
Edition April 2015

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0

\1
30

31
0

4_
di

ag
no

se
\1

30
3

10
4_

b
hb

\e
n\

di
ag

_e
.v

or

English

BS2000 OSD/BC V10.0
Diagnostics Handbook

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U5663-J-Z125-11-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
A

pr
il

20
15

 S
ta

nd
 1

3:
16

.0
5

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
1

00
\1

3
03

10
4

_d
ia

gn
os

e\
13

03
1

04
_b

h
b\

en
\d

ia
g_

e.
iv

z

Contents

1 Preface . 11

1.1 Objectives and target groups of this manual . 11

1.2 Summary of contents . 11

1.3 Changes since the last edition of the manual . 12

1.4 Notational conventions . 13

2 Software diagnosis methods in BS2000 . 15

2.1 Logging the progress of software execution . 17
2.1.1 Software error logging . 17
2.1.2 Tracing . 17

2.2 Saving the contents of memory . 18

2.3 Evaluating dumps and logging data . 19

2.4 Data privacy . 20
2.4.1 Data privacy during output of a dump . 20
2.4.2 Data privacy for dump files . 20
2.4.3 Data privacy for logging files . 20
2.4.4 Data privacy during diagnosis in an active system 20

3 AUDIT
Log addresses of executed branch instructions 21

3.1 Hardware AUDIT . 23

3.2 Linkage AUDIT . 24

Contents

 U5663-J-Z125-11-76

4 CDUMP
Output area, user or system dump . 27

4.1 Dump forms . 29
4.1.1 Area dump . 29
4.1.2 User dump . 31
4.1.3 System dump . 33

4.2 Influence of page attributes . 36

4.3 Controlling the CDUMP functions . 38
4.3.1 Control by means of system parameters . 38
4.3.2 Control by means of task-specific settings . 39

4.4 Dump-specific operands in BS2000 commands 40

4.5 Execution messages . 45

5 DAMP
Dump analysis . 47

5.1 Performance capabilities . 47
5.1.1 Diagnostic log . 48
5.1.2 Creating lists . 48
5.1.3 Automating diagnostic processes . 48
5.1.4 Additional functions . 49
5.1.5 Behavior in the event of a program or system error 49
5.1.6 Diagnosis objects that can be analyzed . 50
5.1.6.1 Active system . 50
5.1.6.2 Dump files . 50
5.1.6.3 PAM file as diagnosis object . 51
5.1.7 Online helps . 52
5.1.8 Terms used . 52

5.2 Screen format . 53
5.2.1 Screen mask . 53
5.2.2 Diagnostic windows . 58
5.2.2.1 The overview window (W0) . 59
5.2.2.2 The help window (W1) . 60
5.2.2.3 The status window (W2) . 61
5.2.2.4 The stack window (W3) . 70
5.2.2.5 The dump windows (W4 - W9 and W21 - W99) 73
5.2.2.6 Input fields of a standard dump window (W4 - W9 and W21 - W99) 75

