to the DELETION-DATE) is always entered
in the catalog as 00:00:00.

(date1(time),date2(time))
Processes all files whose DELETION-DATE lies within the specified time period
(date1 Î DELETION-DATE Î date2). The upper and lower limits of the specified time
period are defined more exactly by specifying a time.

DISKWR
Enables the user to select files for processing based on the time at which data consistency
is required for them, as defined in the catalog entry.

= ANY
The time at which data consistency is required, as defined in the catalog, is not a
selection criterion.

= IMMEDIATE
Processes all files for which data consistency is required immediately after a write
operation is completed. Such files are not suitable for processing in a write cache.

= BY-CLOSE
Processes all files for which data consistency is not required until CLOSE processing.
These files are suitable for processing in a write cache.

ENCRYPT
Enables the user to select files based on whether or with which encryption method they are
encrypted.

= *ANY
Processes all files regardless of whether or with which encryption method they are
encrypted.

= *NONE
Processes only those files which are not encrypted.

Macros ERASE

U4250-J-Z125-12-76 357

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

= *AES
Processes only those files which are encrypted with the AES encryption method.

= *DES
Processes only those files which are encrypted with the DES encryption method.

EXDATE
The user can select files to be processed on the basis of their expiration date. The
expiration date of a file is defined in the catalog and specifies when the file may be updated
again or deleted. If no expiration date is defined when creating the file, the expiration date
is set to the creation date.
File generation groups and file generations are not taken into account.

The user may supplement date specifications by a time value; however, it should be noted
that the time stamp for the expiration date is always set to 00:00:00 in the file catalog at
present.
The rules for date and time specifications are described on page 864. Ranges defined in
intervals include both specified limits.

= ANY
The expiration date is not a selection criterion.

= NONE
Processes all files for which no expiration date has been entered in the catalog, i.e. files
that have not yet been opened.

= date
Processes all files for which the specified expiration date is defined.

= (date[,])
Processes all files for which the expiration date is greater than or equal to the specified
date.

= (,date)
Processes all files for which the expiration date is less than or equal to the specified
date.

= (date1,date2)
Processes all files for which the expiration date lies within the specified period
(date1 Î expiration date Î date2).

= date(time[,])
Processes all files with the specified expiration date and with an expiration time that is
greater than or equal to the specified time.
Note that the time of expiration (i.e. the time on the expiration date) is always entered
as 00:00:00 hours in the catalog at present!

ERASE Macros

358 U4250-J-Z125-12-76

= date(time1,time2)
Processes all files with the specified expiration date and with a time of expiration that
lies within the specified time interval.
Note that the time of expiration (i.e. the time on the expiration date) is always entered
as 00:00:00 hours in the catalog at present!

= (date(time)[,])
Processes all files for which the expiration date and time is greater than or equal to the
specified time.
Note that the time of expiration (i.e. the time on the expiration date) is always entered
as 00:00:00 hours in the catalog at present!

= (,date(time))
Processes all files for which the expiration date and time is less than or equal to the
specified time.
Note that the time of expiration (i.e. the time on the expiration date) is always entered
as 00:00:00 hours in the catalog at present!

= (date1(time),date2(time))
Processes all files for which the expiration date lies within the specified period
(date1 Î expiration date Î date2). The upper and lower limits of the specified period are
defined more precisely by time values in both cases.

EXTENTS
Only for files on disks and on Net-Storage:
Allows the user to select files for processing on the basis of the specified number of extents.
An extent is a contiguous area occupied by a file on a disk. The number of extents which
make up a file is stored in the catalog.
A file on Net-Storage has precisely one extent.
File generation groups and file generations are not taken into account.

The possible values for “nmbr” are: 0 Î nmbr Î 65535. Range specifications include both
upper and lower limits.

= ANY
The number of extents is not a selection criterion.

= nmbr
Only the files with exactly the specified number of extents are processed.

= (nmbr [,])
Only the files with at least the specified number of extents
(number of extents Ï nmbr) are processed.

= (,nmbr)
Only the files that have at most the specified number of extents (number of
extents Î nmbr) are processed.

Macros ERASE

U4250-J-Z125-12-76 359

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

= (nmbr1, nmbr2)
Only the files that have at least as many extents as “nmbr1” and at most as many
extents as “nmbr2” (i.e. nmbr1 Î number of extents Î nmbr2) are processed.

FCBTYPE
Allows the user to select files for processing on the basis of the access method with which
they were created. The access method is entered into the file catalog when the file is
created. It corresponds to the specification for FCBTYPE in the FILE macro.
File generation groups and file generations are not taken into account.

= ANY
The access method is not a selection criterion.

= NONE
Processes only those files for which no access method has been entered in the catalog,
i.e. files which have not yet been opened.

= ISAM
Processes only those files which were created with the ISAM access method.

= BTAM
Processes files for that were created with the BTAM access method (BTAM files).
BTAM files are tape files, and can therefore only be exported (see the action operand
CATALOG).

= SAM
Processes files that were created with the SAM access method (SAM files).

= PAM
Processes files that were created with the UPAM access method (PAM files).

= (list-of-fcbtype)
More than one access method may be specified in a list. All files that were created with
one of the specified access methods will be processed.

FILTYPE
The user can select the files to be processed according to the file type.

= *ANY
The file type is not a selection criterion.

= *BS2000
BS2000 files are processed.

= *NODE
Files are processed which are created as node files.

ERASE Macros

360 U4250-J-Z125-12-76

FSIZE
Only for disk files on disk and on Net-Storage:
Allows the user to select files for processing on the basis of the number of free PAM pages.
The free PAM pages of a file indicate the amount of reserved but unused storage space.
File generation groups and file generations are not taken into account.

“number” must be: 0 Î number Î 2147483647; if ranges are specified, the limit values are
included in the range.

= ANY
The size of the free (= reserved but unused) storage space is not a selection criterion.

= SIZE
Only the files for which none of the reserved pages are used (i.e. for which no PAM page
has been written) are processed.

= nmbr
Processes files with exactly the specified number of reserved but unused PAM pages.

= (nmbr[,])
Processes files with at least the specified number of reserved but unused PAM pages
(free PAM pages Ï nmbr).

= (,nmbr)
Processes files with no more than the specified number of reserved but unused
PAM pages (free PAM pages Î nmbr).

= (nmbr1,nmbr2)
Processes files for which the number of free pages lies within the specified range
(nmbr1 Î free PAM pages Î nmbr2).

GROUPAR
Selects and processes files on the basis of the access rights that are defined for members
of the file owner's user group in BASIC-ACL entries.

= ANY
The BASIC-ACL entries for members of the file owner's user group are not a selection
criterion.

= NO-ACCESS
Processes all files that cannot be accessed by the user group of the owner.

= access-list
Only processes files for which at least one of the access rights specified in the list has
been entered for the file owner's user group in the BASIC-ACL entry.

Macros ERASE

U4250-J-Z125-12-76 361

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

The access list has the following format:

The parentheses constitute part of the operand value and must be specified.

The individual elements of the access list mean the following:

GUARDS
The user can select files to be processed on the basis of the access protection defined by
GUARDS (see the “SECOS” [8] manual).

= *ANY
The access protection defined by GUARDS is not a selection criterion.

= *NONE
Processes all files which have no access protection defined by GUARDS.

= *YES
Processes all files which have access protection defined by GUARDS.

= (READ=...,WRITE=...,EXEC=...)
The type of access protection provided by GUARDS that is to be used as a selection
criterion can be defined by the user in a list. For each access mode (read, write, and
execute), the defined protection can be specified precisely. If no entry is made for an
access mode, the protection defined for that access mode has no effect on the
selection.

READ=YES or R=Y Processes all files to which the user group of the owner
has read access.

READ=NO or R=N Processes all files to which the user group of the owner
does not have read access.

WRITE=YES or W=Y Processes all files to which the user group of the owner
has write access.

WRITE=NO or W=N Processes all files to which the user group of the owner
does not have write access.

EXEC=YES or X=Y Processes all files which the user group of the owner may
execute.

EXEC=NO or X=N Processes all files which the user group of the owner may
not execute.

([

READ = YES

R = Y

READ = NO

R = N  
 
 
 
 
 
 

][,

WRITE = YES

W = Y

WRITE = NO

W = N  
 
 
 
 
 
 

][,

EXEC = YES

X = Y

EXEC = NO

X = N  
 
 
 
 
 
 

])

ERASE Macros

362 U4250-J-Z125-12-76

For each access mode, one of the following values may be specified:
*ANY The defined GUARDS protection is not a selection criterion.
*NONE No guard has been defined for the specified access mode, i.e. the corre-

sponding access is denied.
fname All conditions for granting access in the specified access mode are defined

in the guard fname.

IGNORE
The user can define whether defined protection against write access or a defined retention
period is to be ignored.
The IGNORE operand replaces the call to the CATAL macro which would be otherwise
required to reset the protection attributes for the files to be processed before calling the
ERASE macro.

= ANY
If no operand is specified here, all specified protection attributes are taken into account
for ERASE processing.

= ACCESS
Enables files which are protected against write access by the owner to be selected for
deletion with ERASE. Existing write protection is ignored. This specification is ignored
if there is a TSOS restriction for a file under a foreign user ID.

= EXDATE
Allows files for which a retention period exists (expiration date > current date) to be
erased. Existing retention periods are ignored.

= RDPASS
For system administration only:
Allows files which are protected by a read password to be erased during ERASE
processing. Existing access protection by a read password is ignored.

= WRPASS
For system administration only:
Allows files which are protected by a write password to be erased during ERASE
processing. Existing access protection by a write password is ignored.

= EXPASS
For system administration only:
Allows files which are protected by an execute password to be erased during ERASE
processing. Existing access protection by an execute password is ignored.

= (list-of-ignore)
The operand values ACCESS and IGNORE can be specified in a list, i.e. both
protection attributes are ignored.

Macros ERASE

U4250-J-Z125-12-76 363

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

IOPERF
Processes all files based on the performance attribute that is defined for them in the catalog
(see the IOPERF operand in the CATAL macro).

= ANY
The performance attribute is not a selection criterion.

= STD
Processes all files for which the performance attribute was defined as STD.

= HIGH
Processes all files for which the performance attribute was defined as HIGH (high
performance priority).

= VERY-HIGH
Processes all files for which the performance attribute was defined as VERY-HIGH
(highest performance priority).

= (list-of-ioperf)
Up to three performance attributes may be specified in a list. All files that have one of
these specified attributes will be shown.

IOUSAGE
The user can select the files to be processed, depending on the type of I/O operations to
which the performance attribute applies (see the IOUSAGE operand in the CATAL macro).

= ANY
The performance attribute is not a selection criterion.

= RDWRT
Processes all files for which the performance attribute applies to read and write
operations.

= WRITE
Processes all files for which the performance attribute applies to write operations only.

= READ
Processes all files for which the performance attribute applies to read operations only.

= (list-of-iousage)
More than one type of I/O operation may be specified in a list. All files for which the
performance attribute applies to at least one of the specified I/O operations will be
shown.

ERASE Macros

364 U4250-J-Z125-12-76

KEEPACL
Permitted for system administration only:
Allows the user to define if when erasing an ACL-protected file the corresponding access
list (ACL) is also to be erased.

= *NO
Default value. An ACL is erased together with the catalog entry.

= *YES
Retains the access list when erasing the catalog entry.

I Access control using ACL has not been supported since SECOS V4.0.

LADATE
Processes all files with the corresponding date of last access. File generation groups and
file generations are not taken into account.

The user can supplement date specifications by specifying time values. The rules for date
and time specifications are described on page 864.
Ranges specified in intervals include both upper and lower limits.

= ANY
The last access date is not a selection criterion.

= NONE
Processes all files for which no last access date has been entered in the catalog,
i.e. files that have not yet been opened.

= date
Selects files which were last accessed on the specified date.

= (date[,])
Processes all files that were last accessed on or after the specified date
(last access date Ï date).

= (,date)
Selects all files that were accessed on or before the specified date
(last access date Î date).

= (date1,date2)
Processes all files that were last accessed during the specified period
(date1 Î last access date Î date2).

= date(time[,])
Processes all files that were last accessed on the specified date on or after the specified
time.

Macros ERASE

U4250-J-Z125-12-76 365

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

= date(time1,time2)
Selects all files that were last accessed on the specified date and within the specified
period.

= (date(time)[,])
Selects all files that were last accessed on or after the specified date and time.

= (,date(time))
Selects all files that were last accessed before the specified date and time.

= (date1(time),date2(time))
Selects all files that were last accessed within the specified period. The upper and lower
limits of the specified period are defined more accurately by means of a time
specification.

LASTPAG
Selects and processes files based on the amount of storage space used (i.e. the number
of PAM pages written). The last-page pointer is set to the highest used PAM page.

= ANY
The storage space used is not a selection criterion.

= nmbr
Processes all files for which exactly the specified number of PAM pages have been
written.

= (nmbr[,])
Processes all files for which the number of used PAM pages is greater than or equal to
the specified value.

= (,nmbr)
Processes all files for which the number of used PAM pages is less than or equal to the
specified value.

= (nmbr1,nmbr2)
Processes all files for which the number of written PAM pages lies in the interval defined
by nmbr1 and nmbr2 (nmbr1 Î used PAM pages Î nmbr2).

Any integers from the range 0 Î nmbr Î 2147483647 may be specified.

ERASE Macros

366 U4250-J-Z125-12-76

LCDATE
Selects and processes files based on the date on which they were last accessed for writing
(last change date). File generation groups and file generations are not taken into account.

The user can supplement date specifications by means of time values. The rules for date
and time specifications are described on page 864. Ranges defined by intervals include
both the specified limits.

= ANY
The date of last write access is not a selection criterion.

= NONE
Processes all files for which no date of last write access is entered in the catalog,
i.e. files that have not yet been opened.

= date
Processes all files that were last written to (i.e. changed) on specified date.

= (date[,])
Processes all files that were last changed on or after the specified date (last change
date Ï date).

= (,date)
Processes all files that were last changed on or before the specified date (last change
date Î date).

= (date1,date2)
Processes all files that were last changed during the specified period
(date1 Î last change date Î date2).

= date(time[,])
Processes all files that were last changed on the specified date on or after the specified
time.

= date(time1,time2)
Processes all files that were last changed on the specified date and within the specified
period.

= (date(time)[,])
Processes all files that were last changed on or after the specified date and time.

= (,date(time))
Processes all files that were last changed before the specified date and time.

= (date1(time),date2(time))
Processes all files that were last changed within the specified period. The upper and
lower limits of the specified period are defined more precisely by time values.

Macros ERASE

U4250-J-Z125-12-76 367

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

LIST
The user can specify whether successful execution of ERASE processing is to be logged
and whether errors which occur during processing are to be reported on SYSOUT.
Otherwise, errors are reported only via the return code field.

Default value: no additional log is created.

= ERRORS-TO-SYSOUT
Errors (with the exception of errors ignored via NOSTEP) are logged on SYSOUT.

= (area,len)
The names of all files affected by ERASE are written into a user output area.

addr Symbolic address of the output area.
r1 Register r1 contains the address of the output area.
length Length of the output area, specified as a constant.
equ Length of the output area, specified as an equate.
r2 Register r2 contains the length of the output area.

The entries are written sequentially into the output area. Each entry has the following
format:

RL Record length (field length: 2 bytes); shows the length of an information
unit.

D 2 bytes, reserved.
RC Return code (field length: 4 bytes); this contains the DMS error code, which

can be evaluated with the aid of the IDEMS macro.
pathname Path name of the file (field length: variable).
EC End criterion (fieldlength: 2 bytes)

The end of the output in the output area is indicated with X'00' in EC field. In the event
of an output area overflow, subcode 2 in the error code is set to '1' and processing
continues without further logging.

Since the internal buffer areas are limited, an overflow may be indicated during RFA
access, even though the user has provided a sufficiently large output area. In this case,
output has been terminated prematurely.

RL D RC pathname EC

(area,len) means: (
addr

(r1) 
 
 

,

length

equ

(r2) 
 
 
 
 

)

ERASE Macros

368 U4250-J-Z125-12-76

MANCLAS
The user can select the files to be processed according to the HSMS management class
for data backup to SM pubsets.

= *ANY
The HSMS management class is not a selection criterion.

= *NONE
Only files for which no HSMS management class is defined are selected.

= <c-string 1..8>
Only files with the specified HSMS management class are selected.

MF
The forms of the MF operand are described in detail in the appendix (page 865). In all
macros differentiated by the MF operand (MF=L/E/D), the version operand must contain the
same value.
This description covers all operands supported in BS2000/OSD-BC Ï V3.0.
VERSION=3 must be specified for generating this format.

MIGRATE
The user can use the migration attribute defined in the catalog entry (see the MIGRATE
operand of the CATAL macro, page 168) to select files for processing with ERASE.

= ANY
The specified files are processed, regardless of what value is defined for MIGRATE in
the catalog entry.

= ALLOWED
Only those files are processed for which the corresponding operand value has been
specified in the catalog entry, i.e. files which may be migrated to storage levels S1
and S2.

= INHIBIT
Only those files are processed for which MIGRATE=INHIBIT has been specified in the
catalog entry, i.e. files which may be briefly migrated (e.g. for reorganization purposes).

= FORBIDDEN
Only those files are processed for which the corresponding operand value has been
specified in the catalog entry, i.e. files which must not be migrated.

= (list-of-migrate)
The ALLOWED and INHIBIT values may be specified by the user in a list. All files for
which one of the specified values was defined in the catalog will be processed.

Macros ERASE

U4250-J-Z125-12-76 369

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

MOUNT
Only for files on private disks:
The user can specify if when erasing a file on private disk, only the first or all private disks
involved are to be available online.
The MOUNT operand should be specified together with SPACE-CATALOG or DESTROY;
it must be specified if DATA is specified.

Any MOUNT operand specified for tape files or files on public volumes is ignored.

Default value: MOUNT = FIRST-DISK

= FIRST-DISK
Only the private disk containing the beginning of the file and the catalog entry must be
online.

= ALL-DISK
All private disks on which sections of the file are stored must be online. If any disk is
missing, the file is not erased.

NOSTEP
The user can specify which errors are not to be reported via a return code in register 15.

= NONE
All errors are to be reported via return code.

= errcode
The user can specify the DMS error codes of the errors which are to be ignored, i.e. not
reported via the return code field in the standard header.

const The error code is specified as a decimal or hexadecimal constant.
equ The error code is specified as an equate.

It is advisable to use the equates generated by the IDEMS macro.

The list (errcode,...) may contain up to three elements.

″errcode″ means:
const

equ 
 
 

ERASE Macros

370 U4250-J-Z125-12-76

OTHERAR
Selects and processes files based on the access rights that are defined via BASIC-ACL
entries for all users other than the file owners's user group.

= ANY
BASIC-ACL entries for all users other than the file owner's user group are not a
selection criterion.

= NO-ACCESS
Processes all files that may be accessed by users not belonging to the file owner's user
group.

= access-list
Only processes files for which at least one of the listed access rights has been entered
for users not in the file owner's user group in the BASIC-ACL entry.

“access list” has the following format:

The parentheses form part of the operand values and are mandatory. The individual
elements of the access list mean the following:

READ=YES or R=Y Processes all files to which users not in the owner's user
group have read access.

READ=NO or R=N Processes all files to which users not in the owner's user
group do not have read access.

WRITE=YES or W=Y Processes all files to which users not in the owner's user
group have write access.

WRITE=NO or W=N Processes all files to which users not in the owner's user
group do not have write access.

EXEC=YES or X=Y Processes all files which users not in the owner's user
group may execute.

EXEC=NO or X=N Processes all files which users not in the owner's user
group may not execute.

([

READ = YES

R = Y

READ = NO

R = N  
 
 
 
 
 
 

][,

WRITE = YES

W = Y

WRITE = NO

W = N  
 
 
 
 
 
 

][,

EXEC = YES

X = Y

EXEC = NO

X = N  
 
 
 
 
 
 

])

Macros ERASE

U4250-J-Z125-12-76 371

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

OWNERAR
Processes files selected on the basis of the access rights that are defined for the file owner
in the BASIC-ACL entries.

= ANY
BASIC-ACL entries for file owners are not a selection criterion.

= NO-ACCESS
Processes all files that the owner is not allowed to access.

= access-list
Only processes files for which at least one of the listed access rights has been entered
for the file owner in the BASIC-ACL entry.

“access list” has the following format:

The parentheses form part of the operand value and must be specified. The individual
elements of the access list mean the following:

READ=YES or R=Y Selects all files that may be accessed by the owner for
reading.

READ=NO or R=N Selects all files that cannot be accessed by the owner for
reading.

WRITE=YES or W=Y Selects all files that can be accessed by the owner for
writing.

WRITE=NO or W=N Selects all files that cannot be accessed by the owner for
writing.

EXEC=YES or X=Y Selects all files that may be executed by the owner.

EXEC=NO or X=N Selects all files that the owner is not allowed to execute.

([

READ = YES

R = Y

READ = NO

R = N  
 
 
 
 
 
 

][,

WRITE = YES

W = Y

WRITE = NO

W = N  
 
 
 
 
 
 

][,

EXEC = YES

X = Y

EXEC = NO

X = N  
 
 
 
 
 
 

])

ERASE Macros

372 U4250-J-Z125-12-76

PASS
The user can use the password type to select the files to be processed by ERASE.

= ANY
Password protection is not a selection criterion.

= NONE
Only files for which no passwords are defined are processed.

= EXPASS
Only files protected by an execute password are processed.

= RDPASS
Only files protected by a read password are processed.

= WRPASS
Only files protected by a write password are processed.

= (list-of-pass)
The user may specify more than one type of password in the form of a list. All files
protected by one of the specified password types will be processed.

PASSWD
The user can specify one or more passwords to permit files protected by these passwords
to be erased. The specified password must not be entered in the password table of the job.
Note that the passwords entered here are valid only for the current ERASE macro.

The passwords must comply with the rules for password definition. The passwords are not
reproduced in plaintext in any logs created by ERASE.

If no specification is entered, none of the files protected by a password will be processed
by ERASE.

= ANY
No password is passed to ERASE.

= password
Protection by this password is to be cancelled.

= (list-of-passwd)
Up to three passwords may be specified in the form of a list.

Macros ERASE

U4250-J-Z125-12-76 373

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

POS
Only for file generations:
Wildcards may be used in “pathname” everywhere except in the generation number, which
must be entered as an absolute or relative generation number. The generation identified by
“pathname” must exist and is not erased.

Depending on the operand value AFTER/BEFORE, all younger or all older file generations
are erased, and the catalog entry is updated as follows:
– If the oldest generation is erased, the generation specified in “pathname” becomes the

oldest generation.
– If the youngest generation is erased, the generation specified in “pathname” becomes

the youngest generation.
– If the generation with relative generation number 0 is erased, the generation specified

in “pathname” becomes the base generation.

= AFTER
All generations selected by “pathname” and with a generation number greater than that
specified in “pathname” are erased.

= BEFORE
All generations selected by “pathname” and with a generation number less than that
specified in “pathname” are erased.

PREFIX = pre
Only in conjunction with MF=D:
“pre” is a 1-3 character string which replaces the corresponding string at the beginning of
the generated names and thus creates macro-specific names. The first character of “pre”
must be a letter.

PREFORM
Erases files depending on their (intended) file format on SM pubsets.

= *ANY
The file format is not a selection criterion.

= *NONE
Erases all files for which no PREFORM value was defined.

= *K
Erases all files with the intended file format *K.

= *NK2
Erases all files with the intended file format *NK2.

ERASE Macros

374 U4250-J-Z125-12-76

= *NK4
Erases all files with the intended file format *NK4.

= (list-of-preform)
Erases all files which have one of the specified file formats. The list may contain any
values except for ANY.

PROTACT
The user can select files to be erased on the basis of the protection level provided by the
highest activated access control.

When the file is accessed, the highest activated protection level applies. The following table
shows the method used for access control, the protection attribute to be specified in the
CATAL macro and the file protection hierarchy (protection levels):

ACL and GUARDS are mutually exclusive. All other protection attributes of the file (e.g.
passwords) are evaluated independently, without regard to the implemented protection
level.

= ANY
The files to be processed are selected without regard to the protection level of the
highest activated access control.

= LEVEL-0
Processes files for which access is controlled via standard access control.

= LEVEL-1
Processes files for which access is controlled via a basic access control list
(BASIC-ACL protection).

= LEVEL-2
Processes files for which access is controlled via an access control list (ACL) or by
GUARDS. Files protected by an ACL can now only be erased if IGNORE=*ACCESS is
specified

= (list-of-protact)
The user may specify up to a maximum of three protection levels in a list. All files for
which the protection level of the access control method matches one of those specified
are selected.

Access control method Protection attribute Protection level

Standard access control ACCESS and SHARE 0

Basic access control list BASACL, OWNERAR, GROUPAR, OTHERAR 1

Access control list (ACL) ACL (only with SECOS < V4.0A) 2

Access control using GUARDS GUARDS 2

Macros ERASE

U4250-J-Z125-12-76 375

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

RELSPAC
Selects files for processing on the basis of the lock to prevent the release of unused
memory space (defined in the FILE macro or the MODIFY-FILE-ATTRIBUTES command).
The lock can be defined in the catalog by using the CATAL macro.

= ANY
The lock preventing release of unused memory space is not a selection criterion.

= ALLOWED
Selects all files for which unused memory space may be released.

= IGNORED
Selects all files for which the release of unused memory space is not permitted.

SHARE
Selects files to be erased on the basis of whether or not they are shareable (see the SHARE
operand in the CATAL macro).

= ANY
Shareability is not a selection criterion.

= YES
Processes all files that are shareable, i.e. which are also accessible to other user IDs
under active standard access control.

= NO
Processes all files that are not shareable, i.e. only accessible to the owner under active
standard access control.

= SPECIAL
Processes all shareable files (see YES) that can also be accessed by user IDs with
hardware maintenance privileges.

= (list-of-share)
One or more operand values may be specified in a list.

ERASE Macros

376 U4250-J-Z125-12-76

SIZE
Only for disk files:
The user can use the file size or the size of the reserved space (= number of PAM pages)
to select the files to be processed by ERASE. File generation groups and file generations
are not included.

“number” specifies a number of PAM pages, where 0 Î number Î 2147483647.
Range specifications are inclusive of the limit values.

= ANY
The size of the reserved storage space is not a selection criterion.

= FSIZE
Only files for which space has been reserved but not actually used (LASTPG = 0) are
processed, i.e. files which have not yet been opened.

= nmbr
Only files for which precisely the specified number of PAM pages have been reserved
are processed.

= (nmbr[,])
Only file for which at least the specified number of PAM pages have been reserved are
processed (SIZE Ï nmbr).

= (,nmbr)
Only files for which not more than the specified number of PAM pages have been
reserved are processed (SIZE Î nmbr).

= (nmbr1,nmbr2)
Only files for which a number of PAM pages in the range “nmbr1” to “nmbr2” have been
reserved are processed.

Macros ERASE

U4250-J-Z125-12-76 377

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

SLEVEL
The user can use the storage level to select the files which are to be processed by ERASE.
HSMS supports the following storage levels:

S0: implemented via disk storage devices with fast access (online processing).

S1: implemented via high capacity disk storage devices (online background level).

S2: implemented via magnetic tape or magnetic tape cartridge archives (offline
background level).

= ANY
The specified files are processed regardless of the storage level on which they are
stored.

= S0
Only those files stored on level S0 are processed.

= S1
Only those files stored on level S1 are processed.

= S2
Only those files stored on level S2 are processed.

= (list-of-slevel)
The user may specify up to 3 storage levels in the form of a list. Only the files on one of
the specified storage levels will be processed.

STATE
The user can select files to be processed on the basis of their current processing state.

= ANY
The storage level is not a selection criterion.

= NOCLOS
Processes all files which have been opened for writing and are not closed. Such files
include:
– normally open files (OPEN mode OUTIN, INOUT, OUTPUT)
– files not closed in a previous session
– files not closed in the current session because of job abortion.

= CLOSED
Processes all files that have already been closed, i.e. files not selected by NOCLOS.

ERASE Macros

378 U4250-J-Z125-12-76

= CACHED
Processes the files which are currently cached.

= NOT-CACHED
Processes all files which are not being currently processed in a cache.

= CACHE-NOT-SAVED
Processes all files for which it was not possible to save all data from the cache to a disk
during closing.

= REPAIR-NEEDED
Processes all files which were not closed in an earlier session and which have not yet
been verified (see VERIFY macro).

= DEFECT-REPORTED
Processes all files which may contain defective disk blocks.

= NO-OPEN-ALLOWED
Processes all files which cannot be opened due to data inconsistency.

= OPEN-ALLOWED
Processes all files that can be opened.

= (list-of-state)
A list of values may be specified (with a maximum of 4 file states). All files which are in
one of the specified states are processed.

STOCLAS
The user can select the files to be processed according to the storage class for file storage
on SM pubsets.

= *ANY
The storage class is not a selection criterion.

= *NONE
Selects all files for which no storage class is defined.

= <c-string 1..8>
Selects all files with the specified storage class.

Macros ERASE

U4250-J-Z125-12-76 379

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

STOTYPE
The user can select the files to be processed according to the storage type.

= *ANY
The storage type is not a selection criterion.

= *PUBSPACE
Only files on public volumes are selected.

= *NETSTOR
Only files on Net-Storage volumes are selected.

SUPPORT
The user can select the files to be processed by ERASE on the basis of the volume type.
File generation groups and file generations are not included.

= ANY
Volume type is not a selection criterion.

= PUBLIC
Only files on public disks and on Net-Storage are processed.

= PRDISC
Only files on private disks are processed.

= TAPE
Only files on tapes or tape cartridges are processed.

= (list-of-support)
A list of values may be specified (with up to 3 volume types). All files which are stored
on one of the specified volume types will be processed.

ERASE Macros

380 U4250-J-Z125-12-76

S0MIGR
Files are processed dependent on whether reallocation (migration) to the S0 level is
allowed.

= *ANY
The migration allowance is not a selection criterion.

= *ALLOWED
All files for which migration within the S0 level is allowed are processed.

= *FORBIDDEN
All files for which migration within the S0 level is not allowed are processed.

= (list-of-s0migr)
The user can specify the desired values in a list. All files for which one of the specified
values is defined in the catalog are processed.

TIMBASE
Defines whether the absolute date definitions are in UTC or local time. This affects the
CRDATE, DELDATE, EXDATE, LADATE and LCDATE operands. Relative dates are
always based on local time.

= *UTC
Absolute dates are specified in UTC time.

= *LTI
Absolute dates are specified in local time.

TYPE
Processes files selected on the basis of their file type. The TYPE operand also determines
which selection criteria are evaluated for ERASE processing. File generation groups and
file generations are not taken into account by any of the selection parameters.

= ANY
ERASE processes “normal” files, file generation groups and file generations. However,
FGGs and file generations are ignored by some of the selection operands in order to
avoid the creation of gaps in the sequence of generations.

= FILE
File generation groups and file generations are not processed by ERASE; all other
selection operands are evaluated.

Macros ERASE

U4250-J-Z125-12-76 381

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

= FGG
Processes file generation groups and file generations only. The only sensible selection
operands for TYPE=FGG are those which refer to attributes that are identical for all
generations of an FGG (ACCESS, ACL, BACKUP, CCS, DELDATE, EXDATE,
MANCLAS, MIGRATE, PASS, RELSPAC, SHARE, SUPPORT=PRDISC and
WORKFIL).

File generation groups or file generations are not selected if:
– the selection operand VOLUME is not specified together with CATALOG or does

not designate a private disk,
– a selection operand that is not the same for all generations/FGGs is specified.

= PLAM
Processes PLAM libraries. This is a subset of the files which are selected by the
TYPE=FILE specification.

= (list-of-type)
A maximum of three file types can be specified by the user in the form of a list. Only the
files which match one of the specified file types are selected.

USRINFO
The user can select files/file generations for processing dependent on the user-specific
metainformation.

= *ANY
The user-specific metainformation is not a selection criterion.

= *NONE
All files possessing no user-specific metainformation are processed.

= <c-string 1..8>
All files with the specified user-specific metainformation are processed.

VERSION
Specifies which version of the parameter list is to be generated.

= 0
Default value: generates the parameter list format that was supported prior to
BS2000 V9.5A.
This format will, however, only support parameters which were known at that time. For
example, the path name can only be specified without wildcards, and only VOLUME
and POS are permitted as selection parameters. The supported operands and operand
values can be found in section “Variations in versions – VERSION=0/1/2” on page 387.

ERASE Macros

382 U4250-J-Z125-12-76

= 1
Generates the parameter list format that was supported in BS2000 V9.5 and V10.0.
This format will support only parameters which were known at the time. The supported
operands and operand values can be found in section “Variations in versions –
VERSION=0/1/2” on page 387.

= 2
Generates the parameter list format for versions as of BS2000/OSD V1.0.

= 3
Generates the parameter list format for versions as of BS2000/OSD V3.0.

Note
If existing software which manipulates the generated parameter list is to be
recompiled or reassembled, the old format must be requested. Otherwise, source
compatibility is ensured.

VOLSET
The user can select the files to be processed via the volume set on which they reside.

= *ANY
The volume set is not a selection criterion.

= <c-string 1..4>
All files on the specified volume set are selected.

VOLUME
The user can select files to be processed on the basis of the VSN (volume serial number)
of the disks on which they are stored.

= *ANY
All files are processed regardless of the VSNs of their volumes.

= vsn
Processes all files that occupy storage space on the specified volume. If any of the
action operands SPACE, SPACE-CATALOG, DATA and DESTROY is specified at the
same time, no file generations and file generation groups are selected. If the action
operand CATALOG is specified with the VSN, no file generations on tape are selected.

Macros ERASE

U4250-J-Z125-12-76 383

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

WORKFIL
The user can select the files on SM pubsets to be processed dependent on whether they
can be deleted by the system administrator (work files).

= *ANY
Whether or not the files are work files is not a selection criterion.

= *NO
All files that are not work files are processed.

= *YES
All work files are processed.

Programming notes

1. The error code is now only stored in the standard header of the parameter list and no
longer in register 15 as was the case up to VERSION=2.

2. Error code 06D6 – “filename” was partially qualified and the system could not erase all
matching files.

3. Error code 05DF – *SYSOUT not permitted in interactive mode.

4. In specific error cases (parameter range not accessible or not set up), program termi-
nation with STXIT connection is initiated.

ERASE Macros

384 U4250-J-Z125-12-76

Return codes

Standard
header:

The following code relating to execution of the ERASE
macro is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' No error

X'40' X'0501' Requested catalog not available

X'82' X'0502' Requested catalog in the rest state

X'40' X'0503' Incorrect information in the MRSCAT

X'82' X'0504' Error in catalog management system

X'40' X'0505' Computer communication error (MRS)

X'80' X'0506' Operation canceled because of master change

X'40' X'0510' Error while calling an internal function

X'40' X'0512' Requested catalog unknown

X'40' X'051A' File already exists

X'40' X'051B' User ID not known in specified pubset

X'40' X'051C' No access right to specified pubset

X'40' X'051D' LOGON password different on specified pubset

X'20' X'0530' Error in storage space request

X'20' X'0531' Unexpected catalog access error

X'82' X'0532' File in use, therefore locked

X'40' X'0533' File not found

X'82' X'0534' Private volume cannot be allocated

X'40' X'0535' No access right to the file catalog entry

X'20' X'053B' System error during file access

X'40' X'053D' Catalog or F1 label block is destroyed

X'82' X'053F' File reserved by another task

X'20' X'054F' Unexpected error during access to JOIN file

X'40' X'055C' Catalog entry on private disk not found

X'01' X'0571' System file declared as *DUMMY

X'40' X'0572' System file not assigned to a DMS file

Macros ERASE

U4250-J-Z125-12-76 385

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

X'40' X'0574' DMS error during deletion of a system file

X'82' X'0575' System command active for this system file

X'01' X'0576' Contradictory operand combination or reserved fields of the parameter
area used

X'20' X'0577' Internal error during access to job environment

X'20' X'0578' Internal error during checking of access rights

X'40' X'057C' HSMS has rejected recall

X'40' X'057D' HSMS file displaced. Cannot be retrieved without delay.

X'40' X'057E' HSMS not available

X'82' X'0594' Not enough virtual memory available. This return code can also occur
in particular in conjunction with a selection specification (wildcard) if too
many files are selected

X'01' X'0599' Operand is not supported in the RFA-BS version

X'01' X'05AB' Address of output area incorrect or not specified

X'01' X'05AC' Incorrect second operand

X'40' X'05B3' Only the system administrator is allowed to specify a foreign user ID

X'40' X'05BF' File protected with password

X'82' X'05C3' File generation to be erased is locked

X'01' X'05C5' SPACE specification for files on private disks is not allowed

X'40' X'05C6' Release data does not permit deletion of file

X'20' X'05C7' Internal error in DMS

X'01' X'05C9' Only files on private volumes can be exported

X'82' X'05D0' File in use, therefore locked

X'01' X'05DE' File name not found or not allowed

X'01' X'05EE' File name too long

X'02' X'00' X'05F7' File generation does not exist but group entry will be changed

X'01' X'05FA' Access to remote imported pubset not possible

X'40' X'05FC' Specified user ID not in home pubset

X'40' X'0609' Action for system file not permitted

X'40' X'0640' Access to Net-Storage is rejected by the ONETSTOR subsystem
because of communication problems with the net client

X'40' X'0643' Net client reports access error

X'40' X'0644' Net client reports internal error

X'40' X'0645' File does not exist on Net-Storage

X'cc' X'bb' X'aaaa' Meaning

ERASE Macros

386 U4250-J-Z125-12-76

X'40' X'0649' Net server reports POSIX ACL error

X'40' X'064A' Net client reports that access to files on the Net-Storage volume is
forbidden

X'40' X'064B' Access to node files from the net client not supported

X'40' X'064C' Directory of the specified user ID does not exist on the net server

X'40' X'0666' File is write-protected by ACL or GUARDS

X'20' X'069D' Incorrectly structured catalog entry

X'01' X'00' X'06B4' No generation to be erased exists before or after the specified gener-
ation

X'01' X'06C7' Invalid generation number specified

X'40' X'06CC' Only with selection specification (wildcard): no file matches the
selection specification

X'01' X'06D4' Invalid generation specification

X'40' X'06D5' File protected

X'02' X'00' X'06D6' Error during deletion of some files

X'01' X'06F5' No authorization for use of specified operands (TPR or TSOS required)

X'01' X'06F9' Either the file name or the volume must specified

X'01' X'06FD' Parameter area invalid or not accessible

X'40' X'06FF' BCAM connection aborted

X'01' X'FFFF' Wrong function number in parameter area header

X'03' X'FFFF' Wrong version number in parameter area header

X'cc' X'bb' X'aaaa' Meaning

Macros ERASE

U4250-J-Z125-12-76 387

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Variations in versions – VERSION=0/1/2

The “version overview” in the table below shows which operands and operand values are
supported with VERSION=2/1/0.

All operands and operand values that were supported up to and including BS2000 V2.0A
may be used in the macro format with VERSION=2.

All operands and operand values that were supported up to and including BS2000 V10.0A
may be used in the macro format with VERSION=1.

All operands and operand values that were supported in BS2000 versions Î V9.0A can be
used in the format with VERSION=0..

Operand Vers=0 Vers=1 Vers=2 Comments

MF=E x x x

VERSION x x x

MF=D - x x

PREFIX - x x

VERSION - x x

MF=L x x x

* x x x

*SYSid x x x

*DUMMY - x x

CATALOG x x x

DATA x x x

DATA-KEEP-
ATTR

- - -

DELETE-
OR-EXPORT

- x x

DESTROY x x x

pathname x x x Vers=0: No wildcards are permitted

prefix - x x

SPACE x x x

SPACE-
CATALOG

- x x

ACCCNT - - x

ACCESS - x x

ACL - - x

ADMINFO - - -

ERASE Macros

388 U4250-J-Z125-12-76

MF=L (cont.)

AVAIL - - -

BACKUP - x x Vers=1: Operand value (list-of-backup) not permitted

BASACL - - x

BLKCNT - - x

BLKCTRL - x x Vers=1: Operand values ANY, DATA4K, DATA2K, NK4,
NK2, NK and (list-of-blkctrl) not permitted

CCS - - x

CHECK - x x

CRDATE - x x Vers=1: Operand values cannot be entered with time
specifications, see 1)

DELDATE - - -

DISKWR - - x

ENCRYPT - - -

EXDATE - x x Vers=1: Operand values cannot be entered with time
specifications, see 1)

EXTENTS - x x

FCBTYPE - x x Vers=1: Operand value (list-of-fcbtype) not permitted

FILTYPE - - -

FSIZE - x x

GROUPAR - - x

GUARDS - - x

IGNORE - x x

IOPERF - - x

IOUSAGE - - x

KEEPACL - - x

LADATE - x x Vers=1: Operand values cannot be entered with time
specifications, see 1)

LASTPAG - - x

LCDATE - - x

LIST - x x

MANCLAS - - -

MIGRATE - x x Vers=1:
0/1/2:

Operand value (list-of-migrate) not permitted
Operand value FORBIDDEN not permitted

MOUNT - x x

Operand Vers=0 Vers=1 Vers=2 Comments

Macros ERASE

U4250-J-Z125-12-76 389

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Key

x The operand is available in the macro version.

- The operand is not available in the macro version.

Vers Version

In the above table, positional operands are indicated before keyword operands under
MF=L.

MF=L (cont.)

NOSTEP - x x

OTHERAR - - x

OWNERAR - - x

PASS - x x Vers=1: Operand value (list-of-pass) not permitted

PASSWD - x x

POS x x x

PREFIX - x x

PROTACT - - x

RELSPAC - - x

SHARE - x x Vers=1: Operand value (list-of-share) not permitted

SIZE - x x

SLEVEL - x x

STATE - - x Vers=2: Operand values CACHE-NOT-SAVED and
DEFECT-REPORTED not permitted

STOCLAS - - -

SUPPORT - x x Vers=1: Operand value (list-of-support) not permitted

S0MIGR - - -

TIMBASE - - -

TYPE - - x

USRINFO - - -

VERSION x x x

VOLSET - - -

VOLUME x x x Vers=0:
Vers=1:

Only possible value: vsn
Only possible value: vsn

WORKFIL - - -

Operand Vers=0 Vers=1 Vers=2 Comments

ERASE Macros

390 U4250-J-Z125-12-76

Note

1) The format for the CRDATE, EXDATE and LADATE operands in macro version 1 is as
follows:

CRDATE

EXDATE

LADATE 
 
 
 
 

=

NONE
date
(date[,])
(,date)
(date1,date2)

 
 
 
 
 
 
 
 
 

Macros EXLST

U4250-J-Z125-12-76 391

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

EXLST – Define exit address list

Macro type: type O

By means of the EXLST macro, the user defines a list of symbolic addresses which point
to program routines for evaluating and handling events which cause normal processing to
be interrupted.

There is a separate operand in the EXLST macro for each event. If a symbolic address is
specified in the macro for the related operand, DMS can branch to the appropriate program
routine if a given event occurs. If the operand is omitted or contains only a null string, the
occurrence of the event will result in abortion of the program unless a common error
handling routine is addressed via the operand COMMON.

However, this routine is not called for the operands with which the FCB can be modified
during OPEN processing or with which the user writes his own tape labels during OPEN or
CLOSE processing. If these operands are specified in the EXLST macro, DMS branches to
the program routines which they address.

EXLST Macros

392 U4250-J-Z125-12-76

Format

Operation Operands

EXLST
[PARMOD=

24

31 
 
 

][,CLOSER=
NO

relexp 
 
 

]

[,CLOSPOS=
NO

relexp 
 
 

][,COMMON=relaus][,DLOCK=
NO

relexp 
 
 

]

[,DUPKEY=
NO

relexp 
 
 

][,EOFADDR=
NO

relexp 
 
 

][,ERRADDR=
NO

relexp 
 
 

]

[,ERROPT=

NO

SKIP

IGNORE

relexp 
 
 
 
 
 
 

][,ISPERR=
NO

relexp 
 
 

][,LOCK=
NO

relexp 
 
 

]

[,NODEV=
NO

relexp 
 
 

][,NOFIND=
NO

relexp 
 
 

][,NOSPACE=
NO

relexp 
 
 

]

[,OPENC=
NO

relexp 
 
 

][,OPENER=
NO

relexp 
 
 

][,OPENX=
NO

relexp 
 
 

]

[,OPENZ=
NO

relexp 
 
 

][,PASSER=
NO

relexp 
 
 

][,PGLOCK=
NO

relexp 
 
 

]

[,SEQCHK=
NO

relexp 
 
 

][,USERERR=
NO

relexp 
 
 

][,WLRERR=
NO

relexp 
 
 

]

[,EOVCTRL=
NO

relexp 
 
 

][,LABEND=
NO

relexp 
 
 

][,LABEOV=
NO

relexp 
 
 

]

[,LABERR=
NO

relexp 
 
 

][,LABGN=
NO

relexp 
 
 

][,OPENV=
NO

relexp 
 
 

]

Macros EXLST

U4250-J-Z125-12-76 393

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Operand descriptions

relexp
Symbolic address in the Assembler program.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode, i.e. in the 16-Mb address
space.

= 31
The macro is generated as addressing mode-independent; the object code can run in
the 2-Gb address space.

CLOSER
An error has occurred during CLOSE processing. An error code describing the condition in
more detail is stored in FCB field ID1ECB.

CLOSPOS
For tape input files with nonstandard labels:
The user can use BTAM macros to position a tape for which a CLOSE macro with either
REPOS or LEAVE was called. CLOSE processing continues after execution of the
CLOSPOS routine. If this exit is not defined, the system handles tape positioning.

COMMON
Control is passed to this address if there is no special exit for the type of error encountered.

Exceptions:

If processing is interrupted by an event for which no EXLST operand is specified, control is
passed to the routine addressed via COMMON, except for the operands listed above, which
“expect” an intervention in the processing.

For further details see the tables at the end of the EXLST description.

CLOSPOS LABEOV OPENC OPENZ

EOVCTRL LABERR OPENV WLRERR

LABEND LABGN OPENX

EXLST Macros

394 U4250-J-Z125-12-76

DLOCK
For UPAM processing of disk files only:
Deadlock: further locks, which are not available, have been requested for a job which
already has locks active.

Control is passed to the deadlock exit after the waiting time specified in the PAMTOUT
operand. The DLOCK routine must first release the “old” locks before new locks can be
requested; otherwise, the program will be aborted.

DUPEKY
For ISAM only:
An attempt has been made to write a record into an ISAM file, although the key of this
record already exists in the file. This attempt was made:
– using the INSRT macro, which must not be used for writing records with duplicate keys,

even if DUPEKY=YES is specified in the FILE or FCB macro, or
– using the PUT macro, but without DUPEKY=YES specified in the FILE or FCB macro.

EOFADDR
For input files only:
The end of the file was encountered when trying to read a record.

After checking all the labels, DMS activates the EOFADDR routine, in which the user can
close the file.

EOVCTRL
This exit must be specified in order to transfer control from the system to the user after a
new tape volume has been mounted.

For input files:
This exit is activated only for multivolume files. It is called for every continuation tape only
after the system has checked the standard header labels on the continuation tape and the
user has (if necessary) checked his own labels in the LABGN exit.

For output files:
This exit is activated only in the case of multivolume files, and only for the continuation
tapes, after the system has finished checking and writing the standard header labels (VOL,
HDR).

This exit is left by specifying the EXRTN macro.

Macros EXLST

U4250-J-Z125-12-76 395

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

ERRADDR
During file processing, a hardware error or abnormal I/O termination has occurred. The
status byte, the standard device bytes, the Executive flag byte (EFB) and the three sense
bytes are stored in the FCB. For ISAM processing, this exit may indicate that ISAM blocks
are inconsistent (SAM uses the exits EOFADDR, ERROPT, USERERR).

ERROPT
For SAM input files:
A parity error occured while reading a block: DMS makes several attempts to read the block
again before flagging it as errored and attempting to branch to the ERROPT routine. If no
ERROPT error exit is provided, the program is terminated. In the EXLST macro, the user
can choose to ignore the error, to skip the block or to handle the error in an ERROPT
routine.

For SAM output files:
ERROPT is relevant only if no WLRERR exit has been defined and records of incorrect
length occur.

= SKIP
The faulty block is skipped, i.e. no records from this block are made available to the
program for processing. The next block is read and processing continues with the first
record of this block.

= IGNORE
The error condition is ignored and the records from the block are made available to the
user program for further processing.

= relexp
Symbolic address of a user routine. This routine must not contain any GET macros for
the file containing the faulty block. The routine may evaluate register 0, which contains
the address of the errored block, and set a flag for further processing (also in register 0).
Normal processing is resumed by means of the EXRTN macro.

If general-purpose register 0 contains the value X'00000001', the current block is
skipped and processing continues with the next block. Any other code signifies that the
current block is to be processed as if no error had occurred.

ISPERR
For ISAM files with index and data sections on different private disks:
Not enough space is available for extending the index section (for this type of ISAM file, the
space can be extended separately for the index and data sections (see the FILE macro)).

EXLST Macros

396 U4250-J-Z125-12-76

LABEND
For tape files:
For checking/writing user file trailer labels; if this exit is not used, the system ignores all user
labels.

For input files:
After encountering the end of the file, the system activates the LABEND exit before
activating the EOFADDR exit. In the LABEND routine, the user can check his end-of-file
labels (UTL). The system provides him/her with the address of a UTL in register 0.

In the case of input files with nonstandard labels, the LABEND exit provides the user with
a means of reading and checking his/her labels, if present, when the EOF condition is
encountered.

For output files:
The LABEND exit is activated for the purpose of writing user labels after the file has been
closed by the user and the end-of-file labels (EOF) have been written. The system supplies
the user, in register 0, with an address at which the user trailer labels (UTL) must be made
available.
In the case of output files with nonstandard labels, the user, after issuing the CLOSE macro,
receives control at this exit for the purpose of writing the nonstandard labels.

Once control has been returned to the system (via the LBRET macro), CLOSE processing
is completed.

LABEOV
For tape files:
For checking/writing user trailer labels.

For input files:
This exit is activated after EOF has been encountered and the trailer labels have been
written. The user can check the user labels (UTL) here. The system provides the user with
the address of a UTL in register 0.
In the case of input files with nonstandard labels, this exit enables the user to read and
check the user labels following his/her file, if there are any such labels.

For output files:
This exit is activated when EOV is encountered (or is explicitly requested by the user via
the FEOV macro) and after the EOV labels have been written. The system provides an
address in register 0 at which the user must make his/her trailer labels (UTL) available.
In the case of output files with nonstandard labels, the user receives control from the system
via this exit either after EOV is encountered or when a FEOV macro is issued, in order to
write his/her labels.

Macros EXLST

U4250-J-Z125-12-76 397

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Users working with the BTAM access method must issue an FEOV macro after encoun-
tering the end of the tape in the ERRBYTE field. SAM initiates EOV processing automati-
cally.
After control has been returned to the system (by means of the LBRET macro), a tape swap
can be executed.

LABERR
For tape files:
For files with standard labels, the system branches to this exit if an error occurs during end-
of-tape processing.
One of the following error codes is placed in the ID1ECB field of the FCB:

X'0DE9' A tape mark was read instead of the expected EOV/EOF labels.

X'0DEA' A record other than the expected EOV/EOF label was read.

X'0DEB' End-of-tape (double tape mark) was encountered without the expected
EOV/EOF labels being read.

X'0DEC' The check of the block count was negative.

The user must return control to the system by means of the EXRTN macro.

Register 0 must contain one of the following values in order to notify the system of how it is
to proceed:

X'00' Perform a tape swap as if the correct EOV/EOF labels had been read.

X'01' Terminate the task with an error.

X'02' Perform EOF processing.

If the LABERR exit is not used and one of the conditions described above occurs, the
system sends the user an error message. (S)he can then either continue the program or
activate a CLOSE routine.

If this exit is not specified, the system ignores user labels for input files, and no user labels
can be created for output files.

EXLST Macros

398 U4250-J-Z125-12-76

LABGN
For tape files:

For input files:
The LABGN exit is activated after the standard header labels (VOL, HDR) have been
checked; the user header labels (UHL) can be checked in the LABGN routine. The address
of the label in the buffer is passed to the user program in register 0. If the file contains
nonstandard labels, the user can read and check his/her labels in the LABGN routine.

For output files after OPEN processing and after checking and writing the standard header label:
The system provides the user, in register 0, with the address at which he must make his
labels (UHL) available. If the file is to have nonstandard labels, these can be written in the
LABGN routine.

When control is returned to the system (by means of the LBRET macro), the tape must be
positioned either before the first data block (for OPEN=REVERSE) or after the last data
block (for OPEN=EXTEND). If TPMARK=YES was specified, the tape is rewound by one
tape mark for OPEN INPUT or wound forward by one tape mark for OPEN REVERSE. If
TPMARK=NO was specified, the system assumes that the tape is positioned before the first
data block.

LOCK
The file is locked: it cannot be opened because it has already been opened by another job
and the OPEN modes are incompatible, i.e. at least one of the jobs has requested an OPEN
mode other than INPUT.

NODEV
Either no device on which the private volume could be mounted is free, or the private
volume is already being used by another user (it is advisable to reserve devices
beforehand).

NOFIND
For ISAM:
The action macro GETKY, ELIM (with KEY specified) or GETFL could not be executed
successfully:
– GETKY / ELIM: there is no record with the specified key in the file
– GETFL: the specified file range contains no records which match the flag conditions.

NOSPACE
For disk files:
The required storage space cannot be provided.

Macros EXLST

U4250-J-Z125-12-76 399

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

OPENC
The file was opened earlier as an output file but was not closed properly. The VERIF macro
can be used in the OPENC routine to close the file and restore its consistency. Field
ID1ECB in the FCB contains DMS error code X'0DD1'. If no OPENC exit is specified, the
system continues with OPEN processing.

OPENER
An error occurred when opening a file (e.g. inconsistent FCB). An error code describing this
condition more precisely is stored in the FCB.

OPENV
For tape files:

For files with standard labels:
This exit is used to check (for input files) or write (for output files) the UVL labels.
DMS provides, in register 0, the address where the label can be found for input files or
where the label must be made available by the user for output files. For output files, OPENV
can be used for positioning or for writing up to 9 user labels (UVL). The user can issue any
BTAM macros which may be required.

For input files with nonstandard labels:
The OPENV exit enables the user to read and check his/her volume header labels (VOL),
if any.

Before returning control to the system (via the EXRTN macro), the user must position the
tape before the file header labels (HDR), if any. Positioning can also be carried out with the
FSEQ operand (see the FILE or FCB macro).
The user is responsible for correct positioning. The user program cannot perform tape
swaps during positioning.

OPENX
The FCB has already been updated, during OPEN processing, on the basis of values in the
TFT or the catalog. The program can now check that all parameters are set such that OPEN
processing can be completed without errors. If OPEN=OUTPUT/OUTIN, the FCB is
updated on the basis of the TFT, but the catalog entry is not updated.
Processing can be continued after calling the EXRTN macro.

EXLST Macros

400 U4250-J-Z125-12-76

OPENZ
For files being opened in OUTPUT or OUTIN mode, catalog processing has already been
completed when this exit is activated, but the remaining OPEN processing must still be
performed. In the OPENZ routine, the program can modify the FCB so that processing is
possible: the user can, for example, process the file with an access method other than that
specified in the catalog.

Processing is continued after the EXRTN macro has been called.

PASSER
An invalid password has been specified for a protected file.

PGLOCK
Only together with SHARUPD=YES for UPAM or ISAM:
Locks requested by the calling job cannot be set, because they are already set by another
job. However, there is no danger of a deadlock situation.

UPAM:
The waiting time specified in the PAMTOUT operand of the FCB has elapsed when control
is passed to this exit.

ISAM:
If a PGLOCK routine exists, ISAM does not wait for a record lock. If PGLOCK=NO applies,
the job is entered in a queue; the user is not informed, in this case, that the record is already
locked by another job.

If a file was opened with SHARUPD=YES, control can be passed to this exit during
processing of any ISAM macro (except OSTAT). If the PGLOCK exit is taken, the “internal
pointer” will be wrong unless the condition is due to a PUTX or ELIM macro (without KEY).

It is therefore imperative that this internal pointer is repositioned before any macro is issued
which requires it to be set correctly (e.g. GET, GETR and GETFL). The pointer can be
repositioned using the RETRY macro or with one of the ISAM action macros GETKY, SETL,
PUT, STORE, INSRT or ELIM (with KEY). If GET, GETR or GETFL is called before the
pointer is repositioned, control is passed to the USERERR exit.

If the condition which caused the PGLOCK exit to be taken was due to a PUTX or ELIM
macro (without KEY), the data block remains locked and repositioning is not necessary.

SEQCHK
For ISAM:
A record to be added to an ISAM file by means of the PUT macro has a key less than the
highest key already present in the ISAM file.

Macros EXLST

U4250-J-Z125-12-76 401

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

USERERR
The program attempted to execute an illegal or invalid action, such as trying to write to a
file opened in INPUT mode, calling a PUTX or ELIM macro (without KEY) for a file opened
with SHARUPD=YES, or an invalid PAM operation code.

WLRERR
A record of invalid length was read. In the case of blocked records of fixed length, the record
length is regarded as invalid if the block size is not a multiple of the record length defined
in the FCB entry RECSIZE (up to the maximum block size defined in the FCB entry
BLKSIZE). This permits short blocks of logical records to be read without “invalid record
length” being flagged. In the case of variable-length records, the record length is invalid if it
no longer matches the record length specified in the block count control field.

For files with record format U, no WLRERR exit needs to be provided, because the record
length is not checked in this case.

If a program is given control at this exit, general-purpose register 0 contains the address of
the errored block. An EXRTN macro is required if processing is to continue. If register 0
contains X'00000001', the current block is skipped and processing continues with the next
block. Any other code signifies that the current block is to be processed as if no error had
occurred.

If no special form of error handling is defined for WLRERR and an “invalid record length”
event occurs, DMS checks the value of the ERROPT operand:

– ERROPT î NO: the “invalid length” record is treated as an errored block and control is
passed to the address specified in ERROPT.

– ERROPT = NO: the job is aborted.

EXLST Macros

402 U4250-J-Z125-12-76

Programming notes

1. Registers 14, 15, 0 and 1 are DMS parameter registers. Therefore, unless explicitly
stated otherwise, it cannot be assumed that these registers have a defined value when
the user receives control at the EXLST exit.

2. The following tables show which EXLST exits are used, and when:

Error exit STD
SAM

NSTD
SAM

ISAM PAM BTAM The user can specify

CLOSE EXRTN Action macro

CLOSER A A A A A N N N

CLOSPOS N A N A A N A A

DLOCK N N N A N A N A

DUPEKY N N A N N A N A

EOFADDR A A A A(1) A(2) A N A

EOVCTRL A A N N A A A N

ERRADDR A A A A A A N A

ERROPT A A N N N A A N

ISPERR N N A N N A N A

LABEND A A N A A X A A(3)

LABEOV A A N A A X A A(3)

LABERR A X N A A X A A(3)

LABGEN A A N A A X A A(3)

LOCK A A A A N N N A

NODEV A A A A A N N N

NOFIND N N A N N A N A

NOSPACE A N A N N A N A/N(SAM)

OPENC A N A A N N N Try VERIF

OPENER A A A A A N N N

OPENV A A N A A X A A(3)

OPENX A A A A A A A N

OPENZ A A A A A A A N

PASSER A A A A A N N N

PGLOCK N N A A N A N A

SEQCHK N N A N N A N A

USERERR A A A A A A N A

WLRERR A A N N N A A N

Macros EXLST

U4250-J-Z125-12-76 403

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

Meanings of the entries

EXLST
operand

COMMON
exit

FCB code
(ID1XITB field)

X' '

 1)
Program
abortion

Meaning

CLOSER Z 2C A File regarded as closed

DLOCK Z 3C A No further locks until all existing locks
are cleared

DUPEKY Z 54 A

EOFADDR Z 40 A

EOVCTRL N 34 N

ERRADDR Z 44 A Error code and/or end byte (PAM and
BTAM)

ERROPT N 48 A End byte stored in FCB

ISPERR Z 50 A

LABEND N 30 N File regarded as closed

LABEOV N 28 N -

LABERR N 6C N Only for files with standard labels

LABGN N 24 N -

LOCK Z 10 A

NODEV Z 14 A

NOFIND Z 58 A

NOSPACE Z 4C A

OPENC N 68 N

OPENER Z 08 A Error code stored in FCB

OPENV N 1C N

OPENX N 04 N

OPENZ N 18 N

PASSER Z 0C A

PGLOCK Z 38 A

SEQCHK Z 60 A

USERERR Z 5C A Error code stored in FCB

WLRERR N 64 N End byte stored in FCB

where:

A Allowed

EXLST Macros

404 U4250-J-Z125-12-76

X Not allowed

Z Applicable

N Not applicable

(1) Only for *DUMMY files

(2) Only used with FEOV

(3) Only if LABEL=NSTD is specified.

1) The program is terminated if the exit is not defined and the event occurs.

Macros EXRTN

U4250-J-Z125-12-76 405

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
2

01
6

 S
ta

n
d

11
:4

1
.5

9
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
v0

4\
de

-e
x.

do
c

EXRTN – Return from error routine

Macro type: type R

The EXRTN macro is required in some user routines which are addressed via EXLST exits.
It returns control to DMS, which evaluates the function code and continues processing
accordingly.

The EXRTN macro must be specified in routines which use the following EXLST exits:
CLOSPOS, EOVCTRL, ERROPT, LABEND, LABEOV, LABERR, LABGN, OPENV,
OPENX, OPENZ, WRLERR.
If UHL, UTL or UVL labels are being processed, the LBRET macro must be used.

Format

Operation Operands

EXRTN

fcbaddr

(1) 
 
 

,

0
1
2
(0)

 
 
 
 
 
 
 

[,PARMOD=
24

31 
 
 

]

EXRTN Macros

406 U4250-J-Z125-12-76

Operand descriptions

fcbaddr
Symbolic address of the FCB for the file being processed when a branch was made in the
program to an EXLST exit.

(1)
Register 1 contains the address of the FCB.

The second operand specifies a function code; this is significant only for the EXLST exits
ERROPT and WRLERR.

0
The error is to be ignored.

1
Disk files: the current block is to be skipped and the next one processed.

Tape files: the user program is to be terminated with an OPEN or end-of-tape error.

2
Tape files: end-of-tape processing is to be continued (for the LABERR exit only).

(0)
The rightmost byte of register 0 contains the function code.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

Programming note

The EXRTN macro overwrites registers 0, 1, 14 and 15.

Macros FCB

U4250-J-Z125-12-76 407

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

FCB – Define file control block

Macro type: type O

The file control block is the central source of information for the access methods BTAM,
ISAM, SAM and UPAM. A file control block is required whenever a file is processed.

DMS takes the necessary information from various sources:

– the user can specify values for FCB fields in the FCB macro;

– in user programs, values can be placed in FCB fields during program execution, but
before the file is opened;

– specifications in the FILE macro with the appropriate link name are placed in the TFT
and are given precedence over the corresponding FCB fields when the file is opened;

– the FCB can also be modified while the file is being opened using routines in the appli-
cation program (see the EXLST macro, page 391, OPENX and OPENZ routines).

– further information is taken from the catalog entry for the file during OPEN processing.

The events which lead to the construction of a complete FCB are listed below in chrono-
logical order:

– FCB macro during assembly

– modification during program execution, before the OPEN macro is called

– at OPEN time, construction of the FCB

– from the TFT (FILE call with appropriate link name)
– from the catalog entry (regardless of the OPEN mode)
– in OPEN routines (see the EXLST macro, page 391, OPENX and OPENZ routines)

by the user program

The complete FCB also sets up the connection to the logical routines which handle the
blocking and unblocking of records for the record-oriented access methods (SAM, ISAM).

FCB Macros

408 U4250-J-Z125-12-76

DSECTs

Using the IDFCB macro, a DSECT can be generated for the FCB so that the user can
address its fields symbolically. If files are processed via the 24-bit interface, a DSECT for
the FCB extension can be generated by means of the IDFCBE macro.

NULL operands

If the file/file generation group specified directly in the FCB macro or indirectly via the LINK
operands already exists (i.e. if the file has already been opened using OPEN modes
OUTPUT or OUTIN), certain FCB macro operands can be specified as “NULL operands”.
This means that the operand is specified but no operand value (i.e. the operand value is an
empty character string).

FCB LINK=name, FCBTYPE=, BLKSIZE=, RECFORM=, ...

For a list of the operands that can be specified as NULL operands, see table “Operands for
disk files” on page 444.

FCB and access methods

Various access methods use the FCB, but each only evaluates certain operands. The
following table provides an overview of which access methods use which operands.
Operands which an access method cannot evaluate are ignored. No error message is
issued.

Operand
in FCB

Meaning Access method

BTAM ISAM PAM SAM

BLIM Tape only: number of data blocks per tape x

BLKCTRL Block format (UPAM: tape) x x x

BLKSIZE Length of data block (UPAM: tape) x x x x

BTAMRQS Number of I/O requests x

BUFOFF Tape only: buffer offset x

CHAINIO Chaining factor x

CHKPT Tape only: checkpoint x

CODE Translation table (SAM: tape) x x

DUPEKY Duplicate key x

EXIT Error exit x x x x

FCBTYPE Access method x x x x

FILE Designates the file to be processed x x x x

FORM Memory space reservation x

FSEQ Tape only: number of a file within a file set x x

Macros FCB

U4250-J-Z125-12-76 409

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

IOAREA1 Program buffer x x x x

IOAREA2 Second program buffer x x x x

IOPERF Performance attribute (pubset only) x x x

IOREG Register for file processing in locate mode x x

IOUSAGE Usage of cache (pubset only) x x x

KEYARG Address of field containing ISAM key x

KEYLEN Length of ISAM key x

KEYPOS Beginning of ISAM key x

LABEL Tape only: label attributes x x

LARGE_
FILE

Disks only: file size allocation over 32 GB x x x

LINK File link name x x x x

LOCKENV Lock log for synchronization (shared-update
processing)

x x

LOGLEN Length of logical flag x

OPEN OPEN mode x x x x

OPTION Options x x x x

OVERLAP Overlapping x

PAD Block padding for files created sequentially x

PAMREQS Asynchronous I/O operations x

PAMTOUT Waiting time x

PARMOD Generation mode x x x x

PASS Password x x x x

POOLLNK Pool link name x

RECFORM Record format x x x

RECSIZE Record length x x x

RETPD Retention period x x x x

SECLEV Tape only: security level x x

SHARUPD Multi-user mode x x

STREAM Streaming mode x

TAPEWR Tape only: buffered output x x

TPMARK Tape only: tape marks x x

Operand
in FCB

Meaning Access method

BTAM ISAM PAM SAM

FCB Macros

410 U4250-J-Z125-12-76

TRANS Tape only: code translation x x

TRTADR Tape only: user' s own translation table (for reading) x x

TRTADW Tape only: user' s own translation table (for writing) x x

VALLEN Length of value flag x

VALPROP Value flag x

VARBLD Register for the free space in the block to be written x

WRCHK Read-after-write check when writing blocks x x x

WROUT Immediate writing back x

Operand
in FCB

Meaning Access method

BTAM ISAM PAM SAM

Macros FCB

U4250-J-Z125-12-76 411

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Format

Operation Operands

FCB [BLIM=number]

[,BTAMRQS=number]

[,CHAINIO=number]

[,DUPEKY=YES]

(Teil 1 von 5)

[,BLKCTRL=

PAMKEY
DATA
DATA2K
DATA4K
NO

 
 
 
 
 
 
 
 
 

]

[,BLKSIZE=

STD

(STD,number)

length 
 
 
 
 

]

[,BUFOFF=
L

length 
 
 

]

[,CHKPT=

NO

ANY

BLIM

FEOV 
 
 
 
 
 
 

,
ACTIVE

DUMMY 
 
 

]

[,CODE=

EBCDIC

ISO7

OWN 
 
 
 
 

]

[,EXIT=
(relexp)

relexp 
 
 

]

FCB Macros

412 U4250-J-Z125-12-76

[,FILE=pathname]

[,IOREG=reg]

[,KEYARG=relexp]

[,KEYLEN=length]

[,KEYPOS=number]

Operation Operands

(Teil 2 von 5)

[,FCBTYPE=

ISAM

BTAM

PAM

SAM 
 
 
 
 
 
 

]

[,FSEQ=

UNK

NEW

number 
 
 
 
 

]

[,IOAREA1=

NO

SECRET

relexp 
 
 
 
 

]

[,IOAREA2=

NO

SECRET

relexp 
 
 
 
 

]

[,IOPERF=

VHIGH

HIGH

STD 
 
 
 
 

]

[,IOUSAGE=

RDWRT

WRT

RD 
 
 
 
 

]

Macros FCB

U4250-J-Z125-12-76 413

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

[,LINK=name]

[,LOGLEN=length]

[,OVERLAP=YES]

[,PAD=number]

[,PAMREQS=number]

[,PAMTOUT=number]

[,PASS=password]

[,POOLLNK=name]

Operation Operands

(Teil 3 von 5)

[,LABEL=

(STD,3)

STD

(STD,number)
NO
NSTD

 
 
 
 
 
 
 
 
 

]

[,LARGE_FILE=
*FORBIDDEN

*ALLOWED 
 
 

]

[,LOCKENV=
*HOST

*XCS 
 
 

]

[,OPEN=

INPUT

EXTEND

INOUT

OUTIN

OUTPUT

REVERSE

SINOUT

UPDATE 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,OPTION=
code

(code1,code2) 
 
 

]

[,PARMOD=
24

31 
 
 

]

FCB Macros

414 U4250-J-Z125-12-76

[,RETPD=days]

[,TRTADR=relexp]

[,TRTADW=relexp]

Operation Operands

(Teil 4 von 5)

[,SHARUPD=

NO

YES

WEAK 
 
 
 
 

]

[,RECFORM=

V

F

U  
 
 
 
 

V

F

U  
 
 
 
 

[,

N

M

A  
 
 
 
 

])

 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,RECSIZE=
length

reg 
 
 

]

[,SECLEV=

HIGH

LOW

(
HIGH

LOW 
 
 

,OPR)

 
 
 
 
 
 
 

]

[,STREAM=
NO

YES 
 
 

]

[,TAPEWR=
DEVICE-BUFFER

IMMEDIATE 
 
 

]

[,TPMARK=
YES

NO 
 
 

]

[,TRANS=
YES

NO 
 
 

]

Macros FCB

U4250-J-Z125-12-76 415

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Operand descriptions

BLIM = number
Only for creating files with standard labels which are to be processed with the SAM access
method and extend over several tapes. The following operands must be specified along
with BLIM in the FCB macro: FCBTYPE=SAM, OPEN=OUTPUT, LABEL=(STD,n).
“number” specifies the maximum number of data blocks, that are allowed to be written on
a single tape, 1 Î number Î 999999.
When the block limit value is reached, a tape swap is initiated (EOV processing).
If requested via the CHKPT operand, a checkpoint is written at the end of the tape before
EOV processing is started. If the end of the tape is reached before the number of blocks
specified via BLIM has been written, an error message is entered in the FCB.

BLKCTRL
Only for 31-bit processing (PARMOD=31); the operand is ignored in 24-bit processing
(PARMOD=24):
Specifies whether a file with the K format (with PAM keys) or NK format (without PAM keys)
is to be processed.
The same functions, with identical user interfaces, as for the corresponding K files are
available for the processing of NK-SAM and NK-PAM files. The access method NK-ISAM
provides some functions over and above those of K-ISAM (ISAM pools, secondary keys;
for details see the “Introductory Guide to DMS” [1].

When an existing file is opened, no value should be specified for BLKCTRL (i.e. a NULL
operand) (for more information on the NULL operand, see page 408). The value is then
transferred to the FCB from the catalog entry when the OPEN function is executed (for more
information on “existing files” see also the note in the section “Sequence of OPEN
processing” in the “Introductory Guide to DMS” [1]).

[,VALLEN=length]

[,VARBLD=reg]

Operation Operands

(Teil 5 von 5)

[,VALPROP=
MIN

MAX 
 
 

]

[,WRCHK=
NO

YES 
 
 

]

[,WROUT=
NO

YES 
 
 

]

FCB Macros

416 U4250-J-Z125-12-76

When a new file is created (with OPEN mode-OUTPUT or OUTIN), the BLKCTRL operand
should be omitted. Depending on the file structure and the disk format, the following default
setting will be assumed for BLKCTRL during OPEN processing.

= PAMKEY
The file has the K format: the block control information is kept in a PAM key outside the
data block. Such a file cannot be created on an NK disk (FBA disk without simulation of
PAM keys).

= DATA
The file has NK format: the block control information is kept at the beginning of each
logical block (see also BLKSIZE operand description; for ISAM files – at the beginning
of each 2-Kbyte or 4-Kbyte block). An NK file may be located on K disks, NK2 disks,
and – if the appropriate block size is selected – on NK4 disks as well. When a file is
created for the first time (OPEN OUTPUT/OUTIN), an NK2 or NK4 file is created:
for files created with an access method other than ISAM, the format of the file depends
on the blocking factor “n” in the BLKSIZE specification for the size of a logical block.
– If the blocking factor n is an odd number, an NK2 file is created.
– If the blocking factor n is an even number, an NK4 file is created.

When an NK-ISAM file (OPEN OUTPUT/OUTIN) is created, the format of the file is
selected on the basis of the disk format. A file that has already been opened can be
opened without regard to the block format.

= DATA2K
For ISAM files only:
explicitly creates or processes an NK2 file. This value cannot be used to create a file on
an NK4 disk or to open a file located on one.
The block-specific management information is stored in the first 16 bytes of each
2-Kbyte block.

= DATA4K
For ISAM files only:
explicitly creates or processes an NK4 file. The block-specific management information
is stored in the first 16 bytes of each 4-Kbyte block. If a blocking factor “n” is specified,

BLKCTRL File structure and disk format

PAMKEY for files (PAM, SAM, ISAM) on K disks and tape files, unless FCBTYPE=BTAM.

DATA for SAM files on NK2 and NK4 disks

DATA2K for ISAM files on NK2 disks

DATA4K for ISAM files on NK4 disks

NO for PAM files on NK2 and NK4 disks and for BTAM files

Macros FCB

U4250-J-Z125-12-76 417

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

“n” must be an even number, i.e. the logical block size must be a multiple of 4-Kbyte
(BLKSIZE=(STD,n) where “n” is even).
The file can be created and/or opened on K disks, NK2 disks, and NK4 disks.

= NO
This value is only meaningful for PAM files and SAM tape files: it is converted into
BLKCTRL=DATA for SAM disk files, and into BLKCTRL=DATA2K or
BLKCTRL=DATA4K for ISAM files.
If FCBTYPE=PAM is specified, an NK-PAM file containing no block-specific
management information is created.
This file can be created on both K disks as well as NK2 disks, without regard to the
selected logical block size (BLKSIZE). If the specified logical block size (BLKSIZE) is a
multiple of 4K (with the blocking factor “n” even), the file can also be created on an
NK4 disk.

BLKSIZE
Defines the length of the logical block (data block), i.e. the length of the unit of data transfer
from and to I/O devices, and thus the length of the program's I/O area.

If there is no specification for BLKSIZE, the value from the catalog entry is used for existing
files (for a definition, see also the note in the section “Sequence of OPEN processing” in the
“Introductory Guide to DMS” [1]). With new files, (STD,2) files are created on NK4 volumes.
(STD,1) files are created on other volumes.
If (STD,2) is specified, the user cannot user his own IOAREA's. He should have these
created by the system in class 5 memory when the OPEN function is executed.

For processing, see the note under BLKCTRL on page 415 and “Programming notes” on
page 446.

Disk files/tape files with standard blocks:
A logical block may consist of several PAM pages. The system automatically links the
PAM pages belonging to one transfer unit.

For disk files, there are interactions between this operand and the RECSIZE operand, for
tape files between this operand and the LABEL operand.

Tape files with nonstandard blocks:
The data block is defined as the number of bytes which are written/read per write or read
operation.

= STD
Equivalent to (STD,1); see below.
Data is transferred from and to devices in units of 2048 bytes; the usable length of the
transfer unit (for user data) depends on the BLKCTRL specification (or the disk type).

FCB Macros

418 U4250-J-Z125-12-76

= (STD,n)
“STD” is a standard block with a block size of 2048 bytes; “n” is the blocking factor
(1 Î n Î 16)

Each logical block consists of “n” PAM blocks (1 PAM block or PAM page = 2048 bytes),
so the maximum length of a logical block is 16 PAM pages or 32768 bytes. For NK files:
“n” defines the length of the logical block as a multiple of 2048 bytes: the length of each
such block = n * 2048 bytes.
For NK4 files: the value of “n” must be even; the length of the logical block is a multiple
of 4 Kbytes. In the case of NK-ISAM files, the operand value DATA4K must be specified
for the BLKCTRL operand.

For SAM files with SETL processing: up to 255 records may be held in each logical
block, since the positioning information is held in only one byte. This restriction is not
applicable to a 31-bit FCB.

Note

The following points should also be taken into account when determining whether
a record will fit in a block or how many records will fit in a block:
– for NK-ISAM files with duplicate keys, the length of the time stamp;
– for NK-ISAM files with RECFORM=F, the length of the record format field;
– for NK-SAM files, the length of the length field (fill rate information).

BLKCTRL Block size available for user data (bytes)

= PAMKEY n * 2048

= DATA for ISAM:
for SAM:
for PAM:

n * (2048 - 16) - 16
(n * 2048) - 16
(n * 2048) - 12

= DATA2K
= DATA4K

only possible
for ISAM:

n * (2048 - 16) - 16}

= NO n * 2048

Macros FCB

U4250-J-Z125-12-76 419

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

= length
Only for tape files:
specifies the maximum block length in bytes and, at the same time, specifies that the
file consists of nonstandard blocks, i.e. no PAM keys are kept.

When specifying “length”, the user must consider, on the one hand, the settings of
BUFOFF and RECFORM and, on the other hand, the settings of FCBTYPE and
CHAINIO.

Note

If an existing file is to be opened, it is advisable to use the null operand, so the
appropriate value is taken from the catalog entry at OPEN time.
If a file is being created for the first time, BLKSIZE=(STD,n) must be specified for
NK4 volumes, where 1 Î n Î 16 and n is even; otherwise, the OPEN will be rejected.

BTAMRQS = number
Only for BTAM:
specifies the number of BTAM I/O requests which can be issued directly one after the other
(without WAITs) to the system (MAV mode). All accepted requests are simultaneously
present in the system for processing. The system ensures that they are processed
sequentially, i.e. processing is asynchronous.

1 Î number Î 8.

Default value BTAMRQS = 1

The BTAM access method is described in the “Introductory Guide to DMS” [1].

Operand RECFORM Effects

RECFORM=F “length” specifies the block size including the length of any buffer offset
(see the operand BUFOFF). All blocks are the same size.

RECFORM=V/U “length” specifies the maximum block size including the length of any
buffer offset (see the BUFOFF operand). The block size, just like the
record length, is variable.
If RECFORM=V is used together with CODE=EBCDIC or
LABEL=(STD,n) where n > 1 <, “length” must be less than 10000
(converted internally into record format D).

Operand FCBTYPE Permissible values for “length”

SAM, BTAM 1 ≤ n ≤ 32768

PAM --------

FCB Macros

420 U4250-J-Z125-12-76

BUFOFF
Only for SAM tape files without standard blocking or tape files with BLKCTRL=DATA:
defines the buffer offset, i.e. the length of a field which is inserted at the beginning of each
data block.

Default value:
If the BUFOFF operand is not specified (neither in the TFT nor in the FCB), the following
value will be assigned to the file after it is opened (assuming the value from the catalog entry
has not been taken):

= L
The BUFOFF value is taken from the HDR2 label of the file. If there is no HDR2 label,
or if the field “buffer offset” in the label contains blanks (X'4040'), the default value is
used.

= length
Specifies the length of the buffer offset.

For files with RECFORM=V: 0 Î length Î 4; if BUFOFF=4 applies, this field contains the
length of the current block.

CHAINIO = number
Only for BTAM files with chained I/O:
1 Î number Î 16; “number” is the chaining factor and defines the length of the transport/
transfer unit for input and output. “number” is a number of physical blocks, which means
that the length of the transport unit is n * BLKSIZE.

A value specified for the LEN operand in the BTAM action macro has priority over the result
of “BLKSIZE times number”; nevertheless, CHAINIO must still be specified if chaining is to
be used.

– for tape files with BLKCTRL=DATA

if FCBTYPE=SAM:
if FCBTYPE=PAM:

BUFOFF=16
BUFOFF=12

– for SAM tape files without standard blocking

if RECFORM=V:
if RECFORM=F/U:

BUFOFF=4
BUFOFF=0

Macros FCB

U4250-J-Z125-12-76 421

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

CHKPT
For tape files only:
Controls whether and when a checkpoint is to be written automatically to the end of the tape
or how file processing is to continue after a restart (RESTART-PROGRAM command; see
the “Commands” manual [3]).

Default value: CHKPT=(NO,ACTIVE)

= (NO,...)
Checkpoints are not written automatically.

= (BLIM,...)
When the block limit specified by the BLIM operand is reached, a checkpoint is written
automatically; the operand BLIM must be specified.

= (FEOV,...)
A checkpoint is written automatically each time the FEOV macro is called.

= (ANY,...)
A checkpoint is written automatically when the BLIM limit is reached or when the FEOV
macro is called. Specification of the BLIM operand is mandatory.

= (...,DUMMY)
“pathname” is treated like a DUMMY file during a restart by means of the RESTART-
PROGRAM command.

= (...,ACTIVE)
The file “pathname” is processed further in the case of a restart using the RESTART-
PROGRAM command.

CODE
For tape processing:
specifies whether code translation tables are to be used during input and output and, if so,
which tables.

For CODE=EBCDIC and CODE=ISO7 the German and international character sets are
encoded in the same manner.

For CODE=ISO7 and CODE=OWN, the following points should be noted:
– the block size must be specified by BLKSIZE=length, so that no PAM keys are written;
– for output in locate mode with variable-length records (RECFORM=V), the contents of

the record length field change.

= EBCDIC
No code conversion is necessary during processing.

FCB Macros

422 U4250-J-Z125-12-76

= ISO7
The tape file is written in ISO 7-bit code, which means that EBCDIC code is converted
to ISO 7-bit code during output and ISO 7-bit code is converted to EBCDIC code during
input.

= OWN
Conversion is carried out with code tables provided by the user. The addresses of these
tables must be specified in an FCB macro. At the same time, label processing must
either be deactivated via the LABEL operand (LABEL=NO) or be carried out in the user
program (LABEL=NSTD).

DUPEKY = YES
For ISAM files:
if several records have the same primary key value, they do not overwrite each other, but
are written sequentially in the order in which they are created. The operand DUPEKY=YES
is significant only if an ISAM file is created sequentially using PUT macros or extended non-
sequentially using STORE macros. The INSRT macro cannot be used to write records with
duplicate primary keys.

Default value: the file must not contain duplicate primary keys.

In NK-ISAM, an 8-byte time stamp is appended internally to records with duplicate primary
keys. This must be taken into account when defining the record length.

The ISAM macros PUT, STORE and INSRT have different effects if there is a duplicate
primary key.

Note

No secondary keys may be defined in a file containing duplicate primary keys.

Macro Duplicate keys

not permitted permitted (DUPEKY=YES)

PUT A record with a duplicate key is not written;
EXLST exit: DUPEKY

The records are written sequentially to the
file

STORE The “new” record overwrites the record
already stored with this ISAM key

The new record is stored after the old
record

INSRT A record with a duplicate key is not written;
EXLST exit: DUPEKY

A record with a duplicate key is not written;
EXLST exit: DUPEKY

Macros FCB

U4250-J-Z125-12-76 423

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

EXIT
Specifies the address to which the program is to branch in the case of an error. If the
operand is not specified, exception conditions during accessing of the file lead to abnormal
program termination.
If the exit is taken, a flag is set in the FCB. The user routine can determine the relevant exit
condition. If a hardware error occurs during input or output, a 5-byte field in the FCB is filled
with information from the CCB (standard device byte, sense bytes 1-3, Executive flag byte;
see the NDWERINF macro, page 748). The meanings of these bytes are described in the
appendix, page 871). The Executive flag byte and the standard device byte are defined in
the DSECT for the CCB (IDCCB).

= (relexp)
Address of a user routine in the user program which executes error handling.

= relexp
Address of the EXLST macro via whose exits various user routines are addressed for
specific handling of the various error types.

FCBTYPE
Specifies the access method to be used for file processing.

= ISAM
Depending on the value specified for the BLKCTRL operand, it is processed as an
NK-ISAM file (BLKCTRL=DATA/DATA2K/DATA4K) or as a K-ISAM file
(BLKCTRL=PAMKEY). The ISAM access method is described in the “Introductory
Guide to DMS” [1].

ISAM-specific operands: DUPEKY, KEYLEN, KEYPOS, LOGLEN, POOLLNK,
VALLEN, WROUT and VALPROP.

= BTAM
A tape file is processed with the access method BTAM (The BTAM access method is
described in the “Introductory Guide to DMS” [1].)

BTAM-specific operands: CHAINIO, OPEN=SINOUT, BTAMRQS.

= PAM
The file is processed with the access method UPAM (see description of corresponding
access method). PAM files may be stored on tape or disk.

= SAM
The file is processed with the access method SAM and may be located on disk or tape.
SAM files are generally processed sequentially with the access method SAM. They
may also be processed with UPAM. (The SAM access method is described in the
“Introductory Guide to DMS” [1].)

SAM-specific operands: BUFOFF, CLOSMSG, OPEN=UPDATE.

FCB Macros

424 U4250-J-Z125-12-76

FILE = pathname
Designates the permanent or temporary file or the file generation to be processed
with:<c-string 1..54: filename 1..54>

File generations can be addressed via their absolute or relative generation numbers.

Default value: FILE=fcbaddr (= symbolic address of the FCB); if not present:
blanks

Pathname means [:catid:][$userid.]filename

catid
Catalog ID; if omitted, the default catalog ID for the user ID is used.

userid
User ID; if omitted, the user ID specified in the LOGON command is used.

filename
Fully qualified file name.

FORM = SHORT
For the 24-bit interface only (non-XS processing):
specifies that no memory space is to be reserved for logical routines.

Default value: space is reserved in the 24-bit FCB for the logical routines.

The logical routines handle the blocking and unblocking of records for SAM and ISAM; this
means, for normal SAM/ISAM processing, that the file cannot be opened if FORM=SHORT
is specified in the FCB macro. The logical routines are not needed for PAM files and the
operand FORM=SHORT is ignored in this case.

For XS processing (PARMOD=31), FORM=SHORT is ignored since the 31-bit TU FCB
contains only the addresses of the logical routines.

Macros FCB

U4250-J-Z125-12-76 425

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

FSEQ
For tape files which belong to a file set:
specifies the (sequence) number of a file within the file set. For example, if several files with
the same name are stored on one tape, access to a specific file is controlled by FSEQ. This
also applies to MF/MV sets.

Default value: FSEQ = 0 (tape processing begins with the first file)

= UNK
Permissible only for files with standard labels:
the start position of the file is unknown. The tape is rewound for file processing.

= NEW
Permissible only for files which are not yet cataloged:
a new file is to be added to a file set. The tape is positioned to the end of the file set and
the new file is written behind the currently last file of the file set. The new file receives
a file sequence number 1 higher than that of the “old” last file.

= number
Specifies the file sequence number of “pathname” within the file set;
0 Î number Î 9999.
FSEQ=0, just like FSEQ=1, denotes the first file of the file set.

If “pathname” is already cataloged, the FSEQ value must be the same as the file
sequence number in the catalog entry. If a new file is to be created, it is written at the
end of the file set, which means that its file sequence number must be 1 higher than that
of the “old” last file in the file set.

The tape is not rewound on opening the file if it is already at the position specified with
FSEQ.

FCB Macros

426 U4250-J-Z125-12-76

IOAREA1
Specifies whether a buffer area is to be allocated at OPEN time, and if so, at what address.

Default value: DMS automatically requests a buffer area (in class 5 memory) at
OPEN time – either above or below the 16-Mb boundary, depending
on the addressing and generation mode
(see “Operands IOAREA1/2” on page 446).

= NO
No buffer area is to be allocated at OPEN time (not permitted for SAM and K-ISAM
processing).

= SECRET
At OPEN time, DMS requests an area in nonprivileged class 5 memory for IOAREA1;
in the event of a dump analysis, the pages in this area are not output.

= relexp
Address of a buffer area; if this area is less than or equal to one page in size
(4096 bytes) it must be fully contained within one page and be aligned on a word
boundary; if it is larger than a page, it must be aligned on a page boundary.

IOAREA2
Specifies whether a second buffer area is to be allocated at file opening time.

Default value: DMS automatically requests a buffer area (in class 5 memory) at
OPEN time – either above or below the 16-Mb boundary, depending
on the addressing and generation mode
(see “Operands IOAREA1/2” on page 446).

= NO
Only one buffer area is allocated for the file, i.e. overlapped processing is not possible
(see also the operand OVERLAP=YES); IOAREA2=NO cannot be specified for K-ISAM
processing.

= SECRET
At OPEN time, DMS requests an area in nonprivileged class 5 memory for IOAREA2;
in the event of a dump analysis, the pages in this area are not output.

= relexp
Address of the second buffer area; if it is less than or equal to one page (4096 bytes),
it must be contained within one page and aligned on a word boundary; if larger than one
page, it must be aligned on a page boundary.

Macros FCB

U4250-J-Z125-12-76 427

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

IOPERF
Only applicable to the 31-bit interface:
sets the desired performance attribute for I/O processing with regard to the use of a cache.

= VHIGH
Data should be permanently maintained in the cache.

= HIGH
If possible, the file should be processed via a cache.

= STD
There are no specific performance requirements. The file is not processed via a cache
(for more information on cache processing, see the “Introductory Guide to DMS” [1]).

IOREG = reg
For SAM and ISAM only:
specifies that the file is to be processed in locate mode.
“reg” specifies the register containing the address of the current record (2 Î reg Î 12).

Default value: The file is processed in move mode.

In locate mode, the user is responsible for correctly addressing records in the buffer; no
automatic blocking/deblocking of records is executed.

IOUSAGE
Only applicable to the 31-bit interface:
specifies how the cache for the file is to be used.

= RDWRT
The performance attribute applies to read and write operations.

= WRT
The performance attribute applies to write operations only.

= RD
The performance attribute applies to read operations only.

KEYARG = relexp
For ISAM only:
specifies the address of a field containing the ISAM key for the current record. This field is
evaluated for the ISAM macros GETKY, GETFL, ELIM and SETL.

KEYLEN = length
For ISAM files:
specifies the length of the ISAM key in bytes,
where 1 Î length Î 255 - VALLEN - LOGLEN

Default value: KEYLEN = 8

FCB Macros

428 U4250-J-Z125-12-76

KEYPOS = number
For ISAM files:
specifies the position of the ISAM key in the record. In variable-length records, 4 bytes for
the record length and control field must be taken into account. The ISAM key may be
anywhere in the record, but must be in the same position in each record of one file.

Default value: for files with RECFORM = V: KEYPOS = 5;
for files with RECFORM = F: KEYPOS = 1.

LABEL
Only for tape files:
specifies the label type for files on tape or tape cartridge; the SECLEV operand determines
how the labels are processed.

Default value: LABEL = (STD,1)

For existing tape files, the standard identifier in the VOL1 label always applies. The LABEL
operand is evaluated for output files (OPEN OUTIN/OUTPUT). If the tape already contains
files or file sections, the standard indicator in the VOL1 label is set or updated as specified
in the LABEL operand (see also section “Programming notes” on page 443).

= STD
File and volume either already have or will receive standard labels in accordance with
DIN 66029, exchange level 1.

= (STD,number)
File and volume either already have or will receive standard labels in accordance with
the exchange level of DIN 66029 designated by “number”; 0 Î number Î 3.

Macros FCB

U4250-J-Z125-12-76 429

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Effects of the LABEL operand

(STD,1) is assumed for:
– RECFORM=V and CODE=EBCDIC
– BLKSIZE=STD
– FCBTYPE=PAM or FCBTYPE=BTAM

For (STD,0), CODE=EBCDIC must be used.

If the value in the label standard version in the VOL1 label is less than (STD,number),
the value from the label standard version is assumed for “number”.

= NO
Labels are neither read nor written (no file label processing). If the tape has standard
labels, the system processes the volume labels and checks the access authorization.

(STD,0) (STD,1) (STD,2) (STD,3)

DIN 66029
exchange level
Date

- 1

8/1972

2

6/1976

3

3/1978

Label standard
version in
VOL1 label

_ (blank) 1 2 3

CODE=ISO-7/
OWN

not
permitted

STD blocks
converted to
nonstandard blocks

STD blocks
converted to
nonstandard blocks

STD blocks
converted to
nonstandard blocks

RECFORM=V:
conversion to
D format
(not for BTAM)

RECFORM=V:
conversion to
D format

RECFORM=V:
conversion to
D format

RECSIZE > 9999
or
BLKSIZE > 9999
OPEN error

RECSIZE > 9999
or
BLKSIZE > 9999
OPEN error

RECSIZE > 9999
or
BLKSIZE > 9999
OPEN error

CODE=EBCDIC STD blocks
converted to
nonstandard blocks

STD blocks
converted to
nonstandard blocks

Access method SAM only SAM only

RECFORM=U Invalid for output
files; converted to
(STD,2)

FCB Macros

430 U4250-J-Z125-12-76

= NSTD
The tape file already has or is to receive nonstandard labels and file label processing is
performed in the user program. If the volume has standard labels, the system
processes them and checks the access authorization.

LARGE_FILE
Only for disk files (access methods ISAM, SAM and UPAM):
The LARGE_FILE operand determines whether or not the file size may grow beyond 32 GB
(see page 108).

= *FORBIDDEN
The file size may not exceed 32 GB.

= *ALLOWED
Only for 31-bit interfaces and files with BLKCTRL î PAMKEY:
The file size may exceed 32 GB.

LINK = name
Via the file link name (“name”) specified here, DMS establishes a link to the TFT and thus
to the file and processing attributes defined by means of the FILE macro.

“name” may be up to eight characters in length. If the file link name is to be addressed via
the command interface, it must correspond to the data type <structured_name 1..8>
(see the “Commands” manual [3]).