Contents

U5663-J-Z125-11-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
0

31
04

_
di

a
gn

o
se

\1
30

31
0

4_
bh

b
\e

n\
di

a
g_

e
.iv

z

5.3 Operation . 82
5.3.1 Basic functions . 82
5.3.1.1 Calling DAMP . 82
5.3.1.2 Controlling program execution . 82
5.3.1.3 Assigning and opening the diagnosis object . 83
5.3.1.4 Modifying the diagnostic windows . 84
5.3.1.5 Interrupting and resuming DAMP operation . 88
5.3.1.6 Terminating DAMP . 88
5.3.2 Output of dump data . 89
5.3.2.1 Automatic interpretation of the output data . 89
5.3.2.2 Output of status information . 91
5.3.2.3 Output of stack contents . 92
5.3.2.4 Output of system tables . 93
5.3.2.5 Output of processor storage areas . 94
5.3.2.6 Output of hardware information . 96
5.3.2.7 Output of memory segments . 97
5.3.2.8 Symbolic layout . 97
5.3.2.9 Output in Assembler format . 102
5.3.2.10 Output in areas with real addresses . 104
5.3.2.11 Output in areas with absolute addresses . 105
5.3.2.12 Output of dump file sections . 106
5.3.2.13 Tracing chains . 107
5.3.2.14 Output of system trace tables (special window: TRACE) 108
5.3.2.15 Output of memory attributes (special window: MEMATTR) 109
5.3.2.16 Output of tables with task-specific values (special window: TABLE) 111
5.3.2.17 Output of information on subsystems (special window: SUSY) 113
5.3.2.18 Information on system files and sections of the dump file (special window: FILE) . 120
5.3.2.19 Information on AUDIT tables (special window: AUDIT) 123
5.3.2.20 String search (special window: FIND) . 125
5.3.3 Modification by the user (special window: OPTIONS) 133
5.3.4 Additional functions . 137
5.3.4.1 Calling EDT as a subroutine . 137
5.3.4.2 Logging and replaying a diagnostic session . 138
5.3.4.3 Processing files in PAM format . 140
5.3.4.4 Editing SLEDs without a BS2000 structure . 141
5.3.4.5 Using private symbol elements . 142
5.3.4.6 Writing private Assembler user routines . 146

Contents

 U5663-J-Z125-11-76

5.4 Generating and printing lists (special window: LIST) 147
5.4.1 Controlling list output in interactive mode . 147
5.4.1.1 Selecting a file . 148
5.4.1.2 Selecting the output location of the list . 149
5.4.1.3 Selecting a function . 150
5.4.1.4 Selecting a task . 151
5.4.1.5 Specifying the scope of the list . 151
5.4.1.6 Selecting individual areas for output . 153
5.4.1.7 Fields for pre-diagnosis and error descriptors 156
5.4.1.8 Using PRODAMP procedures or editing programs 157
5.4.1.9 Using an editing program . 157
5.4.2 Controlling list output in batch or procedure mode 158
5.4.3 Components and scope of the output lists . 160

5.5 Automating operations . 164
5.5.1 Automatic preanalysis . 164
5.5.2 Batch and procedure modes, statement sequences 165
5.5.3 Automation with PRODAMP . 166

5.6 Program statements . 167
5.6.1 Program level . 167

ADD-LIST-OBJECTS
Define scope of list output . 170

ADD-SYMBOLS
Assign symbols for output . 183

ASSIGN-PRODAMP-LIBRARIES
Assign libraries for PRODAMP compiler and PRODAMP editor 185