LOCKENV
For UPAM access method only:
specifies which lock log the user uses for synchronization.

= *HOST
Shared-update processing is only permitted on the user's own host. The
synchronization takes place via the Task Lock Manager.

= *XCS
Shared-update processing is permitted within an XCS network; the synchronization
must take place via the Distributed Lock Manager.

Macros FCB

U4250-J-Z125-12-76 431

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

LOGLEN = length
For ISAM files:
specifies the length (in bytes) of the logical flag in the ISAM index; the maximum length is
determined by the length of the ISAM key and the length of any existing value flag
(see the VALLEN operand, page 441), since the entire ISAM index must not be longer than
255 bytes. The rule is thus:

length Î 255 - KEYLEN - VALLEN

Default value: LOGLEN=0, i.e. there is no logical flag in the ISAM index.

In the ISAM index, the ISAM key may be followed by a logical flag in which selection criteria
are defined bit-by-bit and encoded in binary code. In K-ISAM files, all logical flags of a block
are evaluated and the result is placed in the next-higher index entry. NK-ISAM supports
logical flags only compatibly, and does not place the flags in the index entry.

OPEN
Specifies the OPEN mode for the file. This setting may be overwritten by the OPEN mode
specified in the OPEN macro.

Default value: OPEN = INPUT

The following table shows which OPEN modes are permissible for the various access
methods.

OPEN modes with the FCB macro

where:

x OPEN mode is permitted

- OPEN mode is not permitted

The various OPEN modes are described in detail in the descriptions of the access methods.

OPEN mode ISAM BTAM SAM UPAM

INPUT x x x x

EXTEND x - x -

INOUT x x - x

OUTIN x x - x

OUTPUT x x x -

REVERSE - x x -

SINOUT - x - -

UPDATE - - x -

FCB Macros

432 U4250-J-Z125-12-76

= INPUT
An existing file is read (for a definition of an existing file, see also the note in the section
“Sequence of OPEN processing” in the “Introductory Guide to DMS” [1]).

= EXTEND
A file is extended, i.e. further data blocks are added to the end of the file or the file is
overwritten from a certain position onwards; only sequential write operations are
permitted.

= INOUT
An existing file is opened for non-sequential processing; write and read operations are
permitted.

= OUTIN
A file is created or, if it already exists, overwritten from the beginning. Both read and
write operations are permitted (non-sequential).

= OUTPUT
A file is created or, if it already exists, overwritten from the beginning.

= REVERSE
An existing file is opened as an input file for sequential reading from end-of-file →
beginning-of-file.
The file section number of the file section to be processed can be specified via the
VSEQ operand in the FILE macro. Tape files are positioned to the end of the file section
on completion of OPEN processing. If no VSEQ is specified, the last file section is
processed. Automatic tape switching is not supported.

= SINOUT
Only for BTAM tape files:
the file must exist and the tape must not be positioned to the beginning of the tape. Data
blocks can be read or written; labels are not processed.
Files that extend over multiple reels cannot be processed with SINOUT.

= UPDATE
Only for SAM disk files:
the file is to be processed in locate mode.

Macros FCB

U4250-J-Z125-12-76 433

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

OPTION = code
A list of options can be specified for this operand. By default, no codes are stored.
Either GLODEF or NOWAIT may be specified for “code”.

= GLODEF
If the file name is specified without an explicit user ID, and the file is not found under
the caller's user ID, a second read attempt is made under the system default user ID
(see “Access via the system default user ID” in the “Introductory Guide to DMS” [1]).
This applies only if no TFT entry for the file exists at OPEN time, since the TFT already
contains the path name.

= NOWAIT
If an I/O operation encounters an error caused by a device (such as device INOP), the
program does not wait for an operator reaction, but branches immediately to the EXLST
exit ERRADDR. The code NOWAIT is accepted only together with PARMOD=31 and
for the access methods PAM and ISAM.

OVERLAP = YES
Only for ISAM files:
if this is specified and a second I/O area is defined in the program (IOAREA2 in the FCB),
read operations (GET/GETR) can be executed in overlapped mode.

Default value: OVERLAP = NO

For NK-ISAM, “overlapped processing” means that neighboring blocks are also read into
the ISAM pool. OVERLAP=YES should be used only when reading is primarily sequential.

PAD = number
For ISAM files:
created sequentially (using the ISAM macro PUT); the “padding factor” PAD specifies how
much free space is to be left in each data block for subsequent extension of the file
(specified as a percentage of the block size defined by BLKSIZE). PAD thus has an effect
on the block splitting rate when a file is extended non-sequentially.

Default value: PAD = 15

The PAD specification has different effects for NK-ISAM and K-ISAM. For NK-ISAM, the
block is filled at least up to the PAD limit; for K-ISAM, it is never filled above the PAD limit.

FCB Macros

434 U4250-J-Z125-12-76

PAMREQS = number
For UPAM processing:
specifies how many asynchronous I/O operations can be requested simultaneously (in one
PAM macro; see the PAM macro, operand REQNO, page 761; 0 Î number Î 100).

Default value: PAMREQS = 1

PAMTOUT = number
For UPAM processing:
specifies how long a job is to wait for requested locks (in seconds).

0 Î number Î 43200

Default value: PAMTOUT = 0

If the locks are still not available after the time specified here, control is passed to EXLST
exit DLOCK or PGLOCK.
PAMTOUT=0 means that control is returned immediately, regardless of whether or not the
requested locks are available.

PARMOD
Specifies the generation mode for the macro.

Default value: the value defined with the GPARMOD macro or preset by the
Assembler.

The generation mode can be set globally for all macros in a program by means of the
GPARMOD macro.

The PARMOD operand in the DMS macros overrides the default value set by the
GPARMOD macro or (if GPARMOD is not specified) preset in the Assembler.

All PARMOD specifications for one file must have the same value.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

Macros FCB

U4250-J-Z125-12-76 435

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

PASS = password
If the file is password-protected, the password necessary for the desired access must either
be stored in the password table of the job or specified by the PASS operand in the FCB
macro.

The maximum length of the password is four bytes. The password field ID1PASS is padded
on the left with zeros or, if the specified password is longer, truncated on the left (in accor-
dance with the rules for the processing of address constants in Assembler programs).

The rules for specifying passwords and the password hierarchy are described in various
parts of the manual, for example in the description of the CATAL macro.

POOLLNK = name
Only for ISAM files:
processed in user ISAM pools (NK-ISAM); “name” is the “pool link name” (up to
8 characters long) which is placed in the TFT. This pool link name must be assigned to an
ISAM pool (see the macros ADDPLNK, page 113, and CREPOOL, page 241).

If the pool link name is to be accessed via the command interface it must correspond to the
data type <structured_name 1..8> (see the “Commands” manual [3]).

RECFORM
Specifies the record format of the file “pathname” and also specifies which control
characters are to be interpreted if the file is sent to a printer.

Default value: RECFORM = (V,N)

The record format specification is evaluated only for the access methods SAM and ISAM.
UPAM processes files only on a block basis and any RECFORM specification is ignored.
BTAM is also a block-oriented access method, but accepts a RECFORM specification.

The record formats are described in detail under the section dealing with access methods
in the “Introductory Guide to DMS” [1]. For information on the relationship between the
RECFORM and RECSIZE specifications, see the RECSIZE operand. For details of the
evaluation of print control characters, see the PRINT-DOCUMENT command (CONTROL-
MODE and LINE-SPACING operands) in the manuals “Commands” [3] and “SPOOL” [4].

For tape files with RECFORM=V and CODE=EBCDIC or LABEL=(STD,n) – where n > 1 –
the contents of the record length and block size fields are converted internally into the
D-format: the value for the record/block size is represented as a decimal number. For such
files, the block size must not exceed 10000 bytes. During input, format-D records are
converted back to hexadecimal form before being transferred to the user's area.

FCB Macros

436 U4250-J-Z125-12-76

= V
“pathname” consists of variable-length records, which means that the user must
remember, when programming, that each record is preceded by a 4-byte field whose
first two bytes contain the record length in binary form. Bytes 3 and 4 of this field are
used by the system. For input files, the record length field is set by the system; for output
files, this must be done by the user. The value specified for RECSIZE is the maximum
permissible record length. For BTAM files, the specification RECFORM=V is treated like
RECFORM=U.

= F
“pathname” consists of fixed-length records, i.e. the user does not need to worry about
the record length and control fields. All records in the file have the same length, which
is defined via the RECSIZE operand. (The decisive factor here is the BLKSIZE value,
not the RECSIZE value.)

= U
“pathname” consists of records with “undefined” length. Each data block contains only
one record, whose length is passed in a register. The system sets this register for input
and the user must set it for output (see the RECSIZE operand). RECFORM=U converts
the specification LABEL=(STD,3) into (STD,2).

RECFORM=U is not permitted for ISAM files.

= (...,N)
“pathname” is not a print file and therefore contains no printer control characters.
It should not be printed with control character evaluation.

= (...,M)
The first data byte in each record is interpreted as a control character in EBCDIC code.
The file can be printed out by specifying the PRINT-DOCUMENT command with the
operand LINE-SPACING=*BY-EBCDIC-CONTROL. For ISAM files, the ISAM index is
taken into account.

= (...,A)
The first data byte in each record is interpreted as an ASA control character. The file
can be printed out by specifying the PRINT-DOCUMENT command with the operand
LINE-SPACING=*BY-ASA-CONTROL.

Macros FCB

U4250-J-Z125-12-76 437

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

RECSIZE
Specifies the record length, depending on the specification in the RECFORM operand.

Default value: for RECFORM = V: RECSIZE = BLKSIZE;
for RECFORM = F: no default value.

= length
the maximum record length in bytes

For RECFORM=V:
For NK-ISAM files, it should be noted that overflow blocks may result if the maximum
record length is fully utilized. For ISAM files, the maximum record length is BLKSIZE.
For SAM files, the maximum record length is BLKSIZE-4, but with BLKCTRL=DATA
only BLKSIZE-16.
For tape files, the interaction with the operands CODE and LABEL should be noted, see
table “Effects of the LABEL operand” on page 429.

For RECFORM=F (all records in the file are the same length):
For ISAM files, the maximum record length is BLKSIZE-4.
For SAM files, the maximum record length is BLKSIZE, but with BLKCTRL=DATA only
BLKSIZE-16.

If a GET is used (to read) in move mode for files with RECFORM=V and
RECSIZE=length in the FCB macro, and if the record to be read is longer than the
specified RECSIZE, the following applies:
– ISAM files: the operation is aborted with error message DMS0AAD.
– SAM files: the entire record is read into the program area, regardless of the

RECSIZE specification.

If a PUT is used (to write) in move mode for files with RECFORM=V and
RECSIZE=length in the FCB macro, and if the record to be written is longer than the
specified RECSIZE, the following applies:
– ISAM files: the entire record is written to the file, regardless of the RECSIZE speci-

fication.
– SAM files: the entire record is written to the file, regardless of the RECSIZE speci-

fication.

= reg
For RECFORM=U: the RECSIZE operand must specify a general register (2 Î reg Î 12)
which contains the current record length for input and output. The system sets this
register for input and the user must set it for output.

FCB Macros

438 U4250-J-Z125-12-76

RETPD = days
With “RETPD”, the user can define a retention period during which no write access (update,
delete) is possible.

Default value: RETPD=0, i.e. the file can be updated or erased at any time.

“days” is an integer (not greater than 32767) which specifies the length of the retention
period in days.
Once the retention period has elapsed, the file is not automatically erased; this simply
means that write access is permitted again.

The retention period can also be controlled by means of the MODIFY-FILE-ATTRIBUTES
command or the CATAL macro (see page 130): any RETPD specification in CATAL is
immediately placed in the catalog entry. For tape files, the CATAL macro can be used only
before the file is opened for the first time.

SECLEV
Only for tape files:
the operand SECLEV (security level) refers to the TPIGNORE entry in the JOIN file (cf. the
SHOW-USER-ATTRIBUTES command). A SECLEV specification is ignored in interactive
mode. In batch mode, users with the appropriate authorization can use the SECLEV
operand to specify whether error messages are to be suppressed and/or whether additional
label checking is to be executed.

= HIGH
In batch mode, error messages are sent to the console. If the job is running under a
user ID with TPIGNORE=YES in its JOIN file, the operator can ignore the error
messages.

= LOW
Permissible only for the tape/file owner if TPIGNORE=YES is defined in the JOIN file of
the user ID: certain error messages are suppressed in batch mode.

= (...,OPR)
The entry OPR (= Overwrite PRotection) causes the system to execute additional label
checking:
– if a file is written on a tape behind an existing file, the labels of the preceding file are

checked;
– the expiration date of the new file must not be greater than that of the preceding file.

Macros FCB

U4250-J-Z125-12-76 439

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

SHARUPD
Only for ISAM or UPAM disk files:
specifies whether several jobs may concurrently open the file with an OPEN mode other
than OPEN INPUT.

= NO
As soon as the file is opened by a job with OPEN î INPUT, it is locked for all other jobs.
Concurrent access to the file by several jobs is possible only if the file is used as an
input file by all of these jobs, i.e. it is opened with OPEN INPUT. If the file has been
opened with OPEN INPUT, any attempt to open it with another OPEN mode is rejected.

= YES
Only for ISAM and PAM files:
 the file can be processed concurrently by several jobs, but SHARUPD=YES must be
specified in all these jobs (if writing is allowed). In the case of UPAM, the user can
protect data blocks from access by other jobs as long as he is processing them. In the
case of ISAM, these locks – whenever necessary – are set automatically by the system.
With NK-ISAM, files which are opened for shared-update processing must be
processed in host-specific ISAM pools. SHARUPD=YES for ISAM files simultaneously
activates the WROUT function (see the WROUT operand, below).

= WEAK
For UPAM processing only:
ensures write protection but not read protection, i.e. only one job can open the file for
updating, but other jobs may use it simultaneously as an input file. The user must take
into account in his program that the contents of the file may change while he is using it
as an input file.

The following table shows the various contending levels, with the type of protection
offered in each case:

The WEAK operand is supported for PAM files only.

With SHARUPD=WEAK, a file can be processed either on one processor or on two
different processors that are linked via shareable private disks (SPDs). For information
on permitted SHARUPD combinations see the section “UPAM” in the “Introductory
Guide to DMS” [1].

If FCBTYPEîPAM, SHARUPD=WEAK is processed as if it were SHARUPD=NO.

SHARUPD
options

Number of users allowed to Protection type

read and/or write READ WRITE

YES n and m * *

WEAK n and 1 - *

NO n or 1 * *

FCB Macros

440 U4250-J-Z125-12-76

STREAM
Only for BTAM tape files:
The STREAM operand enables users to specify whether they wish to use “streaming
mode”. This implies that the user is working with chained data blocks as well as MAV mode
(for which appropriate specifications must be made by the user!) and that the individual jobs
are to be internally concatenated. It also implies that if a streamer is being used, this mode
is to be set in terms of hardware.

= NO
Streaming mode is not set.

= YES
Streaming mode is set.

TAPEWR
Only for files on tape cartridges:
the user can specify whether or not input and output are to be buffered.

= DEVICE-BUFFER
Input and output are buffered in the tape controller, resulting in a high data transfer rate.

= IMMEDIATE
Input and output are not buffered.

TPMARK
Only for tape files without standard labels:
specifies whether tape marks are to be written. The TPMARK operand is evaluated during
OPEN only for tape files with LABEL=NO/NSTD. Tape files with LABEL=(STD,n)
automatically receive tape marks after the labels.

= NO
No tape mark is written.

= YES
Tape files with NSTD labels: the tape mark follows the label.

Tape files without labels: the tape mark is written at the beginning of the tape.

TRANS
Only for tape files:
used as input files and not created with CODE=EBCDIC; specifies how the code of the file
is to be converted during reading.

= YES
ISO 7-bit code or OWN code is converted into EBCDIC code.

Macros FCB

U4250-J-Z125-12-76 441

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

= NO
ISO 7-bit code is converted into 8-bit format by inserting a leading zero.

TRTADR = relexp
Specifies the address of the user's own translation table for reading a tape file. This may be
specified only together with CODE=OWN or if no value is specified for CODE.

TRTADW = relexp
Specifies the address of the user's own translation table for writing a tape file. This may be
specified only together with CODE=OWN or if no value is specified for CODE.

VALLEN = length
Only for ISAM files:
specifies the length of the value flag in the ISAM index.

Default value: VALLEN = 0,
i.e. the ISAM index does not contain a value flag.

length Î 255 - KEYLEN - LOGLEN

Value flags are treated differently by NK-ISAM (BLKCTRL=DATA) and K-ISAM
(BLKCTRL=PAMKEY). In K-ISAM, they are evaluated block-by-block and transferred to the
next higher index entry as specified in the VALPROP operand. In NK-ISAM, no flags are
evaluated for the index entry.

VALPROP
Only for K-ISAM files:
in conjunction with BLKCTRL=PAMKEY, i.e. with K-ISAM files (NK-ISAM will ignore a
VALPROP specification);
specifies how the value flag is to be included in the index entries
(VALPROP = VALue PROPagation).

= MIN
The lowest value of the value flag within one data or index block is included in the index
entry at the next higher level.

= MAX
The highest value of the value flag in a data or index block is included.

FCB Macros

442 U4250-J-Z125-12-76

VARBLD=reg
Only for SAM files with RECFORM=V, which are processed in locate mode (see also the
IOREG operand); specifies the register (2 Î reg Î 12) in which DMS is to show the free
space (in bytes) in the block to be written.

WRCHK
Only for the processing of disk files:
specifies whether a read-after-write check is to be executed. “WRCHK” is not placed in the
catalog entry and must therefore be repeated each time before the file is opened or
processed.
A read-after-write check is designed to detect recording errors (→ error recovery
measures). If the error cannot be rectified, control is passed to the EXLST exit ERRADR.
Due to the additional disk revolutions involved, the read-after-write function has a decidedly
negative effect on system performance.

= NO
No read-after-write check is executed.

= YES
A read-after-write check is executed.

WROUT
For ISAM processing:
WROUT controls how often updated blocks are written back to disk. For shared-update
processing or in cross-task ISAM pools, WROUT=YES is set implicitly: updated blocks are
written back to disk immediately.

= NO
An updated block is written back to disk only when the contents of the related buffer
area need to be overwritten or, at the latest, when the file is closed.

= YES
Each updated block is written back to disk immediately, thus always ensuring the
consistency of the data on the disk and in virtual memory. However, this also increases
the I/O rate.

Default value: for “normal” file processing:
for shared-update processing:
in cross-task ISAM pools:
in task-local ISAM pools for which
WROUT=YES is valid:

WROUT = NO
WROUT = YES
WROUT = YES

WROUT = YES

Macros FCB

U4250-J-Z125-12-76 443

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Return information (example)

The return code 0D33 stored by OPEN in FCB field ID1ECB can have various meanings
depending on how the file name and the OPTION operand were specified by the caller.

Any modification to the file name in field ID1FILE within an OPEN-EXIT routine is ignored.

Programming notes

FCB structure

The structure of a 31-bit FCB differs considerably from that of a 24-bit FCB:

– The FCB macro expands in 31-bit mode into a CSECT statement if no other DMS action
macro has been called previously in 31-bit mode.

– There is no longer any FCB extension, i.e. all data is accommodated within the FCB
itself.

– The logical routines of the SAM and ISAM access methods are no longer included in
the FCB; the FCB now contains only the addresses of these routines.

– All 3-byte addresses have been eliminated and corresponding new 4-byte addresses
have been introduced.

– The FCB has a fixed, uniform size.

File name OPTION Meaning of 0D33

:cat:$user.file The file does not exist under user ID $user on the pubset

$user.file The file does not exist under user ID $user on $user' s default pubset

$.file The file does not exist under the user ID generated for DEFLUID on the
specified pubset

:cat:$.file The file does not exist under the user ID generated for DEFLUID on
pubset cat

file not
GLODEF

The file does not exist under the caller' s user ID on the default pubset

file GLODEF The file does not exist either under the caller' s user ID on the default
pubset for that ID or under the user ID generated as DEFLUID on the
pubset specified for it

:cat:file not
GLODEF

The file does not exist under the caller' s user ID on pubset cat

:cat:file GLODEF The file does not exist either under the caller' s user ID or under the
user ID generated for DEFLUID on pubset cat

FCB Macros

444 U4250-J-Z125-12-76

FCB modification

When a file is opened, DMS checks the FCB entries and uses them to set up a privileged
file control block (TPR FCB); any subsequent changes to the FCB values are ignored. The
file control block can be modified only by closing the file (CLOSE) and then reopening it
(OPEN).

If an operand is not specified in the FCB macro, the default value is assumed. If a null string
operand is specified, it is assumed that the value of the operand is supplied by a FILE
macro or by the catalog entry of the file (exception: LINK= operand).

Operands for disk files

FCB
operand

Null operand:
operand value supplied

via the catalog

BTAM SAM ISAM PAM Operand in
the FILE
macro

BLIM i x i i x

BLKCTRL x x x x x x

BLKSIZE x x x x x x

BTAMRQS x i i i

BUFOFF x i x i i x

CHAINIO x i i i x

CHKPT i x i i x

CODE x x x i i x

DUPEKY i i x i x

EXIT x x x x

FCBTYPE x x x x x x

FILE x x x x x

FORM i x x i

FSEQ x x x i x x

IOAREA1 x x x x

IOAREA2 x x x x

IOPERF i x x x x

IOREG x x x i

IOUSAGE i x x x x

KEYARG i i x i

KEYLEN x i i x i x

KEYPOS x i i x i x

LABEL x x i x x

Macros FCB

U4250-J-Z125-12-76 445

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

LINK x x x x x

LARGE_FILE i x x x x

LOCKENV i x x x x

LOGLEN x i i x i x

OPEN x x x x x

OPTION x x x x x

OVERLAP i i x i x

PAD i i x i x

PAMREQS i i i x

PAMTOUT i i i x

PARMOD x x x x

PASS x x x x

POOLLNK i i x i x

RECFORM x x x x i x

RECSIZE x x x x i x

RETPD x x x x x

SECLEV x x i x

SHARUPD i x x x x

STREAM x x i i

TAPEWR x x i x x

TPMARK x x i x x

TRANS x x i i x

TRTADR x x i i

TRTADW x x i i

VALLEN x i i x i x

VALPROP x i i x x

VARBLD x i x x i

WROUT i i x i x

WRCHK i x x x x

FCB
operand

Null operand:
operand value supplied

via the catalog

BTAM SAM ISAM PAM Operand in
the FILE
macro

FCB Macros

446 U4250-J-Z125-12-76

where:

i Operands are ignored.

x Operands may be specified.

Operand BLKSIZE

The user can/must specify “BLKSIZE=(STD,n)” if

– the record is longer than 2048 bytes, or

– the record length is uneconomic in conjunction with a block length of 2048 bytes. For
example, if the user has fixed-length records (RECFORM=F), each 1500 bytes long,
and defines the block length as BLKSIZE=STD, then 548 bytes would be wasted in
each block. If, instead, the user were to specify BLKSIZE=(STD,3), then 6000 out of the
6144 bytes (3 x 2048) would be used, and only 144 bytes would be wasted in every
three blocks. Using very large block sizes does, however, lead to an increase in the
paging rate.

Operands IOAREA1/2

When a file is opened, the IOAREA addresses are created (if necessary) and validated.
They are then moved into system memory. Consequently, any changes relating to these
addresses are completely ignored in the FCB. For new addresses to become effective, a
CLOSE macro has to be issued, followed by a new OPEN macro.

This method of processing was chosen to minimize internal system processing time
(overhead), as the IOAREA addresses do not have to be checked before every action
macro. PAM and BTAM allow buffer addresses to be defined in their action macros. These
addresses are of course checked whenever action macros are issued.

If a SAM file is opened in UPDATE mode, the IOAREA2 buffer is not used.

If IOAREA1=NO is specified, then the value of IOAREA2 must also be NO. If IOAREA1 is
defined with “relexp”, then the value of IOAREA2 must also be “relexp”, or NO. If IOAREA1
is not specified, then IOAREA2 is not allowed either, or must be defined as NO.

Macros FCB

U4250-J-Z125-12-76 447

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Operand LABEL

In the case of a file opened in INPUT, INOUT, EXTEND or REVERSE mode, the system
ignores the specification LABEL=(STD,n) and refers to the exchange level (label standard
version) specified in the volume label (VOL1).

In the case of an output file, the exchange level specified here applies. If only STD was
specified, exchange level 3 applies.

If the allocated tape volume already contains one or more files or file sections, the exchange
level must match the standard identifier in the first volume label.

Otherwise, the standard identifier is assigned a value as shown below:

Restrictions

– Exchange level 1: If CODE=ISO7/OWN is specified, STD block specifications are
converted to NSTD block specifications and format V records (RECFORM=V) are
converted to format D records. If this is not possible, e.g. when RECSIZE/BLKSIZE
is greater than 9999, an OPEN error results.

– Exchange level 2: Only SAM files can be processed. STD block specifications are
converted as for exchange level 1: in this case, tapes with CODE=EBCDIC are also
affected.

– Exchange level 3: RECFORM=U is not allowed for output files.

Rules

– If FSEQ=0/1, then LABEL=(STD,3) is converted to (STD,1).
– If RECFORM=V and CODE=EBCDIC, then LABEL=(STD,1) is implicit.
– If BLKSIZE=STD, then LABEL=(STD,1) is implicit.
– If BLKSIZE=length and RECFORM=U, then LABEL=(STD,2) is implicit.
– If a tape volume already contains one or more files/file sections and the standard

identifier in the first volume label is less than the implicitly assumed DIN exchange
level, then the version number is taken from the volume label.

Exchange level 0 1 2 3

Standard identifier blank 1 2 3

FCB Macros

448 U4250-J-Z125-12-76

Operand WROUT

The WROUT function provides increased security for ISAM file processing, since in the
event of a system crash only the records processed by the last macro will be corrupted or
lost. (Exception: when the PUT macro is used, only blocks are written.)

The increased number of I/O operations reduces throughput.

The WROUT function takes effect after the ISAM action macros STORE, ELIM, INSRT and
PUTX.

ISAM shared-update mode already includes the WROUT function, so in this case the
WROUT operand is irrelevant.

A value other than YES or NO will always result in an error message.

The value specified in the FILE macro has priority over the value specified in the FCB
macro. The latter value takes effect only if the WROUT operand is omitted from the FILE
macro or is entered as a null operand (i.e. WROUT=,...).

Macros FCBAD

U4250-J-Z125-12-76 449

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

FCBAD – Create FCB addresses

Macro type: type O

For all following DMS macros in the program, the code is generated in such a way that the
FCBs can be located outside the basic register in symbolic addressing. The addresses of
the FCB are then stored in the literal area. The FDBAD macro was created to facilitate the
conversion BS2000.

Format

Operation Operands

FCBAD

FEOV Macros

450 U4250-J-Z125-12-76

FEOV – Close tape

The FEOV macro initiates a tape swap and file processing is continued on the continuation
tape. This macro is ignored for tape files opened with OPEN REVERSE.

If, in the case of input files, the end of the file is on the tape, DMS recognizes “end of file”
and activates the EOFADDR routine (see the EXLST macro, page 391). If the end of the
file is not on the tape and no continuation tape is assigned, DMS activates the NODEV
routine (see the EXLST macro, page 391).

Format

Operand descriptions

fcbaddr
Address of the FCB of the file to be processed.

(1)
Register 1 contains the FCB address.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is triggered with the expansion for the 24-bit interface. The object can only
be executed in 24-bit addressing mode.

= 31
The macro is generated independently of the addressing mode.

Programming note

The FEOV macro destoys registers 0, 1, 14 and 15.

Operation Operands

FEOV fcbaddr

(1) 
 
 

[,PARMOD=
24

31 
 
 

]

Macros FEOV

U4250-J-Z125-12-76 451

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Example of tape swap for a SAM file

The tape swap is triggered with the FEOV macro.

FEOVTEST START
 LDBASE 3
 USING *,3
 .
 .
 FILE TAPE.TEST,LINK=AUS,DEVICE=T9P,VOLUME=(C1776A,C2921A)
 .
 .
 OPEN TAPE,OUTPUT OPEN TAPE FILE 'TAPE'
 .
 .
 PUT TAPE,RECOUT WRITE RECORD
 .
 .
 FEOV TAPE INITIATE TAPE SWAP
 .
 .
 CLOSE TAPE CLOSE TAPE FILE 'TAPE'
*
END TERM
*
TAPEND LR 8,0 LABEL ROUTINE
 MVC 0(L'BEGIN,8),BEGIN *
 LBRET TAPE,1 *
*
TAPE FCB FCBTYPE=SAM,BLKSIZE=(STD,3),LINK=AUS,RECFORM=F, -
 RECSIZE=22,EXIT=TAPEXIT
*
TAPEXIT EXLST COMMON=ENDE,LABEOV=TAPEND
*
RECOUT DS CL22
*
BEGIN DC CL80'UTL1 USER LABEL'
 .
 .
 END

FILE Macros

452 U4250-J-Z125-12-76

FILE – Define file attributes / control file processing

Macro type: type S (E form/L form/D form/C form); see page 866

The FILE macro processes permanent and temporary files (but not EAM files) and file
generations. It can be used to create new files and catalog entries, to change file attributes,
and to import files from private volumes.

Except for the retention period (RETPD), the FILE macro cannot be used to define or
change file attributes such as the passwords or the access type. If a catalog entry is created
by means of FILE, the system default values are used for these attributes. They can, if
necessary, then be modified by means of a CATAL macro.

Via the task file table (TFT), the FILE macro establishes a connection between the program
and the file and between the file attributes defined in the FILE macro or the catalog entry
and the FCB macro.

Main functions of the FILE macro

– creating catalog entries for new files and file generations
– requesting devices and volumes
– allocating and releasing storage space
– creating TFT entries with details of the file processing (data structure, OPEN mode,

etc.)
– defining the data organization on tapes.

This introduction is followed by an overview of the functions of the FILE macro at the
operand level. The various subjects (such as TFT, TST, etc.) are described in detail in the
introduction to this manual, i.e. in the opening chapters.

Catalog entry

If the file or file generation specified in the FILE macro is not yet cataloged, a catalog entry
is created. If the file (generation) is already cataloged, DMS accesses the catalog entry
when the file is opened and updates it, if necessary, when the file is closed again. The
values entered for the operands IOPERF, IOUSAGE, DEVICE, VOLUME, SPACE,
DDEVICE, DVOLUME, DSPACE, STATE=FOREIGN (for tape files) and FSEQ (in part) are
evaluated and transferred to the catalog entry; otherwise, the corresponding system
defaults are set. Entries for the remaining operands in a FILE macro are only evaluated in
combination with a file link name and are transferred to the TFT entry.

Macros FILE

U4250-J-Z125-12-76 453

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

If the catalog entry contains a basic access control list (BASIC-ACL), DELDATE or
GUARDS, it is not possible to create a tape file using FILE (a FILE macro with the corre-
sponding DEVICE operand will be rejected).

If a file (generation) which is to be cataloged is stored on private disk, DMS takes the values
for the catalog entry from the F1 label of the first volume containing the file.

The following is set when cataloging a new file:
For BACKUP: E for temporary file and work file;

Otherwise: in accordance with class-2 system parameter BACKUP
For MIGRATE: FORBIDDEN when a disk belonging to an SM pubset is specified in the

VOLUME operand;
Otherwise: INHIBITED for temporary file, ALLOWED for permanent file

For CCS: Character set (Coded Character Set) from the file owner’s user catalog
entry. If this character set is EDF03IRV, no character set is entered.

If a file has a catalog entry but as yet no disk storage space and is to be assigned space on
a private disk through the FILE call, the file may not be encrypted.

If a file has a catalog entry but as yet no tape type and is to be assigned a tape type through
the FILE call, the file may be encrypted only if a file generation is involved. This is then
decrypted.

When a new file generation is cataloged, the encryption attributes are transferred from the
group entry to the new catalog entry. This does not apply for file generations on tape.

File link name / task file table (TFT)

If a file link name is specified with the LINK operand in the FILE macro, the system creates
an entry in the job-specific TFT and transfers to this entry values specified in the current
FILE macro, including any NULL operands (see below). When the file is opened, the values
from the TFT are placed in the file control block (FCB).

At the OPEN, the specifications for a file are thus contained in:

– the TFT entry
– the file control block (FCB) of the program
– the catalog entry of the file

The catalog entry is subsequently updated with the values contained in the file control block
(see OPEN and CLOSE processing, in the “Introductory Guide to DMS” [1]).

Pool link name / ISAM pools

With NK-ISAM, ISAM files are processed in ISAM pools. The connection between the user
ISAM pool and the file is established via the pool link name, which is specified by means of
the POOLLNK operand. If no pool link name is specified, the file is processed in one of the
standard system ISAM pools if it is opened with SHARUPD=NO; otherwise, error message
DMS0D9B is issued.

FILE Macros

454 U4250-J-Z125-12-76

Access methods

Depending on the access method, data structures such as the record length, block size, etc.
can be defined by means of the FILE macro.

The operand descriptions point out special features and interactions between the various
operands.

NULL operands

Some operands of the FILE macro may be specified as “NULL operands” together with a
file link name (null string = an empty character string as the operand value).

When the file is subsequently opened, the appropriate information for these file attributes
is obtained from the catalog entry and transferred to the file control block (FCB).

FILE ...,LINK=name,FCBTYPE=,RECFORM=,...

The following operands may be specified as NULL operands in combination with a file link
name:

BLKCTRL, BLKSIZE, BUFOFF, CODE, FCBTYPE, FSEQ, IOPERF, IOUSAGE, KEYLEN,
KEYPOS, LOGLEN, RECFORM, RECSIZE, VALLEN and VALPROP

The term “NULL operand” applies only to the above-mentioned operands of the FILE
macro. Operand values can also be omitted for other macros; however, but this normally
causes the default setting or the default value for the operands to be used.

Version of the FILE macro

The VERSION operand determines which macro format is generated. If VERSION is
omitted or if VERSION=0 is specified, the operand list and SVC for the old format (BS2000
V9.0) are generated. The new operands introduced with BS2000 V9.5 and the device types
valid as of BS2000 V9.5 are supported as of VERSION=1. New features introduced with
BS2000 V10.0 and BS2000/OSD-BC V1.0, especially the new layout of the operand list in
which the variable parts are extracted and kept in separate lists (see “Programming notes”,
page 509), can be used as of VERSION=2.

Macros FILE

U4250-J-Z125-12-76 455

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Figure 7: Functions of the FILE macro

FILE

Catalog entry

SPACE

VOLUME

DEVICE

MOUNT message for
private volumes

LINK = link
filename
RECFORM
RECSIZE
BLKSIZE

Entry in the TFT
(Task File Table)

Reservation of
storage space on
disks

Reservation of private
devices and volumes

Console

Program

File Control Block
for input/output

LINK = link *)
..................

*) In the source program the file link name (LINK) is specified as
follows in the different programming languages:
Assembler:
COBOL:

FORTRAN:
ALGOL:
PL/I:
RPC:

When the
file is
opened the TFT entry
overwrites the FCB
with the same LINK name

FCB macro, LINK operand
First 8 characters of the name in the SELECT clause
or the link name specified in the ASSIGN clause
DSET number (specified in the FILE command as DSETnn)
DSN (specified in the FILE command as ALGOnn)
File name of the FILE statement
File name of the F card

$userid.filename

FILE Macros

456 U4250-J-Z125-12-76

Function overview

Operand Operand value Function / meaning

Naming and cataloging files, defining link names

pathname – Create a catalog entry
– Allocate storage space (primary allocation)
– Name file/catalog entry to which subsequent operations

will refer

DATATTR Specifies the reference file from which, during creation of a
TFT entry, certain values are to be taken which are not
explicitly specified with the respective operands

*DUMMY Define a dummy file

LINK name Define a file link name for which a TFT entry is created

POOLLNK name For NK-ISAM files: define a pool link name for the user ISAM
pool

STATE FOREIGN Import a file from private volumes or from a Net-Storage
volume

File attributes

AVAIL HIGH Define the requirements regarding availability

BLKCTRL PAMKEY/DATA/
DATA2K/DATA4K/
NO

Define the data format

BLKSIZE (STD,n)

length

Block size as a multiple of a PAM page

Tape files: block size for nonstandard blocks

CODE EBCDIC/ISO7/
ISO7D/OWN

Tape files: code

EXC32GB ALLOWED/
FORBIDDEN

Permit file size > 32 GB for disk files

FCBTYPE ISAM/PAM/SAM
BTAM

Access method for the file

KEYLEN number ISAM files: length of the ISAM key

KEYPOS number ISAM files: position of the ISAM key

LOGLEN number ISAM files: length of the logical flag

NFTYPE BS2000/
NODE-FILE

File type for file on Net-Storage:
BS2000 file or node file

RECFORM V/F/U

N/M/A

Record format: variable/fixed/undefined

Specifies whether printer control characters are to be taken
into account

Macros FILE

U4250-J-Z125-12-76 457

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

RECSIZE length

r

Record length for RECFORM=F/V

Register which contains the length of the current record for
RECFORM=U

RETPD days Retention period for the file

STOCLAS Assign a storage class to the file during its creation on an
SM pubset

VALLEN number ISAM files: length of the value flag

WORKFIL Specify whether the file is to be created on a volume set for
work files or on a volume set with permanent data storage

Requesting devices and volumes

DDEVICE device ISAM files: device type for data section (if separate from index
section)

DEVICE device/WORK Define device type/request work tape

DVOLUME (vsn,...) ISAM files: private disk for data section (if separate from index
section)

FSEQ UNK/NEW/number Tape files: position within a file set

MOUNT (number,...) Mount request for private volumes

TSET (name,vsn) Tape files: define a tape set for extending files or file sets

TVSN (vsn,...) Tape files: temporary volume list for current processing

VOLSET Specify the volume set of an SM pubset on which the file is to
be created

VOLUME (PRIVATE,n)

(vsn,...)

Request private volumes

Define volume list

VSEQ (L=(number,...)) Tape files: specify desired file section

Space management for disk

DSPACE primary
(primary, secondary)
(page, number, ABS)

ISAM files: space management for the data section if the index
and data sections are separate (see SPACE, page 493)

SPACE primary
(primary,secondary)
(primary,secondary,
*KEEP)

(page,number,ABS)

Disk files: allocate or release storage space

Absolute allocation

Operand Operand value Function / meaning

FILE Macros

458 U4250-J-Z125-12-76

OPEN mode and processing attributes

BLIM number Tape files: maximum number of logical blocks per tape

BUFOFF L/length Tape files: length of buffer offset

BYPASS LP/(LP,n)/
(LP,+n)/(LP,-n)

Tape files: bypass label checking

CHAINIO number Tape files: chaining factor

CHKPT NO/ANY/BLIM/
FEOV

Tape files: automatic checkpointing

CLOSE RWD/INVAL/
REPOS/DISCON/
LEAVE/KEEP-DATA-
IN-CACHE

Tape/disk files: close mode for the file

CLOSMSG NO/YES SAM files: output of a message after completion of CLOSE
processing

DESTOC NO/YES Tape files: overwrite remaining data

DISKWR BY-CLOSE/
IMMEDIATE

Define the point after a write operation by which the data of the
file must be in a consistent state

DUPEKY YES/NO ISAM files: duplicate keys permitted

IOPERF HIGH/STD/USER-
MAX/VERY-HIGH

Define the performance attribute of the file

IOUSAGE RDWRT/READ/
WRITE

Specify the I/O operations to which the performance attribute
(IOPERF) of the file refers

LABEL (STD,number)

NO

NSTD

Tape files: file with standard labels (as per DIN 66029)

Tape files without file labels

Tape files with nonstandard labels

LOCKENV HOST/XCS Specify whether the file can be opened for writing from
different systems simultaneously

OPEN INPUT/OUTPUT/
EXTEND/INOUT/
OUTIN/UPDATE/
SINOUT/REVERSE

Specify the OPEN mode for the file

OVERLAP YES/NO ISAM files: overlapped processing

PAD number ISAM files: padding in data blocks during sequential creation
of the file

POOLSIZ number ISAM files: size of the file-specific ISAM pool

SECLEV HIGH/LOW Tape files: security level

Operand Operand value Function / meaning

Macros FILE

U4250-J-Z125-12-76 459

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

SHARUPD YES/NO/WEAK ISAM files: shared-update processing
– permitted/not permitted
PAM files: shared-update processing
– permitted/not permitted/guaranteed protection against

write access

STREAM NO/YES BTAM tape files: enable I/Os in streaming mode

TAPEWR DEVICE-BUFFER/
IMMEDIATE

Files on tape cartridges:
buffered or unbuffered output

TPMARK YES/NO Tape files: write tape marks

TRANS YES/NO Convert non-EBCDIC tape files

VALPROP MIN/MAX K-ISAM files: control interpretation of value flags

WRCHK NO/YES Disk files: read-after-write check

WROUT NO/YES ISAM files: write updated blocks immediately

Control of macro generation

MF D / C / L / E Operand lists

PREFIX Prefix for names in operand lists

VERSION 0 / 1 / 2 / 3 Version setting for the macro

Operand Operand value Function / meaning

FILE Macros

460 U4250-J-Z125-12-76

Format

Operation Operands

FILE VERSION = 0 / <integer 1..3>

,MF = C / D / L / S / (E,<name>) / (E,(<reg 0..15>))

,PREFIX = I / * / <name 1..1>

,<pathname 1..54> / *DUMMY

,AVAIL = HIGH

,BLIM = <integer 1..999999>

,BLKCTRL = *BY-PROG / < > / NO / PAMKEY / DATA / DATA4K / DATA2K

,BLKSIZE = *BY-PROG / < > / STD / <integer 1..32767> /
(STD,<integer 1..16>)

,BUFOFF = *BY-PROG / < > / L / <integer 0..99>

,BYPASS = LP / (LP,<integer -127..32767>)

,CHAINIO = <integer 1..100>

,CHKPT = (NO / BLIM / FEOV / ANY , ACTIVE / DUMMY)

,CLOSE = RWD / REPOS / DISCON / LEAVE / INVAL /
KEEP-DATA-IN-CACHE

,CLOSMSG = NO / YES

,CODE = *BY-PROG / < > / EBCDIC / ISO7 / ISO7D / OWN

,DATATTR = (*FROM-FILE,<c-string: filename 1..54>)

,DDEVICE = <name 1..8>

,DESTOC = NO / YES

,DEVICE = <name 1..8>

,DISKWR = IMMEDIATE / BY-CLOSE

(Teil 1 von 3)

Macros FILE

U4250-J-Z125-12-76 461

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

,DSPACE = <integer 0..2147483647> /
(<integer 0..2147483647> [,<integer 0..32767>]) /
(<integer 0..2147483647>,<integer 0..2147483647>,ABS)

,DUPEKY = NO / YES

,DVOLUME = <@adr> / PRIVATE / (PRIVATE,<integer 1..9>) /
list-poss(255): <name 1..6>

,EXC32GB = FORBIDDEN / ALLOWED

,FCBTYPE = *BY-PROG / < > / SAM / ISAM / BTAM / PAM

,FSEQ = < > / UNK / NEW / <integer 0..9999>

,IOPERF = < > / STD / HIGH / VERY-HIGH / USER-MAX

,IOUSAGE = < > / READ / WRITE / RDWRT

,KEYLEN = *BY-PROG / < > / <integer 1..255>

,KEYPOS = *BY-PROG / < > / <integer 1..32767>

,LABEL = *BY-PROG / STD / NO / NSTD / (STD,<integer 0..3>)

,LINK = <name 1..8>

,LOCKENV = HOST / XCS

,LOGLEN = *BY-PROG / < > / <integer 0..255>

,MOUNT = 0 / <@addr> / list-poss(255): <integer 1..255>

,NFTYPE = BS2000 / NODE-FILE

,OPEN = INPUT / OUTPUT / OUTIN / INOUT / SINOUT / EXTEND /
REVERSE

,OVERLAP = NO / YES

,PAD = <integer 0..99>

,POOLLNK = <name 1..8>

,POOLSIZ = <integer 128..1048576>

Operation Operands

(Teil 2 von 3)

FILE Macros

462 U4250-J-Z125-12-76

,RECFORM = *BY-PROG / < > / F / V / U / (F / V / U , N / M / A)

,RECSIZE = *BY-PROG / < > / <integer 0..32768> / <reg 2..12>

,RETPD = <integer 0..32767>

,SECLEV = HIGH / LOW / (HIGH / LOW , OPR)

,SHARUPD = NO / YES / WEAK

,SPACE = <integer -2147483647..2147483647> /
(<integer -2147483647..2147483647>,<integer 0..32767>) /
(<integer -2147483647..2147483647>,*KEEP) /
(<integer 02147483647..2147483647>
,<integer 0..32767>,*KEEP) /

(<integer 1..2147483647>,<integer 1..2147483647>,ABS)

,STATE = FOREIGN

,STOCLAS = *NONE / <c-string: name 1..8>

,STREAM = NO / YES

,TAPEWR = DEVICE-BUFFER / IMMEDIATE

,TPMARK = NO / YES

,TRANS = YES / NO

,TSET = <name 1..4> / (<name1..4>,<name 1..6>)

,TVSN = <@addr> / list-poss(255) <name 1..6>

,VALLEN = *BY-PROG / < > / <integer 0..255>

,VALPROP = *BY-PROG / < > / MIN / MAX

,VOLSET = <c-string: catid 1..4> / *CONTROL

,VOLUME = <@addr> / REMOVE-UNUSED / PRIVATE /
(PRIVATE [,<integer 1..9>]) /
list-poss(255): <name 1..6>

,VSEQ = <@addr> / <integer 1..255> /
(L=list-poss(255): <integer 1..255>)

,WORKFIL = NO / YES

,WRCHK = NO / YES

,WROUT = NO / YES

Operation Operands

(Teil 3 von 3)

Macros FILE

U4250-J-Z125-12-76 463

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Operand default values

The following applies to FILE operands for which no default setting is explicitly described
and for which a corresponding FCB operand exists. If the operand is not specified in the
FILE macro, this is noted in the TFT entry. The applicable operand value when processing
the file is then taken from the specifications in the FCB macro.
If the operand is omitted in the FCB macro as well, the default setting for the FCB macro
applies, assuming it is not overwritten by the corresponding value from the catalog entry by
OPEN.

Operand descriptions

The forms of the MF operand are described in detail in the appendix, page 865. In all
macros differentiated by the MF operand (MF=L/E/D/C) the version operand must have the
same value.

pathname
Designates the path name of the file(s) or file generation(s)
with: <c-string 1..54: filename 1..54>

“pathname” may not be a file generation group.

If “pathname” is not yet cataloged, a catalog entry is created and space is allocated to the
file in accordance with the primary allocation (see the SPACE operand, page 493).
If a temporary file is specified, it must have been created by the calling task.

The following elements CANNOT be created on a Net-Storage volume:
– Files with a PAM key
– File generations
– Work files
– Temporary files

FILE Macros

464 U4250-J-Z125-12-76

“pathname” means [:catid:][$userid.]filename

catid
Catalog ID;
Default value: the catalog ID assigned to the user ID.
If the catalog ID belongs to a remote system to which an RFA connection exists, the
FILE call is sent to the remote system with the parameter list via RFA.

userid
User ID;
Default value: the user ID specified in the SET-LOGON-PARAMETERS or LOGON
command.
If the file has not yet been cataloged as shareable or if storage space has been
released, a foreign user ID may only be specified if the calling task possesses the TSOS
privilege or is a co-owner of the file.

filename
Fully qualified name of a file or file generation. Tape file names may be suffixed with a
version number in parentheses.

*DUMMY
The FILE command describes a dummy file. If LINK is also specified, a TFT entry with a
volume list is created. If TSET is specified with *DUMMY, a TST entry is also created. All
other operands are simply checked for syntax errors, but otherwise ignored; neither devices
nor storage space are allocated, and no catalog entry is created.

Dummy file as an input file: when the program attempts to read from the file, EOF
processing is initiated.
Dummy file as an output file: data are transferred to the I/O areas of program, but output to
a physical volume is suppressed.

AVAIL = HIGH
Only as of VERSION=3 and only relevant for files on pubsets and on Net-Storage volumes:
The file is to have an increased availability and is stored on a corresponding volume set
(e.g. DRV).

The specification is rejected in the following cases:
– the file already occupies storage space
– SPACE is specified with a non-positive primary allocation
– WORKFIL=YES is specified
– a temporary file is specified
– the file ends up on an SM pubset which does not offer increased availability
– the file ends up on an SM pubset which does not contain a volume set with increased

availability

Macros FILE

U4250-J-Z125-12-76 465

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

– the file ends up on a private disk
– a tape file is specified

BLIM = number
For the creation of tape files with standard labels which are to be processed with the SAM access
method:
“number” specifies how many data blocks may be written on one tape;
1 Î number Î 999999.

When this value is reached, a tape swap is initiated (EOV processing). If requested with the
CHKPT operand, a checkpoint is written at the end of the tape before EOV processing is
started. If the end of the tape is reached before the specified number of blocks has been
written, the user receives an error message in the FCB.

The following entries are rejected if BLIM is specified: FCBTYPE=PAM/BTAM/ISAM,
LABEL=NO/STD, FSEQ=n with n>1 and FSEQ=UNK/NEW.

BLKCTRL
Only as of VERSION=1:
Determines whether a file with the conventional K format (with PAM keys) or with the new
NK format (without PAM keys) is to be processed. BLKCTRL is relevant for the preliminary
file format.

For the processing of NK-SAM and NK-PAM files, the same functions as for the corre-
sponding K files are available, with identical user interfaces. For NK-ISAM files, the access
method NK-ISAM provides functions over and above those of K-ISAM, e.g. the processing
of ISAM files in ISAM pools or the use of secondary keys (see the “Introductory Guide to
DMS” [1]). NK-ISAM and K-ISAM processing differ internally, but there are only minor
changes at the user interface with regard to the effects of ISAM-specific operands (see the
following table).

Operand BLKCTRL = PAMKEY BLKCTRL = DATA/DATA2K/DATA4K

DDEVICE
DVOLUME
DSPACE

Separate index and data sections for
ISAM files on private disks

Separate index and data sections are not
supported, but operands can be specified

DUPEKY Records with duplicate keys are given an
internal time stamp

LOGLEN Length of the logical flag This operand is ignored

POOLLNK Connects the file to a user ISAM pool
(otherwise to a standard ISAM pool)

OVERLAP Read operations are overlapped
(with IOAREA2)

Any adjacent blocks are likewise read into the
ISAM pool

FILE Macros

466 U4250-J-Z125-12-76

If the BLKCTRL operand is not specified (neither in the TFT nor in the FCB), the following
BLKCTRL value is assigned to the file when it is opened (unless the value from the catalog
entry is used):

BLKCTRL = PAMKEY for files on conventional (CKD) disks
BLKCTRL = DATA for SAM or ISAM files on the new (FBA) disks (without PAM key

simulation)
BLKCTRL = NO for PAM files on the new (FBA) disks (without PAM key simulation)

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The BLKCTRL value from the reference file catalog entry is ignored.

= PAMKEY
The file has the K format: the block control information is kept in a PAM key outside the
data block. Such a K file cannot be created on an NK disk (FBA disk without PAM key
simulation) or on a Net-Storage volume.

= NO
This value is only meaningful for PAM files and SAM tape files: it is converted into
BLKCTRL=DATA for SAM disk files, and into BLKCTRL=DATA2K or
BLKCTRL=DATA4K for ISAM files.
If FCBTYPE=PAM is specified, an NK-PAM file containing no block-specific
management information is created.
This file can be created on both K disks as well as NK2 disks, without regard to the
selected logical block size (BLKSIZE). If the specified logical block size (BLKSIZE) is a
multiple of 4K (with the blocking factor “n” even), the file can also be created on an
NK4 disk.

= DATA
The file has NK format: the block control information is kept at the beginning of each
logical block (for ISAM files: at the beginning of each 2-Kbyte or 4-Kbyte block).
An NK file may be located on K disks, NK2 disks, and – if the appropriate block size is
selected – on NK4 disks as well. When a file is created for the first time (OPEN
OUTPUT/OUTIN), an NK2 or NK4 file is created:

PAD Minimum space to be left free in each
data block

Maximum space to be left free in each data
block

SHARUPD Block locks Record or range locks

VALLEN Length of the value flag This operand is ignored

VALPROP The value flag is evaluated The value flag is ignored

Operand BLKCTRL = PAMKEY BLKCTRL = DATA/DATA2K/DATA4K

Macros FILE

U4250-J-Z125-12-76 467

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

For files created with an access method other than ISAM, the format of the file depends
on the blocking factor “n” in the BLKSIZE specification for the size of a logical block.
– If the blocking factor n is an odd number, an NK2 file is created.
– If the blocking factor n is an even number, an NK4 file is created.

When an NK-ISAM file (OPEN OUTPUT/OUTIN) is created, the format of the file is
selected on the basis of the disk format. A file that has already been opened can be
opened without regard to the block format.

= DATA2K
Only as of VERSION=2, for ISAM files:
Specialization of “DATA” for NK-ISAM files.

Explicitly creates (OPEN OUTPUT/OUTIN) an NK2-ISAM file. When existing files are
opened, every file is checked to determine whether an NK2-ISAM file is involved.
The block-specific management information is stored in the first 16 bytes of each data
block. This value cannot be used to create a file on an NK4 disk or to open a file located
on one.

= DATA4K
Only as of VERSION=2, for ISAM files:
Specialization of “DATA” for NK-ISAM files.

Explicitly creates (OPEN OUTPUT/OUTIN) an NK4-ISAM file. When existing files are
opened, every file is checked to determine whether an NK4-ISAM file is involved.
The block-specific management information is stored in the first 16 bytes of each
4-Kbyte block. If a blocking factor “n” is specified, “n” must be an even number, i.e. the
logical block size must be a multiple of 4-Kbytes. The file can be created and/or opened
on K disks, NK2 disks, and NK4 disks.

BLKSIZE
Defines the length of the logical block (data block), i.e. the length of the unit of data transfer
from and to I/O devices. BLKSIZE is relevant for the preliminary file format.

If the BLKSIZE is not specified (neither in the TFT nor FCB), the following BLKSIZE value
will be assigned to the file when it is opened (unless the value from the catalog entry is
taken):

K/NK2 volumes
NK4 volumes

– BLKSIZE = STD
– BLKSIZE = (STD,2)

FILE Macros

468 U4250-J-Z125-12-76

For disk files, there are interactions between this operand and the SPACE and RECSIZE
operands, for tape files between this operand and the LABEL operand (see the two tables
under BLKSIZE=length on page 469).

K disk files/tape files with standard blocks: logical blocks may consist of several PAM pages.
The system automatically links the PAM pages belonging to one transfer unit.

Tape files with nonstandard blocks: the block format is not the same as that used by PPAM;
a logical block is defined as the number of bytes which are read or written in one read or
write operation.

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The BLKSIZE value from the reference file catalog entry is ignored.

= STD
Equivalent to (STD,1); see below.

The data is transferred in units of 2048 bytes from/to the devices. The usable data
length for the user varies depending on what is specified for BLKCTRL (and/or on the
disk type).

= (STD,n)
“STD” is a standard block with a block size of 2048 bytes; “n” is the blocking factor
(1 Î n Î 16)

Each logical block consists of “n” PAM blocks (1 PAM block or PAM page = 2048 bytes),
so the maximum length of a logical block is 16 PAM pages or 32768 bytes.
For NK files “n” defines the length of the logical block as a multiple of 2048 bytes: the
length of each such block = n * 2048 bytes.

For NK4 files: the value of “n” must be even; the length of the logical block is a multiple
of 4K. In the case of NK-ISAM files, the operand value DATA4K must be specified for
the BLKCTRL operand.

For SAM files with SETL processing: up to 255 records may be held in each logical
block, since the positioning information is held in only one byte. This restriction is not
applicable to a 31-bit FCB= length.

= length
Only for tape files:
specifies the maximum block length in bytes and, at the same time, specifies that the
file consists of nonstandard blocks; no PAM keys are written.

Macros FILE

U4250-J-Z125-12-76 469

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

When specifying “length”, the user must consider, on the one hand, the settings of
BUFOFF and RECFORM and, on the other hand, the settings of FCBTYPE and
CHAINIO.

BUFOFF
For tape files with BLKCTRL=DATA or SAM tape files without standard blocking:
defines the buffer offset, i.e. the length of a field which is inserted at the beginning of each
data block.

If the BUFOFF is not specified (neither in the TFT nor FCB), the following BUFOFF value
will be assigned to the file when it is opened (unless the value from the catalog entry is
taken):

= *BY-PROG
As of Version=3 and only relevant if the DATATTR operand is specified:
The BUFOFF value from the reference file catalog entry is ignored.

= L
The BUFOFF value is taken from the HDR2 label of the file. If there is no HDR2 label,
or if the field “buffer offset” in the label contains blanks (X'4040'), the same values apply
as when the BUFOFF specification is omitted (neither TFT not FCB).

Operand RECFORM Effects

RECFORM=F “length” specifies the block size including the length of any buffer offset
(see the BUFOFF operand).
All blocks are the same size.

RECFORM=V/U “length” specifies the maximum block size including the length of any
buffer offset (see the BUFOFF operand). The block size, just like the
record length, is variable.
If RECFORM=V is used together with CODE=EBCDIC or
LABEL=(STD,n) (n > 1), “length” must < 10000

Operand FCBTYPE Permissible values for “length”

SAM / BTAM 1 ≤ n ≤ 32768

PAM --------

– for tape files with BLKCTRL=DATA:

for FCBTYPE=SAM:
for FCBTYPE=PAM:

BUFOFF=16
BUFOFF=12

– for SAM tape files without standard blocking

for RECFORM=V:
for RECFORM=F/U:

BUFOFF=4
BUFOFF=0

FILE Macros

470 U4250-J-Z125-12-76

= length
Specifies the length of the buffer offset.

For SAM files with RECFORM=V: 0 Î length Î 4; if BUFOFF=4 applies, this field
contains the length of the current block. For files with BLKCTRL=DATA, this field
contains the block control field.

BYPASS
For input files on tape:
Given the appropriate authorization for the user in the user catalog, the user can bypass
the label checking routines and specify how the tape is to be positioned. DMS checks that
the correct tape is mounted and activates any user routines for label handling in the normal
manner. The positioning specification is evaluated only if no OPEN exit is defined.

In addition to label checking, code checking is also bypassed. If the user specifies
CODE=OWN, he/she must provide the appropriate code tables.

BYPASS permits processing of tapes created under other operating systems (such as
BS1000) or of tapes whose structure and label formats are not known to the system. The
BYPASS specification is valid only during file processing; it is not included in the catalog
entry for the file.

If specified together with BYPASS, the FSEQ and SECLEV operands are not evaluated.

= LP
No label handling takes place. The header labels are neither checked nor read. The
tape position is not changed.

= (LP,n)
No label handling takes place. When the file is opened, the tape is positioned to the
nth tape mark, counting from the beginning of the tape. 0 Î n Î 32767.

(LP,0): position to the beginning of the tape.

= (LP,+n)
No label handling takes place. When the file is opened, the tape is positioned forwards
by n tape marks from its current position. 0 Î n Î 127.

(LP,+0): the tape is not repositioned.

= (LP,-n)
No label handling takes place. When the file is opened, the tape is positioned
backwards by n tape marks from its current position.
0 Î n Î 127.

(LP,-0): the tape is not repositioned.

Macros FILE

U4250-J-Z125-12-76 471

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

CHAINIO = number
For BTAM files with chained I/O:
1 Î number Î 16;
“number” is the chaining factor which defines the length of the transport/transfer unit for
input and output. “number” is a number of blocks, which means that the length of the
transport unit is “number” * BLKSIZE.

Although the value from CHAINIO=number, multiplied by the block size, can be overwritten
by specifications in the program (BTAM macro) when processing BTAM files, CHAINIO
must still be specified in the FILE macro if chained I/O is to be used.

CHKPT
For tape files only:
controls if and when a checkpoint is to be written automatically to the end of the tape, or
how file processing is to continue after a restart (RESTART command).

Default value: CHKPT=(NO,ACTIVE)

= (NO,...)
No automatic checkpoints are written, unless specified otherwise in the FCB of the
program.

= (BLIM,...)
When the block limit specified via the BLIM operand is reached, a checkpoint is written
automatically; the operand BLIM must be specified.

= (FEOV,...)
A checkpoint is written automatically each time the FEOV macro is called.

= (ANY,...)
A checkpoint is automatically written when the BLIM limit is reached or when the FEOV
macro is called. The operand BLIM must be specified.

= (...,DUMMY)
“pathname” is treated like a DUMMY file during a restart by means of the RESTART-
PROGRAM command.

= (...,ACTIVE)
The file “pathname” is processed further during a restart by means of the RESTART-
PROGRAM command.

FILE Macros

472 U4250-J-Z125-12-76

CLOSE
Only as of VERSION=2:
Specifies the CLOSE mode for the file. This value may be overwritten by the CLOSE macro
when the file is being closed.

Default setting: The CLOSE value is taken from the CLOSE macro.

For more information on CLOSE processing, see also the “Introductory Guide to DMS” [1].

= RWD
For tape processing:
The tape is rewound to the start.

= REPOS
For tape processing:
The tape is positioned to the beginning of the current file section, depending on the
LABEL specification.

= DISCON
For tape processing:
The tape is rewound to the start and unloaded/released.

= LEAVE
For tape processing:
Positions the tape to the logical end-of-file, depending on the LABEL specification.

= INVAL
The cached file blocks are invalidated, i.e. declared invalid, and not written back to disk
(to be borne in mind for shared-update processing)

= KEEP-DATA-IN-CACHE
Only as of VERSION=3:
Blocks from the file that are in the cache are not written back to the disk, but remain
flagged as valid.

CLOSMSG
Only as of VERSION=1:
For files to be processed sequentially (SAM), the user can specify that a message is to be
issued (to SYSOUT) after completion of CLOSE processing. If the CLOSMSG operand is
not specified (neither the TFT nor the FCB), the following CLOSMSG value is assigned to
the file when it is opened:

Disk: CLOSMSG = NO
Tape: CLOSMSG = YES

= NO
The completion message is suppressed.

Macros FILE

U4250-J-Z125-12-76 473

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

= YES
The completion message is issued.

CODE
For tape processing:
Specifies, for SAM or BTAM files, whether code translation tables are to be used during
input and output and, if so, which tables.

If the CODE operand is not specified (neither the TFT nor the FCB), the following CODE
value is assigned to the file when it is opened:

CODE = EBCDIC

For CODE=EBCDIC and CODE=ISO7 the German and international character sets are
encoded in the same manner.

For CODE=ISO7/OWN and FCBTYPE=SAM, the following should be noted:
– the block size must be specified by BLKSIZE=length, so that no PAM keys are written;
– for outputs in locate mode with variable-length records (RECFORM=V), the contents of

the record length field change.

= *BY-PROG
Only as of VERSION=3 and only relevant if the DATATTR operand is specified:
The CODE value from the reference file catalog entry is ignored.

= EBCDIC
No code conversion during processing is necessary.

= ISO7
The tape file is written in ISO 7-bit code, which means that EBCDIC code is converted
to ISO 7-bit code during output and ISO 7-bit code is converted to EBCDIC code during
input. The international ISO table is used.

= ISO7D
Only as of VERSION=3:
The tape file is written in ISO 7-bit code, which means that EBCDIC code is converted
to ISO 7-bit code during output and ISO 7-bit code is converted to EBCDIC code during
input. The German ISO table is used.

= OWN
Conversion is carried out with code tables provided by the user. The addresses of these
tables must be specified in an FCB macro (see the TRTADR and TRTADW operands,
page 441). At the same time, label processing must be switched off via the LABEL
operand (LABEL=NO) or carried out in the user program (LABEL=NSTD).

FILE Macros

474 U4250-J-Z125-12-76

DATATTR = (*FROM-FILE,<c-string: filename 1..54>)
Only as of VERSION=3:
The following values are transferred to the TFT entry when this is created, from the catalog
entry of the reference file specified here. Explicitly specified values have precedence.

BLKCTRL, BLKSIZE, BUFOFF, CODE, FCBTYPE, KEYLEN, KEYPOS, LABEL, LOGLEN,
RECFORM, RECSIZE, VALLEN, VALPROP

The reference file must be cataloged in the pubset as the file to which the FILE call refers.
The caller must have the right to read the reference file catalog entry (using FSTAT or
SHOW-FILE-ATTRIBUTES).

The values for BLKCTRL and BLKSIZE contained in the reference file catalog entry are
taken into account when forming the preliminary file format.

If the value *BY-PROG is specified for the above operand, transfer of the corresponding
value from the reference file catalog entry is suppressed and no value is transferred to the
TFT entry.

Example

A reference file is specified whose catalog entry for BLKCTRL contains the value
PAMKEY. The following then applies:

DDEVICE = <name 1..8>
For ISAM files with index and data sections separated:
DDEVICE designates the disk type for the data section (that for the index section is
specified via DEVICE); permissible entries for “device” can be found in the device table in
in „System installation“ manual [16]). The new device types introduced with BS2000 V9.5
are only supported as of VERSION=1. DDEVICE must be specified if no storage space has
yet been reserved for the file. DVOLUME and DSPACE must also be specified if DDEVICE
is specified.

If at least one volume serial number is specified with DVOLUME, every specification of a
disk device type which is known to the system is handled like the STDDISK specification.

NK-ISAM does not support index/data separation, but DDEVICE may still be specified
(compatibility with K-ISAM).

BLKCTRL value specified in FILE call BLKCTRL value in TFT entry

none PAMKEY

*BY-PROG none

DATA DATA

Macros FILE

U4250-J-Z125-12-76 475

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

DESTOC
For tape processing as of VERSION=1:
the user can specify whether any data on the remainder of the tape is to be deleted by
overwriting after completion of EOF/EOV processing.

DESTOC is effective only if a TFT entry is created for “pathname” using the LINK operand.

If the DESTOC operand is not specified, the DESTROY specification is taken from the
catalog entry when the file is opened.

DESTOC has the same function as the operand DESTROY in the CATAL macro, but the
DESTOC specification overrides the DESTROY value in the catalog entry. The value
specified for DESTOC is not placed in the catalog entry.

= NO
Any data on the remainder of the tape is not erased.

= YES
After the EOF/EOV labels have been written, any data on the remainder of the tape is
erased.

DEVICE
defines the disk device type or tape type.
When VOLUME specifies a private disk which is not contained in the MAREN catalog, the
DEVICE operand must be specified.

Defaults

The following applies if the file has no storage space assigned before the FILE call and is
allocated storage space by the FILE call:

– If DEVICE=STDDISK is specified and neither VOLUME nor NFTYPE is not, the file will
be created on public disks (and also not on a Net-Storage volume in future expansions).

– If DEVICE=NETSTOR (the volume type for Net-Storage volumes) is specified and
VOLUME is not, the file will be created on a Net-Storage volume.

If neither DEVICE nor VOLUME is specified, the following applies:
– If NFTYPE is not specified, the file is created on public disk.
– When NFTYPE is specified, the file of the specified file type is created on an arbitrary

Net-Storage volume provided one exists.
Future extensions can enable a different behavior here.

= <name 1..8>
Specifies the device type (for disks) or the volume type for Net-Storage volumes and
tapes). The possible entries for disk devices are shown in the “System installation”
manual [16] (Device type column); permissible values for tape devices are included in
the volume type table (see the “Commands” manual [3]).

FILE Macros

476 U4250-J-Z125-12-76

DEVICE=NETSTOR (the volume type for Net-Storage volumes) specifies a Net-
Storage volume.

DEVICE=TAPE cannot be used to request magnetic tape cartridges.

If a tape type is specified for DEVICE when creating a file, but no specification is made
for VOLUME, a free tape (SCRATCH-TAPE) with standard labels is requested during
OPEN processing and assigned by the operator. A tape is considered free from the
viewpoint of DMS if it has not been written as yet or if the retention period of the first file
on it has expired, and write access is enabled.

If at least one volume serial number is specified with VOLUME, every specification of a
disk device type which is known to the system is handled like the STDDISK specifi-
cation.

= WORK
Only for tape processing:
causes a work tape with standard labels to be requested during OPEN processing.
Work tapes are not assigned to any owner; the corresponding field in the VOL1 label
always contains blanks (X'40'). Work tapes should be requested only when they are
required during processing and are not to be archived. File protection is not possible on
work tapes. Work tapes are allocated by the operator when requested; and values
specified for the VOLUME operand are ignored. The operands TSET and
STATE=FOREIGN must not be specified together with DEVICE=WORK.

DEVICE=WORK should not be specified for multivolume files, since any available work
tape is automatically assigned.

Magnetic tape cartridges cannot be requested as work tapes.

Macros FILE

U4250-J-Z125-12-76 477

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

DISKWR
Only as of VERSION=3 and only relevant for files on pubsets or Net-Storage volumes:
Specifies the time after a write operation within which the file data must be in a consistent
state. The entry is taken into the catalog entry for files on pubsets or Net-Storage volumes.
The entry is taken into account when selecting the volume set for files on SM pubsets.

If DISKWR is not specified and the file has no catalog entry, the value IMMEDIATE is
assumed for a permanent file and BY-CLOSE for a temporary file. If DISKWR is not
specified and the file has a catalog entry, the value for DISKWR in the catalog entry is used.

The entry is rejected in the following cases:
– the file already occupies storage space
– SPACE is specified with a non-positive primary allocation

= IMMEDIATE
The file data must be in a consistent state immediately after a write operation.

= BY-CLOSE
The file data must be in a consistent state after the file is closed. This allows the file to
be processed via a volatile cache.

DSPACE
Used with DDEVICE/DVOLUME for the data section of ISAM files with index and data separation:
DSPACE defines the space allocations for the data section of an ISAM file. The rules for
primary and secondary allocation and for absolute allocation are the same as for the
SPACE operand, but the entries refer to the volume specified in the DVOLUME operand
(see also the DDEVICE and DVOLUME operands and “Index and data separation”, in the
“Introductory Guide to DMS” [1]). NK-ISAM does not support separate data and index
sections, but DSPACE may still be specified (compatibility with K-ISAM).

= <integer 0..2147483647>
Primary allocation, effective immediately.

= (<integer 0..2147483647>,<integer 0..32767>)
The primary allocation is effective immediately; the secondary allocation value is
transferred to the catalog entry; 0 Î secondary Î 32767.

= (<integer 0..2147483647>,<integer 0..2147483647>,ABS)
ABS: absolute allocation;
The number of the PAM page at which the absolute allocation begins is specified
followed by the number of PAM pages to be reserved.

FILE Macros

478 U4250-J-Z125-12-76

DUPEKY
For ISAM files:
Specifies whether or not there may be more than one record with the same primary key
value (duplicate keys).

If no value is specified in the FILE macro or FCB, the default value of the FCB macro takes
effect on opening the file.

= NO
The file must not contain more than one record with the same primary key value.

= YES
If several records have the same primary key value, they do not overwrite each other,
but are written sequentially in the order in which they are created. DUPEKY=YES is of
significance only if the ISAM file is created sequentially by means of the PUT macro or
extended non-sequentially by means of the STORE macro.
The INSRT macro cannot be used to write records with identical primary keys.
For DUPEKY=YES, see also page 422.

DVOLUME
Used together with DDEVICE for K-ISAM files with separate index and data sections on a private
volume:
DVOLUME specifies the volume serial number (“vsn” of the volume on which the data
section of the ISAM file is to be stored. The VOLUME operand must be specified for the
index section. The explanation of the DDEVICE operand applies analogously. NK-ISAM
does not support separate data and index sections, but DVOLUME may still be specified
(compatibility with K-ISAM). Separate data and index sections are not possible for files on
a Net-Storage volume.

= <@addr>
Only as of VERSION=2:
addr is a symbolic address in the program at which a DVOLUME list has been created
using the macro FILELST DVOLUME=...
The character “@” is part of the operand value and must be specified.

= PRIVATE
Issues a MOUNT message for a private disk on the console.

= (PRIVATE,<integer 1..9>)
Issues a MOUNT message for the required number of private disks on the console.

= list-poss(255): <name 1..6>
The private disks specified with their VSN are required for the data part of the ISAM file.

Macros FILE

U4250-J-Z125-12-76 479

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

EXC32GB
Only for disk files; not for non-PAMKEY files:
The EXC32GB operand determines whether or not the file size may grow beyond 32 GB
during data processing (see page 108). The operand is entered in the TFT (Task File Table)
and is not evaluated until the file is opened with OPEN.
EXC32GB has no influence on storage space allocations in the event of FILE calls.

= FORBIDDEN
The file size may not exceed 32 GB.

= ALLOWED
The file size may exceed 32 GB.

FCBTYPE
Specifies the access method to be used for file processing.

= *BY-PROG
Only as of VERSION=3 and only relevant if the DATATTR operand is specified:
The FCBTYPE value from the reference file catalog entry is ignored.

= ISAM
“pathname” is an ISAM file. Depending on the BLKCTRL operand, it is processed as an
NK-ISAM file (BLKCTRL=DATA) or as a K-ISAM file (BLKCTRL=PAMKEY). The access
method ISAM is described in the “Introductory Guide to DMS” [1].

ISAM-specific operands: DUPEKY, KEYLEN, KEYPOS, LOGLEN, POOLLNK,
VALLEN, WROUT and DDEVICE, DSPACE, DVOLUME and VALPROP.

= BTAM
“pathname” is a tape file which is to be processed with the access method BTAM. The
access method BTAM is described in the “Introductory Guide to DMS” [1].

BTAM-specific operands: CHAINIO, OPEN=SINOUT, STREAM

= PAM
“pathname” is a PAM file and is processed with the access method UPAM The access
method UPAM is described in the “Introductory Guide to DMS” [1].

PAM files could be stored on disk or tape.

= SAM
“pathname” is a SAM file on disk or tape. SAM files are generally processed
sequentially with the access methods SAM or UPAM. The access method SAM is
described in the “Introductory Guide to DMS” [1].

SAM-specific operands: CLOSMSG, OPEN=UPDATE

FILE Macros

480 U4250-J-Z125-12-76

FSEQ
For tape files which belong to a file set:
specifies the (sequence) number of a file within the file set. If, for example, several files with
the same name are stored on one tape, access to a specific file is controlled via FSEQ. This
also applies to MF/MV sets.

If no FSEQ value exists in the TFT entry or the FCB at the time the file is opened, FSEQ=1
is entered for files that have not yet been opened. In the case of files that have already been
opened, the FSEQ value is taken from the catalog entry.

A catalog entry for the file must exist if FSEQ is specified as a null operand. If a file
sequence number is entered there, this is transferred to the TFT entry. Otherwise, no file
sequence number is entered in the catalog entry and the null operand is entered in the TFT
entry.

= UNK
If the file already has a catalog entry containing a file sequence number, this is
transferred to the TFT entry. Otherwise, no file sequence number is entered in the
catalog entry and UNK is entered in the TFT entry. This means that when opening a
foreign tape file with standard labels, the tape is searched for the file and positioned
accordingly.

= NEW
Only permitted if no creation date is entered in the catalog entry:
The value NEW is entered in the TFT entry but not in the catalog entry. If a file sequence
number is entered in the catalog entry, it is deleted. This means that a non-existent
(NEW) tape file with standard labels is written after the current end of the file set and
the file sequence number is incremented by one when the file is opened.

= <integer 0..9999>
If a catalog entry with creation date exists for the file, the FSEQ entry must match the
file sequence number in the catalog entry. Otherwise (particularly for foreign files), the
number is entered in both the catalog and TFT entries as a file sequence number. The
tape is positioned according to the file sequence number when the file is opened.

Both FSEQ=0 and FSEQ=1 designate the first file of the file set.

Macros FILE

U4250-J-Z125-12-76 481

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

IOPERF
Only as of VERSION=2 and only relevant for files/file generations on public volumes or Net-Storage
volumes:
Specifies the performance attribute of the file. This defines the desired priority level for the
I/O operations specified in the IOUSAGE operand. The highest permitted performance
attribute is defined in the catalog entry (see the output of the SHOW-USER-ATTRIBUTES
command).

When the file is being cataloged, the specification with the highest permissible performance
attribute is compared and is transferred to the catalog entry, or STD is entered if IOPERF
is not specified.

If the file is cataloged, the corresponding specifications in the catalog entry are not
changed. If a file link name is specified in the LINK operand, the value is transferred to the
TFT entry if IOPERF was specified.

When a new file is created on an SM pubset, the performance attribute is taken into account
when selecting the volume set (e.g. selection of a volume set to which a cache is assigned).

= STD
The file is not processed via a cache.

= VERY-HIGH
If possible, a cache should be used when processing the file, and the whole file should
be permanently maintained in the cache (highest performance priority).

= HIGH
The file should be processed via a cache if possible.

= USER-MAX
The file is given the highest I/O attribute that is entered for the user in the user catalog.

IOUSAGE
Only as of VERSION=2 and only relevant for files/file generations on public volumes or Net-Storage
volumes:
Specifies the I/O operations to which the performance attributes (IOPERF) of the file apply.
When the file is being cataloged, the specification is transferred to the catalog entry, or
RDWRT is entered if IOUSAGE is not specified.

If the file is already cataloged, the corresponding specifications in the catalog entry are not
changed.

If a file link name is specified in the LINK operand, the value is transferred to the TFT entry
if IOUSAGE was specified.

When a new file is created on an SM pubset, the IOUSAGE attribute is taken into account
when selecting the volume set (e.g. selection of a volume set to which a read cache is
assigned).

FILE Macros

482 U4250-J-Z125-12-76

= RDWRT
The performance attribute applies to read and write operations.

= WRITE
The performance attribute applies to write operations only.

= READ
The performance attribute applies to read operations only.

KEYLEN = length
For ISAM files:
specifies the length of the ISAM key.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The KEYLEN value from the reference file catalog entry is ignored.

= <integer 1..255>
Length of the ISAM key in bytes.

KEYPOS = number
For ISAM files:
specifies the position of the primary key in the record. In variable-length records, 4 bytes for
the record length and control fields must be taken into account. The primary key may be
anywhere in the record, but must be in the same position in each record of one file.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The KEYPOS value from the reference file catalog entry is ignored.

= <integer 1..255>
Byte position of the primary key.

Macros FILE

U4250-J-Z125-12-76 483

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

LABEL
For tape files:
Specifies the label attributes for files on magnetic tape or magnetic tape cartridge; the
SECLEV operand determines how the labels are processed.

For existing tape files, the label standard version in the VOL1 label always applies. The
LABEL operand is evaluated for output files (OPEN OUTIN/OUTPUT). If the tape already
contains files or file sections, the standard identifier in the VOL1 label is set or updated as
specified in the LABEL operand.

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The LABEL value from the reference file catalog entry is ignored.

= STD
File and volume already have or are to receive standard labels in accordance with
DIN 66029, exchange level 1.

= (STD,<integer 0..3>)
File and volume already have or are to receive standard labels in accordance with the
specified DIN 66029 exchange level; exchange level 4 is in preparation.
For specification and effects of the operand, see also the table “Effects of the LABEL
operand” on page 429.

= NO
Labels are neither read nor written (no file label processing). If the tape has standard
labels, the system processes the volume labels and checks the access authorization.

= NSTD
The tape file already has or is to receive nonstandard labels and file label processing is
performed in the user program. If the volume has standard labels, the system
processes them and checks the access authorization.

LINK = <name 1..8>
A TFT entry is to be created for this file link name (“name”). The other operands are then
evaluated and their values are placed in this TFT entry (apart from SPACE, DSPACE,
AVAIL, WORKFIL, VOLSET, STOCLAS and DISKWR). Volumes are requested from the
volume list if necessary.

If the TFT already contains an entry with the same name, it is first implicitly released and
then set up again with the current values in the FILE macro. The old TFT entry must not be
in the active state. If the old TFT entry had been locked by means of a LOCK-FILE-LINK
command, the new entry is also locked. Furthermore, the old volume and device reserva-
tions are cleared, but tape devices remain available to the job.
The program and the file are linked together via the file link name and the TFT.

FILE Macros

484 U4250-J-Z125-12-76

The TFT entry is created in the task of the caller if this is not an RFA case. If the catalog ID
in the path name belongs to a remote system to which an RFA connection exists, the TFT
entry is created in the remote task and another one is created in the task of the caller. The
TFT entry created in the task of the caller must not contain all the information in the remote
task TFT entry, e.g.:
– user ID in the file path name
– information that cannot be specified via the FILE macro operands
– information on the TFT entry volume table
– entries for IOPERF, IOUSAGE, DEVICE, DDEVICE, FSEQ, MOUNT
– values transferred with the DATATTR operand from the reference file catalog entry

If the file link name is to be accessed via the command interface, it must correspond to the
data type <structured_name 1..8> (see the “Commands” manual [3]).

Note

If the LINK operand is not specified, no TFT entry is created.

Most of the operands of the FILE macro are evaluated only together with a TFT entry.
Exceptions to this are the operands whose values are transferred to the catalog entry
or operands which control FILE processing such as:
IOPERF, IOUSAGE, DEVICE, VOLUME, SPACE, DDEVICE, DVOLUME, DSPACE,
FSEQ (in part) MOUNT, and STATE=FOREIGN.

LOCKENV
Only as of VERSION=3:
Defines whether the file can be opened for writing by multiple systems during processing,
dependent on the open mode and SHARUPD value.

= HOST
The file cannot be opened for writing by multiple systems during processing.

= XCS
The file can be opened for writing from different systems during processing by means
of SHARUPD=YES if both systems belong to the same XCS network.

Macros FILE

U4250-J-Z125-12-76 485

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

LOGLEN = <integer 0..255>
For ISAM files:
specifies the length (in bytes) of the logical flag in the ISAM index; the maximum length is
determined by the length of the ISAM key and the length of any existing value flag (see the
description of the VALLEN operand, page 502), since the entire ISAM index must not be
longer than 255 bytes.

The following rule thus applies:

length Î 255 - KEYLEN - VALLEN

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

In the ISAM index, the ISAM key may be followed by a logical flag in which selection criteria
are defined bit-by-bit and encoded in binary code. In K-ISAM files, all logical flags of a block
are evaluated and the result is placed in the next-higher index entry. NK-ISAM supports
logical flags only compatibly, but does not place the flags in the index entry. Any LOGLEN
specification is ignored.

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The LOGLEN value from the reference file catalog entry is ignored.

MF
The forms of the MF operand are described in detail in the appendix (page 865). The
version operand must have the same value for all macro calls that are distinguished by the
MF operand (MF=L/E/D/C/S).
MF=S can only be used for VERSION=0.

Default: MF=S for VERSION=0.

MOUNT
Specifies which volume is requested from the volume list (see VOLUME operand) for FILE
processing.

The interactions with the VSEQ operand should be borne in mind:
– VSEQ: MOUNT values must be greater than or equal to the VSEQ value (exception:

MOUNT=0). If VSEQ=n, the MOUNT list must begin with “n”
(MOUNT=(n[,n+1][,n+2][,...); if VSEQ=(L=(n1, n2,...)), the MOUNT list must consist of
the first k elements of the VSEQ list (MOUNT=(n1, n2,...,nk)).

– If the VSEQ operand is not specified, the MOUNT list must begin with “1”
(MOUNT = 1, 2, ..., k)).
Exception: MOUNT=0.

FILE Macros

486 U4250-J-Z125-12-76

The following applies when requesting public disks:
– No disks are requested if LINK is specified.
– No disks are requested if the file is migrated.
– No disks are requested if MOUNT=0 is specified.
– All MOUNT specifications apart from MOUNT=0 are rejected if LINK is specified.
– All disks are removed from the volume list if LINK is specified without MOUNT and the

file is not migrated.

The following applies when requesting private disks:
– The specification MOUNT=0 is ignored if at least one of the operands SPACE,

VOLUME, DSPACE, DVOLUME or REUSE (using the oldest generation volumes when
creating a new generation) is specified.

– No private disk is requested if MOUNT=0 is effective.
– If MOUNT=0 is not effective and LINK is not specified, the first private disks are

requested with extent and, if necessary, any additional private disks required for the
storage allocation.

– All disks from the volume list are requested if LINK is specified and no MOUNT speci-
fication is effective.

– The first k disks from the volume list are requested if LINK is specified and k non-zero
numbers are specified in MOUNT.

The following applies when requesting Net-Storage volumes:
– When MOUNT=0 but neither SPACE nor VOLUME is specified and the file is already

on a Net-Storage volume before the FILE call, no Net-Storage volume is requested.
– In all other cases the Net-Storage volume is requested on which the file resides or is

created.

The following applies when requesting tapes:
– No tapes are requested if DEVICE=WORK is specified.
– No tapes are requested if MOUNT=0 or neither LINK nor MOUNT is specified.
– Tapes are requested according to the MOUNT list if MOUNT is specified not equal to

zero.
– If LINK is specified without MOUNT, just one tape is requested from the volume list: if

VSEC=n is specified, the nth tape, if VSEQ=(L=(n1, n2,...)) the n1th tape and if VSEQ
is not specified, the first tape.

– Every number n>0 in the MOUNT list refers to the nth tape in the volume list.

= 0
For disk files:
The volume is requested only at the time of the OPEN, provided that neither VOLUME/
DVOLUME nor SPACE/DSPACE has been specified.

For tape files:
The tape is not requested until the OPEN.

Macros FILE

U4250-J-Z125-12-76 487

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

= @addr
Only as of VERSION=2:
addr is a symbolic address in the program at which a MOUNT list was stored using
FILELST MOUNT=...
The “@” character is part of the operand value and must be specified.

= list-poss(255): <integer 1..255>
Every number specified here refers to the nth volume in the volume list.

NFTYPE
Only as of VERSION=3 and only relevant for files on Net-Storage volumes:
Specifies the file type for the Net-Storage file to be created.
If this specification contradicts the specifications in the DEVICE and VOLUME operands
(e.g. specification of a private disk), the macro is aborted with an error. If the DEVICE and
VOLUME operands are not specified, the file is created with the specified file type on an
arbitrary Net-Storage volume (if available).

= BS2000
The file is created on Net-Storage as a BS2000 file.

= NODE-FILE
The file is created on Net-Storage as a node file.

OPEN
Specifies the OPEN mode for the file. This setting may be overwritten by the OPEN mode
specified in the OPEN macro.
If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

For the possible specifications for the various access methods, see also table “OPEN
modes with the FCB macro” on page 431. The various OPEN modes are also described in
detail in the descriptions of the access methods.

= INPUT
“pathname” is an input file, i.e. it must exist.

= EXTEND
An existing file is extended, i.e. further data blocks are added to the end of the file or
the file is overwritten from a certain position onwards; only sequential write operations
are permitted. Labels are created for tape files dependent on the LABEL specification.

= INOUT
An existing file is opened for non-sequential processing; write and read operations are
permitted. After OPEN is completed with tape processing, the tape is positioned to the
start of tape and no further labels are written.

FILE Macros

488 U4250-J-Z125-12-76

= OUTIN
A file is created or, if it already exists, overwritten from the beginning. Both read and
write operations are permitted (non-sequential). Labels are written for tape files.

= OUTPUT
A file is created or, if it already exists, overwritten from the beginning. Labels are written
for tape files.

= REVERSE
The file “pathname” must already exist and is opened as an input file for sequential
reading from end-of-file → beginning-of-file. Disk files file must not extend over several
volumes. For tape files, no automatic spool swap is possible. A single section of the file
can be processed (the tape concerned is to be selected using VSEQ if necessary). Tape
files are positioned to the end of the file section after OPEN processing.

= SINOUT
Only for BTAM tape files:
The file must exist and the tape must not be positioned to the beginning of tape. Data
blocks can be read or written. In contrast to INOUT, the tape is not positioned.

= UPDATE
Only for SAM disk files:
The records of the file can be updated by retrieving them with GET and writing them
back with PUTX (this is only possible in locate mode).

OVERLAP
For ISAM files:
If this is specified and a second I/O area is defined in the program (IOAREA2 in the FCB),
read operations (GET/GETR) can be executed in overlapped mode.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

For NK-ISAM, “overlapped processing” means that neighboring blocks are also read into
the ISAM pool. OVERLAP=YES should be used only when reading is predominantly
sequential.

= YES
Read operations are executed in overlapped mode.

= NO
Read operations are not executed in overlapped mode.

PAD = <integer 0..99>
For ISAM files created sequentially (using the ISAM macro PUT):
the “padding factor” PAD specifies how much free space is to be left in each data block for
subsequent extension of the file (specified as a percentage of the block size defined by

Macros FILE

U4250-J-Z125-12-76 489

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

means of BLKSIZE). PAD thus has an effect on the block splitting rate when a file is
extended non-sequentially.
If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

The PAD specification has different effects for NK-ISAM and K-ISAM. For NK-ISAM, the
block is filled at least up to the PAD limit; for K-ISAM, it is not filled above the PAD limit.

POOLLNK = <name 1..8>
Only as of VERSION=1 and for ISAM files processed in user ISAM pools (NK-ISAM):
“name” is the “pool link name” (up to 8 characters long) which is entered in the TFT. This
pool link name must be assigned by means of ADDPLNK to an ISAM pool created using
the CREPOOL macro. This name is passed to NK-ISAM at OPEN time; an I/O buffer for the
file is created in the appropriate ISAM pool.
Valid character set for “name”: letters, digits, and special characters (in accordance with the
rules for file names).
If the pool link name is to be accessed via the command interface, it must correspond to the
data type <structured_name 1..8> (see the “Commands” manual [3]).

POOLSIZ = <integer 128..1048576>
Size of the file-specific ISAM pool in units of 2048 bytes.
The specification does not refer to the ISAM pool referenced with POOLLNK.

PREFIX
Only evaluated in conjunction with MF=C or D; this defines the first character of field names
and equates that are generated in the data area during macro expansion.

= I
The prefix with which field names and equates generated by the assembler begin.

= *
No prefix is generated.

= <name 1..1>
Prefix with which the generated field names and equates are to begin.

RECFORM
Specifies the record format of the file designated by “pathname” and also specifies which
control characters are to be interpreted if the file is sent to a printer.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

FILE Macros

490 U4250-J-Z125-12-76

The record format is evaluated for the access methods SAM and ISAM. UPAM processes
files only on a block basis and any RECFORM specification is ignored. BTAM is also a
block-oriented access method, but accepts a RECFORM specification. The record formats
are described in detail in the section on access methods in the “Introductory Guide to
DMS” [1]. For the relationship between the RECFORM and RECSIZE specifications, see
the RECSIZE operand. For information on evaluation of the print control characters, refer
to the PRINT-DOCUMENT command (LINE-SPACING operand) in the manuals
“Commands” [3] and “SPOOL” [4].

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The RECFORM value from the reference file catalog entry is ignored.

= V
“pathname” consists of variable-length records, which means that the user must
remember, when programming, that each record is preceded by a 4-byte field whose
first two bytes contain the record length in binary form. Bytes 3 and 4 of this field are
used by the system. For input files, the record length field is set by the system; for output
files, this must be done by the user. The value specified for RECSIZE is the maximum
permissible record length. For BTAM files, the specification RECFORM=V is treated like
RECFORM=U.

= F
“pathname” consists of fixed-length records, i.e. the user does not need to worry about
any record length and control fields. All records in the file have the same length, which
is defined via the RECSIZE operand (see page 491).

= U
“pathname” consists of records with “undefined” length. Each data block contains only
one record, whose length is passed in a register. The system sets this register for input
and the user must set it for output (see the BLKSIZE operand, page 467).
RECFORM=U converts the specification LABEL=(STD,3) into (STD,2).
RECFORM=U is not permitted for ISAM files.

= (...,N)
“pathname” is not a print file and therefore contains no printer control characters.
It should not be printed with control character evaluation.

= (...,M)
The first data byte in each record is interpreted as a control character in EBCDIC code.
The file can be printed with the command PRINT-DOCUMENT ...,LINE-SPACING=
*BY-EBCDIC-CONTROL. For ISAM files, the ISAM index is taken into account.

= (...,A)
The first data byte in each record is interpreted as an ASA control character.
The file can be printed with the command PRINT-DOCUMENT ...,LINE-SPACING=
*BY-ASA-CONTROL.

Macros FILE

U4250-J-Z125-12-76 491

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

RECSIZE
Specifies the record length, depending on the specification in the RECFORM operand.
If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The RECSIZE value from the reference file catalog entry is ignored.

= <integer 0..32768>
For RECFORM=V: the specification for RECSIZE is ignored, except in the following
case: if an ISAM file is read in move mode, and if the value specified for RECSIZE is
less than the length of the record which is read, only the length specified for RECSIZE
is actually read and error handling (DMS0AAD) is initiated.

For RECFORM=F: the record length in bytes; all records in the file are the same length.

= <reg 2..12>
For RECFORM=U: the RECSIZE operand must specify a general-purpose register
(2 Î reg Î 12) which contains the current record length for input and output. The system
sets this register for input and the user must set it for output.

RETPD = <integer 0..32767>
By means of “RETPD”, the user can define a retention period during which no write access
(update, delete) is possible.

If no value is specified in either the FILE or FCB macro, the default value of the FCB takes
effect on opening the file.

Once the retention period has elapsed, the file is not automatically erased; write access is
simply permitted again.

The retention period can also be controlled via the CATAL macro:
any RETPD specification in CATAL is immediately placed in the catalog entry. For tape files,
the CATAL macro can be used only before the file is opened for the first time.

RETPD is ignored for temporary files.

FILE Macros

492 U4250-J-Z125-12-76

SECLEV
For tape files:
the operand SECLEV (security level) refers to the TPIGNORE entry in the JOIN file.
A SECLEV specification is ignored in interactive mode. In batch mode, users with the
appropriate authorization can use the SECLEV operand to specify whether error messages
are to be suppressed and/or whether additional label checking is to be executed.

= HIGH
In batch mode, error messages are sent to the console. If the job is running under a
user ID with TPIGNORE=YES in its JOIN entry, the operator can ignore the error
messages.

= LOW
Permissible only for the tape/file owner if TPIGNORE=YES is defined in the user
catalog entry: certain error messages are suppressed in batch mode.

= (...,OPR)
The entry OPR (= overwrite protection) causes the system to execute additional label
checking:
– if a file is written on a tape behind an existing file, the labels of the preceding file are

checked;
– the expiration date of the new file must not be greater than that of the preceding file.

SHARUPD
For ISAM or UPAM disk files:
specifies whether several jobs may concurrently open the file with an OPEN mode other
than OPEN INPUT.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

= NO
As soon as the file is opened by a job with OPENîINPUT, it is locked for all other jobs.
Concurrent access to the file by several jobs is possible only if the file is used as an
input file by all of these jobs, i.e. it is opened with OPEN INPUT. If the file has been
opened with OPEN INPUT, any attempt to open it with another OPEN mode is rejected.

= YES
Only for ISAM and PAM files:
the file can be processed concurrently by several jobs, provided SHARUPD=YES is
specified in all of these jobs. With UPAM, the user can protect data blocks from access
by other jobs as long as he/she is processing them. For ISAM, any locks that are
necessary are set automatically by the system: with NK-ISAM, as record key locks; with
K-ISAM, as block locks. With NK-ISAM, files which are opened for shared-update
processing must be processed in host-specific ISAM pools. SHARUPD=YES for ISAM
files simultaneously activates the WROUT function (see operand WROUT, page 508).

Macros FILE

U4250-J-Z125-12-76 493

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

= WEAK
Only as of VERSION=2, for UPAM processing:
guarantees write protection but no read protection. Only one job can open the file for an
update, but other jobs may use it as an input file at the same time. The user must make
allowances in the program for the fact that the contents of the file may change during
the period in which it is used as an input file.

SPACE
Only for disk files:
Controls, via the primary, secondary or absolute allocation, the storage space reserved for
the file “pathname”. The SPACE operand is always evaluated, even if the LINK operand is
not specified in the current FILE macro. Primary, secondary and absolute allocations are
described in detail in the section “Requesting storage space” in the “Introductory Guide to
DMS” [1].

Default value: The following applies if SPACE is not specified:
– If the file has already been allocated storage space, its storage

space and its secondary allocation remain unchanged.
– Otherwise default values apply for primary and secondary

allocation. For files on Net-Storage these defaults are permanently
defined by the storage space management. For other disk files
these defaults are derived from values which can be set by the
system administrator.

A FILE macro with a SPACE operand is rejected for files which are open or reserved exclu-
sively for another task. The protection attributes of a file or file generation group are also
taken into account.
If the user requests more space on the pubset than is assigned to him in the user catalog
entry, the FILE macro is rejected.
If the user is authorized to override the allocated storage space, the system informs the user
with a message.

In order to minimize the management overhead for the system and storage space utili-
zation, the following should be noted when making primary and secondary allocations:

– the primary allocation should match the estimated size of the file to be created;
– the secondary allocation should be sufficient to cover the anticipated expansion of the

file to be created

FILE Macros

494 U4250-J-Z125-12-76

When a file with BLKSIZE=(STD,n) is opened, where n Ï 2, the following must apply for the
number “p” of PAM pages reserved for the file, and for “s”, its secondary allocation:

= <integer -2147483647..2147483647>
The primary allocation, which takes effect immediately.

In the following description, k represents the number of PAM blocks per unit (smallest
management unit for the storage space management of disk files; for more information
on units see the section “Requesting storage space” in the “Introductory Guide to
DMS” [1]).

1..2147483647:
The storage space allocation is rounded up to a multiple of k and the corresponding
number of PAM pages is allocated on the pubset or on the private disk. Users should
note that each FILE macro with a positive primary allocation reserves space for the file.
If the primary allocation is large, this will quickly exhaust the user's storage space
contingent.

For files on public disks and private disks the disks for storage allocation are determined
as follows:
– Storage space on public volumes is allocated if the VOLUME operand is not

specified and the file does not yet occupy storage space.
– The following parameters are considered when selecting the volume set for files on

SM pubsets:
– preliminary file format
– values of AVAIL, WORKFIL, VOLSET, IOPERF, IOUSAGE, DISKWR
– permanent/temporary attributes
– storage class assigned to the file.

– If the VOLUME operand is specified and the file already occupies storage space,
the disks already occupied by the file are used for storage space allocation as far
as possible.

– If the VOLUME operand is specified, storage allocation starts with the first disk
received via the VOLUME operand. If this is not sufficient, allocation is continued
with the second disk received via the VOLUME operand, etc.

Storage allocation to a pubset is rejected if the total number of free pages is less than
was specified in the primary allocation.

SPACE operand

File type p s

SAM ≥ 2n ≥ n

ISAM: K-ISAM
NK-ISAM

> n
> n

PAM (chained I/O) > 0

Macros FILE

U4250-J-Z125-12-76 495

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

For files on public disks and private disks a partial allocation is made if the VOLUME
operand is specified and the disks received via VOLUME contain a total number of free
PAM pages which is lower than was specified in the primary allocation (but at least one
free unit). However, the FILE call is rejected if public disks are specified and there are
fewer PAM pages free on the whole pubset than were specified in the primary allocation
(see above).

The user ID entry in the user catalog contains its contingent of public storage space.
The following applies if this is exceeded in the request for storage space by the file user
ID: if, according to the user catalog entry, the user ID has the right to exceed the
contingent, the calling task is informed with a warning that the contingent has been
exceeded, otherwise the FILE call is rejected.

If possible, a partial allocation is made with private disks if the request exceeds the free
storage space contingent.

Only the maximum possible partial allocation is made if a request would lead to the
maximum file size that can be represented in the catalog entry (16777215 PAM pages)
being exceeded.

-2147483647..-1:
Amount of storage space released after rounding the primary allocation up to a multiple
of k. The space is released from the end of the file, working backwards, as specified in
the volume list (any specification in the VOLUME operand is ignored). Only “unused”
units are released. For ISAM files, the data and index sections cannot be released
separately (see the DSPACE operand, page 477).

If the file does not occupy storage space after this has been released, the following are
deleted from the catalog entry: AVAIL, WORKFIL (not, however, for generations),
STOCLAS indicator “File contains defective block”, indicator “S0 migration forbidden”
and the interim file format.

If a BS2000 file on a Net-Storage volume has no more space after storage space has
been released, it no longer exists on the Net-Storage volume. All references to the Net-
Storage volume are removed from its catalog entry.

At least three PAM pages, and in the case of node files at least four PAM pages, remain
allocated to the file in the case of files on private disks. For existing files with
BLKSIZE=(STD,k), at least as many PAM pages remain allocated as are required for
opening the file. The number of remaining PAM pages is defined in this case by storage
management.

If DESTROY=YES is defined in the catalog entry, all released PAM pages are
overwritten with X'00' (ignoring unit boundaries). Any required private disks are
requested in this case. If DESTROY=NO is defined in the catalog entry, the released
PAM pages are only overwritten if the destroy level (system parameter DESTLEV) is set
high enough.

FILE Macros

496 U4250-J-Z125-12-76

0:
No change to the storage space reservation; permissible for files on private disks only
if the file already occupies storage space. Simultaneous specification of VOLUME is
ignored if the file already occupies storage space, otherwise it is rejected.

= (<integer -2147483647..2147483647>,<integer 1..32767>)
Defines the primary and secondary allocations. In contrast to the primary allocation, the
secondary allocation does not take effect immediately when the FILE macro is issued,
but only if the reserved space runs out during creation or extension of the file. The
secondary allocation value is placed in the catalog entry (field S-ALLOC in the output
for the SHOW-FILE-ATTRIBUTES command).

<integer -2147483647..2147483647>:
see “primary” above.

<integer 1..32767>:
Secondary allocation, i.e. the number of PAM pages by which the storage is to be
extended if required. The secondary allocation is transferred unchanged into the
catalog entry. It is only rounded up to a multiple of k when it comes into effect.

SPACE=(0,secondary) defines or changes the secondary allocation and places the
(new) value in the catalog entry. This may be specified for a file or file generation on
private disk only if space has already been requested for this file or file generation.

(...,0):
Prevents dynamic expansion of the file.

= (<integer -2147483647..2147483647>[,<integer 1..32767>],*KEEP)
Only as of VERSION=2 with release of storage space for a file on public volumes or Net-Storage
volumes:
“*KEEP” means that at least one allocation unit remains assigned to the file.

= (<integer -2147483647..2147483647>,<integer -2147483647..2147483647>,ABS)
Absolute allocation (only together with VOLUME). If there is not enough free space on
the disk, the FILE macro is rejected; no partial allocation is made. Since the absolute
allocation always refers to one volume, a separate FILE macro must be issued for each
volume.

Macros FILE

U4250-J-Z125-12-76 497

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

If the absolute allocation is the first space request for the file, the secondary allocation
is set to 0. The following is specified:

1. Block number of the PAM page at which the space reservation is to start on the
private disk. Since space is always allocated in units, “page” must be k*n + 1 (where
n Ï 0). The first PAM page on a disk at which storage space can be reserved
depends on how the disk was formatted.

2. Specifies how many PAM pages are to be reserved on the volume. It must be a
multiple of k. As the capacity of a given disk depends on the disk type and how it
was formatted, the user should ask the system administrator what the maximum
permissible value is. The upper limit for this maximum value is 2147483647 (as for
the primary allocation).

3. ABS: The keyword “ABS” identifies an absolute allocation

Absolute allocation is not possible for a file on a Net-Storage volume.

STATE = FOREIGN
For files on private volumes or on Net-Storage- volumes for which no entry exists in the
system catalog, a catalog entry is created (file import). For file generations, the group entry
must also be reconstructed (by means of a CATAL macro) before the generations can be
imported. Files which are imported with STATE=FOREIGN should be exported from the
catalog of their “old” owner (by means of ERASE CATALOG).

The VSNs of the volumes required for file processing must be listed in the VOLUME
operand in the correct order. The VOLUME specification can be omitted if MAREN is
available and the file volumes are in the MAREN catalog. MAREN then supplies the VSNs.

The following must not be specified together with STATE=FOREIGN:
DEVICE=WORK, TVSN, TSET, VSEQ.

Files on private disk:
The catalog entry is created from the F1 label of the first private disk specified in the
VOLUME operand or received via MAREN. The file can only be imported to the user ID
contained in the F1 label. The file may also be imported to pubsets other than those on
which it was first cataloged. A file cataloged in the F1 label as shareable can be imported
to the user ID contained in the F1 label by any task (i.e. regardless of the task user ID).

Files on Net-Storage:
The catalog entry is created from the catalog on the Net-Storage volume which is specified
in the VOLUME operand. The file can be imported only to the pubset which is allocated to
the Net-Storage volume which is specified in the VOLUME operand.

FILE Macros

498 U4250-J-Z125-12-76

Tape files:
File attributes of a foreign file cannot be changed by means of a CATAL macro.

If the foreign tape file has standard labels, the file attributes RECFORM, RECSIZE,
BLKSIZE and CODE are transferred from the HDR2 label to the catalog entry when the file
is opened. The file may be cataloged under more than one user ID; the system then
ensures that the catalog entries and the label information are kept consistent.

If the foreign file has nonstandard labels or no labels, the user must specify the operands
RECFORM, RECSIZE and BLKSIZE in the FILE macro. If the file is cataloged under more
than one user ID, each user is responsible for ensuring that the catalog entry and the label
information are kept consistent.

If a foreign tape file with standard labels is to be imported, the following must apply: if the
user is not the file owner, the volume and the file must be shareable (indicators in the VOL1
and HDR1 labels).

STOCLAS
Only for VERSION=3:
When a file is created on an SM pubset, it can be assigned a storage class. This then
contains an attribute that satisfies the file storage location requirement. If the storage class
is assigned to a volume set list, the file is preferably stored on a volume set from this list.

A storage class-relevant entry exists in the following cases:
– If one of the operands AVAIL, DISKWR, VOLUME, VOLSET or WORKFIL is specified.
– If a value other than NETSTOR and other than STDDISK is specified for the DEVICE

operand.
– If a value not equal to the null operand is specified for either the IOPERF or IOUSAGE

operand.

A default storage class can be stored in the entry for each user ID in an SM pubset's user
catalog. This can be displayed using SHOW-USER-ATTRIBUTES INF= PUBSET-ATTR.

When a file or file generation is created on an SM pubset under a user ID which possesses
a default storage class on the SM pubset then the following applies: if there is no right to
perform physical allocation and the file has not been created on a volume set for work files
then specifications relating to storage classes and STOCLAS=*NONE become ineffective,
i.e. they are ignored, provided that they are not rejected. (IOPERF and IOUSAGE are
nevertheless entered in the TFT entry.)

If a file (not a file generation) is created on an SM pubset under a user ID which possesses
a default storage class on the SM pubset then the user-specific default storage class is
assigned to the file if no STOCLAS is specified and no storage class-relevant entry exists.

A default storage class can also be stored in an FGG index. This is assigned to an
SM pubset when a file generation is created if no STOCLAS is specified and no storage
class-relevant entry exists.

Macros FILE

U4250-J-Z125-12-76 499

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

If a default storage class is stored in the file user ID entry or the FGG index and this storage
class does not exist on the SM pubset concerned or the user is not authorized to access it,
the value NONE or another storage class must be specified in the STOCLAS operand in
order to create the file or file generation.

If the file is created on an SF pubset or a private volume, it is not assigned a storage class
even if a storage class name is specified or a default storage class exists.

A storage class can also be assigned if a file is created on a Net-Storage volume; in this
case no work file can be created, nor a file with a PAM key.

= *NONE
The file is not assigned a storage class, an existing default storage class is also not
assigned.

= <c-string 1..8>
Name of the storage class assigned to the file. The entry is rejected in the following
cases:
– the file already occupies storage space
– SPACE has been specified with a non-positive primary allocation
– an storage class-relevant entry exists
– the storage class does not exist on the SM pubset concerned
– the caller is not authorized to access the storage class.

STREAM
For BTAM tape files:
Enables streaming mode to be used for I/O. This means that the chained I/O jobs (CHAINIO
operand) offered in MAV mode (BTAMRQS operand in the FCB call and REQNO in the
BTAM call) are themselves chained. It also means that hardware “streaming” mode is to be
set if a tape streamer is used.

= NO
Streaming mode is not set unless STREAM=YES is specified in the FCB of the
program.

= YES
Streaming mode is set.

FILE Macros

500 U4250-J-Z125-12-76

TAPEWR
Only as of VERSION=1, for files on tape cartridges:
The user can specify whether or not output is to be buffered.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

= DEVICE-BUFFER
Output is buffered in the tape controller, thus causing a high data transfer rate.

= IMMEDIATE
Output is not buffered.

TPMARK
For tape files without standard labels (LABEL=NO/NSTD):
Specifies whether tape marks are to be written when a tape file is created. Tape files with
LABEL=(STD,n) automatically receive tape marks after the labels.

= NO
No tape mark is written for tape files without standard labels, unless TPMARK=YES is
defined in the FCB of the program.

= YES
Tape files with nonstandard labels: the tape mark follows the label.

Tape files without labels: the tape mark is written at the beginning of the tape.

TRANS
For tape files used as input files and not created with CODE=EBCDIC:
specifies how the code of the file is to be converted during reading.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

= YES
ISO 7-bit code or OWN code is converted into EBCDIC code.

= NO
ISO 7-bit code is converted into 8-bit format by inserting a leading zero.

Macros FILE

U4250-J-Z125-12-76 501

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

TSET
For output tape files with standard labels:
Together with the LINK operand, this creates a tape set for the file via a TST entry (in the
tape set table) or sets up a link to an existing TST entry. The corresponding TFT entry then
points to the linked TST entry.

A TST entry consists basically of a TSET name and a volume list; the volume list can be
defined or extended via the VOLUME operand. Subsequent FILE calls may refer to this
volume list by specifying the TSET name, and may extend the list if necessary.

The following applies if TSET is specified together with LINK:
– If the current TSET name does not yet exist in a TST entry, a new entry is created with

TSET-SHR=1 (TSET-SHR shows the number of TFT entries linked to this TST entry;
see the output of the SHOW-FILE-LINK command).

– If there is already a TST entry with the same name, and if a file link name which does
not exist in the TFT is specified, TSET-SHR is incremented by 1.

– When a TFT entry which is linked to a TST entry is released, the TSET-SHR of this entry
is decremented by 1. If this results in TSET-SHR=0, the TST entry is also released.

The following conditions must be fulfilled if TSET is specified:
– The volume table in the catalog entry must be empty if a cataloged file is specified.
– The DEVICE operand must be specified if a new file is specified.
– If the DEVICE operand is specified, its value must be a tape type.

The following operands must not be specified together with TSET:
STATE=FOREIGN, DEVICE=WORK, VSEQ, TVSN, FSEQ=UNK, FSEQ=n where n>1,
FSEQ=null operand, VOLUME=REMOVE-UNUSED

= <name 1..4>
Tape set name in the TST entry which is used as a reference. If the TST entry does not
exist or has no file set identifier and the VOLUME operand is specified, the first VSN
received via the VOLUME operand is entered as the file set identifier.

= (<name 1..4>,<name 1..6>)
The four-character name designates a TST entry, the six-character name (VSN) is the
file set identifier.

If the TST entry already exists, the file set identifier in the TSET specification must
match the file set identifier in the TST entry. When a file is opened, the file set identifiers
in the TST entry and in the HDR1 label must be the same.

FILE Macros

502 U4250-J-Z125-12-76

TVSN
Only for tape files used as input files:
Specifies a temporary list of volume serial numbers for processing, which constitutes the
volume list. If the TVSN operand is specified, the volume list in the catalog entry is ignored
during file processing; only the volumes specified via TVSN are used. However, the catalog
entry is not changed.

The following operands must not be specified together with TVSN:
*DUMMY, STATE=FOREIGN, TSET, VOLUME

= <@addr>
Only as of VERSION=2:
addr is a symbolic address in the program at which a TVSN list was stored with the
macro FILELST TVSN=....
The “@” character is part of the operand value and must be specified.

= list-poss (255): <name 1..6>
Defines the volume VSN required for input.

VALLEN = <integer 0..255>
For K-ISAM files:
specifies the length of the value flag in the ISAM index.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

For K-ISAM files, the value flags are evaluated block-by-block and transferred to the next
higher index entry as specified in the VALPROP operand. For NK-ISAM files, the VALLEN
specification is ignored.

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The VALLEN value from the reference file catalog entry is ignored.

VALPROP
For K-ISAM files:
VALPROP (VALue PROPagation) specifies how the value flag is to be included in the index
entries.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

= *BY-PROG
Only as of Version=3 and only relevant if the DATATTR operand is specified:
The VALPROP value from the reference file catalog entry is ignored.

Macros FILE

U4250-J-Z125-12-76 503

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

= MIN
The lowest value of the value flag within a data or index block is included in the index
entry at the next higher level.

= MAX
The highest value of the value flag in a data or index block is included in the index entry
at the next higher level.

VERSION
Specifies which version of the operand list and which SVC are to be generated.

Default value: VERSION=0

Note

The VERSION operand must have the same value in all FILE macros distinguished by
the MF operand (MF=L/E/D/C).

= 0
The “old” format (SVC 159) of the operand list (as for BS2000 V9.0) is generated. If
support is required for device types and functions which have been introduced since
this version, a new format of the operand list (as of VERSION=1) must be used.

= 1
Valid from BS2000 V9.5 onwards:
An operand list with a standard header (SVC 144) is generated. Over and above the
operands of BS2000 Version 9.0, this format also supports the operands BLKCTRL,
CLOSMSG, DESTOC, POOLLNK and TAPEWR introduced in BS2000 Version 9.5 and
the device types valid from V9.5 onwards.

= 2
Valid from BS2000 V10.0 onwards:
An operand list with a standard header (SVC 144) is generated. In contrast to the
operand list for VERSION=1, the variable parts (for the operands VOLUME,
DVOLUME, TVSN, MOUNT and VSEQ) of this operand list are stored in separate
areas. These areas can be created by means of the FILELST macro.

The following operands and operand values are only supported as of VERSION=2:
IOPERF, IOUSAGE, CLOSE, BLKCTRL=DATA2K/DATA4K, SHARUPD=WEAK and
SPACE=(...,*KEEP)

FILE Macros

504 U4250-J-Z125-12-76

= 3
Valid as of BS2000/OSD-BC V3.0: an operand list with a standard header (SVC 144) is
created.

The following operands and operand values are only supported as of VERSION=3:
AVAIL, CLOSE=KEEP-DATA-IN-CACHE, CODE=ISO7D, DATATTR, DISKWR,
EXC32GB, LOCKENV, NFTYPE, POOLSIZ, STOCLAS, VOLSET,
VOLUME=REMOVE-UNUSED, WORKFIL and the value =*BY-PROG with some
operands.

This format of the operand list offers the best programming support; another factor that
speaks in its favor is its suitability for use with future developments in the FILE macro.

VOLSET
Only as of VERSION=3 for files on SM pubsets:
Defines the volume set on which the file is to be created. The specification is rejected if the
file already occupies storage space, if it is to be created on a Net-Storage volume, or if
SPACE is specified with a non-positive primary allocation.

Specifying a volume set with permanent data storage requires permission for physical
allocation.

= <c-string: catid 1..4>
Catalog ID of the volume set on which the file is to be created.

= *CONTROL
The file is created on the control volume set of the SM pubset.

VOLUME
Specifies which volumes are required for file processing.
If, when a file is being created, neither DEVICE nor VOLUME is specified, the file is created
on public volumes.

Net-Storage volumes are regarded as disks and can be specified without the authorization
for physical allocation.

If the first VSN obtained using the VOLUME operand identifies a Net-Storage volume which
is assigned to the pubset on which the file resides or is to be created, the VSN remains
assigned to the Net-Storage volume even if it also identifies a private disk.

For files on public disks, Net-Storage volumes or private disks:
The volume list contains all disks on which extents of the file are located (possibly after
storage space allocation is completed).
DMS attempts to reserve all the space specified via SPACE on the first disk. “Unused”
volume serial numbers are moved to the volume list of the catalog entry for subsequent file

Macros FILE

U4250-J-Z125-12-76 505

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

extensions.
If no storage space allocation is necessary, the specified volume serial numbers will be
ignored.

For files on a Net-Storage volume:
The volume list consists of the VSN of the Net-Storage volumes on which the file is located
or will be created. The volume table in the catalog entry and (if the LINK operand is
specified) the volume table in the in the generated TFT entry also consist of this one VSN.
The pubset on which the file is or will be cataloged must be assigned to the Net-Storage
volume on which the file is located or will be created.

For tape files:
The volume list consists of the volume serial numbers in the catalog entry (if these exist),
followed logically by the volume serial numbers from the VOLUME operand. By default, the
first volume from the volume list is requested (unless MOUNT=0 is specified). If the uses
requests more than one volume, the number of volumes to be mounted concurrently must
be specified in the MOUNT operand.

If “pathname” is not yet cataloged, the volume serial numbers from the VOLUME operand
are transferred to the catalog entry. Furthermore, the TSET operand can be used to
establish a link to a TST entry.

The effects of the VOLUME operand depend on whether the TSET operand is specified.
If it is not specified, the volume list is copied unchanged into the catalog entry. If TSET is
specified, first the volume list of the TST entry is updated or created and then the volume
list of the catalog entry is created according to the TST entry. After a file has been opened,
the catalog entry is then updated with the information from the volume list of the TST entry.

If “pathname” is already cataloged, the volume serial numbers from the VOLUME operand
form an extension to the volume table of the catalog entry. This means that the VOLUME
operand may contain no volume serial numbers which already exist in the catalog entry.

= @addr
Only as of VERSION=2:
addr is a symbolic address in the program at which a VOLUME list has been created
by means of the macro FILELST VOLUME=...
The character “@” is part of the operand value and must be specified.

= REMOVE-UNUSED
Only for already cataloged tape files:
All tapes which do not contain data from the file are removed from the catalog entry
volume table.
LINK and TSET must not be specified together with REMOVE-UNUSED.

= PRIVATE
A private volume is required for file processing. The operator is requested via a
message on the console to enter the volume serial number of the required volume.
VOLUME=PRIVATE is ignored in a FILE call for the dummy file *DUMMY.

FILE Macros

506 U4250-J-Z125-12-76

= (PRIVATE,<integer 1..9>)
A number of private volumes are required for file processing. The operator is requested
via a message on the console to enter the volume serial numbers of the required
volumes.
VOLUME=(PRIVATE,<integer 1..9>) is ignored in a FILE call for the dummy file
*DUMMY.

= list-pos(255): <name 1..6>
Volume serial numbers of the requested volume.

VSEQ
For cataloged tape files with standard labels:
the VSEQ operand permits section-by-section processing of files. A file section is that part
of a multivolume file which is stored on one tape (see the programming notes on page 509
for the effect on the structure of the TFT volume list).

The VSEQ operand refers to the volume list (see the VOLUME operand). The file section
numbers correspond to relative volume serial numbers, i.e. they specify the position of the
volume serial number in the volume list.

Single value: If only one file section number is specified in the VSEQ operand, all volumes
from the specified entry onwards are transferred to the volume table of the
TFT entry.

List: If a list of file section numbers is specified in the VSEQ operand, the
specified entries are transferred to the volume table of the TFT entry.

VSEQ must not be specified together with TSET or STATE=FOREIGN. If the file has not
been cataloged or only cataloged with CATAL, all VSEQ specifications apart from VSEQ=1
are rejected.

= @addr
Only as of VERSION=2:
addr is a symbolic address in the program at which a VSEQ list has been created by
means of the macro FILELST VSEQ=...
The character “@” is part of the operand value and must be specified.

Macros FILE

U4250-J-Z125-12-76 507

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

= <integer 1..255>
Number of the section at which processing is to start.

If “pathname” is an output file (OPEN=OUTPUT/OUTIN), VSEQ=1 must be specified.

If “pathname” is an input file, VSEQ=number designates the file section at which
processing is to start.

If “pathname” is opened with OPEN EXTEND, VSEQ specifies the file section at which
extension is to begin.

In conjunction with OPEN REVERSE, it is possible to process individual tapes of a file,
but tape swapping is inhibited.

= (L=list-poss (255): <integer 1..255>)
Specifies the order in which the file sections are to be processed. this may be used only
for input files, not for output files. For files opened with OPEN REVERSE, only one file
section number may be specified and automatic tape swapping is not supported.

WORKFIL
Only as of VERSION=3, for files on SM pubsets:
Defines whether the file is created on a work file volume set or a volume set with permanent
data retention. Work file volume sets are deleted at a time defined by system administration.
Work files cannot be created on a Net-Storage volume. If the file is created on an SM pubset
by means of non-physical allocation and WORKFIL is not specified, it is created on a
volume set with permanent data retention. The specification of WORKFIL is rejected in the
following cases:
– for generations
– if the file already occupies storage space
– if SPACE is specified with a non-positive primary allocation
– if the file ends up on a private disk.

= NO
The file is created on a volume set with permanent data retention.

= YES
The file is created on a work file volume set. This specification is not permitted for
temporary files.

FILE Macros

508 U4250-J-Z125-12-76

WRCHK
For the processing of disk files:
specifies whether a read-after-write check is to be executed. “WRCHK” is not placed in the
catalog entry and must therefore be repeated each time before the file is opened or
processed.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

The read-after-write check serves to detect recording errors (→ error recovery measures).
If the error cannot be recovered, control is passed to the EXLST exit ERRADR. Due to the
additional disk revolutions required, the read-after-write function has a decidedly negative
effect on system performance.

= NO
No read-after-write check is executed.

= YES
A read-after-write check is executed.

WROUT
For ISAM processing:
WROUT controls how often updated blocks are written back to disk. For shared-update
processing or in cross-task ISAM pools and in task-local ISAM pools, WROUT=YES is set
implicitly: updated blocks are written back to disk immediately.

If no value is specified in the FILE or FCB macro, the default value of the FCB takes effect
on opening the file.

= NO
An updated block is written back to disk only when the contents of the relevant buffer
area need to be overwritten or, at the latest, when the file is closed.

= YES
Each updated block is written back to disk immediately, thus always ensuring the
consistency of the data on the disk and in virtual memory. However, this also increases
the I/O rate.

Macros FILE

U4250-J-Z125-12-76 509

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Programming notes

Structure of the input area if VERSION=0 or VERSION=1 is specified

The operand list of the FILE macro consists of several fixed and variable areas:

For the two fixed areas of the operand list, two DSECTs are generated by means of MF=D
in the FILE macro. The IDPFL macro generates a DSECT for fixed area 1 and IDPFX
generates a DSECT for the FILE extension. However, the macros IDPFL and IDPFX
support only the old (pre-V9.5) macro format.

Fixed area 1
(a DSECT can be created by means of the IDPFL macro, see below)

Variable area for VOLUME or TVSN specifications
(if the VOLUME or TVSN operand is specified in list form)

:
:

Variable area for MOUNT specifications
(if the MOUNT operand is specified in list form)

:
:

Fixed area 2 (FILE extension)
(a DSECT can be created by means of the IDPFX macro, see below)

Variable area for DVOLUME specifications
(if the DVOLUME operand is specified in list form)

:
:

Variable area for VSEQ specifications
(if the VSEQ operand is specified in list form)

:
:

FILE Macros

510 U4250-J-Z125-12-76

Structure of the operand list as of VERSION=2

This format supports all operands and operand values which were introduced after
BS2000 V10.0.

If VERSION=2 and higher applies instead of VERSION=0/1, the user can move the variable
parts for the VOLUME, TVSN, MOUNT, DVOLUME and VSEQ specifications to separate
areas outside the operand list by means of creating a pointer in each operand (specification
“@addr”) to a symbolic address “addr” within the program at which he/she has created a
list with the corresponding operand values by means of the FILELST macro.

In this case, the operand list created by the FILE macro is an area of fixed length containing
solely address pointers to the externally stored variable lists. This list has the following
structure:

@adrvolume
(address pointer to

Fixed area
(created by the FILE macro)

 VOLUME list)

VOLUME list
Macro:
FILELST VOLUME=...

@addrdvolume
(address pointer to
 DVOLUME list)

addrvolume

DVOLUME list
Macro:
FILELST DVOLUME=...

addrdvolume

@addrtvsn
(address pointer to
 TVSN list)

@addrmount
(address pointer to
 MOUNT list)

@addrvseq
(address pointer to
 VSEQ list)

TVSN list
Macro:
FILELST TVSN=...

addrtvsn

MOUNT list
Macro:
FILELST MOUNT=...

addrmount

VSEQ list
Macro:
FILELST VSEQ=...

addrvseq

Externally stored, variable area
(created by the FILELST macro)

Macros FILE

U4250-J-Z125-12-76 511

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

DSECTs for the fixed area and the externally stored variable areas can be generated using
the D form of the FILE and FILEST macros.

Example

The program TAPEFIL reads the tape file TAPE.FILE via the file link name INTAPE.
The list of required volumes is specified by way of the TVSN operand in the FILE macro:

TAPEFIL START
 .
 .
 FILE TAPE.FILE,LINK=INTAPE,TVSN=@TVSNLIST,VERSION=3,MF=L ———— (1)
 .
 .
TVSNLIST FILELST TVSN=(VOL003,VOL009,VOL017) —————————————————————————— (2)
 .
 .
 END

(1) The specification @TVSNLIST in the TVSN operand generates in the operand list
of the FILE macro an address pointer to the symbolic address TVSNLIST. At this
address the FILE macro expects the (variable) area with the list of TVSN values.

(2) The FILELST macro generates at the address TVSNLIST a list containing the
values for the TVSN operand in the FILE macro.

FILE Macros

512 U4250-J-Z125-12-76

Notes on the processing of tape files

Operand STATE=FOREIGN

A FOREIGN indicator is set in the catalog entry, thus making it impossible to change the file
attributes by means of a CATAL macro. This FOREIGN indicator is reset when the file is
opened.
If sequential file generations of a group belong to the same MF/MV set, DISP=REUSE
should never be used in the CATAL macro, since this can lead to the destruction of file
generations.
The method for importing foreign files is not the same as that used for private disk files. The
reason for this is that the catalog entry for a foreign disk file is unique. For foreign tape files,
this uniqueness could be achieved if the user IDs of the file owners already exist in the
system into which the file is to be imported. However, if these user IDs do not exist, it is not
possible to change the owner identifier on the tape (a hardware restriction would cause the
file to be destroyed). Even if the system administrator imports a file for an existing user ID,
it cannot be guaranteed that the catalog entry will be unique, since he can also catalog the
file under another user ID.
Nevertheless, by virtue of the restrictions in the CATAL macro, tape files with standard
labels enjoy the same protection as disk files against conflicts between the file attributes
specified in the labels and those in the catalog entry. The only risk factor is that the file
owner may change the file attributes by specifying SECLEV=LOW in the FCB. For this
reason, there should never be more than one catalog entry in the same system for one file,
even if the owner of the file is also working in this system.

Macros FILE

U4250-J-Z125-12-76 513

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Return codes

As of version 3, the error code is returned in the parameter list standard header and no
longer in general purpose register 15 as in version 2. The standard header must not reside
in the read-only area, otherwise the program will be terminated.

Standard
header:

The following code relating to execution of the FILE macro
is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' No error

X'40' X'0501' Requested catalog not available

X'82' X'0502' Requested catalog in the rest state

X'40' X'0503' Incorrect information in the MRSCAT

X'82' X'0504' Catalog access error

X'40' X'0505' Computer communication error (MRS)

X'80' X'0506' Operation cancelled because of master change

X'40' X'0510' Error while calling an internal function

X'40' X'0511' No allocation because of MVDF inconsistency

X'40' X'0512' Catalog ID not entered in the MRSCAT

X'40' X'0515' Call rejected by the system exit routine

X'40' X'051B' User ID not known in specified pubset

X'40' X'051C' No access right to specified pubset

X'40' X'051D' LOGON password different on specified pubset

X'02' X'00' X'051E' Only partial allocation because of MVDF inconsistency

X'20' X'0531' Unexpected catalog access error

X'82' X'0532' File locked because it is in use

X'40' X'0533' File not found

X'82' X'0534' Private volume cannot be allocated

X'40' X'0535' No access right to the file catalog entry

X'20' X'0536' Error in file management system

X'40' X'053A' Error while updating the F1 label on a private disk

X'20' X'053B' System error during catalog access

X'82' X'053C' Catalog file of the pubset is full

X'40' X'053D' Catalog or F1 label block is destroyed

X'40' X'053E' File on private volume already cataloged

FILE Macros

514 U4250-J-Z125-12-76

X'82' X'053F' File reserved by another task

X'40' X'0540' Pubset contains no appropriate volume set

X'82' X'0541' No disk storage space assigned

X'82' X'0542' Device not available / disk exclusive

X'20' X'0543' Faulty allocator parameter area

X'20' X'0544' Incorrectly formatted catalog entry

X'40' X'0545' Public volume not connected

X'02' X'00' X'0546' File catalog entry full

X'40' X'0547' Volume cannot be mounted

X'82' X'0548' Not enough storage space

X'20' X'0549' System error with REQM or AQIR call

X'02' X'00' X'054A' Storage space only partially allocated

X'40' X'054B' No volume set available for specified catalog ID

X'82' X'054D' Storage space contingent exhausted

X'82' X'0550' File opened and therefore locked

X'01' X'0551' VSN for tape file specified more than once

X'01' X'0553' Illegal absolute storage space request

X'01' X'0554' Illegal file name format

X'40' X'0555' STATE=FOREIGN: file already cataloged

X'01' X'0556' STATE=FOREIGN: device type invalid or missing

X'40' X'0557' Incorrect VSN specification

X'01' X'0558' Public VSN illegal

X'01' X'0559' Illegal specification with MOUNT

X'82' X'055A' Tape device currently reserved

X'40' X'055C' F1 label missing

X'40' X'055D' User has no physical allocation right

X'40' X'055E' Foreign user ID for non-cataloged file

X'40' X'055F' Volume could not be reserved

X'01' X'0576' Incorrect operand combination or undeleted UNUSED fields

X'20' X'0578' Internal error while checking access rights

X'01' X'0579' Invalid operand for temporary or work file

X'40' X'057A' Storage class incompatible with file attributes

X'40' X'057B' Illegal operand for migrated file

X'cc' X'bb' X'aaaa' Meaning

Macros FILE

U4250-J-Z125-12-76 515

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

X'40' X'057C' HSMS has rejected recall

X'40' X'057E' HSMS not available

X'01' X'0590' Device type specification missing for private volume

X'01' X'0592' Private disk file has rejected catalog entry without extents or device
type definition for public disk rejected

X'01' X'0593' Absolute allocation: illegal number of half-pages

X'82' X'0594' Insufficient virtual memory available

X'01' X'0595' Illegal mix of public and private VSNs

X'01' X'0596' Device type specification not according to catalog entry

X'01' X'0597' Absolute allocation: first half-page not on unit border

X'01' X'0599' Operand not supported in the remote version

X'01' X'05A3' Incorrect SPACE entry

X'01' X'05A4' Incorrect use of DSPACE/DVOLUME/DDEVICE

X'01' X'05A8' Device type not in system

X'82' X'05B0' No suitable tape device available

X'82' X'05B1' A file lock is in effect for the file

X'40' X'05B4' Volume request was rejected

X'40' X'05BD' Illegal combination of file and volume set attributes

X'01' X'05C2' Chain name = X'0000000000000000'

X'82' X'05C3' File generation to be deleted is locked

X'40' X'05C4' An error occurred during operator logon

X'20' X'05C7' Internal error in DMS

X'82' X'05C8' CE limit for user ID exceeded

X'20' X'05CA' Internal error while modifying CE limits

X'40' X'05D8' File protected with password

X'40' X'05DA' Storage space release on foreign user ID

X'01' X'05DF' Illegal specification for BLIM / CHKPT

X'20' X'05E0' File locked because of storage management system error

X'01' X'05E8' File name invalid for disk file

X'01' X'05EE' File name too long after completion

X'01' X'05EF' File protection using ACL/GUARD only possible for public files

X'01' X'05FA' Pubset not locally accessible

X'40' X'05FC' User ID not registered

X'cc' X'bb' X'aaaa' Meaning

FILE Macros

516 U4250-J-Z125-12-76

X'40' X'05FD' File protected via release date or access type

X'40' X'0606' Volume request rejected by MAREN

X'40' X'0609' Storage space release not permitted for system file

X'40' X'060D' Incorrect name specified for reference file

X'40' X'060E' Reference file not found or not accessible

X'40' X'0613' Incorrect specification of a storage class

X'40' X'0640' Access to Net-Storage is rejected by the ONETSTOR subsystem
because of communication problems with the net client

X'40' X'0641' File already exists on Net-Storage

X'40' X'0642' Large files are not permitted on the specified pubset

X'40' X'0643' Net client reports access error

X'40' X'0644' Net client reports internal error

X'40' X'0645' File does not exist on Net-Storage

X'40' X'0647' Specified file does not match the file’s catalog entry

X'40' X'0648' Specification of the file type, device and volume are not compatible

X'40' X'0649' Net server reports POSIX ACL error

X'40' X'064A' Net client reports that access to files on the Net-Storage volume is
forbidden

X'40' X'064B' Access to node files from the net client not supported

X'40' X'0652' Absolute storage space request not permitted on Net-Storage

X'40' X'0666' File is protected against requested access

X'40' X'0683' File already exists

X'40' X'0689' Operand only permitted for file without storage

X'40' X'06B5' File is not correctly closed

X'01' X'06C7' Invalid generation number

X'01' X'06C8' Attribute illegal for file generations

X'40' X'06CD' FGG protected against extension

X'01' X'06CF' Illegal specification of an FGG

X'40' X'06D0' STATE=FOREIGN for non-existent file generation

X'40' X'06D1' FGG index locked by another task

X'01' X'06DA' Illegal public/private mix for FGG

X'01' X'06DF' Illegal specification for FSEQ/VSEQ/TSET

X'01' X'06FD' Illegal parameter range address

X'40' X'06FF' BCAM connection severed

X'cc' X'bb' X'aaaa' Meaning

Macros FILE

U4250-J-Z125-12-76 517

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

X'01' X'FFFF' Incorrect function number in standard header

X'03' X'FFFF' Incorrect version number in standard header

X'cc' X'bb' X'aaaa' Meaning

FILE Macros

518 U4250-J-Z125-12-76

Variations in VERSION=0/1/2/3

Operand Vers=0 Vers=1 Vers=2 Vers=3 Remarks for operand values

MF=E x x x x

VERSION x x x x

MF=C - x x x

PREFIX - x x x

VERSION - x x x

MF=D - x x x

PREFIX - x x x

VERSION - x x x

MF=L x x x x

*DUMMY x x x x

pathname x x x x

AVAIL - - - x

BLIM x x x x

BLKCTRL - x x x DATA2K and DATA4K not possible for
Vers=1
*BY-PROG only as of Vers=3

BLKSIZE x x x x *BY-PROG only as of Vers=3

BUFOFF x x x x *BY-PROG only as of Vers=3

BYPASS x x x x

CHAINIO x x x x

CHKPT x x x x

CLOSE - - x x KEEP-DATA-IN-CACHE only as of Vers=3

CLOSMSG - x x x

CODE x x x x *BY-PROG only as of Vers=3
ISO7D only as of Vers=3

DATATTR - - - x

DDEVICE x x x x

DESTOC - x x x

DEVICE x x x x

DISKWR - - - x

DSPACE x x x x

DUPEKY x x x x

DVOLUME x x x x @adr only as of Vers=2

Macros FILE

U4250-J-Z125-12-76 519

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

MF=L (cont.)

EXC32GB - - - x

FCBTYPE x x x x *BY-PROG only as of Vers=3

FSEQ x x x x

IOPERF - - x x

IOUSAGE - - x x

KEYLEN x x x x *BY-PROG only as of Vers=3

KEYPOS x x x x *BY-PROG only as of Vers=3

LABEL x x x x *BY-PROG only as of Vers=3

LINK x x x x

LOCKENV - - - x

LOGLEN x x x x *BY-PROG only as of Vers=3

MOUNT x x x x @adr not possible for Vers=0 and Vers=1

NFTYPE - - - x

OPEN x x x x

OVERLAP x x x x

PAD x x x x

POOLLNK - x x x

POOLSIZ - - - x

RECFORM x x x x *BY-PROG only as of Vers=3

RECSIZE x x x x *BY-PROG only as of Vers=3

RETPD x x x x

SECLEV x x x x

SHARUPD x x x x WEAK not possible for Vers=0 and Vers=1

SPACE x x x x *KEEP not possible for Vers=0 and Vers=1

STATE x x x x

STOCLAS - - - x

STREAM x x x x

TAPEWR - x x x

TPMARK x x x x

TRANS x x x x

TSET x x x x

TVSN x x x x @adr not possible for Vers=0 and Vers=1

VALLEN x x x x *BY-PROG only as of Vers=3

Operand Vers=0 Vers=1 Vers=2 Vers=3 Remarks for operand values

FILE Macros

520 U4250-J-Z125-12-76

Key

x Operand available in the macro version

- Operand not available in the macro version

Vers Version

In the above table, the positional operands are arranged before the keyword operands
under MF=L.

MF=L (cont.)

VALPROP x x x x *BY-PROG only as of Vers=3

VOLSET - - - x

VOLUME x x x @adr only as of Vers=2
REMOVE-UNUSED only as of Vers=3

VSEQ x x x x @adr only as of Vers=2

WORKFIL - - - x

WRCHK x x x x

WROUT x x x x

Operand Vers=0 Vers=1 Vers=2 Vers=3 Remarks for operand values

Macros FILELST

U4250-J-Z125-12-76 521

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

FILELST – Create variable operand areas for FILE macros

Macro type: type S (L form/D form/C form); see page 866

The FILELST macro creates separate lists for the operands VOLUME, DVOLUME, TVSN,
MOUNT and VSEQ of the FILE macro. These lists can then be addressed by specifying the
value @addr for these operands in the FILE macro, “addr” being the symbolic address of
the FILELST call.

Format

Format 1: L form

Operation Operands

FILELST [MF=L]

[VOLUME=
vsn

(vsn,...) 
 
 

]

[,DVOLUME=
vsn

(vsn,...) 
 
 

]

[,TVSN=
vsn

(vsn,...) 
 
 

]

[,MOUNT=
number

(number,...) 
 
 

]

[,VSEQ=
number

(number,...) 
 
 

]

FILELST Macros

522 U4250-J-Z125-12-76

Operand descriptions

VOLUME
A single volume serial number or a list of up to 255 volume serial numbers may be specified.
The description of the VOLUME operand in the FILE macro also applies here
(see page 504), with the restriction that VOLUME=PRIVATE or VOLUME=(PRIVATE,n)
may be specified only in the FILE macro.

DVOLUME
A single volume serial number or a list of up to 255 volume serial numbers may be specified.
The description of the DVOLUME operand in the FILE macro also applies here
(see page 478), with the restriction that DVOLUME=PRIVATE or DVOLUME=(PRIVATE,n)
may be specified only in the FILE macro.

MOUNT
Up to 255 volumes may be requested.

The description of the MOUNT operand in the FILE macro also applies here
(see page 485). However, MOUNT=0 may be specified only in the FILE macro.

TVSN
A single volume serial number or a list of up to 255 volume serial numbers may be specified.
The description of the TVSN operand in the FILE macro also applies here
(see page 502).

VSEQ
Up to 255 file sections may be requested.

The description of the VSEQ operand in the FILE macro also applies here (see page 506).
However, only lists may be specified here; single file sections may be specified only in the
FILE macro.

Macros FILELST

U4250-J-Z125-12-76 523

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_e
.v

0
4\

fc
-f

i.d
o

c

Format 2: D form/C form

Operand descriptions

LIST
This operand defines the lists created by FILELST for which a CSECT or DSECT is to be
generated.

= VOLUME
= (VOLUME,nmbr)
A CSECT or DSECT is created for the VOLUME list. If the user specifies the operand
value in the form (VOLUME,nmbr) – the parentheses are part of the value and must be
specified -, “nmbr” can be used to specify the number of elements in the VOLUME list
for which a CSECT or DSECT is to be created.

= DVOLUME
= (DVOLUME,nmbr)
A CSECT or DSECT is created for the DVOLUME list. If the user specifies the operand
value in the form (DVOLUME,nmbr) – the parentheses are part of the value and must
be specified -, “nmbr” can be used to specify the number of elements in the DVOLUME
list for which a CSECT or DSECT is to be created.

= TVSN
= (TVSN,nmbr)
A CSECT or DSECT is created for the TVSN list. If the user specifies the operand value
in the form (TVSN,nmbr) – the parentheses are part of the value and must be
specified –, “nmbr” can be used to specify the number of elements in the TVSN list for
which a CSECT or DSECT is to be created.

Operation Operands

FILELST
MF=

D

C  
 
 

[,PREFIX=
I

pre 
 
 

][,MACID=
DBL

macid 
 
 

]

[,LIST=

VOLUME | (VOLUME,nmbr)
DVOLUME | (DVOLUME,nmbr)
TVSN | (TVSN,nmbr)
MOUNT | (MOUNT,nmbr)
VSEQ | (VSEQ,nmbr)

 
 
 
 
 
 
 
 
 

]

FILELST Macros

524 U4250-J-Z125-12-76

= MOUNT
= (MOUNT,nmbr)
A CSECT or DSECT is created for the MOUNT list. If the user specifies the operand
value in the form (MOUNT,nmbr) – the parentheses are part of the value and must be
specified -, “nmbr” can be used to specify the number of elements in the MOUNT list for
which a CSECT or DSECT is to be created.

= VSEQ
= (VSEQ,nmbr)
A CSECT or DSECT is created for the VSEQ list. If the user specifies the operand value
in the form (VSEQ,nmbr) – the parentheses are part of the value and must be
specified –, “nmbr” can be used to specify the number of elements in the VSEQ list for
which a CSECT or DSECT is to be created.

PREFIX
Defines the first character of each field name and equate generated when the macro is
expanded.

Default value: PREFIX = I

= pre
Single-character prefix with which the generated field names and equates are to begin.

MACID
Defines the second through fourth characters of the field names and equates generated
when the macro is expanded.

Default value: MACID = DBL

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

Macros FPAMACC

U4250-J-Z125-12-76 525

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

FPAMACC – Access FASTPAM files

Macro type: type S (E form/L form/D form/C form/M form); see page 866

The ACCESS FILE function is implemented in the FPAMACC macro. Accesses to the file
referenced by OPENID can be formulated in this macro.

Format

Operation Operands

FPAMACC

(Teil 1 von 2)

[,OPENID=

nmbr

addr

(r) 
 
 
 
 

]

[,LEN=

length

addr

(r) 
 
 
 
 

]

[,BLOCK=

nmbr

addr

(r) 
 
 
 
 

]

[,IOAREA=
addr

(r) 
 
 

]

[,OPCODE=

*READ

*WRITE

*READ_WAIT

*WRITE_WAIT

*READ_EQUALIZE

*WAIT

addr

(r) 
 
 
 
 
 
 
 
 
 
 
 
 

]

FPAMACC Macros

526 U4250-J-Z125-12-76

MF=L

Operation Operands

(Teil 2 von 2)

[,WAITLST=
addr

(r) 
 
 

]

[,CHAIN=
addr

(r) 
 
 

]

[,POSTCD=

nmbr

addr

(r) 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
F

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
F

pre 
 
 

][,MACID=
ACC

macid 
 
 

]

Macros FPAMACC

U4250-J-Z125-12-76 527

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operand descriptions

BLOCK
Specifies the number of the first logical FASTPAM block (within the file) to be transferred.
The block size is determined by the BLKSIZE operand in the OPEN function of the
FPAMSRV macro. Only integer values are permitted.

Only a direct specification is allowed for the MF=L form.

= nmbr
Direct entry of a decimal numeric value for the number of the first logical block to be
transferred. The value is limited to the maximum size of a file in 4-KB pages minus 1:

1 Î nmbr Î 8388606 for LARGE_FILE=*FORBIDDEN (see the FPAMSRV macro)

1 Î nmbr Î 1073741823 for LARGE_FILE=*ALLOWED (see the FPAMSRV macro)

= addr
Symbolic address of a 4-byte field containing the numeric value (binary).

= (r)
Register containing the numeric value.

CHAIN
Specifies the starting address of another FPAMACC parameter list for which the associated
job is to be concatenated to that of the current parameter list. Up to 5000 parameter lists
can be chained with each other in this way. All jobs chained in this manner are accepted
and executed within an SVC.
The jobs are executed in the order of their concatenation. If a parameter error is
encountered in one of the jobs, all other jobs will be rejected with a “CHAIN ERROR” return
code. For all other errors, no further job will be processed as of the point at which the error
is detected (except for return code FACCPNAC), and all jobs which follow will also be
rejected. If asynchronous I/O operations with concatenated “wait parameter lists” are
involved, wait operations that have been rejected due to an error must therefore be
repeated by the user.
If an error is encountered only after all jobs have been successfully initiated (e.g. an I/
O error in a chain of asynchronous read/write operations with eventing), all other jobs will
be treated as separate from the job containing the error. Each parameter list must therefore
be evaluated independently.
See also the examples on “Error handling for chained parameter lists” on page 534.

Only the symbolic address is allowed for the MF=L form, but no symbolic names may be
used within a DSECT, since its address is not known until runtime.

Note

If eventing is enabled, a signal is sent for each individual job.

FPAMACC Macros

528 U4250-J-Z125-12-76

= addr
Symbolic address (name) of the next parameter list to be processed.

= (r)
Register containing the starting address of the next parameter list to be processed.

IOAREA
Specifies the 4K-aligned starting address of the I/O buffer, which must lie within the I/O area
pool that was specified when calling OPEN.
In the case of data spaces, the ALET indicated at the time of calling ENABLE IOAREA
POOL is automatically used.

Only the symbolic address is allowed for the MF=L form, but no symbolic names may be
used within a DSECT, since its address is not known until runtime.

= addr
Symbolic address (name) of the area.

= (r)
Register containing the starting address of the I/O buffer.

LEN
Determines the length of data to be transferred in logical blocks. The block size is
determined by the BLKSIZE operand of the OPEN function in the FPAMSRV macro. Only
integer values between 1 and 8 which do not exceed the MAXIOLN value specified in
ENABLE ENVIRONMENT are permitted.

Only a direct specification is allowed for the MF=L form.

= length
Direct entry of a decimal numeric value.

= addr
Symbolic address of a 4-byte field containing the numeric value (binary).

= (r)
Register containing the numeric value.

Macros FPAMACC

U4250-J-Z125-12-76 529

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

MACID
Defines the second to the fourth characters (inclusive) of the field names and equates that
are generated when macros are resolved.

= ACC
Default value: MACID=ACC

= macid
“macid” is three-character string that defines the second to the fourth character
(inclusive) of the generated field names and equates.

MF
The forms of the MF operand are described in detail in the appendix on page 865.

OPCODE
Identifies the job type.

Only a direct specification is allowed for the MF=L form.

= *READ
Asynchronous reading of logical blocks. A return value is placed in subcode2, indicating
whether the job was executed synchronously or asynchronously. If EVENTNG=*NO
was specified in the call to OPEN and if the job was not completed synchronously, it
must be terminated with OPCODE=*WAIT; otherwise, all subsequent jobs with this
FPAMACC parameter list will be rejected.

= *WRITE
Asynchronous writing of logical blocks. A return value is placed in subcode2, indicating
whether the job was performed synchronously or asynchronously. If EVENTNG=*NO
was specified in the call to OPEN and if the job was not completed synchronously, it
must be terminated with OPCODE=*WAIT; otherwise, all subsequent jobs with this
FPAMACC parameter list will be rejected.

= *READ_WAIT
Synchronous reading of logical blocks.

= *WRITE_WAIT
Synchronous writing of logical blocks.

= *READ_EQUALIZE
Synchronously reads logical blocks while simultaneously equalizing the DRV disks in
the indicated section within the file. In non-DRV mode, *READ_EQUALIZE has the
same effect as *READ_WAIT (for more information on DRV, see the “DRV”
manual [15]).

FPAMACC Macros

530 U4250-J-Z125-12-76

= *WAIT
Waits for the end of an asynchronous job (*READ or *WRITE). This operation may be
performed only by the task that has initiated the job.
The WAITLIST parameter is used to specify the address of the FPAMACC parameter
list, on whose I/O the wait operation is to be performed. This can also be the same
parameter list, but it must lie in the same environment and must contain the same
OPENID as the WAIT parameter list.

A *WAIT is illegal in the following cases:
– after the synchronous operations *READ_WAIT, *WRITE_WAIT and

*READ_EQUALIZE,
– if a *WAIT has already been performed,
– if the asynchronous job was terminated synchronously (subcode2=FACCSYTE

after *READ/*WRITE).
– When EVENTNG=*YES was specified in the OPEN

= addr
Symbolic address of a 1-byte field containing the value for OPCODE.

= (r)
Register containing the value for OPCODE.

OPENID
Specifies the short ID of the OPEN for which the FPAMACC operation is to be executed.
After successful completion of the OPEN operation, the short ID must be transferred from
the FPAMSRV parameter list into the FPAMACC parameter list.

Only a direct specification is allowed for the MF=L form.

= nmbr
Direct entry of a decimal numeric value for the OPEN short ID.

= addr
Address of a 4-byte field containing the short ID.

= (r)
Register containing the short ID.

PARAM
Indicates the address of the operand list. This operand is only evaluated in conjunction with
MF=E (see also page 865).

Macros FPAMACC

U4250-J-Z125-12-76 531

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

POSTCD
Contains data accompanying the bourse signal. This parameter is interpreted only if
EVENTNG=*YES is specified.

Only a direct specification is allowed for the MF=L form.

= addr
Address of a 2-byte field containing the POSTCD.

= (r)
Register containing the POSTCD (least-significant 2 bytes).

PREFIX
Defines the first character of field names and equates that are generated when macros are
resolved.

= F
Default value: PREFIX=F

= pre
“pre” is a one-character prefix with which the generated field names and equates are to
begin.

WAITLST
Specifies the start address of the FPAMACC parameter list, on whose I/O the WAIT
operation is to be performed. This may also be the same parameter list, but it must lie in the
same environment and must contain the same OPENID.

Any error is reported in the parameter list with which the invalid operation was initiated. In
the event of an I/O error, for example, the “wait parameter list” receives the return code
“SUCCESSFUL_PROCESSING”; the read/write parameter list, the return code
“IO_ERROR”.
WAITLIST is only evaluated in conjunction with OPCODE=*WAIT.

Only the symbolic address is allowed for the MF=L form, but no symbolic names may be
used within a DSECT, since its address is not known until runtime.

= addr
Symbolic address (name) of the area.

= (r)
Register containing the starting address of the FPAMACC parameter list.

FPAMACC Macros

532 U4250-J-Z125-12-76

Programming notes

DRV status

The DRV status is returned when changes are made to the FACCDS field. It is available
following the first I/O operation.

End of job message with EVENTING

When the eventing mechanism is used (OPEN with operand EVENTNG=*YES), FASTPAM
reports the end of a job in the FACCREQ field of the FPAMACC parameter list. There are
two cases:

– FACCREQ = X'00' = FACCTERM means 'job terminated'.
– FACCREQ = X'FF' = FACCACTV means 'job not yet terminated'.

The FACCREQ field is assigned the value FACCACTV (job active) when the job is accepted
and the value FACCTERM at the end of the I/O operation; in the latter case, asynchronously
by a system task. For this reason, the contents of the FACCREQ field must not be queried
by an assembly language instruction that writes to the field contents. The end-of-job
message would be lost, for example, if the field contents were queried with the following
instruction: OC FACCREQ,FACCREQ
The instruction: CLI FACCREQ,0 by contrast, would present no problem.

Important note

The FACCREQ field must not be accessed by a machine-language instruction for
writing between the time the job is submitted and the end-of-job message. All returned
information (return code, DRV status) must be evaluated only after the end-of-job
message has been independently queried. It would be incorrect, for example, to copy
the contents of the FPAMACC parameter list to a different memory location and to
perform the desired actions on this copy.

The job could have been completed synchronously or asynchronously when the application
program regains control. The user can obtain information on whether or not the system has
sent a signal to the bourse from subcode2; however, this cannot be checked until end-of-
job has been reported. In any case, this is irrelevant if the user has enabled EVENT
DROPPING.

Synchronous jobs will have always completed when the application program regains
control; however, the FACCREQ field is still assigned the appropriate value.

Macros FPAMACC

U4250-J-Z125-12-76 533

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Example: End-of-job handling with eventing

* The event ID, FASTPAM environment and the I/O area pool should *
* have been created by now and the file should have been opened *
* with EVENTNG=*YES. *

 FPAMACC MF=M,OPCODE=*READ,....
 FPAMACC MF=E,...
 CLI FACCREQ,FACCTERM Job already terminated?
 BE TERM

* Job is not yet terminated; *
* do something else *

 :
 :

* Wait with SOLSIG (job not synchronously terminated!) *

 B SOLS
TERM CLI FACCSR2,FACCSYTE

* Job synchronously terminated *
* no SOLSIG!! *

 BE PROCEED
SOLS SOLSIG ...
PROCEED EQU *
 :
 :

FPAMACC Macros

534 U4250-J-Z125-12-76

Error handling for chained parameter lists

If FASTPAM detects an error when processing a job chain (possibly when checking param-
eters or when subsequently processing individual jobs), all following jobs in the chain are
rejected by FASTPAM with the return code “CHAIN_ERROR”. The return code
“FACCPNAC” (WAIT for an inactive I/O path) is not considered an error in this case, since
it occurs normally in a correctly executed program run for synchronously terminated I/Os
(with caching). Consequently, “FACCPNAC” does not cause the chain to be aborted, and
this in turn simplifies error checking.

– When synchronous jobs are chained, only the return code of the last member in the
chain needs to be checked in order to ensure that all jobs have executed successfully.

– For chains of asynchronous I/Os with attached WAIT jobs, only the return code of the
last WAIT job and that of the associated I/O needs to be checked. If both are
“SUCCESSFUL”, it can be assumed that all previously completed jobs have also
executed successfully.

– In the case of chains of asynchronous I/Os with eventing, however, all return codes
must be queried separately, since the end-of-job conditions occur independently of one
another.

Macros FPAMACC

U4250-J-Z125-12-76 535

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Return codes

Return codes are valid only after the completion of each respective job. They are placed in
the (standard) header of the parameter list (see“Layout of the parameter list” on page 540):

– The main return code, in a half-word with the name FACCMRET.
– Subcode1, in one byte with the name FACCSR1.

Subcode1 describes error classes which allow the caller to respond to them. The caller
can refer back to the main code as well as to subcode1. (It is better to refer to subcode1,
since the information therein does not depend on the software version.)

– Subcode2, in one byte with the name FACCSR2.
Subcode2 describes the individual main codes more precisely. In the FPAMACC macro,
subcode2 is only significant for asynchronous jobs. It indicates whether the job was
terminated synchronously for each return code, even in the case of errors.

The field names and the EQU instructions for return codes which are generated by the C
or D form of the macro begin with the string FPAM by default. This string can be changed
by means of PREFIX and MACID.

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

If the return codes cannot be placed in the header (because it it not accessible, for
example), the calling program is terminated with an error message. If the user has defined
an STXIT event for an “unrecoverable program error”, this STXIT is activated.

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

In the following section, the main return codes are grouped with corresponding subcode1
classes and are described more precisely by subcode2.

Notes

– Error flags are listed in the corresponding system messages with the message code
DFPaaaa (where aaaa=main code). Message texts can be output using the command
or standard statement HELP-MSG-INFORMATION.

– All addresses passed to FASTPAM must be valid 31-bit addresses. In particular, bit 32
must not be set, otherwise it will be regarded as belonging to the address.

FPAMACC Macros

536 U4250-J-Z125-12-76

Standard
header:

The following return codes are placed in the standard
header on executing the FPAMACC macro
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' Synchronous termination.
In this case, a following *WAIT for the I/O path is answered by return
code FACCPNAC (PATH NOT ACTIVE), and no signal is sent from the
system if eventing is enabled.

X'01' Asynchronous termination.
If EVENTNG is set to *NO, the job must be terminated with *WAIT;
if EVENTNG=*YES, the system sends a signal to the end of job
bourse.

X'00' X'0000' Function executed successfully.

X'01' The function could not be executed, since the corresponding operand
was not specified correctly.

X'01' X'00C8' Function not executed.
Invalid OPEN-ID

X'01' X'00C9' Function not executed.
Invalid address for I/O buffer.

X'01' X'00CA' Function not executed.
Invalid block specification.

X'01' X'00CB' Function not executed.
Invalid WAITLST specification.

X'01' X'00CE' Function not executed.
Invalid block number.

X'01' X'00CF' Function not executed.
Invalid operation code.

X'02' Function not executed.
Called function not available.

X'03' Function not executed.
Interface version not supported.

X'20' Internal error.

X'20' X'0028' Function not executed.
System error. Run system diagnostics.

X'40' CORRECT AND RETRY

X'40' X'0037' System resource bottleneck.
Response: inform the system administrator.

Macros FPAMACC

U4250-J-Z125-12-76 537

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

X'40' X'00C7' Invalid CFID specified.
Response: correct the file name in the program.

X'40' X'012C' I/O error.
Response: inform the system administrator.

X'40' X'012D' Another I/O is active on this path.

X'40' X'012E' Only for OPCODE=*WAIT:
There is no I/O active on this path. This can also occur with *WAIT
operations that are chained with asynchronous jobs in cases when the
I/O could be terminated synchronously.
The job chain is not aborted for this return code.

X'40' X'012F' The job was not executed, since an error occurred in another job
chained to it.
Response: find the error in the job chain.

X'40' X'0133' OPCODE=*WAIT is not allowed with EVENTNG=*YES.

X'40' X'0134' Waiting for an I/O of another task is not permitted.

X'40' X'0140' I/O after end-of-file.
In contrast to UPAM, not even one I/O is executed with this return code.

X'40' X'0141' No space could be allocated on disk when making a secondary
allocation.
Response: inform the system administrator.

X'40' X'0142' User ID overloaded.
Response: delete files or inform the system administrator.

X'40' X'0143' PVS not attached.
Response: inform the system administrator.

X'40' X'0144' No new files can be added to the catalog.
Response: delete files or inform the system administrator.

X'40' X'0145' On file access in mode SHARUPD=YES, it was detected that the file
size exceeded the value 32 GB even though this value may not be
exceeded when OPEN is used with this file.

X'40' X'014A' No secondary allocation could be made due to a missing extent list.
The missing extent list indicates that the system administration has
issued the command REPAIR-DISK-FILES or REMOVE-FILE-
ALLOCATION for the file just opened.
Response: inform the system administrator.

X'cc' X'bb' X'aaaa' Meaning

FPAMACC Macros

538 U4250-J-Z125-12-76

Examples

Example 1: Detection of errors during the parameter check

In the following example, before the first job in a chain is processed, FASTPAM checks the
parameters of all members in the chain and detects the parameter error
“INVALID_<parameter>” in the process.

The boxes illustrated in the diagrams below represent FPAMACC parameter lists. The
return codes output in each case are shown below the boxes.

Figure 8: FPAMACC macro: errors during parameter checking

Example 2: Detection of errors after the parameter check

– Asynchronous I/Os with eventing:
If an error occurs in a chain of asynchronous I/Os with eventing after all I/Os have been
initiated (e.g. an “IO_ERROR”), each job is handled separately. A “CHAIN_ERROR”
cannot occur.

Since each I/O is on a file that is opened with “eventing”, reads and writes may be freely
exchanged:

Figure 9: FPAMACC macro: errors after parameter checking (asynchronous I/O with eventing)

INVALID_<parameter> CHAIN_ERROR

...

CHAIN_ERROR CHAIN_ERROR

SUCCESSFUL INTERNAL_ERRORSUCCESSFUL IO_ERROR

READ WRITE READ READ

Macros FPAMACC

U4250-J-Z125-12-76 539

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

– Asynchronous I/Os with “WAIT”:
If, in a chain of asynchronous I/Os with concatenated WAIT operations, an error occurs
at the n-th I/O (“IO_ERROR”), the associated WAIT operation in which the error was
detected will still be considered successful; however, since processing is aborted after
the error, all following WAIT operations for the outputs 1 to (n-1) will be missing.

Figure 10: FPAMACC macro: errors after parameter checking (asynchronous I/O with WAIT)

SUCCESSFULNo return code IO_ERROR

READ WRITE READ READ

I/O 1 I/O (n-1) I/O n I/O m (last)

No return code

...

SUCCESSFUL CHAIN_ERROR

WAIT WAIT WAIT WAIT

Continuation:
...

I/O m I/O n I/O
(n-1)

I/O 1

SUCCESSFUL CHAIN_ERROR

FPAMACC Macros

540 U4250-J-Z125-12-76

Layout of the parameter list

The following parameter list is issued by an FPAMACC macro:

FPAMACC MF=D
1 STACK PRINT
1 PRINT NOGEN
2 *,##### PREFIX=F, MACID=ACC #####
1 #INTF REFTYPE=REQUEST,INTNAME=FPAMACC,INTCOMP=001
1 FACCPA DS 0F BEGIN of PARAMETERAREA _INOUT
1 FHDR MF=(C,FACC),EQUATES=YES
2 DS 0A
2 FACCFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 FACCIFID DS 0A 0 INTERFACE IDENTIFIER
2 FACCFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 FACCFCT DS AL1 2 FUNCTION NUMBER
2 FACCFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 FACCRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 FACCSRET DS 0AL2 4 SUB RETURN CODE
2 FACCSR2 DS AL1 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode2 values as defined by convention:
2 FACCR2OK EQU X'00' All correct, no additional info
2 FACCR2NA EQU X'01' Successful, no action was necessary
2 FACCR2WA EQU X'02' Warning, particular situation
2 FACCSR1 DS AL1 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' - X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2 *
2 FACCRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
2 FACCRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'

Macros FPAMACC

U4250-J-Z125-12-76 541

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

2 FACCRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 FACCRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 FACCRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 FACCRAER EQU X'04' ALIGNMENT ERROR
2 FACCRIER EQU X'20' INTERNAL ERROR
2 FACCRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 FACCRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 FACCRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 FACCRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 FACCRWLR EQU X'81' " LONG "
2 FACCRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' - X'82'
2 FACCRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 FACCRDH EQU X'82' SS IN DELETE / HOLD
2 *
2 FACCMRET DS 0AL2 6 MAIN RETURN CODE
2 FACCMR2 DS AL1 6 MAIN RETURN CODE 2
2 FACCMR1 DS AL1 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'00XXYYYY')
2 *
2 FACCRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 FACCFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 *
1 * MAINCODE
1 *
1 FACCMFSP EQU X'0000' SUCCESSFUL_PROCESSING = 0
1 FACCMIER EQU X'0028' INTERNAL_ERROR = 40
1 FACCSRES EQU X'0037' SHORTAGE_OF_RESOURCES = 55
1 FACCICFI EQU X'00C7' INVALID_CFID = 199
1 FACCIOPI EQU X'00C8' INVALID_OPEN_ID = 200
1 FACCIIOA EQU X'00C9' INVALID ADDRESS OF IOAREA = 201
1 FACCIBLK EQU X'00CA' INVALID_BLOCK = 202
1 FACCILAW EQU X'00CB' INVALID LIST ADDRESS FOR WAIT = 203
1 FACCIBL# EQU X'00CE' INVALID_BLOCK_# = 206
1 FACCIOP EQU X'00CF' INVALID_OPCODE = 207
1 FACCIOER EQU X'012C' IO_ERROR = 300
1 FACCPACT EQU X'012D' PATH_ACTIVE = 301
1 FACCPNAC EQU X'012E' PATH_NOT_ACTIVE (WAIT ONLY) = 302
1 FACCCHE EQU X'012F' CHAIN_ERROR = 303
1 FACCWTEV EQU X'0133' WAIT_AND_EVENTING = 307
1 FACCWTNS EQU X'0134' WAIT_NOT_BY_SAME_TASK = 308

FPAMACC Macros

542 U4250-J-Z125-12-76

1 FACCEOF EQU X'0140' END_OF_FILE = 320
1 FACCNDSA EQU X'0141' NO_DISC_SPACE_AVAILABLE = 321
1 FACCUIDE EQU X'0142' USER_ID_EXHAUSTED = 322
1 FACCPVNA EQU X'0143' PUBLIC_VOLUME_NOT_ATTACHED = 323
1 FACCCEFL EQU X'0144' CATALOG_ENTRY_FULL = 324
1 FACCLFNS EQU X'0145' LARGE_FILE_NOT_SPECIFIED = 325
1 FACCSAVY EQU X'014A' SYSTEM_ADMINISTRATOR_VERIFY = 330
1 *
1 * SUB RETURN CODE2
1 *
1 FACCSYTE EQU X'00' SYNCHRONEOUS TERMINATION
1 FACCASTE EQU X'01' ASYNCHRONEOUS TERMINATION
1 *
1 * FPAMACC FUNCTIONS:
1 *
1 FACCACCF EQU 7 ACCESS FILE
1 *
1 * OUTPUT PARAMETER
1 *
1 DS XL2 RESERVED
1 FACCDS DS X DRV STATUS
1 FACCREQ DS X REQUEST STATUS
1 FACCTERM EQU X'00' REQUEST TERMINATED
1 FACCACTV EQU X'FF' REQUEST ACTIVE
1 *
1 * INPUT PARAMETER
1 *
1 FACCOPID DS F OPEN-ID
1 FACCIOA DS A ADDRESS OF IOAREA
1 FACCBLK DS F BLOCK WITHIN FILE
1 FACCLAW DS A LIST ADDRESS FOR WAIT OPERATION
1 FACCCHLA DS A ADDRESS OF CHAINED LIST
1 FACCPOCO DS FL2 POSTCODE
1 FACCBLK# DS FL1 BLOCK NUMBER
1 FACCOP DS AL1 OPCODE
1 FACCREAD EQU 1 READ
1 FACCWRIT EQU 2 WRITE
1 FACCRDWT EQU 3 READ AND WAIT
1 FACCWRWT EQU 4 WRITE AND WAIT
1 FACCRDEQ EQU 5 READ AND EQUALIZE
1 FACCWAIT EQU 6 WAIT
1 DS 0F
1 FACC# EQU *-FACCPA LENGTH of PARAMETERAREA

Macros FPAMACC

U4250-J-Z125-12-76 543

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Example

Creating a file with FASTPAM

FPAMTEST START
 BALR 10,0
 USING *,10
 USING FPAMD,9
 LA 9,FPAMPL R9 -> FPAMSRV parameter list
xx
* Request memory for the ACCESS parameter lists *
xx
 REQM
 LTR 15,15
 BNZ ERROR
 LR 8,1 R8 -> FPAMACC parameter list
xx
* Request memory for the I/O area pool *
xx
 REQM 30
 LTR 15,15
 BNZ ERROR
 LR 7,1 R7 -> IOAREA POOL
xx
* ENABLE ENVIRONMENT *
xx
 FPAMSRV MF=M,PARAM=FPAMPL,ACCLSTS=(8)
 FPAMSRV MF=E,PARAM=FPAMPL
 CLI FPAMSR1,FPAMRFSP
 BE ENAIPO
 CLI FPAMSR1,FPAMRCAR
 BNE ERROR
 CLC FPAMMRET,=Y(FPAMNORE)
 BNE ERROR
xx
* Handling for the error 'RESIDENT SPACE NOT AVAILABLE', *
* e.g., output a message and continue *
xx
* .
* .
* .
xx
* ENABLE IOAREA POOL *
xx
ENAIPO FPAMSRV MF=M,PARAM=FPAMPL,FCT=*ENAIPO,IPONAME='IOAREA', -
 IPOADDR=((7),0),IPOSIZE=30
 FPAMSRV MF=E,PARAM=FPAMPL
 CLI FPAMSR1,FPAMRFSP

FPAMACC Macros

544 U4250-J-Z125-12-76

 BE OPEN
 CLI FPAMSR1,FPAMRCAR
 BNE ERROR
 CLC FPAMMRET,=Y(FPAMNORE)
 BNE ERROR
xx
* Handling for the error 'RESIDENT SPACE NOT AVAILABLE', *
* e.g., output a message and continue *
xx
* .
* .
* .
xx
* Open the file with OUTIN *
xx
OPEN FPAMSRV MF=M,PARAM=FPAMPL,FCT=*OPEN,FILE='TESTFILE', -
 MODE=*OUTIN,SHARUPD=*YES,BLKSIZE=1
 FPAMSRV MF=E,PARAM=FPAMPL
 CLI FPAMSR1,FPAMRFSP
 BNE ERROR
xx
* Write numbered blocks to the file *
xx
 LA 6,1
 LR 4,8 R4 -> 1st parameter list
 USING ACCESSD,4
 LR 3,8 R3 -> 1st parameter list
 LA 2,30 loop counter
CYCL1 DS 0F
 ST 6,0(7)
 MVC 0(FACC#,4),FACCPL
 C 2,=A(1)
 BNE NOTLAST
* NO FURTHER CHAINING IN THE LAST FPAMACC PARAMETER LIST *
 L 3,FFFFFFFF
 B NEXT
NOTLAST EQU *
 A 3,=A(FACC#) R3 -> next parameter list
NEXT EQU *
 FPAMACC MF=M,PARAM=(4),OPENID=FPAMOPID,BLOCK=(6), -
 IOAREA=(7),CHAIN=(3)
 A 6,=A(1)
 LR 4,3 R4 -> next parameter list
 BCT 2,CYCL1
 FPAMSRV MF=E,PARAM=(8)
* Error analysis for parameter lists *
 LR 3,8 R3 -> 1st parameter list
 USING ACCESSD,3

Macros FPAMACC

U4250-J-Z125-12-76 545

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

 LA 2,30 loop counter
CYCL2 DS 0F
 CLI FACCSR1,FACCRFSP
 BNE ERROR
 A 3,=A(FACC#) R3 -> next parameter list
 BCT 2,CYCL2
*
xx
* Close the file *
xx
 FPAMSRV MF=M,PARAM=FPAMPL,FCT=*CLOSE
 FPAMSRV MF=E,PARAM=FPAMPL
 CLI FPAMSR1,FPAMRFSP
 BNE ERROR
xx
* DISABLE IOAREA POOL *
xx
 FPAMSRV MF=M,PARAM=FPAMPL,FCT=*DISIPO
 FPAMSRV MF=E,PARAM=FPAMPL
 CLI FPAMSR1,FPAMRFSP
 BNE ERROR
xx
* DISABLE ENVIRONMENT *
xx
 FPAMSRV MF=M,PARAM=FPAMPL,FCT=*DISENV
 FPAMSRV MF=E,PARAM=FPAMPL
 CLI FPAMSR1,FPAMRFSP
 BNE ERROR
xx
* Release memory for I/O area pool *
xx
 RELM 30,(7)
xx
* Release memory for ACCESS parameter lists *
xx
 RELM 1,(8)
*
ERROR DS 0Y
 TERM
*
FPAMPL FPAMSRV MF=L,FCT=*ENAENV,ENVNAME='TESTENV',ACCNUMB=30, -
 MAXIOLN=*MINI,EVENTNG=*NO
FACCPL FPAMACC MF=L,LEN=1, -
 OPCODE=*WRITE_WAIT
FFFFFFFF DC X'FFFFFFFF'
*
 END

FPAMSRV Macros

546 U4250-J-Z125-12-76

FPAMSRV – FASTPAM management function

Macro type: type S (E form/L form/D form/C form/M form); see page 866

General

This description begins with an overview of the complete format of the FPAMSRV macro
with all possible operands. Regardless of which function is specified (in the FCT operand),
all operands may be entered in an FPAMSRV macro; the operands to be evaluated are
determined by the current FPAMSRV function. The individual functions of the FPAMSRV
macro are listed in brief after the format overview.
The format for each function and the operands which are evaluated for it are described
separately in each function unit.
Operand values that are not addresses or registers are identified in the operand descrip-
tions as “direct specifications”.
The “direct specifications” are always listed in the operand descriptions if they are theoret-
ically possible in the format, even if the user could not possibly know their value when
programming (e.g. the value of an ID assigned by the system).

The various forms of the MF operand are described in detail in the appendix (page 865).

Parameter list

The parameter list of the macro contains a header, whose fields are loaded automatically
when the list is created with the L form.

If a parameter list is to be created dynamically with the D or C form, it must be initialized
beforehand with a parameter list created with the L form. This is the only way of ensuring
that the header of a parameter list contains the correct information.

Macros FPAMSRV

U4250-J-Z125-12-76 547

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Format

Operation Operands

FPAMSRV

[,IPOADDR=(elem1,elem2)]

(Teil 1 von 4)

[,FCT=

*ENAENV

*ENAIPO

*OPEN

*CLOSE

*DISIPO

*DISENV

addr

(r) 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,ENVNAME=

′name′
addr

(r) 
 
 
 
 

]

[,IPONAME=

′name′
addr

(r) 
 
 
 
 

]

[,IPOSIZE=

size

addr

(r) 
 
 
 
 

]

[,ENVID=

nmbr

addr

(r) 
 
 
 
 

]

[,IPOID=

nmbr

addr

(r) 
 
 
 
 

]

FPAMSRV Macros

548 U4250-J-Z125-12-76

Operation Operands

(Teil 2 von 4)

[,OPENID=

nmbr

addr

(r) 
 
 
 
 

]

[,LINK=

′name′
addr

(r) 
 
 
 
 

]

[,FILE=

′pathname′
addr

(r) 
 
 
 
 

]

[,LASTBLK=

nmbr

addr

(r) 
 
 
 
 

]

[,ACCLSTS=
addr

(r) 
 
 

]

[,ACCNUMB=

number

addr

(r) 
 
 
 
 

]

[,SHARUPD=

*NO
*YES
addr
(r)

 
 
 
 
 
 
 

]

[,MODE=

*INPUT
*INOUT
*OUTIN
addr
(r)

 
 
 
 
 
 
 
 
 

]

Macros FPAMSRV

U4250-J-Z125-12-76 549

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operation Operands

(Teil 3 von 4)

[,MAXIOLN=

*NOT_SPECIFIED
*MINI
*MAXI
addr
(r)

 
 
 
 
 
 
 
 
 

]

[,EVENTNG=

*NOT_SPECIFIED
*NO
*YES
addr
(r)

 
 
 
 
 
 
 
 
 

]

[,EIID=

nmbr

addr

(r) 
 
 
 
 

]

[,BLKSIZE=

size

addr

(r) 
 
 
 
 

]

[,RES=

*NOT_SPECIFIED
*NO
*YES
addr
(r)

 
 
 
 
 
 
 
 
 

]

[,ENV=

*HOST

*XCS
addr
(r)

 
 
 
 
 
 
 

]

FPAMSRV Macros

550 U4250-J-Z125-12-76

Functions

Note

All addresses passed to FASTPAM must be valid 31-bit addresses. In particular, bit 32
must not be set, otherwise it will be regarded as belonging to the address.

MF=L

Function Brief description See

FCT = *ENAENV Create a FASTPAM environment or connect the user to an
existing environment

page 551

FCT = *ENAIPO Create a FASTPAM I/O area pool or connect the user to an
existing pool

page 560

FCT = *OPEN Open a PAM file page 567

FCT = *CLOSE Close a PAM file page 576

FCT = *DISIPO Disable a FASTPAM I/O area pool, i.e. remove a link to the pool
and possibly delete it

page 579

FCT = *DISENV Disable a FASTPAM environment, i.e. remove a link to the
environment and possibly delete it

page 582

Operation Operands

(Teil 4 von 4)

[,LARGE_FILE=

*FORBIDDEN

*ALLOWED
addr
(r)

 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
F

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
F

pre 
 
 

][,MACID=
PAM

macid 
 
 

]

Macros FPAMSRV - ENABLE ENVIRONMENT

U4250-J-Z125-12-76 551

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

FASTPAM function: ENABLE ENVIRONMENT

This function can be used to create a FASTPAM environment or to connect the user with
an existing environment.
A FASTPAM environment ID (FPAMENID) is entered in the parameter list; this ID must be
used in subsequent OPEN calls. If the same parameter list is used for such calls, the ID will
have already been entered and need not be filled in by the user.

The ENAENV function only evaluates the operands described below.

Format FCT=*ENAENV

Operation Operands

FPAMSRV

(Teil 1 von 2)

[,FCT=

*ENAENV

addr

(r) 
 
 
 
 

]

[,ENVNAME=

′name′
addr

(r) 
 
 
 
 

]

[,ACCLSTS=
addr

(r) 
 
 

]

[,ACCNUMB=

number

addr

(r) 
 
 
 
 

]

[,MAXIOLN=

*NOT_SPECIFIED
*MINI
*MAXI
addr
(r)

 
 
 
 
 
 
 
 
 

]

FPAMSRV - ENABLE ENVIRONMENT Macros

552 U4250-J-Z125-12-76

MF=L

Operation Operands

(Teil 2 von 2)

[,EVENTNG=

*NOT_SPECIFIED
*NO
*YES
addr
(r)

 
 
 
 
 
 
 
 
 

]

[,EIID=

nmbr

addr

(r) 
 
 
 
 

]

[,RES=

*NOT_SPECIFIED
*NO
*YES
addr
(r)

 
 
 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
F

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
F

pre 
 
 

][,MACID=
PAM

macid 
 
 

]

Macros FPAMSRV - ENABLE ENVIRONMENT

U4250-J-Z125-12-76 553

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operand descriptions

ACCLSTS
ACCLSTS specifies the 4-Kbyte-aligned starting address of the contiguous area containing
all the FPAMACC parameter lists. If this area created as a memory-resident area, it must
not overlap with the parameter list area of other environments, with I/O area pools, or
DIV windows.

If the area is located in a memory pool, the pool must be one that was created with the
operand FIXED=YES in the ENAMP macro.

Only the symbolic address is allowed for the MF=L form, but no symbolic names may be
used within a DSECT, since its address is not known until runtime.

= addr
Symbolic address (name) of the area.

= (r)
Register containing the starting address of the area.

ACCNUMB
ACCNUMB specifies the number of parameter lists contained in the area defined by
ACCLSTS. This area must therefore be requested with a minimum size of ACCNUMB *
(length of the FPAMACC parameter list).

If the application is not run with FASTPAM authorization, the number of parameter lists is
restricted to 500; otherwise, 5000.

Only a direct specification is allowed for the MF=L form.

= number
Specifies the number of parameter lists to be held in the area defined by ACCLISTS
 (1 Î number Î 5000).

= addr
Symbolic address of a 4-byte field containing the number of parameter lists as a
numeric value (binary).

= (r)
Register containing the number of parameter lists as a numeric value.

FPAMSRV - ENABLE ENVIRONMENT Macros

554 U4250-J-Z125-12-76

EIID
Specifies the short ID for the event item via which the end of a job is indicated during file
access. This ID is returned to the user via the EIIDRET operand of the ENAEI macro (see
also the “Executive Macros” manual [2]).
If the FPAMACC parameter lists are located in a memory pool, it is important to ensure that
the scope of the pool is not larger than that of the event item (return code FPAMEISS).

The EIID operand is not interpreted if EVENTNG=*NO is specified.

Only a direct specification is allowed for the MF=L form.

= nmbr
Decimal numeric value of the short ID for the event item.

= addr
Symbolic address (name) of the 4-byte field containing the short ID for the event item.

= (r)
Register containing the short ID for the event item.

ENVNAME
Designates the name of the environment.

Only a direct specification is allowed for the MF=L form.

= 'name'
Name of the environment.
Name length: 1 Î 'name' Î 54 characters.
Naming conventions:
1st position: a letter or the special character #, @ (or $ for TPR tasks).
2nd - 54th position: any combination from the character set (A,...,Z,0,...,9,$,#,@).

The name is terminated by the first blank (X'40').
The name must be enclosed in single quotes.

= addr
Symbolic address of a 54-byte field containing the name of the environment.

= (r)
Register containing the address of a 54-byte field with the name of the environment.

Macros FPAMSRV - ENABLE ENVIRONMENT

U4250-J-Z125-12-76 555

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

EVENTNG
Determines whether the end of a job is reported to the user via the eventing mechanism
when files are accessed asynchronously (see also the section on “FASTPAM functions,
eventing” in the “Introductory Guide to DMS” [1]).

Only a direct specification is allowed for the MF=L form.

= *YES
Indicates that the user wishes to work with eventing, so the short ID of the event item
(operand EIID) must be specified. Subsequent OPEN calls can be made with
EVENTNG=*YES as well as with EVENTNG=*NO.

= *NO
Means that files can no longer be opened with the parameter EVENTNG=*YES using
this environment.

The EIID operand is not interpreted for EVENTNG=*NO.

= *NOT_SPECIFIED
Means that the environment already exists and that the user wishes to join that
environment regardless of the setting for the corresponding attribute.

= addr
Symbolic address of a 1-byte field containing the value for EVENTNG.

= (r)
Register containing the value for EVENTNG.

FCT
Defines the FASTPAM function to be executed.

Only a direct specification is allowed for the MF=L form.

= *ENAENV
Direct specification for the ENABLE ENVIRONMENT function.

This function creates a FASTPAM environment or connects the user to an existing
environment.
A FASTPAM environment ID (FPAMENID) is entered in the parameter list; this ID must
then be used in subsequent OPEN calls. If the same parameter list is used for such
calls, the ID will have already been entered and need not be taken into account.

= addr
Symbolic address of a 1-byte field containing the value for the ENABLE
ENVIRONMENT function.

= (r)
Register containing the value for the ENABLE ENVIRONMENT function.

FPAMSRV - ENABLE ENVIRONMENT Macros

556 U4250-J-Z125-12-76

MACID
Defines the second to the fourth character (inclusive) of the field names and equates that
are generated when macros are resolved.

= PAM
Default value: MACID=PAM

= macid
“macid” is three-character string that defines the second to the fourth characters
(inclusive) of the generated field names and equates.

MAXIOLN
Defines the maximum I/O length that is possible with this environment. This length must not
be exceeded when accessing files, but smaller I/O lengths may be used.
When working with resident FASTPAM environments, additional system memory (class 3)
is reserved for the preformatted I/O paths. The following allocation is made for each I/O
path:
– 1 Kbyte with MAXIOLN = *MINI
– 2 Kbytes with MAXIOLN = *MAXI

Only a direct specification is allowed for the MF=L form.

= *MINI
An I/O path for 4-Kbyte transfers is created for each FPAMACC parameter list.

= *MAXI
An I/O path for 32-Kbyte transfers is created for each FPAMACC parameter list.

= *NOT_SPECIFIED
Means that the environment already exists and that the user wishes to join that
environment regardless of the setting for the corresponding attribute.

= addr
Symbolic address of a 1-byte field containing the maximum I/O length for this
environment.

= (r)
Register containing the value for MAXIOLN.

MF
The forms of the MF operand are described in detail in the appendix, page 865.

PARAM
Indicates the address of the operand list. This operand is only evaluated in conjunction with
MF=E (see also page 865).

Macros FPAMSRV - ENABLE ENVIRONMENT

U4250-J-Z125-12-76 557

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

PREFIX
Defines the first character of field names and equates that are generated when macros are
expanded.

= F
Default value: PREFIX=F

= pre
“pre” is a one-character prefix with which the generated field names and equates are to
begin.

RES
Specifies whether the environment is to be made resident.

= *YES
The environment is to be created in resident memory. In this case, a check is performed
to determine whether the user ID has the required FASTPAM authorization and whether
the number of resident pages requested in the program call (user catalog: “RESIDENT-
PAGES” or “CLASSII”) is sufficient for the FPAMACC parameter list area. The size of
the FPAMACC parameter list area is determined by the ACCUNUMB operand.
If the result of the check is negative, the user receives the return code “FPAMNORE”,
and the FASTPAM environment is made non-resident.

= *NO
A non-resident environment is created.

= *NOT_SPECIFIED
The environment already exists, and the user wishes to join it, regardless of whether or
not it was made resident.

= addr
Symbolic address of a 1-byte field containing the value for RES.

= (r)
Register containing the value for RES.

FPAMSRV - ENABLE ENVIRONMENT Macros

558 U4250-J-Z125-12-76

Possible return codes of the FASTPAM function FCT = * ENAENV

Standard
header:

The following return codes are passed in the standard
header on executing the FPAMSRV macro:
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully.

X'01' X'0001' Function not executed.
Invalid environment name.

X'01' X'0005' Function not executed.
Invalid address of operand list.

X'01' X'0006' Function not executed.
Invalid number of operand lists.

X'01' X'000A' Function not executed.
Maximum permissible length of I/O area exceeded
(max. 4KB or 32KB).

X'01' X'000B' Function not executed.
Invalid eventing.

X'01' X'000D' Function not executed.
Invalid event-item short-ID.

X'01' X'0012' Function not executed.
– Invalid specification for RES
– NOT_SPECIFIED was entered for RES, but the specified

environment does not exist.

X'20' X'0028' Function not executed.
System error. Run system diagnostics.

X'40' X'0032' The environment or I/O area pool could not be created in resident
memory.
The application system can still be used for testing, but without the
benefits of FASTPAM performance. Subcode2 specifies the cause of
the error.

X'01' X'40' X'0032' The user ID of the task that created the environment or I/O area pool
does not have the required FASTPAM authorization.
Response: inform the system administrator.

X'02' X'40' X'0032' Not enough room in actual memory.

X'03' X'40' X'0032' The amount of resident main memory allocated at the start of the
program is not sufficient.

X'04' X'40' X'0032' Connection to a nonresident environment or a nonresident I/O area
pool.

X'05' X'40' X'0032' This FASTPAM version only supports non-resident data spaces.

Macros FPAMSRV - ENABLE ENVIRONMENT

U4250-J-Z125-12-76 559

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

X'40' X'0035' An I/O operation is being executed on the memory pages that are to be
fixed during execution of the *ENAENV/*ENAIPO function.
This return code only occurs when creating the environment or I/O area
pool. There is no restriction on I/Os when joining an existing
environment or I/O area pool.

X'40' X'0037' System resource bottleneck.
Response: inform the system administrator.

X'40' X'0038' The named FASTPAM resource can be enabled by TPR tasks only.

X'40' X'0039' The named FASTPAM resource can only be enabled by tasks of an ID
with FASTPAM privileges.

X'40' X'003B' The user wishes to join an existing environment with some other
operand value for ACCLSTS.

X'40' X'003C' The user wishes to join an existing environment with some other
operand value for ACCNUMB.

X'40' X'003F' The user wishes to join an existing environment with some other
operand value for MAXIOLN.

X'40' X'0040' The user wishes to join an existing environment with some other
operand value for EVENTNG.

X'40' X'0041' The user wishes to join an existing environment with some other event
item.

X'40' X'0046' The user wishes to join an existing environment, but is not connected
to the associated event item short ID.

X'40' X'0047' The scope of the event item is smaller than that of the FPAMACC
parameter list memory area.

X'40' X'0048' The task is already connected to the environment.

X'40' X'004A' The specified user memory area overlaps a DIV window.
This return code only occurs if the environment is made resident.

X'40' X'004B' The specified user memory area overlaps a FASTPAM user memory
area that is already in use. This return code is only output if a resident
environment or resident I/O area pool is being used.

X'40' X'004C' The request to allocate memory for FPAMACC parameter lists is not
complete.

X'40' X'005B' The ' ENAMP' call to create the memory pool for the access lists or
I/O area pool was not specified with 'FIXED=YES'.
This is required even if 'SCOPE=LOCAL' .

X'cc' X'bb' X'aaaa' Meaning

FPAMSRV - ENABLE IOAREA POOL Macros

560 U4250-J-Z125-12-76

FASTPAM function: ENABLE IOAREA POOL

This function can be used to create an I/O area pool or to connect the caller with an existing
pool.
A pool ID (FPAMIPID) is entered in the parameter list; this ID must then be used in subse-
quent OPEN calls. If the same parameter list is used for such calls, the ID will have already
been entered and need not be filled in by the user.

The ENAIPO function only evaluates the operands described below.

Format FCT=*ENAIPO

Operation Operands

FPAMSRV

[,IPOADDR=(elem1,elem2)]

MF=L

(Teil 1 von 2)

[,FCT=

*ENAIPO

addr

(r) 
 
 
 
 

]

[,IPONAME=

′name′
addr

(r) 
 
 
 
 

]

[,IPOSIZE=

size

addr

(r) 
 
 
 
 

]

[,RES=

*NOT_SPECIFIED
*NO
*YES
addr
(r)

 
 
 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

Macros FPAMSRV - ENABLE IOAREA POOL

U4250-J-Z125-12-76 561

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operand descriptions

FCT
Defines the FASTPAM function to be executed.

Only a direct specification is allowed for the MF=L form.

= *ENAIPO
Direct specification for the ENABLE IOAREA POOL function.

This function creates an I/O area pool or connects the user with an existing pool.
A pool ID (FPAMIPID) is entered in the parameter list; this ID must then be used in
subsequent OPEN calls. If the same parameter list is used for such calls, the ID will
have already been entered and need not be taken into account.

= addr
Symbolic address of a 1-byte field containing the value for the ENABLE IOAREA POOL
function to be executed.

= (r)
Register containing the value for the ENABLE IOAREA POOL function.