DROP-REGISTER
Define representation for disassembler . 187

EDIT-FILE
Load EDT as subroutine . 188

END
Terminate DAMP . 188

LOAD-MODULE
Load module from library . 189

LOG-SESSION
Activate logging of diagnosis run . 191

MODIFY-OBJECT-ASSUMPTIONS
Modify default settings for diagnosis object . 192

MODIFY-SCREEN-LAYOUT
Define new sequence and size for diagnostic windows 194

OPEN-DIAGNOSIS-OBJECT
Open diagnosis object for processing . 196

PRINT-LIST
Start list output . 200

Contents

U5663-J-Z125-11-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
0

31
04

_
di

a
gn

o
se

\1
30

31
0

4_
bh

b
\e

n\
di

a
g_

e
.iv

z

PRINT-LOGGING-FILE
Start list output . 201

REMOVE-LIST-OBJECTS
Control list output . 203

REPEAT-SESSION
Replay diagnostics log . 206

RESUME-PRODAMP-PROGRAM
Resume interrupted PRODAMP program . 207

SEARCH-IN-SUBSYSTEM
Perform CSECT search in subsystem . 208

SHOW-EDITED-INFORMATION
Output edited diagnostic data . 209

SHOW-LAST-STATEMENT
Display last DAMP statement . 211

SHOW-PRODAMP-LIBRARIES
Display PRODAMP libraries . 211

SHOW-SUBSYSTEM-FOR-SEARCH
Display currently set subsystem . 211

START-LIST-GENERATION
Prepare list output . 212

START-MODULE
Start external subroutine . 214

START-OPTION-DIALOG
Set user options . 215

START-PATTERN-SEARCH
Prepare string search . 216

START-PRODAMP-EDITOR
Load editor for PRODAMP compiler . 217

START-PRODAMP-PROGRAM
Load and start PRODAMP program . 218

START-STATEMENT-SEQUENCE
Read DAMP statements from file . 220

STOP-LOGGING
Terminate logging of diagnosis run . 220

USE-REGISTER
Define register use for disassembled output . 221

5.6.2 System level . 223
DAMP statements via the system command INFORM-PROGRAM 223

Contents

 U5663-J-Z125-11-76

5.7 PRODAMP . 226
5.7.1 Introduction . 226
5.7.2 Syntax . 227
5.7.3 Language elements . 228
5.7.3.1 Lexical elements . 228
5.7.3.2 Operators . 229
5.7.3.3 Data types . 230
5.7.3.4 Symbols . 235
5.7.3.5 Variable . 237
5.7.3.6 Expressions . 237
5.7.3.7 Statements . 238
5.7.3.8 Pseudo-structures . 248
5.7.3.9 Predefined variables . 262
5.7.3.10 Standard procedures . 266
5.7.3.11 Standard functions . 287
5.7.4 Working with procedures (special window: PROC) 298
5.7.5 Syntax diagrams . 311

5.8 Software and hardware prerequisites . 326

5.9 List of DSECTs from the standard symbol files 329

5.10 DAMP messages . 338

6 NDMDAMP
Generating diagnostic documents . 339

6.1 Calling NDMDAMP . 339
START-NDM-DIAGNOSIS

Analyze NDM data . 340
6.1.1 Calling NDMDAMP from DAMP . 343
6.1.2 Call from predefined ENTER jobs . 346

6.2 Error handling during the analysis . 347

6.3 Installation . 348
6.3.1 Release items for NDMDAMP . 349
6.3.2 Logical units used by NDMDAMP . 349

Contents

U5663-J-Z125-11-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

10
0\

13
0

31
04

_
di

a
gn

o
se

\1
30

31
0

4_
bh

b
\e

n\
di

a
g_

e
.iv

z

7 ELFE
Edit and evaluate the SERSLOG file . 351

7.1 Software and hardware prerequisites . 352

7.2 Operation . 353
CONT

Continue evaluation of SERSLOG file or session 353
DISPLAY

Display error entries on screen . 354
END

Terminate ELFE . 358
HELP

Display brief information on ELFE statements 358
KEEP

Retain auxiliary files . 359
LIBRARY

Assign description library . 359
OPEN

Assign and open file to be evaluated . 360
PRINT

Print error entries . 362
STOP

Terminate ELFE . 362

8 SERSLOG
Software error logging in the SERSLOG file . 363

9 ASE
Auxiliary SERSLOG Extensions . 365

10 SLED dump . 367

10.1 Loading and initializing SLED . 369

10.2 Output to a dump file . 374

10.3 SLED control . 384

10.4 Extracting IOHDUMP and IOSDUMP from a SLED 393

Contents

 U5663-J-Z125-11-76

11 SNAP dump . 395

11.1 SNAP files . 396

11.2 Activating and deactivating SNAP . 397

11.3 Restrictions . 398

11.4 Automatic SNAP . 399

12 TRACE MANAGER
Collect diagnostic information during the session 401

13 Online maintenance . 405

14 Error files and logging files . 409

14.1 Hardware error logging file HEL . 409

14.2 Software error logging file SERSLOG . 411

14.3 CONSLOG logging file . 412

14.4 RESLOG logging file . 419

Abbreviations . 425

Related publications . 427

Index . 429

U5663-J-Z125-11-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
5

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
1

1 Preface

Any user wishing to get to the bottom of problems affecting the running of the operating
system or the execution of application programs must have access to information on the
status of the operating system and/or application program at the time of the error and for
the short period preceding the error.

This “Diagnostics Handbook” describes the facilities provided in BS2000 which enable
customers using this operating system to obtain and evaluate information about any
software errors which crop up and other program execution data.