IPOADDR
Defines the location of the I/O area pool in a data space or a program space by means of
a list of 2 elements (see the “Executive Macros” manual [2]).

= elem1
Specifies the 4K-aligned starting address of the memory area in the data space or
program space. If this area is created in resident memory, it must not overlap with the
memory area of some other I/O area pool, with the parameter list area of an
environment, or a DIV window and must be requested beforehand (REQM, REQMP...).

If the area lies in a memory pool, the memory pool must be one that was created by
using the ENAMP macro with the operand FIXED=YES.

Operation Operands

(Teil 2 von 2)

MF=D[,PREFIX=
F

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
F

pre 
 
 

][,MACID=
PAM

macid 
 
 

]

FPAMSRV - ENABLE IOAREA POOL Macros

562 U4250-J-Z125-12-76

Only the symbolic address is allowed for the MF=L form, but no symbolic names may
be used within a DSECT, since its address is not known until runtime.

elem1 has the following format:

where:

addr1 is the symbolic starting address of the I/O area pool in the data or program
space.

(r1) is a register containing the starting address of the I/O area pool in the data
or program space.

= elem2
Identifies the address space.
elem2 = 0: the I/O area pool lies in the program address space.
elem2 î 0: the I/O area pool lies in a data space with ALET <elem2>
(ALET stands for Access List Entry Token, i.e a pointer to an entry in the access list; see
the “Executive Macros” manual [2] for details). Note that only non-resident data spaces
are currently supported.

Only a direct specification is allowed for the MF=L form.

elem2 has the following format:

where:

nmbr is the numeric value of the ALET or 0.

addr2 is the symbolic address of a 4-byte field containing the ALET or 0 (binary).

(r2) is a register containing the ALET or 0.

elem1 =
addr

(r1) 
 
 

elem2 =

addr2

nmbr

(r2) 
 
 
 
 

Macros FPAMSRV - ENABLE IOAREA POOL

U4250-J-Z125-12-76 563

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

IPONAME
Designates the name of the I/O area pool.

Only a direct specification is allowed for the MF=L form.

= 'name'
Name of the I/O area pool:
1 Î 'name' Î 54 characters.
Naming conventions:
1st position: a letter or the special characters # and @
2nd - 54th position: any combination from the character set (A,...,Z,0,...,9,$,#,@).
The name is terminated by the first blank (X'40')
The name must be enclosed in single quotes.

= addr
Symbolic address of a 54-byte field containing the name of the I/O area pool.

= (r)
Register that holds the address of a 54-byte field containing the name of the I/O area
pool.

IPOSIZE
Indicates the size of the memory area for the I/O area pool in units of 4 Kbytes. This area
should have already been created with the appropriate size.

Only a direct specification is allowed for the MF=L form.

= size
Size of the memory area for the I/O area pool in 4-Kbyte units: 1 Î size Î 219.

= addr
Symbolic address of a 4-byte field containing the size of the memory area for the
I/O area pool in units of 4 Kbytes.

= (r)
Register containing the size of the memory area in units of 4 Kbytes.

MACID
See the description under the format FCT=*ENAENV on page 556.

MF
The forms of the MF operand are described in detail in the appendix, page 865.

PARAM
See the description under the format FCT=*ENAENV on page 556.

FPAMSRV - ENABLE IOAREA POOL Macros

564 U4250-J-Z125-12-76

PREFIX
See the description under the format FCT=*ENAENV on page 557.

RES
Specifies whether the I/O area pool is to be made resident.

Only a direct specification is allowed for the MF=L form.

= *NOT_SPECIFIED
The I/O area pool already exists, and the user wishes to join it, regardless of whether
or not it was made resident.

= *YES
The I/O area pool is to be created in resident memory.
In this case, a check is performed to determine whether the user ID has the required
FASTPAM authorization and whether the number of resident pages requested in the
program call (user catalog: “RESIDENT-PAGES” or “CLASSII”) is sufficient for the
I/O area pool. If the result of the check is negative, the user receives the return code
“FPAMNORE”, and the I/O area pool is made non-resident.

Space in data spaces is provided only on a non-resident basis.

= *NO
The I/O area pool is not to be created in resident memory.

= addr
Symbolic address of a 1-byte field containing the value for RES.

= (r)
Register containing the value for RES.

Macros FPAMSRV - ENABLE IOAREA POOL

U4250-J-Z125-12-76 565

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Possible return codes of the FASTPAM function FCT=*ENAIPO

Standard
header:

The following return codes are passed in the standard
header on executing the FPAMSRV macro:
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully.

X'01' X'0002' Function not executed.
Invalid name of I/O area pool.

X'01' X'0007' Function not executed.
Invalid memory address of I/O area pool.

X'01' X'0008' Function not executed.
 Invalid size of I/O area pool.

X'01' X'0012' Function not executed.
– Invalid specification for RES
– NOT_SPECIFIED was entered for RES, but the specified

environment does not exist.

X'20' X'0028' Function not executed.
System error. Run system diagnostics.

X'40' X'0032' The environment or the I/O area pool could not be created in resident
memory.
The application system can still be used for testing, but without the
benefits of FASTPAM performance. Subcode2 specifies the cause of
the error.

X'01' X'40' X'0032' The user ID of the task that created the environment or I/O area pool
does not have the required FASTPAM authorization.
Response: inform the system administrator.

X'02' X'40' X'0032' Not enough room in actual memory.

X'03' X'40' X'0032' The amount of resident main memory allocated at the start of the
program is not sufficient.

X'04' X'40' X'0032' Connection to a nonresident environment or a nonresident I/O area
pool.

X'05' X'40' X'0032' This FASTPAM version only supports non-resident data spaces.

X'40' X'0035' An I/O operation is being executed on the memory pages that are to be
fixed during execution of the *ENAENV/*ENAIPO function.
This return code only occurs when creating the environment or I/O area
pool. There is no restriction on I/Os when joining an existing
environment or I/O area pool.

X'40' X'0037' System resource bottleneck.
Response: inform the system administrator.

FPAMSRV - ENABLE IOAREA POOL Macros

566 U4250-J-Z125-12-76

X'40' X'0038' The named FASTPAM resource can be enabled by TPR tasks only.

X'40' X'0039' The named FASTPAM resource can only be enabled by tasks of an ID
with FASTPAM privileges.

X'40' X'003D' The user wishes to join an existing I/O area pool with some other
operand value for IPOADDR.

X'40' X'003E' The user wishes to join an existing I/O area pool with some other
operand value for IPOSIZE.

X'40' X'0049' The task is already connected to the I/O area pool.

X'40' X'004A' The specified user memory area overlaps a DIV window. This return
code only occurs if the environment is made resident.

X'40' X'004B' The specified user memory area overlaps a FASTPAM user memory
area that is already in use.
This return code is only output if a resident environment or resident
I/O area pool is being used.

X'40' X'0057' The request to allocate memory for the I/O area pool is not complete.

X'40' X'005B' The ' ENAMP' call to create the memory pool for the access lists or
I/O area pool was not specified with 'FIXED=YES'.
This is required even if 'SCOPE=LOCAL'.

X'cc' X'bb' X'aaaa' Meaning

Macros FPAMSRV - OPEN

U4250-J-Z125-12-76 567

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

FASTPAM function: OPEN

This function can be used to open a PAM file with the short IDs returned by ENABLE
ENVIRONMENT and ENABLE IOAREA POOL.
A short ID (FPAMOPID) is returned in the parameter list. This ID must be copied to the
FPAMACC parameter lists for all following accesses to the file.

The OPEN function only evaluates the operands described below.

Format FCT=*OPEN

Operation Operands

FPAMSRV

(Teil 1 von 2)

[,FCT=

*OPEN

addr

(r) 
 
 
 
 

]

[,ENVID=

nmbr

addr

(r) 
 
 
 
 

]

[,IPOID=

nmbr

addr

(r) 
 
 
 
 

]

[,LINK=

′name′
addr

(r) 
 
 
 
 

]

[,FILE=

′pathname′
addr

(r) 
 
 
 
 

]

[,SHARUPD=

*NO
*YES

addr
(r)

 
 
 
 
 
 
 

]

FPAMSRV - OPEN Macros

568 U4250-J-Z125-12-76

MF=L

Operation Operands

(Teil 2 von 2)

[,MODE=

*INPUT
*INOUT
*OUTIN

addr
(r)

 
 
 
 
 
 
 
 
 

]

[,EVENTNG=

*NO
*YES
addr
(r)

 
 
 
 
 
 
 

]

[,BLKSIZE=

size

addr

(r) 
 
 
 
 

]

[,ENV=

*HOST

*XCS
addr
(r)

 
 
 
 
 
 
 

]

[,LARGE_FILE=

*FORBIDDEN

*ALLOWED
adr
(r)

 
 
 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
F

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
F

pre 
 
 

][,MACID=
PAM

macid 
 
 

]

Macros FPAMSRV - OPEN

U4250-J-Z125-12-76 569

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operand descriptions

BLKSIZE
Defines the block size for following I/O operations in 4K units. The value specified for
BLKSIZE must not exceed the maximum value that was defined for the MAXIOLN
parameter in the ENABLE ENVIRONMENT function.

Only a direct specification is allowed for the MF=L form.

= size
Specifies the block size in 4K units: 1 Î size Î 8

= addr
Symbolic address of a 1-byte field containing the block size in 4K units (binary).

= (r)
Register containing the block size in 4K units.

ENV
Affects the compatibility of parallel openers dependent on their execution location
(cf. “Compatibility matrix: FASTPAM with UPAM/FASTPAM/DIV” on page 69).

= *HOST
The maximum permissible parallelism is limited to openers running on the same host.

= *XCS
The openers can run in different hosts in an XCS network without restricting the
compatibility (e.g. write operations with SHARUPD=*YES can run in parallel).

= addr
Symbolic address of a 1-byte field containing the value for ENV.

= (r)
Register containing the value for ENV.

ENVID
Designates the short ID of the environment with which the file is to be opened. If the same
parameter list is used as for ENABLE ENVIRONMENT, the short ID will have already been
entered in the parameter list (FPAMENEV) and need not be taken into account.

The ENVID specification is not allowed for the MF=L form.

= nmbr
Direct entry of the short ID as a decimal numeric value.

FPAMSRV - OPEN Macros

570 U4250-J-Z125-12-76

=addr
Address of a 4-byte field containing the short ID.

=(r)
Register containing the short ID.

EVENTNG
Determines whether the end of a job is reported to the user via the eventing mechanism
when files are accessed asynchronously (see also the section on “FASTPAM functions,
eventing” in the “Introductory Guide to DMS” [1]).

Only a direct specification is allowed for the MF=L form.

= *YES
Indicates that the user wishes to work with eventing. This value will only be accepted if
EVENTNG=*YES was specified when creating the environment.

= *NO
Indicates that the user does not wish to work with eventing.

= addr
Symbolic address of a 1-byte field containing the value for EVENTNG.

= (r)
Register containing the value for EVENTNG.

FCT
Defines the FASTPAM function to be executed.

Only a direct specification is allowed for the MF=L form.

= *OPEN
Direct specification of the OPEN function.
This function can be used to open a PAM file with the short IDs returned by ENABLE
ENVIRONMENT and ENABLE IOAREA POOL.
A short ID (FPAMOPID) is returned in the parameter list. This ID must be entered in the
FPAMACC parameter lists for all following accesses to the file.

= addr
Symbolic address of a 1-byte field with the value for the OPEN function.

= (r)
Register containing the value for the OPEN function.

Macros FPAMSRV - OPEN

U4250-J-Z125-12-76 571

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

FILE
Specifies the path name of the file. The FILE specification is not evaluated if a value has
been specified for the LINK operand.

Only a direct specification is allowed for the MF=L form.

= 'pathname'
<c-string 1..54: filename 1..54>.
The name must be enclosed in single quotes.

= addr
Address of a 54-byte field containing the path name.

= (r)
Register containing the field with the address of the path name.

IPOID
Designates the short ID of the I/O area pool with which the file is to be opened. If the same
parameter list is used as for ENABLE IOAREA POOL, the short ID will have already been
entered in the parameter list (and is hence not required).

Only a direct specification is allowed for the MF=L form.

= nmbr
Short ID of the I/O area pool as a decimal numeric value.

= addr
Address of a 4-byte field containing the short ID.

= (r)
Register containing the short ID.

LARGE_FILE
Specifies whether the file that is to be opened can grow to become a “large file” with a file
size Ï 32 GB.

Default value: LARGE_FILE = *FORBIDDEN

In the case of MF=L, only direct specification is permitted.

= *FORBIDDEN
The file may not become a “large file”.

= ALLOWED
The file may become a “large file”.

FPAMSRV - OPEN Macros

572 U4250-J-Z125-12-76

= addr
The address of an 8-byte field that contains the value for LARGE_FILE.

= (r)
Register containing the address of an 8-byte field with the value for LARGE_FILE.

LINK
Specifies the file link name.

Only a direct specification is allowed for the MF=L form.

= 'name'
File link name with: <c-string 1..8> (enclosed in single quotes)

If the file link name is to be accessed via the command interface it must correspond to
the data type <structured_name 1..8> (see the “Commands” manual [3]).

= addr
Address of an 8-byte field containing the file link name.

= (r)
Register containing the address of the field with the file link name.

MACID
See the description under the format FCT=*ENAENV on page 556.

MF
The forms of the MF operand are described in detail in the appendix on page 865.

MODE
Defines the OPEN mode (see the sections on “Multiuser mode on one computer” on
page 68 above and “FASTPAM functions, multiuser mode...” in the “Introductory Guide to
DMS” [1]).

Only a direct specification is allowed for the MF=L form.

= *INPUT
The file can only be read.
Parallel INPUT opens are possible, even with the UPAM and DIV access methods,
regardless of the SHARUPD mode.
The file must exist, i.e. must have been opened once with OUTIN.

Macros FPAMSRV - OPEN

U4250-J-Z125-12-76 573

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

= *INOUT
The file can also be written to.
The SHARUPD mode and ENV operand determine whether parallel opens are
possible.
The file must exist, i.e. must have been opened once with OUTIN.

= *OUTIN
The file can also be written to.
It is, however, recreated, i.e. will be empty after the OPEN.
The SHARUPD mode and DIV operand determine whether parallel opens are possible.
In multi-user mode (SHARUPD=*YES), any user who wishes to open the file with
MODE=*OUTIN must always be the first user to do so; otherwise, access will be
denied.

= addr
Symbolic address of a 1-byte field containing the value for the OPEN mode.

= (r)
Register containing the value for the OPEN mode.

PARAM
See the description under the format FCT=*ENAENV on page 556.

PREFIX
See the description under the format FCT=*ENAENV on page 557.

SHARUPD
Controls multi-user mode (see also the section on “FASTPAM functions, multi-user mode...”
in the “Introductory Guide to DMS” [1]).

Only a direct specification is allowed for the MF=L form.

= *NO
The file can be concurrently read by more than one user (MODE=*INPUT) or can be
written to by exactly one user (MODE=*INOUT | *OUTIN).

= *YES
The file can be concurrently read and written by multiple users.

FPAMSRV - OPEN Macros

574 U4250-J-Z125-12-76

Notes

FASTPAM does not provide any “block-locking” mechanism (LOCK/UNLOCK
functions). An appropriate locking mechanism must therefore be supplied by the
user. Concurrent access by UPAM applications must be synchronized differently.

The file size is checked whenever the allocator is called.
If this check indicates a file size Ï 32 GB and the attribute
LARGE_FILE=*FORBIDDEN is set in the associated FCB or the attribute
EXCEED-32GB=*FORBIDDEN is set in the TFT then processing is canceled.
In this case, FASTPAM returns the code X'00400145' in its local parameter list
FPAMACC(I).

= addr
Symbolic address of a 1-byte field containing the value for SHARUPD.

= (r)
Register containing the value for SHARUPD.

Possible return codes of the FASTPAM function FCT=*OPEN

Standard
header:

The following return codes are passed in the standard
header on executing the FPAMSRV macro:
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully.

X'01' X'0009' Function not executed.
Invalid specification for SHARE UPDATE max. 4K or 32K

X'01' X'000B' Function not executed.
Invalid eventing.

X'01' X'000C' Function not executed.
Invalid specification for MODE

X'01' X'000E' Function not executed. Invalid specification for logical block length
(BLKSIZE).

Note
The BLKSIZE is specified in 2-Kbyte units in the ADD-FILE-LINK
command; the value specified there is therefore equivalent to half the
block size specified in the FASTPAM OPEN.

X'01' X'000F' Function not executed.
Invalid short ID for environment.

X'01' X'0010' Function not executed.
Invalid short ID for I/O area pool.

Macros FPAMSRV - OPEN

U4250-J-Z125-12-76 575

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

X'01' X'0014' Function not executed.
Invalid ENV specification.

X'01' X'0015' Function not executed.
Invalid LARGE_FILE specification.

X'20' X'0028' Function not executed.
System error. Run system diagnostics.

X'40' X'0033' General DMS error during OPEN/CLOSE. The DMS return code is
passed in the field FPAMDMSC.
Response: evaluate DMS return code.

X'40' X'0037' System resource bottleneck.
Response: inform the system administrator.

X'40' X'0042' The value specified for BLKSIZE in the FASTPAM OPEN does not
match the value in the catalog entry.

X'40' X'004D' The named file is not a PAM file.

X'40' X'0050' RFA is not supported by FASTPAM.

X'40' X'0051' SPD is not supported by FASTPAM.

X'40' X'0052' PPD is not supported by FASTPAM.

X'40' X'0053' Tape files are not supported by FASTPAM.

X'40' X'0054' *DUMMY is not supported by FASTPAM.

X'40' X'0055' The specified secondary allocation is too small for a logical block.

X'40' X'0056' An unprivileged user has specified the short ID of an environment or
I/O area pool that was created by a privileged user.

X'40' X'0058' FASTPAM only supports files with the attribute 'BLKCTRL = NO'.

X'40' X'005A' 'WRCHK=YES' was specified in a call to FILE.

X'cc' X'bb' X'aaaa' Meaning

FPAMSRV - CLOSE Macros

576 U4250-J-Z125-12-76

FASTPAM function: CLOSE

This function can be used to close a PAM file. The file to be closed is identified by the short
ID (OPENID) that was returned by OPEN.

The CLOSE function evaluates only the function operands described below.

Format FCT=*CLOSE

Operation Operands

FPAMSRV

MF=L

[,FCT=

*CLOSE

addr

(r) 
 
 
 
 

]

[,OPENID=

nmbr

addr

(r) 
 
 
 
 

]

[,LASTBLK=

nmbr

addr

(r) 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
F

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
F

pre 
 
 

][,MACID=
PAM

macid 
 
 

]

Macros FPAMSRV - CLOSE

U4250-J-Z125-12-76 577

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operand descriptions

FCT
Defines the FASTPAM function to be executed.

Only a direct specification is allowed for the MF=L form.

= *CLOSE
Direct specification of the “Close file” function.

This function can be used to close a PAM file by calling it with the short ID (OPENID)
that was returned by OPEN.

= addr
Symbolic address of a 1-byte field containing the value for the CLOSE function.

= (r)
Register containing the value for the CLOSE function.

LASTBLK
This parameter allows the user to explicitly set the last logical block of the file, provided the
user has opened the file with MODE=*INOUT/*OUTIN and SHARUPD=*NO. The specified
block must lie within the file.

Only a direct specification is allowed for the MF=L form.

= nmbr
Direct entry of a decimal numeric value for the last 4K block of the file.

= addr
Symbolic address of a 4-byte field containing the numeric value (binary) for the last
 4-Kbyte-block of the file.

= (r)
Register containing the numeric value for LASTBLK.

MACID
See the description under the format FCT=*ENAENV on page 556.

MF
The forms of the MF operand are described in detail in the appendix on page 865.

PARAM
See the description under the format FCT=*ENAENV on page 556.

FPAMSRV - CLOSE Macros

578 U4250-J-Z125-12-76

PREFIX
See the description under the format FCT=*ENAENV on page 557.

OPENID
Refers to the short ID of the OPEN for which this CLOSE function is to be executed.
If the same parameter list is used as for the OPEN, the short ID need not be specified, since
it will already be contained in the FPAMOPID field of the parameter list.

Only a direct specification is allowed for the MF=L form.

= nmbr
Direct entry of a decimal numeric value for the OPENID.

= addr
Address of a 4-byte field containing the short ID.

= (r)
Register containing the short ID.

Possible return codes of the FASTPAM function FCT=*CLOSE

Standard
header:

The following return codes are passed in the standard
header on executing the FPAMSRV macro:
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully.

X'01' X'0011' Function not executed.
Invalid short ID for the OPEN

X'01' X'0013' Function not executed.
Invalid specification for the last block.
The CLOSE operation is completed, but for updating the last-page
pointer.

X'20' X'0028' Function not executed.
System error. Run system diagnostics.

X'40' X'0033' General DMS error during OPEN/CLOSE. The DMS return code is
passed in the field FPAMDMSC.
Response: evaluate DMS return code.

X'40' X'004E' When calling FPAMSRV with the *CLOSE function, the operand
LASTBLK was specified. This operand is ignored, since the file was
opened with MODE=*INPUT or SHARUPD=*YES.

X'40' X'0059' A TU task is using a TPR-OPEN-ID.

Macros FPAMSRV - DISABLE IOAREA POOL

U4250-J-Z125-12-76 579

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

FASTPAM function: DISABLE IOAREA POOL

This function removes the link between the user and the I/O area pool. If the function is
called by the last user, the I/O area pool is disabled. The I/O area pool is addressed by the
short ID that is returned by ENABLE IOAREA POOL.

The DISIPO function evaluates only the function operands described below.

Format FCT=*DISIPO

Operation Operands

FPAMSRV

MF=L

[,FCT=

*DISIPO

addr

(r) 
 
 
 
 

]

[,IPOID=

nmbr

addr

(r) 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
F

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
F

pre 
 
 

][,MACID=
PAM

macid 
 
 

]

FPAMSRV - DISABLE IOAREA POOL Macros

580 U4250-J-Z125-12-76

Operand descriptions

FCT
Defines the FASTPAM function to be executed.

Only a direct specification is allowed for the MF=L form.

= *DISIPO
Direct specification of the DISABLE IOAREA POOL function.

This function removes the link between the user and the I/O area pool. If the function is
called by the last user, the I/O area pool is disabled. The I/O area pool is addressed by
the short ID that is returned by ENABLE IOAREA POOL.

This function will not be executed if files using the I/O area pool are still open (return
code FPAMOFI).

= addr
Symbolic address of a 1-byte field containing the value for the DISABLE IOAREA POOL
function.

= (r)
Register containing the value for the DISABLE IOAREA POOL function.

IPOID
Designates the short ID of the I/O area pool to be disconnected or disabled.
If the same parameter list is used as for ENABLE IOAREA POOL, the short ID need not be
specified, since it will already be contained in the FPAMIPID field of the parameter list.

Only a direct specification is allowed for the MF=L form.

= nmbr
Direct entry of a decimal numeric value for the short ID of the I/O area pool.

= addr
Address of a 4-byte field containing the short ID of the I/O area pool.

= (r)
Register containing the short ID of the I/O area pool.

MACID
See the description under the format FCT=*ENAENV on page 556.

MF
The forms of the MF operand are described in detail in the appendix on page 865.

Macros FPAMSRV - DISABLE IOAREA POOL

U4250-J-Z125-12-76 581

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

PARAM
See the description under the format FCT=*ENAENV on page 556.

PREFIX
See the description under the format FCT=*ENAENV on page 557.

Possible return codes of the FASTPAM function FCT=*DISIPO

Standard
header:

The following return codes are passed in the standard
header on executing the FPAMSRV macro:
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully.

X'01' X'0010' Function not executed.
Invalid short ID for the I/O area pool

X'20' X'0028' Function not executed.
System error. Run system diagnostics.

X'40' X'0036' The *DISIPO/*DISENV function cannot be executed, since files
opened with the corresponding I/O area pool or environment still exist.

X'40' X'0056' A TU user is attempting to disable a FASTPAM I/O area pool created
by a privileged user.

FPAMSRV - DISABLE ENVIRONMENT Macros

582 U4250-J-Z125-12-76

FASTPAM function: DISABLE ENVIRONMENT

This function removes the link between the user and the environment. If the function is
called by the last user, the environment is disabled. The environment is addressed by the
short ID that is returned by ENABLE ENVIRONMENT.

The DISENV function evaluates only the function operands described below.

Format FCT=*DISENV

Operation Operands

FPAMSRV

MF=L

[,FCT=

*DISENV

addr

(r) 
 
 
 
 

]

[,ENVID=

nmbr

addr

(r) 
 
 
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

MF=D[,PREFIX=
F

pre 
 
 

]

MF=
C

M  
 
 

[,PREFIX=
F

pre 
 
 

][,MACID=
PAM

macid 
 
 

]

Macros FPAMSRV - DISABLE ENVIRONMENT

U4250-J-Z125-12-76 583

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operand descriptions

ENVID
Designates the short ID of the environment to be disconnected or disabled. If the same
parameter list is used as for ENABLE ENVIRONMENT, the short ID need not be specified,
since it will already be contained in the FPAMENEV field of the parameter list.

Only a direct specification is allowed for the MF=L form.

=nmbr
Direct entry of a decimal numeric value for the short ID of the environment.

=addr
Address of a 4-byte field containing the short ID of the environment.

=(r)
Register containing the short ID of the environment.

FCT
Defines the FASTPAM function to be executed.

Only a direct specification is allowed for the MF=L form.

= *DISENV
Direct specification of the DISABLE ENVIRONMENT function.

This function removes the link between the user and the environment. If the function is
called by the last user, the environment is disabled. The environment is addressed via
the short ID that is returned by ENABLE ENVIRONMENT.

This function will not be executed if there are open files which are still using the
environment (return code FPAMOFI).

Only a direct specification is allowed for the MF=L form.

= addr
Symbolic address of a 1-byte field containing the value for the DISABLE
ENVIRONMENT function.

= (r)
Register containing the value for the DISABLE ENVIRONMENT function.

MACID
See the description under the format FCT=*ENAENV on page 556.

MF
The forms of the MF operand are described in detail in the appendix, page 865.

FPAMSRV - DISABLE ENVIRONMENT Macros

584 U4250-J-Z125-12-76

PARAM
See the description under the format FCT=*ENAENV on page 556.

PREFIX
See the description under the format FCT=*ENAENV on page 557.

Possible return codes of the FASTPAM function FCT=*DISENV

Standard
header:

The following return codes are passed in the standard
header on executing the FPAMSRV macro:
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' Function executed successfully.

X'01' X'000F' Function not executed.
Invalid environment short ID.

X'20' X'0028' Function not executed.
System error. Run system diagnostics.

X'40' X'0036' The *DISIPO/*DISENV function cannot be executed, since files
opened with the corresponding I/O area pool or environment still exist.

X'40' X'0056' A TU user is attempting to disable a FASTPAM environment created by
a privileged user (TPR).

Macros FPAMSRV

U4250-J-Z125-12-76 585

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Return codes of the FPAMSRV macro

The field names and the EQU instructions for return codes which are generated by the C
or D form of the macro begin with the string FPAM by default. This string can be changed
by means of PREFIX and MACID.

The return codes are placed in the header of the parameter list (standard header):

– The main return code, in a half-word with the name FPAMMRET.
– Subcode1, in a byte with the name FASTSR1.

Subcode1 describes error classes which allow the caller to respond to similar error
situations.
The caller can refer back to the main code as well as to subcode1.

– Subcode2, in a byte with the name FPAMSR2.
Subcode2 specifies the individual main codes more precisely.

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

If the return codes cannot be placed in the header (because it is not accessible, for
example), the calling program is terminated with an error message, and the STXIT event
for an unrecoverable program error is generated.

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

In the following section, the main return codes are assigned to the appropriate subcode1
classes and are described more precisely via subcode2.

FPAMSRV Macros

586 U4250-J-Z125-12-76

Standard
header:

The following return codes are passed in the standard
header on executing the FPAMSRV macro:
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE)

c c b b a a a a

X'cc' X'bb' X'aaaa' meaning

X'00' X'0000' Function executed successfully.

X'01' X'0001' Function not executed.
Invalid environment name.

X'01' X'0002' Function not executed.
Invalid name for I/O area pool.

X'01' X'0005' Function not executed. I
Invalid address of operand list.

X'01' X'0006' Function not executed.
Invalid number of operand lists.

X'01' X'0007' Function not executed.
Invalid memory address of I/O area pool.

X'01' X'0008' Function not executed.
Invalid size of I/O area pool.

X'01' X'0009' Function not executed.
Invalid specification for SHARE UPDATE.

X'01' X'000A' Function not executed.
Invalid specification for MAXIOLN.

X'01' X'000B' Function not executed.
Invalid specification for EVENTNG.

X'01' X'000C' Function not executed.
Invalid specification for MODE.

X'01' X'000D' Function not executed.
Invalid event item short ID.

X'01' X'000E' Function not executed.
Invalid specification for logical block length (BLKSIZE).

Note
The BLKSIZE is specified in 2K units in the ADD-FILE-LINK command;
the value specified there is therefore equivalent to half the block size
specified in the FASTPAM OPEN.

X'01' X'000F' Function not executed.
Invalid environment short ID

Macros FPAMSRV

U4250-J-Z125-12-76 587

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

X'01' X'0010' Function not executed.
Invalid short ID for I/O area pool

X'01' X'0011' Function not executed.
Invalid OPEN short ID.

X'01' X'0012' Function not executed.
– Invalid specification for RES
– NOT_SPECIFIED was entered for RES, but the specified

environment does not exist.

X'01' X'0013' Invalid specification for the last block.
The CLOSE operation is completed, but for updating the last-page
pointer.

X'01' X'0014' Function not executed.
Invalid ENV specification

X'01' X'0015' Function not executed.
Invalid LARGE_FILE specification.

X'02' Function not executed.
The specified function is not available.

X'03' Function not executed.
The specified interface version is not supported.

X'20' X'0028' Function not executed.
System error. Run system diagnostics.

X'40' X'0032' The environment or I/O area pool could not be created in resident
memory.
The application system can still be used for testing, but without the
benefits of FASTPAM performance.
Subcode2 specifies the cause of the error.

X'01' X'40' X'0032' The user ID of the task that created the environment or I/O area pool
does not have the required FASTPAM authorization. Response: inform
the system administrator.

X'02' X'40' X'0032' Not enough room in actual memory.

X'03' X'40' X'0032' The amount of resident main memory allocated at the start of the
program is not sufficient.

X'04' X'40' X'0032' Connection to a non-resident environment or a non-resident I/O area
pool.

X'05' X'40' X'0032' This FASTPAM version only supports non-resident data spaces.

X'40' X'0033' General DMS error during OPEN/CLOSE. The DMS return code is
passed in the field FPAMDMSC.
Response: evaluate DMS return code.

X'cc' X'bb' X'aaaa' meaning

FPAMSRV Macros

588 U4250-J-Z125-12-76

X'40' X'0035' An I/O operation is being executed on the memory pages that are to be
fixed during execution of the *ENAENV/*ENAIPO function. This return
code only occurs when creating the environment or I/O area pool.
There is no restriction on I/Os when joining an existing environment or
I/O area pool.

X'40' X'0036' The *DISIPO/*DISENV function cannot be executed, since files
opened with the corresponding I/O area pool or environment still exist.

X'40' X'0037' System resource bottleneck.
Response: inform the system administrator.

X'40' X'0038' The named FASTPAM resource can be enabled by TPR tasks only.

X'40' X'0039' The named FASTPAM resource can only be enabled by tasks of an ID
with FASTPAM privileges.

X'40' X'003B' The user wishes to join an existing environment with some other
operand value for ACCLSTS.

X'40' X'003C' The user wishes to join an existing environment with some other
operand value for ACCNUMB.

X'40' X'003D' The user wishes to join an existing environment with some other
operand value for IPOADDR.

X'40' X'003E' The user wishes to join an existing environment with some other
operand value for IPOSIZE.

X'40' X'003F' The user wishes to join an existing environment with some other
operand value for MAXIOLN.

X'40' X'0040' The user wishes to join an existing environment with some other
operand value for EVENTNG.

X'40' X'0041' The user wishes to join an existing environment with some other event
item.

X'40' X'0042' The value specified for BLKSIZE in the FASTPAM OPEN does not
match the value in the catalog entry.

X'40' X'0046' The user wishes to join an existing environment but is not connected to
the associated event item short ID.

X'40' X'0047' The scope of the event item is smaller than that of the FPAMACC
parameter list memory area.

X'40' X'0048' The task is already connected to the environment.

X'40' X'0049' The task is already connected to the I/O area pool.

X'40' X'004A' The specified user memory area overlaps a DIV window.
This return code only occurs if the environment is made resident.

X'40' X'004B' The specified user memory area overlaps a FASTPAM user memory
area that is already in use. This return code is only output if a resident
environment or resident I/O area pool is being used.

X'cc' X'bb' X'aaaa' meaning

Macros FPAMSRV

U4250-J-Z125-12-76 589

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

X'40' X'004C' The request to allocate memory for FPAMACC parameter lists is not
complete.

X'40' X'004D' The named file is not a PAM file.

X'40' X'004E' When calling FPAMSRV with the *CLOSE function, the operand
LASTBLK was specified. This operand is ignored, since the file was
opened with MODE=*INPUT or SHARUPD=*YES.

X'40' X'0050' RFA is not supported by FASTPAM.

X'40' X'0051' SPD is not supported by FASTPAM.

X'40' X'0052' PPD is not supported by FASTPAM.

X'40' X'0053' Tape files are not supported by FASTPAM.

X'40' X'0054' *DUMMY is not supported by FASTPAM.

X'40' X'0055' The specified secondary allocation is too small for a logical block.

X'40' X'0056' A TU task is attempting to release a TPR-created FASTPAM resource
or to open a file by with such a resource.

X'40' X'0057' The request to allocate memory for the I/O area pool is not complete.

X'40' X'0058' FASTPAM only supports files with the attribute 'BLKCTRL = NO'.

X'40' X'0059' A TU task is using a TPR_OPEN_ID.

X'40' X'005A' 'WRCHK=YES' was specified in a call to FILE.

X'40' X'005B' The 'ENAMP' call to create the memory pool for the access lists or I/
O area pool was not specified with 'FIXED=YES'. This is required even
if 'SCOPE=LOCAL'.

X'cc' X'bb' X'aaaa' meaning

FPAMSRV Macros

590 U4250-J-Z125-12-76

Notes on return codes

Cause of return codes with subcode1 = X'01' (PARAMETER ERROR):

– The parameter in question was not specified correctly.
– In the case of operand values that can be overwritten by ADD-FILE-LINK, the operand

value set by this command is invalid. Only the values that can also be specified in the
OPEN are permitted.

If an error that affects the entire FPAMACC parameter list area or the I/O area pool is
detected (e.g. if only a part of the I/O area pool is located in a memory pool), return code
X'0005' (INVALID ADDRESS OF ACCESS LISTS) or X'0007' (INVALID NUMBER OF IOAREA
POOL) is output instead of X'0006' (INVALID ADDRESS OF ACCESS LISTS) or X'0008'
(INVALID SIZE OF IOAREA POOL).

Interdependencies of other functions

If the user attempts to free any of the memory areas that were made resident by the system
(when executing ENABLE ENVIRONMENT or ENABLE IOAREA POOL) before calling the
DISABLE function, the request will be denied by the corresponding RELM, RELMP or
DISMP function, and an appropriate return code will be issued.
A RELMP will also be denied for common memory pool areas that were defined as resident
FASTPAM areas by tasks other than the user's own task.

If the user attempts to free an event item that was specified in ENABLE ENVIRONMENT
before the DISABLE ENVIRONMENT function is executed, this request will also be rejected
by the corresponding DISABLE EVENT ITEM function (macro DISEI) with a return code.

A call to USER-CLOSE-ALL will not be effective for files opened with FASTPAM.

Macros FPAMSRV

U4250-J-Z125-12-76 591

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Layout of the parameter list

The following parameter list is issued by a FPAMSRV macro call:

FPAMSRV MF=D
1 STACK PRINT
1 PRINT NOGEN
2 *,##### PREFIX=F, MACID=PAM #####
1 #INTF REFTYPE=REQUEST,INTNAME=FPAMSRV,INTCOMP=002
1 FPAMPA DS 0F BEGIN of PARAMETERAREA _INOUT
1 FHDR MF=(C,FPAM),EQUATES=YES
2 DS 0A
2 FPAMFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 FPAMIFID DS 0A 0 INTERFACE IDENTIFIER
2 FPAMFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 FPAMFCT DS AL1 2 FUNCTION NUMBER
2 FPAMFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 FPAMRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 FPAMSRET DS 0AL2 4 SUB RETURN CODE
2 FPAMSR2 DS AL1 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode2 values as defined by convention:
2 FPAMR2OK EQU X'00' All correct, no additional info
2 FPAMR2NA EQU X'01' Successful, no action was necessary
2 FPAMR2WA EQU X'02' Warning, particular situation
2 FPAMSR1 DS AL1 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' - X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2 *
2 FPAMRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
2 FPAMRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'

FPAMSRV Macros

592 U4250-J-Z125-12-76

2 FPAMRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 FPAMRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 FPAMRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 FPAMRAER EQU X'04' ALIGNMENT ERROR
2 FPAMRIER EQU X'20' INTERNAL ERROR
2 FPAMRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 FPAMRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 FPAMRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 FPAMRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 FPAMRWLR EQU X'81' " LONG "
2 FPAMRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' - X'82'
2 FPAMRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 FPAMRDH EQU X'82' SS IN DELETE / HOLD
2 *
2 FPAMMRET DS 0AL2 6 MAIN RETURN CODE
2 FPAMMR2 DS AL1 6 MAIN RETURN CODE 2
2 FPAMMR1 DS AL1 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'00XXYYYY')
2 *
2 FPAMRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 FPAMFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 *
1 * SUB RETURN CODE2
1 *
1 FPAMPRIV EQU X'01' FASTPAM PRIVILEGE MISSING
1 FPAMRMS EQU X'02' REAL MEMORY SHORTAGE
1 FPAMULE EQU X'03' USER LIMIT EXCEEDED
1 FPAMENR EQU X'04' EXISTING NOT RESIDENT
1 FPAMDSA EQU X'05' DATA SPACE ADDRESS
1 *
1 * MAINCODE
1 *
1 FPAMMFSP EQU X'0000' FUNCTION SUCCESSFULLY PROCESSED = 0
1 FPAMIENN EQU X'0001' INVALID ENVIRONMENT NAME = 1
1 FPAMIIPN EQU X'0002' INVALID IOAREA POOL NAME = 2
1 FPAMIALA EQU X'0005' INVALID ADDRESS OF ACCESS LISTS = 5
1 FPAMIALN EQU X'0006' INVALID NUMBER OF ACCESS LISTS = 6
1 FPAMIIPA EQU X'0007' INVALID ADDRESS OF IOAREA POOL = 7
1 FPAMIIPS EQU X'0008' INVALID SIZE OF IOAREA POOL = 8
1 FPAMISUP EQU X'0009' INVALID SHARE UPDATE = 9

Macros FPAMSRV

U4250-J-Z125-12-76 593

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

1 FPAMIMAX EQU X'000A' INVALID MAXIMUM IO-LENGTH = 10
1 FPAMIEVN EQU X'000B' INVALID EVENTING = 11
1 FPAMIMOD EQU X'000C' INVALID MODE = 12
1 FPAMIEID EQU X'000D' INVALID EVENT-ITEM SHORT-ID = 13
1 FPAMIBLS EQU X'000E' INVALID BLOCKSIZE = 14
1 FPAMIENI EQU X'000F' INVALID ENVIRONMENT SHORT-ID = 15
1 FPAMIIPI EQU X'0010' INVALID IOAREA POOL SHORT-ID = 16
1 FPAMIOPI EQU X'0011' INVALID OPEN SHORT-ID = 17
1 FPAMIRES EQU X'0012' INVALID RESIDENT = 18
1 FPAMILBL EQU X'0013' INVALID LAST BLOCK = 19
1 FPAMIENV EQU X'0014' INVALID ENV-SPECIFICATION = 20
1 FPAMILRF EQU X'0015' INVALID LARGE_FILE-SPECIFICATION = 21
1 FPAMMIER EQU X'0028' INTERNAL ERROR = 40
1 FPAMNORE EQU X'0032' SPACE NOT RESIDENT = 50
1 FPAMDMSE EQU X'0033' DMS ERROR DURING OPEN/CLOSE = 51
1 FPAMRIO EQU X'0035' RUNNING IO = 53
1 FPAMOFI EQU X'0036' OPENED FILES = 54
1 FPAMSRES EQU X'0037' SHORTAGE OF RESOURCES = 55
1 FPAMTPR EQU X'0038' ENABLE_FROM_TPR_ONLY = 56
1 FPAMNPRI EQU X'0039' NO_PRIVILEGE_FOR_CONNECTION = 57
1 FPAMDAC@ EQU X'003B' DIFFERENT_ACCESS_LISTS_@ = 59
1 FPAMDAC# EQU X'003C' DIFFERENT_ACCESS_LISTS_# = 60
1 FPAMDIP@ EQU X'003D' DIFFERENT_IOAREA_POOL_@ = 61
1 FPAMDIPS EQU X'003E' DIFFERENT_IOAREA_POOL_SIZE = 62
1 FPAMDMAX EQU X'003F' DIFFERENT_MAXIOLEN = 63
1 FPAMDEVE EQU X'0040' DIFFERENT_EVENTING = 64
1 FPAMDEVI EQU X'0041' DIFFERENT_EVENT_ITEM = 65
1 FPAMDBC EQU X'0042' DIFFERENT_BLKSIZE_IN_CATALOG = 66
1 FPAMNEIC EQU X'0046' NO_EVENT_ITEM_CONNECTION = 70
1 FPAMEISS EQU X'0047' EVENT_ITEM_SCOPE_TO_SMALL = 71
1 FPAMENEX EQU X'0048' ENVIRONMENT_NAME_EXISTING = 72
1 FPAMINEX EQU X'0049' IOAREA_POOL_NAME_EXISTING = 73
1 FPAMODS EQU X'004A' OVERLAPPING_DIV_SPACE = 74
1 FPAMOFS EQU X'004B' OVERLAPPING_FASTPAM_SPACE = 75
1 FPAMALNA EQU X'004C' ACCESS_LISTS_NOT_ALLOCATED = 76
1 FPAMNPAF EQU X'004D' NO_PAM_FILE = 77
1 FPAMLBIN EQU X'004E' LAST BLOCK BUT INPUT = 78
1 FPAMRFA EQU X'0050' RFA_NOT_SUPPORTED = 80
1 FPAMSPD EQU X'0051' SPD_NOT_SUPPORTED = 81
1 FPAMPPD EQU X'0052' PPD_NOT_SUPPORTED = 82
1 FPAMTAPE EQU X'0053' TAPE_NOT_SUPPORTED = 83
1 FPAMDUMM EQU X'0054' DUMMY_FILE_NOT_SUPPORTED = 84
1 FPAMSECA EQU X'0055' SEC_ALLOCATION_TOO_SMALL = 85
1 FPAMTPRE EQU X'0056' TPR_ENVIRONMENT_OR_IOAREA_POOL = 86
1 FPAMIPAL EQU X'0057' IOAREA_POOL_NOT_ALLOCATED = 87
1 FPAMBLKN EQU X'0058' BLKCTRL_NOT_SUPPORTED = 88
1 FPAMTPRO EQU X'0059' TPR_OPEN_ID = 89
1 FPAMWRCN EQU X'005A' WRCHK_NOT_SUPPORTED = 90

FPAMSRV Macros

594 U4250-J-Z125-12-76

1 FPAMMPNF EQU X'005B' MEMORY_POOL_NOT_FIXED = 91
1 *
1 * &P.PAM FUNCTIONS:
1 *
1 FPAMENEV EQU 1 ENABLE ENVIRONMENT
1 FPAMDIEV EQU 2 DISABLE ENVIRONMENT
1 FPAMENIP EQU 3 ENABLE IOAREA POOL
1 FPAMDIIP EQU 4 DISABLE IOAREA POOL
1 FPAMOPEN EQU 5 OPEN FILE
1 FPAMCLOS EQU 6 CLOSE FILE
1 *
1 * INPUT/OUTPUT PARAMETER
1 *
1 FPAMENID DS F ENVIRONMENT SHORT-ID
1 FPAMIPID DS F IOAREA POOL SHORT-ID
1 FPAMOPID DS F OPEN SHORT-ID
1 *
1 * OUTPUT PARAMETER
1 *
1 FPAMDMSC DS XL4 DMS-CODE
1 *
1 * INPUT PARAMETER
1 *
1 FPAMENNA DS CL54 ENVIRONMENT NAME
1 FPAMIPNA DS CL54 IOAREA POOL NAME
1 FPAMLINK DS CL8 LINK
1 FPAMFILE DS CL54 FILENAME
1 FPAMLARF DS AL1 LARGE_FILE
1 FPAMFRBD EQU 0 LARGE_FILE=FORBIDDEN
1 FPAMALWD EQU 1 LARGE_FILE=ALLOWED
1 FPAMENV DS AL1 ENV
1 FPAMHOST EQU 1 ENV=HOST
1 FPAMXCS EQU 2 ENV=XCS
1 FPAMACLA DS A ADDRESS OF ACCESS LISTS
1 FPAMACLN DS F NUMBER OF ACCESS LISTS
1 FPAMOFF DS A ADDR. OF IOAREA POOL WITHIN ADDRESS SPACE
1 FPAMALET DS F ALET OF DATA SPACE
1 FPAMIPS DS F SIZE OF IOAREA POOL (4K)
1 FPAMEID DS F EVENT-ITEM SHORT-ID
1 FPAMLABL DS F LAST BLOCK NUMBER
1 FPAMMODE DS AL1 OPEN MODE
1 FPAMINPT EQU 1 MODE=INPUT
1 FPAMINOT EQU 2 MODE=INOUT
1 FPAMOUTI EQU 3 MODE=OUTIN
1 FPAMSUPD DS AL1 SHARE UPDATE
1 FPAMSUNO EQU 1 SHARUPD=NO
1 FPAMSUYE EQU 2 SHARUPD=YES
1 FPAMMAXL DS AL1 MAXIMUM IO-LENGTH

Macros FPAMSRV

U4250-J-Z125-12-76 595

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

1 FPAMMINS EQU 0 IO-LENGTH NOT SPECIFIED
1 FPAMMINI EQU 1 IO-LENGTH=4K
1 FPAMMAXI EQU 8 IO-LENGTH=32K
1 FPAMEVEN DS AL1 EVENTING
1 FPAMEVNS EQU 0 EVENTING=NOT_SPECIFIED
1 FPAMEVNO EQU 1 EVENTING=NO
1 FPAMEVYE EQU 2 EVENTING=YES
1 FPAMRESI DS AL1 RESIDENT
1 FPAMRENS EQU 0 RESIDENT=NOT_SPECIFIED
1 FPAMRENO EQU 1 RESIDENT=NO
1 FPAMREYE EQU 2 RESIDENT=YES
1 FPAMBLS DS FL1 BLOCKSIZE
1 FPAM# EQU *-FPAMPA LENGTH of PARAMETERAREA

FSTAT Macros

596 U4250-J-Z125-12-76

FSTAT – Request catalog information

Macro type: type S (E form, L form/C form/D form); see page 866

The FSTAT macro returns information on catalog entries. The user can request information
on one or more files, on file generations, or on file generation groups, as well as on all files
under a specified user ID.

Users may retrieve information on all files under their own user IDs and on all other users'
files that they are permitted to access (see the selection operands SHARE, BASACL,
OWNERAR, GROUPAR, OTHERAR, ACL, GUARDS and PROTACT).

The selection of files for which the user requires information can be made as follows:

– By specifying the path name. The catalog ID, user ID, and the fully or partially qualified
file name (with or without wildcards) serve as selection criteria.
If no path name is specified, all permanent files of the user's own user ID are selected
from the standard catalog of the local computer. Temporary files must be addressed
with the tempfile prefix (# or @).

– The files selected via the “pathname” can be restricted further by the user by means of
selection operands. Only those files which have the file attributes described by the
selection operands are selected. If no selection operand is specified or if the value ANY
(if allowed) is specified, the corresponding file attribute is not taken into account for the
selection.

The scope and structure of the information to be retrieved for the selected files and trans-
ferred to the output area can be defined by the user in the OUTPUT operand as follows:

– only the return information concerning macro execution (no information in the output
area)

– only the names of the selected files
– statistics (e.g. number of selected files for each type of volume)
– catalog information for each selected file.

Macros FSTAT

U4250-J-Z125-12-76 597

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

The output of catalog information can be restricted by the user to one or more information
blocks in which file attributes are grouped into logical units (CEINFO operand):

– default value: all information blocks (without FTAM information)
– history block
– security block
– status block
– backup block
– organization block
– allocation block
– volumes block
– volume extents block
– index-info-block
– FTAM information

The following sources of information can be selected by the user (see the FROM operand):

– the standard catalog of the user ID
– all catalogs of the local pubset
– VTOC of a private disk or of a Net-Storage volume

The FSTAT macro is supported in five different versions (see also the VERSION operand):

Default value: Version 0

This description of the FSTAT macro is based on the functionality of Version 3, which must
be explicitly specified in the macro as VERSION=4.
All deviations between the current version described here and the earlier versions 0 through
3 are listed in table “Variations in versions – VERSION=0/1/2/3/4” on page 664.

– Version 4
– Version 3
– Version 2
– Version 1
– Version 0

ï Version 800
ï Version 710

for BS2000 versions Ï BS2000/OSD-BC V9.0
for BS2000 versions Ï BS2000/OSD-BC V3.0
for BS2000 versions Ï BS2000/OSD-BC V1.0
for BS2000 versions Î V8.0
for BS2000 versions < V8.0

FSTAT Macros

598 U4250-J-Z125-12-76

Format

Operation Operands

FSTAT [pathname]

(Teil 1 von 11)

[,ACCCNT=

ANY

nmbr
(nmbr,[,])
(,nmbr)
(nmbr1,nmbr2)

 
 
 
 
 
 
 
 
 

]

[,ACCESS=

ANY

READ

WRITE 
 
 
 
 

]

[,ACL=

ANY

YES

NO 
 
 
 
 

]

[,ADMINFO=

*ANY

*NONE

<c-string 1..8> 
 
 
 
 

]

[,AVAIL=

*ANY

*STD

*HIGH 
 
 
 
 

]

[,BACKUP=

ANY

A

B

C

D

E

(list-of-backup)
 
 
 
 
 
 
 
 
 
 
 
 
 

]

Macros FSTAT

U4250-J-Z125-12-76 599

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operation Operands

(Teil 2 von 11)

[,BASACL=

ANY

NONE

YES 
 
 
 
 

]

[,BLKCNT=

nmbr
(nmbr[,])
(,nmbr)
(nmbr1,nmbr2)

 
 
 
 
 
 
 

]

[,BLKCTRL=

ANY

PAMKEY
DATA4K

DATA2K

DATA

NO
NONE
NK4
NK2
(list-of-blkctrl)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,CCS=

*ANY

*NONE

ccs-name 
 
 
 
 

]

[,CEINFO=

ALL

ALLOCATION

BACKUP

FTAM

HISTORY

INDEX-INFO

ORGANISATION

SECURITY

STATUS

VOLUMES

VOLUME-EXTENTS

(list-of-ceinfo)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

FSTAT Macros

600 U4250-J-Z125-12-76

Operation Operands

(Teil 3 von 11)

[,CRDATE=

ANY

NONE

date

date(time[,])

date(time1,time2)

(date[,])

(date(time)[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,DELDATE=

*ANY

*NONE

date

date(time[,])

date(time1,time2)

(date[,])

(date(time)[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,DISKWR=

ANY

IMMEDIATE

BY-CLOSE 
 
 
 
 

]

[,ENCRYPT=

*ANY

*NONE

*AES

*DES

(list-of-encrypt)
 
 
 
 
 
 
 
 
 

]

Macros FSTAT

U4250-J-Z125-12-76 601

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operation Operands

(Teil 4 von 11)

[,EXDATE=

ANY

NONE

date

date(time[,])

date(time1,time2)

(date[,])

(date(time)[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,EXTENTS=

ANY

nmbr

(nmbr[,])

(,nmbr)
(nmbr1,nmbr2)

 
 
 
 
 
 
 
 
 

]

[,FCBTYPE=

ANY

ISAM

BTAM

SAM

PAM

NONE

(list-of-fcbtype)
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,FILTYPE=

*ANY

*BS2000

*NODE 
 
 
 
 

]

[,FROM=

CATALOG

LOCALPVS

(vsn,device) 
 
 
 
 

]

FSTAT Macros

602 U4250-J-Z125-12-76

Operation Operands

(Teil 5 von 11)

[,FSIZE=

ANY

SIZE

nmbr
(nmbr[,])

(nmbr)

(nmbr1,nmbr2)
 
 
 
 
 
 
 
 
 
 
 

]

[,GEN=
NO

YES 
 
 

]

[,GROUPAR=

ANY

NO-ACCESS

access-list 
 
 
 
 

]

[,GUARDS=

*ANY

*NONE

*YES

([READ=

*ANY

*NONE

fname 
 
 
 
 

][,WRITE=

*ANY

*NONE

fname 
 
 
 
 

][,EXEC=

*ANY

*NONE

fname 
 
 
 
 

])

 
 
 
 
 
 
 
 
 
 
 

]

[,IOPERF=

ANY

STD
HIGH
VERY-HIGH
(list-of-ioperf)

 
 
 
 
 
 
 
 
 

]

[,IOUSAGE=

ANY

RDWRT
WRITE
READ
(list-of-iousage)

 
 
 
 
 
 
 
 
 

]

Macros FSTAT

U4250-J-Z125-12-76 603

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operation Operands

(Teil 6 von 11)

[,LADATE=

ANY

NONE

date
date(time[,])

date(time1,time2)

(date(time[,])
(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,LASTPAG=

ANY

nmbr
(nmbr[,])
(,nmbr)
(nmbr1,nmbr2)

 
 
 
 
 
 
 
 
 

]

[,LCDATE=

ANY

NONE

date

date(time[,])

date(time1,time2)

(date[,])

(date(time)[,])

(,date)

(,date(time))

(date1,date2)

(date1(time),date2)

(date1(time),date2(time))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,MANCLAS=

*ANY

*NONE

<c-string 1..8> 
 
 
 
 

]

FSTAT Macros

604 U4250-J-Z125-12-76

Operation Operands

(Teil 7 von 11)

[,MIGRATE=

ANY

ALLOWED

INHIBIT

FORBIDDEN

(list-of-migrate)
 
 
 
 
 
 
 
 
 

]

[,OTHERAR=

ANY

NO-ACCESS

access-list 
 
 
 
 

]

[,OUTAREA=(<list-of-elements-002>)]

[,OUTPUT=

RC-ONLY

CEINFO

FNAM-ONLY

STAT-LONG

STAT-SHORT

STAT-INFO
 
 
 
 
 
 
 
 
 
 
 

]

[,OWNERAR=

ANY

NO-ACCESS

access-list 
 
 
 
 

]

[,PASS=

ANY

NONE
EXPASS

RDPASS
WRPASS
(list-of-pass)

 
 
 
 
 
 
 
 
 
 
 

]

[,PASSW=
NO

YES 
 
 

]

Macros FSTAT

U4250-J-Z125-12-76 605

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operation Operands

(Teil 8 von 11)

[,PREFORM=

*ANY

*NONE

*K

*NK2

*NK4
(list-of-preform)

 
 
 
 
 
 
 
 
 
 
 

]

[,PROTACT=

ANY

LEVEL-0

LEVEL-1
LEVEL-2
(list-of-protact)

 
 
 
 
 
 
 
 
 

]

[,RELSPAC=

ANY

ALLOWED

IGNORED 
 
 
 
 

]

[,SHARE=

ANY

YES
NO

SPECIAL
(list-of-share)

 
 
 
 
 
 
 
 
 

]

[,SIZE=

ANY

FSIZE
nmbr

(nmbr[,])
(,nmbr)

(nmbr1,nmbr2)
 
 
 
 
 
 
 
 
 
 
 

]

FSTAT Macros

606 U4250-J-Z125-12-76

[,STOUTAR=(<list-of-elements-002>)]

Operation Operands

(Teil 9 von 11)

[,SLEVEL=

ANY

S0
S1
S2
(list-of-slevel)

 
 
 
 
 
 
 
 
 

]

[,SORT=
FILENAM

NO 
 
 

]

[,STATE=

ANY

NOCLOS

CLOSED

CACHED

NOT-CACHED

CACHE-NOT-SAVED

OPEN-ALLOWED

NO-OPEN-ALLOWED

REPAIR-NEEDED

DEFECT-REPORTED

(list-of-state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

[,STOCLAS=

*ANY

*NONE

<c-string 1..8> 
 
 
 
 

]

[,STOTYPE=

*ANY

*PUBSPACE

*NETSTOR 
 
 
 
 

]

[,SUPPORT=

ANY

PUBLIC
PRDISC
TAPE
(list-of-support)

 
 
 
 
 
 
 
 
 

]

Macros FSTAT

U4250-J-Z125-12-76 607

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operation Operands

(Teil 10 von 11)

[,S0MIGR=

*ANY

*ALLOWED

*FORBIDDEN

(list-of-s0migr) 
 
 
 
 
 
 

]

[,TIMBASE=
*UTC

*LTI 
 
 

]

[,TYPE=

ANY

FILE
FGG
PLAM
(list-of-type)

 
 
 
 
 
 
 
 
 

]

[,USRINFO=

*ANY

*NONE

<c-string 1..8> 
 
 
 
 

]

[,VOLSET=

*ANY

*CONTROL

<c-string 1..4> 
 
 
 
 

]

[,VOLUME=
*ANY

vsn 
 
 

]

[,VTOC=
NO

YES 
 
 

]

[,WORKFIL=

*ANY

*NO

*YES 
 
 
 
 

]

[,WTQUIET=
*YES

*NO 
 
 

]

FSTAT Macros

608 U4250-J-Z125-12-76

Operation Operands

(Teil 11 von 11)

[,XPAND=

PLSHORT

PLLONG
OUTPUT
(PLSHORT,OUTPUT)
(PLLONG,OUTPUT)

 
 
 
 
 
 
 
 
 

]

[,MF=L],VERSION=

0

1

2

3 
 
 
 
 
 
 

[,PREFIX=pre]

MF=(E,
addr

(r) 
 
 

),VERSION=

0

1

2

3 
 
 
 
 
 
 

[,MF=
C

D  
 
 

,[VERSION=

0

1

2  
 
 
 
 

][,PREFIX=pre][,XPAND=

PLSHORT

PLLONG
OUTPUT
(PLSHORT,OUTPUT)
(PLLONG,OUTPUT)

 
 
 
 
 
 
 
 
 

]

Macros FSTAT

U4250-J-Z125-12-76 609

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Operand descriptions

pathname
“pathname” defines the path name of the file(s) for which information is to be returned
with: <filename 1..54 with-wild(80) without-gen>

Temporary files are not taken into account.

“pathname” means [:catid:][$userid][filename]

catid
Catalog ID;
Default value: the catalog ID assigned to the user ID

userid
User ID;
“$userid.” designates all files of this user. If the user ID of some other user is specified,
information is returned on only those files which the caller of the macro is allowed to
access.
Default value: the user's own user ID i.e. the one specified in the
SET-LOGON-PARAMETERS or LOGON command.

filename
Fully or partially-qualified file name of permanent or temporary files, of file generations
or file generation groups.

Wildcard specification
Nonprivileged users may only specify wildcards in “catid” and “filename” whereas the
system administrator may also specify them in “userid” (for information on wildcards see
page 863).
Wildcards cannot replace the delimiters in the cat (colons) and user ($ sign and period)
name parts.

ACCCNT
Returns information on all files that were accessed as often as specified.
The access counter can be assigned values from 0 to 2147483647.

= ANY
The access counter is not a selection criterion.

= nmbr
Returns information on files for which the access count exactly matches the specified
value.

= (nmbr[,])
Returns information on files for which the access count is greater than or equal to the
specified value.

FSTAT Macros

610 U4250-J-Z125-12-76

= (,nmbr)
Returns information on files for which the access count is less than or equal to the
specified value.

= (nmbr1,nmbr2)
Returns information on files whose access counters lie within the specified interval
(nmbr1 Î access counter Î nmbr2).

ACCESS
Selects files/file generations on the basis of the access mode.

= ANY
The access mode is not a selection criterion.

= READ
Provides information about files/file generations for which only read access is
permitted.

= WRITE
Provides information about files/file generations for which only write access is
permitted.

ACL
Returns information on files which are selected on the basis of whether or not they are
protected by an ACL entry.

= ANY
The ACL entry is not a selection criterion.

= NO
Returns information on all files that are not protected by an ACL entry.

= YES
Returns information on all files that are protected by an ACL entry.

I Access control using ACL has not been supported since SECOS V4.0. The ACL
entry therefore normally contains the value NO (no ACL protection).

ADMINFO
Returns information on files/file generations dependent on the system administrator
metainformation.

= *ANY
The system administrator metainformation is not a selection criterion.

= *NONE
Returns information on files possessing no system administrator metainformation.

Macros FSTAT

U4250-J-Z125-12-76 611

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

= <c-string 1..8>
Returns information on files with the specified system administrator metainformation.

AVAIL
Returns information on files/file generations dependent on their availability.

= *ANY
The availability is not a selection criterion.

= *STD
Returns information on files that are not on a volume set or an SF pubset with high
availability.

= *HIGH
Returns information on files that are on disks set with high availability (DRV pubset).

BACKUP
Returns information on files/file generation groups, for which the specified ARCHIVE or
HSMS backup level was defined.

= ANY
The backup level is not a selection criterion.

= A
Returns information on files/ FGGs with the attribute BACKUP=A.

= B
Returns information on file/FGGs with the attribute BACKUP=B.

= C
Returns information on files/FGGs with the attribute BACKUP=C.

= D
Returns information on files/FGGs with the attribute BACKUP=D.

= E
Returns information on files/FGGs with the attribute BACKUP=E.

= (list-of-backup)
More than one backup level may be specified in the form of a list. All files/FGGs which
satisfy one of the given conditions (ORing) will be selected in such cases.

FSTAT Macros

612 U4250-J-Z125-12-76

BASACL
Returns information on files which are selected on the basis of a defined BASIC-ACL.

= ANY
The BASIC-ACL is not a selection criterion.

= NONE
Returns information on all files for which no BASIC-ACL entry is defined.

= YES
Returns information on all files for which a BASIC-ACL entry is defined.

BLKCNT
For tape files only:
Selects files on the basis of the number of blocks on tape.

= ANY
The number of blocks on tape is not a selection criterion.

= nmbr
Returns information on all tape files with exactly the specified number of blocks.

= (nmbr[,])
Returns information on all tape files for which the number of blocks is greater than or
equal to the specified value.

= (,nmbr)
Returns information on all tape files for which the number of blocks is less than or equal
to the specified value.

= (nmbr1,nmbr2)
Returns information on all tape files for which the number of blocks lies within the
specified interval.

Any integers from the range 0 Î value Î 2147483647 may be specified.

BLKCTRL
Selects files on the basis of the block format with which the file was defined (via the
BLKCTRL operand in the FILE or FCB macro). The block format is defined when creating
the file and is based on the existence and position of the block control field that contains
management information for the PAM page.

= ANY
The file format is not a selection criterion.

Macros FSTAT

U4250-J-Z125-12-76 613

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

= DATA
Returns information on all files for which the block control information is located at the
start of the data block. Such files are created with BLKCTRL=DATA (see the FILE
macro).

= PAMKEY
Returns information on all files which use a separate PAM key for the block control field,
i.e. files for which the block control information is stored in a special key field outside
the PAM block. Such files are created with BLKCTRL=PAMKEY (see the FILE macro).

= NO
Returns information on all files which contain no block control field. Such files are
created with BLKCTRL=NO (see the FILE macro).

= NONE
Returns information on all files for which no BLKCTRL value was defined, i.e. files which
have not yet been opened.

= DATA2K
Returns information on all files which were created with BLKCTRL=DATA2K (see the
FILE macro).

= DATA4K
Returns information on all files that were created with BLKCTRL=DATA4K (see the
FILE macro).

= NK2
Returns information on all NK2 files (files which can be stored on NK2 volumes).

= NK4
Returns information on all NK4 files (files which can be stored on NK4 volumes).

= (list-of-blkctrl)
Returns information on all files that match one of the specified block formats. All values
except ANY may be specified in a list.

CCS
Returns information on files selected on the basis of the specified coded character set.
The coded character set (CCS) defines how the characters of a national character set are
to be stored in binary form. The specified character set has an effect on the representation
of characters on the screen, the collating sequence, etc. (see the “XHCS” manual [22]).

= *ANY
The code table is not a selection criterion.

= *NONE
Only files for which no character set is defined are selected.

FSTAT Macros

614 U4250-J-Z125-12-76

= ccs-name
Only files with the specified character set are selected.

CEINFO
The information from the catalog is arranged logically into information blocks. Only the
information blocks explicitly selected by the user are output.

The CEINFO operand can be used to control the generation of a DSECT or CSECT.
If CEINFO is not specified or if CEINFO=ALL is set, all output blocks (except for the FTAM
block) are generated. Otherwise, only those output blocks which are specified in CEINFO
are generated.

= ALL
Transfers all the information stored in the catalog to the output area (OUTAREA) for the
selected files.
The information shown is divided into the following information blocks: HISTORY /
SECURITY / STATUS / BACKUP / ORGANIZATION / ALLOCATION / VOLUMES /
VOLUME-EXTENTS (or INDEX-INFO)

File transfer information (FTAM) cannot be output by using CIENFO=ALL. This infor-
mation, which is only relevant for file transfers, is output with CEINFO=FTAM only.

= HISTORY
Transfers the history block to the output area for the selected files, i.e. all file attributes
related to the file history:

= SECURITY
Transfers the security block to the output area for all selected files, i.e. all file attributes
that affect file security (the bytes intended for file passwords are set to binary 0.
Exception: See the PASSW operand):

– type of access (standard access control)
– specification for file protection with ACL (provided only for reasons of compatibility)
– file monitoring
– automatic data destruction on deletion
– protection with an execute password
– date on which the file may be updated

– access counter
– date of last access
– time of last access
– date of last write access
– time of last write access
– creation date
– time of creation
– number of secondary allocations

on UTC basis

Macros FSTAT

U4250-J-Z125-12-76 615

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

– time related to EXPIR-DATE
– protection against read access by a guard
– protection against write access by a guard
– protection against execute access by a guard
– access rights of user class “group” (BASIC-ACL)
– access rights of user class “others” (BASIC-ACL)
– access rights of file owner (BASIC-ACL)
– protection with read password
– protection against release of storage space
– shareability attribute (standard access control)
– protection with write password

= STATUS
Transfers the status block for all selected files to the output area, i.e. all file attributes
that affect special characteristics of the file. These include:

– SPECIAL-ACCOUNTING-BIT
– OPEN-CLOSE flag
– REPAIR flag
– PSEUDO-CLOSE flag
– VERIFY-IS-FORBIDDEN flag
– LOCKS (RELEASE-LOCK; ERASE-LOCK; OUTPUT-LOCK; CATALOG-LOCK;

SPD-LOCK)

= BACKUP
Transfers the backup block for all selected files to the output area, i.e. all the backup
attributes of files. These include:

– the backup level for ARCHIVE or HSMS
– the specification regarding whether the file may be migrated
– the specification regarding whether the file is always to be fully saved
– the version as an internal ARCHIVE attribute

= ORGANIZATION
Transfers the organization block for all selected files to the output area, i.e. all file
attributes that are related to the file organization:

– block counter (tape files)
– buffer offset (tape files)
– block type (standard or nonstandard block)
– coded character set (CCS) with XHCS support
– code specification for tape files
– suitability of file for processing in a cache
– file sequence number (tape file)
– access method when the file was created
– performance requirement for file processing
– type of I/O operations to which the performance requirement applies

FSTAT Macros

616 U4250-J-Z125-12-76

– length of ISAM key
– position of ISAM key
– standard version of labels (tape files)
– length of logical ISAM flag
– propagation of ISAM flag
– record format
– record length
– length of the ISAM value flag
– file type on Net-Storage
– file size of node files

= ALLOCATION
Transfers the allocation block for the selected files to the output area, i.e. all file
attributes that affect storage space allocation:

– device type for the volume
– total number of extents for the file
– highest used PAM page (last-page pointer)
– secondary allocation for file extension
– storage level for migrated files
– type of volume
– VSN (volume serial number) of the volume used
– last valid byte on the last logical page of the file (last-byte pointer: only for PAM file

or node file)

= VOLUMES
Transfers the volume tables for the selected files to the output area. These tables
contain the following information:

– VOLUME
– DEVICE
– #EXTENTS
– flag indicating whether an ISAM-INDEX or ISAM-DATA volume is involved

= VOLUME-EXTENTS
Transfers the volume tables and the extent lists for the selected files to the output area.

= INDEX-INFO
Transfers the INDEX-INFO block for the selected files to the output area, i.e. all file
attributes that affect the file generation group:

– base value for relative generation numbers
– first or last cataloged file generation
– oldest existing file generation
– maximum number of simultaneously cataloged generations
– overflow handling on reaching the maximum number

Macros FSTAT

U4250-J-Z125-12-76 617

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

= FTAM
Transfers the FTAM block for the selected files to the output area, i.e. all file attributes
related to file transfer.
Since this output block is only relevant for file transfer, the FT block is not output for
CEINFO=ALL.

= (list-of-ceinfo)
With the exception of FTAM and ALL, all operand values may be specified in a list. The
corresponding information blocks are then transferred to the output area. The order in
which the operands are specified is of no consequence.

CRDATE
Allows the user to select files for processing on the basis of their creation dates.

Date values may be supplemented by specifying a time. The rules for date and time speci-
fications are described in section “Format of date specifications” on page 864.
Range specifications are inclusive of both specified limits.

= ANY
The creation date is not a selection criterion.

= NONE
Returns information on all files for which no creation date has been entered in the
catalog, i.e. files which have not yet been opened.

= date
Returns information on all files that were created on the specified date.

= (date[,])
Returns information on all files that were created on or after the specified date (creation
date Ï current date).

= (,date)
Returns information on all files that were created on or before the specified date
(creation date Î current date).

= (date1,date2)
Returns information on all files that were created within the specified period
(date1 Î creation date Î date2).

= date(time[,])
Returns information on all files that were created on the specified date on or after the
specified time.

= date(time1,time2)
Returns information on all files that were created on the specified date within the
specified period.

FSTAT Macros

618 U4250-J-Z125-12-76

= (date(time)[,])
Returns information on all files that were created on or after the specified date and time.

= (,date(time))
Returns information on all files that were created before the specified date and time.

= (date1(time),date2(time))
Returns information on all files that were created within the specified period. The upper
and lower limits of the specified period are defined more precisely by a time
specification in both cases.

DELDATE
Allows the user to select files on the basis of the DELETION-DATE (the time as of which
the file may be deleted irrespective of its protection attributes).

The user can supplement the date values by specifying a time. It must be noted in this
respect that the deletion time of 00:00:00 is currently always entered in the file catalog.
The rules for date and time specifications are described in section “Format of date specifi-
cations” on page 864. Range specifications include both specified limits.

= *ANY
The DELETION-DATE is not a selection criterion.

= *NONE
Returns information on all files for which no DELETION-DATE is entered in the catalog.

= date
Returns information on all files for which the specified DELETION-DATE is defined.

= (date[,])
Returns information on all files whose DELETION-DATE is later than or equal to the
specified date.

= (,date)
Returns information on all files whose DELETION-DATE is earlier than or equal to the
specified date.

= (date1,date2)
Returns information on all files whose DELETION-DATE lies within the specified time
period (date1 Î DELETION-DATE Î date2).

= date(time[,])
Returns information on all files for which the specified DELETION-DATE is defined and
for which the delete time is later then or equal to the specified time. The delete time
(time in relation to the DELETION-DATE) is currently always entered in the catalog as
00:00:00.

Macros FSTAT

U4250-J-Z125-12-76 619

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

= date(time1,time2)
Returns information on all files for which the specified DELETION-DATE is defined and
for which the delete time is within the specified time period. The delete time (time in
relation to the DELETION-DATE) is currently always entered in the catalog as 00:00:00.

= (date(time)[,])
Returns information on all files whose DELETION-DATE and time is later than or equal
to the specified time. The delete time (time in relation to the DELETION-DATE) is
currently always entered in the catalog as 00:00:00.

= (,date(time))
Returns information on all files whose DELETION-DATE and time is earlier than or
equal to the specified time. The delete time (time in relation to the DELETION-DATE) is
currently always entered in the catalog as 00:00:00.

= (date1(time),date2(time))
Returns information on all files whose DELETION-DATE lies within the specified time
period (date1 Î DELETION-DATE Î date2). The upper and lower limits of the specified
time period are defined more precisely by specifying a time.

DISKWR
Enables the user to select files for processing based on the time at which data consistency
is required for them, as defined in the catalog entry.

= ANY
The time at which data consistency is required, as defined in the catalog, is not a
selection criterion.

= IMMEDIATE
Returns information on all files for which data consistency is required immediately after
a write operation is completed. Such files are not suitable for processing in a write
cache.

= BY-CLOSE
Returns information on all files for which data consistency is not required until CLOSE
processing. These files are suitable for processing in a write cache.

FSTAT Macros

620 U4250-J-Z125-12-76

ENCRYPT
Enables the user to select files based on whether or with which encryption method they are
encrypted.

= *ANY
Processes all files regardless of whether or with which encryption method they are
encrypted.

= *NONE
Processes only those files which are not encrypted.

= *AES
Processes only those files which are encrypted with the AES encryption method.

= * DES
Processes only those files which are encrypted with the DES encryption method.

= (list_of_encrypt)
Processes only those files which meet one of the specified selection criteria. All values
except ANY can be specified in the list.

EXDATE
The user can select files to be processed on the basis of their expiration date. The
expiration date of a file is defined in the catalog and specifies when the file may be updated
again or deleted. If no expiration date is defined when creating the file, the expiration date
is set to the creation date.

The user may supplement date specifications by a time value; however, it should be noted
that the time stamp for the expiration date is always set to 00:00:00 in the file catalog at
present.
The rules for date and time specifications are described in section “Format of date specifi-
cations” on page 864. Ranges defined in intervals include both specified limits.

= ANY
The expiration date is not a selection criterion.

= NONE
Returns information on all files for which no expiration date has been entered in the
catalog, i.e. files that have not yet been opened.

= date
Returns information on all files for which the specified expiration date is defined.

= (date[,])
Returns information on all files for which the expiration date is greater than or equal to
the specified date.

Macros FSTAT

U4250-J-Z125-12-76 621

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

= (,date)
Returns information on all files for which the expiration date is less than or equal to the
specified date.

= (date1,date2)
Returns information on all files for which the expiration date lies within the specified
period (date1 Î expiration date Î date2).

= date(time[,])
Returns information on all files with the specified expiration date and with an expiration
time that is greater than or equal to the specified time.
Note that the time of expiration (i.e. the time on the expiration date) is always entered
as 00:00:00 hours in the catalog at present!

= date(time1,time2)
Returns information on all files with the specified expiration date and with a time of
expiration that lies within the specified time interval.
Note that the time of expiration (i.e. the time on the expiration date) is always entered
as 00:00:00 hours in the catalog at present!

= (date(time)[,])
Returns information on all files for which the expiration date and time is greater than or
equal to the specified time.
Note that the time of expiration (i.e. the time on the expiration date) is always entered
as 00:00:00 hours in the catalog at present!

= (,date(time))
Returns information on all files for which the expiration date and time is less than or
equal to the specified time.
Note that the time of expiration (i.e. the time on the expiration date) is always entered
as 00:00:00 hours in the catalog at present!

= (date1(time),date2(time))
Returns information on all files for which the expiration date lies within the specified
period (date1 Î expiration date Î date2). The upper and lower limits of the specified
period are defined more precisely by time values in both cases.

EXTENTS
Only for files on disk or Net-Storage:
returns information on files selected on the basis of the specified number of extents. An
extent is a contiguous area occupied by a file on a disk. The number of extents which make
up a file is stored in the catalog.

The possible values for “nmbr” are: 0 Î nmbr Î 65535.

Range specifications include both upper and lower limits.

FSTAT Macros

622 U4250-J-Z125-12-76

= ANY
The number of extents is not a selection criterion.

= nmbr
Only the disk files with exactly the specified number of extents are processed.

= (nmbr [,])
Only the disk files with at least the specified number of extents
(number of extents Ï nmbr) are processed.

= (,nmbr)
Only the disk files that have at most the specified number of extents
(number of extents Î nmbr) are processed.

= (nmbr1, nmbr2)
Only the disk files that have at least as many extents as “nmbr1” and at most as many
extents as “nmbr2” (i.e. nmbr1 Î number of extents Î nmbr2) are processed.

FCBTYPE
Selects and returns information on files/file generations on the basis of the access method
with which they were created. If multiple access methods are listed, all files that satisfy one
of the listed conditions (logical OR) are selected by the system.

= ANY
The access method is not a selection criterion.

= NONE
Returns information on files that are cataloged but which contain no data, i.e. files which
have not yet been opened or files for which storage space has been released with
ERASE..., SPACE.

= ISAM
Returns information on ISAM files.

= BTAM
Returns information on BTAM files.

= SAM
Returns information on SAM files.

= PAM
Returns information on PAM files.

= (list-of-fcbtype)
More than one access method may be specified in a list. Information on all files that
were created with one of the specified access methods will be shown.

Macros FSTAT

U4250-J-Z125-12-76 623

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

FILTYPE
Returns information on all files which match the specified file type.

= *ANY
Returns information on both BS2000 files and on node files.

= *BS2000
Returns information only on BS2000 files.

= *NODE
Returns information only on node files (files which can be created and modified by
BS2000 and open systems).

FROM
The FROM operand defines the source for the FSTAT information.

= CATALOG
The FSTAT macro retrieves information from the catalog of the default pubset of the
user ID, i.e. from the catalog with the default catalog ID.

= LOCALPVS
The FSTAT macro retrieves information from the system catalogs of all selected local
pubsets.

= (vsn,device)
The FSTAT macro retrieves information from the directory of the private disk identified
by “vsn” or from the catalog of the Net-Storage volume identified by “vsn”.
The device type (“device”) of the private disk must be specified; see the “Device table”
in the „System installation“ manual [16] for possible values. The operands VOLUME,
SUPPORT and VTOC are not permitted.

FSIZE
For disk files only:
Returns information on files/file generation groups based on the amount of free (i.e.
reserved but not used) storage space; 0 Î nmbr Î 16777215

= ANY
The size of the free (i.e. reserved but not used) storage space is not a selection
criterion.

= SIZE
Returns information on files for which the number of free PAM pages is equal to the
number of reserved pages.

= nmbr
Returns information on files with exactly the specified number of reserved but unused
PAM pages.

FSTAT Macros

624 U4250-J-Z125-12-76

= (nmbr[,])
Returns information on files with at least the specified number of reserved but unused
PAM pages.

= (,nmbr)
Returns information on files with no more than the specified number of reserved but
unused PAM pages.

= (nmbr1,nmbr2)
Returns information on files for which the number of free pages lies within the specified
range (nmbr1 < nmbr2).

GEN
The “GEN” operand defines whether information on file generations is to be output.
The interaction of this operand with the specification TYPE=FGG is illustrated in the
following table:

x specified in the FSTAT macro

* taken into account for macro processing

- not taken into account for macro processing

= NO
No information on file generations is output.

= YES
File generation information is output.

The specification GEN=YES is ignored if no “filename” is specified in “pathname”.

GROUPAR
Selects and returns information on files on the basis of the access rights that are defined
for members of the file owner's user group in BASIC-ACL entries.

= ANY
The BASIC-ACL entries for members of the file owner's user group are not used as a
selection criterion.

Operand combinations Information on

TYPE=FGG GEN=YES GEN=NO FGG File generations Files

x x * * -

x x * - -

x * * *

x * - *

Macros FSTAT

U4250-J-Z125-12-76 625

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

= NO-ACCESS
Returns information on all files that cannot be accessed by the user group of the owner.

= access-list
Returns information on all files for which at least one of the access rights specified in
the list has been entered for the user group of the file owner in the BASIC-ACL entry.

access-list has the following format:

The parentheses constitute part of the operand value and must be specified.

The individual elements of the access list mean the following:

GUARDS
The user can select files to be processed on the basis of the access protection defined by
GUARDS (see the “SECOS” manual [8]).

= *ANY
The access protection defined by GUARDS is not a selection criterion.

= *NONE
Returns information on all files which have no access protection defined by GUARDS.

= *YES
Returns information on all files which have access protection defined by GUARDS.

READ=YES or R=Y Selects all files that may be accessed for reading by the user
group of the owner.

READ=NO or R=N Selects all files that cannot be accessed for reading by the
user group of the owner.

WRITE=YES or W=Y Selects all files that may be accessed for writing by the user
group of the owner.

WRITE=NO or W=N Selects all files that cannot be accessed for writing by the
user group of the owner.

EXEC=YES or X=Y Selects all files that may be executed by the user group of
the owner.

EXEC=NO or X=N Selects all files that cannot be executed by the user group of
the owner.

([

READ = YES
R = Y

READ = NO
R = N

 
 
 
 
 
 
 

][,

WRITE = YES
W = Y
WRITE = NO
W = N

 
 
 
 
 
 
 

][,

EXEC = YES
X = Y
EXEC = NO
X = N

 
 
 
 
 
 
 

])

FSTAT Macros

626 U4250-J-Z125-12-76

= (READ=...,WRITE=...,EXEC=...)
The type of access protection provided by GUARDS that is to be used as a selection
criterion can be defined by the user in a list. For each access mode (read, write, and
execute), the defined protection can be specified precisely. If no entry is made for an
access mode, the protection defined for that access mode has no effect on the
selection.

For each access mode, one of the following values may be specified:

*ANY The defined GUARDS protection is not a selection criterion.
*NONE No guard has been defined for the specified access mode, i.e. the corre-

sponding access is denied.
fname All conditions for granting access in the specified access mode are defined

in the guard fname.

IOPERF
Performance attribute of the file; returns information on all files based on the performance
attribute that is defined for them in the catalog (see IOPERF operand in the CATAL macro).

= ANY
The performance attribute is not a selection criterion.

= STD
Returns information on all files for which the performance attribute was defined as STD.

= HIGH
Returns information on all files for which the performance attribute was defined as HIGH
(high performance priority).

= VERY-HIGH
Returns information on all files for which the performance attribute was defined as
VERY-HIGH (highest performance priority).

= (list-of-ioperf)
Up to three performance attributes may be specified in a list. All files that have one of
these specified attributes will be shown.

Macros FSTAT

U4250-J-Z125-12-76 627

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

IOUSAGE
Returns information on all files, depending on the type of I/O operations to which the
performance attribute applies (see the IOUSAGE operand in the CATAL macro).

= ANY
The performance attribute is not a selection criterion.

= RDWRT
Returns information on all files for which the performance attribute applies to read and
write operations.

= WRITE
Returns information on all files for which the performance attribute applies to write
operations only.

= READ
Returns information on all files for which the performance attribute applies to read
operations only.

= (list-of-iousage)
More than one type of I/O operation may be specified in a list. All files for which the
performance attribute applies to at least one of the specified I/O operations will be
shown.

FSTAT Macros

628 U4250-J-Z125-12-76

LADATE
Returns information on all files with the corresponding date of last access.

The user can supplement date specifications by specifying time values. The rules for date
and time specifications are described in section “Format of date specifications” on
page 864.
Ranges specified in intervals include both upper and lower limits.

= ANY
The date of last access is not a selection criterion.

= NONE
Returns information on all files for which no last access date has been entered in the
catalog, i.e. files that have not yet been opened.

= date
Selects files which were last accessed on the specified date.

= (date[,])
Returns information on all files that were last accessed on or after the specified date
(last access date Ï date).

= (,date)
Selects all files that were accessed on or before the specified date
(last access date Î date).

= (date1,date2)
Returns information on all files that were last accessed during the specified period
(date1 Î last access date Î date2).

= date(time[,])
Returns information on all files that were last accessed on the specified date on or after
the specified time.

= date(time1,time2)
Selects all files that were last accessed on the specified date and within the specified
period.

= (date(time)[,])
Selects all files that were last accessed on or after the specified date and time.

= (,date(time))
Selects all files that were last accessed before the specified date and time.

= (date1(time),date2(time))
Selects all files that were last accessed within the specified period. The upper and lower
limits of the specified period are defined more accurately by means of a time
specification.

Macros FSTAT

U4250-J-Z125-12-76 629

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

LASTPAG
Selects and returns information on files based on the amount of storage space used
(i.e. the number of PAM pages written).

= ANY
The amount of storage space used is not a selection criterion.

= nmbr
Returns information on all files for which exactly the specified number of PAM pages
have been written.

= (nmbr,)
Returns information on all files for which at least the specified number of PAM pages
have been written.

= (,nmbr)
Returns information on all files for which no more than the specified number of
PAM pages have been written.

= (nmbr1,nmbr2)
Returns information on all files for which the number of written PAM pages lies in the
specified area (nmbr1 < nmbr2).

LCDATE
Returns information on all files based on the date on which they were last accessed for
writing.

The user can supplement date specifications by means of time values. The rules for date
and time specifications are described in section “Format of date specifications” on
page 864. Ranges defined by intervals include both the specified limits.

= ANY
The date of the last write access is not a selection criterion.

= NONE
Returns information on all files for which no date of last write access is entered in the
catalog, i.e. files that have not yet been opened.

= date
Returns information on all files that were last written to (i.e. changed) on specified date.

= (date[,])
Returns information on all files that were last changed on or after the specified date
(last change date Ï date).

= (,date)
Returns information on all files that were last changed on or before the specified date
(last change date Î date).

FSTAT Macros

630 U4250-J-Z125-12-76

= (date1,date2)
Returns information on all files that were last changed during the specified period
(date1 Î last change date Î date2).

= date(time[,])
Returns information on all files that were last changed on the specified date on or after
the specified time.

= date(time1,time2)
Returns information on all files that were last changed on the specified date and within
the specified period.

= (date(time)[,])
Returns information on all files that were last changed on or after the specified date and
time.

= (,date(time))
Returns information on all files that were last changed before the specified date and
time.

= (date1(time),date2(time))
Returns information on all files that were last changed within the specified period. The
upper and lower limits of the specified period are defined more precisely by time values.

MANCLAS
Returns in formation on all files according to the HSMS management class for file backup
to SM pubsets.

= *ANY
The HSMS management class is not a selection criterion.

= *NONE
All files for which no HSMS management class is defined are selected.

= <c-string 1..8>
All files with the specified HSMS management class are selected.

Macros FSTAT

U4250-J-Z125-12-76 631

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

MF
The forms of the MF operand are described in detail in the appendix (page 865).
All macros which differ with respect to the MF operand (MF = L/E/D/..) must have the same
value for the VERSION operand.

Special facility with MF=D/C:
The user can control which output blocks are to be generated (XPAND=OUTPUT) by
means of the CEINFO operand. With MF=D/C, only those blocks which the user has
specified with CEINFO are expanded.

MIGRATE
Returns information on all files that have the specified entry for MIGRATE in the catalog.
This entry is evaluated by the Hierarchical Storage Management System (HSMS) for the
migration of files (see the MIGRATE operand in the CATAL macro on page 168). If multiple
values are listed, all files that satisfy one of the conditions are selected.

= ANY
The MIGRATE entry is not a selection criterion.

= ALLOWED
Selects only those files for which MIGRATE=ALLOWED was defined in the catalog
entry, i.e. files which may be migrated to storage level S1 or S2.

= INHIBIT
Selects only those files for which MIGRATE=INHIBIT was defined in the catalog entry,
i.e. files which may be briefly migrated (e.g. for reorganization purposes).

= FORBIDDEN
Returns information on files for which MIGRATE=FORBIDDEN is entered in the catalog
entry, i.e. the files which must not be migrated.

= (list-of-migrate)
The ALLOWED and INHIBIT values may be specified by the user in a list. All files for
which one of the specified values was defined in the catalog will be shown.

FSTAT Macros

632 U4250-J-Z125-12-76

OTHERAR
Selects and returns information on files based on the access rights that are defined via
BASIC-ACL entries for all users other than the file owners's user group.

= ANY
The BASIC-ACL entries for all users other than the file owner's user group do not serve
as a selection criterion.

= NO-ACCESS
Returns information on all files that may be accessed by users not belonging to the file
owner's user group.

= access-list
Returns information on all files for which at least one of the listed access rights has been
defined for users not in the file owner's user group in the BASIC-ACL entries.

access-list has the following format:

The parentheses form part of the operand values and are mandatory.

The individual elements of the access list mean the following:

READ=YES or R=Y Selects all files that can be accessed for reading by users
who are not in the owner's user group.

READ=NO or R=N Selects all files that cannot be accessed for reading by users
who are not in the owner's user group.

WRITE=YES or W=Y Selects all files that can be accessed for writing by users who
are not in the owner's user group.

WRITE=NO or W=N Selects all files that cannot be accessed for writing by users
who are not in the owner's user group.

EXEC=YES or X=Y Selects all files that may be executed by users who are not
in the owner's user group.

EXEC=NO or X=N Selects all files that cannot be executed by users who are not
in the owner's user group.

([

READ = YES
R = Y

READ = NO
R = N

 
 
 
 
 
 
 

][,

WRITE = YES
W = Y
WRITE = NO
W = N

 
 
 
 
 
 
 

][,

EXEC = YES
X = Y
EXEC = NO
X = N

 
 
 
 
 
 
 

])

Macros FSTAT

U4250-J-Z125-12-76 633

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

OUTAREA
Output area for information from the catalog entry.

= (<list-of-elements-002>)
The output area is output in list form, consisting of:
– The output area address. It can be output as a constant or equate and must be

aligned on a word boundary.
– The length of the output area in bytes. The value to be output depends on the scope

of the information requested via the OUTPUT operand.
It can be output as a constant or equate.

The format of the output area is described on page 653.

Note
SPECIFIED bits are set internally for the two output areas (OUTAREA and
STOUTAR). In order to enable output, the corresponding AREA-SPECIFIED bit
must be set. These bits are set when MF=L applies. It is therefore advisable to
supply dummy values for the OUTAREA or STOUTAR operands in an MF=L call.

OUTPUT
The output layout in blocks comprises two independent sections containing information
from the catalog entry and statistics on all selected catalog entries. For more information on
the various information blocks, see page 653.

The information from the catalog entry is transferred to the output area specified by the
OUTAREA operand.

Statistics are shown in the output area defined by the STOUTAR operand.

= RC-ONLY
Only the return code is shown, so no output area is required.

= FNAM-ONLY
Only the path names (with PVSID, USERID and FILENAME) are copied to the output
area (see the description on page 655).

The path names are copied to the output area specified by the OUTAREA operand.

= CEINFO
Returns information on the catalog entries. The information to be shown can be
controlled via the CEINFO operand. No statistics are output (see description on
page 653).

The information from the catalog entry is copied to the output area specified by the
OUTAREA operand.

FSTAT Macros

634 U4250-J-Z125-12-76

= STAT-SHORT
Only the statistics are copied to the corresponding output area (see description on
page 658).

The statistics are copied to the output area specified by the STOUTAR operand.

Note
No statistics can be retrieved if the operand FROM=(volume,device) is specified at
the same time. Function calls in which this is done are rejected with return code
DMS0576.

= STAT-LONG
Only the statistics are transferred to the output area. In addition to the output of
STAT-SHORT, individual statistics for the PVSID and USERID are also shown (see the
description on page 656).

The statistics are copied to the output area specified by the STOUTAR operand.

Note
No statistics can be retrieved if the operand FROM=(volume,device) is specified at
the same time. Function calls in which this is done are rejected with return code
DMS0576.

= STAT-INFO
Outputs information on the catalog entries as well as the statistics (corresponds to the
output set CEINFO + STAT-LONG).

Both sections of the output are linked by pointers (see the description on page 659).

The information from the catalog entry is transferred to the output area specified by the
OUTAREA operand; statistics are copied to the output area specified by the STOUTAR
operand.

Note
No statistics can be retrieved if the operand FROM=(volume,device) is specified at
the same time. Function calls in which this is done are rejected with return code
DMS0576.

Macros FSTAT

U4250-J-Z125-12-76 635

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

OWNERAR
Returns information on files selected on the basis of the access rights that are defined for
the file owner in the BASIC-ACL entries.

= ANY
BASIC-ACL entries for the file owner are not used as a selection criterion.

= NO-ACCESS
Returns information on all files that the owner is not allowed to access.

= access-list
Returns information on all files for which at least one of the listed access rights has been
defined for the file owner in the BASIC-ACL entry.

access-list has the following format:

The parentheses form part of the operand value and must be specified.

The individual elements of the access list mean the following:

READ=YES or R=Y Selects all files that may be accessed by the owner for
reading.

READ=NO or R=N Selects all files that cannot be accessed by the owner for
reading.

WRITE=YES or W=Y Selects all files that can be accessed by the owner for
writing.

WRITE=NO or W=N Selects all files that cannot be accessed by the owner for
writing.

EXEC=YES or X=Y Selects all files that may be executed by the owner.

EXEC=NO or X=N Selects all files that the owner is not allowed to execute.

([

READ = YES
R = Y

READ = NO
R = N

 
 
 
 
 
 
 

][,

WRITE = YES
W = Y
WRITE = NO
W = N

 
 
 
 
 
 
 

][,

EXEC = YES
X = Y
EXEC = NO
X = N

 
 
 
 
 
 
 

])

FSTAT Macros

636 U4250-J-Z125-12-76

PASS
Selects and returns information on files/file generation groups on the basis of the password
protection defined with CATAL. If several password types are specified in the form of a list,
all files that satisfy one of the named conditions (logical OR) are selected by the system.
Passwords are not output.

= ANY
Password protection is not used as a selection criterion.

= NONE
Selects files for which no password protection exists.

= RDPASS
Selects files which are protected by means of a read password.

= WRPASS
Selects files which are protected by a write password.

= EXPASS
Selects files which are protected by an execute password.

= (list-of-pass)
The user may specify more than one type of password in the form of a list. All files
protected by one of the specified password types will be shown.

PASSW
The PASSW operand determines how passwords are copied to the output area.

= NO
Default value: passwords are not explicitly displayed in the output area; the
corresponding fields are set to binary 0.