1.1 Objectives and target groups of this manual

The “Diagnostics Handbook” is intended for system programmers already acquainted with
the system, systems support staff and software service staff. It describes the software
products and components which are important for diagnosis.

This manual is intended for both privileged and nonprivileged BS2000 users.

1.2 Summary of contents

This manual describes the software diagnosis methods in BS2000.

The utility routines provided in BS2000 are described which enable information regarding
software errors which occur and any other program execution data to be obtained and eval-
uated.

The only such facility not described in this manual is the product AID. AID is dealt with in
the “AID” manual [1].

Changes since the last edition of the manual Preface

12 U5663-J-Z125-11-76

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

1.3 Changes since the last edition of the manual

The following important changes have been introduced in this edition of the “Diagnostics
Handbook” since the publication of the previous edition:

● The manual has been adapted for BS2000 OSD/BC V10.0.

● In the chapter on DAMP, the terms DAMP terminal, diagnostic terminal and logging ter-
minal are obsolete. Their descriptions have been removed.

● In the chapter on SLED, the section “Output to magnetic tape cartridge (MTC)” has
been renamed “Output to an emulated tape device” and revised.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Notational conventions

U5663-J-Z125-11-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
5

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
1

1.4 Notational conventions

The metasyntax used in this manual to describe statements is explained in the manual
“Commands” [8]. Operands reserved for privileged users are shown in the formats with a
gray background.

Because the names are frequently mentioned, for the sake of simplicity and clarity the
following abbreviations are used:

● BS2000 servers for the servers with /390 architecture and the servers with x86 archi-
tecture. These servers are operated with the corresponding BS2000 operating system.

● Servers with /390 architecture for the Server Unit /390 of the FUJITSU Server
BS2000 SE Series and the Business Servers of the S Series

● Servers with x86 architecture for the Server Unit x86 of the FUJITSU Server BS2000
SE Series and the Business Servers of the SQ Series (x86-64 architecture)

● SE servers for the FUJITSU Server BS2000 SE Series (Server Units /390 and x86)

● S servers for the Business Servers of the S Series (/390 architecture)

● SQ servers for the Business Servers of the SQ Series (x86 architecture)

● x86 architecture for x86-64 architecture

In the examples the strings <date>, <time> and <version> specify the current outputs for
date, time and version of a software product when the examples are otherwise independent
of the date, time and version.

The following typographical elements are used in this manual:

i For notes on particularly important information

v This symbol designates special information that points out the possibility that
data can be lost or that other serious damage may occur.

[] References to other publications within the text are given in abbreviated form
followed by numbers; the full titles are listed in the “References” section at the
back of this manual.

input Inputs and system outputs in examples are shown in typewriter font

Notational conventions Preface

14 U5663-J-Z125-11-76

U5663-J-Z125-11-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
8

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
2

2 Software diagnosis methods in BS2000

Information on program execution can be collected in two different ways: by logging the
progress of execution and by dumping the contents of the memory at the time of an actual
or suspected error. Both approaches, and how they are implemented in BS2000, are
described in the following sections.

Command Meaning

ACTIVATE-SNAPSHOT Activate dump generator SNAP

ADD-ASE-ELEMENT Declare ASE element

ADD-USER Permit user-specific control of the hardware or linkage AUDIT,
define user-specific test privilege

CANCEL-JOB Control of CDUMP dump output and other purposes

CHANGE-SERSLOG-FILE Closes the current SERSLOG file and opens a new one

CREATE-DUMP Request a user or system dump

DEACTIVATE-SNAPSHOT Deactivate dump generator SNAP

EXIT-JOB Control of CDUMP dump output and other purposes

FORCE-CANCEL-JOB Control of CDUMP dump output and other purposes

HOLD-HARDWARE-AUDIT Interrupt hardware AUDIT mode

HOLD-LINKAGE-AUDIT Interrupt linkage AUDIT mode

MODIFY-ASE-PARAMETERS Modify global ASE settings

MODIFY-FILE-ATTRIBUTES Control access to shareable files on a file-specific basis for a user
ID with the HARDWARE-MAINTENANCE privilege