= YES
For privileged users only:
passwords are explicitly represented in the output area.

PREFIX
Only evaluated in conjunction with MF=C or MF=D. Defines which characters the field
names and equates generated during macro expansion in the data area are to begin with.

Default value: PREFIX = D

= pre
“pre” is a one-character prefix with which the field names and equates generated by the
assembler are to begin.

Macros FSTAT

U4250-J-Z125-12-76 637

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

PREFORM
Returns information on files dependent on their (intended) file format on SM pubsets.

= *ANY
The file format is not a selection criterion.

= *NONE
Returns information on all files for which no PREFORMAT value is defined.

= *K
Returns information on all files with the intended *K file format.

= *NK2
Returns information on all files with the intended *NK2 file format.

= *NK4
Returns information on all files with the intended *NK4 file format.

= (list-of-preform)
Returns information on all files which correspond to one of the specified file formats.
Any value apart from ANY can be specified within the list.

FSTAT Macros

638 U4250-J-Z125-12-76

PROTACT
Selects and retrieves information on files on the basis of the protection level provided by
the highest activated access control.

When the file is accessed, the highest activated protection level applies. The following table
shows the method used for access control, the protection attribute to be specified in the
CATAL macro and the file protection hierarchy (protection levels):

All other protection attributes of the file (e.g. passwords) are evaluated independently,
without regard to the implemented protection level.

= ANY
is the default value; returns information on all files without regard to the protection level
of the highest activated access control.
Time specifications must always be made on UTC basis.

= LEVEL-0
Returns information on files for which access is controlled via standard access control.

= LEVEL-1
Returns information on files for which access is controlled via a basic access control list
(BASIC-ACL protection).

= LEVEL-2
Returns information on files for which access is controlled by GUARDS.

= (list-of-protact)
The user may specify up to a maximum of three protection levels in a list. All files for
which the protection level of the access control method matches one of those specified
are selected.

Access control method Protection attribute Protection level

Standard access control ACCESS and SHARE 0

Basic access control list BASACL, OWNERAR, GROUPAR, OTHERAR 1

Access control using GUARDS GUARDS 2

Macros FSTAT

U4250-J-Z125-12-76 639

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

RELSPAC
Returns information on files selected on the basis of the lock to prevent the release of
unused memory space (as defined in the FILE macro or the MODIFY-FILE-ATTRIBUTES
command). The lock can be defined in the catalog by using the CATAL macro.

= ANY
The lock to prevent the release of unused memory space is not used as a selection
criterion.

= ALLOWED
Returns information on files for which unused memory space may be released.

= IGNORED
Returns information on files for which the release of unused memory space is not
permitted.

SHARE
Selects and retrieves information on files or file generation groups based on whether or not
they are shareable. If a foreign user ID which is not co-owner is specified with “$userid.”,
SHARE=YES applies implicitly (see also the SHARE operand in the CATAL macro).

= ANY
Shareability is not used as a selection criterion.

= YES
Returns information on all files that are shareable, i.e. which are also accessible to other
user IDs under active standard access control.

= NO
Returns information on all files that are not shareable, i.e. that are only accessible to
the owner under active standard access control.

= SPECIAL
Returns information on files which can be accessed by all user IDs, including
maintenance IDs (i.e. user IDs with hardware maintenance privileges).

= (list-of-share)
One or more operand values may be specified in a list.

FSTAT Macros

640 U4250-J-Z125-12-76

SIZE
Returns information on files/file generations based on the size of the reserved storage
space. Whole numbers between 0 and 2147483647 can be used as values.

= ANY
The size of the reserved storage space is not used as a selection criterion.

= FSIZE
Returns information on files for which the number of reserved PAM pages is equal to
the number of free pages.

= nmbr
Returns information on files with exactly the specified number of reserved PAM pages.

= (nmbr[,])
Returns information on files with at least the specified number of reserved PAM pages.

= (,nmbr)
Returns information on files no more than the specified number of reserved PAM pages.

= (nmbr1,nmbr2)
Returns information on files for which the number of reserved PAM pages lies in the
specified range (nmbr1 < nmbr2).

SLEVEL
Returns information on files selected on the basis of the level in the storage hierarchy at
which they are held (see the “HSMS” manual [10]). The following three storage levels are
supported by HSMS (Hierarchical Storage Management System):

S0: implemented as fast access disk storage (for online processing)

S1: implemented as high capacity disk storage (background level, available online)

S2: implemented as a magnetic tape and tape cartridge archive (background level,
available offline)

= ANY
The storage level is not used as a selection criterion.

= S0
Selects only the files which are being held at level S0.

= S1
Selects only the files which are being held at level S1.

= S2
Selects only the files which are being held at level S2.

= (list-of-slevel)
The user may specify more than one storage level in the form of a list.

Macros FSTAT

U4250-J-Z125-12-76 641

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

SORT
The SORT operand defines how catalog entries/path names are sorted in the output.

= FILENAM
Catalog entries/path names are output in alphabetical order.

= NO
Catalog entries/path names are output in the order in which they are located in the
catalog.

STATE
Returns information on files selected on the basis of their current processing state.

= ANY
The current processing status is not a selection criterion.

= NOCLOS
Returns information on all files which have been opened for writing and are not closed.
Such files include:
– normally open files (OPEN mode OUTIN, INOUT, OUTPUT)
– files not closed in a previous session
– files not closed in the current session because of job abortion.

Note
STATE=NOCLOS implies GEN=YES, i.e. opened file generations are always
output.

= CLOSED
Returns information on all files that have already been closed, i.e. files not selected by
NOCLOS.

= CACHED
Returns information on the files which are currently cached.

= NOT-CACHED
Returns information on all files which are not being currently processed in a cache.

= CACHE-NOT-SAVED
Returns information on all files for which it was not possible to write the cache to a disk
when they were closed.

= REPAIR-NEEDED
Returns information on all files which were not closed in an earlier session and which
have not yet been verified (see the VERIFY macro).

FSTAT Macros

642 U4250-J-Z125-12-76

= DEFECT-REPORTED
Returns information on all files which could contain defective disk blocks.

= NO-OPEN-ALLOWED
Returns information on all files which cannot be opened due to data inconsistency.

= OPEN-ALLOWED
Returns information on all files that can be opened.

= (list-of-state)
A list of values may be specified (with a maximum of 7 file states). The output shows all
files which are in one of the specified states.

STOCLAS
Returns information on all files according to the file storage class on SM pubsets.

= *ANY
The storage class is not a selection criterion.

= *NONE
All files for which no storage class is defined are selected.

= <c-string 1..8>
All files with the specified storage class are selected.

STOTYPE
Return information on all files according to the storage type.

= *ANY
The storage type is not a selection criterion.

= *PUBSPACE
Only files on public volumes are selected.

= *NETSTOR
Only files on Net-Storage volumes are selected.

Macros FSTAT

U4250-J-Z125-12-76 643

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

STOUTAR
Output area for statistics.

= (<list-of-elements-002>)
The output area is output in list form, consisting of:
– Address of the output area. It may only be specified as a constant or equate and

must be aligned on a word boundary.
– Length of the output area (in bytes). The value to be specified here depends on the

scope of the information requested with the OUTPUT operand.
It may only be specified as a constant or equate.

The format of the output area is described on page 659.

Note
SPECIFIED bits are set internally for the output areas OUTAREA and STOUTAR.
The appropriate AREA-SPECIFIED bit must be set to enable the output. Since
these bits are set with MF=L or MF=M, it is usually meaningful to supply dummy
values for these operands in an MF=L call.

SUPPORT
Selects and returns information on files, file generations, or file generation groups (FGGs)
on the basis of the type of volume on which they are stored.

= ANY
The volume type is not used as a selection criterion.

= PUBLIC
Returns information on files, file generations or FGGs which are stored on public
volumes or Net-Storage volumes.

= PRDISC
Returns information on files, file generations or FGGs which are stored on private disk.

= TAPE
Returns information on files, file generations or FGGs which are stored on tape.

= (list-of-support)
A list of values may be specified (with up to 3 volume types). The output shows all files
which are stored on one of the specified volume types.

FSTAT Macros

644 U4250-J-Z125-12-76

S0MIGR
Returns information on files dependent on whether reallocation (migration) to S0 level is
permitted.

= *ANY
The migration allowance is not a selection criterion.

= *ALLOWED
Returns information on files for which migration within the S0 level is permitted.

= *FORBIDDEN
Returns information on files for which migration within the S0 level is not permitted.

= (list-of-s0migr)
The user can specify the required values in a list. This returns information on all files for
which one of the specified values was defined in the catalog.

TIMBASE
Controls whether the absolute date is entered in UTC or local time. The date format of the
FSTAT output is also linked to this operand.

= *UTC
Absolute dates are input and output in UTC time.

= *LTI
Absolute dates are input and output in local time.

TYPE
Returns information on files selected on the basis of their type.

= ANY
Returns information on all files irrespective of their type.

= FILE
Returns information on all files with the exceptions of file generation groups.

= FGG
Returns information on file generation groups and, when GEN=YES is specified, also
on file generations (see operand “GEN” on page 624).

= PLAM
Returns information on PLAM libraries. This is a subset of the files which are selected
by the specification TYPE=FILE.

= (list-of-type)
Returns information on all files that match one of the specified types. A maximum of
three file types can be specified by the user in the form of a list.

Macros FSTAT

U4250-J-Z125-12-76 645

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

USRINFO
Returns information on files/file generations dependent on user metainformation.

= *ANY
The user metainformation is not a selection criterion.

= *NONE
Returns information on files which have no user metainformation.

= <c-string 1..8>
Returns information on files with the specified user metainformation.

VERSION
Specifies which version of the parameter list is to be generated.

Note

If FSTAT is called in VERSION=0/1 in an environment that supports “large files” then a
check, and possibly a conversion, will have to be performed. For more detailed infor-
mation on this subject, refer to page 660.

= 0
Default value: generates the parameter list format that was supported prior to
BS2000 V8.0A. This format will, however, only support the parameters which were
known at that time. For example, the path name can only be specified without wildcards,
and only VOLUME and POS are permitted as selection parameters. The supported
operands and operand values can be found in the table “Variations in versions –
VERSION=0/1/2/3/4” on page 664.

= 1
Generates the parameter list format that was supported from BS2000 V8.0 through
BS2000 V10.0.
This format will also support only the parameters that were known at the time. The
supported operands and operand values can be found in the table “Variations in
versions – VERSION=0/1/2/3/4” on page 664.

= 2
Generates the parameter list format for versions as of BS2000/OSD-BC V1.0.

= 3
Generates the parameter list format for versions as of BS2000/OSD-BC V3.0.

= 4
Generates the parameter list format for versions as of BS2000/OSD-BC V9.0.

Note
If existing software which manipulates the generated parameter list is to be
recompiled or reassembled, the old format must be requested. Otherwise, source
code compatibility is ensured.

FSTAT Macros

646 U4250-J-Z125-12-76

VOLSET
The user can select the files to be processed via the volume set on which they reside.

= *ANY
The volume set is not a selection criterion.

= *CONTROL
Returns information on all files on the control volume set of the SM pubset.

= <c-string 1..4>
Returns information on all files on the specified volume set.

VOLUME
The user can select files to be processed on the basis of the VSN (volume serial number)
of the disk on which they are stored.

= ANY
The VSN of the volume is not a selection criterion.

= vsn
Returns information on all files/file generation groups which contain an entry for the
volume with the specified VSN in their volume list. If “vsn” does not designate a private
disk, no information is returned on file generation groups.

VTOC
The user can decide whether the requested information is to be obtained from the VTOC
(= Volume Table of Contents) of a private disk or of a Net-Storage volume or from the
system file catalog TSOSCAT. The VTOC operand cannot be used on partially-qualified file
names or in combination with GEN=YES.

= NO
Outputs the current entry in the TSOSCAT.

= YES
Returns the VTOC catalog entries (from the F1 label of a private disk or the catalog of
a Net-Storage volume) in accordance with the last current status in the entire computer
network. The corresponding volume list must be assigned. The VTOC entry from the
volume replaces the corresponding TSOSCAT entry. This makes it possible to restore
consistency between the VTOC and TSOSCAT entries if, for example, files of an SPD
(see “Private disks” in the “Introductory Guide to DMS” [1]) have been modified by a job
running on another computer. If the specified file no longer exists on the volume shown
in the TSOSCAT entry, the TSOSCAT entry is deleted.

Macros FSTAT

U4250-J-Z125-12-76 647

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

WORKFIL
Returns information on files on SM pubsets dependent on whether they can be deleted by
the system administrator (work files).

= *ANY
Whether or not the files are work files is not a selection criterion.

= *NO
Returns information on all files which are not work files.

= *YES
Returns information on all files which are work files.

WTQUIET
Controls whether the end of the QUIET state is to be waited for with a shared or remote
imported pubset that was in the QUIET state at the time of the FSTAT call. This wait time is
defined with DIALOG-WAIT-TIME or BATCH-WAIT-TIME in the corresponding MRSCAT
entry.
Otherwise, the job is either aborted immediately with return code DMS0502 or, if the catalog
ID contains wildcards, the pubset is skipped.

= *YES
If a pubset is in the QUIET state, this leads to a wait state.

= *NO
If a pubset is in the QUIET state, this either leads to return code DMS0502 or, if the
catalog ID contains wildcards, the pubset is skipped.

XPAND
Controls which input parameter area is to be generated (with or without an area for selection
parameters). XPAND can also be used to generate data descriptions (DSECTs) for the
output area.

= PLSHORT
Generates the input parameter area without an area for selection parameters.

= PLLONG
Generates the input parameter area with an area for selection parameters.

= OUTPUT
Generates all DSECTs to describe the output information blocks.

= (PLSHORT,OUTPUT)
The input parameter area is generated without an area for selection parameters;
all DSECTs to describe the output information blocks are generated.

FSTAT Macros

648 U4250-J-Z125-12-76

= (PLLONG,OUTPUT)
The input parameter area is generated with an area for selection parameters;
all DSECTs to describe the output information blocks are generated.

Return codes

The error code is only returned in the parameter list standard header and no longer in
general-purpose register 15 as with version 2.

Note

If the catid entry contains wildcards, the following return codes are suppressed.

If no other error occurs and a file was selected, code 0 is returned and, if no file was
selected, DMS06CC is returned.

X'02000000' X'00400503' X'00400616' X'00820504'

X'00400501' X'00400505' X'00820502' X'00820506'

Standard
header:

The following code relating to execution of the FSTAT
macro is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'0000' No error

X'02' X'00' X'0000' Output incomplete because of defective volume set;
if IFSVSETI = IFSODVSE (ONE DEFECT VOLUMESET), the volume
set ID is in IFSVSET.

X'40' X'0501' Requested catalog not available

X'82' X'0502' Requested catalog in the quiet state

X'40' X'0503' Incorrect information in the MRSCAT

X'82' X'0504' Error in catalog management system

X'40' X'0505' Computer communication error (MRS)

X'80' X'0506' Operation aborted because of master change

X'40' X'0510' Error when calling an internal function

X'40' X'0512' Requested catalog unknown

X'40' X'051B' User ID unknown in specified pubset

X'40' X'051C' No access right to specified pubset

X'40' X'051D' LOGON password for specified pubset is different

X'40' X'052E' Volume no longer available

Macros FSTAT

U4250-J-Z125-12-76 649

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

X'20' X'0530' Storage space request error

X'20' X'0531' Unexpected catalog access error

X'40' X'0533' Specified file not found

X'82' X'0534' Private volume cannot be allocated

X'20' X'053B' System error during file access

X'40' X'053D' Catalog or F1 label block is destroyed

X'20' X'054F' Unexpected error while accessing JOIN file

X'82' X'055A' Device currently reserved

X'40' X'055F' Volume could not be reserved

X'01' X'0576' Conflicting operand combination or the reserved fields of the
parameter area were used or selection contains large files

X'20' X'0577' Internal error while accessing the job environment

X'82' X'0594' Not enough virtual memory available (also if wildcards were used and
too many files were selected)

X'01' X'0599' Operand is not supported in the RFA-BS version

X'01' X'05A8' Requested device type not found in the system

X'01' X'05AB' Output area address incorrect or not specified

X'82' X'05B0' No suitable device currently available

X'40' X'05B4' Volume cannot be made available

X'01' X'05B7' Incorrect path name specified

X'20' X'05C7' Internal error in DMS

X'40' X'05D1' Device request error

X'01' X'05EA' VTOC=YES is illegal with partially qualified file name or file generation
group

X'01' X'05EE' File name too long

X'40' X'05FC' Specified user ID not in home pubset

X'40' X'0616' Output not possible because of defective volume set;
if IFSVSETI = IFSODVSE (ONE DEFECT VOLUMESET), the volume
set ID is in IFSVSET.

X'01' X'06B8' Invalid operand specified

X'01' X'06C7' Invalid generation number specified

X'xx'
X'01'
X'02'
X'03'

X'00' X'06CB' Output area too short
Catalog information not completely transferred
Statistic information not completely transferred
Catalog and statistic information not completely transferred

X'cc' X'bb' X'aaaa' Meaning

FSTAT Macros

650 U4250-J-Z125-12-76

Programming notes for VERSION=4

FSTAT VERSION=4 supports files on Net-Storage volumes.

The STOTYPE operand permits selection according to the storage type: files on public
volumes or files on Net-Storage volumes.

The FILTYPE operand enables selection according to the file type: BS2000 files or node
files.

In the output area the information on the number of files on Net-Storage volumes is also
displayed in the output structures OUTPUT=STAT-LONG/STAT-SHORT/ STAT-INFO in the
statistical information of MAIN_HEADER, PVSID_HEADER and USERID_HEADER (see
page 657):

– Number of files on Net-Storage (4 bytes)
– Number of free PAM pages on Net-Storage (4 bytes)

In the output area the following information is also displayed in the output structure
OUTPUT=CEINFO:

– in the organization block (see BLOCK 4 : FILE ORGANIZATION INFORMATION in
Dsect):
– file type on Net-Storage (FILE_TYPE): BS2000 file or node file
– file size of node files (NODE_FILE_SIZE)
– validity indicator for the node file size (NODE_FILE_SIZE_VALID)

– in the allocation block (see BLOCK 6A: FILE ALLOCATION INFORMATION in Dsect):
– last-byte pointer for PAM files and node files (LAST_BYTE_POINTER):

on the last page of the logical file points to the last valid byte
– validity indicator for the last-byte pointer (LAST_BYTE_POINTER_VALID)

Further information is provided in the following section “Programming notes (VERSION=2,
3 and 4)” on page 651.

X'40' X'06CC' Only with selection entry (wildcard):
No file matches the selection input

X'01' X'06FD' Parameter area invalid or not accessible

X'40' X'06FF' BCAM connection severed

X'01' X'FFFF' Incorrect function number in parameter area header

X'03' X'FFFF' Incorrect version number in parameter area header

X'cc' X'bb' X'aaaa' Meaning

Macros FSTAT

U4250-J-Z125-12-76 651

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Programming notes (VERSION=2, 3 and 4)

In FSTAT VERSION=2/3, the corresponding data (extent list and data fields or the file-size
and last-page pointers) are returned as 4-byte fields. Consequently, these interfaces do not
have to be converted for calls in configurations involving files > 32 GB.
However, it is necessary to take account of the semantic problem affecting the OPEN
macro, see page 751. All users of this interface should check whether this problem affects
their particular implementation.

The FSTAT macro enables the user to request information from the catalog entry of one or
more files.
The OUTAREA operand reserves an output area for the general information retrieved from
the catalog entry; the STOUTAR operand assigns an output area for statistics.

The assigned output area should be overwritten with X'00' before data is transferred to it,
since the unused parts of the output area are not fully deleted to the end.

The information from the catalog entry is transferred to the output area in blocks, and the
requested information blocks are shown directly under one another in the output area. If the
number of files is known, the size of the output area can be calculated precisely. Otherwise,
if the free space available in the output area is too small to hold an information block, no
further data is written to the output area, and the free space is filled with X'00'. The field
IROLN (Real Output Length) of the input area returns information on the number of bytes
that have been transferred to the output area (if the input parameter area is generated with
FSTAT MF=D, VERSION=2, XPAND=PLSHORT).

Depending on the number of information blocks to be transferred and the size that is
defined for the output area, the following cases may be differentiated:

The output could be completed fully:

Only the requested information is written to the output area; all unused fields contain X'00'.
The caller receives the return code:

All the requested information was transferred to the output area.

0 0 0 0 0 0 0 0

FSTAT Macros

652 U4250-J-Z125-12-76

No file matching the selection criteria was found:

No information is written to the output area. The caller receives the following return code:

or

No output was possible:

If absolutely no data can be written to the output area, the caller receives the following
return code:

The program should be checked and corrected.

The output could not be completed fully:

If the estimated size of the output area is too small and some of the requested information
blocks cannot be transferred as a result, in addition to the main code 06CB (“length speci-
fication too small for entry”), an indicator showing which of the two output areas (OUTAREA/
STOUTAR) could not be transferred is placed in subcode2.

The specified file was not found in pubset '(&00)'.

0 0 0 0 0 5 3 3

No file matches the specified selection criteria.

0 0 0 0 0 6 C C

Invalid address for the area or illegal length specification in the
FSTAT macro.0 0 0 1 0 5 A B

The catalog entry information could not be transferred fully (for
OUTPUT=CEINFO/FNAM-ONLY).0 1 0 0 0 6 C B

The requested statistics could not be transferred fully (for
OUTPUT=STAT-SHORT/STAT-LONG).0 2 0 0 0 6 C B

Both the catalog entry information and the statistics could not be
transferred fully (for OUTPUT=STAT-INFO)0 3 0 0 0 6 C B

Macros FSTAT

U4250-J-Z125-12-76 653

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

The user can define a larger output area and repeat the FSTAT call in such cases.

The contents and structure of the information to be output depends on which information is
selected for retrieval by means of the OUTPUT operand. The following options are
available:

OUTPUT = CEINFO / FNAM-ONLY / RC-ONLY / STAT-INFO / STAT-LONG / STAT-SHORT

No output area is required for OUTPUT=RC-ONLY. If OUTPUT=STAT-INFO is specified,
the same information as for CEINFO + STAT-LONG is output.

The information blocks can be accessed via an information header. If no blocks are
requested, the address pointer for this block is set to null.

The offsets in the respective output areas are calculated relative to the start of the block in
which the offset is defined. The offsets in BLOCK_INFORMATION_Header2 are related to
BLOCK_INFORMATION_Header1, since both blocks are treated as a single unit.

i All the output structures shown below are typical examples in which the block name
(e.g. BLOCK_INFORMATION_HEADER) refers to the block headers of the DSECT
that can be generated to evaluate the output area.
This DSECT can be generated with the macro:
FSTAT MF=D, XPAND=OUTPUT, VERSION=3.

Output structure for OUTPUT=CEINFO

In this output format, all information from the catalog entry excluding the statistics are output
in the area defined by OUTAREA. The desired information can be selected via the CEINFO
operand.

CEINFO = HISTORY
SECURITY
BACKUP
ORGANIZATION
STATUS
ALLOCATION
VOLUME
VOLUME-EXTENTS
INDEX-INFO
FTAM

Information on accesses to the file
Access rights and data security attributes
Backup attributes for the file
File organization attributes
Special characteristics of files
Information on physical attributes of the file
Volume list
Volume list and extent list
Information on the file generation group
FTAM (file transfer access method) data

FSTAT Macros

654 U4250-J-Z125-12-76

The following diagram shows the output areas for two files:
 File 1 File 2
Zxxxxxxxxxxxxxxxxxxxxxxxxxxx? Zxxxxxx.Zxxxxxxxxxxxxxxxxxxxxxxxxxxx?
OU BLOCK_INFORMATION_HEADER1 OU OU OU BLOCK_INFORMATION_HEADER1 OU
OU OU OU OU OU
OU pathname OU OU OU pathname OU
Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4 OU Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4
OU BLOCK_INFORMATION_HEADER2 OU OU OU BLOCK_INFORMATION_HEADER2 OU
OU OU OU OU OU
OU offset_next OUxxxxxxY OU offset_next OU
OU offset_history OUxx? OU offset_history OU
OU offset_security OUxxOUxxx? OU offset_security OU
OU ... OU OU OU OU ... OU
Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4,xY OU Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4
OU HISTORY_BLOCK OU OU OU HISTORY_BLOCK OU
Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4,xxxxxY Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4
OU SECURITY_BLOCK OU OU SECURITY_BLOCK OU
Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4 Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4
OU ... OU OU ... OU
gxxxxxxxxxxxxxxxxxxxxxxxxxxxY gxxxxxxxxxxxxxxxxxxxxxxxxxxxY

BLOCK_INFORMATION_HEADER1 contains the following:

pathname Path number of the selected file, subdivided into:

– length of the pvsid (catalog ID) (2 bytes)
– PVSID (catalog ID) (4 bytes)
– length of the user ID (2 bytes)
– user ID (8 bytes)
– length of the file name (2 bytes)
– file name (41 bytes)

BLOCK_INFORMATION_HEADER2 contains the address pointers to the information
blocks and to the output area of the next file.

The two headers are followed by the information blocks which contain the actually useful
information (HISTORY_BLOCK, SECURITY_BLOCK etc.). The description and length of
the individual fields can be obtained from the DSECT.

offset_next

offset_history
offset_security
offset_backup
...

Offset to the next BLOCK_INFORMATION_HEADER (2 bytes)
(start of the output area of the next file)
Offset to the HISTORY_BLOCK (2 bytes)
(2 bytes)
(2 bytes)

Macros FSTAT

U4250-J-Z125-12-76 655

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Output structure for OUTPUT=FNAM-ONLY

In this output format, only the path names of the selected files are shown in the output area
defined by OUTAREA. Apart from the end criterion in the last byte, the
BLOCK_INFORMATION_HEADER1 in the output structure for OUTPUT=FNAM-ONLY is
identical to the corresponding header for OUTPUT=CEINFO (see page 654).

End criterion

X'00' There are no further path names.

X'01' Additional path names follow.
Zxxxxxxxxxxxxxxxxxxxxxxxxxxx?
OU BLOCK_INFORMATION_HEADER1 OU File 1
OU Zxx4
OU pathname OU01OU
CxxxxxxxxxxxxxxxxxxxxxxxxAxx4
OU BLOCK_INFORMATION_HEADER1 OU File 2
OU Zxx4
OU pathname OU01OU
CxxxxxxxxxxxxxxxxxxxxxxxxAxx4
OU OU
OU ... OU ...
OU OU
Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4
OU BLOCK_INFORMATION_HEADER1 OU File n
OU Zxx4
OU pathname OU00OU
gxxxxxxxxxxxxxxxxxxxxxxxxAxxY

FSTAT Macros

656 U4250-J-Z125-12-76

Output structure for OUTPUT=STAT-LONG

In this output format, only the statistics are shown in the output area defined by the
STOUTAR operand.
Nonprivileged users are returned information on files that can be stored on one or more
pubsets.
The system administrator can also use wildcards to have information on multiple user IDs
displayed.

Zxxxxxxxxxxxxxxxxxxxxxxxxxxx?
OU MAIN_HEADER OU
OU OU
OU statistics OU
OU offset_pvsid1 OUxx?
gxxxxxxxxxxxxxxxxxxxxxxxxxxxY OU
 OU
 OU
Zxxxxxxxxxxxxxxxxxxxxxxxxxxx? OU Zxxxxxxxx.Zxxxxxxxxxxxxxxxxxxxxxxxxxxx?
OU PVSID_HEADER OU,xY OU OU PVSID_HEADER OU
OU (catalog ID 1) OU OU OU (catalog ID 2) OU
OU OU OU OU OU
OU statistics OU OU OU statistics OU
OU offset_nextpvsid OUxxxxxxY OU offset_nextpvsid OU
OU offset_info OU OU offset_info OU
Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4 Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4
OU USERID_HEADER OU OU USERID_HEADER OU
OU (user ID 1) OU OU (user ID 1) OU
OU OU OU OU
OU statistics OU OU statistics OU
OU offset_info OU OU offset_info OU
Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4 Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4
OU OU *) OU OU *)
Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4 Cxxxxxxxxxxxxxxxxxxxxxxxxxxx4
OU Userid_Header OU *) OU Userid_Header OU *)
OU (user ID n) OU OU (user ID n) OU
OU OU OU OU
OU statistics OU OU statistics OU
OU offset_info OU OU offset_info OU
gxxxxxxxxxxxxxxxxxxxxxxxxxxxY gxxxxxxxxxxxxxxxxxxxxxxxxxxxY

*) Only the system administrator can select multiple user IDs.

Macros FSTAT

U4250-J-Z125-12-76 657

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

The MAIN_HEADER returns the following information:

Statistics

– Total number of selected files (4 bytes)
– Number of files on public volumes (4 bytes)
– Number of files on private volumes (4 bytes)
– Number of files on Net-Storage (4 bytes)
– Number of files on tape (4 bytes)
– Number of files with migration level 1 (HSMS) (4 bytes)
– Number of files with migration level 2 (HSMS) (4 bytes)
– Number of user IDs (2 bytes)
– Number of free PAM pages on public volumes (4 bytes)
– Number of free PAM pages on private disk (4 bytes)
– Number of free PAM pages on Net-Storage (4 bytes)
– Number of free PAM pages at migration level 1 (4 bytes)
– Number of free PAM pages at migration level 2 (4 bytes)

offset_pvsid1 Offset to the first PVSID_HEADER (2 bytes)

The PVSID_HEADER returns the following information:

Statistics

– Catalog ID (4 bytes)
– Total number of selected files (4 bytes)
– Number of files on public volumes (4 bytes)
– Number of files on private volumes (4 bytes)
– Number of files on Net-Storage (4 bytes)
– Number of files on tape (4 bytes)
– Number of files with migration level 1 (HSMS) (4 bytes)
– Number of files with migration level 2 (HSMS) (4 bytes)
– Number of user IDs (2 bytes)
– Number of free PAM pages on public volumes (4 bytes)
– Number of free PAM pages on private disk (4 bytes)
– Number of free PAM pages on Net-Storage (4 bytes)
– Number of free PAM pages at migration level 1 (4 bytes)
– Number of free PAM pages at migration level 2 (4 bytes)

offset_nextpvsid Offset to the next PVSID_HEADER (2 bytes)

offset_info Offset to the BLOCK_INFORMATION_HEADER1 of the first
selected file for this catalog (4 bytes) (relative to the address of the
OUTAREA)

FSTAT Macros

658 U4250-J-Z125-12-76

The USERID_HEADER returns the following information:

Statistics

– User ID (8 bytes)
– Total number of selected files (4 bytes)
– Number of files on public volumes (4 bytes)
– Number of files on private volumes (4 bytes)
– Number of files on Net-Storage (4 bytes)
– Number of files on tape (4 bytes)
– Number of files with migration level 1 (HSMS) (4 bytes)
– Number of files with migration level 2 (HSMS) (4 bytes)
– Number of free PAM pages on public volumes (4 bytes)
– Number of free PAM pages on private disk (4 bytes)
– Number of free PAM pages on Net-Storage (4 bytes)
– Number of free PAM pages at migration level 1 (4 bytes)
– Number of free PAM pages at migration level 2 (4 bytes)

offset_info Offset to the BLOCK_INFORMATION_HEADER1 of the first
selected file of this user ID that is found under the catalog ID
indicated above (4 bytes) (relative to the address of the OUTAREA)

Output structure for OUTPUT=STAT-SHORT

In this output format, only the MAIN_HEADER of the output structure for
OUTPUT=STAT-LONG is shown (see page 657).
Zxxxxxxxxxxxxxxxxxxxxxxxxxxx?
OU MAIN_HEADER OU
OU OU
OU statistical information OU
gxxxxxxxxxxxxxxxxxxxxxxxxxxxY

Macros FSTAT

U4250-J-Z125-12-76 659

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Output structure for OUTPUT=STAT-INFO

This format combines the output structures for OUTPUT=CEINFO and OUTPUT=STAT-
LONG. Two output areas, OUTAREA and STOUTAR, must be defined by the user for this
purpose. The output area for statistics, STOUTAR (shown to the left in the diagram below),
contains references to the output area OUTAREA (shown on the right).

The diagram shows only one user ID in the output area STOUTAR. This corresponds to the
selection option for nonprivileged users:

 Zxxxxxxxxxxxxxxxxxxxxxxxx? Zxxxxxxxxxxxxxxxxxxxxxxxxx?
 OUMAIN_HEADER OU Zxxxxx. OUBLOCK_INFORMATION_HEADER1OU
 OU OU OU Cxxxxxxxxxxxxxxxxxxxxxxxxx4
 OUstatistical information OU OU OUBLOCK_INFORMATION_HEADER2OUxx?
ZxxxOUoffset_pvsid1 OU OU Cxxxxxxxxxxxxxxxxxxxxxxxxx4 OU
OU gxxxxxxxxxxxxxxxxxxxxxxxxY OU OUINFO_BLOCKS OU OU
OU Zxxxxxxxxxxxxxxxxxxxxxxxx? OU gxxxxxxxxxxxxxxxxxxxxxxxxxY OU
gx. OUPVSID_HEADER OU OU OU
 OU(catalog ID 1) OU OU Zxxxxxxxxxxxxxxxxxxxxxxxxx? OU
 OU OU OU OUBLOCK_INFORMATION_HEADER1OU,xY
 OUstatistical information OU OU Cxxxxxxxxxxxxxxxxxxxxxxxxx4
ZxxxOUoffset_nextpvsid OU OU OUBLOCK_INFORMATION_HEADER2OU
OU OUoffset_info OUxxxxxxx4 Cxxxxxxxxxxxxxxxxxxxxxxxxx4
OU Cxxxxxxxxxxxxxxxxxxxxxxxx4 OU OUINFO_BLOCKS OU
OU OUUSERID_HEADER OU OU gxxxxxxxxxxxxxxxxxxxxxxxxxY
OU OU(User ID 1) OU OU
OU OUstatistical information OU OU
OU OUoffset_info OUxxxxxxxY
OU gxxxxxxxxxxxxxxxxxxxxxxxxY
OU
OU Zxxxxxxxxxxxxxxxxxxxxxxxx? Zxxxxxxxxxxxxxxxxxxxxxxxxx?
gx. OUPVSID_HEADER OU Zxxxxx. OUBLOCK_INFORMATION_HEADER1OU
 OU(catalog ID 1) OU OU Cxxxxxxxxxxxxxxxxxxxxxxxxx4
 OU OU OU OUBLOCK_INFORMATION_HEADER2OUxx?
 OUstatistical information OU OU Cxxxxxxxxxxxxxxxxxxxxxxxxx4 OU
ZxxxOUoffset_nextpvsid OU OU OUINFO_BLOCKS OU OU
OU OUoffset_info OUxxxxxxx4 gxxxxxxxxxxxxxxxxxxxxxxxxxY OU
OU Cxxxxxxxxxxxxxxxxxxxxxxxx4 OU OU
OU OUUSERID_HEADER OU OU OU
OU OU(user ID 1) OU OU OU
OU OUstatistical information OU OU OU
OU OUoffset_info OUxxxxxxxY ,xY
OU gxxxxxxxxxxxxxxxxxxxxxxxxY
OU
gx.

OUPUT = STAT-LONG
(output area STOUTAR)

OUTPUT = CEINFO
(output area OUTAREA)

FSTAT Macros

660 U4250-J-Z125-12-76

Programming notes for VERSION=0 and VERSION=1

If the FSTAT macro accesses pubsets with large volumes that do not, however, allow large
files, interface behavior is unchanged. Access of this kind is always performed without
problems.
Problems can occur if pubsets that also allow large files are accessed.

Interface variants that do not need to be converted

FSTAT ...,VERSION=0,<partially-qualified filename>
FSTAT ...,VERSION=0,<file generation group with GEN=YES>

FSTAT ...,VERSION=1,FNAM

The semantics problem discussed at OPEN macro must be considered, see page 751.
Each user of this interface must check whether this problem applies to their implementation.

Interface variants that need to be checked/converted

FSTAT ...,VERSION=0/1,SHORT/LONG

These variants return the catalog information in BS2000 V10.0 format.
The extent lists and data fields for File-Size and Last-Page-Pointer are output with only
3 bytes. For reasons of compatibility, it is not possible to change the layout of these inter-
faces.

Calls that refer to large objects cause an overflow in the 3-byte fields.

Two different cases must be distinguished. These depend on the contents of the result list
from the FSTAT call:

a) No file Ï 32 GB exists in the result list (set of selected files).

In this instance, FSTAT tolerates the overflow of the 3-byte data field of the PHP in the
extent list. The value X'FFFFFF' is assigned to the PHPs that cannot be displayed. It is
assumed that the PHPs are never or very rarely evaluated at the interfaces. If this is
occasionally not the case, the interface must be converted to version 2 or 3.

This achieves the following:

– The introduction of large volumes can be carried out in a compatible manner, user
programs do not need to be changed.

– FSTAT calls with fully-qualified pathnames can be supported compatibly (except for
the PHP overflow in the extent list).

Ê No conversion is necessary.

Macros FSTAT

U4250-J-Z125-12-76 661

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

b) At least one file Ï 32 GB exists in the result list (FSTAT is called with a partially-qualified
filename or with wildcards).

Calls of this kind are rejected with the following return code:

The following types of FSTAT interfaces are affected:

Ê These calls must be converted to VERSION=2/3.

Summary of FSTAT calls

FSTAT <fully-qualified pathname>,VERSION=0/1

1. Access only to small files (less than 32 GB):
No action necessary 1)

2. Large files are also accessed (Ï 32 GB):
If the call is made with one of the types I to V, conversion to VERSION=2/3 is
necessary, with the exception of types I and II where the file generation group and
GEN=YES are specified.

FSTAT <partially-qualified pathname or pathname with wildcards>,VERSION=0/1

1. The result list contains only small files (less than 32 GB):
No action necessary 1)

Warning!
You must ensure that the requirements are always fulfilled.
This is probably only possible for pathnames that contain wildcards in the catalog ID
and otherwise contain fully-qualified components.

X'cc' X'bb' X'aaaa' Explanation

X'00' X'01' X'0576' The selection contains large files.

Type Comment

I FSTAT ... VERSION=0 is set as default

II FSTAT ...,VERSION=0

III FSTAT ...,VERSION=1,SHORT

IV FSTAT ...,VERSION=1,LONG

V FSTAT ...,VERSION=1 The SHORT operand is set as default

1 “No action necessary” applies here if the result list contains only small files and the overflow of the 3-byte data field of the PHP
in the extent list does not present a problem. If this is not the case, conversion to VERSION=2/3 is necessary.

FSTAT Macros

662 U4250-J-Z125-12-76

2. The result list can also contain large files (Ï 32 GB):
If the call is made with one of the types III to V, conversion to VERSION=2/3 is
necessary.

Conclusion

When using the FSTAT interface with VERSION < 2 and FORM=LONG or
FORM=SHORT, it is necessary to convert to the most recent interface version under
the following circumstances:

a) Large files should be accessible with the FSTAT call in the affected program.

b) The pathname in the FSTAT call is partially-qualified or contains wildcards and it
cannot be assumed that the result list contains no large files. Calls with wildcards
in the catalog ID are particularly critical here.

It may be necessary to convert the data structures in the program as well as the
interface.

Control using the Class 2 system parameter FST32GB

FST32GB only affects the following FSTAT interfaces:

– Version=0 (corresponds to Version=710) when a fully-qualified filename is specified
(although not when a file generation group is specified with GEN=YES)

– Version=1 (corresponds to Version=800), where the FNAM operand was not specified

Whether the existence of a file Ï 32 GB in the list of selected files leads to the FSTAT call
being rejected with the X'00000576' return code (FST32GB=0, default setting) or whether
an overflow of the 3-byte fields is always tolerated (FST32GB=1) is set globally on the
system by systems support staff. In the latter case, the value X'FFFFFF' is assigned to the
data fields that cannot be displayed.

Note

The Class 2 system parameter FST32GB is not evaluated if the FSTAT indicator (see
below) is set.

Macros FSTAT

U4250-J-Z125-12-76 663

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Control using the FSTAT indicator

Behavior equivalent to FST32GB=1, i.e. ignoring the overflow, can be activated for specific
interfaces for FSTAT types I to V using an indicator.

Note

The FSTAT indicator has a higher priority than the Class 2 system parameter FST32GB.
If the FSTAT indicator is set, FST32GB is not evaluated.
The indicator must be set directly in the parameter list; no support is provided in the
FSTAT macro.

Description of the bits in the corresponding DSECT:

 FSTAT MF=D,PARMOD=31,VERSION=710

IDBFLAG2 DS X FLAGS 2
IDBLOPYE EQU X'04' 2-2 S LARGE PUBSET ACCESS=YES
 FSTAT MF=D,PARMOD=31,VERSION=800
IFLAG0 DC B'10001100'
ILOPY EQU X'04' 2-2 S LARGE PUBSET ACCESS=YES

FSTAT Macros

664 U4250-J-Z125-12-76

Variations in versions – VERSION=0/1/2/3/4

The “version overview” in the table below shows which operands and operand values are
supported with VERSION=4/3/2/1/0.

– In VERSION=4 all operands/operand values can be used which are supported in
BS2000/OSD-BC V9.0A and higher.

– All operands and operand values that were supported up to and including BS2000/
OSD-BC V8.0A may be used with VERSION=3.

– All operands and operand values that were supported up to and including BS2000/OSD
V2.0A may be used in the macro format with VERSION=2.

– All operands and operand values that were supported from BS2000 V8.0A to V10.0A
may be used in the macro format with VERSION=1.

– All operands/operand values that were supported in BS2000 Versions < V8.0A can be
used in the format with VERSION=0.

Operand Vers=0 Vers=1 Vers=2 Vers=3 Vers=4 Remarks for operand values

MF=E x x x x

PARMOD x x x x

VERSION x x x x

MF=C - - x x

MF=D x x x x

PARMOD x x x x

PREFIX - x x x

VERSION x x x x

MF=L x x x x

pathname x x x x Vers=0: Temporary files are not taken
into account,
see also 3)

Vers=1: The length of the path name is
specified by means of a positional
operand, see 3)

ACCESS - x x x ANY valid from Vers=2

ACL - x x x ANY valid from Vers=2

ACCCNT - - x x

ADMINFO - - - x

AVAIL - - - x

BACKUP - x x x ANY valid from Vers=2

Macros FSTAT

U4250-J-Z125-12-76 665

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

BASACL - x x x ANY valid from Vers=2;
Vers=1: value YES with substructure,
see 2)

BLKCNT - - x x

BLKCTRL - x x x x Vers=1: Only operand values NONE,
DATA, PAMKEY, NO are allowed (also
to be specified as a list)

CEINFO - - x x x

CCS - - x x x

CRDATE - x x x x

DELDATE - - - x x The operand values ANY, NONE and
values with (time) specifications are not
possible, see also 1)

DISKWR - - x x x

EXDATE - x x x x

EXTENTS - x x x x The operand values ANY, NONE and
values with (time) specifications are not
possible, see also 1

FCBTYPE - x x x x ANY valid from Vers=2

FSIZE - x x x x ANY valid from Vers=2

FILTYPE - - - - x

FROM - x x x x ANY valid from Vers=2

GEN x x x x x

GROUPAR - (x) x x x

GUARDS - - x x x GROUPAR from Vers=2 only, Vers=1:
Information can be retrieved with
BASACL, see 2)

IOPREF - - x x x

IOUSAGE - - x x x

LADATE - x x x x

LASTPAG - x x x x Vers=2: The operand values ANY,
NONE and values with (time) specifica-
tions are not possible, see also 1)

LCDATE - - x x x ANY valid from Vers=2

MANCLAS - - - x x

MIGRATE - x x x x

Operand Vers=0 Vers=1 Vers=2 Vers=3 Vers=4 Remarks for operand values

FSTAT Macros

666 U4250-J-Z125-12-76

OTHERAR - (x) x x x ANY valid from Vers=2;
FORBIDDEN valid from Vers=3

OUTAREA (x) (x) x x x Vers=1: The OTHERAR operand is not
supported, the information can be
retrieved with the BASACL operand,
see also 2)

MF=L (continued)

OUTPUT (x) (x) x x

OWNERAR - (x) x x x Vers=0: The OUTPUT operand is not
supported.
The positional operands SHORT and
LONG correspond to operand values
STAT-SHORT and STAT-LONG of the
keyword operand OUTPUT. See also 3)

Vers=1: The OUTPUT operand is not
supported.
The positional operands SHORT, FNAM
and LONG correspond to operand
values STAT-SHORT FNAM-ONLY and
STAT-LONG of the keyword operand
OUTPUT. See also 3)

PASS - x x x x Vers=1: The OWNERAR operand is not
supported, the information can be
retrieved with the BASACL operand,
see also 2)

PASSW - - x x x ANY valid from Vers=2

PREFIX - x x x x

PREFORM - - - x x

PROTACT - - x x x

RELSPAC - - x x x

SHARE - x x x x

SIZE - x x x x Vers=1: The operand value ANY is
illegal, as is specification of a list

SLEVEL - x x x x ANY valid from Vers=2

SORT - x x x x ANY valid from Vers=2

STATE x x x x x

Operand Vers=0 Vers=1 Vers=2 Vers=3 Vers=4 Remarks for operand values

Macros FSTAT

U4250-J-Z125-12-76 667

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Key

x The operand is available in the macro version.

(x) The operand is not available in the macro version under the specified name, but the
same function can be executed by an operand of some other name.

– The operand is not available in the macro version.

STOCLAS - - - x x Vers=0: Only the operand value
NOCLOS is possible
Vers=1: only the operand values
NOCLOSE and
PCLOSE are possible
Vers=2: The operand values CACHE-
NOT-SAVED and DEFECT-
REPORTED are illegal

STOTYPE - - - - x

STOUTAR (x) (x) x x x Vers=0/1: The length and address of the
output area are represented by
positional operands. In both versions,
only one output area is defined. The
output information is determined by the
positional operands SHORT, LONG and
FNAM (Vers=1 only). See 3)

MF=L (Fortsetzung)

SUPPORT x x x x x specification of a list valid from Vers=1:
ANY valid from Vers=2

S0MIGR - - - x x

TIMBASE - - - x x

TYPE x x x x x Vers=0/1: only FGG possible

USRINFO - - - x x

VERSION x x x x x

VOLSET - - - x x

VOLUME x x x x x ANY valid from Vers=2

VTOC x x x x x

WORKFIL - - - x x

WTQUIET - - - x x

XPAND - - x x x

Operand Vers=0 Vers=1 Vers=2 Vers=3 Vers=4 Remarks for operand values

FSTAT Macros

668 U4250-J-Z125-12-76

Vers Version VERSION=710 corresponds to VERSION=0
VERSION=800 corresponds to VERSION=1

Note

The positional operand pathname is indicated before the alphabetically sorted keyword
operands.

1) The format for the CRDATE, EXDATE and LADATE operands in macro version 1 is
as follows:

CRDATE

EXDATE

LADATE 
 
 
 
 

=

date
(date[,])
(,date)
(date1,date2)

 
 
 
 
 
 
 

Macros FSTAT

U4250-J-Z125-12-76 669

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

2) The format for the BASACL operand in macro version 1 is as follows.

3) Representation of positional operands in Vers=0 and Vers=1:

[,BASACL=

NONE

YES([,OWNER=
NO-ACCESS

access-list 
 
 

]

[,GROUP=
NO-ACCESS

access-list 
 
 

]

[,OTHERS=
NO-ACCESS

access-list 
 
 

])

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

]

Vers=0: [pathname], outaddr(,length][,
SHORT

LONG 
 
 

]

Vers=1:
[pathname]

([pathname],length) 
 
 

,

outaddr

(S,outaddr)

(r1) 
 
 
 
 

,
length2

(r2) 
 
 

[,

SHORT

FNAM

LONG 
 
 
 
 

]

FSTAT Macros

670 U4250-J-Z125-12-76

Version variations in the representation of the output area

Version=0 (ï Version=710)

The scope of information written to the output area depends on whether a partially-qualified
file name, a fully-qualified file name of an FGG (file generation group), or a fully-qualified
file name is specified.

Partially-qualified file name or fully qualified file name of an FGG:

Only a list of file names is written to the output area.
Zxxxxxxx←xxxxxxxxxx?
OUlength OU filename OU
CxxxxxxxExxxxxxxxxx4
OUlength OU filename OU
gxxxxxxxAxxxxxxxxxxY
: : :
Zxxxxxxx←xxxxxxxxxx←xxxx←xxxxxxxxx?
OUlength OU filename OUend OUcontrol OU
gxxxxxxxAxxxxxxxxxxAxxxxAxxxxxxxxxY

length Length of the file name. The value of the length field is equal to the “length of
the file name + 1 byte for the size of the length field”. This defines the offset to
the next length field.
The name of a group entry is followed by the string '_(FGG)'. The value of the
length field is then equal to the “length” of the group name + 1 byte for the size
of the length field + 6 bytes for the string '_(FGG)'.

filename File name (maximum 41 bytes).

end Indicates the end of the list (X'00') (1 byte).

control Indicates whether the output area was large enough to accommodate all file
names (1 byte).

X'00' Complete output:
all file names were transferred to the output area.

X'01' Incomplete output:
one or more file names could not be transferred to the output area,
because it was already full.

Macros FSTAT

U4250-J-Z125-12-76 671

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

Fully-qualified file names

The output format is defined by means of the SHORT and LONG operands:

SHORT The statistics section of the catalog entry is transferred to the output area (at
least 60 bytes). The IDCE macro generates a DSECT that produces the layout
of the output area.

LONG The complete catalog entry consisting of
– statistics section
– file name
– extension
– volume table
– file table
– FGG suffix
is shown in the output area (at least 2032 bytes).

If the value specified for the length of the output area (in the “length” operand, which corre-
sponds to the length of the operand OUTAREA or STOUTAR in Vers=2) is not sufficient, no
information is transferred.
For more information on generating DSECTs for the output area, see also the description
of the SHORT operand on page 671.

Example

Zxxxxxxxxxxx←xxxxxxxxxxxxxxxx←xxxx←xxxx?
OU 06 PETER OU OB ACCOUNTS OU 00 OU 00 OU
gxxxxxxxxxxxAxxxxxxxxxxxxxxxxAxxxxAxxxxY

FSTAT Macros

672 U4250-J-Z125-12-76

Version=1 (ï Version=800)

Returns information on permanent or temporary files, file generations, or file generation
groups that are specified by means of fully or partially qualified names.

The size and layout of the output area depends on the scope of the information requested
for the files via the operands FNAM, SHORT and LONG.

FNAM A list of file names is transferred to the output area. The address and length of
the output area are assigned by means of the operands “outaddr” and “length2”,
respectively.
(With Vers=2, these operands correspond to the operand values “addr” and
“length” of the operand OUTAREA).
The output area must have a length of at least 73 bytes.

Zxxxxxxxxxxxxxxxxxxx?
OUinformation_header OU
Cxxxxxxxxxxxxxxxxxxx4
OUdata OU
gxxxxxxxxxxxxxxxxxxxY
: :
Zxxxxxxxxxxxxxxxxxxx←xxxxx←xxxxx←xxxxxxxxx?
OUdata OUend1 OUend2 OUcontrol OU
gxxxxxxxxxxxxxxxxxxxAxxxxxAxxxxxAxxxxxxxxxY

The information_header contains

– Total number of selected files (4 bytes)

– Length of the prefix and data that follows (4 bytes)

– Prefix:
– length of the prefix (2 bytes)
– length of the catalog ID + 2 (2 bytes)
– catalog ID for all following entries
– length of the user ID + 2 (2 bytes)
– user ID for all following entries

The data area contains:

– length of the usage information that follows + 2 (2 bytes)

– file name (max. 41 bytes)

Macros FSTAT

U4250-J-Z125-12-76 673

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
ay

 2
01

6
 S

ta
nd

 1
6:

54
.0

9
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

1
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.v
0

4\
fp

-f
s.

do
c

The output area is terminated by
end1 End-of-list flag for the data area (2 bytes, X'0000')
end2 End-of-list flag for the output area (4 bytes, X'00000000')
control Return information on the execution of the FSTAT call (1 * byte)

SHORT Returns the statistics stored in the catalog entry for each file name.
The address and length of the output area are assigned by means of the
operands “outaddr” and “length2”, respectively.
(With Vers=2, these operands correspond to the operand values “addr” and
“length” of the operand STOUTAR.)
The information header and the end1, end2, and control areas correspond to
the representation for the FNAM operand.

The data area contains:
– statistics section of the catalog entry; the last byte contain the length of the

following file name (60 bytes)
– file name (max. 41 bytes)

In other words, the data area for SHORT has a maximum length of 101 bytes.
The output area for SHORT must be at least 133 bytes long. The IDCE macro
generates a DSECT that creates the layout of the output area.

LONG The complete catalog entry is output for each file name. The address and length
of the output area are assigned by means of the operands “outaddr” and
“length2”, respectively.
(With Vers=2, these operands correspond to the operand values “addr” and
“length” of the operand STOUTAR.)
The information header and the end1, end2, and control areas correspond to
the representation for the FNAM operand.

The data area contains:
– statistics section
– file name
– extension
– volume table
– file table
– FGG suffix

The output area for LONG must have a length of at least 2064 bytes.

Note
The general-purpose registers 1 and 15 must not be specified for r1, r2 and r3, and the
specifications for r1, r2, and r3 must constitute mutually exclusive pairs (logical OR).

X'00'
X'01'

All the requested information was transferred to the output area
The requested information could not be fully transferred to the output
area.

GET Macros

674 U4250-J-Z125-12-76

GET – Read next record

Area of application

The GET function can be used when processing files with SAM or ISAM (record-oriented
access methods). The file must have been opened with one of the following OPEN modes:

– INPUT (SAM or ISAM)
– INOUT (ISAM)
– OUTIN (ISAM)
– UPDATE (SAM)

Function

The GET function makes a record from a file available to the user. The record returned is
always the record referenced by the current record counter. After an OPEN INPUT, this
counter is 1. A series of GET macros will thus read the file records sequentially (cf. GETKY,
GETFL, GETR for ISAM).

The GET macro does not always issue an SVC. An SVC will only be issued if the next
record to be read is no longer in the current buffer area.

If a record located outside the file is requested, DMS detects the “end-of-file” condition.
It branches to the EOFADDR address (see the EXLST macro, page 391) and passes
control to the user.

Return modes

The user can process a file in two modes which are important for the use of GET:

In LOCATE mode, the system transfers the record to a buffer area in the system (IOREG
operand). The address of the record is received in a register specified by the user. The
record is not transferred to the program area (cf. MOVE mode).

In MOVE mode, the user includes in his/her program an area to which the system can copy
the record. The address of this record area is passed to the system via register 1 when the
macro is issued.

ISAM: Macro type: R for PARMOD=24
0 for PARMOD=31

SAM: Macro type: R for PARMOD=24
R for PARMOD=31

Macros GET

U4250-J-Z125-12-76 675

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Changing the record pointer

The record pointer can be changed by means of positioning. In this case sequential
processing is interrupted and continued elsewhere: cf. SETL, SETLKY.

Special features

For SAM files only

OPEN UPDATE
In the OPEN mode UPDATE, GET reads records which are to be updated. PUTX changes
the record but does not result in a write job; it just places a code in the FCB indicating that
this record needs to be written. The actual write job is only executed upon a subsequent
GET, RELSE, SETL; PUTX does not issue an SVC.

Tape files and blocking
With tape files in PAMKEY format with high blocking (STD,n), I/O is extended. In this case
conversion to NON-KEY format or BLKSIZE=length is advisable.

Access time can be reduced by using large buffer areas. In this case SAM chains together
consecutive PAM pages (chained I/O). However, significant time savings can be expected
only if the files occupy largely contiguous storage space (see the SPACE operand of the
FILE macro, page 493).

A GET macro results in an SVC only when a buffer transfer is initiated. Consequently, the
user cannot expect to receive control in a STXIT process each time a GET macro is issued
(when using the STXIT macro with SVC= or SVCLIST=. For more details see the “Executive
Macros” manual [2]).

The fact that a record has been updated in the current buffer is “noted” in the TU FCB by
PUTX. It is only if this bit is set at the time of the next GET (RELSE, SETL) that the entire
logical block is written to disk. PUTX never issues an SVC.

For ISAM files only

Reading via primary keys
With ISAM files, the logical sequence of records is defined via primary keys. With a series
of GET macros, the records are read sequentially in ascending order of primary keys.
A SETLKEY can be used to position the file to a given primary key. A subsequent GET will
then return this record.

Reading via secondary keys
When processing an NK-ISAM file, it is also possible to read records by specifying a
secondary key. If a primary key covers several records with identical secondary keys
(DUPEKEY), these records are returned by GET macros in the order in which they were
created.

If the file contains records with duplicate primary keys, they will be retrieved on a “first in,
first out” (FIFO) basis.

GET Macros

676 U4250-J-Z125-12-76

If a file is read sequentially via a secondary key, records with the same secondary key
values are returned in the order in which the secondary key values were created.

Where SETL KEY is used to position the file to an existing record, a subsequent GET macro
makes this record available for processing.

Format

Operation Operands

GET fcbaddr

(1) 
 
 

[,
area

(0) 
 
 

][,
LOCK

NOLOCK 
 
 

]

[,AIX=

NO

YES,
KEYNAME=name

KEYNMAD=addr 
 
 

 
 
 
 
 
 
 

]

[,PARMOD=
24

31 
 
 

]

Macros GET

U4250-J-Z125-12-76 677

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

For ISAM files only:
If the file is to be located with the aid of a secondary key, the 31-bit interface of this FCB
must be available.

(1)
The FCB address is located in register 1.

area
Address of the field to which the record is to be transferred when the file is processed in
MOVE mode. In LOCATE mode, “area” is ignored.

(0)
The address of the field to which the record is to be transferred is stored in register 0.

LOCK
For ISAM files only:
The record or block lock is to remain active after the macro has been executed (explicit
lock).

NOLOCK
No explicit lock is set.

AIX
For ISAM files only:
Specifies whether the record is to be located via its primary or secondary key.

= NO
The record is provided via its primary key.

= YES
This may only be specified if
– the 31-bit interface of the macro is generated (via the operand PARMOD=31 or the macro

GPARMOD 31) and
– the macro refers to a 31-bit FCB.

The record is located via the secondary key specified in the operand KEYNAME or
KEYNMAD.

GET Macros

678 U4250-J-Z125-12-76

KEYNAME = name
For ISAM files only:
Specifies the name of the secondary key via which the record is to be read.
“name” must be the name of a secondary key declared for the current file. The names of all
secondary keys defined for a file can be determined with the SHOWAIX macro or the
SHOW-INDEX-ATTRIBUTES command.

KEYNMAD = addr
For ISAM files only:
Specifies the symbolic address (the name) of a field in which the user has stored the name
of the secondary key via which the record is to be read.
The field containing the symbolic address addr must contain the name of a secondary key
declared for the current file at the time the macro is executed.

PARMOD
Specifies the generation mode for the macro.

Default value: the value set in the program by the assembler or by means of the
GPARMOD macro.

= 24
The object code generated can run only in the 16-Mb address space
(24-bit addressing only).

= 31
The object code generated can run in the 2-Gb address space
(24-bit or 31-bit addressing).

Programming note

The GET macro overwrites the contents of registers 0, 1, 14 and 15.

Macros GETFL

U4250-J-Z125-12-76 679

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

GETFL – Read record by flag

Macro type: R for PARMOD=24
S for PARMOD=24 (with MF specification)
0 for PARMOD=31

The GETFL macro can be used only for files which were created with flags. It evaluates the
flags in the ISAM index and returns to the user program the next record in a specified range
(see the LIMIT operand, page 682) which fulfills the specified conditions.
GETFL can evaluate both the value flag and the logical flag and can search the file either
forwards or backwards.

Note that NK-ISAM does not include flags in the index entries and that a search for records
with specific characteristics is thus executed as a sequential read operation.

For K-ISAM files, the flags are evaluated as specified in the VALPROP operand of the FILE/
FCB macro and placed in the index entry. A search using GETFL is thus not executed
sequentially, but via the index tree. The only difference in flag processing between NK-
ISAM files and K-ISAM files which is visible to the user is the drop in performance in the
case of NK-ISAM. For this reason, flag processing is not recommended for NK-ISAM files.

If VALTEST and LOGTEST are specified, both conditions must be fulfilled by the record.

If neither VALTEST nor LOGTEST is specified, the GETFL macro acts (within the limits set
with LIMIT) like a GET or GETR macro. If the specified limit defined with LIMIT is reached,
control passes to the EXLST exit EOFADDR (for LIMIT=END) or the EXLST exit NOFIND
(for LIMIT=KEY).

If the GETFL macro is used for a file which was created without flags, control is passed to
the EXLST exit USERERR.

The field to which the FCB operand KEYARG points must be large enough to accommodate
the complete index (key + value flag + logical flag). The value for the value flag or the mask
for the logical flag must comply formally with the corresponding flags in the records (e.g.
with respect to their position and length).

Value flags

During a search for a record with a specific value flag (operand VALTEST), the appropriate
flag area of each record or in the index entry is compared with the value specified in the
GETFL macro. In each case, the first record within the specified limits which complies with
the specified conditions is read.

GETFL Macros

680 U4250-J-Z125-12-76

Logical flags

To search for a record on the basis of the logical flag, a bit mask must be defined in the
GETFL macro. This mask is then compared bit-by-bit with the logical flag in each record.
Depending on the specification for the operand LOGTEST, the first record within the
specified limits which complies with either one or all of the specified conditions is read.

Macros GETFL

U4250-J-Z125-12-76 681

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Formats

The format of the GETFL macro varies, depending on whether the MF operand is specified
and what is specified for this operand:

No MF operand The macro generates parameters and SVC, PARMOD=24/31,
the FCB address is a symbolic address or is in register 1.

MF=L List form: the macro generates the operand list, PARMOD=24.
The FCB address is not in register 1.

MF=E Execute form: the macro generates the SVC for MF=L.

As the operands in the format without the MF operand and in the format with MF=L are
(apart from the FCB address, PARMOD and MF) identical, these two formats are not shown
separately.

Operation Operands

GETFL

[,REVERSE=YES]

fcbaddr

(r)

(r2) 
 
 
 
 

[,
area

(0) 
 
 

][,
LOCK

NOLOCK 
 
 

]

[,LIMIT=
END

KEY 
 
 

][,LOGTEST=
ANY

ALL 
 
 

]

[,VALTEST=

GT
GE
EQ

NE
LE

LT
 
 
 
 
 
 
 
 
 
 
 

][,PARMOD=
24

31 
 
 

]

[MF=
(E,

list

(r1) 
 
 

)

L
 
 
 
 
 
 
 

]

GETFL Macros

682 U4250-J-Z125-12-76

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

(1)
The FCB address is stored in register 1.

(r2)
Only in conjunction with PARMOD=24: on execution of GETFL with MF=(E,...), the
FCB address is stored in the register designated by “r2” (where r2 î 1).

area
Address of the area to which the record is to be transferred.

(0)
The address of the area to which the record is to be transferred is stored in register 0.

LOCK
The lock is to remain active once the macro has been executed (explicit lock).

NOLOCK
The lock is not to remain active after execution of the macro.

LIMIT
Defines the end of the area to be searched. The start position is the current position in the
file, depending on the preceding macro. The “search direction” depends on whether or not
REVERSE=YES is specified. The search begins:
– at the first record of the file after the macro SETL B
– at the last record of the file after the macro SETL E (this is meaningful only together with

REVERSE=YES)
– at the current pointer position after the macro SETL KEY
– at the record before or after the current pointer position (dependent on

REVERSE=YES) for all other macros

= END
The search continues until the end (or beginning) of the file is reached. If the file
contains no records whose flags fulfill the specified conditions, the EXLST exit
EOFADDR is activated.

Macros GETFL

U4250-J-Z125-12-76 683

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

= KEY
The limit is defined by a key to which the FCB operand KEYARG points. The search is
aborted when it encounters a record with the same key as that referenced by KEYARG.
– without REVERSE=YES: only records with keys less than the key addressed via

KEYARG are scanned.
– with REVERSE=YES: only records with keys greater than the key addressed via

KEYARG are scanned.

If the range defined via a key contains no records whose flags fulfill the conditions in the
GETFL macro, control is passed to the EXLST exit NOFIND. This is true even if the file
is already positioned to the record which contains the LIMIT key; in this case, the file
position remains unchanged.
If the key addressed via KEYARG is less than the key at the current pointer position (or
greater than this if REVERSE=YES is specified), control passes to the EXLST exit
USERERR.

LOGTEST
Specifies, for a search with logical flags, whether the records to be retrieved must fulfill all
of the specified conditions or whether compliance with only one condition is sufficient. The
bit mask must be specified in the field to which the FCB operand KEYARG points. At least
one bit in the mask must be set; otherwise control is passed to the EXLST exit USERERR.

= ANY
The search retrieves the next record whose logical flag matches at least one of the bits
of the mask.

= ALL
The search retrieves the next record in whose logical flag all of the bits set in the bit
mask are also set.

MF = (E,...)
Generates the SVC: the operand list generated with MF=L is used for execution of the
macro.

= E,addr
Address of the operand list generated with MF=L. If the addresses of the FCB and
“area” are to be passed in registers, these registers must be loaded with valid
addresses before the macro is called.

= E,r
The address of the operand list generated with MF=L is stored in register “r”.

GETFL Macros

684 U4250-J-Z125-12-76

MF = L
Only for PARMOD=24:
an 8-byte operand list is generated; the macro is not executed. The operand list is aligned
on a word boundary and contains:
– operand byte 1 (see table “Operand byte 1” on page 686)
– the FCB address or the number of the register which contains the FCB address (=1)
– operand byte 2 (see table “Operand byte 1” on page 686)
– the address of the area to which the record is to be transferred or the number of the

register which will contain this address for a macro call with MF=E.

The operand list must be symbolically addressable (= symbolic address of the macro).

PARMOD
Specifies the generation mode for the macro.

Depending on PARMOD and MF=L, different “operand lists” are generated.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space. If MF=L is
specified, an 8-byte operand list is generated; if MF=L is not specified, the operands are
transferred to registers 0 and 1.

= 31
The object code generated can run in the 2-GByte address space. The information
required for macro processing is contained in the FCB.

REVERSE = YES
Processing is performed “in reverse” (towards the beginning of the file).

Default value: processing is performed forwards (towards the end of the file).

VALTEST
Specifies the desired relationship between the value flag of the record to be retrieved and
the value to which the FCB operand KEYARG points.

= GT
The value in the record must be greater than the value in the KEYARG field.

= GE
The value in the record must be greater than or equal to the value in the KEYARG field.

= EQ
The value in the record must be equal to the value in the KEYARG field.

Macros GETFL

U4250-J-Z125-12-76 685

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

= NE
The value in the record must not be equal to the value in the KEYARG field.

= LE
The value in the record must be less than or equal to the value in the KEYARG field.

= LT
The value in the record must be less than the value in the KEYARG field.

Operand list for MF=L

Operand byte 1:
Encoded GETFL operand and LOGTEST (see the table “Operand byte 1”
on page 686).

FCB address/register:
Must specify either the address of the FCB or a register (right-justified)
containing the FCB address.

Operand byte 2:
Encoded information relating to the GETFL operands LOCK/NOLOCK,
fcbaddr, area (see the table “Operand byte 2” on page 686).

Area address/register:
Must specify either the address of the area or a register (right-justified)
containing the address of the area to which the record is to be transferred.

Word 1 Word 2

Operand byte 1 FCB address or register
number

Operand byte 2 Area address or register
number

GETFL Macros

686 U4250-J-Z125-12-76

Operand byte 1

Operand byte 2

Bit position/bit pattern
Meaning7 6 5 4 3 2 1 0

0 0 1 0 VALTEST=GT

0 1 0 0 VALTEST=LT

1 0 0 0 VALTEST=EQ

0 1 1 1 VALTEST=NE

1 0 1 0 VALTEST=GE

1 1 0 0 VALTEST=LE

0 0 0 0 VALTEST=0 or invalid

1
0

LOGTEST operand specified
LOGTEST operand “null” or invalid

1
0

LOGTEST=ALL
LOGTEST=ANY

1
0

LIMIT=KEY
LIMIT=END

1
0

REVERSE=YES
REVERSE=null

Bit pattern/bit position
(3-0 not used)

Meaning

7 6 5 4 PARMOD=24 PARMOD=31

1

0

LOCK specified or default setting

NOLOCK specified

LOCK specified or default setting

NOLOCK specified

1

0

FCB address contained in register

FCB address specified - not used -

1

0

'area' address not specified

'area' address specified - not used -

1

0

'area' address contained in register 0

'area' address - not used -

Macros GETFL

U4250-J-Z125-12-76 687

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

 Programming note

The GETFL macro overwrites the contents of registers 0, 1, 14 and 15.

Overview of the EXLST exits

EXLST exit Related GETFL operand Meaning

EOFADDR LIMIT = END No matching record found

NOFIND LIMIT = KEY – No matching record in defined range
– Limit is identical with current pointer

position

USERERR ----

LIMIT = KEY

LOGTEST

File was created without flags or other user
error (such as an invalid OPEN mode)

Limit has already been exceeded

Bit mask for logical flag contains only zeros
(no bits set)

GETKY Macros

688 U4250-J-Z125-12-76

GETKY – Get record with specified key

Macro type: R for PARMOD=24
O for PARMOD=31

The GETKY macro retrieves the record whose primary or secondary key matches the value
in the KEYARG field. The KEYARG field is addressed via the KEYARG operand of the
FCB macro.

If no record with the specified key value is found, control is returned to the user program via
the NOFIND address (see the EXLST macro, NOFIND operand, page 398). The pointer for
the primary or secondary key is set to the value for which the search was made.

If a file contains several records with the same value for the primary or secondary key
specified in the GETKY macro, either the first of these records (if the primary key is used)
or the record to which the first pointer in the secondary index block refers (if a secondary
key is used) is returned.

Format

Operation Operands

GETKY
fcbaddr

(1) 
 
 

[,
area

(0) 
 
 

][,
LOCK

NOLOCK 
 
 

]

[,AIX=

NO

YES,
KEYNAME=name

KEYNMAD=addr 
 
 

 
 
 
 
 
 
 

]

[,PARMOD=
24

31 
 
 

]

Macros GETKY

U4250-J-Z125-12-76 689

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

If the file is to be read with the aid of a secondary key, the 31-bit interface of this FCB must
be available.

(1)
The FCB address is stored in register 1.

area
Address of the area to which the record is to be transferred.; in locate mode, “area” is
ignored.

(0)
The address of the area into which the record is to be transferred is stored in register 0.

LOCK
The block or record lock is to be retained after the macro has been executed (explicit lock).

NOLOCK
No explicit lock is set.

AIX
Specifies whether the record is to located via its primary key or via a secondary key.

= NO
The record is located via its primary key (default value).

= YES
This may be specified only if
– the 31-bit interface of the macro is generated (via the operand PARMOD=31 or the macro

GPARMOD 31) and
– the macro refers to a 31-bit FCB.

The record is located via the secondary key specified in the operand KEYNAME or
KEYNMAD.

KEYNAME = name
Specifies the name of the secondary key via which the record is to be located.
“name” must be the name of a secondary key defined for the current file. The names of all
secondary keys defined for a file can be determined by means of the SHOWAIX macro or
the SHOW-INDEX-ATTRIBUTES command.

GETKY Macros

690 U4250-J-Z125-12-76

KEYNMAD = addr
Specifies the symbolic address (the name) of a field in which the user has stored the name
of the secondary key via which the record is to be located.
When the macro is executed, the field with the symbolic address “addr” must contain the
name of a secondary key defined for the current file.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space
(24-bit addressing only).

= 31
The object code generated can run in the 2-Gb address space
(24-bit or 31-bit addressing).

Programming note

The GETKY macro overwrites the contents of registers 0, 1, 14 and 15.

Macros GETR

U4250-J-Z125-12-76 691

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

GETR – Get record “reverse”

Macro type: R for PARMOD=24
O for PARMOD=31

The GETR macro reads the next record of the file in the direction of the beginning of the
file, i.e. the file is read in reverse.

If a record outside the file is requested, the user is given control via EOFADDR (see the
EXLST macro, EOFADDR operand, page 394).

The program can switch from GET to GETR and vice versa at any time, without the file
having first to be positioned to beginning-of-file or end-of-file.

If a GET macro which returned a record with the primary or secondary key value Kn is
followed by a GETR macro referring likewise to the primary key or the same secondary key,
respectively, then this GETR call returns the record with the next lower primary or
secondary key value Kn-1 (Kn-1 < Kn).

If the file contains records with duplicate primary key values, GETR returns the records on
the “last in, first out” (LIFO) principle, i.e. the first record to be returned from a group of
records which have the same key is the most recent record written to the file.

If a file is read with the aid of a secondary key and if it contains records with identical values
for this secondary key, then GETR returns the records in the reverse order to that in which
the secondary key values were created.

If the GETR macro is preceded by a SETL KEY macro, the record to which the file was
positioned via SETL KEY is returned.

GETR Macros

692 U4250-J-Z125-12-76

Format

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed. If the file is to be read with the
aid of a secondary key, the 31-bit interface of this FCB must be available.

(1)
The FCB address is stored in register 1.

area
Address of the area to which the record is to be transferred. This operand is ignored in
locate mode.

(0)
The address of the area to which the record is to be transferred is stored in register 0.

LOCK
The block or record lock is to remain active after the macro has been executed (explicit
lock).

NOLOCK
No explicit lock is set.

Operation Operands

GETR fcbaddr

(1) 
 
 

[,
area

(0) 
 
 

][,
LOCK

NOLOCK 
 
 

]

[,AIX=

NO

YES,
KEYNAME=name

KEYNMAD=addr 
 
 

 
 
 
 
 
 
 

]

[,PARMOD=
24

31 
 
 

]

Macros GETR

U4250-J-Z125-12-76 693

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

AIX
Specifies whether the record is to located via its primary key or via a secondary key.

= NO
The record is located via its primary key (default value).

= YES
This may be specified only if
– the 31-bit interface of the macro is generated (via the operand PARMOD=31 or the

macro GPARMOD 31) and
– the macro refers to a 31-bit FCB.

The record is located via the secondary key specified in the operand KEYNAME or
KEYNMAD.

KEYNAME = name
Specifies the name of the secondary key via which the record is to be located.
“name” must be the name of a secondary key defined for the current file. The names of all
secondary keys defined for a file can be determined by means of the SHOWAIX macro or
the SHOW-INDEX-ATTRIBUTES command.

KEYNMAD = addr
Specifies the symbolic address (the name) of a field in which the user has stored the name
of the secondary key via which the record is to be located.
When the macro is executed, the field with the symbolic address “addr” must contain the
name of a secondary key defined for the current file.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space
(24-bit addressing only).

= 31
The object code generated can run in the 2-Gb address space
(24-bit or 31-bit addressing).

Programming note

The GETR macro overwrites the contents of registers 0, 1, 14 and 15.

IDBPL Macros

694 U4250-J-Z125-12-76

IDBPL – Provide BTAM operand list with symbolic names

Macro type: type O

The IDBPL macro is used to generate a dummy section (Dsect) which provides the
individual fields of the BTAM macro with symbolic names.

Format

Operand descriptions

D
Specifies that a Dsect statement is to be generated. If “D” is not specified, no Dsect
statement will be generated.

prefix
Specifies the prefix (1 character) with which each symbolic name is to begin.

Default value: each name is prefixed by the letter “I”.

*
Specifies that no prefix is to be placed in front of the name.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

Operation Operands

IDBPL
[D][,

prefix

*  
 
 

][,PARMOD=
24

31 
 
 

]

Macros IDFCB

U4250-J-Z125-12-76 695

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

IDFCB – Provide FCB with symbolic names

Macro type: type O

The IDFCB macro serves to generate a (Dsect) for the FCB, so that the user can address
all the FCB fields symbolically, provided a base register is initialized appropriately.

Format

Operand descriptions

D
This operand specifies that a Dsect statement is to be generated. By default, the system
does not generate the macro as a Dsect.

prefix
Prefix (1 character) which is to be inserted in front of all Dsect names; by default, Dsects
are generated with the prefix “I”.

*
No prefix will be used.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode. A Dsect is generated for
the “old” FCB (BS2000 Î V8.5); i.e. for the FCB extension, a Dsect must be generated
as before by means of the IDFCBE macro (see the macro FCB, page 407, and IDFCBE
macro, page 696).

= 31
The macro is generated as addressing-mode-independent. There is no FCB extension
for the new FCB (BS2000 Ï V9.0), and therefore no IDFCBE macro is required either.

Operation Operands

IDFCB
[D][,

prefix

*  
 
 

][,PARMOD=
24

31 
 
 

]

IDFCBE Macros

696 U4250-J-Z125-12-76

IDFCBE – Provide FCBE with symbolic names

Macro type: type O

The IDFCBE macro generates a Dsect for the FCB extension of the 24-bit TU FCB. If a
base register is initialized appropriately, the user can symbolically address the fields in the
FCB extension.

This FCB extension is only created if the 24-bit FCB has been generated, and if the
BUFOFF, FSEQ and LABEL operands in the FILE or FCB macro were specified for tape
processing. If this is not the case, then no IDFCBE macro will be needed.

In order to determine the start address of the FCBE, the IDFCB macro (with PARMOD=24)
is required in addition to the IDFCBE macro.

As the 31-bit FCB has no FCB extension (FCBE), the IDFCBE macro is not supported in
an XS environment.

Format

Operand descriptions

D
This operand specifies that a Dsect statement is to be generated; by default, no Dsect is
generated.

prefix
Prefix (1 character) which is to be inserted in front of all Dsect names; by default, this is the
letter “I”.

*
No prefix will be used.

Operation Operands

IDFCBE
[D][,

prefix

*  
 
 

]

Macros IMPNFIL

U4250-J-Z125-12-76 697

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

IMPNFIL – Create (import) catalog entries for node files

Macro type: type S (E form / L form / D form / C form / M form) (see page 866)

The IMPNFIL macro catalogs node files stored on Net-Storage volumes for which the
calling job has the ownership right. DMS creates the catalog entry for a node file in the
TSOSCAT and in the file catalog of the Net-Storage volume on the basis of the Inode attri-
butes on the NFS server.

By specifying a partially qualified file name or wildcard the user can also import more than
one file with one call.

Notes

– Co-owners of a user ID may import node files under this ID.

– When entries in the user catalog need to be replaced (REPLACE= *YES/*NFU), these
may not be locked and write access must be permissible.

IMPNFIL Macros

698 U4250-J-Z125-12-76

Format

Operand descriptions

VOLUME
Volume serial number (VSN) of the Net-Storage volume on which the node files to be
imported are stored.

=<c-string: 1..6>
VSN of the Net-Storage volume.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 6 bytes in which the VSN of the Net-Storage
volume is stored.

FILENAM
Selection of the node files which are to be imported.

=<c-string 1..80: filename 1..54 with-wild-without-cat(80)>
Path name of the node file on the Net-Storage volume. A catalog ID may not be
specified. Specification of a wildcard enables the selection of a file set.

Nonprivileged users can only import files of their user ID. Privileged users (TSOS
privilege) can also import files of other users. Wildcards may be specified in the user ID.

Operation Operands

IMPNFIL ,VOLUME=<c-string: 1..6> / <var: char:6>
,FILENAM=<c-string 1..80>:<filename 1..54

with-wild-without-cat(80)> / <var: char:80>
,PUBSET=*STD / <c-string: 1..4> / <var: char:4>
,FILESTR=*STD / *PAM / <var: enum-of_filestr_s: 1>
,REPLACE=*NO / *YES / *NFU / <var: enum-of_replace_s: 1>
,IGNPROT=*NO / *YES / <var: enum-of_ignprot_s: 1>
,LIST=*NO / *SYSOUT / *SYSLST / *BOTH / <var: enum-of_list_s: 1>
,REPORT=*ERROR / *FULL / <var: enum-of_report_s: 1>
,EQUATES=*YES / *NO

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAN / <macid>

Macros IMPNFIL

U4250-J-Z125-12-76 699

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

=<var: char:80>
Only possible with MF=M:
Symbolic address of a memory area of 80 bytes in which the path name or the wildcard
string for the desired file(s) is stored.

PUBSET
Determines the pubset in which the files are to be cataloged. The Net-Storage volume
specified in the VOLUME operand must be assigned to the pubset specified here.

=*STD
The catalog entries are configured in the file catalog of the default pubset of the user ID.

=<c-string: 1..4>
Pubset Id of the pubset. The catalog entries are configured in the specified pubset’ file
catalog.

=<var: char:4>
Only possible with MF=M:
Symbolic address of a memory area of 4 bytes in which the pubset Id is stored.

FILESTR
Determines the FILE-STRUCTURE attribute of the node file which is entered in the file
catalog in accordance with the REPLACE operand.

=*STD
The following applies when REPLACE=*NO/*YES: A node file is imported into BS2000
as a PAM file when the file size on the NFS file system is not equal to zero. If the file
size on the NFS file system is equal to zero, the imported file is assigned the default
attributes of a file generated with CREATE-FILE.
The following applies when REPLACE=*NFU: The catalog entries of the node files are
updated in BS2000 irrespective of the FILE-STRUCTURE attribute.

=*PAM
The following applies when REPLACE=*NO/*YES: A node file is imported into BS2000
as a PAM file irrespective of the file size on the NFS file system.
When REPLACE=*NFU, the catalog entries of PAM node files in BS2000 are updated.

=<var: enum-of_filestr_s: 1>
Name of the field with the value for FILESTR.

REPLACE
Specifies whether files which already exist in BS2000 are replaced or whether only the
catalog entries are updated on the NFS server on the basis of the Inode attributes.

=*NO
Files which already exist are not replaced, nor are their catalog entries updated.

IMPNFIL Macros

700 U4250-J-Z125-12-76

=*YES
Files which already exist on the pubset are replaced by the specified node files. Any
files on public space or on Net-Storage are deleted, and files on private disk are
exported. When the node files are imported, the entries in the TSOSCAT and in the file
catalog of the Net-Storage volume are created anew.

=*NFU
In the case of files which already exist, the entries in the TSOSCAT and in the file
catalog of the Net-Storage volume are updated on the basis of the Inode attributes on
the NFS server. Here the FILESTR operand determines that the update of the catalog
entries only takes place for files with the specified file structure. When FILESTR=*STD,
the files are updated irrespective of the file structure.

=<var: enum-of_replace_s: 1>
Name of the field containing the value for REPLACE.

IGNPROT
This operand is only available to privileged users (TSOS privilege).
Specifies whether files which are already cataloged are to be overwritten regardless of an
existing write protection.

=*NO
The write protection is observed.

=*YES
The write protection is ignored.

=<var: enum-of_ignprot_s: 1>
Name of the field containing the value for IGNPROT.

LIST
Specifies whether a processing log is to be output to SYSOUT and/or SYSLST. The default
value is *NONE, i.e. no log is created.

=*NO
No output takes plce.

=*SYSOUT
The processing log is output to SYSOUT.

=*SYSLST
The processing log is output to SYSLST.

=*BOTH
The processing log is output to SYSOUT and SYSLST.

=<var: enum-of_list_s: 1>
Name of the field containing the value for LIST.

Macros IMPNFIL

U4250-J-Z125-12-76 701

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

REPORT
Determines the scope of the log when a processing log was requested in the LIST operand.

=ERROR
Only files which could not be imported are listed. The reason is displayed in each case
with a message code.

=*FULL
All files are listed. The reason is specified with a message code for each file which could
not be imported.

=<var: enum-of_report_s: 1>
Name of the field containing the value for REPORT.

EQUATES
Control operand only for MF=C and MF=D:
Specifies whether equates should also be generated for the values of the parameter area’s
fields when the parameter area is expanded.

= *YES
Equates are also generated for the values of the fields of the parameter area when the
parameter area is expanded.

= *NO
No equates are generated for the values of the fields of the parameter area when the
parameter area is expanded.

IMPNFIL Macros

702 U4250-J-Z125-12-76

Return codes

The return code is placed in the standard header of the parameter area. The parameter
area may then not be located in the read-only area, otherwise the program terminates.

Standard
header:

A return code relating to the execution of the
IMPNFIL macro is transferred in the standard header
(cc = SUBCODE2,bb = SUBCODE1,
aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' No error

X'00' X'40' X'0501' CMS or FILE: Requested catalog not available

X'00' X'40' X'0512' Pubset Id is not entered in the MRSCAT

X'00' X'40' X'051B' User ID not known in specified pubset

X'00' X'40' X'051C' User has no access right to specified pubset

X'00' X'40' X'0535' There is no access right to the file catalog entry

X'00' X'20' X'0578' Internal error in the file protection check

X'00' X'82' X'0594' Not enough virtual memory available

X'00' X'20' X'05C7' Internal error in DMS

X'00' X'01' X'05EE' Path name too long after completion

X'00' X'40' X'05FC' Specified user ID not on home pubset

X'00' X'40' X'0610' Execution of the function returned a return code for at least one of the
selected file names

X'00' X'01' X'0624' File name invalid

X'00' X'40' X'0640' Access to Net-Storage is rejected by the ONETSTOR subsystem because
of communication problems with the net client

X'00' X'04' X'0642' Large files not permitted on pubset

X'00' X'40' X'0643' Net client reports access error

X'00' X'40' X'0644' Net client reports internal error

X'00' X'40' X'0645' File does not exist on Net-Storage

X'00' X'40' X'0649' Net server reports ACL error

X'00' X'40' X'064A' Net client reports that access to files on the Net-Storage volume is
forbidden

X'00' X'40' X'064B' Access to node files from the net client not supported

X'00' X'40' X'064C' Directory of the specified user ID does not exist on net server

Macros IMPNFIL

U4250-J-Z125-12-76 703

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

X'00' X'40' X'064D' File is not a node file

X'00' X'40' X'064E' Node file not located on the specified Net-Storage volume

X'00' X'40' X'064F' FCB-TYPE of file and specified file structure do not match

X'00' X'40' X'0650' No node file found which can be imported or updated

X'00' X'40' X'0651' File exists, import not possible

X'00' X'40' X'06CC' Only with wildcard selection: No file matches the specified selection entry

X'00' X'01' X'FFFF' Wrong function number in standard header

X'00' X'03' X'FFFF' Wrong version number in standard header

X'cc' X'bb' X'aaaa' Meaning

IMPNFIL Macros

704 U4250-J-Z125-12-76

Layout of the operand list

Macro expansion with MF=D, and default values for EQUATES, PREFIX and MACID:
IMPNFIL MF=D
 MFTST MF=D,PREFIX=D,MACID=MAN,ALIGN=F,
 DMACID=MAN,SUPPORT=(E,D,C,M,L),DNAME=MANGLPL
DMANGLPL DSECT ,
 *,##### PREFIX=D, MACID=MAN #####
* PARAMETER AREA
DMANHDR FHDR MF=(C,DMAN),EQUATES=NO
DMANHDR DS 0A
DMANFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
*
DMANIFID DS 0A 0 INTERFACE IDENTIFIER
DMANFCTU DS AL2 0 FUNCTION UNIT NUMBER
* BIT 15 HEADER FLAG BIT,
* MUST BE RESET UNTIL FURTHER NOTICE
* BIT 14-12 UNUSED, MUST BE RESET
* BIT 11-0 REAL FUNCTION UNIT NUMBER
DMANFCT DS AL1 2 FUNCTION NUMBER
DMANFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
*
DMANRET DS 0A 4 GENERAL RETURN CODE
DMANSRET DS 0AL2 4 SUB RETURN CODE
DMANSR2 DS AL1 4 SUB RETURN CODE 2
DMANSR1 DS AL1 5 SUB RETURN CODE 1
DMANMRET DS 0AL2 6 MAIN RETURN CODE
DMANMR2 DS AL1 6 MAIN RETURN CODE 2
DMANMR1 DS AL1 7 MAIN RETURN CODE 1
DMANFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*
DMANVOLUM DS CL6 VOLUME
DMANFNAME DS CL80 FILENAME
DMANPUBID DS CL4 PUBSET
DMANFILS DS FL1 FILESTRUC
* FILESTRUC VALUES
DMANSTDF EQU 0 FILESTRUC = STD
DMANPAMF EQU 1 FILESTRUC = PAM
DMANSAMF EQU 2 FILESTRUC = SAM
*
DMANREPL DS FL1 REPLACE
* REPLACE VALUES
DMANREPN EQU 0 REPLACE=NO
DMANREPY EQU 1 REPLACE=YES
DMANREPU EQU 2 REPLACE=NODE FILE
*
DMANIGNP DS FL1 IGNPROT
* IGNPROT VALUES

Macros IMPNFIL

U4250-J-Z125-12-76 705

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

DMANIGNO EQU 0 IGNPROT = NO
DMANIGYE EQU 1 IGNPROT = YES
*
DMANLIST DS FL1 LIST
* LIST VALUES
DMANLISN EQU 0 LIST = NO
DMANOUTO EQU 1 LIST = SYSOUT
DMANOUTL EQU 2 LIST = SYSLST
DMANOUTB EQU 3 LIST = BOTH
*
DMANREPO DS FL1 REPORT
* REPORT VALUES
DMANREPE EQU 0 REPORT = NO
DMANREPF EQU 1 REPORT = FULL
*
DMANRES1 DS XL5 ALIGNMENT
DMAN# EQU *-DMANHDR

Sample calling sequence

MVC IMPNMFC(DMAN#),IMPNMFL
 IMPNFIL MF=M, -
 PARAM=IMPNMFC, -
 VOLUME='P@BX00',FILENAM='*', -
 PUBSET='X'
 IMPNFIL MF=E,PARAM=IMPNMFC
 .
 .
IMPNMFC IMPNFIL MF=C
IMPNMFL IMPNFIL MF=L,VOLUME='*DUMMY',FILENAM='AAA'

IDPPL Macros

706 U4250-J-Z125-12-76

IDPPL – Provide PAM operand list with symbolic names

Macro type: type O

The IDPPL macro is used to generate a dummy section (Dsect) which supplies the
individual PAM macro fields with symbolic names.

Format

Operand descriptions

D
Specifies that a Dsect statement is to be generated.

Unless otherwise specified, a CSECT statement is specified rather than a Dsect statement.

prefix
Specifies the prefix, i.e. the character with which each symbolic name is to begin.

*
Specifies that no prefix is to be used.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable in 24-bit addressing mode only.

= 31
The macro is generated as addressing mode-independent.

Operation Operands

IDPPL
[D][,

prefix

*  
 
 

][,PARMOD=
24

31 
 
 

]

Macros IMPORT

U4250-J-Z125-12-76 707

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

IMPORT – Create catalog entry for files

Macro type: type S (E form/L form/D form/C form); see page 866

The IMPORT macro catalogs files for which the calling job has the ownership rights and
which are stored on private disks or Net-Storage volumes. DMS takes the file attributes from
the F1 label of the private disk or from the catalog of the Net-Storage volume and places
them in the catalog entry. The macro can process partially qualified file names, which
means that the user can import several files using a single macro.

When importing file generation groups with generations stored on different disks, it should
be noted that generations are cataloged only if the group entry already exists in the system
catalog or is kept on the first disk to be imported. Otherwise, the catalog entries for the
generations imported before the group entry will be missing. These generations must then
be cataloged afterwards by means of an IMPORT or FILE macro (STATE=FOREIGN).

The functions of the macros IMPORT and ERASE (operands CATALOG or DELETE-OR-
EXPORT and VOLUME, respectively) are not exact opposites. When a volume is exported,
DMS deletes the catalog entries for all files which occupy storage space on this volume.
If the same volume is later imported, DMS creates catalog entries only for those files which
begin on the volume (i.e. files which received space on the volume during their primary
allocation).

Notes

– Co-owners of a user ID can create permanent files under this ID.

– Locked entries can be imported from the F1 label or from the catalog of the Net-Storage
volume. However, if entries in the user catalog have to be replaced (REPLACE=YES/
ABS), the entries must not be locked and write access must be permitted.

IMPORT Macros

708 U4250-J-Z125-12-76

Format

Operation Operands

IMPORT [pathname],VOLUME=vsn,DEVICE=device

[,PVSID=catid]

[,NUSERID=userid]

[,MF=L][,VERSION=1]

[,AREA=(addr,length)][,REPLACE=

NO

YES

ABS 
 
 
 
 

]

[,GEN=
YES

NO 
 
 

][,LIST=

YES

NO

ONLY 
 
 
 
 

]

MF=(E,
addr

(r) 
 
 

)[,VERSION=1]

MF=
D

C  
 
 

[,PREFIX=
pre

*  
 
 

][,VERSION=1]

Macros IMPORT

U4250-J-Z125-12-76 709

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

AREA
Specifies the output area for the IMPORT macro. This operand may be omitted if LIST=NO
is specified.

= (addr,length)

addr symbolic address of the output area

length length of the output area.

DEVICE = device
Device type on which the volume is to be mounted. See the device table in the „System
installation“ manual [16] for possible entries for “vsn”. The new device types introduced
after BS2000 Version 9.5 are only supported in conjunction with the VERSION=1 operand.
For Net-Storage volumes the volume type NETSTOR must be specified instead of the
device type.

Every specification of a disk device type which is known to the system is handled like the
STDDISK specification.

GEN
For file generation groups:
specifies whether only the group entry or also the file generations stored on the same
private disk is/are to be cataloged.

= YES
If the group entry is on the private disk, DMS catalogs the FGG and all related
generations which are on this disk. If there is no group entry on the disk or in the user
catalog, no file generations are cataloged.

= NO
DMS transfers only the group entry for the FGG to the catalog.

LIST
Specifies how macro execution is to be logged (see “Programming notes” on page 712).

= YES
Macro execution is logged.

= NO
No information about macro execution is returned.

IMPORT Macros

710 U4250-J-Z125-12-76

= ONLY
Causes execution of the IMPORT macro to be simulated, not actually carried out, i.e.
the user receives a SYSLST log which shows how the IMPORT macro would have been
executed. The log contains (depending on “pathname”) a list of the files on the volume
specified by VOLUME, together with the messages and information returned by the
IMPORT macro.

DMS does not check, at this time, whether file locks or protection attributes would
prevent files from being imported. For the actual import, the user must ensure that the
files are not locked and that write access is permitted.

MF
The forms of the MF operand are described in detail in the appendix (page 865). In all
macros differentiated solely by the MF operand (MF=L/E/D/C), the version operand must
have the same value.

NUSERID = userid
Only permitted for system administration:
User ID under which the file is to be cataloged. The new user ID is specified without $ and
without “.”.
A file on private disk is assigned the new user ID both in the file catalog and in the F1 label
of the disk.
A BS2000 file on a Net-Storage volume is assigned the new user ID both in file catalog and
in the catalog of the Net-Storage volume.
A node file, by contrast, cannot be cataloged under the new user ID as an owner of node
files may not be modified. In this case the import is rejected with return code D.

pathname
Designates the files, file generation groups or file generations to be cataloged, with:
<c-string 1..54: filename 1..54> (a partially qualified file name is also permitted).

If “pathname” is not specified, DMS catalogs all files, etc. which are stored under the user
ID of the current job on the volume specified in the VOLUME operand.

“pathname” means [$userid.]filename

userid
User ID: the user can only import files for which he/she has owner rights.
Default user ID: the user ID of the current job (i.e. of the SET-LOGON-PARAMETERS
or LOGON command).

filename
Fully or partially qualified name of a file, file generation group or file generation.

Macros IMPORT

U4250-J-Z125-12-76 711

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

For file generations and file generation groups, the group entry must be created before
cataloging the generations!

PREFIX
This operand is only relevant in combination with MF=D/C.

Default value: I

= pre
Specifies a prefix for all names used in a Dsect. Only a single-character is permitted.

= *
Specifies that no prefix is to be used.

PVSID = catid
Specifies the pubset in which the files are to be cataloged. If this is omitted, the catalog
entries are created under the default catalog ID of the user ID.

When a Net-Storage volume is specified in the VOLUME operand, this Net-Storage volume
must be assigned the pubset to whose catalog the entries are imported. The catalog entry
in the pubset is then updated with the data of the Net-Storage volume’s catalog entry.

REPLACE
Specifies whether an existing “old” catalog entry is to be overwritten.

= NO
DMS does not overwrite any existing catalog entry.

= YES
The old catalog entry is deleted if it does not agree with the specifications in the
IMPORT macro:
– The cataloged file is stored on a public disk: the catalog entry is deleted, which

means that the public file is erased (providing the protection attributes permit this
and the file is not locked; otherwise, the old catalog entry is left unchanged).

– The cataloged file is on private disk, but begins on a volume other than the one
specified in the VOLUME operand: the catalog entry is overwritten (providing the
protection attributes permit this and the file is not locked; otherwise, the old entry
remains unchanged).

– The cataloged file is stored on a Net-Storage volume. A file on the same Net-
Storage volume with the same name is not imported and the catalog entry is not
deleted.

IMPORT Macros

712 U4250-J-Z125-12-76

– The cataloged file is stored on a Net-Storage volume. A file on private disk, on
another Net-Storage volume or on the same Net-Storage volume but which has a
different name (not a node file) is imported: the catalog entry is overwritten and the
file is thus deleted (if this is not prevented by a file lock or protection attributes,
otherwise the old entry is retained). In this case deleting the file means:
– A BS2000 file on Net-Storage is also deleted on the Net-Storage volume.
– A node file is retained on the Net-Storage volume.

i Node files, in contrast to BS2000 files, cannot be imported to a different user
ID as an owner of node files may not be modified.

– The cataloged file is contained on private disk and begins on the disk specified in
the VOLUME operand: the catalog entry is not deleted (exported). A file of the same
name is not imported.

= ABS
The old catalog entry is overwritten even if the catalog entry and the specifications in
the IMPORT command match each other. The return code shows whether the entry
was overwritten (return code 8) or whether a file lock prevented overwriting
(return code 9).

VERSION = 1
Controls macro generation. The operand list and, if applicable, the SVC valid for BS2000
versions from V9.5 upwards are generated.

Default value: the operand list and the SVC are generated as for BS2000
versions < V9.5.

VOLUME = vsn
The volume serial number (“vsn”) of the volume on which the files to be imported are stored.

Programming notes

Each element returned is 56 bytes long and has the following structure:

pathname (54 bytes) Return code
(2 bytes)

Macros IMPORT

U4250-J-Z125-12-76 713

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Return codes

Only the rightmost byte of the return code is of importance to the user. This byte supplies
additional information on the processing of the IMPORT macro if the return code in
register 15 is X'00'.

A file on the volume has been processed successfully if the return code is C'0', C'1', C'5' or
C'8'.

Return
code

Meaning

C'0' There was no file with the same name and a new catalog entry has been created.

C'1' There was already a file with the same name and this was overwritten;
together with LIST=ONLY: a file with this name already exists, protection attributes have
not been checked.

C'2' A file with the same name exists but was not overwritten; the REPLACE operand had
the value NO

C'3' A file with the same name exists and could not be erased due to the protection function
(ACCESS=READ, WRPASS, etc.) or the file is locked because it is being processed.

C'4' System error during catalog access.

C'5' The file is already cataloged and is stored on the volume specified in the VOLUME
operand.

C'6' System error during access to the F1 label of the private disk or to the catalog of the Net-
Storage volume.

C'7' Invalid attempt to import a file generation: the absolute generation number of the gener-
ation to be imported conflicts with the limits defined in the group entry.

C'8' A catalog entry already existed for the specified disk and has been replaced.

C'9' A catalog entry already exists for the specified disk, but the file is locked.

C'A' The path name of the file to be imported (together with catalog ID and $userid) is longer
than 54 characters.

C'B' Error while accessing the Net-Storage.

C'C' The file to be imported is larger than 32 GB, but the pubst specified does not permit files
which are larger than 32 GB.

C'D' Node files may not be imported to a different user ID.

IMPORT Macros

714 U4250-J-Z125-12-76

The following table describes the left byte of the return code. This byte is only significant if
the system administrator is using the NUSERID operand. The specifications refer to the
entries in the system catalog under Ouserid.

System behavior for an overflow of the output area: A user area that is too small is indicated
by R15 = 05AB. The import operation is carried out in any case. For a layout of the output
area, see above; end criterion X'FF' to offset: last entry +X'36'.

The return code is placed in register 15. If the macro executes normally, the contents of
register 15 are set to null. The possible return codes of DMS can be generated by the
IDEMS macro.

Return code for
system adminis-
trator

Meaning

C'0' There is no entry in the system catalog under the userid entered in the F1 label
of a private disk or in the catalog of the Net-Storage volume.

C'1' A file cataloged with the same name was deleted.
If the operand LIST=ONLY was specified, this value simply means that a file of
the same name already exists.
The protection attributes are not checked in this case.

C'2' A file of the same name already exists; the value of the REPLACE operand was
NO.

C'3' The cataloged file is protected (error on deleting this file).

C'4' System error on reading the catalog.

C'D' Node files may not be imported to a different user ID.

Macros INSRT

U4250-J-Z125-12-76 715

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

INSRT – Insert record

Macro type: R for PARMOD=24
0 for PARMOD=31

The INSRT macro transfers a record from the user area to the file and inserts it at the
position defined by the value of its record key.

If the file already contains a record with the specified key, the new record is not transferred,
even if DUPEKY=YES was defined in the FCB macro. Control passes to EXLST exit
DUPEKY.
Insertion of a record with a key that already exists in the file is only possible using STORE;
sequential extension of the file is possible by means of PUT.

If RECFORM=V was specified, the user must enter the length of the record to be inserted
in the record length field before calling the INSRT macro.

Format

Operation Operands

INSRT fcbaddr

(1) 
 
 

,
area

(0) 
 
 

[,PARMOD=
24

31 
 
 

]

INSRT Macros

716 U4250-J-Z125-12-76

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

(1)
The FCB address is stored in register 1.

area
The address of the record to be inserted in the file. Even in locate mode, the record must
be made available at address “area”.

(0)
The address of the record to be inserted in the file is in register 0.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space
(24-bit addressing only).

= 31
The object code generated can run in the 2-Gb address space
(24-bit or 31-bit addressing).

Programming note

The INSRT macro destroys the contents of registers 0, 1, 14 and 15.

Macros ISREQ

U4250-J-Z125-12-76 717

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

ISREQ – Unlock data block

Macro type: R for PARMOD=24
0 for PARMOD=31

The ISREQ macro is used in shared-update processing to cancel a lock which was
requested explicitly in a read operation and is not cancelled (implicitly) by writing the record
back to the file or by any other ISAM action macro.

Locks are cancelled implicitly by the next ISAM action macro unless the read operation
which requested the lock is followed by an OSTAT macro or by a read operation with
NOLOCK for another file.

The lock may be:

– a record lock (for NK-ISAM, non-sequential processing)
– a range lock ((for NK-ISAM, sequential processing)
– a block lock (for K-ISAM).

Format

Operation Operands

ISREQ fcbaddr

(1) 
 
 

,ACTION=UNLOCK[,PARMOD=
24

31 
 
 

]

ISREQ Macros

718 U4250-J-Z125-12-76

Operand descriptions

fcbaddr
Address of the FCB associated with the file containing the lock.

(1)
The FCB address is stored in register “r”.

ACTION = UNLOCK
Cancels the external lock. After execution of “ISREQ ...,UNLOCK”, ISAM returns to the
statement following the ISREQ macro.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space
(24-bit addressing only).

= 31
The object code generated can run in the 2-Gb address space
(24-bit or 31-bit addressing).

Programming note

The ISREQ macro overwrites the contents of registers 0, 1, 14 and 15.

Macros ISREQ

U4250-J-Z125-12-76 719

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Return codes

A return code is placed in field ID1ECB of the FCB. Depending upon the type of error, the
contents of register 1 may also be affected:

*) The user can cancel the lock by simply issuing an ISREQ macro with the contents
of register 1 unchanged and with register 1 as the first operand.

ID1ECB R1 Meaning

X'0000' unchanged The lock has been cancelled

X'0A01' changed For the file whose FCB address is stored in register 1, a lock is in force
for the job *)

X'0A02' unchanged No lock is in force

X'0AA3' unchanged Invalid FCB

LBRET Macros

720 U4250-J-Z125-12-76

LBRET – Return from user label routine

Macro type: type R

The LBRET macro is only required when processing standard user labels. Standard user
labels are:

The EXRTN macro is used for nonstandard labels.

Format

UVL – user volume header label

UHL – user file header label

UTL – user trailer label

Operation Operands

LBRET

fcbaddr

(1) 
 
 

,

0
1
2
(0)

 
 
 
 
 
 
 

[,PARMOD=
24

31 
 
 

]

Macros LBRET

U4250-J-Z125-12-76 721

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

fcbaddr
Address of the FCB, same as the address of the FCB macro.

(1)
The address of the FCB is stored in register 1.

The second operand specifies a function code.

0
Label processing is terminated: for output files, the current label will not be written either.

1
Label processing is terminated: for input files, all subsequent labels in the group will be
skipped; for output files, the current label will still be written.

2
Label processing is continued: for input files, the UVL and UTL labels are followed by further
user labels which are to be read and processed by the program; for output files, the system
returns control to the user program after a user label has been written. The user can write
a maximum of 9 UVL and 256 UHL and UTL labels in this way. The system terminates label
processing when these limits are reached.

(0)
The rightmost byte of register 0 contains the function code.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

Programming note

The LBRET macro destroys the contents of registers 0, 1, 14 and 15.

LFFSNAP Macros

722 U4250-J-Z125-12-76

LFFSNAP – List files from a Snapset

Macro type: type S (E form/L form/D form/C form/M form) (see page 858)

The LFFSNAP macro enables the user to obtain information about files which were saved
on a Snapset when a pubset was backed up. The information relates to whether files can
be restored (using the RFFSNAP macro or the RESTORE-FILE-FROM-SNAPSET
command). The associated pubset must be imported.

Nonprivileged users can obtain information about all files which they can access (as with
the FSTAT macro or the SHOW-FILE-ATTRIBUTES command, which supplies information
from the current file catalog).

Information on all existing Snapsets of a pubset can be obtained using the SHOW-
SNAPSET-CONFIGURATION command.

The Snapsets are temporarily not available if the SHC-OSD subsystem was not active
when the pubset was imported. In this case the command is aborted with return code 0622.
As soon as SHC-OSD is active, the Snapsets are subsequently activated when the SHOW-
SNAPSET-CONFIGURATION command is called.

Privileged functions

Systems support (TSOS privilege) can obtain information on the files of all user IDs.
Wildcards are not permitted in the user ID here.

Macros LFFSNAP

U4250-J-Z125-12-76 723

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Format

Operand descriptions

PATHNAM
Selects the files which are to be listed.

=<c-string 1..80: filename 1..54 with-wild(80)>
Path name of the file(s) on the Snapset. Wildcards can be used to specify a set of files.

Only files which satisfy the following requirements are listed:
– They must be cataloged when the Snapset is created.
– The pubset on which they are cataloged must be imported locally.
– They may not reside on private disk.

Aliases may be specified. Individual file generations can be specified. When a file
generation group is specified, the file generations are also output.

Privileged users (TSOS privilege) can obtain information on the files of all user IDs.
Wildcards are not permitted in the user ID here.

=<var: char:80>
Only possible with MF=M:
Symbolic address of a memory area of 80 bytes in which the path name or wildcard
string for the required file(s) is stored.

Operation Operands

LFFSNAP ,PATHNAM=<c-string 1..80: filename 1..54 with-wild(80)> /
<var: char:80>

,SNAPSET=<integer -52..-1> / *LATEST
,SNAPID=<c-string 1..1: name 1..1 with-low> / <var: char 1..1>
,OUTAREA=(<var: pointer>,<integer 0..32767>)
,EQUATES=*YES / *NO
,EXPAND=PARAM / OUTPUT

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAL / <macid>

LFFSNAP Macros

724 U4250-J-Z125-12-76

SNAPSET
This operand may not be specified together with the SNAPID operand.
Specifies the Snapset from which the file information is to be output by means of the relative
age.

=<integer -52..-1>
Specifies the Snapset explicitly by means of the relative age. The value -1 specifies the
latest Snapset (also corresponds to *LATEST).

=*LATEST
The information from the latest Snapset (i.e. from the most recent pubset backup) is
output.

SNAPID
This operand may not be specified together with the SNAPSET operand.
Specifies the Snapset from which the file information is to be output.

=<c-string 1..1: name 1..1 with-low>
Specifies the Snapset explicitly by means of the Snapset ID. The maximum of 52
Snapsets for a pubset are distinguished by means of Snapset IDs specified which
comprise letters from the 26 lowercase letters a to z and the 26 uppercase letters A to Z.

=<var: char 1..1>
Only possible with MF=M:
Symbolic address of a memory area of 1 byte in which the Snapset ID is stored.

Note
If neither SNAPSET nor SNAPID is specified, the information from the latest Snapset is
output.

OUTAREA
Specifies the output area in which the information is to be stored.

=(<var: pointer>,<integer 0..32767>)
Specifies the address and length of the output area.

EQUATES
Control operand; for MF=C and MF=D only:
Specifies whether equates are also to be generated for the values of the fields of the
parameter or output area when the parameter or output area is expanded.

= *YES
When the parameter or output area is expanded, equates are also generated for the
values of the fields of the parameter or output area.

= *NO
When the parameter or output area is expanded, no equates are generated for the
values of the fields of the parameter or output area.

Macros LFFSNAP

U4250-J-Z125-12-76 725

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

XPAND
Control operand; for MF=C and MF=D only:
Defines which structure is to be expanded (i.e. generated). This operand is ignored for other
MF values.

= PARAM
Expands the layout of the parameter list.

= OUTPUT
Expands the layout of the output area.

Return codes

The return code is placed in the standard header of the parameter area. The parameter
area may then not be located in the read-only area, otherwise the program terminates.

Standard
header:

A return code relating to the execution of the
LFFSNAP macro is transferred in the standard
header
(cc = SUBCODE2,bb = SUBCODE1, aaaa =
MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' No error

X'00' X'40' X'0501' Requested catalog not available

X'00' X'40' X'0505' Error in host communication

X'00' X'40' X'0512' Requested catalog not found

X'00' X'40' X'051B' Requested user ID not on the pubset

X'00' X'40' X'051D' LOGON password different on specified pubset

X'00' X'20' X'0531' Unexpected error during catalog access

X'00' X'40' X'0535' Specified file not accessible

X'00' X'82' X'0594' Not enough virtual memory

X'00' X'01' X'05AB' Address of output area incorrect/not specified

X'02' X'00' X'05B6' Incorrect time conversion in GTIME macro

X'00' X'20' X'05C7' Internal error in DMS

X'00' X'40' X'05FC' Specified user ID not on home pubset

X'00' X'40' X'0615' File resident on a volume set which is not available

X'00' X'40' X'0616' Volume set cannot be accessed on SM pubset

X'00' X'40' X'0622' Snapset not available

LFFSNAP Macros

726 U4250-J-Z125-12-76

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

X'00' X'40' X'0624' File name invalid

X'00' X'40' X'0684' File does not exist

X'02' X'00' X'06CB' Output information not transferred in full

X'00' X'01' X'06CB' Output area too small

X'00' X'40' X'06CC' No file name matches the wildcard string specified

X'00' X'01' X'06F7' Invalid operand value

X'00' X'01' X'06FD' Parameter area invalid or not accessible

X'cc' X'bb' X'aaaa' Meaning

Macros LFFSNAP

U4250-J-Z125-12-76 727

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Layout of the operand list

Macro expansion with MF=D and EXPAND=PARAM, and default values for EQUATES,
PREFIX and MACID:

LFFSNAP MF=D,XPAND=PARAM
DMALLFPL DSECT ,
DMALHDR DS 0A
DMALFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
DMALIFID DS 0A 0 INTERFACE IDENTIFIER
DMALFCTU DS AL2 0 FUNCTION UNIT NUMBER
DMALFCT DS AL1 2 FUNCTION NUMBER
DMALFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
DMALRET DS 0A 4 GENERAL RETURN CODE
DMALSRET DS 0AL2 4 SUB RETURN CODE
DMALSR2 DS AL1 4 SUB RETURN CODE 2
DMALSR1 DS AL1 5 SUB RETURN CODE 1
DMALMRET DS 0AL2 6 MAIN RETURN CODE
DMALMR2 DS AL1 6 MAIN RETURN CODE 2
DMALMR1 DS AL1 7 MAIN RETURN CODE 1
DMALFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*
DMALPNAM DS CL80 PATHNAM
DMALSNAP DS FL1 SNAPIND
* SNAPSET - VALUES
DMALSNIN EQU 0 SNAPSET=<integer>
DMALSNCH EQU 1 SNAPSET=<char>
DMALSNLT EQU 2 SNAPSET=*LATEST
*
DMALSNID DS CL1 SNAPID
DMALSNVL DS H SNAPVALUE
DMALARAD DS A OUTAREA=(<addr>,...)
DMALARLN DS F OUTAREA=(...,<length>)
DMAL# EQU *-DMALHDR

LFFSNAP Macros

728 U4250-J-Z125-12-76

Format of the output area

Macro expansion with MF=D and EXPAND=PARAM, and with default values for
EQUATES, PREFIX and MACID:

LFFSNAP MF=D,XPAND=OUTPUT
MFTST MF=D,PREFIX=D,MACID=MAL,ALIGN=F,

 DMACID=MAL,SUPPORT=(E,D,C,M,L),DNAME=MALOUTL
DMALOUTL DSECT ,
*,##### PREFIX=D, MACID=MAL #####
* Snapset Output
DMALFSIZ DS F FILESIZE
DMALOPNM DS CL54 PATHNAME
DMALSTATE DS FL1 STATE
* STATE = VALUES
DMALSTOP EQU 0 STATE = OPENED
DMALSTCL EQU 1 STATE = CLOSED
DMALSTNR EQU 2 STATE = NOREST
*
DMALFTYPE DS FL1 FILETYPE
* FTYPE = VALUES
DMALFTPB EQU 0 FTYPE = PUBLIC
DMALFTMG EQU 1 FTYPE = MIGRATED
DMALFTFG EQU 2 FTYPE = FGG
DMALFTWR EQU 3 FTYPE = WORK
DMALFTPD EQU 4 FTYPE = PRDISK
DMALFTTP EQU 5 FTYPE = TAPE
DMALFTNT EQU 6 FTYPE = NET
*
*
DMALCRDT DS 0XL16 Creation Date
DMALCRYE DS CL4 YEAR
DMALCRMO DS CL2 MONTH
DMALCRDA DS CL2 DAY
DMALCRHO DS CL2 HOURS
DMALCRMI DS CL2 MINUTES
DMALCRSE DS CL2 SECONDS
DMALCRUS DS CL2 UNUSED
*
*
DMALLCDT DS 0XL16 Last Change Date
DMALLCYE DS CL4 YEAR
DMALLCMO DS CL2 MONTH
DMALLCDA DS CL2 DAY
DMALLCHO DS CL2 HOURS
DMALLCMI DS CL2 MINUTES
DMALLCSE DS CL2 SECONDS

Macros LFFSNAP

U4250-J-Z125-12-76 729

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

DMALLCUS DS CL2 UNUSED
*
DMALENLT DS FL1 END Indicator
*
DMALSNXT EQU 0 FURTHER ENTRY
DMALSNED EQU 1 LAST ENTRY
DMALSNNS EQU 2 NOT ENOUGH SPACE
*
DMALUNUS DS XL3 UNUSED

DMALOUTPUT# EQU *-DMALFSIZ

The following cases are distinguished when the Snapset information is output to the user’s
output area:

– All the information could be output
The output area is overwritten with the required information, the caller receives return
code 0. The output area is not deleted to the end, but only written as far as necessary.

– No files match the selection criteria
The output area is not written at all. The caller receives return code 0684 or 06CC (in
the case of wildcards/partial qualification).

– No output was possible
The output area could not be written (return code 05AB after validation of the output
area or address) or it is too small to transfer output information (return code 06CB).

– Complete output was not possible
Some file information blocks could not be transferred. In addition to the associated
display in the output area (NOT ENOUGH SPACE), return code 06CB with subreturn
code2 X'02' is output.

Sample calling sequence

LFFSNAP MF=D,XPAND=OUTPUT
 .
 .
 MVC LFFSMFC(DMAL#),LFFSMFL
 LFFSNAP MF=M,PATHNAM=':X:T.1',PARAM=LFFSMFC,PREFIX=X, *
 SNAPSET=-1,OUTAREA=(AREAAD,100)
 LFFSNAP MF=E,PARAM=LFFSMFC
 .
 .
LFFSMFC LFFSNAP MF=C,PREFIX=X,XPAND=PARAM
LFFSMFL LFFSNAP MF=L,PATHNAM='X'
AREA DS CL100
AREAAD DC A(AREA)
 .
 .

LJFSNAP Macros

730 U4250-J-Z125-12-76

LJFSNAP – List job variables from a Snapset

Macro type: type S (E form/L form/D form/C form/M form) (see page 858)

The LJFSNAP macro enables the user to obtain information about job variables which were
saved on a Snapset when a pubset was backed up. The information relates to whether job
variables can be restored (using the RJFSNAP macro or the RESTORE-JV-FROM-
SNAPSET command). The associated pubset must be imported.

Nonprivileged users can obtain information about all job variables which they can access
(as with the FSTAT macro or the SHOW-JV-ATTRIBUTES command, which supplies infor-
mation from the current file catalog).

Information on all existing Snapsets of a pubset can be obtained using the SHOW-
SNAPSET-CONFIGURATION command.

The Snapsets are temporarily not available if the SHC-OSD subsystem was not active
when the pubset was imported. In this case the command is aborted with return code 0622.
As soon as SHC-OSD is active, the Snapsets are subsequently activated when the SHOW-
SNAPSET-CONFIGURATION command is called.

Privileged functions

Systems support (TSOS privilege) can obtain information on the job variables of all user
IDs. Wildcards are not permitted in the user ID here.

Macros LJFSNAP

U4250-J-Z125-12-76 731

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Format

Operand descriptions

JVNAME
Selects the job variables which are to be listed.

=<c-string 1..80: filename 1..54 with-wild(80)>
Path name of the job variables on the Snapset. Wildcards can be used to specify a set
of job variables.

The job variables must satisfy the following requirements:
– They must be cataloged when the Snapset is created.
– The pubset on which they are cataloged must be imported locally.

Aliases may be specified.

Privileged users (TSOS privilege) can obtain information on the job variables of all user
IDs. Wildcards are not permitted in the user ID here.

=<var: char:80>
Only possible with MF=M:
Symbolic address of a memory area of 80 bytes in which the path name or wildcard
string for the required job variable(s) is stored.

Operation Operands

LJFSNAP ,JVNAME=<c-string 1..80: filename 1..54 with-wild(80)> /
<var: char:80>

,SNAPSET=<integer -52..-1> / *LATEST
,SNAPID=<c-string 1..1: name 1..1 with-low> / <var: char 1..1>
,OUTAREA=(<var: pointer>,<integer 0..32767>)
,EQUATES=*YES / *NO
,EXPAND=PARAM / OUTPUT

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAJ / <macid>

LJFSNAP Macros

732 U4250-J-Z125-12-76

SNAPSET
This operand may not be specified together with the SNAPID operand.
Specifies the Snapset from which the job variable information is to be output by means of
the relative age.

=<integer -52..-1>
Specifies the Snapset explicitly by means of the relative age. The value -1 specifies the
latest Snapset (also corresponds to *LATEST).

=*LATEST
The information from the latest Snapset (i.e. from the most recent pubset backup) is
output.

SNAPID
This operand may not be specified together with the SNAPSET operand.
Specifies the Snapset from which the file information is to be output by means of the
Snapset ID.

=<c-string 1..1: name 1..1 with-low>
Specifies the Snapset explicitly by means of the Snapset ID. The maximum of 52
Snapsets for a pubsets are distinguished by means of Snapset IDs specified which
comprise letters from the 26 lowercase letters a to z and the 26 uppercase letters A to Z.

=<var: char 1..1>
Only possible with MF=M:
Symbolic address of a memory area of 1 byte in which the Snapset ID is stored.

Note
If neither SNAPSET nor SNAPID is specified, the information from the latest Snapset is
output.

OUTAREA
Specifies the output area in which the information is to be stored.

=(<var: pointer>,<integer 0..32767>)
Specifies the address and length of the output area.

EQUATES
Control operand; for MF=C and MF=D only:
Specifies whether equates are also to be generated for the values of the fields of the
parameter or output area when the parameter or output area is expanded.

= *YES
When the parameter or output area is expanded, equates are also generated for the
values of the fields of the parameter or output area.

Macros LJFSNAP

U4250-J-Z125-12-76 733

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

= *NO
When the parameter or output area is expanded, no equates are generated for the
values of the fields of the parameter or output area.

XPAND
Control operand; for MF=C and MF=D only:
Defines which structure is to be expanded (i.e. generated). This operand is ignored for other
MF values.

= PARAM
Expands the layout of the parameter list.

= OUTPUT
Expands the layout of the output area.

Return codes

The return code is placed in the standard header of the parameter area. The parameter
area may then not be located in the read-only area, otherwise the program terminates.

Standard
header:

A return code relating to the execution of the
LJFSNAP macro is transferred in the standard
header
(cc = SUBCODE2,bb = SUBCODE1, aaaa =
MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' No error

X'00' X'40' X'0501' Requested catalog not available

X'00' X'40' X'0505' Error in host communication

X'00' X'40' X'0512' Requested catalog not found

X'00' X'40' X'051B' Requested user ID not on the pubset

X'00' X'40' X'051D' LOGON password different on specified pubset

X'00' X'20' X'0531' Unexpected error during catalog access

X'00' X'82' X'0594' Not enough virtual memory

X'00' X'01' X'05AB' Address of output area incorrect/not specified

X'02' X'00' X'05B6' Incorrect time conversion in GTIME macro

X'00' X'20' X'05C7' Internal error in DMS

X'00' X'40' X'05FC' Specified user ID not on home pubset

X'00' X'40' X'0622' Snapset not available

LJFSNAP Macros

734 U4250-J-Z125-12-76

The return codes with the maincode X’04xy’ belong to the component JVS. A list which
includes the meanings can be output using the JVSERROR macro (see also the “Job
Variables” manual [21]).

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

X'00' X'40' X'0624' JV name invalid

X'00' X'40' X'0682' JV error when accessing JV

X'02' X'00' X'06CB' Output information not transferred in full

X'00' X'01' X'06CB' Output area too small

X'00' X'01' X'06F7' Invalid operand value

X'00' X'01' X'06FD' Parameter area invalid or not accessible

X'cc' X'bb' X'aaaa' Meaning

Macros LJFSNAP

U4250-J-Z125-12-76 735

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Layout of the operand list

Macro expansion with MF=D and EXPAND=PARAM, and default values for EQUATES,
PREFIX and MACID:

LJFSNAP MF=D,XPAND=PARAM
DMAJLFPL DSECT ,
DMAJHDR DS 0A
DMAJFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
DMAJIFID DS 0A 0 INTERFACE IDENTIFIER
DMAJFCTU DS AL2 0 FUNCTION UNIT NUMBER
DMAJFCT DS AL1 2 FUNCTION NUMBER
DMAJFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
DMAJRET DS 0A 4 GENERAL RETURN CODE
DMAJSRET DS 0AL2 4 SUB RETURN CODE
DMAJSR2 DS AL1 4 SUB RETURN CODE 2
DMAJSR1 DS AL1 5 SUB RETURN CODE 1
DMAJMRET DS 0AL2 6 MAIN RETURN CODE
DMAJMR2 DS AL1 6 MAIN RETURN CODE 2
DMAJMR1 DS AL1 7 MAIN RETURN CODE 1
DMAJFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*
DMAJJVNM DS CL80 JVname
DMAJSNAP DS FL1 Snapind
* SNAPSET - VALUES
DMAJSNIN EQU 0 SNAPSET=<integer>
DMAJSNCH EQU 1 SNAPSET=<char>
DMAJSNLT EQU 2 SNAPSET=*LATEST
*
DMAJSNID DS CL1 Snapid
DMAJSNVL DS H SnapValue
DMAJARAD DS A Outarea=(<addr>,...)
DMAJARLN DS F Outarea=(...,<length>)
DMAJ# EQU *-DMAJHDR

LJFSNAP Macros

736 U4250-J-Z125-12-76

Format of the output area

Macro expansion with MF=D and EXPAND=PARAM, and with default values for
EQUATES, PREFIX and MACID:

LJFSNAP MF=D,XPAND=OUTPUT
DMAJOUTL DSECT ,
* Output List
DMAJJSIZ DS F JVSIZE
DMAJOJVN DS CL54 JVNAME
DMAJUNU1 DS XL2 UNUSED
*
DMAJCRDT DS 0XL16 Creation Date
DMAJCRYE DS CL4 YEAR
DMAJCRMO DS CL2 MONTH
DMAJCRDA DS CL2 DAY
DMAJCRHO DS CL2 HOURS
DMAJCRMI DS CL2 MINUTES
DMAJCRSE DS CL2 SECONDS
DMAJCRUS DS CL2 UNUSED
*
*
DMAJEXDT DS 0XL16 Expiration Date
DMAJEXYE DS CL4 YEAR
DMAJEXMO DS CL2 MONTH
DMAJEXDA DS CL2 DAY
DMAJEXHO DS CL2 HOURS
DMAJEXMI DS CL2 MINUTES
DMAJEXSE DS CL2 SECONDS
DMAJEXUS DS CL2 UNUSED
*
DMAJENLT DS FL1 END Indicator
*
DMAJSNXT EQU 0 FURTHER ENTRY
DMAJSNED EQU 1 LAST ENTRY
DMAJSNNS EQU 2 NOT ENOUGH SPACE
*
DMAJUNU2 DS XL3 UNUSED
DMAJOUTPUT# EQU *-DMAJJSIZ

The following cases are distinguished when the Snapset information is output to the user’s
output area:

– All the information could be output
The output area is overwritten with the required information, the caller receives return
code 0. The output area is not deleted to the end, but only written as far as necessary.

Macros LJFSNAP

U4250-J-Z125-12-76 737

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

– No files match the selection criteria
The output area is not written at all. The caller receives return code 0684 or 06CC (in
the case of wildcards/partial qualification).

– No output was possible
The output area could not be written (return code 05AB after validation of the output
area or address) or it is too small to transfer output information (return code 06CB).

– Complete output was not possible
Some file information blocks could not be transferred. In addition to the associated
display in the output area (NOT ENOUGH SPACE), return code 06CB with subreturn
code2 X'02' is output.

Sample calling sequence

 LJFSNAP MF=D,XPAND=OUTPUT
 .
 .
 MVC LJFSMFC(DMAL#),LJFSMFL
 LJFSNAP MF=M,PREFIX=X,JVNAME=':X:JV.1',OUTAREA=(AREAAD,100), *
 PARAM=LJFSMFC
 LJFSNAP MF=E,PARAM=LJFSMFC
 .
 .
LJFSMFC LJFSNAP MF=C,PREFIX=X,XPAND=PARAM
LJFSMFL LJFSNAP MF=L,PATHNAM='X'
AREA DS CL100
AREAAD DC A(AREA)

MAILFIL Macros

738 U4250-J-Z125-12-76

MAILFIL – Send file by email

Macro type: type S (E form/L form/D form/C form/M form) (see page 858)

Like the MAIL-FILE command, the MAILFIL macro sends a file as an attachment to an
email. A user ID is specified as the receiver of the email. The sender is the user ID of the
calling task. MAIL-FILE takes over the email address entered in the EMAIL-ADDRESS field
of these user entries as the sender. How you ascertain the receiver and sender addresses,
in particular when an address list is used, is described in the section “Selecting email
addresses by means of the job name” on page 746.

A PLAM library member, a SAM or ISAM file and the contents of the system file SYSLST or
SYSOUT can be sent. A PAM file can be sent only if the content is available in PDF format.
The user task under which MAILFIL is executed must have the required access rights. The
file attribute CCS name is evaluated in the case of automatic character set conversion.
Optionally the caller can specify that the file is to be deleted automatically after it has been
sent.

To execute the macro the “Mail-Sender” function of the software product interNet Services
must be available, and at least one email address must be entered in the user entry of the
TSOS system ID.

The call is rejected if no email address is entered in the receiver’s user entry. If no email
address is entered for the caller, the address of the receiver or TSOS is entered instead as
the sender.

If the email cannot be delivered (e.g. because the address is invalid), a bounce mail is sent
to the email address of TSOS to request systems support to check the incorrect address.
If more than one email address is entered for TSOS, the first address is used for the bounce
mail.

The MAIL-FILE functionality is also used by other components of BS2000 to send log files:

– At job termination
In the EXIT-JOB (or LOGOFF), CANCEL-JOB and ENTER-PROCEDURE commands,
transfer to SYSLST or SYSOUT at job termination can be requested instead of a
printout. The default value *STDOUT directs output to the output medium defined in the
system parameter SSMOUT (printer or email).

– In the case of outputs from utility routines
Currently HSMS V9.0 and higher and MAREN V12.0 and higher support the transfer of
output information and logs.

Macros MAILFIL

U4250-J-Z125-12-76 739

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Format

Operand descriptions

PATHNAM
Selects the file which is to be sent or the PLAM library of the library member which is to be
sent.

=<c-string 1..54: filename 1..54>
Path name of the file or library name.
The following restrictions apply fo files which are to be sent:
– The file is a SAM or ISAM file. A PAM file is sent only if the content is in PDF format.
– The file may not be empty.
– The name may specify a single file generation but not a file generation group.
– It can also be a temporary file.

A privileged user (TSOS privilege) can also specify temporary files of another task.
A privileged user can also specify temporary files which reside on a different pubset
from the default pubset of the user ID.

– The file may not be only accessible via an RFA connection.

Operation Operands

MAILFIL ,PATHNAM=<c-string 1..54: filename 1..54> / <var: char:54> /
*SYSOUT / *SYSLST / (*SYSLST,<integer 1..99>)

,LIBELEM=*NONE /
(<c-string 1..64: composed-name 1..64> with under /
<var: char:64>
,*HIGHEST / *UPPER /
<c-string 1..24: composed-name 1..24> with under /
<var: char:24>
,<c-string 1..8: alphanum-name 1..8> / <var: char:8>)

,USERID=*OWN / <c-string 1..8: name 1..8> / <var: char:8>
,SUBJECT=*STD / <c-string 1..256 with low> / <var: char:256>
,DELETE=*NO / *YES / *DESTROY
,EQUATES=*YES / *NO
,VERSION=1 / <integer 1..2>

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAM / <macid>

MAILFIL Macros

740 U4250-J-Z125-12-76

=<var: char:54>
Only possible with MF=M:
Symbolic address of a memory area of 54 bytes in which the path name of the file to be
sent is stored.

=*SYSOUT
Specifies the system file SYSOUT. This specification is possible only if the SYSOUT file
is assigned a file or file generation on disk which was created using the access method
SAM.
The specification is rejected in the following cases:
– The assigned file is still empty.
– The SYSOUT file has the primary allocation.
– The DUMMY file, a temporary file, a PLAM library member or an S variable is

assigned.

=*SYSLST
Specifies the system file SYSLST. This specification is rejected in the following cases:
– SYSLST is empty.
– The DUMMY file, a temporary file, a PLAM library member or an S variable is

assigned.
– The assigned file or file generation is not resident on disk or was not created using

the access method SAM.

=(*SYSLST,<integer 1..99>)
Specifies a SYSLST file from the set SYSLST01 through SYSLST99. This specification
is possible only if the SYSLST file is assigned a file or file generation on disk which was
created using the access method SAM.
The specification is rejected in the following cases:
– The assigned file is still empty.
– The SYSLST file has the primary allocation.
– The DUMMY file, a temporary file, a PLAM library member or an S variable is

assigned.

Macros MAILFIL

U4250-J-Z125-12-76 741

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

LIBELEM
PLAM library member which is to be sent. The name of the PLAM library must also be
specified in the PATHNAM operand.
Only text members and PDF files can be sent. Text members are members of the types S,
M, J, P, D, X and types derived from these provided they contain no block-oriented records.
A member which contains block-oriented records is sent only if its content is in PDF format.

=*NONE
No library member is to be sent. The PATHNAM operand contains the information about
the file which is to be sent.

=(<element>,<version>,<typ>)
Specifies the name, version number and type of a member which is to be sent which
belongs to the PLAM library specified in the PATHNAM operand.

<element>=<c-string 1..64: composed-name 1..64> with under
Name of the library member which is to be sent.

<element>=<var: char:64>
Only possible with MF=M:
Symbolic address of a memory area of 64 bytes in which the name of the library
member which is to be sent is stored.

<version>=*HIGHEST
Selects the highest existing version of all members which have the specified name
and the specified type.

<version>=*UPPER
Selects the highest possible version (X'FF') of all members which have the specified
name and the specified type.

<version>=<c-string 1..24: composed-name 1..24> with under
Version of the library member which is to be sent.

<version>=<var: char:24>
Only possible with MF=M:
Symbolic address of a memory area of 24 bytes in which the version of the library
member which is to be sent is stored.

<typ>=<c-string 1..8: alphanum-name 1..8>
Type of the library member which is to be sent.

<version>=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 8 bytes in which the type of the library
member which is to be sent is stored.

MAILFIL Macros

742 U4250-J-Z125-12-76

USERID
User ID whose entry in the user catalog contains the receiver’s email address.

=*OWN
The default value is *OWN, i.e. the logon user ID of the calling task. If the user entry
contains a list with more than one email address, a receiver address may be selected
in accordance with the job name (see “Selecting email addresses by means of the job
name” on page 746).

=<c-string 1..8: name 1..8>
User ID from whose user entry the receiver’s email address is ascertained.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 8 bytes in which the receiver’s user ID is stored.

SUBJECT
Specifies the subject of the email.

Note
As the BCAM name of the sending BS2000 system is already contained in the text of
the email which is sent, it need not be entered specially in the subject line.

=*STD
*STD specifies that the email should have a standardized subject text which, in addition
to the information “from BS2000”, also contains the sender ID and the file name.

=<c-string 1..256 with-low>
Subject of the email. Case-sensitive. You are recommended to stick to the international
character set.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 256 bytes in which the subject of the email is
stored.

Macros MAILFIL

U4250-J-Z125-12-76 743

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

DELETE
Specifies whether the file or the PLAM library member should be automatically deleted after
it has been sent successfully:
– If the system file SYSLST is to be sent and SYSLST has the primary allocation,

DELETE=*YES applies.
– If the system file SYSLST or SYSOUT is to be sent and the system file is assigned to a

file or file generation, it is not deleted automatically.

=*NO
The file or the PLAM library member is not deleted. The file or the PLAM library member
is available again immediately after MAIL-FILE is called.

=*YES
The file is automatically deleted after it has been sent successfully. A file is regarded as
having been sent successfully even if it cannot be delivered (e.g. because the email
address is unknown).

=*DESTROY
This specification has the same effect as DELETE=*YES. In addition, the file or
member content is overwritten with binary zeros when it is deleted.

EQUATES
Control operand; for MF=C and MF=D only:
Specifies whether equates are also to be generated for the values of the fields of the
parameter area when the parameter area is expanded.

= *YES
When the parameter area is expanded, equates are also generated for the values of the
fields of the parameter area.

= *NO
When the parameter area is expanded, no equates are generated for the values of the
fields of the parameter area.

VERSION
Controls generation of the parameter area or of the function call. When the function call is
generated, the operand must have the same value as when generating the associated
parameter area.

= 1
Generates the parameter area or function call applicable for BS2000/OSD V8.0 (it is not
possible to specify a library member).

= 2
Generates the parameter area or function call applicable for BS2000/OSD V9.0 and
higher.

MAILFIL Macros

744 U4250-J-Z125-12-76

Layout of the parameter area

The parameter area must be aligned on a word boundary. It begins with a standard header
which MAILFIL initializes as follows:

Macro expansion with MF=D and default values for EQUATES, PREFIX and MACID:

MAILFIL MF=D,VERSION=2
DMAMDEPL DSECT ,
DMAMHDR DS 0A
DMAMFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
DMAMIFID DS 0A 0 INTERFACE IDENTIFIER
DMAMFCTU DS AL2 0 FUNCTION UNIT NUMBER
DMAMFCT DS AL1 2 FUNCTION NUMBER
DMAMFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
DMAMRET DS 0A 4 GENERAL RETURN CODE
DMAMSRET DS 0AL2 4 SUB RETURN CODE
DMAMSR2 DS AL1 4 SUB RETURN CODE 2
DMAMSR1 DS AL1 5 SUB RETURN CODE 1
DMAMMRET DS 0AL2 6 MAIN RETURN CODE
DMAMMR2 DS AL1 6 MAIN RETURN CODE 2
DMAMMR1 DS AL1 7 MAIN RETURN CODE 1
DMAMFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*
DMAMPNAM DS CL54 Dateiname
DMAMUSID DS CL8 Benutzerkennung oder Blank
DMAMSUBJ DS CL256 Betreff oder Blank
DMAMDELE DS FL1 automatisches Loeschen
* DELETE - values
DMAMDELN EQU 0 DELETE = NO
DMAMDELY EQU 1 DELETE = YES
DMAMDELD EQU 2 DELETE = DESTROY
*
DMAMPNSP DS FL1 Typ der PATHNAM-Angabe
* PATHNAM - values
DMAMBYFN EQU 0 PATHNAM = fnam
DMAMSLST EQU 1 PATHNAM = *SYSLST
DMAMBYSN EQU 2 (*SYSLST,n)
DMAMSOUT EQU 3 PATHNAM = *SYSOUT
*
DMAMSYSNUM DS X Syslst number
DMAMRES DS XL3 Alignment

Function Unit Number 22

Function Number 32

Interface Version Number 1

Return Code -1

Macros MAILFIL

U4250-J-Z125-12-76 745

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

DMAMENAM DS CL64 Elementname oder Blank
DMAMEVER DS CL24 Elementversion oder Blank
DMAMETYP DS CL8 Elementtyp oder Blank
DMAMRES2 DS XL4 Alignment
DMAM# EQU *-DMAMHDR

Return code

The return code is placed in the standard header of the parameter area. The parameter
area may then not be located in the read-only area, otherwise the program terminates.

The following return codes are generated by MAIL-FILE:

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

Furthermore, return codes of DMS interfaces (see the FSTAT and ERASE macros) and of
the Mail-Sender interfaces (YMLSML macro of the software product interNet Services) can
be transferred.

When a PLAM library member is specified (LIBELEM operand), return codes from ILAM
interfaces (see the PMATCH, PMDTCH, PMOPEN, PMCLOS, PMGETA, PMPOSA,
PMDELM macros of the ILAM interface for PLAM) can be transferred. The maincodes of
the ILAM interfaces correspond to the decimal message numbers of the PLAM messages
(i.e., for example, maincode 00CB corresponds to PLAM message PLA0203).
You can obtain detailed information using /HELP-MSG <msgid>.

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' No error

X'00' X'01' X'0554' Format of file name invalid

X'00' X'01' X'0576' Incorrect operand combination or UNUSED fields not deleted

X'00' X'20' X'05C7' Internal error in DMS

X'00' X'40' X'05FC' User ID not entered

X'00' X'40' X'0694' Not permissible to send file

X'00' X'40' X'0695' Email address missing

X'00' X'40' X'0696' Email address of TSOS missing

MAILFIL Macros

746 U4250-J-Z125-12-76

Sample calling sequence

 MVC MLFLMFC(256),MLFLMFL
 MVC MLFLMFC+256(XMAM#-256),MLFLMFL+256
 MAILFIL MF=M,PREFIX=X,DELETE=*DESTROY
 MAILFIL MF=E,PARAM=MLFLMFC
 .
 .
MLFLMFC MAILFIL MF=C,PREFIX=X
MLFLMFL MAILFIL MF=L,PATHNAM=‘PN0‘,USERID=‘UI0‘

Selecting email addresses by means of the job name

MAIL-FILE ascertains the email addresses of the receiver and the sender by means of the
user entry of each of the user IDs concerned. To execute the command the user IDs of the
receiver and of the sender must each contain an email address (see the
SHOW-USER-ATTRIBUTES command, EMAIL-ADDRESS output field). The entry can
also contain an address list, i.e. multiple email addresses separated by a comma.

When the sender’s user entry contains an address list, the first address is used as the
sender address.

When the receiver’s user entry contains an address list, MAIL-FILE makes a distinction
between whether the caller’s user ID (*OWN) or a “foreign” user ID was specified as the
receiver. If a foreign user ID is specified, MAIL-FILE sends the email to all addresses. If the
home user ID is specified, MAIL-FILE selects the addresses by means of the job name of
the calling task:
An address is searched for in which a partial name of the local address part (ahead of the
@) begins with the job name (not case-sensitive). Partial names are separated from one
another by a period (e.g. first-name.last-name).

For example, the following addresses are selected from the address list
Anna.Huber@xy,Anja.Bauer@xy,Anton.Baumann@xy:

– Anna.Huber@xy with the job names: ANN, HU, HUBER
– Anja.Bauer@xy with the job names: ANJ, ANJA, BAUE, BAUER
– Anton.Baumann@xy with the job names: ANT, BAUM, BAUMAN

Optionally you can also prefix the addresses in the user entry with “address names” in
parentheses.
Example: (ANH)Anna.Huber@xy,(ANB)Anja.Bauer@xy,(BMN)Anton.Baumann@xy

Macros MAILFIL

U4250-J-Z125-12-76 747

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

The following addresses, for example, are then selected from this address list:

– Anna.Huber@xy with the job names: ANH and ANN, HU, HUBER
– Anja.Bauer@xy with the job names: ANB and ANJ, ANJA, BAUE, BAUER
– Anton.Baumann@xy with the job names: BMN and ANT, BAUM, BAUMAN

If the job name matches more than one address, the address is selected whose partial
name which matches the job name is the shortest. From the address list
Beate.Pauli@xy,Pauline.Beck@xy,Paul.Becker@xy, for example, the following
addresses are selected:

– Beate.Pauli@xy with the job names: PAULI, BEA
– Pauline.Beck@xy with the job names: PAULIN, BE, BECK
– Paul.Becker@xy with the job names: P, PAUL, BECKER

If the partial name which matches the job name is equally short in more than one address,
the first of these addresses is selected.

If more than one partial name in an address matches the job name, only the first partial
name is taken into account.

If the calling task does not have a job name or the job name does not match any address
in the address list, the following procedure applies:
– When the receiver address is ascertained, the entire address list is used, i.e. the email

is sent to all addresses.
– When the sender address is ascertained, only the first address in the address list is

used.

NDWERINF Macros

748 U4250-J-Z125-12-76

NDWERINF – Evaluate status bytes

The status bytes (sense bytes etc.) in the FCB are set in the case of an error. The
NDWERINF macro generates equate statements for the logical error information, thus
enabling the user to evaluate these status bytes.

Note

The NDWERINF macro is supported solely for reasons of compatibility and should
therefore not be used in new applications. The error information returned by this macro
is contained in the logical return code of the FCB and can be evaluated there.

Format

Operand descriptions

prefix
Prefix (1 character) with which the generated names are to begin.

Default value: I

*
No prefix is generated.

ONLYOSB=YES
Equates are generated only for the three sense bytes (OSB).

Operation Operands

NDWERINF
[

prefix

*  
 
 

][,ONLYOSB=YES]

Macros OPEN

U4250-J-Z125-12-76 749

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

OPEN – Open file

Macro type: type R

Every file has to be opened with the OPEN macro before it can be processed. The default
value for the OPEN macro is defined in the OPEN operand of the FCB or FILE macro (via
the TFT); if no OPEN mode is specified in these macros, the default value is OPEN=INPUT.

Format

Operand descriptions

fcbaddr
Address of the FCB for the file to be opened.

(1)
The address of the FCB is stored in register 1.

mode
OPEN processing mode (see first column of table below).

(0)
The OPEN mode is stored in coded form in the least significant byte of register 0. The
following table shows the various OPEN modes and the associated codes.

Operation Operands

OPEN

OPEN mode Code Meaning

not specified X'00' The OPEN mode specified in the TU FCB has priority. If this is also X'00' ,
an error message is displayed.

INPUT X'01' The file is opened as an input file and only read operations are permitted;
the file is read “forwards”
(from beginning of file → end of file).

REVERSE X'02' The file is opened as an input file and only read operations are permitted;
the file is read “backwards”
(from end of file → beginning of file).

OUTPUT X'04' The file is opened as an output file and, if it already exists, overwritten from
the beginning; only sequential write operations are permitted.

fcbaddr

(1) 
 
 

,
mode

(0) 
 
 

[,PARMOD=
24

31 
 
 

]

OPEN Macros

750 U4250-J-Z125-12-76

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset for the generation mode by means of the
GPARMOD macro or by the assembler.

= 24
The macro is expanded in accordance with the format for the 24-bit interface. The
object code is thus executable only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

Programming notes

1. The OPEN macro overwrites the registers 0, 1, 14 and 15.

2. If, during program execution, an FCB address is specified for a file in an OPEN macro,
and that address has been used in a previous OPEN, the program is terminated abnor-
mally and error code DMS0D9F returned.

EXTEND X'08' The file is opened as an output file for sequential extension; starting at a
defined point in the file, only sequential write operations are permitted.
In the case of an empty file, OPEN EXTEND is mapped onto OPEN
OUTPUT.

UPDATE X'10' The file is to be updated; both read and write operations are permitted.

INOUT X'20' The file is to be updated; both read and write operations are permitted.

OUTIN X'40' The file is first to be created (or overwritten); after this, both read and write
operations are permitted.

OPEN mode Code Meaning

Macros OPEN

U4250-J-Z125-12-76 751

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Notes on programming and on large files

The OPEN macro and the access methods are only affected by the introduction of large
files, not by the introduction of large volumes.

The OPEN interface checks whether files are permitted to extend beyond 32 GB and
whether the creation of files Ï 32 GB and access to such files are permitted.

There are two aspects associated with this:

a) Rejection of access to or the creation of large files for access methods that do not allow
processing of large files.

b) Indication that a program can create or open files Ï 32 GB.

Incompatible interface variants

Interfaces where 3-byte block numbers are used are never able to work with files Ï 32 GB.
This affects the following cases:

– All files in key format (BLKCTRL=PAMKEY):
The logical block numbers in the PAMKEY are only 3 bytes wide.

– 24-bit interface of UPAM
The field for logical block numbers in the UPAM parameter lists and in the TU FCB is
only 3 bytes wide.

– 24-bit interface of SAM
The logical block numbers are affected as part of the retrieval address.

In all the cases described above, the following applies:

– Access to files Ï 32 GB is rejected with the return code X'0000D9D' or X'00000D00',
depending on the size of the storage space allocated to the file (FILE_SIZE).

– Exceeding a file size of 32 GB as a result of secondary allocation is prohibited
(LARGE_FILE).

Semantic incompatibilities

It is possible that applications use interfaces that employ 4-byte fields for the data fields
described above, but that these 4-byte fields are implicitly or explicitly subject to the former
limitation to values less than X'00FFFFFF'.
Please notice, that for the modifications in Assembler code for files Ï 32 GB in addition to
the conversion to 4-byte block numbers and counters, it is necessary to check whether the
program logic implicitly assumes that files may not be larger than 32 GB.

OPEN Macros

752 U4250-J-Z125-12-76

The following lists a number of examples of potential problems.

– The highest 3-byte block number X'FFFFFF' has a special meaning.

– “Block numbers” greater than X'00FFFFFF' represent objects other than blocks.

– For calculations with block numbers or counters greater than X'00FFFFFF', overflow
can occur.

– The number of digits in input or output fields is not sufficient for displaying such large
block numbers or counters.

– When converting hexadecimal numbers to decimal numbers, the field length is too
small for the decimal number.

– It is assumed that data structures whose size depends on a file size always find space
in virtual memory. This assumption can apply to files less than 32 GB, but not if this size
is exceeded.

It is not possible to give a complete list of problem cases. However, one possible source of
problems could be coding based on block numbers, file sizes and derived or dependent
structures.

The following return codes display information about execution of the macro with regard to
large files:

X'cc' X'bb' X'aaaa' Explanation

X'00' X'00' X'0D9D' Error when opening a disk file

X'00' X'00' X'0D00' System error when opening a file

Macros OSTAT

U4250-J-Z125-12-76 753

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

OSTAT – Request information on open files

Macro type: R for PARMOD=24
O for PARMOD=31

The OSTAT macro enables the user to determine:

– how many jobs have opened the file

– how many jobs have opened the file for ISAM shared-update processing (in all possible
OPEN/SHARUPD combinations)

– how many jobs have opened the file with an access method other than ISAM

A Dsect can be generated for the output area (operand “area”) by means of the
IDOST macro.

The file must be opened before the OSTAT macro is issued. The OPEN/SHARUPD combi-
nation of the calling job is then included in the output.

Format

Operand descriptions

fcbaddr
Address of the FCB for the file for which the OPEN status is to be returned.

(1)
The FCB address is stored in register 1.

area
Address of the area in which the information is to be placed. This area consists of 23 count
fields, each 1 byte long. The maximum value of each counter is therefore 255. If any of the
ISAM internal counters reaches a higher value, then the corresponding counter in the
information area is set to 255.

A Dsect can be generated for the output area by means of the IDOST macro.

If the “area” operand is not specified, the area for the information is generated in the macro;
this means that the resulting code will not be reentrant.

Operation Operands

OSTAT fcbaddr

(1) 
 
 

,
area

(0) 
 
 

[,PARMOD=
24

31 
 
 

]

OSTAT Macros

754 U4250-J-Z125-12-76

(0)
The address of the area in which the information is to be placed is stored in register 0.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space (24-bit addressing
only).

= 31
The object code generated can run in the 2-Gb address space (24-bit or 31-bit
addressing).

Programming note

The OSTAT macro overwrites the contents of registers 0, 1, 14 and 15.

Return codes

Register 1 Address of the FCB.

Register 0 Address of the output area “area”.

Register 15 X'0000' (execution successful) or an error code in the two low-order bytes.

Macros PAM

U4250-J-Z125-12-76 755

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

PAM – Perform UPAM actions

Macro type: type S

All user requests to DMS for UPAM actions are issued using this macro.

Format

Operation Operands

PAM
fcbaddr[,PARMOD=

24

31 
 
 

]

[,

RDWT

CHK

LOCK

LRD

LRDWT

RD

RDEQU

SETL

SETLPP

SYNC

UNLOCK

WRT

WRTWT

WRTWU

WT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

][,CHAIN=relexp][,FECB=relexp][,HP=

number

+number

-number 
 
 
 
 

]

[,KEYFLD=relexp][,LEN=

STD

(STD,n)

length 
 
 
 
 

][,LOC=

1

2

relexp 
 
 
 
 

]

[,MKEY=
NO

YES 
 
 

][,REQNO=number][,POST=postcode]

PAM Macros

756 U4250-J-Z125-12-76

Operand descriptions

fcbaddr
Specifies the address of the FCB associated with the file.

CHAIN = relexp
This operand specifies the symbolic address of the next element in a chain of PAM macros
in list form. Such a chain must not contain more than 255 elements.

Default value: the list is regarded as the last element in a chain.

CHK
Checks whether the specified I/O request has been completed. If so, the program resumes;
if not, control is transferred to the address specified by the LOC operand in the user
program.

FECB = relexp
Symbolic address of a file event control block (see page 106). This operand may be
specified only for the operations RD, LRD and WRT.

HP
Points to a specific PAM page, as follows:
– in non-chained I/O, the PAM page to be transferred (or locked)
– in chained I/O (for disk files or for tape files with nonstandard blocks (NK files)), the first

in a series of PAM pages to be transferred (or locked).

Default value: HP = +1 (i.e. sequential processing).

Note

For PAM and SAM files without PAM keys (operand BLKCTRL=DATA or
BLKCTRL=NO), the following restrictions result from the fact that only logical blocks
(and not the individual 2K blocks) can be accessed in such files:

– For the operations LRD, LRDWT, RD, RDWT, RDEQU, WRT, WRTWT, WRTWU,
LOCK and UNLOCK, HP must point to the beginning of a logical block,
i.e. HP = n * BLKSIZE + 1 (n Ï 0).
If this is not the case, the PAM call will be rejected.

– For the operations SETL and SETLPP, HP must point to the end of a logical block,
i.e. HP = n * BLKSIZE + 1 (n Ï 0).
If this is not the case, the PAM call will be rejected. (For SETL operations, the file
pointer is thus ready to access the next logical block.)

More detailed information is given in the “Programming notes” on page 763.

Macros PAM

U4250-J-Z125-12-76 757

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

= number
The absolute logical block number of the PAM page (LHP) within the file.

= +number
= -number
A relative logical block number (= relative to the file pointer). The corresponding
absolute logical block number is calculated by adding the file pointer and the specified
relative block number.

KEYFLD = relexp
This is evaluated only for files with PAM keys (operand BLKCTRL=PAMKEY). It is ignored
for files with BLKCTRL=DATA or BLKCTRL=NO.
In the case of non-chained I/O, this operand specifies the address of a 16-byte area into
which the PAM key is placed during reading or from which it is taken during writing.

In the case of chained I/O with separate processing of all associated PAM keys (operand
MKEY=YES), this operand must specify the address of a sufficiently large area (number of
PAM pages to be transferred times 16 bytes). If just the PAM key of the first PAM page is to
be processed (MKEY=NO), the specified area need only be 16 bytes long. In this case the
KEYFLD operand can be omitted, and the default value will come into effect.

The KEYFLD operand is ignored for the operations WT, CHK, SETL and SYNC.

For further information, see the “Programming notes” on page 763.

LEN
Specifies the length of the data transferred in a PAM call.

Default value: LEN=STD

The LEN operand is ignored for the operations WT, CHK and SETL.

For its relationship with BLKSIZE, see the description of the UPAM FCB macro (page 91).

For further information, see the “Programming notes” on page 763.

= STD
Data is transferred with the length of a standard block (ï 2048 bytes).

Default value: (for files with BLKCTRL=PAMKEY)
– address of the ID1KEY1 field in the FCB (for all read and write

operations except RDWT, LRDWT and RDEQU);
– address of the ID1KEY2 field in the FCB (for RDWT,LRDWT and

RDEQU).

PAM Macros

758 U4250-J-Z125-12-76

= (STD,n)
Data is transferred with the length of n standard blocks (of 2048 bytes each). n is an
integer in the range 1 Î n Î 16.This operand value may be specified only for the 31-bit
interface of the macro.

= length
The length in bytes of the data to be transferred (1 Î length Î 32768). A distinction must
be made between the following cases:
– 1 Î length Î 2048: no chained processing; each PAM macro transfers a block with a

length of 2048 bytes from/to the buffer, i.e. reads or writes one block.
– 2049 Î length Î 32768: chained processing.

For disk and tape files with PAM keys, the number of PAM blocks transferred with one
PAM call is determined as follows:
– If length is an integral multiple of 2048 (length = n * 2048, n Î 16), the quotient

n = length/2048 is the number of PAM blocks to be transferred.
– If length is not an integral multiple of 2048, the quotient is rounded up to the next

higher integer. With certain hardware configurations, this can result in intermediate
buffering and a corresponding decline in performance.

During CLOSE processing, in the case of files with BLKCTRL=PAMKEY the position of
the last valid byte is always stored in the last-byte pointer of the last PAM block, and in
the case of files with BLKCTRL=NO or DATA in the last-byte pointer of the last logical
block of the file.

In the case of node files only data equivalent to the length length is transferred at the
end of the file. A node file thus ends on a byte boundary in the event of subsequent
CLOSE processing.

For a write operation, data is transferred with this length length; for a read operation,
only the specified number of bytes are valid.

For PAM or SAM disk files without PAM keys, the length of a logical block is taken into
account when the file pointer is calculated. However, the number of 2048-byte blocks
written is never more than necessary to satisfy the LEN specification.

LOC
Points to the I/O buffer in main memory (this does not apply to CHK, see “relexp” below).
The buffer must be large enough to hold at least as many PAM pages as specified by the
value of LEN. The buffer address can be freely aligned on a byte boundary. If the buffer size
is Î 4096 bytes (1 (main memory) page), it should be contained within one page and be
aligned on a word boundary. If the buffer size is greater than 4096, it should be aligned on

Macros PAM

U4250-J-Z125-12-76 759

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

a page boundary. If the buffer alignment is not carried out in this manner, intermediate
buffering may be required with certain hardware, and this is likely to have a detrimental
effect on performance.

The LOC operand is ignored for the operations WT, LOCK, UNLOCK, SETL, SETLPP and
SYNC.

= 1
This means that the buffer address is located in FCB field IOAREA1.

This specification is not permitted if IOAREA1=NO was specified in the OPEN macro.
The (default) facility for switching buffers may be used only if neither IOAREA1=NO nor
IOAREA2=NO was specified in OPEN.

= 2
This means that the buffer address is located in FCB field IOAREA2.

This specification is not permitted if IOAREA2=NO was specified in the OPEN macro.
The (default) facility for switching buffers may be used only if neither IOAREA1=NO nor
IOAREA2=NO was specified in OPEN.

= relexp
This specifies the buffer address or, in the case of a CHK operation, the continuation
address if a checked I/O request has not been completed.

LOC=relexp is mandatory for a CHK operation; in other words, LOC must specify an
address at which the task is to be continued if the checked I/O operation has not yet
terminated.

LOCK
For disk files only:
Requests locks to be set on one or more PAM blocks (see also the operands HP and LEN).
Locking a block means that other PAM calls with LOCK or LRD/LRDWT for this block will
be rejected.

LRD
For disk files only:
Same as LOCK; if the lock is effected, processing continues as for RD.

Default value: – IOAREA2 address in the FCB if a PAM call has already been
executed for this FCB and IOAREA1 was specified in the last
PAM call;

– IOAREA1 address in the FCB in all other cases.

PAM Macros

760 U4250-J-Z125-12-76

LRDWT
For disk files only:
Same as LOCK and LRD; if the lock is effected, processing continues as for RDWT.

MKEY
For disk files only:
This operand is significant only for files with a PAM key (operand BLKCTRL=PAMKEY) and
for chained I/O (see also the KEYFLD operand).

Default value: MKEY=NO

= NO
Only the PAM key of the first in a series of PAM pages is expected/provided by the user.

= YES
PAM keys are expected by the user for each PAM page read or provided by the user for
each PAM page written.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The macro is expanded in accordance with the 24-bit interface format. The object code
can only run in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

POST = postcode
If UPAM TU eventing is used in conjunction with PARMOD=31, the user may enter a post
code here; otherwise any entry in POST is ignored.

When I/O is complete, the post code can be retrieved in accordance with the SOLSIG
definition:
– from the two rightmost bytes of the RPOSTAD field
– from the two rightmost bytes of the register specified in RPOSTAD
– from the two rightmost bytes of register 3 in the contingency process initiated by the

UPAM event (for more details see the description of the SOLSIG macro in the
“Executive Macros” manual [2]).

Macros PAM

U4250-J-Z125-12-76 761

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

RD
Initiates the reading of a data block from the file into main memory; the job continues
immediately after the read operation has been initiated.

RDEQU
Same as RDWT except that, for disk files with Dual Recording by Volume (DRV, see the
“DRV” [15] manual), the copy is also updated.
This operand value may be specified only for the 31-bit interface of the macro.

RDWT
Same as RD, except that the job does not continue until the read operation has been
completed.

REQNO = number
For disk files only:
Specifies the number of the I/O request assigned to this operation. If this operand is
specified, the FECB operand must be omitted.

Default value: REQNO=1

SETL
Causes the file pointer to be set to the specified PAM page.

SETLPP
For disk files only:
Causes the last-page (end-of-file) pointer to be set to the specified PAM page. The PAM
page must already belong to the file. This operation is not permitted for input files files
(OPEN=INPUT) or for files which have been opened with SHARUPD=WEAK/YES.

Node files are truncated after SETLPP.

SYNC
Waits for termination of the I/O operation and clears the control buffer for tape cartridge
files; for files which are not on a magnetic tape cartridge, SYNC is equivalent to WAIT.
This operand value may be specified only for the 31-bit interface of the macro.

UNLOCK
For disk files only:
Unlocks locked PAM blocks (see also the operands HP and LEN).

PAM Macros

762 U4250-J-Z125-12-76

WRT
Initiates the writing of a data block from main memory into the file; the job is continued
immediately after the write operation has been initiated.

WRTWT
Same as WRT, except that the job does not continue until the write operation has been
completed.

WRTWU
Same as WRTWT; the PAM page just written is unlocked immediately after completion of
the I/O operation.

WT
This operation causes the program to wait for the end of a particular request. The program
continues upon completion of this request.

Macros PAM

U4250-J-Z125-12-76 763

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Programming notes

1. The PAM macro overwrites the contents of registers 0, 1, 14 and 15.

2. The first PAM page of a PAM file is designated as number 1. When a PAM file is opened,
the file pointer is set to an initial value of 0. The HP operand is ignored in WT, CHK and
SYNC operations. WT and CHK refer to I/O requests, not to PAM pages.

3. With the exception of WT, CHK, SYNC and – for tape files- SETLPP operations, any
operation not resulting in a branch to an error routine causes the file pointer to be set
to the number of the PAM page currently being accessed. This is also true of locking/
unlocking even where SHARUPD=NO is specified. When operations lead to an error
routine instead of terminating normally, the value of the file pointer does not change.

For PAM and SAM files without PAM keys (operand BLKCTRL=DATA or
BLKCTRL=NO), the file pointer then contains the number of the last 2-Kbyte block
which was accessed in the logical block. (During calculation of the file pointer, the length
is thus rounded up to the next higher multiple of BLKSIZE.)

4. If, for a disk file, “n” denotes the number of PAM pages already allocated to a file and
“k” is the value of the secondary allocation, the following rules must be observed:

5. The value specified for REQNO must be less than or equal to the value defined in the
PAMREQS operand in the FCB macro.

6. The REQNO operand is ignored for the LOCK, UNLOCK and SETL operations. In WT,
CHK and SYNC operations, it serves to specify the I/O request for which the operation
is to be carried out.

PAM operation Meaning

RD
RDEQU
RDWT
LRD
LRDWT

HP = number, where 1 ≤ number ≤ n

WRT
WRTWT
WRTWU

HP = number, where 1 ≤ number ≤ n + k
As soon as a PAM page with LHP > n is written, a secondary allocation is
made; the file size thus increases to n + k PAM pages. If several consecutive
PAM pages are to be written using one PAM macro (chained I/O), sufficient
space for all pages to be written must be available (at the latest) after the first
secondary allocation, i.e. LHP ≤ n+k must be true for the last page.

LOCK
UNLOCK

HP = number, where number > 0
PAM pages which are not allocated at the moment can be locked or unlocked
later – this locking/unlocking does not result in a secondary allocation.

PAM Macros

764 U4250-J-Z125-12-76

7. Only one asynchronous I/O operation can be assigned to each request number
(REQNO). A waiting period for termination of the asynchronous I/O operation can be
defined either explicitly by specifying its request number in a WT operation or implicitly
by a second read or write operation for the same request number. If an error is detected
during an implicit wait for the end of an I/O request, error code 997 is returned, and the
request which caused the implicit WT is not carried out.

8. Request numbers (REQNOs) are system resources; improper use may impair the
efficiency of the system.

9. If the user wishes to use the data buffer created by OPEN for I/O operations (operand
LOC=1 or LOC=2), the value specified for the LEN operand must not be greater than
BLKSIZE, since the buffer will otherwise be too small to hold the data.

10. For tape files, the value specified for LEN must be exactly equal to the length of a tape
buffer. For files with BLKCTRL=PAMKEY, this is one PAM block (2048 bytes); this is
equivalent to the specification LEN=STD or LEN=(STD,1) or LEN=2048 (16 bytes for
the PAM key are added by the system).

11. For tape files without PAM keys (operand BLKCTRL=DATA or BLKCTRL=NO), a
nonstandard block with the length specified in LEN is written; when reading, an attempt
is made to read a block with the length specified in LEN. For PAM or SAM files without
PAM keys, the value specified for LEN must not be greater than BLKSIZE; for ISAM files
without PAM keys, it must not be greater than 2048 or (STD,1).

12. If, when reading from a tape file without a PAM key, the value specified for LEN is less
than the block length of the file, the read operation is terminated with an error. In order
to avoid such errors, one should always read a tape file without a PAM key with
LEN=BLKSIZE, i.e. with the maximum permissible value for LEN. For files with
BLKCTRL=DATA, the length of the valid data can then be determined from the block
control field.

13. In the case of a write operation (WRT, WRTWT, WRTWU) to a file with
BLKCTRL=DATA, UPAM treats the first 12 bytes as the block control field and
overwrites them with the block control information.

14. For files with BLKCTRL=DATA and operations which require an input/output operation,
the value for LEN must be selected such that the block control field is entirely contained
in the data buffer. This is the case if the following conditions are fulfilled:

– For PAM and SAM disk files:
LEN = n*BLKSIZE or LEN > n*BLKLSIZE + 12 (n = number of data blocks)

– For ISAM disk files:
LEN = n*2048 or LEN > n*2048 + 12 (n = number of data blocks)

– For tape files:
LEN > 12

Macros PAM

U4250-J-Z125-12-76 765

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

15. Files with BLKCTRL=DATA are subject to the following restriction with regard to parallel
processing:
when processing a PAM file with BLKCTRL=DATA, the IOAREAs must not be used in
parallel for several I/O jobs, as this would mean that the contents of the block control
field would be undefined.

– Illegal approach:
PAM WRT,FCB1,LOC=BUFFER
PAM WRT,FCB2,LOC=BUFFER (Parallel I/Os for BUFFER)
PAM WT,FCB1
PAM WT,FCB2

– Permissible approach:
PAM WRTWT,FCB1,LOC=BUFFER (Consecutive I/O operations
PAM WRTWT,FCB2,LOC=BUFFER for BUFFER)

16. For LOCK or UNLOCK operations, LEN=0 is treated like LEN=2048 (or LEN=n, where
1 Î n Î 2048). If any other value is specified for LEN, as many PAM blocks as would be
written or read by an I/O operation with this LEN value are locked.
For PAM and SAM files without PAM keys (operand BLKCTRL=DATA or
BLKCTRL=NO), only the first 2-Kbyte section of each affected logical block is actually
locked internally, but this causes the entire logical block to be locked.

17. The following points apply to files with a PAM key (BLKCTRL=PAMKEY):

– If a WT operation is performed (explicitly or implicitly) for a successful read
operation, the 16-byte PAM key assigned to the block read is moved to the field
designated by the KEYFLD operand. A CHK operation initiated after the completion
of an I/O operation has the same effect as a WT operation.

– If, for a write operation, the user places any information in the last 8 bytes of the
16-byte field defined by the KEYFLD operand, the information is written to the file
as part of the PAM key assigned to the PAM page to be written (this is not recom-
mended). UPAM always sets up the first 8 bytes of the KEYFLD area before the
write operation begins.

– The KEYFLD operand is ignored in conjunction with the WT, CHK, UNLOCK, SETL
and SETLPP operations.

PUT Macros

766 U4250-J-Z125-12-76

PUT – Write record

Application area

The PUT function can be used when processing files with SAM or ISAM (record-oriented
access methods). The file must have been opened with one of the following OPEN modes:

EXTEND for SAM and ISAM
INOUT/OUTIN for ISAM
OUTPUT for SAM

Function

The PUT macro is used for sequential creation or extension of a file. It appends a record to
the file.

For K-ISAM only:

The PUT macro can only be used to write records sequentially at the end of a file. If a file
was opened in INOUT or OUTIN mode, PUT writes the record at the current end of the file.
If the last macro issued for this file was not a PUT, the PUT performs a SETL to the end-of-
file position before the record is written into the file.

ISAM:

The PAD factor (block padding) is taken into account during sequential creation or
extension of a file. However, the effects for NK-ISAM and K-ISAM are different (For further
details see page 76).

The PUT macro ensures that the key of any record added to the file is equal to or greater
than the current highest key value. If the ascending sequence of the keys is broken, control
is passed to one of the following two EXLST exits:
– DUPEKY, if the key of the current record is equal to the key of the preceding record and

DUPEKY=YES was not specified.
– SEQCHK, if the key of the current record is less than the highest key of the exisiting file.

ISAM: Macro type: R for PARMOD=24
O for PARMOD=31

SAM: Macro type: R for PARMOD=24
R for PARMOD=31

Macros PUT

U4250-J-Z125-12-76 767

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

NK-ISAM:

If IOAREA1=NO is specified in the FCB for an NK-ISAM file, each PUT results in an SVC;
the PAD value is ignored.

If IOAREA1îNO, the I/O area IOAREA1 is filled with records until:

– the buffer is full, or
– the limit specified by PAD in the FILE/FCB macro is exceeded, or
– an ISAM action macro other than PUT is issued.

An SVC is then issued and a new block with the contents of the I/O area is appended to the
file.

For shared-update processing, the complete area between the current highest key and the
end of the file is locked after a PUT.

Locate mode:

In locate mode, DMS supplies the IOREG register (see FCB macro, IOREG operand,
page 427) with the address of the first free byte within the buffer. The user must then ensure
that the record to be included in the output file is made available at this address.

The PUT macro checks the record and updates the address in IOREG for the next record.
After the last record has been made available at the address specified in IOREG, it is not
necessary to call the PUT macro again (otherwise a CLOSE error will result or a corrupted
record will be added to the file).

SAM:

When processing Format V records in locate mode, DMS specifies the buffer capacity
remaining after each PUT macro in the VARBLD register (see FCB macro, VARBLD
operand, page 442. The application program must ensure that the remaining buffer area
can accommodate a complete record. If there is not enough space left, the RELSE macro
must be called to close a block.

Move mode – tape processing:

If, in the case of tape processing, a PUT macro initiates a transfer of the preceding records,
and if the end-of-tape mark is detected during this transfer operation, the current record is
then written, alone and unblocked, into a block on the tape before the tape swap is initiated.
As a result, the file may become one block larger each time the tape is swapped.

PUT Macros

768 U4250-J-Z125-12-76

Format

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

(1)
The FCB address is stored in register 1.

area
Current address of the record to be transferred to the output buffer; The operand (if the
IOREG operand is specified in the FCB) is ignored when processing files in locate mode.

(0)
The address of the record to be transferred to the output buffer is stored in register 0.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset in the program by means of the GPARMOD macro
or by the assembler.

= 24
The macro is generated with the expansion for the 24-bit interface. The object code
generated can run only in the 16-Mb address space (24-bit addressing).

= 31
The object code generated can run in the 2-Gb address space (24-bit or 31-bit
addressing). The macro is generated such that it is independent of the addressing
mode.

Programming notes

1. The PUT macro overwrites the contents of registers 0, 1, 14 and 15.

2. A PUT macro results in an SVC only when a buffer transfer is initiated. Consequently,
the user cannot expect to receive control in an STXIT process each time a PUT macro
is issued (when using the STXIT macro with SVC= or SVCLIST=; for more details see
the “Executive Macros” manual [2]).

Operation Operands

PUT fcbaddr

(1) 
 
 

,
area

(0) 
 
 

[,PARMOD=
24

31 
 
 

]

Macros PUTX

U4250-J-Z125-12-76 769

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

PUTX – Replace record

SAM:

The PUTX macro may be used only for disk files processed in locate mode and opened with
OPEN UPDATE. It writes an updated record back to the buffer. The record must have been
retrieved beforehand by means of the GET macro (for ISAM also GETR, GETKY or GETFL)
and its length must not have been changed during updating.

In locate mode, the PUTX macro places the record in the program buffer and sets a flag
indicating that the buffer contents have been changed. The buffer contents are written back
to the file only when a further macro (such as the next GET) triggers an SVC for this file or
FCB.

ISAM:

The PUTX macro overwrites a record which was previously retrieved by means of a GET,
GETR, GETKY or GETFL macro. With GETFL in conjunction with SHARUPD=YES, the
LOCK operand must be selected.

The record key must not be changed either in move mode or locate mode; in locate mode,
the record length must also not be changed.

With the exception of OSTAT, no other ISAM action macro may be issued for this file
between the read operation using GET and the write operation using PUTX. For shared-
update processing, the lock which was set implicitly or explicitly with the read operation
using the LOCK operand must not be canceled. This means that any action macros issued
even for other files/FCBs must not set a new lock; only macros such as a read operation
with NOLOCK are possible.

ISAM: Macro type: R for PARMOD=24
O for PARMOD=31

SAM: Macro type: R for PARMOD=24
R for PARMOD=31

PUTX Macros

770 U4250-J-Z125-12-76

K-ISAM:

When processing K-ISAM files in conjunction with SHARUPD=YES: if a record in a group
of records with duplicate keys is output in move mode using PUTX, it is not known which of
the records with duplicate keys the file will be positioned to following the PUTX.

The record key must not be changed between the read and write operations. If this is
attempted, the effects vary depending on whether the file is being processed in move mode
or locate mode:

in either case, the EXLST exit USERERR is taken.

If control information in the record is overwritten in locate mode, the results of subsequent
processing will be unpredictable. If this makes it impossible for ISAM to process the block,
control is passed to EXLST exit USERERR.

Format

Operation Operands

PUTX fcbaddr

(1) 
 
 

[,PARMOD=
24

31 
 
 

]

[,
area

(0) 
 
 

]

Macros PUTX

U4250-J-Z125-12-76 771

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

area
Address of the record to be written.

(0)
The address of the record is stored in register 0.

fcbaddr
Address of the FCB associated with the file to be processed.

(1)
The FCB address is stored in register 1.

PARMOD
Specifies the generation mode for the macro.

Default value: the value preset in the program by means of the GPARMOD macro
or by the assembler.

= 24
The macro is generated with the expansion for the 24-bit interface. The object code
generated can run only in the 16-Mb address space (in 24-bit addressing mode only).

= 31
The macro is generated such that it is independent of the addressing mode (24-bit or
31-bit addressing). The object code generated can run in the 2-Gb address space.

Programming notes

1. The PUT macro overwrites the contents of registers 0, 1, 14 and 15.

2. For SAM only:
The fact that a record has been updated in the current buffer is “noted” in the TU FCB
by PUTX. It is only if this bit is set at the time of the next GET (RELSE, SETL) that the
entire logical block is written to disk. PUTX never issues an SVC.

RDTFT Macros

772 U4250-J-Z125-12-76

RDTFT – Read TFT and TST information

Macro type: type S (E form/L form/D form/C form); see page 866

By means of the RDTFT macro, the user can fetch information from the task file table (TFT)
and output it to a user area. If desired, he can also request information from the TST entry
associated with the TFT entry.

Format

Operation Operands

RDTFT outaddr

[,[length]]

[,FILE=pathname]

[,LINK=name]

[,
SHORT

LONG 
 
 

]

[,NUMONLY=
NO

YES 
 
 

]

[,MF=L][,

PARMOD=
24

31 
 
 

[LINKWC=
NO

YES 
 
 

,]VERSION= 2

3 
 
 

 
 
 
 
 
 
 
 
 

]

MF=(E,
addr

(r) 
 
 

)[,

PARMOD=
24

31 
 
 

VERSION= 2

3 
 
 

 
 
 
 
 
 
 
 
 

]

MF=
D

C  
 
 

[,PREFIX=
pre

*  
 
 

],PLIST=
INPUT

OUTPUT 
 
 

[,

PARMOD=
24

31 
 
 

VERSION= 2

3 
 
 

 
 
 
 
 
 
 
 
 

]

Macros RDTFT

U4250-J-Z125-12-76 773

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

outaddr
Symbolic address of the output area to which the information from the TFT is to be
transferred. This address must be specified if MF=L is specified or if no entry is made for
the MF operand.

length
Length of the user area
Minimum length: 11 bytes; exception with NUMONLY=YES: 4 bytes

Default value: 140 bytes for SHORT, PARMOD=24/31;
180 bytes for SHORT, VERSION=2/3;
2048 bytes if LONG is specified.

FILE = pathname
Specifies the file(s) on which information is to be supplied
with: <c-string 1..80: filename 1..54 with-wild(80)>

Designates the file or file generation from whose TFT entry information is to be supplied.
Wildcards can be used to replace strings in “catid”, “userid” and “filename”; however, the
total string length for “pathname” must not exceed 80 characters. Empty file names and the
file name “*DUMMY” are not selected when wildcards are used.

If “pathname” is a file generation, the absolute generation number must be specified.

The internal file name is output for temporary files.

“pathname” means [:catid:][$userid.]filename

catid
Catalog ID; default value: the catalog ID assigned to the user ID.

userid
User ID; default value: the user's own ID.

filename
Fully or partially qualified file name.

RDTFT Macros

774 U4250-J-Z125-12-76

LINK = name
File link name of the TFT entry from which information is to be passed to the output area
(if appropriate, together with information from the associated TST entry).
Wildcards may be used to replace strings in “name”, in which case the following applies:
– The total string length must not exceed 80 characters.
– With the exception of the wildcards, the entire string may only contain characters from

the permitted value range of the command interface.
– If wildcards are specified, only those TFT entries that have file link names which were

constructed from characters in the permitted value range for the command interface will
be selected.

LINKWC
Only as of VERSION=2:
Defines whether placeholders in the link name are to be interpreted as normal characters
or as wildcards.

= NO
Placeholders are treated as normal characters.

= YES
Placeholders are interpreted as wildcards.

LONG
The complete TFT entry is placed in the user area, followed by the associated TST entry
including the device list.

MF
The forms of the MF operand are described in detail in the appendix (page 865). In all
macros differentiated by MF operands (MF=L/E/D/C), the version operand must contain the
same value.
If MF is not specified, you get the S form; however, the explicit specification MF=S is only
possible for PARMOD=24.

NUMONLY
Only as of VERSION=3:
Defines whether only the number of selected TFT entries is to be written to the output area.

= NO
The number of selected TFT entries is not transferred to the output area.

= YES
The selected TFT entries are counted and the result written into the first four bytes of
the output area. Nothing further is output. The minimum size of the output area is four
bytes.

Macros RDTFT

U4250-J-Z125-12-76 775

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

PARMOD
Specifies the generation mode for the macro. If PARMOD and VERSION are specified
simultaneously, the PARMOD operand is ignored and an MNOTE message is generated.

Default value: 31, if VERSION is specified,
otherwise the value for the generation mode preset by means of the
GPARMOD macro or by the assembler.

= 24
The macro is generated with the expansion for the 24-bit interface. The object code can
be executed only in 24-bit addressing mode.

= 31
The macro is generated such that it is independent of the addressing mode.

PLIST
Generates a list with symbolic addresses for the input or output area, depending on the
VERSION and PARMOD operands.

= INPUT
Generates a list for the input area.

= OUTPUT
Generates a list for the output area.

PREFIX
Evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default value: PREFIX = I

= pre
The first character of the generated names is replaced by “pre”;
for the input area: 1-2 characters, first character a letter;
for the output area: 1 letter.

= *
No prefix is generated.

SHORT
The static part of the task file table (TFT) entry is transferred to the user area, followed by
the static part of the associated TST entry (without the device list); see the LONG operand,
below.

RDTFT Macros

776 U4250-J-Z125-12-76

VERSION
Controls the generation of the operand list, SVC and output area. If PARMOD and
VERSION are specified simultaneously, the PARMOD operand is ignored and an MNOTE
message is generated.

The return code is stored exclusively in the parameter list standard header. The RDTFT
function also supplies the new output list (see “Programming notes” on page 777).
If a PARMOD value is specified simultaneously, it is ignored.

Default value: generation of the operand list is controlled by the PARMOD operand.

= 2
Creates the operand list valid as of BS2000 V9.5. The return code is stored in the
standard header and in register 15.

= 3
Specifies the macro version: the operand list for the macro version valid as of BS2000/
OSD-BC V3.0 is generated.

Macros RDTFT

U4250-J-Z125-12-76 777

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Programming notes

Input area

If the VERSION operand is omitted, the old operand list is generated, depending on the
value of the PARMOD operand. A Dsect can be generated for this area by means of the
DMARD macro or via the operands MF=D,PLIST=INPUT.

If VERSION=2/3 is specified, the operand list includes the standard header and the field
which contains the length of the output area is defined as an address constant (4 bytes).
A Dsect for this area is generated using the operands VERSION=2/3, MF=D, PLIST=
INPUT.

Output area

The RDTFT macro returns one of two lists, depending on whether or not the operand
LINK=name is specified:

– without LINK=name, or if “name” includes wildcards and the operand LINKWC=YES is
specified, only a list of the file link names and the file names linked to them is transferred
to the output area.

The list is in chronological order, i.e. in the order in which the TFT entries were created.
Each link name/file name pair is preceded by one byte which contains the length of
these two fields + 1.
The list is terminated by one byte containing the value X'00', and the byte after this
shows whether or not all requested information has been transferred to the output area.

X'00' All file link names and the related file names have been transferred to the
user area.

X'01' One or more file link names, with their related file names, could not be
placed in the user area, since it was already full.

If NUMONLY=YES is specified, the number of selected TFT entries is output to the first
four bytes of the output area. Nothing further is output.

– with LINK=name, the TFT and TST information for the specified file link name is placed
in the output area, provided “name” does not contain wildcards.

The output area then consists of a fixed part and a variable part. The fixed part contains
information from the TFT and TST. The variable part is created only if the LONG
operand is specified; it contains further information from the TFT and, possibly, TST
volume information.

RDTFT Macros

778 U4250-J-Z125-12-76

If the VERSION operand is omitted, the output list has the old format shown in the table
above. A Dsect for this output list can be generated by means of the DMADR macro or
via the operands MF=D, PLIST=OUTPUT of the RDTFT macro.

If the operand VERSION=2/3 is specified, the new format of the output list is generated.
This has a few more fields than the old format. In addition to the information in the
previous output list, the new one provides above all information on BLKCTRL,
POOLLNK, TAPEWR, CLOSMSG, CLOSE, IOPERF, IOUSAGE, EXC32GBand
DESTOC (see the FILE macro, page 452). Moreover, the device type is output in
printable form (e.g. “D3439-10”). For output with LONG, the TFT volume information
was extended.
A Dsect for this output list can be generated via the operands VERSION=2/3, MF=D,
PLIST=OUTPUT.

– With PARMOD=31 or VERSION=2/3, the path name is always displayed in full; in all
other cases it is output in the form in which it was placed in the TFT entry using FILE or
OPEN, i.e. without a catalog ID or user ID if these were omitted. However, it is possible
to specify, for the entire system, that the catalog ID and user ID are always to be output.

If the TFT entry is not linked to a TST entry, the appropriate part of the output area is
filled with binary zeros (X'00').

Return codes

The error code is returned in the parameter area standard header. Error code 0 means that
no errors occurred. The other error codes are described in the DMAIDEM or DCOIDEM
macro.

Program termination with STXIT connection can be initiated in the following cases:
– parameter address incorrect (e.g. shorter than the standard header)
– parameter address not aligned on a word boundary
– UNIT or FUNCTION in header incorrect
– header is write-protected

Field length (bytes) Contents

with VERSION without VERSION

2 2 Length of output area without variable part

8 8 File link name

54 54 Path name

116 76 Static part of TFT entry and associated TST entry

variable variable TFT and TST volume information (if LONG is specified)

Macros RDTFT

U4250-J-Z125-12-76 779

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

If the version value is incorrect, the code is returned in the header and in register 15. If the
header is not writable, the program is terminated with STXIT connection. The subcodes are
only given values as of VERSION=3.

Example

BEGIN START
 .
 .
 RDTFT MF=(E,EXTENT),VERSION=3 RDTFT-SVC
 .
 .
EXTENT RDTFT OUTPUT,,SHORT,LINK=JOHN,MF=L,VERSION=3 OPERAND LIST
 .
 .
OUTPUT DS XL180 OUTPUT AREA
 .
INDSK RDTFT MF=D,PLIST=INPUT,VERSION=3 DSECT INPUT OPERAND LIST
 .
OUTDSK RDTFT MF=D,PLIST=OUTPUT,VERSION=3 DSECT OUTPUT OPERAND LIST
 .
 .
 END

Standard
header:

The following code relating to execution of the RDTFT
macro is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'01' X'059D' Invalid link name

X'01' X'05AB' Invalid range or length

X'40' X'05E1' Link name not found

X'01' X'06CB' Output area too small

X'01' X'06FD' Invalid parameter list range

X'03' X'FFFF' Invalid version

RELSE Macros

780 U4250-J-Z125-12-76

RELSE – Close block

Macro type: type R

The RELSE macro has the following effect, depending on the file type:

– for files opened with OPEN INPUT/REVERSE/UPDATE, the records remaining in the
buffer are ignored by the next GET macro, and the first record in the next block is read
from the file;

– for files opened with OPEN OUTPUT/EXTEND, the next PUT macro writes the block to
the file and the next record becomes the first record of a new block;

In locate mode, DMS supplies the IOREG register (see FCB macro, IOREG operand,
page 427) with the address of the first free byte within the buffer. The user must then
ensure that the record to be included in the output file is made available at this address.

If format V records are processed in locate mode then the free buffer capacity is
displayed in the VARBLD register (see FCB macro, VARBLD operand, page 442). After
the RELSE call, the free buffer capacity is equal to the block length minus the buffer
offset (see BLKSIZE and/or BUFOFF in the FCB macro, page 417 and page 420
respectively).

– for files opened with OPEN UPDATE, the current data block is written back to the disk
(if a record has been updated with PUTX), and the next GET returns the first record of
the next data block.

Format

Operation Operands

RELSE fcbaddr

(1) 
 
 

[,PARMOD=
24

31 
 
 

][,SYNC=
NO

YES 
 
 

]

Macros RELSE

U4250-J-Z125-12-76 781

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

(1)
The FCB address is stored in register 1.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The macro is expanded in accordance with the 24-bit interface format. The object code
can run only in 24-bit addressing mode.

= 31
The macro is generated as addressing mode-independent.

SYNC
The processing of output files can be synchronized.

Default value: SYNC=NO

= NO
File processing is not synchronized.

= YES
Permitted only in conjunction with PARMOD=31; file processing is synchronized,
i.e. after a RELSE..., SYNC=YES all data is on the disk or tape and there is no WAIT
outstanding.

For files on tape cartridges, RELSE..., SYNC=YES causes the contents of the device
buffer to be written to the tape cartridge.

Programming notes

1. The RELSE macro overwrites the contents of registers 0, 1, 14 and 15.

2. A RELSE macro results in an SVC only when a buffer transfer is initiated. Consequently,
the user cannot expect to receive control in an STXIT process each time a RELSE
macro is issued (when using the STXIT macro with the SVC= or SVCLIST= operand;
for more details, see the “Executive Macros” manual [2]).

RELTFT Macros

782 U4250-J-Z125-12-76

RELTFT – Delete TFT entry

Macro type: type S (C form/D form/E form/L form/M form); see page 866

The RELTFT macro deletes from the task file table (TFT) the entry for the specified file link
name and releases all private volumes, devices and Net-Storage volumes linked to this
entry. When a private volume or a Net-Storage volume with more than one TFT entry is
connected, it is released only when the last TFT entry is deleted. It also cancels the reser-
vation of files reserved exclusively by means of the SECURE-RESOURCE-ALLOCATION
command. RELTFT is ignored if a LOCK-FILE-LINK is still active for the TFT entry; it is
executed only when this lock is released by means of the DROPTFT macro (see page 309)
or the UNLOCK-FILE-LINK command (or at LOGOFF time. For further information on the
LOCK-FILE-LINK, UNLOCK-FILE-LINK and SECURE-RESOURCE-ALLOCATION
commands see the “Commands” [3] manual and the “Introductory Guide to DMS” [1]).

Note

The RELTFT macro is the earlier REL macro, extended by the use of wildcards in link
names. As the previous functionality of the REL macro is still supported, its format is
still shown in the appendix (see page 896). Its operands, however, are the same as
those of the RELTFT macro and are therefore only described here.

Tape files

In the RELTFT macro, the user can select whether the tape devices requested for the tape
file (KEEP operand) and/or the requested volumes (UNLOAD operand) are to remain
assigned to the job.

The file counter in the TST entry is decremented by 1 if the TFT entry to be released is
linked to a TST entry. Once this reaches zero, the TST entry is deleted and DMS releases
all devices linked to it. As long as the TST entry is still linked to TFT entries (file counter >
zero), DMS releases only those devices that were only requested for the TFT entry named
in the RELTFT macro.

If the TFT entry to be released does not reference a TST entry, all devices linked to the TFT
entry are released.

Macros RELTFT

U4250-J-Z125-12-76 783

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Format

Operand descriptions

KEEP
Defines whether tape devices linked to this file or TFT entry are not to be returned to the
system, but instead are to remain available to the job for reassignment.

= *NO
The tape devices are returned to the system.

= *YES
The tape devices are not returned to the system.

Operation Operands

RELTFT KEEP = *NO / *YES

,LINK = <c-string 1..80:filename 1..8 with-wild(80) without-gen> /
<var: char:80: filename 1..8 with-wild(80) without-gen>

,UNLOAD = *NO / *YES

,VERSION = <integer 1..1>

,WILDCRD = *NO / *YES

,MF = C / D / E / L / M

,PARAM = <addr> / <(r)>

,PREFIX = D / <pre>

,MACID = MAR / <macid>

RELTFT Macros

784 U4250-J-Z125-12-76

LINK
File link name of the TFT entry to be deleted.

Character strings in the specified name can be represented by wildcards. The following
then applies:

1. The total length of the name must not exceed 80 characters.

2. The name may only contain wildcards or characters from the permitted value range of
the command interface.

3. If wildcards are used, only those TFT entries are selected whose link names are made
up of characters from the permitted value range of the command interface.

Default value: The first TFT entry with the link name *BLANK is deleted.

= <c-string 1..80: filename 1..8 with-wild(80) without-gen>
File link name (enclosed in single quotes).

= <var: char: 80: filename 1..8 with-wild(80) without-gen>
Name of a variable containing the file link name.

MACID
Only evaluated in conjunction with MF=C/D/M and defines the second through fourth
characters of field names and equates generated in the data area when the macro is
expanded.

Default value: MACID = MAR

= macid
“macid” is a three-character string which defines the second through fourth characters
of generated field names and equates.

MF
The forms of the MF operand are described in the appendix (page 865).

Default value: Operand list and SVC as previously

PARAM
Designates the address of the operand list and is only evaluated in conjunction with MF=E
(see also page 865).

= addr
“addr” is the symbolic address (name) of the operand list.

= (r)
“r” is the number of the register containing the address of the operand list. The register
must be loaded with this address value before the macro is called.

Macros RELTFT

U4250-J-Z125-12-76 785

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

PREFIX
Only evaluated in conjunction with MF=C/D/M; this defines the first character of field names
and equates generated in the data area when the macro is expanded.

Default value: PREFIX = D

= pre
“pre” is a single-character prefix with which the field names and equates generated by
the assembler are to begin.

UNLOAD
Only for tape files:
Defines whether the volumes linked to the TFT entry specified under LINK are released and
the tape devices concerned are unloaded. They must be requested again if the job is to
reaccess these volumes. Automatic allocation by the system is no longer possible.

If a private volume is linked to different TFT entries, it is released only after the last TFT
entry is deleted.

= *NO
The tape devices are released.

= *YES
The tape devices are not released.

VERSION = <integer 1..1>
Control operand; controls generation.

WILDCRD
Defines whether wildcard characters in the file link name are interpreted as wildcards or as
normal characters.

= *NO
Wildcard characters are interpreted as normal characters.

= *YES
Wildcard characters are interpreted as wildcards.

RELTFT Macros

786 U4250-J-Z125-12-76

Programming notes

The error code is only returned in the standard header and no longer in general-purpose
register 15, as it was in the REL macro. Program termination with STXIT connection can be
initiated in the following cases:

– parameter address faulty (e.g. shorter than the standard header)

– parameter address not aligned on a word boundary

– UNIT or FUNCTION in the header faulty

– header is write-protected

Return codes

Standard
header:

The following code relating to execution of the RELTFT
macro is returned in the standard header
(cc = SUBCODE2, bb = SUBCODE1, aaaa = MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'01' X'00' X'059A' No such link name

X'01' X'059D' Invalid link name

X'82' X'059B' File is currently opened

X'02' X'00' X'059C' Not all selected TFT entries are deleted

X'01' X'05C2' Invalid link name (binary null)

X'01' X'06F5' TPR bit set by TU caller

X'01' X'06FD' Invalid parameter list range

X'03' X'FFFF' Invalid version

Macros REMPLNK

U4250-J-Z125-12-76 787

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

REMPLNK – Delete pool link name

Macro type: type S (E form/L form/D form/C form); see page 866

By means of the REMPLNK macro, the user deletes either one specific pool link name or
all pool link names from the job's pool table. The file linked to the pool link name must have
been closed correctly before the pool link name can be deleted. If REMPLNK is issued for
all names in the pool table, any pool link names linked to files which are still open are not
deleted, but macro execution is regarded as successfully completed.

Formatt

Operation Operands

REMPLNK

MF=D[,PREFIX=pre]

MF=C[,PREFIX=pre][,MACID=macid]

MF=L,MODE=
SINGLE ,LINKNAME=name

ALL  
 
 

MF=E,PARAM=
addr

(r) 
 
 

]

REMPLNK Macros

788 U4250-J-Z125-12-76

Operand descriptions

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
each field name and equate generated in the data area when the macro is expanded.

Default value: MACID = ISR

= macid
Three-character string defining the second through fourth characters of the generated
field names and equates.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

MODE
Specifies whether one specific pool link name or all pool link names in the job's pool table
are to be deleted.

= SINGLE
The user must specify a pool link name.The pool link name specified for LINKNME is
to be deleted.

LINKNME = name
Specifies which pool link name is to be deleted. “name” is a pool link name defined
by means of the ADDPLNK macro.

= ALL
All pool link names which are not linked to files which are still open are to be deleted.

PARAM
Specifies the address of the operand list; evaluated only in conjunction with MF=E
(see page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register containing the address of the operand list. The register must be
loaded with this address value before the macro is called.

Macros REMPLNK

U4250-J-Z125-12-76 789

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

PREFIX
Evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default value: PREFIX = D

= pre
One-character prefix with which the field names and equates generated by the
assembler are to begin.

Return codes

Unless otherwise specified, the field names and the EQU statements for the return codes
generated by the C and D forms of the macro begin with the character string DISR, but this
can be modified by PREFIX and MACID.

The return codes are stored in the standard header of the operand list.

Main return code Meaning

DISROK X'0000' The macro was executed successfully

DISRNPAR X'0001' Access to the operand list was not possible

DISRNREM X'0002' ISAM pools not supported on remote host

DISRINVN X'0003' Catalog ID unknown

DISRNACC X'0004' Catalog ID not accessible

DISRINVN X'0005' The specified pool link name is invalid

DISRNANF X'0006' The pool link name was not found

DISRPUSE X'0009' The specified pool link name is linked to a file which is still open

DISDSYSE X'000B' A system error occurred during macro execution

DISRRLNK X'FFFF' The macro could not be executed (linkage error):
evaluate subsidiary return code 1

RETRY Macros

790 U4250-J-Z125-12-76

RETRY – Repeat macro

Macro type: R for PARMOD=24
O for PARMOD=31

The RETRY macro is needed in routines which are activated when a PGLOCK event occurs
(EXLST exit PGLOCK). PGLOCK occurs only when an ISAM action macro is issued for a
block or record which is already locked by another job. This “unsuccessful” macro can be
repeated using RETRY, and the user can specify in the program whether or not RETRY is
to wait for the lock to be cleared.

The RETRY macro may be called only in PGLOCK routines. If it is used elsewhere in a
program, control is passed to the EXLST exit USERERR.

When the PGLOCK exit is activated, register 1 contains the FCB address; when the RETRY
macro is executed, register 1 must – again – contain this FCB address.

When, after successful execution of the RETRY macro, control is returned to the caller, the
contents of the registers are the same as after an action macro which was executed
immediately.

If the RETRY macro is unsuccessful and control is passed to the FAIL routine, the contents
of the registers are the same as before the RETRY macro was called (except for registers
0, 1, 14 and 15).

For NK-ISAM, the pointers are positioned as they were before the macro was called before
the PGLOCK routine is activated (see the table “Rules for ISAM pointers” on page 79).

For K-ISAM, the following should be noted: when the PGLOCK exit of the EXLST macro is
activated, the internal pointers are positioned correctly only if the macro which resulted in
the PGLOCK condition was a PUTX or an ELIM (without KEY). The ISAM macros GET,
GETR and GETFL have already changed the pointers before they branch to PGLOCK. The
RETRY macro can reset the pointers to their previous positions and can restart the macro
which led to the PGLOCK condition.

If the last record which was successfully accessed before the PGLOCK exit was activated
is one of a group of records with duplicate keys, resetting of the pointers to their previous
positions will position the file to the first record in this group.

If ACTION=POS is specified and positioning is executed successfully, control is returned to
the calling job at the instruction following the RETRY macro.

Macros RETRY

U4250-J-Z125-12-76 791

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Format

Operand descriptions

FAIL = addrexp
Address to which control is to be transferred if RETRY fails or if the waiting time for access
to a block is longer than 30 minutes.

ACTION
Specifies which action is to be taken by RETRY.

= RETRY
The macro is to be retried. The operand COUNT specifies how many times the macro
is to be repeated before control is passed to the FAIL address.

= WAIT
The macro is retried. If the block is still not available, the job is placed in a queue. After
a wait of 30 minutes (maximum), control is passed to the FAIL routine.

= POS
For K-ISAM: the pointer is to be repositioned in the file.
NK-ISAM supports this value only for compatibility reasons.

COUNT = number
Specifies how many times the macro is to be retried before control is passed to the
FAIL routine; 0 Î number Î 255.
Default value: COUNT = 1

PARMOD
Specifies the generation mode for the macro.
Default value: the value predefined for the generation mode by means of the

GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space
(24-bit addressing only).

= 31
The object code generated can run in the 2-Gb address space
(24-bit or 31-bit addressing).

Operation Operands

RETRY

FAIL=addrexp[,ACTION=

RETRY [,COUNT=number]

WAIT

POS  
 
 
 
 

][,PARMOD=
24

31 
 
 

]

RFFSNAP Macros

792 U4250-J-Z125-12-76

RFFSNAP– Restore files from Snapset

Macro type: type S (E form/L form/D form/C form/M form) (see page 858)

The RFFSNAP macro restores files of a pubset from a pubset copy which was created on
an associated Snapset. During the restore operation, single files are copied from the
Snapsets onto the active pubset. The process is comparable to an HSMS restore from a
backup archive.

The Snapset entry enables a specific backup status (the default is the latest Snapset
backup) to be specified, or the user can specify that each file should be restored from the
Snapset with the latest file status. Before restoration takes place, the user can use the
LFFSNAP macro to obtain information on files which were saved to a Snapset.

All file attributes of a restored file are taken over from the original file unchanged (including
the creation date, date of modification and the protection attributes). Only the allocation
may differ from the original file, even in the case of files with physical allocation. Files on
SM pubsets are restored to the “most suitable” volume set. This need not be the original
volume set.

Individual file generations can only be restored with the entire file generation group. Files
on private disk are ignored. In the case of migrated files and tape files, only the catalog
entries are restored (without checking the availability of the associated tapes). When
renaming takes place, these files are also ignored.

Nonprivileged users can only restore a file of a foreign user if they are the co-owner.

Overwriting by the restore operation must be explicitly permitted for existing files
(REPLACE operand). For files which are protected against unauthorized overwriting by
means of a password, the required password must be entered in the caller’s password table
(ADD-PASSWORD command).

Files can also be restored under a new name. They are renamed by specifying another user
ID (NUSERID operand) and/or a file name prefix (NPREFIX operand).

Optionally, files which were open in write mode at the time the Snapset was created can be
restored (RESTOPN operand). A file restored in this way has the same status as after a
system crash. ISAM files may need to be verified. Files with the OPNBACK attribute (see
the macro “CATAL – Process catalog entry” on page 130) which are opened in write mode
are restored regardless of this option.

If required, the caller can have a log of restore processing output to SYSOUT (LIST
operand). This log can cover either all files or only the files which, for particular reasons,
could not be restored.

Macros RFFSNAP

U4250-J-Z125-12-76 793

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

The Snapsets are temporarily not available if the SHC-OSD subsystem was not active
when the pubset was imported. In this case the command is aborted with return code
DMS0622. As soon as SHC-OSD is active, the Snapsets are subsequently activated when
the SHOW-SNAPSET-CONFIGURATION command is called.

Privileged functions

Systems support (TSOS privilege), as co-owner, can restore all files under their original
user IDs.

When a file which still exists is overwritten, systems support can explicitly bypass the file
protection by means of the IGNPROT operand.

Systems support can only log the restoration of files via the SECOS component SAT if it
has the calls used for deleting files (when overwriting) and for creating an entry in the file
catalog logged.

Format

Operation Operands

RFFSNAP ,PATHNAM=<c-string 1..80: filename 1..54 with-wild(80)> /
<var: char:80>

,SNAPSET=<integer -52..-1> / *LATEST / *ALL
,SNAPID=<c-string 1..1: name 1..1 with-low> / <var: char:1>
,REPLACE=*NO / *YES / <var: enum-of_replace_s: 1>
,IGNPROT=*NO / *YES / <var: enum-of_ignprot_s: 1>
,RESTOPN=*NO / *YES / <var: enum-of_restop_s: 1>
,NUSERID=<c-string 1..8: name 1..8> / <var: char:8>
,NPREFIX=<c-string 1..8: name 1..8> / <var: char:8>
,LIST=*NO / *SYSOUT / *ERRORS-TO-SYSOUT /

<var: enum-of_list_s: 1>
,EQUATES=*YES / *NO

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAR / <macid>

RFFSNAP Macros

794 U4250-J-Z125-12-76

Operand descriptions

PATHNAM
Selects the files which are to be restored.

=<c-string 1..80: filename 1..54 with-wild(80)>
Path name of the file(s) on the Snapset. Wildcards can be used to specify a set of files.

The files must satisfy the following requirements:
– They must be cataloged when the Snapset is created.
– The pubset on which they are cataloged must be imported locally.
– They may not reside on private disk.

The catalog and user IDs specified must be unique (i.e. contain no wildcards). Aliases
(also partially-qualified aliases) may be specified. The name of a file generation group
may be specified, but not the name of an individual file generation (individual file
generations can only be restored within the group).

Privileged users (TSOS privilege) can restore files of all user IDs.

=<var: char:80>
Only possible with MF=M:
Symbolic address of a memory area of 80 bytes in which the path name or wildcard
string for the required file(s) is stored.

SNAPSET
This operand may not be specified together with the SNAPID operand.
Specifies the Snapset from which restoration is to take place by means of the relative age.

=<integer -52..-1>
Specifies the Snapset explicitly by means of the relative age. The value -1 specifies the
latest Snapset (also corresponds to *LATEST).

=*LATEST
Specifies the latest Snapset.

=*ALL
All Snapsets of the pubset concerned are used as a basis for restoration. Each file is
restored from the Snapset with the latest file status, in other words with the latest
backup of the file. A file which cannot be restored with the latest file status is in this case
not restorable (i.e. older backup statuses are ignored).

Macros RFFSNAP

U4250-J-Z125-12-76 795

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

SNAPID
This operand may not be specified together with the SNAPSET operand.
Specifies the Snapset from which restoration is to take place by means of the Snapset ID.

=<c-string 1..1: name 1..1 with-low>
Specifies the Snapset explicitly by means of the Snapset ID. The maximum of 52
Snapsets for a pubsets are distinguished by means of Snapset IDs specified which
comprise letters from the 26 lowercase letters a to z and the 26 uppercase letters A to Z.

=<var: char:1>
Only possible with MF=M:
Symbolic address of a memory area of 1 byte in which the Snapset ID is stored.

Note
If neither SNAPSET nor SNAPID is specified, the latest Snapset is used.

REPLACE
Specifies whether the files to be restored may overwrite existing files.

=*NO
Existing files are not overwritten. This means that files with the names of existing files
are not restored.

=*YES
Existing files may be overwritten by files which are to be restored provided the
protection attributes permit this. For files which are protected against unauthorized
overwriting by means of a password, the required password must be entered in the
caller’s password table (see the ADD-PASSWORD command).

=<var: enum-of_replace_s: 1>
Name of the field with the value for REPLACE.

IGNPROT
This operand is only available to privileged users (TSOS privilege).
Specifies whether files are to be overwritten without taking into account any write protection
which exists.

=*NO
Write protection is taken into account.

=*YES
Write protection is ignored.

=<var: enum-of_ignprot_s: 1>
Name of the field with the value for IGNPROT.

RFFSNAP Macros

796 U4250-J-Z125-12-76

RESTOPN
Specifies whether files which were open in write mode when they were saved to the
Snapset and for which the OPNBACK file attribute (see macro “CATAL – Process catalog
entry” on page 130) was not set are also to be restored.

=*NO
These files are not restored. Consequently only files which were not open in write mode
when they were saved and files for which the OPNBACK file attribute was set are
restored.

=*YES
These files are also restored. The consistency is the same as after a system crash
(write accesses in the correct order). ISAM files may need to be verified (REPAIR-DISK-
FILE command).

=<var: enum-of_restop_s: 1>
Name of the field with the value for RESTOPN.

NUSERID
Specifies that the files are to be renamed when they are restored and are to be restored
under the specified user ID.
This operand may not be specified together with the NPREFIX operand.

=<c-string 1..8: name 1..8>
User ID.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 8 bytes in which the user ID is stored.

NPREFIX=
Specifies that the files are to be renamed when they are restored and are to be assigned
the specified file name prefix.
This operand may not be specified together with the NUSERID operand.

=<c-string 1..8: name 1..8>
File name prefix.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 8 bytes in which the file name prefix is stored.

Macros RFFSNAP

U4250-J-Z125-12-76 797

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

LIST
Specifies which processing results are to be logged to SYSOUT.

=*NO
No output is directed to SYSOUT.

=*SYSOUT
All files are listed. For files which could not be restored, the reason is displayed by
means of a message code.

=*ERRORS-TO-SYSOUT
Only files which cannot be restored are listed. The reason is displayed by means of a
message code.

=<var: enum-of_list_s: 1>
Name of the field with the value for LIST.

EQUATES
Control operand; for MF=C and MF=D only:
Specifies whether equates are also to be generated for the values of the fields of the
parameter area when the parameter area is expanded.

= *YES
When the parameter area is expanded, equates are also generated for the values of the
fields of the parameter area.

= *NO
When the parameter area is expanded, no equates are generated for the values of the
fields of the parameter area.

RFFSNAP Macros

798 U4250-J-Z125-12-76

Return codes

The return code is placed in the standard header of the parameter area. The parameter
area may then not be located in the read-only area, otherwise the program terminates.

Standard
header:

A return code relating to the execution of the
RFFSNAP macro is transferred in the standard
header
(cc = SUBCODE2,bb = SUBCODE1, aaaa =
MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' No error

X'00' X'40' X'0501' Requested catalog not available

X'00' X'40' X'0505' Error in host communication

X'00' X'40' X'0512' Requested catalog not found

X'00' X'40' X'051B' Requested user ID not on the pubset

X'00' X'40' X'051D' LOGON password different on specified pubset

X'00' X'20' X'0531' Unexpected error during catalog access

X'00' X'40' X'0535' Specified file not accessible

X'00' X'82' X'053C' No space in the pubset’s catalog

X'00' X'82' X'0541' Not enough disk storage space available

X'00' X'40' X'0554' Format of file name invalid

X'00' X'40' X'057F' Migrated file cannot be renamed

X'00' X'20' X'0584' Internal error

X'00' X'82' X'0594' Not enough virtual memory

X'00' X'82' X'05B1' File lock exists for file

X'02' X'00' X'05B6' Incorrect time conversion in GTIME macro

X'00' X'40' X'05BF' Password not specified

X'00' X'82' X'05C3' File currently locked or in use

X'00' X'40' X'05C6 Expiration date not yet reached

X'00' X'20' X'05C7' Internal error in DMS

X'00' X'01' X'05CB' Incorrect first file name or foreign ID specified

X'00' X'01' X'05EE' Path name too long after completion

X'00' X'40' X'05FC' Specified user ID not on home pubset

Macros RFFSNAP

U4250-J-Z125-12-76 799

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

X'00' X'40' X'0610' Execution of the function returned a return code for at least one of the
selected file names

X'00' X'40' X'0615' The file does not reside on the available volume set

X'00' X'40' X'0616' Volume set cannot be accessed on SM pubset

X'00' X'40' X'0620' No restorable file found

X'00' X'40' X'0621' File already cataloged, restoration not performed

X'00' X'40' X'0622' Snapset not available

X'00' X'01' X'0623' Generation cannot be restored

X'00' X'01' X'0624' File name invalid

X'00' X'40' X'0681' DMS error when accessing file

X'00' X'40' X'0684' File does not exist

X'00' X'01' X'06C5' FGG name too long

X'00' X'01' X'06C6' Name of a tape file cannot be changed

X'00' X'40' X'06CC' No file name matches the wildcard string specified

X'00' X'40' X'06D5' File protected and consequently cannot be overwritten

X'00' X'01' X'06F7' Invalid operand value

X'00' X'01' X'06FD' Parameter area invalid or not accessible

X'cc' X'bb' X'aaaa' Meaning

RFFSNAP Macros

800 U4250-J-Z125-12-76

Layout of the operand list

Macro expansion with MF=D, and with default values for EQUATES, PREFIX and MACID:
RFFSNAP MF=D

DMARRFPL DSECT ,
DMARHDR DS 0A
DMARFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
DMARIFID DS 0A 0 INTERFACE IDENTIFIER
DMARFCTU DS AL2 0 FUNCTION UNIT NUMBER
DMARFCT DS AL1 2 FUNCTION NUMBER
DMARFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
DMARRET DS 0A 4 GENERAL RETURN CODE
DMARSRET DS 0AL2 4 SUB RETURN CODE
DMARSR2 DS AL1 4 SUB RETURN CODE 2
DMARSR1 DS AL1 5 SUB RETURN CODE 1
DMARMRET DS 0AL2 6 MAIN RETURN CODE
DMARMR2 DS AL1 6 MAIN RETURN CODE 2
DMARMR1 DS AL1 7 MAIN RETURN CODE 1
DMARFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
*
DMARPNAM DS CL80 PATHNAME
DMARSNAP DS FL1 SNAPSET
* SNAPSET - VALUES
DMARSNIN EQU 0 SNAPSET=<integer>
DMARSNCH EQU 1 SNAPSET=<char>
DMARSNLT EQU 2 SNAPSET=*LATEST
DMARSNAL EQU 3 SNAPSET=*ALL
*
DMARREPL DS FL1 REPLACE
 * REPLACE - VALUES
DMARREPY EQU 0 REPLACE = YES
DMARREPN EQU 1 REPLACE = NO
*
DMARIGNP DS FL1 IGNPROT
* IGNPROT VALUES
DMARIGNO EQU 0 IGNPROT = NO
DMARIGYE EQU 1 IGNPROT = YES
*
DMARLIST DS FL1 LIST
* LIST - VALUES
DMARLSTN EQU 0 LIST = NO
DMARLSYO EQU 1 LIST = SYSOUT
DMARLSYE EQU 2 LIST = ERRORS
*
DMARNUSR DS CL8 NUSERID
DMARNPRE DS CL8 NPREFIX
DMARSNVL DS H SnapValue
DMARSNID DS CL1 Snapid

Macros RFFSNAP

U4250-J-Z125-12-76 801

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

DMAROFLG DS AL1 FLAG BYTE
DMARNUSP EQU X'80' S: NUSERID SPECIFIED
DMARNPSP EQU X'40' S: NPREFIX SPECIFIED
DMARRESB EQU X'3F' RESERVED
DMARRESO DS FL1 RESTOPN
* RESTOPN VALUES
DMARRONO EQU 0 RESTOPN = NO
DMARROYE EQU 1 RESTOPN = YES
*
DMARRES1 DS XL3 ALIGNMENT
DMAR# EQU *-DMARHDR

Sample calling sequence

 MVC RFFSMFC(DMAR#),RFFSMFL
 RFFSNAP MF=M,PATHNAM=':X:TTT',PARAM=RFFSMFC
 RFFSNAP MF=E,PARAM=RFFSMFC
 .
 .
RFFSMFC RFFSNAP MF=C
RFFSMFL RFFSNAP MF=L,...

RJFSNAP Macros

802 U4250-J-Z125-12-76

RJFSNAP– Restore job variables from a Snapset

Macro type: type S (E form/L form/D form/C form/M form) (see page 858)

The RJFSNAP macro restores job variables of a pubset from a pubset copy which was
created on an associated Snapset. During the restore operation, single job variables are
copied from the Snapsets onto the active pubset. The process is comparable to an HSMS
restore from a backup archive.

The Snapset operand enables a specific backup status (the default is the latest Snapset
backup) to be specified, or the user can specify that each job variable should be restored
from the Snapset with the latest job variable status. Before restoration takes place, the user
can issue the LJFSNAP macro to obtain information on job variables which were saved to
a Snapset.

All attributes of a restored job variable are taken over from the original job variable
unchanged (including the creation date, date of modification and the protection attributes).

Nonprivileged users can only restore a job variable of a foreign user if they are the co-
owner.

Overwriting by the restore operation must be explicitly permitted for existing job variables
(REPLACE operand). For job variables which are protected against unauthorized
overwriting by means of a password, the required password must be entered in the caller’s
password table (see ADD-PASSWORD).

Job variables can also be restored under a new name (NEW-JV-NAME operand). They are
renamed by specifying another user ID (NUSERID operand) and/or a name prefix
(NPREFIX operand).

If required, the caller can have a log of the restore processing output to SYSOUT (LIST
operand). This log can cover either all job variables or only the job variables which, for
particular reasons, could not be restored.

The Snapsets are temporarily not available if the SHC-OSD subsystem was not active
when the pubset was imported. In this case the macro is aborted with return code 0622. As
soon as SHC-OSD is active, the Snapsets are subsequently activated when the SHOW-
SNAPSET-CONFIGURATION command is called.

Privileged functions

Systems support (TSOS privilege), as co-owner, can restore all job variables under their
original user IDs.

When a job variable which still exists is overwritten, systems support can explicitly bypass
the protection by means of the IGNPROT operand.

Macros RJFSNAP

U4250-J-Z125-12-76 803

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Systems support can only log the restoration of job variables via the SECOS component
SAT if it has the calls used for deleting files (when overwriting) and for creating an entry in
the file catalog logged.

Format

Operation Operands

RJFSNAP ,JVNAME=<c-string 1..80: filename 1..54 with-wild(80)> /
<var: char:80>

,SNAPSET=<integer -52..-1> / *LATEST / *ALL
,SNAPID=<c-string 1..1: name 1..1 with-low> / <var: char 1..1>
,REPLACE=*NO / *YES / <var: enum-of_replace_s: 1>
,IGNPROT=*NO / *YES / <var: enum-of_ignprot_s: 1>
,NUSERID=<c-string 1..8: name 1..8> / <var: char:8>
,NPREFIX=<c-string 1..8: name 1..8> / <var: char:8>
,LIST=*NO / *SYSOUT / *ERRORS-TO-SYSOUT /

<var: enum-of_list_s: 1>
,EQUATES=*YES / *NO

MF=L

MF=D,PREFIX=D / <pre>

MF=E,PARAM=<name 1..27>

MF=C / M
,PREFIX=D / <pre>
,MACID=MAR / <macid>

RJFSNAP Macros

804 U4250-J-Z125-12-76

Operand descriptions

JVNAME
Selects the job variables which are to be restored.

=<c-string 1..80: filename 1..54 with-wild(80)>
Path name of the job variable(s) on the Snapset. Wildcards can be used to specify a set
of job variables.

The job variables must satisfy the following requirements:
– They must be cataloged when the Snapset is created.
– The pubset on which they are cataloged must be imported locally.

The catalog and user IDs specified must be unique (i.e. contain no wildcards). Aliases
(also partially-qualified aliases) may be specified.

Privileged users (TSOS privilege) can restore job variables of all user IDs.

=<var: char:80>
Only possible with MF=M:
Symbolic address of a memory area of 80 bytes in which the path name or wildcard
string for the required job variable(s) is stored.

SNAPSET
This operand may not be specified together with the SNAPID operand.
Specifies the Snapset from which restoration is to take place by means of the relative age.

=<integer -52..-1>
Specifies the Snapset explicitly by means of the relative age. The value -1 specifies the
latest Snapset (also corresponds to *LATEST).

=*LATEST
Specifies the latest Snapset.

=*ALL
All Snapsets of the pubset concerned are used as a basis for restoration. Each job
variable is restored from the Snapset with the latest status of this job variable, in other
words with the latest backup. A job variable which cannot be restored with the latest
status is in this case not restorable (i.e. older backup statuses are ignored).

SNAPID
This operand may not be specified together with the SNAPSET operand.
Specifies the Snapset from which restoration is to take place by means of the Snapset ID.

=<c-string 1..1: name 1..1 with-low>
Specifies the Snapset explicitly by means of the Snapset ID. The maximum of 52
Snapsets for a pubset are distinguished by means of Snapset IDs specified which
comprise letters from the 26 lowercase letters a to z and the 26 uppercase letters A to Z.

Macros RJFSNAP

U4250-J-Z125-12-76 805

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

=<var: char 1..1>
Only possible with MF=M:
Symbolic address of a memory area of 1 byte in which the Snapset ID is stored.

Note
If neither SNAPSET nor SNAPID is specified, the latest Snapset is used.

REPLACE
Specifies whether the job variables to be restored may overwrite existing job variables.

=*NO
Existing job variables are not overwritten. This means that job variables with the names
of existing job variables are not restored.

=*YES
Existing job variables may be overwritten by job variables which are to be restored
provided the protection attributes permit this. For job variables which are protected
against unauthorized overwriting by means of a password, the required password must
be entered in the caller’s password table (see the ADD-PASSWORD command).

=<var: enum-of_replace_s: 1>
Name of the field with the value for REPLACE.

IGNPROT
This operand is only available to privileged users (TSOS privilege).
Specifies whether job variables are to be overwritten without taking into account any write
protection which exists.

=*NO
Write protection is taken into account.

=*YES
Write protection is ignored.

=<var: enum-of_ignprot_s: 1>
Name of the field with the value for IGNPROT.

NUSERID
Specifies that the job variables are to be renamed when they are restored and are to be
restored under the specified user ID.
This operand may not be specified together with the NPREFIX operand.

=<c-string 1..8: name 1..8>
User ID.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 8 bytes in which the user ID is stored.

RJFSNAP Macros

806 U4250-J-Z125-12-76

NPREFIX=
Specifies that the job variables are to be renamed when they are restored and are to be
assigned the specified name prefix.
This operand may not be specified together with the NUSERID operand.

=<c-string 1..8: name 1..8>
Name prefix.

=<var: char:8>
Only possible with MF=M:
Symbolic address of a memory area of 8 bytes in which the name prefix is stored.

LIST
Specifies which processing results are to be logged to SYSOUT.

=*NO
No output is directed to SYSOUT.

=*SYSOUT
All job variables are listed. For job variables which could not be restored, the reason is
displayed by means of a message code.

=*ERRORS-TO-SYSOUT
Only job variables which could not be restored are listed. The reason is displayed by
means of a message code.

=<var: enum-of_list_s: 1>
Name of the field with the value for LIST.

EQUATES
Control operand; for MF=C and MF=D only:
Specifies whether equates are also to be generated for the values of the fields of the
parameter area when the parameter area is expanded.

= *YES
When the parameter area is expanded, equates are also generated for the values of the
fields of the parameter area.

= *NO
When the parameter area is expanded, no equates are generated for the values of the
fields of the parameter area.

Macros RJFSNAP

U4250-J-Z125-12-76 807

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Return codes

The return code is placed in the standard header of the parameter area. The parameter
area may then not be located in the read-only area, otherwise the program terminates.

Standard
header:

A return code relating to the execution of the
RJFSNAP macro is transferred in the standard
header
(cc = SUBCODE2,bb = SUBCODE1, aaaa =
MAINCODE):

c c b b a a a a

X'cc' X'bb' X'aaaa' Meaning

X'00' X'00' X'0000' No error

X'00' X'40' X'0433' JV not cataloged

X'00' X'40' X'0435' JV cannot be accessed

X'00' X'40' X'0440' JV name invalid

X'00' X'40' X'04A0' JV subsystem cannot be accessed

X'00' X'40' X'04B1' Password not specified

X'00' X'40' X'04B6' Expiration date not yet reached

X'00' X'40' X'04B8' Only read access permitted

X'00' X'40' X'04BF' Access not permitted because of JV protection

X'00' X'40' X'0501' Requested catalog not available

X'00' X'40' X'0505' Error in host communication

X'00' X'40' X'0512' Requested catalog not found

X'00' X'40' X'051B' Requested user ID not on the pubset

X'00' X'40' X'051D' LOGON password different on specified pubset

X'00' X'20' X'0531' Unexpected error during catalog access

X'00' X'82' X'053C' No space in the pubset’s catalog

X'00' X'20' X'0584' Internal error

X'00' X'82' X'0594' Not enough virtual memory

X'02' X'00' X'05B6' Incorrect time conversion in GTIME macro

X'00' X'20' X'05C7' Internal error in DMS

X'00' X'01' X'05EE' Path name too long after completion

X'00' X'40' X'05FC' Specified user ID not on home pubset

X'00' X'40' X'0610' Execution of the function returned a return code for at least one of the
selected JV names

X'00' X'40' X'0620' No restorable JV found

RJFSNAP Macros

808 U4250-J-Z125-12-76

The return codes with the maincode X’04xy’ belong to the component JVS. A list which
includes the meanings can be output using the JVSERROR macro (see also the “Job
Variables” manual [21]).

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

Layout of the operand list

Macro expansion with MF=D, and with default values for EQUATES, PREFIX and MACID:

RJFSNAP MF=D
* PARAMETER AREA
DMAKHDR FHDR MF=(C,DMAK),EQUATES=NO
DMAKHDR DS 0A
DMAKFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
*
DMAKIFID DS 0A 0 INTERFACE IDENTIFIER
DMAKFCTU DS AL2 0 FUNCTION UNIT NUMBER
DMAKFCT DS AL1 2 FUNCTION NUMBER
DMAKFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
*
DMAKRET DS 0A 4 GENERAL RETURN CODE
DMAKSRET DS 0AL2 4 SUB RETURN CODE
DMAKSR2 DS AL1 4 SUB RETURN CODE 2
DMAKSR1 DS AL1 5 SUB RETURN CODE 1
DMAKMRET DS 0AL2 6 MAIN RETURN CODE
DMAKMR2 DS AL1 6 MAIN RETURN CODE 2
DMAKMR1 DS AL1 7 MAIN RETURN CODE 1
DMAKFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH

X'00' X'40' X'0621' JV already cataloged, restoration not performed

X'00' X'40' X'0622' Snapset not available

X'00' X'01' X'0624' JV name invalid

X'00' X'40' X'0682' JV error when accessing JV

X'00' X'01' X'06F7' Invalid operand value

X'00' X'01' X'06FD' Parameter area invalid or not accessible

X'cc' X'bb' X'aaaa' Meaning

Macros RJFSNAP

U4250-J-Z125-12-76 809

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

*
DMAKJNAM DS CL80 JVNAME
DMAKSNAP DS FL1 SNAPSET
* SNAPSET - VALUES
DMAKSNIN EQU 0 SNAPSET=<integer>
DMAKSNCH EQU 1 SNAPSET=<char>
DMAKSNLT EQU 2 SNAPSET=*LATEST
DMAKSNAL EQU 3 SNAPSET=*ALL
*
DMAKREPL DS FL1 REPLACE
* REPLACE - VALUES
DMAKREPY EQU 0 REPLACE = YES
DMAKREPN EQU 1 REPLACE = NO
*
DMAKIGNP DS FL1 IGNPROT
* IGNPROT VALUES
DMAKIGNO EQU 0 IGNPROT = NO
DMAKIGYE EQU 1 IGNPROT = YES
*
DMAKLIST DS FL1 LIST
* LIST - VALUES
DMAKLSTN EQU 0 LIST = NO
DMAKLSYO EQU 1 LIST = SYSOUT
DMAKLSYE EQU 2 LIST = ERRORS
*
DMAKNUSR DS CL8 NUSERID
DMAKNPRE DS CL8 NPREFIX
DMAKSNVL DS H SnapValue
DMAKSNID DS CL1 Snapid
DMAKOFLG DS AL1 FLAG BYTE
DMAKNUSP EQU X'80' S: NUSERID SPECIFIED
DMAKNPSP EQU X'40' S: NPREFIX SPECIFIED
DMAKRES1 EQU X'3F' RESERVED
DMAK# EQU *-DMAKHDR

Sample calling sequence

 MVC RJFSMFC(DMAK#),RJFSMFL
 RJFSNAP MF=M,PATHNAM=':X:JV1',PARAM=RJFSMFC
 RJFSNAP MF=E,PARAM=RJFSMFC
 .
 .
 RJFSMFC RJFSNAP MF=C
 RJFSMFL RJFSNAP MF=L,...

SETL Macros

810 U4250-J-Z125-12-76

SETL – Position file pointer

ISAM:

The SETL macro positions the pointer to the beginning or end of a file or, by specifying the
record key, to any record within the file.

If SETL KEY is used to position within a file via the primary key and if the file contains
records with duplicate primary key values (DUPEKY=YES), the file is positioned to the first
of these records.

If SETL KEY is used to position within a file via a secondary key and if the file contains
records with duplicate values for this secondary key, the file is positioned to the record
whose primary key is indicated by the first pointer in the associated secondary index block.

SAM:

SETL sets the block and record pointer to the position (retrieval address) specified by the
user.

The SETL macro sets the position of the internal record pointer, thus enabling the user to
define the starting point for subsequent processing of the file.

The retrieval address in the 31-bit TU FCB is updated such that it will be correct after a
subsequent GET or PUT macro; in the 24-bit TU FCB, the retrieval address is not changed.

Since the positioning information in the 24-bit TU FCB is 1 byte long, a buffer must not
contain more than 255 records.

An invalid SETL operand causes control to be passed to the address USERERR of the
EXLST macro.

ISAM: Macro type: R for PARMOD=24
0 for PARMOD=31

SAM: Macro type: R for PARMOD=24
0 for PARMOD=31

Macros SETL

U4250-J-Z125-12-76 811

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Format

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.
For ISAM only:
If the file is to be positioned with the aid of a secondary key, the 31-bit interface of this FCB
must be available.

(1)
The FCB address is stored in register 1.

B
The pointer is to be moved to the beginning of the file.
For ISAM only:
Using SETL B for a null file will cause control to be passed to the EOFADDR error exit of
the EXLST macro.
For SAM only:
For multivolume files, the pointer is positioned to the first record on the current tape.

Operation Operands

SETL

fcbaddr

(1) 
 
 

,

B

E
R
KEY
(0)

 
 
 
 
 
 
 
 
 

[,AIX=

NO

YES,
KEYNAME=name

KEYNMAD=addr 
 
 

 
 
 
 
 
 
 

]

[,PARMOD=
24

31 
 
 

]

SETL Macros

812 U4250-J-Z125-12-76

E
The pointer is to be moved to the end of the file.
For SAM only:
For multivolume files, the pointer is positioned to the last record of the current tape, which
means that the next GET macro will initiate a tape swap.
With OPEN OUTPUT/EXTEND, specifying “E” will cause control to be passed to the
USERERR exit of the EXLST macro.

R
For SAM only:
The positioning information is to be taken from the retrieval address (not permitted for tape
files with nonstandard blocks processed with PARMOD=24). For multivolume files, the
retrieval address applies to the current volume, not to the file.

KEY
For ISAM only:
The pointer is to be positioned to the primary or secondary key value stored in the field
specified in the KEYARG operand of the FCB macro.

If a SETL ...,KEY points to an existing key, a subsequent GET or GETR will read this record.
If SETL ...,KEY points to a non-existent record, a subsequent GET will read the record with
the next higher key and a GETR will read the record with the next lower key.

(0)
Register 0 contains a “positioning code”. Before the SETL macro is executed, the
positioning code must be loaded into register 0 as follows:

If register 0 contains a value other than 0 or 1, this value is always interpreted as the
KEYARG address.

SETL operand Contents of register 0 Effect

B 0 Position to beginning-of-file

E 1 Position to end-of-file

R 2 For SAM only: position according to retrieval address

KEY Address of KEYARG Position to specific record

Macros SETL

U4250-J-Z125-12-76 813

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

AIX
For ISAM only:
Specifies whether the pointer is to be positioned to a record via its primary key or via a
secondary key.

= NO
The pointer is positioned to the record via its primary key (default value).

= YES
This may only be specified if
– the 31-bit interface of the macro is generated (via the operand PARMOD=31 or the

macro GPARMOD 31) and
– the macro refers to a 31-bit FCB.

The pointer is positioned to the record via the secondary key specified in the KEYNAME
or KEYNMAD operand.

KEYNAME = name
For ISAM only:
Specifies the name of the secondary key via which the pointer is to be positioned to the
record.
“name” must be the name of a secondary key defined for the current file. The names of all
secondary keys defined for a file can be determined by means of the SHOWAIX macro or
the SHOW-INDEX-ATTRIBUTES command.

AIX=YES must be specified.

KEYNMAD = addr
For ISAM only:
Specifies the symbolic address (the name) of a field in which the user has stored the name
of the secondary key via which the pointer is to be positioned to the record.
When the macro is executed, the field with the symbolic address “addr” must contain the
name of a secondary key defined for the current file.

AIX=YES must be specified.

SETL Macros

814 U4250-J-Z125-12-76

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The macro is generated with the expansion for the 24-bit interface. The object code
generated can run only in the 16-Mb address space (24-bit addressing).

= 31
The macro is generated such that it is independent of the addressing mode (24-bit or
31-bit addressing). The object code generated can run in the 2-Gb address space.

Programming notes

1. The SETL macro overwrites the contents of registers 0, 1, 14 and 15.

2. A SETL macro always results in an SVC.

Macros SHOPLNK

U4250-J-Z125-12-76 815

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

SHOPLNK – Return information on ISAM pool link names

Macro type: type S (E form/L form/D form/C form/M form); see page 866

The SHOPLNK macro provides information on the assignment of ISAM pools to ISAM pool
link names. When using the macro, the user can specify either the pool link name or the
name of the ISAM pool.
An ISAM pool link name can be assigned to any ISAM pool where there is a link to that
ISAM pool, irrespective of the scope of the ISAM pool or of the host computer on which the
ISAM pool is located.

Format

Operation Operands

SHOPLNK [,PARAM=addr]

(Teil 1 von 2)

[,LINK=

*ALL

′name′
addr

(r) 
 
 
 
 
 
 

]

[,NAME=

*ALL

′name′
addr

(r) 
 
 
 
 
 
 

]

[,CATID=

′name′
addr

(r) 
 
 
 
 

]

[,SCOPE=

*TASK

*USERID

*USERGROUP

*HOST

addr

(r)
 
 
 
 
 
 
 
 
 
 
 

]

SHOPLNK Macros

816 U4250-J-Z125-12-76

MF=D[,PREFIX=pre]

MF=C[,PREFIX=pre][,MACID=macid]

Operation Operands

(Teil 2 von 2)

[,AREA=
name

(r) 
 
 

]

[,SIZE=

nmbr

addr
(r)
*equ

 
 
 
 
 
 
 

]

[,XPAND=

PARAM

DESCHDR

LINKDESC 
 
 
 
 

]

MF=
L

M  
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

Macros SHOPLNK

U4250-J-Z125-12-76 817

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

AREA
Specifies an output area to which the output list is to be transferred. There are no
restrictions on the character set and length.
Only the operand value addr is allowed for the MF=L form.

Default value: X'FFFFFFFF'

= addr
Symbolic address of a field containing the name of the output area.

= (r)
Register containing the address of a field in which the name of the output area is stored.

CATID
Specifies the catalog ID of the PVS under which the ISAM pool (for which the pool link name
is to be shown) was created (of no consequence if the parameter NAME=*ALL is specified).
Only the operand value “name” is allowed for the MF=L form.

Default value: The default PVS ID of the job (DEFCAT in the JOIN entry) or the
home PVS ID (depending on the setting of the class 2 option with
the name “ISPLDEFC”).

= 'name'
Name of a field containing the catalog ID of the pubset; four characters in length.

= addr
Symbolic address of a field with the catalog ID of the pubset.

= (r)
Register containing the address of a field with the catalog ID of the pubset.

LINK = *ALL
Returns the assignments of all pool link names defined by the caller to ISAM pools.

= name
Specifies the ISAM pool link name for which the associated ISAM pool is to be shown.

= addr
Symbolic address of a field containing the link name.

= (r)
Register containing the address of the link name.

SHOPLNK Macros

818 U4250-J-Z125-12-76

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
the field names and equates generated in the data area when the macro is expanded.

Default value: MACID = ISL

= macid
Three-character string defining the second through fourth characters of each field name
and equate generated.

MF
The forms of the MF operand are described in detail in the appendix (page 865).

NAME
Specifies the name under which the ISAM pool (for which the pool link name is to be shown)
was created. The desired ISAM pool is uniquely identified by the specified name, the
catalog ID (CATID) and the scope (see the SCOPE operand).
Only the operand values 'name'/*ALL can be specified for the MF=L form.

= *ALL
Requests the pool link names for all ISAM pools created by the caller.

= 'name'
Name of the ISAM pool for which pool link names are to be shown.

= addr
Symbolic address of a field containing the name of the ISAM pool or *ALL.

= (r)
Register containing the address of a field in which the name of the ISAM pool or *ALL
is held.

SCOPE
Scope of the specified ISAM pool for which information is to be shown. If NAME=*ALL was
specified, the SCOPE operand specification is ignored.
Only the operand values *TASK/*USERID/*HOST are allowed for the MF=L form.

= *TASK
Requests pool link names for the task-local ISAM pool with the specified name.

= *USERID
= *USERGROUP

Macros SHOPLNK

U4250-J-Z125-12-76 819

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

SCOPE=USERID and SCOPE=USERGROUP which were available up to BS2000/
OSD V6.0A are still accepted for reasons of compatibility, but internnaly they are
mapped to SCOPE=HOST (cross-task ISAM pool).
However, in each case only the ISAM pools which were created with the specified
scope are displayed.

= *HOST
Requests pool link names for the cross-task ISAM pool with the specified name.

= addr
4-byte symbolic address of a field containing the scope of the ISAM pool.

= (r)
Register containing the address at which the scope of the ISAM pool is stored.

SIZE
Specifies the length of the output area.
Only the operand values nmbr/*equ are allowed for the MF=L form.

Default value: X'00000000'

= nmbr
Numeric value that specifies the length of the output area.
100 Î nmbr Î 10000.

= addr
4-byte symbolic address for the length of the output area.

= (r)
Register containing the length of the output area.

= *equ
Equate with the length of the output area.

XPAND
Control operand; for MF=C and MF=D only:
Defines which structure is to be expanded (i.e. generated). This operand is ignored for other
MF values.

= PARAM
Expands the layout of the parameter list.

= DESCHDR
Expands the layout of the header of the output area.

= LINKDESC
Expands the layout of the pool link descriptor.

SHOPLNK Macros

820 U4250-J-Z125-12-76

Return codes

The return codes are placed in the header of the parameter list (standard header):

– The main return code, in a half-word with the name DISLMRET.

– Subcode1, in a byte with the name DISLSR1.
Subcode1 describes error classes which allow the caller to respond to similar error
situations.

The caller can refer back to the main code as well as to subcode1; however, the
evaluation of subcode1 must be given preference, because when main codes are
expanded for a macro, evaluations which are exclusively in response to error classes
are not taken into account.

– Subcode2 always has the value X'00'.

If return codes cannot be placed in the header of a macro (because it is not accessible, for
example), the calling program is terminated with an appropriate error message.

If the return code for an “internal system error on calling a system function” is generated,
the field DISL.SYCD in the parameter list of the macro in question will contain a more
detailed code to enable diagnostics (see the inserts with the corresponding message for
values).

A macro called with MF=D or MF=C generates EQU instructions for the return codes in
addition to the field names.

The following overview shows the return codes for the SHOPLNK macro in tabular form.
The string DISL must be added to the left of the indicated names for EQU instructions. This
string can be modified by using the parameter PREFIX=prefix or MACID=macid (see the
operand descriptions).

Macros SHOPLNK

U4250-J-Z125-12-76 821

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

Standard
header

A return code relating to the execution of the SHOPLNK
macro is transferred in the standard header
(bb = SUBCODE1, aaaa = MAINCODE):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' The function was executed successfully.

X'01' X'FFFF' The header is corrupted, e.g. not correctly initialized.
No repetition is possible.

X'02' X'FFFF' Linkage error (function not available)
The called function is not available (e.g. NK-ISAM is not loaded).

X'03' X'FFFF' Linkage error (version not supported)
The version specified in the header is not supported (mount error).

X'01' X'0001' Parameter list not accessible.
No repetition possible.

X'01' X'0002' Parameter error.
No repetition possible.

X'20' X'0005' Internal system error on calling a system function.
No repetition possible.

X'40' X'0008' The specified ISAM pool link name does not exist.
For errors not in error class B, C, E.

X'40' X'0009' The caller has not defined an ISAM pool link name.
 For errors not in error class B, C, E.

X'82' X'000B' No virtual memory available.
Wait and repeat operation.

SHOPLNK Macros

822 U4250-J-Z125-12-76

Layout of the operand list

Macro expansion with MF=D and default values for PREFIX and MACID:

SHOPLNK MF=D
1 STACK PRINT
1 PRINT NOGEN
2 *,##### PREFIX=D, MACID=ISL #####
1 #INTF INTNAME=SHOPLNK,REFTYPE=REQUEST,INTCOMP=002
1 DISLPLA DS 0F BEGIN of PARAMETERAREA _INOUT
1 FHDR MF=(C,DISL),EQUATES=YES
2 DS 0A
2 DISLFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 DISLIFID DS 0A 0 INTERFACE IDENTIFIER
2 DISLFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 DISLFCT DS AL1 2 FUNCTION NUMBER
2 DISLFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 DISLRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 DISLSRET DS 0AL2 4 SUB RETURN CODE
2 DISLSR2 DS AL1 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode2 values as defined by convention:
2 DISLR2OK EQU X'00' All correct, no additional info
2 DISLR2NA EQU X'01' Successful, no action was necessary
2 DISLR2WA EQU X'02' Warning, particular situation
2 DISLSR1 DS AL1 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' - X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION
2 * CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2 *
2 DISLRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
2 DISLRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'

Macros SHOPLNK

U4250-J-Z125-12-76 823

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

2 DISLRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 DISLRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 DISLRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 DISLRAER EQU X'04' ALIGNMENT ERROR
2 DISLRIER EQU X'20' INTERNAL ERROR
2 DISLRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 DISLRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 DISLRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 DISLRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 DISLRWLR EQU X'81' " LONG "
2 DISLRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' - X'82'
2 DISLRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 DISLRDH EQU X'82' SS IN DELETE / HOLD
2 *
2 DISLMRET DS 0AL2 6 MAIN RETURN CODE
2 DISLMR2 DS AL1 6 MAIN RETURN CODE 2
2 DISLMR1 DS AL1 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'00XXYYYY')
2 *
2 DISLRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 DISLFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 DISLOK EQU X'0000' FUNCTION SUCCESSFUL PROCESSED
1 DISLNPAR EQU X'0001' PARAMETERLIST NOT ACCESSIBLE
1 DISLPERR EQU X'0002' PARAMETER ERROR
1 DISLSYSE EQU X'0005' INTERNAL SYSTEM ERROR
1 DISLLLNE EQU X'0008' SPECIFIED POOL LINK NAME NOT FOUND
1 DISLNOLI EQU X'0009' NO ISAM POOL LINK EXISTING
1 DISLNOSP EQU X'000B' NO MEMORY AVAILABLE
1 DISLNUGR EQU X'000C' NO USEGROUP DEFINED
1 DISLINOP EQU X'001F' SSTA INOP
1 DISLSSER EQU X'0020' SSTA INTERNAL ERROR
1 DISLMEMR EQU X'0021' SSTA MEMORY ERROR
1 DISLOPSR EQU X'0022' SSTA OPS ERROR
1 DISLOPME EQU X'0023' SSTA OPS MEMORY ERROR
1 *
1 *
1 DISLPLNK DS CL8 LINK-NAME
1 DISLPNAM DS CL8 POOL-NAME
1 DISLCID DS CL4 CATALOG-IDENTIFIER
1 *

SHOPLNK Macros

824 U4250-J-Z125-12-76

1 DISLSCOP DS XL1 SCOPE
1 DISLTASK EQU X'00' = TASK
1 DISLUSID EQU X'01' = USERID
1 DISLHOST EQU X'02' = HOST-SYSTEM
1 DISLUSGR EQU X'03' = USERGROUP
1 *
1 DISLSYCD DS XL1 SYSTEM-ERROR-CODE
1 *
1 DISLADDR DS A ADDRESS OF OUTPUT-AREA
1 DISLSIZE DS F SIZE OF OUTPUT-AREA
1 *
1 DISL# EQU *-DISLPLA LENGTH of PARAMETERAREA

Format of the output area

The SHOPLNK macro returns the assignments of ISAM pools to ISAM pool names in the
output area specified by the caller. This area begins with a management header of 16 bytes
containing the following information:
The management header of the output area is generated by specifying the control
parameter XPAND=DESCHDR when calling the SHOPLNK macro with the control operand
MF=D or MF=C:

1 DISLADMH DS 0F MANAGEMENT HEADER LAYOUT
1 DISLLLG DS F NUMBER OF BYTES TRANSFERRED
1 DISLLCLG DS F LENGTH OF TOTAL INFORMATION
1 DISLL#LN DS H NUMBER OF LINK NAMES INVOLVED
1 DISLLIND DS XL1 TRANSFER INDICATOR
1 DISLLCOM EQU X'00' INFORMATION COMPLETE
1 DISLLPAR EQU X'01' INFORMATION INCOMPLETE
1 DISLLRES DS CL5 NOT USED
1 DISLLLEN EQU *-DISLADMH LENGTH OF MANAGEMENT HEADER

The entry with information can be expanded using the parameter XPAND=LINKDESC
when calling the SHOPLNK macro with the control operand MF=C or MF=D:

1 DISLLDDS DS 0F POOL LINK DESCRIPTOR LAYOUT
1 DISLLNAM DS CL8 NAME OF POOL LINK
1 DISLPONA DS CL8 NAME OF ASSOCIATED ISAM POOL
1 DISLLCID DS CL4 NAME OF ASSOCIATED PVS
1 DISLLSCO DS XL1 SCOPE OF ISAM POOL
1 DISLLTSK EQU X'00' SCOPE = TASK
1 DISLLUSR EQU X'01' SCOPE = USERID
1 DISLLHOS EQU X'02' SCOPE = HOST
1 DISLLUGR EQU X'03' SCOPE = USERGROUP
1 DISLLUID DS CL8 USERID FOR SCOPE = *USERID
1 * GROUP NAME WITH SCOPE = *USERGROUP
1 DISLLRSV DS CL3 NOT USED
1 DISLLLNG EQU *-DISLLDDS LENGTH OF ISAM-POOL-DESCR.

Macros SHOPLNK

U4250-J-Z125-12-76 825

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Explanation of the individual fields in the output area

Management header

The management header (16 bytes in length) contains the following information:

– the number of bytes that were transferred to the output area (length: 4 bytes),

– the total number of bytes contained in the complete information (length: 4 bytes). This
value is significant for the caller of the macro if the output area is too small. The caller
of the macro must then supply an output area of (at least) this length,

– the number of ISAM pool link names for which the assignments to ISAM pools was
shown in the output area (length: 2 bytes),

– an indicator, with a length of 1 byte, which specifies whether the information transferred
to the output area is complete or whether only a part of the desired information could
be returned because the output area was too small. The following values are assigned
to this indicator:

In the latter case, the caller must provide a larger output area in order to accommodate
the entire information. The length of this larger area can then be obtained from the
second word of the management header,

– the remaining 5 bytes are not used.

Descriptor area

In order to identify an ISAM pool uniquely, the name of the ISAM pool, the catalog ID of the
host computer on which the pool exists, and the scope of the ISAM pool are required. The
output area for the SHOPLNK macro contains 32-byte entries comprising an ISAM pool link
name at the beginning, followed by an ISAM pool descriptor with the above information.
In other words, the following information is included in such entries:

– the name of an ISAM pool link name with a length of 8 bytes (printable),

– the name of the associated ISAM pool with a length of 8 bytes (printable),

– the catalog ID (CATID) of the host computer on which the ISAM pool in question exists;
also printable, and with a length of 4 bytes,

X'00' -- The information is complete.

X'01' -- The information was truncated and is incomplete;

SHOPLNK Macros

826 U4250-J-Z125-12-76

– the scope of the ISAM pool involved, with a length of 1 byte for which values are
assigned as follows:

– the user ID – if the associated ISAM pool has been provided with the attribute
SCOPE = USERID,

– the remaining 3 bytes are not used.

The above-named structures are laid out in the output area filled by the SHOPLNK macro
as follows:

The “userid” field contains blanks if SCOPE=TASK or SCOPE=HOST applies.

The links between ISAM pools and pool link names are described after the management
header. The number of entries created is contained in the management header itself.

X'00' -- SCOPE = *TASK

X'01' -- SCOPE = *USERID

X'02' -- SCOPE = *HOST

X'03' -- SCOPE = *USERGROUP

HEADER

LINKNAME1 POOLNAME1 CATID1 SCOPE1 userid UNUSED

LINKNAME2 POOLNAME2 CATID2 SCOPE2 userid UNUSED

..

..

LINKNAMEn POOLNAMEn CATIDn SCOPEn userid UNUSED

Macros SHOPOOL

U4250-J-Z125-12-76 827

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

SHOPOOL – Return information on ISAM pools

Macro type: type S (E form/L form/D form/C form/M form); see page 866

The SHOPOOL macro returns information on ISAM pools linked to the current job, taking
the links to ISAM pools on remote systems into account (except with the SELECT operand).
The user may request information on a specific ISAM pool or on all ISAM pools to which a
link exists.
The output comprises detailed information on the pool-specific attributes of each ISAM pool
(as defined in the CREPOOL macro).
If desired, the user may also have the task sequence numbers (TSNs) of all connected jobs
for each ISAM pool displayed.
While the user can set up a connection to an ISAM pool with the CREPOOL macro, a job
can also be implicitly connected to standard pools by NK-ISAM.

Note

Cross-task ISAM pools are created automatically in a data space on a file-specific basis
when the file is opened.
DSCOPE=USERID and SCOPE=USERGROUP which were available up to BS2000/OSD
V6.0A are still accepted for reasons of compatibility, but internnaly they are mapped to
SCOPE=HOST (cross-task ISAM pool). For further information on NK-ISAM pools in data
spaces please refer to the “Introductory Guide to DMS” [1].

Format

Operation Operands

SHOPOOL [,PARAM=addr]

(Teil 1 von 2)

[,NAME=

′name′
*ALL

addr

(r) 
 
 
 
 
 
 

]

[,CATID=

′name′
addr

(r) 
 
 
 
 

]

SHOPOOL Macros

828 U4250-J-Z125-12-76

MF=D[,PREFIX=pre]

MF=C[,PREFIX=pre][,MACID=macid]

Operation Operands

(Teil 2 von 2)

[,SCOPE=

*TASK

*USERID

*USERGROUP

*HOST

addr

(r)
 
 
 
 
 
 
 
 
 
 
 

]

[,SELECT=

*OWN

*ALL

addr

(r) 
 
 
 
 
 
 

]

[,INFO=

*ATTR

*ALL

addr

(r) 
 
 
 
 
 
 

]

[,AREA=
addr

(r) 
 
 

]

[,SIZE=

nmbr

addr
(r)
*equ

 
 
 
 
 
 
 

]

[,XPAND=

PARAM

DESCHDR

POOLDESC 
 
 
 
 

]

MF=
L

M  
 
 

]

MF=E,PARAM=
addr

(r) 
 
 

Macros SHOPOOL

U4250-J-Z125-12-76 829

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

AREA
Specifies an output area to which the output list is to be transferred.
Only the operand value addr is allowed for the MF=L form.

Default value: X'FFFFFFFF'

= addr
Symbolic address (name) of the output area. There are no restrictions on the character
set and length.

= (r)
Register in which the address of the output area is entered.

CATID
Catalog ID of the pubset to which the ISAM pool (for which information is to be obtained) is
assigned (of no consequence if the parameter NAME=*ALL is specified).
Only the operand value 'name' is allowed for the MF=L form.

Default value: The ISAM pool is assigned to the catalog that was set with the class
2 system parameter ISPLDEFC (ISAM-POOL-DEFAULT-CATID) at
system generation:

= 'name'
Catalog ID of the home pubset; 4 characters in length.

= addr
4-byte address of a field containing the catalog ID of the pubset.

= (r)
Register containing the address of a field with the catalog ID of the pubset.

INFO
Defines the scope of the information to be output. The SHOPOOL macro returns the
requested information in the output area specified by the caller (see the format of the output
area on page 838).

= *ATTR
Outputs the static attributes for the ISAM pool specified in NAME.

= *ALL
Outputs the job numbers (TSNs) of all jobs connected to the specified ISAM pool/s in
addition to the static attributes.

X'00':
X'01':

default catalog ID from the user entry (DEFCAT)
catalog ID of the home pubset

SHOPOOL Macros

830 U4250-J-Z125-12-76

= addr
Address of a field containing the scope of the information to be output.

= (r)
Register containing the address of a field in which the scope of the information to be
output is stored.

MACID
Evaluated only in conjunction with MF=C; defines the second through fourth characters of
the field names and equates generated in the data area when the macro is expanded.

Default value: MACID = ISP

= macid
Three-character string defining the second through fourth characters of each field name
and equate generated.

MF
The forms of the MF operand are described in detail in the appendix on page 865.

NAME
Name of the ISAM pool for which information is to be returned. The desired ISAM pool is
uniquely identified by the specified pool name, the catalog identifier (“catid”) and the scope.
Information is output only if the ISAM pool exists and the current job is connected to it.
Only the operand values “name” and “*ALL” can be specified with the MF=L form.

= *ALL
Returns information on all ISAM pools to which the current job is connected.

= 'name'
Name of the ISAM pool for which information is to be output. 'name' may have a length
of up to 8 characters.

= addr
Address of a field containing the name of the ISAM pool or *ALL.

= (r)
Register containing an address at which the name of the ISAM pool or *ALL is stored.

PARAM
Indicates the address of the operand list. This operand is only evaluated in conjunction with
MF=E (see also page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register containing the address of the operand list. The register must be
loaded with this address value before the macro is called.

Macros SHOPOOL

U4250-J-Z125-12-76 831

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

PREFIX
Evaluated only in conjunction with MF=C or MF=D; defines the first character of each field
name and equate generated in the data area when the macro is expanded.

Default value: PREFIX = D

= pre
“pre” is a one-character prefix with which the field names and equates generated by the
assembler are to begin.

SCOPE
Scope of the specified ISAM pool for which information is to be returned. If NAME=*ALL is
specified, entries in the SCOPE operand are ignored.
Only the operand values *TASK/*USER-ID/*HOST are allowed for the MF=L form.

= *TASK
Returns information on the cross-task ISAM pool with the specified name.

= *USERID
= *USERGROUP
SCOPE=USERID and SCOPE=USERGROUP which were available up to BS2000/
OSD V6.0A are still accepted for reasons of compatibility, but internnaly they are
mapped to SCOPE=HOST (cross-task ISAM pool).
However, in each case only the ISAM pools which were created with the specified
scope are displayed.

= *HOST
Returns information on the cross-task ISAM pool with the specified name.

= addr
Symbolic name of a field containing the scope of the specified ISAM pool.

= (r)
Register containing the address of a field in which the scope of the ISAM pool is stored.

SELECT
Specifies the criteria by which the ISAM pools specified via the NAME parameter are
selected for the output of information.

= *OWN
Returns information on ISAM pools to which the calling task is connected. ISAM pools
on remote systems are also shown in the output.

SHOPOOL Macros

832 U4250-J-Z125-12-76

= *ALL
This operand value can only be specified by a task that has TSOS or SW-MONITOR-
ADMINISTRATION privileges.
Information is returned on all existing ISAM pools, even if no connection to the
ISAM pool exists. Remote ISAM pools are not shown.

= addr
Symbolic name of a field containing the criteria for selecting the ISAM pools for which
information is to be output.

= (r)
Register with the address of a field containing the criteria for selecting the ISAM pools
for which information is to be output.

SIZE
Specifies the length of the output area.

Only the operand values nmbr/*equ are allowed for the MF=L form.

Default value: X'00000000'

= nmbr
Numeric value that specifies the length of the output area.
100 Î nmbr Î 10000.

= addr
Is the address for the length of the output area.

= *equ
Equate containing the length of the output area.

XPAND
Control operand; for MF=C and MF=D only:
Defines which structure is to be expanded (i.e. generated). This operand is ignored for other
MF values.

= PARAM
Expands the layout of the parameter list.

= DESCHDR
Expands the layout of the header of the output area.

= POOLDESC
Expands the layout of a pool descriptor.

Macros SHOPOOL

U4250-J-Z125-12-76 833

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Return codes

The return codes are placed in the header of each parameter list:

– The main return code, in a half-word with the name DISPMRET.

– Subcode1, in a byte with the name DISPSR1.
Subcode1 describes error classes which allow the caller to respond to similar error
situations.

The caller can refer back to the main code as well as to subcode1; however, the evalu-
ation of subcode1 must be given preference, because evaluations which are exclu-
sively in response to error classes are not taken into account when main codes are
expanded for a macro.

– Subcode2 always has the value X'00'.

If return codes cannot be placed in the header of a macro (because it is not accessible, for
example), the calling program is terminated with an appropriate error message.

If the return code for an “'internal system error on calling a system function” is generated,
the field DISPSYCD in the parameter list of the macro in question will contain a more
detailed code to enable diagnostics (see the inserts with the corresponding message for
values).

A macro called with MF=D or MF=C generates EQU instructions for the return codes in
addition to the field names.

The following overview shows the return codes for the SHOPOOL macro in tabular form.
The string DISP must be added to the left of the indicated names for EQU instructions. This
string can be modified using the parameter PREFIX=prefix or MACID=macid (see the
operand descriptions).

SHOPOOL Macros

834 U4250-J-Z125-12-76

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).

The calling program is terminated if one of the following errors occurs with respect to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

Standard
header:

A return code relating to the execution of the SHOPLNK
macro is transferred in the standard header
(bb = SUBCODE1, aaaa = MAINCODE):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' The function was executed successfully

X'01' X'FFFF' The header is corrupted, e.g. not correctly initialized.
No repetition is possible

X'02' X'FFFF' Linkage error (function not available)
The called function is not available

X'03' X'FFFF' Linkage error (version not supported)
The version specified in the header is not supported (mount error)

X'01' X'0001' Parameter list not accessible. No repetition possible

X'01' X'0002' Parameter error. No repetition possible

X'40' X'0003' The specified catalog ID name does not exist
Error class not equal to B, C, E

X'40' X'0004' The specified ISAM pool link name does not exist
Error class not equal to B, C, E

X'20' X'0005' Internal system error on calling a system function
No repetition possible

X'40' X'0006' No ISAM pool exists
Error class not equal to B, C, E

X'40' X'0007' Privileges required for function not available
Error class not equal to B, C, E

X'82' X'000A' Specified catalog ID does not exist.
Wait and repeat.

X'82' X'000B' No virtual memory available.
Wait and repeat operation.

Macros SHOPOOL

U4250-J-Z125-12-76 835

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Layout of the parameter list

Macro expansion with MF=D and default values for PREFIX and MACID:

The parameter list of the macro contains a header, whose fields are loaded automatically
when the list is created with the L form.

If a parameter list is to be created dynamically with the D or C form, it must be initialized
beforehand with a parameter list created with the L form. This is the only way of ensuring
that the header of a parameter list contains the correct information.

SHOPOOL MF=D
1 STACK PRINT
1 PRINT NOGEN
2 *,##### PREFIX=D, MACID=ISP #####
1 #INTF INTNAME=SHOPOOL,REFTYPE=REQUEST,INTCOMP=002
1 DISPPPA DS 0F BEGIN of PARAMETERAREA _INOUT
1 FHDR MF=(C,DISP),EQUATES=YES
2 DS 0A
2 DISPFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 DISPIFID DS 0A 0 INTERFACE IDENTIFIER
2 DISPFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 DISPFCT DS AL1 2 FUNCTION NUMBER
2 DISPFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 DISPRET DS 0A 4 GENERAL RETURN CODE
2 *
2 * GENERAL_RETURN_CODE CLEARED (X'00000000') MEANS
2 * REQUEST SUCCESSFUL PROCESSED AND NO ADDITIONAL INFORMATION
2 *
2 DISPSRET DS 0AL2 4 SUB RETURN CODE
2 DISPSR2 DS AL1 4 SUB RETURN CODE 2
2 * ALWAYS CLEARED (X'00') IF MAIN_RETURN_CODE IS X'FFFF'
2 * Standard subcode2 values as defined by convention:
2 DISPR2OK EQU X'00' All correct, no additional info
2 DISPR2NA EQU X'01' Successful, no action was necessary
2 DISPR2WA EQU X'02' Warning, particular situation
2 DISPSR1 DS AL1 5 SUB RETURN CODE 1
2 *
2 * GENERAL INDICATION OF ERROR CLASSES
2 *
2 * CLASS A X'00' FUNCTION WAS SUCCESSFULLY PROCESSED
2 * CLASS B X'01' - X'1F' PARAMETER SYNTAX ERROR
2 * CLASS C X'20' INTERNAL ERROR IN CALLED FUNCTION

SHOPOOL Macros

836 U4250-J-Z125-12-76

2 * CLASS D X'40' - X'7F' NO CLASS SPECIFIC REACTION POSSIBLE
2 * CLASS E X'80' - X'82' WAIT AND RETRY
2 *
2 DISPRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
2 DISPRPER EQU X'01' PARAMETER SYNTAX ERROR
2 * 3 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'01' - X'1F'
2 DISPRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
2 DISPRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
2 DISPRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED
2 *
2 DISPRAER EQU X'04' ALIGNMENT ERROR
2 DISPRIER EQU X'20' INTERNAL ERROR
2 DISPRCAR EQU X'40' CORRECT AND RETRY
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'40' - X'7F'
2 DISPRECR EQU X'41' SUBSYSTEM (SS) MUST BE CREATED
2 * EXPLICITELY BY CREATE-SS
2 DISPRECN EQU X'42' SS MUST BE EXPLICITELY CONNECTED
2 *
2 DISPRWAR EQU X'80' WAIT FOR A SHORT TIME AND RETRY
2 DISPRWLR EQU X'81' " LONG "
2 DISPRWUR EQU X'82' WAIT TIME IS UNCALCULABLY LONG
2 * BUT RETRY IS POSSIBLE
2 * 2 GLOBALLY DEFINED ISL ERROR CODES IN CLASS X'80' - X'82'
2 DISPRTNA EQU X'81' SS TEMPORARILY NOT AVAILABLE
2 DISPRDH EQU X'82' SS IN DELETE / HOLD
2 *
2 DISPMRET DS 0AL2 6 MAIN RETURN CODE
2 DISPMR2 DS AL1 6 MAIN RETURN CODE 2
2 DISPMR1 DS AL1 7 MAIN RETURN CODE 1
2 *
2 * SPECIAL LAYOUT OF LINKAGE_MAIN_RETURN_CODE (YYYY IN X'00XXYYYY')
2 *
2 DISPRLNK EQU X'FFFF' LINKAGE ERROR / REQ. NOT PROCESSED
2 DISPFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 DISPOK EQU X'0000' FUNCTION SUCCESSFUL PROCESSED
1 DISPNPAR EQU X'0001' PARAMETERLIST NOT ACCESSIBLE
1 DISPPERR EQU X'0002' PARAMETER ERROR
1 DISPNCAT EQU X'0003' CATID NOT KNOWN
1 DISPPLNE EQU X'0004' SPECIFIED ISAM POOL NOT FOUND
1 DISPSYSE EQU X'0005' INTERNAL SYSTEM ERROR
1 DISPNOPL EQU X'0006' NO ISAM POOL EXISTING
1 DISPNAUT EQU X'0007' NO AUTHORIZATION FOR FUNCTION
1 DISPNACC EQU X'000A' CATID NOT AVAILABLE
1 DISPNOSP EQU X'000B' NO MEMORY AVAILABLE
1 DISPNUGR EQU X'000C' NO USERGROUP DEFINED
1 DISPINOP EQU X'001F' SSTA INOP
1 DISPSSER EQU X'0020' SSTA INTERNAL ERROR

Macros SHOPOOL

U4250-J-Z125-12-76 837

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

1 DISPMEMR EQU X'0021' SSTA MEMORY ERROR
1 DISPOPSR EQU X'0022' SSTA OPS ERROR
1 DISPOPME EQU X'0023' SSTA OPS MEMORY ERROR
1 *
1 *
1 DISPPNAM DS CL8 POOL-NAME
1 DISPCID DS CL4 CATALOG-IDENTIFIER
1 *
1 DISPSCOP DS XL1 SCOPE
1 DISPTASK EQU X'00' = TASK
1 DISPUSID EQU X'01' = USERID
1 DISPHOST EQU X'02' = HOST-SYSTEM
1 DISPUSGR EQU X'03' = USERGROUP
1 *
1 DISPSELC DS XL1 SELECT
1 DISPOWN EQU X'00' = OWN
1 DISPALLH EQU X'01' = ALL (HOST)
1 *
1 DISPINFO DS XL1 INFO
1 DISPATTR EQU X'00' = ATTR
1 DISPALLT EQU X'01' = ALL
1 *
1 DISPSYCD DS XL1 SYS-ERROR-CODE
1 *
1 DISPADDR DS A ADDRESS OF OUTPUT-AREA
1 DISPSIZE DS F SIZE OF OUTPUT-AREA
1 *
1 DISP# EQU *-DISPPPA LENGTH of PARAMETERAREA

SHOPOOL Macros

838 U4250-J-Z125-12-76

Format of the output area

The SHOPOOL macro returns the requested information in the output area specified by the
caller.

Management header of the output area

This area begins with a management header with a length of 16 bytes. The management
header of the output area is generated by specifying the operand XPAND=DESCHDR when
calling the SHOPOOL macro with the control operand MF=D or MF=C:

1 DISPADMH DS 0F MANAGEMENT HEADER LAYOUT
1 DISPPLG DS F NUMBER OF BYTES TRANSFERRED
1 DISPPCLG DS F LENGTH OF COMPLETE INFORMATION
1 DISPP#PO DS H NUMBER OF ISAM POOLS INVOLVED
1 DISPPINF DS XL1 INDICATOR FOR SCOPE OF INFO
1 DISPPATT EQU X'00' INFO = *ATTR
1 DISPPALL EQU X'01' INFO = *ALL
1 DISPPIND DS XL1 TRANSFER INDICATOR
1 DISPPCOM EQU X'00' INFORMATION COMPLETE
1 DISPPPAR EQU X'01' INFORMATION INCOMPLETE
1 DISPPRES DS CL4 NOT USED
1 DISPPLEN EQU *-DISPADMH LENGTH OF HEADER

Specified output area

An ISAM pool is described in the output area specified by the caller by means of a so-called
ISAM pool descriptor with a length of 32 bytes. ISAM pool descriptors are generated by
specifying the control parameter XPAND=DESCHDR when calling the SHOPOOL macro
with the control operand MF=C or MF=D:

1 DISPPDDS DS 0F ISAM POOL DESCRIPTOR LAYOUT
1 DISPNAME DS CL8 NAME OF ISAM POOL
1 DISPPCID DS CL4 NAME OF ALLOCATED PVS
1 DISPPSIZ DS F POOL SIZE (IN 2K UNITS)
1 DISPPSCO DS XL1 SCOPE OF ISAM POOL
1 DISPPTSK EQU X'00' SCOPE = TASK
1 DISPPUSR EQU X'01' SCOPE = USERID
1 DISPPHOS EQU X'02' SCOPE = HOST
1 DISPPUGR EQU X'03' SCOPE = USERGROUP
1 DISPPWRO DS XL1 WROUT ATTRIBUTE OF ISAM POOL
1 DISPPDEF EQU X'00' WROUT = DEFERRED
1 DISPPIMM EQU X'01' WROUT = IMMEDIATE
1 DISPPCST DS XL1 CSTAT RESIDENCE OF ISAM POOL
1 DISPPNRE EQU X'00' ISAM POOL NOT CSTAT-RESIDENT
1 DISPPRSD EQU X'01' ISAM POOL CSTAT-RESIDENT
1 DISPPEXT DS XL1 EXISTING ISAM POOL EXTENTS
1 DISPPNEX EQU X'00' NO EXTENT EXISTS

Macros SHOPOOL

U4250-J-Z125-12-76 839

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

1 DISPPEX2 EQU X'01' 2K EXTENT EXISTS
1 DISPPEX4 EQU X'02' 4K EXTENT EXISTS
1 DISPPEXA EQU X'03' 2K AND 4K EXTENT EXISTS
1 DISPPLCI DS XL1 INDICATOR FOR LOCALITY
1 DISPPLCL EQU X'00' POOL ON LOCAL COMPUTER
1 DISPPREM EQU X'01' POOL ON REMOTE COMPUTER
1 DISPPUID DS CL8 USERID FOR SCOPE = *USERID
1 * GROUP NAME FOR SCOPE = *USERGROUP
1 DISPPRSV DS CL3 NOT USED
1 DISPPLNG EQU *-DISPPDDS LENGTH OF ISAM POOL DESCRIPTOR

Explanation of the individual fields in the output area:

The management header contains the following information:

– the number of bytes that were transferred to the output area (length: 4 bytes),

– the total number of bytes contained in the complete information (length: 4 bytes)
requested. The caller of the macro must supply an output area of (at least) the same
length,

– the number of ISAM pools for which information is to be placed in the output area
(length: 2 bytes),

– an indicator, with a length of 1 byte, that represents the scope of information specified
in the macro call. The following values apply:

– an indicator, with a length of 1 byte, which specifies whether the information transferred
to the output area is complete or whether only a part of the desired information could
be returned because the output area was too small. The following values are assigned
to this indicator:

(In the latter case, the caller must provide a larger output area in order to receive the
entire information. The length of this larger area can then be obtained from the second
word of the management header),

– the remaining 4 bytes are not used.

X'00' -- INFO = *ATTR

X'01' -- INFO = *ALL

X'00' -- The information is complete.

X'01' -- The information was truncated and is incomplete

SHOPOOL Macros

840 U4250-J-Z125-12-76

The specified output area can contain the following information:

An ISAM pool is described in the output area specified by the caller by means of an
ISAM pool descriptor, with a length of 32 bytes, which contains the following information:

– the name of the ISAM pool involved, with a length of 8 bytes (printable),

– the catalog ID (CATID) of the host computer on which the specified ISAM pool exists;
also printable, and with a length of 4 bytes,

– the size of the ISAM pool involved (in 2K units), with a length of 4 bytes,

– the scope of the ISAM pool involved, with a length of 1 byte for which values are
assigned as follows:

– the WROUT attribute of the ISAM involved, with the following possible values (1 byte):

– the CSTAT-residence attribute of the ISAM pool involved (1 byte), with the following
assignment:

– whether the ISAM pool involved is made up of a 2K extent, a 4K extent, or both extents
(for detains concerning 4K-capable NK-ISAM):

– whether the ISAM pool involved belongs to a local or remote host computer, indicated
by the following assignment:

X'00' -- SCOPE = *TASK

X'01' -- SCOPE = *USERID

X'02' -- SCOPE = *HOST

X'03' -- SCOPE = *USERGROUP

X'00' -- WROUT = DEFERRED

X'01' -- WROUT = IMMEDIATE

X'00' -- the ISAM pool is not CSTAT-resident

X'01' -- the ISAM pool is CSTAT-resident

X'00' -- no extent created as yet

X'01' -- existing 2K extent for ISAM pool

X'02' -- existing 4K extent for ISAM pool

X'03' -- ISAM pool has a 2K extent as well as a 4K extent

X'00' -- pool on local host

X'01' -- pool on remote host

Macros SHOPOOL

U4250-J-Z125-12-76 841

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

– the user ID – if the associated ISAM pool has been provided with the attribute
SCOPE = USERID,

– the remaining 3 bytes are not used.

The structure of the management header (HDR) and ISAM pool descriptor (DESC) are the
main factors that determine the format of the output area. The scope of information that was
specified when calling the SHOPOOL macro determines the layout.

INFO = *ATTR

If the caller has specified the parameter INFO = *ATTR in the macro call (or selected this
default value by omitting the parameter), the output area of the user will be structured as
follows:

If INFO=*ATTR is specified, the indicator provided for it in the management header of the
output area is assigned the value X'00'. The management header is followed by the ISAM
pool descriptors located below one another in contiguous order (without gaps). The number
of descriptors is also indicated in the management header.

INFO = *ALL

By specifying the parameter INFO = *ALL in the SHOPOOL macro, the caller requests infor-
mation in the output area on not only the static attributes of the specified ISAM pool, but
also the TSNs of tasks connected to that pool. The indicator provided for this in the
management header of the output area is assigned the value X'01', and each ISAM pool
descriptor is followed by a word containing the number of tasks connected to that pool,
followed by a list of the TSNs of the corresponding tasks (in 4 bytes each; printable).

HDR

DESC1

DESC2

.......

.......

DESCn

SHOPOOL Macros

842 U4250-J-Z125-12-76

If the caller has specified the parameter INFO = *ALL in the macro call, the output area of
the user will be structured as follows:

HDR

DESC1

TASK#1 TSN11 TSN12 TSN1m

DESC2

TASK#2 TSN21 TSN22 TSN2r

.......

.......
...
...

DESCn

TASK#n TSNn1 TSNns

Macros SHOWAIX

U4250-J-Z125-12-76 843

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

SHOWAIX – Request information on secondary keys

Macro type: type S (E form/L form/D form/C form); see page 866

The SHOWAIX macro returns, in its operand list, information on the secondary keys of an
NK-ISAM file. For each secondary key defined in the file, it shows the user

– the name of the key
– the position of the key within the record
– the length of the key
– the DUPEKY setting for the key (whether or not duplicate secondary key values are

permitted)
– the completeness of the secondary index blocks belonging to the key.

Format

Operation Operands

SHOWAIX

MF=D[,PREFIX=pre]

MF=C[,PREFIX=pre][,MACID=macid]

MF=L,
LINK=linkname

FILE=pathname 
 
 

MF=E,PARAM=
addr

(r) 
 
 

SHOWAIX Macros

844 U4250-J-Z125-12-76

Operand descriptions

FILE = pathname
This specifies the NK-ISAM file for which the secondary key information is to be output
with: <c-string 1..54: filename 1..54>..
The value specified for the FILE operand is ignored if the LINK operand is also specified.

“pathname” means [:catid:][$userid.]filename

catid
Catalog ID: if omitted, the default catalog ID for the current user ID is assumed.

userid
User ID: if omitted, the user ID in the SET-LOGON-PARAMETERS or LOGON
command is assumed.

filename
Fully qualified file name.

LINK = linkname <1..8>
This specifies the link name of the file for which the secondary key information is to be
output.
“linkname” may be up to 8 characters long. If the file link name is to be accessed via the
command interface, it must correspond to the data type. <structured_name 1..8> (see the
“Commands” manual [3]).

MACID
Specifies the second to fourth characters of each field name and equate generated when
the macro is expanded.

Default value: MACID = ISI

= macid
“macid” is a three-character string which specifies the second to fourth characters of
each field name and equate generated.

PARAM
Specifies the address of the operand list; it is evaluated only if MF=E applies
(see page 865).

= addr
Symbolic address (name) of the operand list.

= (r)
Number of the register which contains the address of the operand list. The register must
be loaded with this address value before the macro is called.

Macros SHOWAIX

U4250-J-Z125-12-76 845

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

PREFIX
Specifies the first character of each field name or equate which the assembler generates in
the data area when expanding the macro.

Default value: PREFIX=D

= pre
Single-character prefix with which the generated field names and equates are to begin.

Return codes

Further return codes, whose meanings are defined by conventions valid for all macros, can
be found in the table on page 869 (standard header).
The calling program is terminated if one of the following errors occurs with regard to the
parameter list:

– the list is not assigned to the caller
– the list is not aligned on a word boundary
– the list is write-protected.

Standard
header:

A return code relating to the execution of the SHOWAIX
macro is returned in the standard header
(bb = SUBCODE1, aaaa = MAINCODE):

0 0 b b a a a a

X'bb' X'aaaa' Meaning

X'00' X'0000' The function was executed successfully.

X'01' X'0001' The operand list is not available.

X'40' X'0002' Secondary keys are not supported in the remote system (if the macro is called
via RFA).

X'40' X'0003' The specified catalog ID does not exist.

X'40' X'0004' The catalog cannot be accessed.

X'01' X'0005' The operand list contains an invalid name.

X'20' X'000B' System error.

X'40' X'000E' The control block of the file is errored.

X'01' X'0017' There was no file specified in the operand list.

X'40' X'0019' The file link name is invalid.

X'40' X'0040' OPEN error.

X'40' X'0041' CLOSE error.

X'40' X'0044' The file is not an NK-ISAM file.

SHOWAIX Macros

846 U4250-J-Z125-12-76

Layout of the operand list

Macro expansion with MF=D and default values for PREFIX and MACID:

SHOWAIX MF=D
1 MFCHK MF=D, C
1 PREFIX=D, C
1 MACID=ISI, C
1 DMACID=ISI, C
1 DNAME=ISIAIX, C
1 SUPPORT=(C,D,L,E), C
1 PARAM=, C
1 ALIGN=F, C
1 SVC=32
2 DISIAIX DSECT ,
2 *,##### PREFIX=D, MACID=ISI #####
1 #INTF INTNAME=SHOWAIX,REFTYPE=REQUEST,INTCOMP=001
1 FHDR MF=(C,DISI),EQUATES=NO
2 DS 0A
2 DISIFHE DS 0XL8 0 GENERAL PARAMETER AREA HEADER
2 *
2 DISIIFID DS 0A 0 INTERFACE IDENTIFIER
2 DISIFCTU DS AL2 0 FUNCTION UNIT NUMBER
2 * BIT 15 HEADER FLAG BIT,
2 * MUST BE RESET UNTIL FURTHER NOTICE
2 * BIT 14-12 UNUSED, MUST BE RESET
2 * BIT 11-0 REAL FUNCTION UNIT NUMBER
2 DISIFCT DS AL1 2 FUNCTION NUMBER
2 DISIFCTV DS AL1 3 FUNCTION INTERFACE VERSION NUMBER
2 *
2 DISIRET DS 0A 4 GENERAL RETURN CODE
2 DISISRET DS 0AL2 4 SUB RETURN CODE
2 DISISR2 DS AL1 4 SUB RETURN CODE 2
2 DISISR1 DS AL1 5 SUB RETURN CODE 1
2 DISIMRET DS 0AL2 6 MAIN RETURN CODE
2 DISIMR2 DS AL1 6 MAIN RETURN CODE 2
2 DISIMR1 DS AL1 7 MAIN RETURN CODE 1
2 DISIFHL EQU 8 8 GENERAL OPERAND LIST HEADER LENGTH
2 *
1 *
1 * SUB RETURN CODE1
1 *
1 DISIRFSP EQU X'00' FUNCTION SUCCESSFULLY PROCESSED
1 DISIRPER EQU X'01' PARAMETER SYNTAX ERROR
1 *
1 DISIRFNS EQU X'01' CALLED FUNCTION NOT SUPPORTED
1 DISIRFNA EQU X'02' CALLED FUNCTION NOT AVAILABLE
1 DISIRVNA EQU X'03' INTERFACE VERSION NOT SUPPORTED

Macros SHOWAIX

U4250-J-Z125-12-76 847

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

1 *
1 DISIRIER EQU X'20' INTERNAL ERROR
1 DISIRCAR EQU X'40' CORRECT AND RETRY
1 *
1 * MAIN RETURN CODE
1 *
1 DISIOK EQU 0 AIX DELETED
1 DISINPAR EQU 1 PARLIST NOT ACCESSIBLE
1 DISINREM EQU 2 NO SUPPORT ON REMOTE HOST
1 DISINCAT EQU 3 CATID NOT KNOWN
1 DISINACC EQU 4 CATALOG NOT ACCESSIBLE
1 DISIINVN EQU 5 INVALID NAME
1 DISISYSE EQU 11 SYSTEM ERROR
1 DISISPAC EQU 12 NO ADDRESS SPACE
1 DISIWRCB EQU 14 WRONG CONTROLBLOCK
1 DISIFNSP EQU 23 FILE NOT SPECIFIED
1 DISILNKE EQU 25 LINKNAME ERROR
1 DISIINOP EQU 31 SSTA INOP
1 DISISSER EQU 32 SSTA INTERNAL ERROR
1 DISIMEMR EQU 33 SSTA MEMORY ERROR
1 DISIOPSE EQU 34 SSTA OPS ERROR
1 DISIOPME EQU 35 SSTA OPS MEMORY ERROR
1 DISIOPER EQU 64 FILE OPEN ERROR
1 DISICLER EQU 65 FILE CLOSE ERROR
1 DISINNKF EQU 68 NO NK-ISAM FILE
1 DISIRLNK EQU X'FFFF' LINKAGE ERROR
1 *
1 DISIDMSC DS AL2 DMSCODE
1 DISIFILE DS CL54 FILE
1 DISILINK DS CL8 LINK
1 DISIKEY# DS H NUMBER OF KEYS
1 *
1 DISIKNAM DS CL8 KEYNAME
1 DISIKPOS DS H KEYPOS
1 DISIKLEN DS AL1 KEYLEN
1 DISIIND DS XL1 INDICATOR
1 DISIDUPK EQU X'80' SET: DUPKEY = YES
1 * RESET: DUPKEY = NO
1 DISIINCO EQU X'40' SET: SIX IS INCOMPLETE
1 * RESET: SIX IS COMPLETE
1 DS 29CL12
1 DISI# EQU (*-DISIFHE) LENGTH OF STRUCTURE
 END

STORE Macros

848 U4250-J-Z125-12-76

STORE – Store record

Macro type: R for PARMOD=24
O for PARMOD=31

The STORE macro transfers a record from the user area to the file, placing it at the position
defined by the record key.

In contrast to INSRT, the STORE macro can process records with duplicate keys.
If DUPEKY=YES is specified, the new record is written after the last existing record with the
same key. If DUPEKY=YES is not specified, the new record overwrites the existing record
with the same key.

The PAD factor is ignored when a file is created or extended sequentially using STORE.
In contrast to the PUT macro, sequential use of the STORE macro results in a high block
splitting rate and each block will be only about 50% full.

Format

Operation Operands

STORE fcbaddr

(1) 
 
 

,
area

(0) 
 
 

[,PARMOD=
24

31 
 
 

]

Macros STORE

U4250-J-Z125-12-76 849

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Operand descriptions

fcbaddr
Address of the FCB associated with the file to be processed.

(1)
The FCB address is stored in register 1.

area
Address of the record to be stored. Even in locate mode, the record to be stored must be
provided at address “area”.

(0)
The address of the record to be stored is in register 0.

PARMOD
Specifies the generation mode for the macro.

Default value: the value predefined for the generation mode by means of the
GPARMOD macro or preset by the assembler.

= 24
The object code generated can run only in the 16-Mb address space (24-bit addressing
only).

= 31
The object code generated can run in the 2-Gb address space (24-bit or 31-bit
addressing).

Programming note

The STORE macro overwrites the contents of registers 0, 1, 14 and 15.

VERIF Macros

850 U4250-J-Z125-12-76

VERIF – Recover file

Macro type: type S (E form/L form); see page 866

The VERIF macro is used to recover files, file generations or file generation groups which,
due to a system crash or the abortion of a job, have not been closed correctly.

The macro can be used to

– clear a file lock so that the file becomes generally accessible again
– recover a disk file: the catalog entry is updated and, if necessary, the file is closed.

ISAM files are recovered on the basis of the existing records.

Note

If file access was interrupted while there were data buffers in main memory, the last
changes made to the file may be missing in the recovered file, since the buffer contents
are transferred to external storage only when the buffer becomes full.

The user can unlock disk files and tape files reserved exclusively with the SECURE-
RESOURCE-ALLOCATION command if the job causing the lock has been terminated by
the system with the console message TASK PENDED INDEFINITELY.

Disk files which were not locked via the SECURE-RESOURCE-ALLOCATION command
can only be unlocked by the system administrator.

The associated crypto password must be specified to reconstruct an encrypted ISAM file.

Macros VERIF

U4250-J-Z125-12-76 851

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

Format

Operand descriptions

pathname1
Specifies the path name of the permanent or temporary file, file generation group or file
generations to be recovered:
<c-string 1..54: filename 1..54>

“pathname1” means [:catid:][$userid.]filename

catid
Catalog ID;
Default value: the catalog ID assigned to the user ID.

userid
User ID;
Default value: the user ID specified in the SET-LOGON-PARAMETERS or LOGON
command.

filename
Fully qualified name of a permanent or temporary file, file generation, or file generation
group.

Operation Operands

VERIF pathname1[,pathname2]

[,MF=L]

[,REPAIR=

YES

ABS

NO

CHECK 
 
 
 
 
 
 

]

MF=(E,
addr

(r) 
 
 

]

VERIF Macros

852 U4250-J-Z125-12-76

pathname2
Designates the file in which the ISAM file “pathname1” is to be reconstructed;
with <c-string 1..54: filename 1..54>

“pathname2” is relevant only for the recovery of ISAM files and must not be the same as
“pathname1”. “pathname2” may be the name of a permanent or temporary file or file gener-
ation but not the name of a file generation group. If “pathname2” is omitted, the system
creates a work file for reconstruction of the ISAM file. However, “pathname2” must be
specified if the ISAM file is stored on private disk with its index and data sections on
separate disks. If an encrypted file needs to be reconstructed, “pathname2” is assigned the
same encryption attributes as “pathname1”.

“pathname2” means [:catid:][$userid.]filename

catid
Catalog ID; default value: the catalog ID belonging to the user ID.

userid
User ID; default value: the user ID specified in the SET-LOGON-PARAMETERS or
LOGON command.

filename
Fully-qualified file name of a permanent or temporary file, or a file generation. File
generation groups must not be specified.

REPAIR
Specifies how the files defined by “pathname1” are to be recovered. Reconstruction
depends on the access method with which the files were created.

“Clearing a file lock” means that the entry for the file in the file lock table is deleted.

Concurrent copy locks remain in place if the concurrent copy session has not yet ended.
With REPAIR=YES/ABS/CHECK, a requested reconstruction or consistency check is still
performed. For REPAIR=NO, see the operand description under “Notes”.

Only REPAIR=NO is permitted for tape files and file generation groups.

Macros VERIF

U4250-J-Z125-12-76 853

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

= YES
Only for disk files

PAM:
The pointer to the last PAM page which was written (i.e., the last-page pointer LPP) is
set to the highest possible value. This corresponds to the actual size of the file (with
BLKCTRL=PAMKEY) or to the file size rounded up to a multiple of the block size (with
BLKCTRL=DATA/NO). In this case the last-page pointer is also incremented to a block
boundary.

The file is closed.

If a mirrored disk (DRV) is available, the file will be equalized.

SAM:
The highest PAM page written in the file is determined, and the last-page pointer (LPP)
is set to this value.

If the file is on a mirrored disk (DRV), the contents of the blocks contained in it are
restored by equalization if required.

The file is closed.

ISAM:
The file lock is cleared. If the file is marked as open, it is reconstructed.

= ABS
Only for disk files
The reconstruction is performed regardless of whether or not the file is identified as
open.

PAM:
The file lock is cleared and the last-page pointer is updated to point to the last PAM page
actually written and the last-byte pointer to a block boundary provided that the file is
marked as open; otherwise the last-page pointer and the last-byte pointer remain
unchanged.

In the case of files opened with BLKCTRL=PAMKEY/DATA, the highest written
PAM page in the file is determined, and the last-page (LPP) pointer is set to that value.

For files opened with BLKCTRL=NO, the LPP is set to the highest possible PAM page
(i.e. the file size, rounded up to a multiple of the block size).

If the file is open and on a mirrored disk (DRV), the contents of the blocks contained in
it are restored by equalization if required.

The file is then closed (if required).

VERIF Macros

854 U4250-J-Z125-12-76

SAM:
The file lock is cleared. Even if the file is not marked as open, the last-page pointer is
updated to point to the last PAM page actually written, and the file is then closed (if
required).

ISAM:
The file lock is cleared and the file is reconstructed.

The verification process (with reconstruction) for the SAM and ISAM access methods
is analogous to REPAIR =YES.

= CHECK
Only meaningful for NK-ISAM files processed with WROUT=YES:
only files which are marked as open are selected. The file lock is cleared, the last-page
pointer is updated to point to the last page which was written, data blocks which consist
of more than one PAM page (multiblocks) are checked for consistency of the blocking
structure, and the file is closed.

The file lock is cleared. If the file is identified as open, the pointer to the last PAM block
is set to the highest written page; multi-blocks are checked for consistency, and the
defined secondary keys are verified to ensure that they have been created or deleted
completely.

If the file is on a mirrored disk (DRV), the contents of the blocks contained in it are
restored by equalization if required.

If no error was detected, the file is closed.

The “consistency of multi-blocks” implies that no abort occurred when writing a multi-
block.

= NO
For tape input files:
“filename” must be fully qualified; the file lock is cleared.

For disk files:
PAM – The file lock is cleared. The file is not regarded as closed, i.e. it will still be
included in the output from FSTAT ..., STATE= NOCLOS, and will be regarded as a file
which is to be repaired for VERIF ..., REPAIR=YES.

SAM:
The file lock is cleared. The file is not regarded as closed, i.e. it will still be included in
the output from FSTAT ..., STATE= NOCLOS, and will be regarded as a file which is to
be repaired for VERIF ..., REPAIR=YES.

Macros VERIF

U4250-J-Z125-12-76 855

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
3

. M
a

y
20

16

S
ta

nd
 1

7:
04

.0
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
a

k_
e.

v0
4\

ge
-v

e.
do

c

ISAM:
The file lock is cleared. If the file is marked as open, the system executes a privileged
close operation and the last-page pointer is updated to point to the last PAM page
written. The file is not reconstructed.

If the file is on a mirrored disk (DRV), the contents of the blocks contained in it are
restored by equalization if required.

Inconsistencies between the INDEX and data section are neither detected nor removed
in the process.

This also applies to inconsistencies with regard to the secondary keys. The file is
considered to be closed, i.e. will not be reported by FSTATUS, STATE=NOCLOS and
will not be flagged as a file requiring repair by VERIFY ..., REPAIR=YES.

Note on “concurrent copy” save procedure

Concurrent copy locks in a file are set up by the system/HSMS (see the “HSMS”
manual [10]). The user can only remove these locks once the save procedure
(concurrent copy session) is over. The following should be noted with respect to return
codes:

– If a file is locked via both file locks and concurrent copy locks, a positive return code
will be issued if the file locks could be removed.

– If, however, a file is locked only via a concurrent copy lock, a positive return code
will only be issued once the concurrent copy session is over, otherwise a negative
return code will be issued.

MF
For a detailed description of the MF operand, refer to the Appendix (page 865).

VERIF Macros

856 U4250-J-Z125-12-76

Programming notes

If the macro is executed successfully, the contents of register 15 are set to zero. The error
codes for unsuccessful execution are defined in the IDEMS macro.

Reconstruction of ISAM files

– If “pathname2” is not specified for an ISAM file on public volumes, this file is recon-
structed in a work file created by the system. The file “pathname1” is then erased
without “DESTROY” (see the CATAL macro, DESTROY operand, page 151), and the
work file is renamed “pathname1”.

If “pathname2” is not specified for an ISAM file on private volumes or on a Net-Storage
volume, this file is reconstructed in a work file on public volumes. The work file is then
copied into the file “pathname1” and then erased by means of “DESTROY” (see the
CATAL macro, DESTROY operand, page 151). This may take a very long time and it is
therefore better to specify “pathname2”.

– If “pathname2” is specified in the VERIF macro, the file “pathname1” is reconstructed
in this file and “pathname1” remains unchanged. If “pathname2” is to be on a private
disk or on a Net-Storage volume, or if the file “pathname1” is an ISAM file with its index
and data sections on separate disks, “pathname2” must be cataloged before the VERIF
macro is issued and space must also be reserved for it.

Records with identical index and data are transferred only once to the reconstructed file.

– No space is reserved in the data blocks of the reconstructed file for subsequent
expansion (equivalent to specifying PAD=0 in the FILE macro).

ISAM files with their data and index blocks on separate volumes can be reconstructed
by means of the VERIF macro only if BLKSIZE=STD applies.

– If an ISAM data block contains data which cannot be assigned to a defined record, the
entire block is saved in the PAM file “S.filename1.REPAIR”. After VERIF processing has
been completed, the user can use this file for his/her own reconstruction efforts. If the
new file name would be too long, “filename1” is truncated as required.

– Since a copy of the file is created during reconstruction of an ISAM file, and since this
copy occupies part of the public space, the user must ensure that sufficient storage
space is available.

U4250-J-Z125-12-76 857

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5 Appendix

The Appendix contains:

– Information on the syntax used in macro calls (starting on page 858)

– A section on evaluating DMS error messages (starting on page 871)

– The DIV call interface (starting on page 876)

– All label formats including information on the processing of the label fields (starting on
page 879)

– Information on Dsect generation (starting on page 894)

It concludes with the macro formats for the two replaced macros COPY and REL which
continue to be supported for reasons of compatibility (starting on page 896).

Syntax presentation Appendix

858 U4250-J-Z125-12-76

5.1 Syntax presentation

5.1.1 Macro format

A macro format consists of two columns; the first column contains the macro name while
the second contains the possible operands.

When a macro is called, the macro name must be separated from the first operand by at
least one blank. Where several operands are specified together, they must be separated by
commas.

The macro formats are represented with the aid of certain notational symbols (metacha-
racters), which are explained in the following table.

 Macro name Operands

 <macroname> <operand 1>
 ,<operand 2>

Appendix Syntax presentation

U4250-J-Z125-12-76 859

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5.1.2 Metasyntax used for the macros

Elements of the metasyntax

An operand is assigned an operand value from a defined range of values by means of the
equals sign.
This value range is determined by a data type. The following table contains the data types
of the operand values.

Representation Meaning Examples

UPPERCASE LETTERS Uppercase letters are used for keywords or
constants, which the user must enter exactly
as they are shown.
Keywords must begin with * in case both
keywords and names of constants or
variables can be specified.

DIB
FORCED=*YES

Lowercase letters Lowercase letters denote data types of the
values or variables which the user can
specify.

DIB = <var: pointer>

< > Angle brackets denote variables whose
range of values is described by the data
types.

<var: pointer>

Underscoring Underscoring denotes the default value of an
operand. If an operand does not have a
default value, another value must be
specified for it.

FORCED = *NO / *YES

= The equals sign connects an operand name
with the associated operand values.

DATA = <var: pointer>

/ A slash serves to separate alternative
operand values.

FORCED = *NO / *YES

list-poss(n) The entry “list-poss” signifies that a list of
operand values can be given at this point. If
(n) is present, it means that the list must not
have more than n elements. A list of more
than one element must be enclosed in paren-
theses.

FLAG=list-poss(3):
*SLI / *SKIP / *DC

Specification:
FLAG=*SKIP
FLAG=(*SLI,*DC)

Syntax presentation Appendix

860 U4250-J-Z125-12-76

Data types of the operand values

Suffixes for data types

The operand values can be entered directly as a character string or integer (see data types
“c-string” and “integer”), or indirectly via a variable (see data type “var:”). The following table
contains the possible data types for variables.

Data types for variables

Data type Character set Special rules

c-string EBCDIC character Must be enclosed within single
quotes

integer [+-] 0..2147483647 Is a decimal number

var: Introduces a variable specification.
The colon is followed by the type of
the variable (see table “Data types
for variables” below)

<var:var-type>

reg: Registers 0..15 Specification: (<reg:var-type>)

Suffix Meaning

n..m With data type “integer”, n..m means an interval specification;
n: minimum value
m: maximum value

With data type “c-string”, n..m means a length specification in
bytes;
n: minimum length
m: maximum length
with n < m

n With data type “c-string”, n means a length specification in bytes;
n must be adhered to.

Data type Description Definition in program

char:n The variable is a string of n characters. If the length speci-
fication is omitted, n=1 is assumed.

CLn

int:n The variable is an integer occupying n bytes. If the length
specification is omitted, n=1 is assumed.
Condition: n ≤ 4

FLn

enum-of
E:n

The variable is the list E, which occupies n bytes. If the
length specification is omitted, n=1 is assumed. (n ≤ 4)

XLn

pointer The variable is an address or an address value. A

Appendix Syntax presentation

U4250-J-Z125-12-76 861

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5.1.3 Obsolete metasyntax used for the macros

The macro formats are represented with the aid of certain notational symbols (known as
metacharacters) and conventions, which are explained in the following table:

Formal
representation

Meaning Example

UPPERCASE Uppercase letters are used for constants, which
the user must enter exactly as they are shown.

FSTAT ,LIST=(SYSLST)

Enter:
FSTAT ,LIST=(SYSLST)

lowercase Lowercase letters are used for variables, which
must be replaced by the user with the actual
values, i.e. their contents will differ from case to
case.

FILE filename

Enter:
FILE ACCOUNTING
FILE XYZ,
FILE A.B-1,
etc.

Braces enclose alternatives; one of the possible
values shown within the braces must be entered

Enter:
FILE=... or LINK=...

[] Square brackets enclose optional entries, i.e
entries which may be omitted. If the comma is
inside the square brackets, it is needed only if
this optional entry is used and may be omitted for
the first operand in a command. If, in contrast, the
comma is outside the brackets, it must always be
entered, even if no optional entry is specified.
Note that normal (round) parentheses must
always be entered.

F[REE]SIZE

Enter:
FREESIZE
or the shortened form FSIZE

___ Underscoring shows the default value, i.e. the
value used by the system if the user omits the
operand.

Enter:
SAM or ISAM
or omit the entry (= ISAM)

  
 
  FILE=pathname

LINK=name 
 
 

ISAM

SAM 
 
 

Syntax presentation Appendix

862 U4250-J-Z125-12-76

... The dots indicate repetition, i.e. the preceding
syntactical unit may be repeated several times.

(vsn,...)

Enter:
(PVT003) or
(PVT003,PVT456) or
(XY00AB,XY0012,XY0005)
etc.

_ This symbol represents a blank or space
character (X'40').

STD_

Enter:
' STD '

Formal
representation

Meaning Example

Appendix Syntax presentation

U4250-J-Z125-12-76 863

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5.1.4 Wildcards

Wildcards may be used in the catalog ID and the file name in the operand “pathname” of
the macros ERASE and FSTAT. In the ERASE macro, system files may also be addressed
via wildcards.

Wildcard Meaning

* Replaces a freely selectable character string, even an empty character
string.

/ Replaces precisely one character.

<wildcard1,...> Replaces all character strings which match at least one of the specified
wildcards.

<wildcard1:wildcard2> Replaces a character string which
– is at least as long as the shortest specified wildcard;
– is not longer than the longest specified wildcard;
– lies in the alphabetical collating sequence between “wildcard1”

and “wildcard2” (digits follow letters).
“wildcard1” may also be an empty character string; this occupies the
first position in the alphabetical collating sequence.

<wildcard1:wildcard2,...> Wildcards of the type “wildcard1:wildcard2” may also be specified in
the form of a list. The rules for each pair of wildcards are the same as
described above. The system logically ORs the pairs, i.e. the wildcard
list replaces any character string which matches one of the wildcard
pairs. The length rule applies separately to each pair, not to all
wildcards in the list.

-wildcard Replaces any character string which does not match the specified
wildcard. The minus sign may be specified only at the beginning of the
wildcard string.

Syntax presentation Appendix

864 U4250-J-Z125-12-76

5.1.5 Format of date specifications

Date specifications are required in the macros ERASE and FSTAT, in the operands
CRDATE, DELDATE, EXDATE, LADATE and LCDATE, as well as in the CATAL macro in
the DELDATE and EXDATE operands. The user may specify either absolute or relative
dates.
A specific time or a time interval may be specified in addition to the date.

The TIMBASE operand can be used to control whether absolute dates are specified on the
basis of UTC (universal time coordinate) or local time LTI (relative entries are always in
local time).

The date format of the FSTAT output is also linked to this operand.

Absolute date specification

A real date in the form:
YYMMDD or [YY]YY-[M]M-[D]D
(where YY = year, MM = month, DD = day)

Relative date specification

The offset in days from the current date in the form “-n” for the past or “+n” for the future
(n=0..99999),
or as Y[ESTERDAY] (ï -1), T[ODAY] (ï ±0)
or TOM[ORROW] (ï +1)

Time specification

A time value (UTC time) related to the date in the format date(hh:mm:ss)
(hh = hours, mm = minutes, ss = seconds)

Appendix Syntax presentation

U4250-J-Z125-12-76 865

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5.1.6 Macro types

Macros are divided into types on the basis of the manner in which their operands are
passed. The various types are type O, type R (where the operands are passed in registers)
and type S (where the operands are passed in memory; S = storage).

O-type macros

Macros which are neither type R nor type S are known as O-type macros.

Examples of this type are macros in which a register (often only R1) containing the start
address of the operand list is specified in the operand field.

The operand list is defined in the data section of the program (using DC statements) and
contains the operand values.

R-type macros

A macro belongs to type R if all necessary operand values can be loaded into the two
registers (0 and 1) used for this purpose. An R-type macro does not generate an operand
list.

The operands may be specified directly or placed in registers 0 and 1.

Address operands in R-type macros may be specified as explicit or implicit addresses.

Operation Operands

RTYP
operand1

(r1) 
 
 

,
operand2

(r2) 
 
 

Syntax presentation Appendix

866 U4250-J-Z125-12-76

S-type macros

For S-type macros, the operand values specified in the macro are passed to the function
module in the form of a data area which is part of the macro expansion. This is a suitably
structured area which contains the data and memory definitions (DC and DS statements)
necessary for passing the operand values.

The following applies to all macros that can be called with a specific macro version (e.g. via
the VERSION or PARMOD operand): the version operand must have the same value in all
calls with different values for the MF operand (MF=L/E/D/C).

With regard to MF, there are six different macro call forms: S form, E form, L form, D form,
C form and M form.

S form = standard form

MF=S is the default value. The instruction section is generated first, followed by the data
area with the operand values specified in the macro call. This data area contains no field
names and no explanatory equates. The standard header is initialized.

Name Operation Operands

[opaddr] macro

operand1,...operandn[,MF=

S

L

C[,PREFIX=p][,MACID=mac]

(C,p)

D[,PREFIX=p]

(D,p)

M[,PREFIX=p][,MACID=mac]
 
 
 
 
 
 
 
 
 
 
 
 
 

MF=
E

(E,opaddr)

(E,(r)) 
 
 
 
 

[,PARAM=addr]

]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix Syntax presentation

U4250-J-Z125-12-76 867

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

E form = execute form

The E form of the MF operand initiates a supervisor call (SVC): the contents of an operand
list (see L form) are evaluated and the corresponding operations are executed. For this
reason, the “execute” macro call must include the address of the operand list, either as a
symbolic address (addr) or in a register (r/1). No other operands are evaluated.

“label” is the symbolic address of the macro in the Assembler program.

L form = LIST form

The list form uses the other operands specified in the macro to generate an operand list.
This list does not contain symbolic addresses for the operands; these are generated by the
C or D form of the macro. The address of the operand list must be specified in the macro
(E form), which means that the symbolic address “label” must always be specified.

The operand list begins with the standard header (see page 869), whose fields are loaded
automatically when the list is created with MF=L. Even if an operand list is to be created
dynamically with the D or C form, it must be initialized beforehand with MF=L in order to
ensure that the header contains the correct information.

D form = DSECT form

The D form generates a DSECT for the operand list of the macro. The first character of the
generated names can be modified via the PREFIX operand. If a symbolic address is
defined for the macro via “label”, the DSECT receives this name. If “label” is not defined,
the DSECT receives a macro-specific default name whose first character is likewise
modified by PREFIX. The operand list should be initialized with the list form of the macro
before the DSECT call in order to ensure that the standard header contains the correct
information.

Operation Operands

[label] macro

Operation Operands

label macro MF=L,operand-list

Operation Operands

[label] macro MF=D[,PREFIX=prefix]

MF=E,PARAM=

addr

(r)

(1) 
 
 
 
 

Syntax presentation Appendix

868 U4250-J-Z125-12-76

C form

Like the D form, the C form generates an operand list, but not in the form of a DSECT since
no DSECT statement is generated. The operand list remains empty and should be
initialized with the L form of the macro call in order to ensure, above all, that the standard
header contains the correct information.

Using the PREFIX operand, the first character of the generated names can be changed,
while the MACID operand can be used to change the second to fourth characters in these
names (a string of up to three characters can be specified for MACID). If the macro is
addressed symbolically via “label”, this is also the address of the operand list; if “label” is
not specified, the operand list cannot be addressed symbolically.

M form = modification form

Instructions (e.g. MVCs) are generated to overwrite the fields in an initialized data area
(operand list) with the operand values specified in the macro call. The M form thus offers
an easy way of dynamically matching the operand values with which a macro is called to
the requirements of the program.

Since the instructions generated for this purpose use the addresses and equates of the
C form or D form, care must be taken, when using the M form, that these names are
available for addressing the operand list to be modified. In particular, care must be taken
that, if specified, the operands PREFIX and MACID in a macro call with MF=M have the
same values as in the associated MF=C or MF=D call.

Operation Operands

[label] macro MF=C[,PREFIX=prefix][,MACID=id

Operation Operands

[label] macro MF=M[,PREFIX=prefix][,MACID=id],operand-list

Appendix Syntax presentation

U4250-J-Z125-12-76 869

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5.1.7 Standard header

All DMS macros use the standard header for BS2000 macros in their 31-bit interface. This
standard header is an 8-byte field at the beginning of the operand list which contains the
standardized designation of the interface and provides space for return codes. It is
generated by each macro and should – wherever possible – be initialized with the list form
of the MF operand.

Structure of the standard header

The fields SUBCODE2, SUBCODE1, MAINCODE contain the return code. The main return
code indicates whether or not the operation was executed successfully. In the case of an
error, the subsidiary return codes can be used to diagnose the reason for the error.

Field Byte position Meaning

UNIT 0-1 Specifies the function unit in which the desired function is imple-
mented

FUNCTION 2 Specifies the function (within the function unit)

VERSION 3 Specifies the version number of the function

SUBCODE2 4 Contains subsidiary return code 2

SUBCODE1 5 Contains subsidiary return code 1

MAINCODE 6-7 Contains the main return code

Syntax presentation Appendix

870 U4250-J-Z125-12-76

The following values for the return codes are conventions:

MAINCODE shows the result of execution of the function. SUBCODE1 qualifies the main
code. SUBCODE2 subdivides the errors into error classes.

The return code should be passed only in the standard header (except for DMS macros;
see page 871). However, for a transitional period the return code can also be passed in
register R15 or in both the standard header and register R15. In order to check whether a
return code has been passed in the standard header, the return code field should be filled
with X'FFFFFFFF'. The result of checking the standard header is also always returned in
register R15:

SUB-
CODE2

SUB-
CODE1

MAIN-
CODE

Meaning

X'00' X'00' X'0000' The function was executed successfully; there is no further infor-
mation for this MAINCODE.

X'01' X'00' X'0000' The function was executed successfully; no further action is
necessary.

X'00' X'01' X'FFFF' The requested function is not supported (invalid (entry for UNIT or
FUNCTION in the standard header); unrecoverable error.

X'00' X'02' X'FFFF' The specified function is not available; unrecoverable error.

X'00' X'03' X'FFFF' The specified version of the interface is not supported (invalid
version entry in the standard header); unrecoverable error.

X'00' X'04' X'FFFF' The parameter list is not aligned on a word boundary.

X'00' X'41' X'FFFF' The subsystem does not exist; it must be generated explicitly.

X'00' X'42' X'FFFF' The calling process is not connected to this interface; it must be
connected explicitly.

X'00' X'81' X'FFFF' The subsystem is currently not available.

X'00' X'82' X'FFFF' The subsystem is in the DELETE or HOLD state.

X'00000000':
X'0001FFFF':
X'0003FFFF':

standard header correctly initialized; error-free execution.
invalid entry for UNIT or FUNCTION.
invalid entry for VERSION.

Appendix DMS error codes

U4250-J-Z125-12-76 871

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5.2 DMS error codes

Error codes contain information about errors affecting programs or jobs, enabling the user
to determine the type and origin of the error and the appropriate remedial action. The error
codes used in DMS offer the following advantages:

– the abbreviated format permits many different error conditions to be encoded

– the type of encoding permits identification of the component which was the source of
the error

– in the case of recoverable errors, the program can implement appropriate analysis
measures and thus avoid abnormal termination.

DMS errors in program execution

In the following management macro calls, the error code is (with subcodes) placed in the
standard header:
– CATAL with VERSION=3
– COMPFIL
– COPFILE
– DECFILE
– DROPTFT
– ENCFILE
– ERASE with VERSION=3
– FILE with VERSION=3
– FSTAT with VERSION=3/4
– LFFSNAP
– LJFSNAP
– MAILFIL
– RDTFT with VERSION=3
– RELTFT
– RFFSNAP
– RJFSNAP

In the following management macro calls, the error code is (without subcodes) placed in the
two low-order bytes of register 15:
– CATAL with VERSION<3
– CHNGE
– COPY
– ERASE with VERSION<3
– FILE with VERSION<3
– FSTAT with VERSION<3
– IMPORT
– RDTFT without VERSION and with VERSION=2

DMS error codes Appendix

872 U4250-J-Z125-12-76

– REL

For data management macros (service macros and access methods), error codes are
placed in field ID1ECB of the TU FCB (displacement X'98').

If a DMS error occurs during program execution, an error code is placed in the file control
block. If the program does not contain a routine for handling such errors, the program is
terminated with an error message on SYSOUT in interactive mode or on SYSLST in batch
mode.

Coding methods

The error code is a four-digit hexadecimal whose second digit identifies the component that
noted the error. The digits w, y and z indicate the error which has occurred.

Error code value table for the components:

When components are in the sequence 216-E16 this means that a component with a higher
number can call a component with a lower number and not vice versa).

If an error occurs in a called component, the error code is passed to the calling component
(and modified in the process).

w x y z

x Component

2 Privileged PAM (PPAM)

3 Catalog administrator (CMS)

4 Data storage administrator (ALLOC)

5

6
DMS commands / Assembler macros

7 Privileged tape access method (PTAM)

9 UPAM

A ISAM

B SAM

C BTAM

D OPEN

E CLOSE





Appendix DMS error codes

U4250-J-Z125-12-76 873

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

Example for the generation and modification of error codes

– single-stage (error in the calling component): a user calls UPAM and the file is not open:
UPAM places error code 0994 in the FCB and branches via $GOTO to USERERR.

– two-stage (error in the called component): a user calls UPAM, which in turn calls PPAM.
PPAM detects an I/O error: in this case, PPAM passes error code 0227 to UPAM in
register 15. UPAM modifies this error code to 0927, places it in the FCB, and branches
via $GOTO to ERRADR.

List of DMS error codes

IDEMS macro

The explanations of the error codes are given below in list form. This list can be output,
either completely or partially, with the aid of the IDEMS macro.

System message prefix

When system messages are output, the error code is prefixed by the message class “DMS”
(0D33 → DMS0D33). The command or standard statement HELP-MSG-INFORMATION
enables a message text and further information on the cause of the error and how it is dealt
with to be output in English or German.

Operation Operands Comments

IDEMS [ALL=Y] All error codes are generated

[,PAM=Y] Only PPAM codes

[,CATAL=Y] Only CMS codes

[,ALLOC=Y] Only ALLOC codes

[,CMDMAC=Y] Only codes for DMS commands/macros, part 1

[,CMDNMAC=Y] Only codes for DMS commands/macros, part 2

[,NPAM=Y] Only UPAM codes

[,ISAM=Y] Only ISAM codes

[,SAM=Y] Only SAM codes

[,BTAM=Y] Only BTAM codes

[,OPEN=Y] Only codes for OPEN processing

[,CLOSE=Y] Only codes for CLOSE processing

[,P=letter] Prefix for the symbolic names of the DMS messages;
Default value: I
“P=” generates no prefix letter.

DMS error codes Appendix

874 U4250-J-Z125-12-76

Exceptions

– ISAM: the error code for ISAM is always 0AAz (where 0 Î z Î F), even for the system
messages.

Example
If PPAM detects an error after an ISAM call, error code '0AA9' is always placed in the
FCB. The entry in the IDEMS list for this code is “SYSTEM ERROR, HARDWARE”.
ISAM issues this message for all errors detected in PPAM.

– OPEN: when ISAM files are opened, errors which cannot be analyzed via the error code
may occur.

Example
When an ISAM file is opened in INPUT mode, the “first PAM page” is read. this page
always contains the control block (NK-ISAM) or the highest-level index block (K-ISAM).

After an I/O error, the following occurs:

Figure 11: Error sequence after an input/output error

DQPAM

'0227

DSYSTAT

DSC00000

DSOISAM

DOPEN

DZGOTO
OPENER-EXIT

'0AA9' '0DA9'

'0227' '0AA9'

(Privileged PAM)

(ISAM I/O routine)

(Conversion)

(Error routine in ISAM)

(Conversion to "OPEN" error)

(ISAM-OPEN error routine)

(OPEN error routine)

'0DA9' DMS0DA9'

AVAILABLE NOT AVAILABLE

USER
PROGRAM

EJCTERMX

SYSOUT

(CONVERSION)

(ROUTINE FOR ABNORMAL
 PROGRAM TERMINATION)

Appendix DMS error codes

U4250-J-Z125-12-76 875

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

Note

This error has a different meaning in the IDEMS macro, but stands for an I/O error
here.

– CLOSE: in order to complete all outstanding I/O operations, the CLOSE routine calls
the access method for the file.

Error analysis aids

The following aids are available for analyzing error codes:

– Look for the meaning in the IDEMS list.

– If file management macros are used in the program, check the error code (in the
standard header or in register 15). If the error codeî0, the program should be termi-
nated or the contents of the error code should be thoroughly analyzed.

CALL interface for DIV Appendix

876 U4250-J-Z125-12-76

5.3 CALL interface for DIV

Adapter Window Services can be used in some high-level programming languages to
invoke DIV functions from programs via a CALL interface. These programming language
are:

– COBOL (Version 2.0 onward)
– FORTRAN (Version 2.2 onward)
– PL/1 (Version 4.1 onward)
– C (Version 2.0 onward)

ILCS linkage is required in order to call DIV functions via a CALL interface.
When programs in COBOL, FORTRAN and C are compiled, the ICLS linkage is provided
by default. If PL/1 programs are compiled, an appropriate compiler option must be set.

A special feature must be noted for programs written in C: pointers to data elements must
be passed, not the data elements themselves (“call by reference” passing in C).

The semantics of data types in the programming languages indicated above varies widely.
The following table lists the data types for which the data representation in the above
languages is identical, so that they can be passed as parameters without problems to the
extent that is required when calling Window Services.

Data types from programming languages that can be passed as parameters for DIV:

The Adapter Window Services are supplied as a runtime library (OML) in a file called
SYSLIB.DWS.110 under the system administrator ID TSOS.

Compiler Data type

Binary word String

PL/1 BIN FIXED (31) CHAR (i)

COBOL PIC S9(i) COMP
(i = 5,...,9)

USAGE DISPLAY

C long char <var>

FORTRAN INT * 4
(<size>)
CHAR * i

Appendix CALL interface for DIV

U4250-J-Z125-12-76 877

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

When DIV is invoked from the Window Services, not all DIV functions are available fully.

– Windows cannot be located in a data space when using Window Services (SPID is
dropped).

– The LOCVIEW=MAP function does not exist for Window Services.
– RELEASE=YES (in the RESET function) is not supported by Window Services.
– In the case of sequential processing, instead of the option of specifying the number of

pages to be read (PFCOUNT) in advance, only the sequential access (USAGE) is
indicated for Window Services.
USAGE='RANDOM' has the same effect as PFCOUNT=0,
USAGE='SEQ' is mapped to PFCOUNT=15.

– Only the main code is available as a return code.

CALLs

A number of different parameters must be passed when the corresponding functions are
called (with CALL). The following table shows a summary of all possible values.

Field name Data type
PL/1 environment

Brief explanation

DISPOS

DMS_CODE
FILENAME
ID

LINKNAME
OFFSET
OPEN-MODE
RETURNCODE
SHARUPD-MODE
SIZE

SPAN
USAGE
WINDOW

CHAR(6);

BIN FIXED (31);
CHAR(54);
CHAR (8);

CHAR(8);
BIN FIXED (31);
CHAR(5);
BIN FIXED (31);
CHAR(4);
BIN FIXED (31);

BIN FIXED (31);
CHAR(6);
AREA(1) BASED ...;

/* for function=MAP: 'OBJECT' 'UNCHNG'
/* for function=UNMAP: 'UNCHNG' 'FRESH

/* ID of the OPEN,
/* (output parameter)

/* 'INPUT' 'INOUT' 'OUTIN'

/* 'NO' 'WEAK' 'YES'
/* file size,
/* (output param)

/* 'RANDOM' 'SEQ'
/* aligned on page
/* boundary !!

CALL interface for DIV Appendix

878 U4250-J-Z125-12-76

All CALLs for the individual DIV functions (in PL/1) are listed below. The parameters to be
specified in each CALL are shown in the individual CALLs.

DIV function OPEN

CALL DWSOPEN (LINKNAME, FILENAME, OPEN-MODE, SHARUPD-MODE,
ID, SIZE, RETURNCODE, DMS-CODE);

DIV function MAP

CALL DWSMAP (ID, OFFSET, SPAN, WINDOW, USAGE, DISPOS,
RETURNCODE);

DIV function SAVE

CALL DWSSAVE (ID, OFFSET, SPAN, SIZE, RETURNCODE);

REFRESH function (equivalent to the function 'RESET')

CALL DWSREFR (ID, OFFSET, SPAN, RETURNCODE);

DIV function UNMAP

CALL DWSUNMP (ID, OFFSET, SPAN, WINDOW, DISPOS, RETURNCODE);

DIV function CLOSE

CALL DWSCLS (ID, RETURNCODE, DMS_CODE);

Appendix Labels

U4250-J-Z125-12-76 879

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5.4 Labels

5.4.1 Volume header labels

Each volume contains at least one volume header label (VOL1) and at most nine. Volume
header labels VOL2 through VOL9 are optional.

First volume header label (VOL1)

The first volume header label identifies the volume, the owner, the access conditions, the
implementation, and the edition of the appropriate standard.

Format

Position Field name Length Contents

1 – 3 Label identifier 3 VOL

4 Label number 1 1

5 – 10 Volume identifier 6 “a” characters; permanently assigned by the owner to
identify the volume.

11 Volume access
indicator

1 “a” characters; indicates restrictions governing access to
the data on this volume.
A space indicates that there are no access restrictions for
this volume. Any other “a” character means that there are
special restrictions governing access to this volume.

BS2000:
Space or “0”: unrestricted access.
“1”: access restricted to owner.

12 – 24 Reserved for
future standard-
ization

13 Spaces

25 – 37 System code 13 “a” characters; identifies the implementation that recorded
the volume header label.

38 – 51 Owner identifier 14 “a” characters; identifies the owner of the volume.

38 – 41
42 – 49
50 – 51

4
8
2

BS2000:
Spaces
“a” characters: user ID
Spaces

52 – 79 Reserved for
future standard-
ization

28 Spaces

Labels Appendix

880 U4250-J-Z125-12-76

Optional volume header labels (VOL2 through VOL9)

The other volume header labels are optional. They are not generated by Fujitsu
implementations.

Format

5.4.2 User volume header labels (UVL1 through UVL9)

The user volume header labels are optional. If used, they must have the following format:

Format

BS2000 supplies the user with the user volume header labels.

80 Label standard
version

1 Indicates to which version of the standard the labels and
data formats on the volume conform.
4 signifies:
DIN 66029-4 (September 1987 edition)
3 signifies:
DIN 66029-3 (May 1979 edition)
2 signifies:
DIN 66029-2 (June 1976 edition)
1 signifies:
DIN 66029-1 (August 1972 edition)

Position Field name Length Contents

1 – 3 Label identifier 3 VOL

4 Label number 1 Digits 2 through 9.

5 – 80 Reserved for the
implementation

76 There are no conventions or restrictions regarding the
recording and contents of this field.

Position Field name Length Contents

1 – 3 Label identifier 3 UVL

4 Label number 1 Digits 1 through 9.

5 – 80 Reserved for the
installation

76 There are no conventions or restrictions with regard to the
recording and contents of this field.

Position Field name Length Contents

Appendix Labels

U4250-J-Z125-12-76 881

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

5.4.3 File header labels (HDR1 through HDR9)

Each file or file section contains at least two file header labels (HDR1 and HDR2) and at
most nine. File header labels HDR3 through HDR9 are optional.

First file header label (HDR1)

The first file header label identifies a file section, describes its location within the file set and
defines certain attributes of the file section.

Format

Position Field name Length Contents

1 – 3 Label identifier 3 HDR

4 Label number 1 1

5 – 21 File name 17 “a” characters; identifies the file.

22 – 27 File set identifier 6 “a” characters; identifies the file set to which this file
belongs.

28 – 31 File section
number

4 “n” characters; identifies the file section.
The number of the first file section in a file is 0001. This
number is incremented by one for every subsequent file
section in this file.

32 – 35 File sequence
number

4 “n” characters; identifies the file in the file set.
The file sequence number of the first file in a file set is
0001. This number is incremented by one for each subse-
quent file in this file set.
This field must contain the same number in all the labels
of a specific file, regardless of whether the file is contained
on one or more volumes.

36 – 39 Generation
number

4 “n” characters; distinguishes the successive extensions/
updates of the file from 0001 through 9999.

40 – 41 Version number 2 “n” characters; distinguishes the successive repetitions of
a generation.

42 – 47 Creation date 6 Spaces or “n” characters; specifies the creation date of
the file section.
A space indicates the 20th century; the digit 0 indicates
the 21st century, followed by two “n” characters (00 – 99)
indicating the year within the century, followed by three “n”
characters (001 – 366) indicating the day of the year.
The value 00000 in the last five places indicates that the
creation date is irrelevant.

Labels Appendix

882 U4250-J-Z125-12-76

48 – 53 Expiration date 6 Spaces or “n” characters; specifies the earliest date on
which the file section may be deleted.
The format is the same as for the “creation date” field
(positions 42 – 47).
The value 00000 in the last five places indicates that the
expiration date is irrelevant and that the file section is
obsolete.

54 File access
indicator

1 “a” characters; indicates restrictions with regard to access
to data in this file.
A space indicates that there are no restrictions with regard
to accessing the file.
Any other “a” character indicates that there are special
restrictions governing access to the file.

BS2000:
“1” or “3”: tape or file owner has access authorization.

55 – 60 Block count 6 000000

61 – 73 System code 13 “a” characters; identifies the implementation responsible
for creating the labels.

61 – 65
66 – 73

5
– 8

BS2000:
BS2000
Spaces

74 – 80 Reserved for later
standardization

7 Spaces

Position Field name Length Contents

Appendix Labels

U4250-J-Z125-12-76 883

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

Second file header label (HDR2)

The second file header label describes certain attributes of the file and of the implemen-
tation.

Format

Position Field name Length Contents

1 – 3 Label identifier 3 HDR

4 Label number 1 2

5 Record format 1 F, D or S, and V and U (not supported according to DIN);
specifies the format of the records in the file.

1 – F: all the records in the file have a fixed record length.
– D: all the records in the file have a variable record

length and the number of characters (as a decimal) is
specified in the record itself.

– S: aall the records are segmented.
– V: all the records have an undefined length (not sup-

ported according to DIN).
– U: all the records are variable in length and the num-

ber of characters (in binary form) is specified in the
record itself (not supported according to DIN).

6 – 10 Block length 5 n” characters; specifies the maximum number of charac-
ters per block in the file.

BS2000:
With standard identifier 1 the following contents are pos-
sible:

6 – 7 Standard blocks '80': standard block identifier.

8 – 10 n” characters: specifies the number of standard blocks.

11 – 15 Record length 5 “n” characters; identifies the record length in conjunction
with the record format (position 5).
With record format F this field contains the actual record
length.
With record formats D and V this field contains the
maximum length, including the record length word (RLW).
With record format S this field contains the maximum
record length, excluding the segment control words
(SCW).
If this field contains 00000 with record format S, it means
that the record length may be greater than 99999.
With record format U, this field contains the maximum
number of characters that may be contained in one
record.

Labels Appendix

884 U4250-J-Z125-12-76

16 – 50 Reserved for the
implementation

35 There are no conventions or restrictions with regard to the
recording and contents of this field.
BS2000 assignments up to support of DIN level 4:

16 Recording density 1 0 200 Bpi
1 556 Bpi
2 800 Bpi
3 1600 Bpi
4 6250 Bpi

17 Data position 1 Indicator in the case of track swapping:
0 no
1 yes

18 – 34 Job step identifier 17 ID assigned by task management.

35 – 36 Recording density
for tape cartridges

2 ' ' not compressed
' P ' compressed

47 – 50 File name code 4 Used only up to DIN 66029-1 if positions 6 and 7 contain
standard blocks.

51 – 52 Buffer displacement 2 “n” characters; specifies the length (in characters) of an
additional field that is placed at the beginning of each
block.

53 – 80 Reserved for future
standardization

28 Spaces

Position Field name Length Contents

Appendix Labels

U4250-J-Z125-12-76 885

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

Third file header label (HDR3)

The HDR3 label contains the complete file name, the passwords and the access mode
relevant for the file owner.

Format

Optional file header labels (HDR4 through HDR9)

The other file header labels are optional and contain implementation-specific information.

Format

Position Field name Length Contents

1 – 3 Label identifier 3 HDR

4 Label number 1 3

5 – 12 Owner identifier 8 Identifies the owner of the file (user ID).

13 – 56 File name 44 The first 44 characters of the name of the file or file gener-
ation to which the file belongs.

57 – 60 Read password 4 Specifies a password governing read access to the file.

61 – 64 Write password 4 Specifies a password governing read and write access to
the file.

65 – 68 Execute password 4 Specifies a password that must be entered in order to
execute a load module contained in the file.

69 Access mode 1 Specifies the valid access mode:
0 : read and write access permitted.
1 : only read access permitted.

70 – 80 Reserved 11 Spaces.

Position Field name Length Contents

1 – 3 Label identifier 3 HDR

4 Label number 1 Digits 4 through 9.

5 – 80 Reserved for the
implementation

76 There are no conventions or restrictions with regard to the
recording or contents of this field.

Labels Appendix

886 U4250-J-Z125-12-76

5.4.4 User file header labels (UHL)

The user file header labels are optional.

Format

BS2000 supports up to 255 user file header labels. The label number (position 4) is defined
by the user.

5.4.5 End-of-volume labels (EOV1 through EOV9)

Every file section extended on a continuation volume contains at least two end-of-volume
labels (EOV1 and EOV2) and at most nine. End-of-volume labels EOV3 through EOV9 are
optional.

First end-of-volume label (EOV1)

Format

Position Field name Length Contents

1 – 3 Label identifier 3 UHL

4 Label number 1 “a” characters; must be defined by the user.

BS2000: “b” characters.

5 – 80 Reserved for the
user

76 There are no conventions or restrictions with regard to the
recording and contents of this field.

Position Field name Length Contents

1 – 3 Label identifier 3 EOV

4 Label number 1 1

5 – 54 As for the corre-
sponding fields in
HDR1

50 As for the corresponding fields in HDR1.

55 – 60 Block count 6 “n” characters; specifies the number of data blocks that
make up the file section.

61 – 80 As for the corre-
sponding fields in
HDR1

20 As for the corresponding fields in HDR1.

Appendix Labels

U4250-J-Z125-12-76 887

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

Second end-of-volume label (EOV2)

Format

Third end-of-volume label (EOV3)

Format

Optional end-of-volume labels (EOV4 through EOV9)

The end-of-volume labels contain implementation-specific information.

Format

Position Field name Length Contents

1 – 3 Label identifier 3 EOV

4 Label number 1 2

5 – 80 As for the corre-
sponding fields in
HDR2

 76 As for the corresponding fields in HDR2.

Position Field name Length Contents

1 – 3 Label identifier 3 EOV

4 Label number 1 3

5 – 80 As for the corre-
sponding fields in
HDR3

76 As for the corresponding fields in HDR3.

Position Field name Length Contents

1 – 3 Label identifier 3 EOV

4 Label number 1 Digits 4 through 9.

5 – 80 Reserved for the
implementation

76 There are no conventions or restrictions with regard to the
recording and contents of this field.

Labels Appendix

888 U4250-J-Z125-12-76

5.4.6 End-of-file labels (EOF1 through EOF9)

Each file contains at least two end-of-file labels (EOF1 and EOF2) and at most nine.
End-of-file labels EOF3 through EOF9 are optional.

First end-of-file label (EOF1)

Format

Second end-of-file label (EOF2)

Format

Position Field name Length Contents

1 – 3 Label identifier 3 EOF

4 Label number 1 1

5 – 54 As for the corre-
sponding fields in
HDR1

50 As for the corresponding fields in HDR1.

55 – 60 Block count 6 “n” characters; specifies the number of data blocks that
make up the file section.

61 – 80 As for the corre-
sponding fields in
HDR1

20 As for the corresponding fields in HDR1.

Position Field name Length Contents

1 – 3 Label identifier 3 EOF

4 Label number 1 2

5 – 80 As for the corre-
sponding fields in
HDR2

76 As for the corresponding fields in HDR2.

Appendix Labels

U4250-J-Z125-12-76 889

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

Third end-of-file label (EOF3)

Format

Optional end-of-file labels (EOF4 through EOF9)

The other end-of-file labels are optional and contain implementation-specific information.

Format

5.4.7 User file trailer labels (UTL)

The user file trailer labels are optional.

Format

BS2000 supports up to 255 user file trailer labels. The label numbers (position 4) are
defined by the user.

Position Field name Length Contents

1 – 3 Label identifier 3 EOF

4 Label number 1 3

5 – 80 As for the corre-
sponding fields in
HDR3

76 As for the corresponding fields in HDR3.

Position Field name Length Contents

1 – 3 Label identifier 3 EOF

4 Label number 1 Digits 4 through 9.

5 – 80 Reserved for the
implementation

76 There are no conventions or restrictions with regard to the
recording and contents of this field.

Position Field name Length Contents

1 – 3 Label identifier 3 UTL

4 Label number 1 “a” characters; must be defined by the user.

BS2000: “b” characters.

5 – 80 Reserved for the
user

76 There are no conventions or restrictions with regard to the
recording and contents of this field.

Labels Appendix

890 U4250-J-Z125-12-76

5.4.8 Processing of label fields

Requirements for a sending system

Files

The records of the files must be passed to the implementation by the application program.

Labels

The installation must transfer the recording information required in each of the label fields
listed below to the implementation; otherwise the implementation must supply this infor-
mation.

For each volume in a volume set:

– volume identifier (VOL1, positions 5 through 10)
– volume access indicator (VOL1, position 11).

For each file in a file set:

– file access indicator (HDR1, position 54)

If the implementation permits the installation to supply the information to be processed in
each of the label fields listed below, the implementation must process this information. If the
installation does not supply this information, it must be supplied by the implementation.

For each volume in a volume set:

– owner identifier (VOL1, positions 38 through 51)

For each file in a file set:

– file set identifier (HDR1, positions 22 through 27)

The implementation must permit the application program to supply the information to be
processed in each of the label fields listed below. If the application program does not supply
this information, the implementation must supply the information for the appropriate fields.

For each file in a file set:

– file name (HDR1, positions 5 through 21)
– record format (HDR2, position 5)
– block length (HDR2, positions 6 through 10)
– record length (HDR2, positions 11 through 15)

Appendix Labels

U4250-J-Z125-12-76 891

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

If the implementation permits the application program to supply the information to be
processed in each of the label fields listed below, the implementation must process this
information. If the application program does not supply this information, it must be supplied
by the implementation.

For each file in a file set:

– generation number (HDR1, positions 36 through 39)
– version number (HDR1, positions 40 and 41)

For each file section of a file set:

– creation date (HDR1, positions 42 through 47)
– expiration date (HDR1, positions 48 through 53)

If the implementation is in a position to process a set of installation volume header labels
(UVL), the implementation must permit the installation to supply the information to be
processed from the label fields listed below. Processing of the corresponding labels is not
requested if the installation does not supply the information.

For each label from a set of installation volume header labels recorded on each volume in
a volume set:

– reserved for the installation (UVL, positions 5 through 80)

If the implementation is in a position to process a set of user file header labels (UHL) or of
user file trailer labels (UTL), the implementation must permit the application program to
supply the information to be entered in the label fields listed below for a label set.
Processing of the corresponding labels is not requested if the application program does not
supply the information.

For each label in a set of user file header/trailer labels for a magnetic tape:

– label number (UHL/UTL, position 4)
– reserved for the user (UHL/UTL, positions 5 through 80)

The implementation can impose the following restrictions on the user with regard to the
record length (HDR2, positions 11 through 15):

If the implementation is processing segmented records, it can define a maximum record
length. This should not be less than the maximum permissible block length minus the length
of the buffer displacement field and the length of the segment control word (SCW).

If the implementation is processing variable-length records, it can define a maximum record
length corresponding to the maximum block length minus the length of the buffer
displacement field and the length of the record length word (RLW).

Labels Appendix

892 U4250-J-Z125-12-76

Requirements for a receiving system

Files

The implementation must supply the application program with the contents of the records
and the length of each record. The segment control word (SCW) and the record length word
(RLW) are not part of the record.

Labels

The implementation must permit the user to supply enough information to enable him/her
to select both the requested files and the volume on which they are recorded.

The implementation must supply the installation with the information contained in the
following label fields:

For each volume in a volume set:

– volume identifier (VOL1, positions 5 through 10)
– volume access indicator (VOL1, position 11)

For each file in a file set:

– file access indicator (HDR1, position 54)

The implementation must supply the application program with the information contained in
the following label fields:

For each file in a file set:

– file name (HDR1, positions 5 through 21)
– record format (HDR2, position 5)
– block length (HDR2, positions 6 through 10)
– record length (HDR2, positions 11 through 15)

The implementation need not supply the user with the information contained in the following
label fields:

For each volume in a volume set:

– owner identifier (VOL1, positions 38 through 51)

For each file in a file set:

– file set identifier (HDR1, positions 22 through 27)
– generation number (HDR1, positions 36 through 39)
– version number (HDR1, positions 40 and 41)

For each file section of a file set:

– creation date (HDR1, positions 42 through 47)
– expiration date (HDR1, positions 48 through 53)

Appendix Labels

U4250-J-Z125-12-76 893

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

If the implementation is in a position to supply the installation with the information recorded
in the set of installation volume header labels (UVL), the information contained in the
following label fields must be provided:

For each label of a set of installation volume header labels:

– reserved for the installation (UVL, positions 5 through 80)

If the implementation is in a position to supply the user with the information recorded in the
set of user file header labels (UHL) or user file trailer labels (UTL), the information contained
in the following label fields must be supplied:

– label number (UHL/UTL, position 4)
– reserved for the user (UHL/UTL, positions 5 through 80)

DMS dummy sections (DSECTs) Appendix

894 U4250-J-Z125-12-76

5.5 DMS dummy sections (DSECTs)

In addition to the MF operand, DSECTs are available to the user program for certain
operand lists and for dummy sections of DMS tables, FCB entries and catalog entries. The
names and sizes of the individual fields are defined, but the order in which the parts appear
may be subject to changes.

Users interested in the resolution of a specific dummy section can use a macro with the
following format:

For the meanings of “macroname” see table on the following page.

Default value: no DSECT is generated; the letter I is used as the prefix.

D
Specifies that the macro is being used to generate a DSECT.

prefix
Prefix (1 character) to be placed in front of all names in the DSECT.

*
Specifies that no prefix is to be used.

PARMOD
The PARMOD operand can be used with the DSECT macros IDFCB, IDMCB, IDFST,
IDPPL and DMARD. It specifies which operand list of the DSECT is to be generated.

Default value: the value for the generation mode defined by the GPARMOD macro
or preset in the Assembler.

= 24
The (old) 24-bit addressing-mode-dependent operand list is generated.

= 31
The operand list which is independent of the addressing mode is generated. The
symbolic names may differ from those in the PARMOD=24 operand list.

Operation Operands

macroname

[D][,
prefix

*  
 
 

][,PARMOD=
24

31 
 
 

]

Appendix DMS dummy sections (DSECTs)

U4250-J-Z125-12-76 895

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
a

y
20

16
 S

ta
nd

 1
5:

13
.1

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

a
k_

e.
k0

5

Programming notes

– The generation mode can be set globally for all macros in a program with the
GPARMOD macro. The PARMOD operand in the DMS macros overrides the default
setting made with the GPARMOD macro or (if GPARMOD is not used) preset in the
Assembler.

– All PARMOD specifications for an operand list (e.g. MF=E/L/D and the corresponding
DSECT macros) and for a file must contain the same value.

DMS dummy program sections (DSECTs) for users:

Macro
name

DSECT description

IDBPL BTAM operand list

IDCAT CATALOG (CATAL) operand list (old format)

IDCE Catalog entry

IDCEG Catalog entry, expansion for file generation groups

IDCEX Catalog entry expansion

IDCHA CHANGE (CHNGE) operand list

IDCOP COPY macro operand list

IDECB UPAM event control block

IDEE Catalog entry, extent list

IDEMS DMS error messages (see section “DMS error codes” on page 871)

IDERS ERASE macro operand list (for VERSION=0)

IDFCB FCB (TU section; valid for all FCB formats)

IDFCBE FCB extension (for 24-bit TU FCB)

IDFST FSTAT macro operand list

DMAIMP IMPORT macro operand list (old format)

IDMCB EAM control block

IDOST Information on open files (see the OSTAT macro, page 753)

IDPFL FILE macro operand list (old format)

IDPFX FILE macro operand list extension (old format)

IDPPL UPAM operand list

IDREL REL macro (RELEASE) operand list

IDVT Volume label entry (VT = volume table)

IDVRF VERIF macro operand list

DMADR RDTFT output format (if LINK operand specified) (old format)

DMARD RDTFT macro operand list (old format)

Formats of replaced macros Appendix

896 U4250-J-Z125-12-76

5.6 Formats of replaced macros

The following macros have been replaced by new ones. Although the old macros are still
supported for reasons of compatibility, their functionality will not be extended. The formats
of the old macros are shown below. The operand descriptions are the same as those of the
new macros (see earlier).

COPY – Copy file

The COPY macro has been replaced by COPFILE. For a description of the new COPFILE
macro and the corresponding COPY operands, see page 218.

REL – Delete TFT entry

The REL macro has been replaced by RELTFT. For a description of the new RELTFT macro
and the corresponding REL operands, see page 782.

Operation Operands

COPY pathname1,pathname2

Operation Operands

REL

name[,KEEP][,UNLOAD][,MF=L]

[,SAME][,WRITE=
REPLACE

NEW 
 
 

][,BLKCTRL=
IGNORE

CHECK 
 
 

]

[,IGNORE=

SOURCE

TARGET

(SOURCE,TARGET) 
 
 
 
 

]

MF=(E,
addr

(r) 
 
 

)

U4250-J-Z125-12-76 897

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
ay

 2
0

16

S
ta

nd
 1

5:
18

.2
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.m
ix

Glossary

This glossary provides short definitions of some of the terms used in this manual.

ACL (Access Control List)
File protection with an ACL (Access Control List) has not been supported since
SECOS V4.0. The file attribute ACL is still contained in the catalog entry, but
normally it contains the value NO (no ACL protection)..
If the case should occur that a file has ACL protection (this may be possible fol-
lowing recovery from a long-term archive), he file cannot be accessed. In this
case only systems support (TSOS privilege) can enable access (e.g. by creat-
ing an accessible copy with /COPY-FILE and IGNORE-PROTECTION or by
resetting the ACL (e.g. by creating an accessible copy with /COPY-FILE and
IGNORE-PROTECTION or by resetting the ACL indicator in the catalog entry
with the CATAL macro).

access method
A conventional data management technique which defines, for the user, the
data organization and the method of data transfer between I/O devices and the
main memory of the system. Access methods supported by DMS are:
– EAM (Evanescent Access Method)
– SAM (Sequential Access Method)
– ISAM (Indexed Sequential Access Method)
– UPAM (User Primary Access Method)
– BTAM (Basic Tape Access Method)

Alias Catalog Service (ACS)
Files and job variables can be addressed by means of alias names and stored
in special catalogs, the alias catalogs, together with their assignment to the real
file/JV. The Alias Catalog Service (ACS) incorporates three basic functions:
Alias name definition, catid insertion for temporary spool files and prefix inser-
tion.

alphanumeric
The alphanumeric characters consist of alphabetic and numeric characters, i.e.
the letters A-Z, the special characters $@#, and the digits 0-9.

Glossary

898 U4250-J-Z125-12-76

batch mode
An operating mode in which a job is started with an ENTER-JOB or ENTER-
PROCEDURE command; in contrast to interactive mode, the sequence of oper-
ations is predefined and stored in an ENTER file (started with ENTER-JOB) or
in a procedure file (started with ENTER-PROCEDURE).

Batch processing
↑ Batch mode

Block
↑ PAM page; ↑ data block

blocked record
A record in a file in which each data block may contain several records.

BS2000 file
Is a file which is only created and processed by BS2000. BS2000 files on Net-
Storage (FILE-TYPE=BS2000) have been supported since BS2000/OSD-BC
V9.0. They are located directly on a Net-Storage volume. Open systems may
only access them in read mode.

buffer
A contiguous area in main memory into which data is written and from which
data is read.

CALL procedure
Sequence of commands/statements executed within a job and called by means
of the CALL-PROCEDURE command. For further details see the manual “Com-
mands” [3].

catalog ID
The identifier of a pubset (see pubset ID); it is specified in a full file or path name
in the form :catid:.

class 1 memory
That part of virtual user memory which is occupied by the main memory-resi-
dent modules of the Executive. All class 1 pages are marked as privileged and
non-pageable. The pages are not mapped on paging memory. The pages
remain in main memory throughout the session.

class 5 memory
That part of virtual user memory which contains the pageable areas allocated
dynamically by the Executive when needed for a user job.

Glossary

U4250-J-Z125-12-76 899

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
ay

 2
0

16

S
ta

nd
 1

5:
18

.2
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.m
ix

class 6 memory
That part of virtual user memory containing the user programs; space is allo-
cated dynamically by the Executive.

data block
A block which contains one or more records of a file.

double tape mark
Two directly adjacent tape marks which indicate the logical end-of-tape. Two
adjacent tape marks may also occur if the tape contains an empty file or an
empty file section; in this case, they are not regarded as a double tape mark,
but as two single tape marks.
“Empty” in this sense means that there are no data blocks between the tape
marks before the file header labels and after the trailer labels.

FCB (file control block)
A file control block which contains all the information abuot a file which is
needed for file processing.

file
Related records are grouped together in a named entity called a file. Typical
examples of files are: conventional input and output data of programs: load
module and object module libraries; text information which is created and pro-
cessed with a file editor.

file link name
A name with up to 8 characters which establishes the link between the file con-
trol block and the file via the task file table.

file section
That part of a file which is stored on a single tape.

file set
A set of files recorded sequentially on one or more tapes. There must be no sec-
tions of other files between the sections of a file.

first in – first out (FIFO)
Queue structure according to which information is processed in the order in
which it is input (in contrast to last in – first out, LIFO).

fixed-length record
A record in a file in which all records are declared as having the same length;
no record length information is needed within the file.

Glossary

900 U4250-J-Z125-12-76

foreign file
A foreign file is a file on a private volume or on a Net-Storage volume which is
not cataloged on a pubset.

interactive mode
The operating mode in which a job is initiated at a (remote) terminal and exe-
cuted; the sequence of processing is not predefined.

job
The totality of all operational sequences between the commands SET-LOGON-
PARAMETERS or LOGON and EXIT-JOB or LOGOFF. For this definition, it is
immaterial whether the job is already fully defined when it is submitted (batch
mode) or whether the individual steps are defined in the course of execution
(dialog mode).

label
A record at the beginning or end of a file or tape which is used to identify,
describe and/or delimit the tape or file. A label is not regarded as part of the file.
Each label is recorded separately in its own block (label block).

label group
An uninterrupted sequence of label sets which delimit a tape, a file section or a
file.

label handling routine
A series of statements for the processing of labels.

label identifier
A three-character word which is recorded as part of the label and identifies this
label.

label set
An uninterrupted sequence of labels with the same label identifier.

last-byte pointer (LBP)
Pointer to the last valid byte of the last logical block of a PAM file.

last-page pointer (LPP)
Pointer to the last PAM page occupied by a file. In the catalog entry it corre-
sponds to the highest-used page.

Glossary

U4250-J-Z125-12-76 901

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
ay

 2
0

16

S
ta

nd
 1

5:
18

.2
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.m
ix

locate mode
In locate mode, the user requests the address of the current record, which is
stored in a buffer area. The user is responsible for the data transfer from and to
the buffer.

logical block number (LBN)
Sequence number of a block in a file.

move mode
In move mode, the user specifies the position of the record in his program. The
system is responsible for data transfer from and to the buffer.

net client
Implements access to Net-Storage for the operating system using it.
In BS2000 the net client, together with the BS2000 subsystem ONETSTOR,
transforms the BS2000 file accesses to corresponding UNIX file accesses and
executes them on the net server using NFS.
The net client for SUs /390 and S servers is the HNC, and for SUs x86 and SQ
servers the X2000 carrier system.

net server
A file server in the worldwide computer network which provides storage space
(Network Attached Storage, NAS) for use by other servers and offers corre-
sponding file server services.

Net-Storage
Storage space provided by a net server in the computer network and storage
space released for use by foreign servers. Net-Storage can be a file system or
also just a node in the net server’s file system.

Net-Storage file
Is a file which is created on a Net-Storage volume. On Net-Storage a distinction
is made between the two file types BS2000 file and node file.

Net-Storage volume
Net-Storage volumes represent Net-Storage in BS2000 which provides sys-
tems support as an enhancement of data pubsets.
Net-Storage volumes are addressed by means of their Volume Serial Number
(VSN) and the volume type NETSTOR. In the released file system of the net
server the VSN of the Net-Storage volume corresponds to the directory contain-
ing the user files and metadata.

Glossary

902 U4250-J-Z125-12-76

NFS (Network File System)
BS2000 software product that permits distributed data storage in a hetero-
geneous computer network. It enables users to access remote files as if they
were residing on their local computer.
NFS is thus used for connecting systems. Furthermore, the automatic and reli-
able BS2000 data saving functions can be made available for the files of such
systems via NFS.

node file
Is a Net-Storage file (FILE-TYPE=NODE-FILE) which can be created and pro-
cessed by both BS2000 and open systems. Node files are supported in
BS2000 OSD/BC V10.0 and higher. They are located on a Net-Storage volume
in a user-specific directory (name of the user ID), and the file names comply with
the BS2000 naming conventions.

null file
A file which is logically empty, i.e. a file which is cataloged and to which the sys-
tem has allocated space, but contains no data.

PAM page
A storage unit of 2048 bytes on disk with or without (depending on the file type)
a PAM key; also called a “standard block” for tape files with a PAM key.

privileged mode/program
All parts of the operating system that are not executed in the TU processing
state
(↑ function states).

procedure/procedure file
A file which contains a predefined sequence of commands or statements used
for program input. Procedures are started with CALL-PROCEDURE or ENTER-
PROCEDURE. Only if the file contains an ENTER job will it be started with
ENTER-JOB. See the “Commands” manual [3] for details.

public volume set (PVS)
Term previously used for: pubset; ↑ pubset

pubset
A set of disks designated as public. MPVS systems work with several mutually
independent pubsets.

Glossary

U4250-J-Z125-12-76 903

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
ay

 2
0

16

S
ta

nd
 1

5:
18

.2
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.m
ix

pubset Id
The pubset identifier. If the volume serial number of a public volume begins with
the three characters “PUB”, the pubset Id is the fourth character; if the volume
serial number contains a period, the pubset Id is formed by the characters pre-
ceding the period. In the path name the pubset Id is specified in the format
:catid: (↑”catid”).

PVS Id
↑ pubset-Id

record
A group of data items which are treated as a logical unit.

record format
The definition of the length and segmentation of records for a file.
Record format V: if a format V tape is written with non-EBCDIC code, the length
is specified in hexadecimal.
Record format D: if a format D tape is written with ISO 7-bit code, the length is
specified as a four-digit decimal number.

shareable file
A file which is cataloged with the USER-ACCESS=ALL-USERS. A shareable
file can be accessed from all user IDs provided the other protection attributes
(e.g. file passwords) of the file permit this.

spoolout
Automatic spoolout: automatic output of the contents of system file SYSLST to
a printer or sending it by email at LOGOFF time (EXIT-JOB or LOGOFF)

SYSFILE environment
↑ system files; the SYSFILE environment consists of all the system files
assigned to a job.

Glossary

904 U4250-J-Z125-12-76

system files
System input/output files that are assigned to a job.
The (default) file names SYSDTA, SYSSTMT, SYSCMD, SYSIPT, SYSLST,
SYSLST01, SYSLST02, ..., SYSLST99, SYSOPT and SYSOUT refer to the
(system) files for data and command input to the operating system or for data
output by the operating system. Each of these files is created by the task and
specifies predefined I/O areas.
The user can cancel the primary assignment and assign the (default) file names
to his/her own cataloged files or compound S variables (when the software
product SDFG-P is used).
For detailed information on system files, see the “Commands” manual [3].

tape (volume)
An exchangeable unit of the data storage medium magnetic tape or magnetic
tape cartridge. A tape may contain all or part of one file, several files and/or one
or more file sections.

tape mark
A tape block which marks the boundary between data blocks and the tape label
groups and between certain label groups. The format of the tape mark is defined
in the related standards for magnetic tapes.

task sequence number (TSN)
The sequential number assigned by the system to the task (or job) with which
the user can identify a task in some commands.

task file table (TFT)
A table created using the LINK-NAME operand of the ADD-FILE-LINK com-
mand and from which the file and processing attributes are taken and entered
in the file control block when a file is opened.

tape set table (TST)
A table which shows the tapes requested for a job (together with the TFT).

unblocked record
A record in a file in which each data block may contain only one record.

Glossary

U4250-J-Z125-12-76 905

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4

. M
ay

 2
0

16

S
ta

nd
 1

5:
18

.2
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
03

11
0_

dv
sm

a
kr

o\
en

_p
ro

d
\d

vs
m

ak
_e

.m
ix

variable-length record
A record in a file in which the records may have different lengths. The record
length must be specified in the first word in each record. This record length field
is included in the length of the record; it is 4 bytes long and contains the record
length left-aligned in decimal or hexadecimal.

volume serial number (VSN)
A six-character string assigned to the volume when it is initialized. It is kept in
the standard volume label and is used to identify the volume. The VSNs of pub-
lic volumes can be recognized by the fact that they either begin with the three
characters “PUB” (the fourth character is then the pubset ID or in SM pubsets
the volume set ID) or they contain a period (the characters before the period
then form the pubset ID or the volume set ID).

volume set
The tape or tapes on which the files of a file set are stored.

volume sequence number (VSEQ)
The number of a file section in a multivolume file.

volume table of contents (VTOC)
The file directory in the F1 label of a private disk or on a Net-Storage volume.

Glossary

906 U4250-J-Z125-12-76

U4250-J-Z125-12-76 907

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

7
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_
e.

lit

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

[1] BS2000 OSD/BC
Introductory Guide to DMS
User Guide

[2] BS2000 OSD/BC
Executive Macros
User Guide

[3] BS2000 OSD/BC
Commands
User Guide

[4] SPOOL (BS2000)
User Guide

[5] DAB (BS2000)
Disk Access Buffer
User Guide

[6] RFA (BS2000)
Remote File Access
User Guide

[7] BS2000 OSD/BC
Introduction to System Administration
User Guide

[8] SECOS (BS2000)
Security Control System
User Guide

[9] ARCHIVE (BS2000)
User Guide

http://manuals.ts.fujitsu.com

Related publications

908 U4250-J-Z125-12-76

[10] HSMS (BS2000)
Hierarchical Storage Management System (Volume 1 and 2)
User Guide

[11] HIPLEX MSCF (BS2000)
BS2000 Processor Networks
User Guide

[12] Introductory Guide to XS Programming
(for Assembler Programmers) (BS2000)
User Guide

[13] PERCON (BS2000)
User Guide

[14] BS2000 OSD/BC
Utility Routines
User Guide

[15] DRV (BS2000)
Dual Recording by Volume
User Guide

[16] BS2000 OSD/BC
System Installation
User Guide

[17] SDF-A (BS2000)
User Guide

[18] SDF-P (BS2000)
Programming in the Command Language
User Guide

[19] BS2000 OSD/BC
Files and Volumes Larger than 32 GB
User Guide

[20] RSO (BS2000)
Remote SPOOL Output
User Guide

[21] JV (BS2000)
Job variables
User Guide

Related publications

U4250-J-Z125-12-76 909

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

32
us

 fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

03
.2

0
07

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
0

7
4.

 M
a

y
20

16
 S

ta
nd

 1
1:

41
.5

7
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
11

0_
dv

sm
a

kr
o\

en
_p

ro
d

\d
vs

m
ak

_
e.

lit

[22] XHCS (BS2000)
8-Bit Code Processing in BS2000
User Guide

[23] BS2000 OSD/BC
System-Managed Storage
User Guide

[24] FUJITSU Server BS2000 SE Series
Operation and Administration
User Guide

[25] openCRYPT (BS2000)
Security with Cryptography
User Guide

[26] VM2000
Virtual Maschine System
User Guide

[27] MAREN
Volume 1: Basics of MTC Management
User Guide

[28] MAREN
Volume 2: User Interfaces
User Guide

Related publications

910 U4250-J-Z125-12-76

U4250-J-Z125-12-76 911

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3.

 M
a

y
2

01
6

 S
ta

n
d

17
:0

2
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

1
00

\1
30

3
11

0
_d

vs
m

ak
ro

\e
n_

p
ro

d\
dv

sm
a

k_
e.

si
x

Index

* file erasing 346

A
abnormal termination bit 124
absolute allocation 496
access method

block-oriented 24, 25, 89
define 423, 479
DIV 39
FASTPAM 61
record-oriented 25

access type checking 142
access, object-oriented 39
ACL 897
action macros 23
ADDPLNK macro 113
ALET 562
ARCHIVE backup level 611
associative access 95
AUDIT monitoring 144
automatic tape swap 415
availability 464

B
BACKUP operand 146
base generation 148
BASE operand 148
basic tape access method, see BTAM
basic task (eventing) 106
BASIC-ACL 612
binary large objects (BLOBS) 39
BLOBS 39
block filling 77
block format (BTAM) 38

block limit 415, 465
block number

EAM 53
logical 53, 763
SAM 86

block size 417, 467
block splitting 75
block-oriented access method 24, 25, 89
block-oriented tape processing 24, 35
blocking factor 417, 467
blocks

close, see RELSE 780
fixed-length 38
undefined-length 38
variable-length 38

bounce mail 738
BS2000 file 898
BS2000 file (file format) 623
BTAM (Basic Tape Access Method) 24

action macro 117
block format 38
control codes 35
format 38
macro 23, 35, 117
operand list 694
operation codes 122
programming notes 35, 124
record format 38
return codes 129
synchronization 124

BUFOFF 420, 469
BYPASS operand 470

Index

912 U4250-J-Z125-12-76

C
CALL interface for DIV 876
CATAL macro 130
catalog entry

create, see CATAL 130
FILE macro 452

catalog information
request 596
see FSTAT 596

chain PAM macros 756
chained I/O 55, 96, 420, 471

BTAM 120
EAM 55, 57

chained parameter lists (FPAMACC) 534
check dialog 149
check operations (EAM) 56
checkpoints 421, 471
CHKFAR macro 196
CHNGE macro 204
close

block (RELSE macro) 780
file (CLOSE macro) 205

CLOSE macro 205
code

convert (tape file) 473
convert (tape) 440, 500

code translation (tape processing) 421
compatibility matrix (single system)

FASTPAM 42, 69, 93
COMPFIL (macro) 209
concurrent access, see shared-update processing
concurrent copy locks 852
control block 30

eventing, see FECBs 106
controlling file processing 19, 452
COPFILE macro 218
copy

file 218
file generation 218
file generation group 218

COPY macro 896
CREAIX macro 233
create

disk files (UPAM) 95

FCB addresses (FCAB macro) 449
ISAM pool (CREPOOL macro) 241
variable operand areas for FILE macros 521

create node file 487
creation date 617
CREPOOL macro 241
crypto password 318
current processing state 641
current record counter 674
current tape position, determine 122

D
data block, close, see RELSE 780
data consistency

FASTPAM 70
following a system crash (FASTPAM) 70
in multiuser mode (FASTPAM) 70

data destruction 151, 347, 475
data in virtual, see DIV
data protection 20, 21
data security 20, 21
data space 61, 241, 257, 827
date of last file access 629
date specifications 864
DECFILE (macro) 249
default protection with the CATAL macro 130
define

access method 423
exit address list (EXLST macro) 391
file attributes (FILE macro) 452
file control block, see FCB 407
I/O area (IOAREA1 operand) 426
label type (LABEL operand) 428
OPEN mode (OPEN operand) 431

DELAIX macro 253
delete

file generations (POS operand) 373
ISAM pool (DELPOOL macro) 257
pool link name (REMPLNK macro) 787
record 314

deletion date 150, 355, 618
DELETION-DATE 355, 618
DELPOOL macro 257
destruction of data 151

Index

U4250-J-Z125-12-76 913

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3.

 M
a

y
2

01
6

 S
ta

n
d

17
:0

2
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

1
00

\1
30

3
11

0
_d

vs
m

ak
ro

\e
n_

p
ro

d\
dv

sm
a

k_
e.

si
x

device management 22
differences between UPAM and FASTPAM 71
disk file

random access 89
UPAM 95

disks (K-ISAM/NK-ISAM) 48
DIV (Data In Virtual) 24, 39

access method 39
CLOSE 295
closing windows 47
concept 39
defining windows 44
disabling windows 47
DIVPID 261
DIVPSIZE 262
macros 24
MAP 273
OPEN 265
opening a file 40
parameter list 39, 261
RESET 285
SAVE 280
undoing modifications in a window 46
UNMAP 291
writing back to disk file 45

DIV macro
CALL interface 876
example 305
format overview 263
function CLOSE 295
function MAP 273
function OPEN 265
function overview 264
function RESET 285
function SAVE 280
function UNMAP 291
parameter list (layout) 301
return codes 297

DIVPID 261
DIVPSIZE 262
DMCOPY11/22 (file link name) 220
DMS

dummy sections 894
error codes 871

tables 28, 30
temporary files 131

DSECT 894
create 28
generate for FCB 695
generate for file control block (FCB) 695

dummy file 76
define 464
delete 346
ISAM 76

duplicate keys (ISAM) 422

E
EAM (Evanescent Access Method) 24, 48

block number 53
check operations 56
control block 48
macro 24, 312
object module file 60
operation code 50
option byte 53
return code 52
sense byte 54

ELIM macro 314
eliminate record (ELIM macro) 314
email address 738
ENCFILE (macro) 316
encrypting file content 316
encryption 316
end of file, logical 81
end-of-file processing 96, 394
environment, disable 582
EOF (End-Of-File) labels 888
EOV (End Of Volume) 415

labels 886
erase

FGGs, see ERASE 322
file generation groups, see ERASE 322
files (ERASE macro) 322

ERASE macro 322
variations in versions 387

error analysis aids 875
error message codes in DMS 871
error routine, see EXRTN 405

Index

914 U4250-J-Z125-12-76

evaluate status bytes (NDWERINF macro) 748
evanescent access method, see EAM
event-driven processing 27, 105
eventing 105

control block 106
FASTPAM 64
FECBs 106
FPAMACC 533

exchange levels (labels) 447
execute password 157
executive flag byte 107, 124
exit address 423
exit list, create, see EXLST 391
EXLST exit 205, 405
EXLST macro 391
expiration date 355, 618, 620
export file (CATALOG operand) 346
EXRTN macro 405
extents 621

F
fast primary access method, see FASTPAM
FASTPAM (Fast Primary Access Method) 25, 61

authorization 65
CLOSE 64, 576
close PAM file 576
compatibility matrix 69
compatibility matrix (single system) 42, 93
create environment 551
create I/O area pool 560
data consistency 70
data consistency following a system crash 70
data consistency in multiuser mode 70
DISABLE ENVIRONMENT 582
disable environment 582
disable I/O area pool 579
DISABLE IOAREA POOL 579
DISENV 65, 582
DISIPO 65, 579
ENABLE ENVIRONMENT 551
ENABLE IOAREA-POOL 560
ENAENV 62, 551
ENAIPO 63, 560
environment 62

environment, create 551
eventing 64
file format 65
fix pages 66
formulate file accesses 525
FPAMACC (formulating file accesses) 525
FPAMACC macro 525
FPAMSRV macro 67, 546
functional differences (UPAM and

FASTPAM) 71
functions 62
I/O area 63
introduction 61
locking mechanism 68
macro function 67
macros 25
management functions 546
memory area, making resident 66
multiuser operation 41, 68, 92
OPEN 63, 567
open PAM file 567
parameter list 61
remove link to environment 582
remove link to I/O area pool 579
resident FASTPAM environment 66
resident FASTPAM IO area pool 66
shared-update processing 41, 68, 92
shared-update processing (multisystem) 69
shared-update processing (single

system) 68
work area 66

FCB addresses, create 449
FCB extension 696

DSECT, see IDFCBE 696
FCB macro 407

programming notes 443
FCB modification 444
FCB retrieval address 86
FCB structure 443
FCBAD macro 449
FCBE, provide with symbolic names, see IDFCBE

macro 696
FECB (file event control block) 106, 756

Index

U4250-J-Z125-12-76 915

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3.

 M
a

y
2

01
6

 S
ta

n
d

17
:0

2
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

1
00

\1
30

3
11

0
_d

vs
m

ak
ro

\e
n_

p
ro

d\
dv

sm
a

k_
e.

si
x

FEOV macro 450
BTAM 450
SAM 450

file
close 205
compare 209
copy 18, 218
create 18
create node file 487
create sequentially 766
current processing state 641
delete 18
deletion date 355, 618
encrypting content 316
extend sequentially 766
file format on Net-Storage 487
import 512, 707
list on Snapset 722
logically erase 347
performance attribute 626
position to any record 810
position to beginning 810
position to end 810
recover, see VERIF 850
restore from Snapset 792
send by email 738
temporary 24
with nonstandard blocks 25
with standard blocks 25

file access 23
check rights 196
resident system memory 546
virtual address space 261

file attributes, define, see FILE macro 452
file catalog 30
file catalog, see CATAL 130
file comparison 209
file control block

create, see FCB macro 407
define, see FCB macro 407

file creation date 617
file event control block 106
file export 346, 347
file format 359, 415, 465, 623

file format (BS2000 or node file) 359
file format NODE-FILE 487
file generation

copy, see COPFILE 218
delete 322

file generation group 132
copy, see COPFILE 218
delete 322

file import (node file) 697
file link name 19, 430, 453, 483

change 204
COPFILE 220
DMCOPY11 220
DMCOPY22 220

FILE macro 452
function overview 456
variations in versions 518

file maintenance 18
file name (EAM) 53
file processing

controlling, see DIV 722, 730, 738, 792, 802
file processing, control 19, 23

see DIV 261
see FASTPAM 546
see FILE 452

file protection 20
file section number 506
file security attributes, output 614
FILELST macro 521
flags in the ISAM index 679
foreign files on tape 220
FPAMACC macro 525

access FASTPAM files 525
CHAIN 527
chained parameter lists 534
DRV status 532
error flags 535
eventing 532, 533
file processing function 525
parameter list 540
parameter list chaining 527
programming example 543
return codes 535

Index

916 U4250-J-Z125-12-76

FPAMSRV macro 546
function overview 550, 551
overview of functions 551
parameter list 546
return codes 585

FSEQ number 425, 480
FST32GB (system parameter) 662
FSTAT

programming notes 650
FSTAT indicator 663
FSTAT macro 596, 660

output structures 653
programming notes 651
variations in versions 664

functional differences (UPAM and FASTPAM) 71

G
generate dummy section (IDPPL macro) 706
get

record “reverse” (GETR macro) 691
record with specified key (GETKY

macro) 688
GET macro 674

ISAM 674
return modes 674
SAM 674
special features for ISAM files 675
special features for SAM files 675

GETFL macro 679
GETKY macro 688
GETR macro 691
GUARDS 625

H
hardware error 395
HDR1 label 881
HDR2 label 883
HDR3 label 885
header labels 879
HSMS backup level 611

I
I/O

chained 96
overlapping 57, 433

I/O area 446
define 446
ISAM 77

I/O area pool, disable 579
IDBPL macro 694
IDFCB macro 695
IDFCBE macro 696
IDMCB macro 50
IDPPL macro 706
IDPPLPAM macro 706
IMPNFIL (macro) 697
IMPORT (macro) 697
IMPORT macro 707
importing

files 512, 707
volumes 707

incompatibility, semantic (OPEN) 751
index/data separation 474
indexed-sequential access method, see ISAM
indicator (FSTAT) 663
input buffer, release 205
input/output

chained 53, 420, 471
overlapping 488

interblock gap, create 120
IOAREA1/2 operand 446
IOPERF, see FILE macro 481
IOREG operand (locate mode) 427
ISAM (Indexed-Sequential Access Method) 26,

72
block filling, PAD value 76
dummy file 76
duplicate keys 422, 478
I/O area in the user program 77
index/data separation 395
information on open file, see OSTAT 753
key error 400
key length 427
key position 428, 482
logical flag 431, 485

Index

U4250-J-Z125-12-76 917

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3.

 M
a

y
2

01
6

 S
ta

n
d

17
:0

2
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

1
00

\1
30

3
11

0
_d

vs
m

ak
ro

\e
n_

p
ro

d\
dv

sm
a

k_
e.

si
x

ISAM (Indexed-Sequential Access Method)
macros 26, 73
OPEN mode 74
operating modes 74
PAD value 76, 433
repeat macro, see RETRY 790
value flag 441, 502

ISAM file
locate mode 74
move mode 74
open mode 74
read (UPAM) 95

ISAM key 427
ISAM pointer 79
ISAM pool 453

create 241
create, see CREPOOL 241
information, see SHOPOOL 827
link names, see SHOPLNK 815
name 244
scope 245
size 245
task-specific 241
user ID-specific 241

ISREQ macro 717

J
job variable

list on Snapset 730
restore from Snapset 802

K
K disks 48
K tape file 220
K-ISAM (Key ISAM) 72
K-PAM 81, 94
key error (ISAM) 394
Key ISAM (K-ISAM) 72
key length (ISAM) 482
key-SAM file 81
KEYARG operand (ISAM keys) 427
KEYLEN operand 427
KEYPOS operand 428

L
label 879
label attributes, define 428
label formats 879
label handling (SAM) 84
label routine

LBRET 720
terminate, see LBRET 720

last-byte pointer 616, 650, 758, 900
last-page pointer 761, 900
LBRET macro 720
LFFSNAP (macro) 722
LJFSNAP (macro) 730
LOCATE mode 674
locate mode 427, 432, 442, 767, 780
lock/unlock PAM pages 97
locking mechanism

FASTPAM 68
UPAM 97

locks 398
logical block number (EAM) 53
logical end of file 81
logical erasure 347
logical flags (ISAM) 680
logical start of file 81

M
macro

ISAM 73
overview 15
SAM 82

macro type
call format 865
general description 865
type 0 865
type R 865
type S 866

macros
date and time specifications 864
format 858
metasyntax 859, 861
standard header 869
syntax 861
wildcards 863

Index

918 U4250-J-Z125-12-76

magnetic tape cartridges (SYNC) 761
MAILFIL (macro) 738
maintenance files 18
memory area, resident 66
metasyntax of the macros 859, 860
MFCB (mini file control block) 48, 312

description 50
structure 49

migration 631
mini FCB, see MFCB
mini file control block, see MFCB
MOVE mode 674
MPVS 9
MTC buffer 126
Multiple Public Volume Set (MPVS) 9
multiuser operation

FASTPAM 41, 68, 92

N
NDWERINF macro 748
net client 901
net server 901
Net-Storage 901

define file format 487
file format 487
file format BS2000 487

Net-Storage file 901
Net-Storage volume 22, 463, 901

catalog information 623
file import 497
file selection 379, 642
information in the file catalog 650
requesting 486
volume type 476

NETSTOR (volume type) 476
NK disks 48
NK tape file 220
NK-ISAM (non-key ISAM) 19, 72

OPEN error 75
NK-PAM file 94
NK-SAM file 81
node file 902
node file (file format) 359, 623
node files, import 697

non-key ISAM (NK-ISAM) 72
non-key SAM 81
nonstandard block 419, 468
nonstandard labels 398, 399
NULL operand 408, 454

O
object module file (EAM) 53, 60
object-oriented access 39
OPEN error (NK-ISAM) 75
open file. see OPEN macro 749
OPEN macro 749
OPEN mode 431, 487, 749

BTAM 37
DIV 41
ISAM 74
SAM 82
shared-update processing 68
UPAM 92

OPEN mode (ISAM)
EXTEND 74
INOUT 74
INPUT 74
OUTIN 74
OUTPUT 74

OPEN mode (SAM)
EXTEND 82
INPUT 82
OUTPUT 82
REVERSE 82
UPDATE 82

OPEN mode (UPAM)
INOUT 92
INPUT 92
OUTIN 92
shared-update processing 93

operand list 28
operation code

BTAM 122
EAM 50

option byte (EAM) 53
OSTAT macro 753
output buffer, release 205
output information 30

Index

U4250-J-Z125-12-76 919

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3.

 M
a

y
2

01
6

 S
ta

n
d

17
:0

2
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

1
00

\1
30

3
11

0
_d

vs
m

ak
ro

\e
n_

p
ro

d\
dv

sm
a

k_
e.

si
x

OVERLAP operand 488
overlapping input/output 57

P
PAD factor 76
PAD operand 488
PAD value (ISAM) 76
PAD, see ISAM, PAD value 76
page chaining, see chained I/O 420
PAM

macros in list form 102
see DIV 24
see IDPPL macro 706
see UPAM 27

PAM file
close 576
open 567, 576

PAM key 48, 97, 757
PAM macro 755

chaining 102
list form 96

PAM page
lock 97
unlock 97, 761

parity error 395
password

crypto password 318
passwords 435
perform PAM actions (PAM macro) 755
performance attribute of the file 626
permanent file

convert to temporary file 130
delete 322
process 452

PGLOCK event 790
PGLOCK routine 790
pool

host-specific 241
task-specific 241
user ID-specific 241

pool link name 453
delete, see REMPLNK 787

position tape 393
positioning, see SETL 810

post code 760
primary allocation 494

SAM 84
primary key 78
printer control character 436, 490
private files, import 697, 707
private volumes, import 697, 707
process catalog entry (CATAL macro) 130
process label fields 890
processing direction, switch 24
protection attributes, copy 228
pseudo file see dummy file
public volume 9
pubset 9

add 9
availability 9
remove 9
standard 9

PUT macro 766
PUTX macro 769

R
random access, disk files 89
RDTFT macro 772
read

ISAM file (UPAM) 95
next record 674
record by flag, see GETFL 679
record, see GET (ISAM) 674
record, see GET (SAM) 674
SAM file (UPAM) 95

read password 177
read-after-write check 442, 508
Readme file 12
RECFORM operand 435, 489
record

delete (ISAM), see ELIM 314
delete from ISAM file 314
read after marking 679
read backwards, see GETR 691
read with key, see GETKY 688
read with specified key 688
replace 769
store, see STORE 848

Index

920 U4250-J-Z125-12-76

record counter 86
record format

BTAM 38
SAM 85

record length 437
fixed 85
undefined 85
variable 85

record-length error bit 124
record-oriented access method 25
recover file (VERIF macro) 850
reference file 474
REL macro 896
release ISAM pool, see DELPOOL 257
RELSE macro 780
RELTFT macro 309, 782
removing link

to environment 582
to I/O area pool 579

REMPLNK macro 787
repeat macro (RETRY macro) 790
replace

record, see PUTX (ISAM) 769
record, see PUTX (SAM) 769

request information on open files, see
OSTAT 753

reserved storage space 640
resident environment 66
resident FASTPAM environment 66
resident FASTPAM IO area pool 66
resident IO area pool 66
resident memory area, see FASTPAM 66
retention period 155, 179, 438
retrieval address 83, 86
RETRY macro 790
return

from error routine 405
from user label routine (LBRET macro) 720

RFFSNAP (macro) 792
RJFSNAP (macro) 802

S
SAM (Sequential Access Method) 25, 81, 82

format 85
macros 25, 82
positioning function 81
primary allocation 84
record formats 85
secondary allocation 84

SAM file
read 100
read (UPAM) 95

secondary allocation 496
PAM 763
SAM 84

secondary key 78, 233
create for ISAM file 233
delete ISAM file 253
incomplete 233
request information on 843

semantic incompatibility (OPEN) 751
sense byte (EAM) 54
sequential access method, see SAM
service macros 23
set last-page pointer 761
SETL macro 810
shareability 180
shared-update processing 439

FASTPAM 68
UPAM 41, 92, 95

SHARUPD, see shared-update processing
SHOPLNK macro 815
SHOPOOL macro 827
SHOWAIX macro 843
size of reserved storage space 640
standard blocks 24, 417, 468
standard header 869
standard ISAM pool 19
standard pubset 9
start of file, logical 81
status bytes 748
status field (EAM) 54

Index

U4250-J-Z125-12-76 921

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3.

 M
a

y
2

01
6

 S
ta

n
d

17
:0

2
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

1
00

\1
30

3
11

0
_d

vs
m

ak
ro

\e
n_

p
ro

d\
dv

sm
a

k_
e.

si
x

storage space
allocation 493
bottleneck 398
occupied 629
reserved 640

storage type 379, 642
STORE macro 848
synchronization (BTAM) 124
SYSEAM area 24
system default user ID 433
system file

erase 346
general 904

system parameter FST32GB 662
systsem file

general 904

T
tape

end of file 450
forward-space by one block 120
forward-space by one tape mark 120
position 205
position by block 24
position by section 24
read backwards 119
read forwards 118
rewind and unload 120
rewind by one block 120
rewind by one tape mark 120
rewind to BOT marker 120
write tape mark 120
write to 119

tape cartridges 440
tape device, release 782
tape file

process 24
UPAM processing 100

tape mark, write 120, 500
tape processing (block-oriented) 24, 35
tape switch, initiate, see FEOV macro 450
task file table (TFT) 19, 453

temporary file 24, 131
convert to permanent file 130
delete 322
note on CATAL macro 131
process 452

TFT (task file table) 19, 453
TFT entry

change, see CHNGE 204
delete, see DROPTFT 309
delete, see RELTFT 782

TFT information, output, see RDTFT 772
type 644

U
UHL labels 886
unlock PAM pages 761
UPAM (User Primary Access Method) 27, 89

differences with FASTPAM 71
disk file 95
disk file processing 98
execute 755
format 94
functions 95, 100
locks 68
macros 27, 91
OPEN mode 92
PAM macro 755
programming notes 101
return codes 98
shared-update processing 95
tape file 100

user file trailer label 396
user ISAM pool 19
user primary access method, see UPAM
user tape header label 399
user tape trailer label 396
user volume header labels 399
UTL labels 889

Index

922 U4250-J-Z125-12-76

V
VALLEN operand 441, 502
VALPROP operand 502
value flags (ISAM) 679
VERIF macro 850
version number (EAM) 52
VOL1 label 879
volume

header labels 879
import 707
public 9
release 782

volume import 697
volume management 22
volume set for SM pubsets 504
volume, import 697

W
wildcards 863
work file 507
work tape, request 476
write password 186
write record, see PUT 766
writing (buffered) 123
WROUT 442

	Contents
	Preface 9
	Overview of DMS macros 15
	Programming notes 35
	Macros 113
	Appendix 857
	Preface
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manual
	Notational conventions

	Overview of DMS macros
	Table of DMS macros (in alphabetical order)
	DMS macros in order of function
	File maintenance
	Controlling file processing
	Data protection/security support
	Device and volume management
	Access to files
	Generation of operand lists for control blocks, DMS tables, etc.
	Output of information on files, volumes, devices, etc.

	Comparison of macros and commands

	Programming notes
	BTAM – Basic Tape Access Method
	OPEN modes
	BTAM record and block formats

	DIV – Data In Virtual
	Opening a file
	Defining windows
	Writing data back to the disk file
	Undoing modifications in a window
	Disabling a window
	Closing a file

	EAM – Evanescent Access Method
	MFCB (Mini File Control Block)
	EAM processing

	FASTPAM – Fast Primary Access Method
	FASTPAM functions
	Processing files with FASTPAM

	ISAM – Indexed Sequential Access Method
	OPEN modes
	ISAM pointers

	SAM – Sequential Access Method
	OPEN modes

	UPAM – User Primary Access Method
	OPEN modes
	UPAM for disk files
	UPAM processing of tape files
	Chaining PAM macros in list form
	TU eventing: event-driven processing

	Files larger than 32 GB

	Macros
	ADDPLNK – Define pool link name
	BTAM – Process tape files (type S)
	CATAL – Process catalog entry
	CHKFAR – Check file access rights
	CHNGE – Change TFT entry
	CLOSE – Close file
	COMPFIL – Compare disk files
	COPFILE – Copy file
	CREAIX – Create secondary keys for ISAM file
	CREPOOL – Create ISAM pool
	DECFILE – Convert encrypted file into unencrypted file
	DELAIX – Delete secondary key of ISAM file
	DELPOOL – Delete/release ISAM pool
	DIV – Access files via virtual address space
	DIV function: OPEN
	DIV function: MAP
	DIV function: SAVE
	DIV function: RESET
	DIV function: UNMAP
	DIV function: CLOSE

	DROPTFT – Release TFT entry
	EAM – Process EAM files
	ELIM – Eliminate record
	ENCFILE – Convert unencrypted file into encrypted filen
	ERASE – Erase files
	Variations in versions – VERSION=0/1/2

	EXLST – Define exit address list
	EXRTN – Return from error routine
	FCB – Define file control block
	FCBAD – Create FCB addresses
	FEOV – Close tape
	FILE – Define file attributes / control file processing
	Variations in VERSION=0/1/2/3

	FILELST – Create variable operand areas for FILE macros
	FPAMACC – Access FASTPAM files
	FPAMSRV – FASTPAM management function
	FASTPAM function: ENABLE ENVIRONMENT
	FASTPAM function: ENABLE IOAREA POOL
	FASTPAM function: OPEN
	FASTPAM function: CLOSE
	FASTPAM function: DISABLE IOAREA POOL
	FASTPAM function: DISABLE ENVIRONMENT

	FSTAT – Request catalog information
	Programming notes for VERSION=4
	Programming notes (VERSION=2, 3 and 4)
	Programming notes for VERSION=0 and VERSION=1
	Variations in versions – VERSION=0/1/2/3/4
	Version variations in the representation of the output area

	GET – Read next record
	GETFL – Read record by flag
	GETKY – Get record with specified key
	GETR – Get record “reverse”
	IDBPL – Provide BTAM operand list with symbolic names
	IDFCB – Provide FCB with symbolic names
	IDFCBE – Provide FCBE with symbolic names
	IMPNFIL – Create (import) catalog entries for node files
	IDPPL – Provide PAM operand list with symbolic names
	IMPORT – Create catalog entry for files
	INSRT – Insert record
	ISREQ – Unlock data block
	LBRET – Return from user label routine
	LFFSNAP – List files from a Snapset
	LJFSNAP – List job variables from a Snapset
	MAILFIL – Send file by email
	NDWERINF – Evaluate status bytes
	OPEN – Open file
	OSTAT – Request information on open files
	PAM – Perform UPAM actions
	PUT – Write record
	PUTX – Replace record
	RDTFT – Read TFT and TST information
	RELSE – Close block
	RELTFT – Delete TFT entry
	REMPLNK – Delete pool link name
	RETRY – Repeat macro
	RFFSNAP– Restore files from Snapset
	RJFSNAP– Restore job variables from a Snapset
	SETL – Position file pointer
	SHOPLNK – Return information on ISAM pool link names
	SHOPOOL – Return information on ISAM pools
	SHOWAIX – Request information on secondary keys
	STORE – Store record
	VERIF – Recover file

	Appendix
	Syntax presentation
	Macro format
	Metasyntax used for the macros
	Obsolete metasyntax used for the macros
	Wildcards
	Format of date specifications
	Macro types
	Standard header

	DMS error codes
	CALL interface for DIV
	Labels
	Volume header labels
	User volume header labels (UVL1 through UVL9)
	File header labels (HDR1 through HDR9)
	User file header labels (UHL)
	End-of-volume labels (EOV1 through EOV9)
	End-of-file labels (EOF1 through EOF9)
	User file trailer labels (UTL)
	Processing of label fields

	DMS dummy sections (DSECTs)
	Formats of replaced macros
	COPY – Copy file
	REL – Delete TFT entry

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