MODIFY-TEST-OPTIONS Modify AID test privilege values locally and the control of dump
requests, permit task-local hardware or linkage AUDIT.
Set the protection level for online maintenance
Control CDUMP output
Control the AID tests of other tasks under your own user ID with
low testing privileges

MODIFY-USER-ATTRIBUTES Permit user-specific control of the hardware or linkage AUDIT.
Modify test privileges user-by-user

REMOVE-ASE-ELEMENT Delete ASE element

RESUME-HARDWARE-AUDIT Resume interrupted hardware AUDIT mode

Table 1: Overview of interfaces for diagnosis methods in BS2000 (part 1 of 2)

Software diagnosis methods in BS2000/OSD

16 U5663-J-Z125-11-76

RESUME-LINKAGE-AUDIT Resume interrupted linkage AUDIT mode

SHOW-ASE-ELEMENT Display ASE element

SHOW-ASE-LOGGING Display data of internal ASE logging

SHOW-ASE-PARAMETERS Display global ASE settings

SHOW-ASE-STATUS Display ASE status information

SHOW-AUDIT-STATUS Shows the status of the linkage AUDIT and the hardware AUDIT

SHOW-HARDWARE-AUDIT Request output of the hardware AUDIT table to SYSOUT or
SYSLST

SHOW-LINKAGE-AUDIT Request output of the linkage AUDIT table to SYSOUT or
SYSLST

SHOW-SERSLOG-STATUS Shows the status of SERSLOG

SHOW-SNAPSHOT-STATUS Display information on SNAP dump

SHOW-TEST-OPTIONS Display task-specific settings for test and diagnosis

SHOW-TRACE-STATUS Request attribute and status information on system traces

START-DAMP Start DAMP

START-ELFE Start ELFE

START-HARDWARE-AUDIT Start hardware AUDIT mode

START-LINKAGE-AUDIT Start linkage AUDIT mode

START-NDM-DIAGNOSIS Start NDMDUMP

START-SERSLOG Activate SERSLOG

START-TRACE Activate switchable trace

STOP-HARDWARE-AUDIT Terminate hardware AUDIT mode and release the AUDIT table

STOP-LINKAGE-AUDIT Terminate linkage AUDIT mode and release the AUDIT table

STOP-SERSLOG Deactivate SERSLOG

STOP-TRACE Switch off active trace

Macro Meaning

AUDIT Use hardware and linkage AUDIT functions

BKPT Transfer control to the system

CDUMP2 Initiate a memory dump without terminating the program

TERM Terminate program and job section; if necessary, initiate a
memory dump

Command Meaning

Table 1: Overview of interfaces for diagnosis methods in BS2000 (part 2 of 2)

Software diagnosis methods in BS2000 Logging the progress of software execution

U5663-J-Z125-11-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
8

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
2

2.1 Logging the progress of software execution

Logging the progress of software execution is a prophylactic measure designed to provide
information on the causes of any software error which may occur. Certain information is
stored in such a log continuously, i.e. even during normal (error-free) program execution.
This information may take the form of memory addresses, the names of any modules which
are used, program line numbers, etc. If an error occurs, it may be possible to localize it with
the aid of the log. However, since this method results in the rapid accumulation of a large
quantity of data (not all of which is necessarily useful for error analysis), it is sound practice
to discard the data after a certain time. This can be done, for example, by overwriting the
existing data cyclically, retaining only the last n entries in the log; in the event of an error,
this is sufficient to ensure that the steps which led to the error are available for analysis.

The logging methods used in BS2000 are called error logging and tracing.

2.1.1 Software error logging

“Software error logging” is a method which stores error entries (error records) in a logging
file whenever a software problem is detected. The software module which is active at the
time of the error initiates the logging file entry and also defines the contents of such an error
record.

In BS2000, the generation and writing of error entries are handled by the components ELS
and SERSLOG. ELS logs all hardware faults and is described in the “ELSA” manual [3].
Software errors are recorded by SERSLOG, which is described in the present manual as of
chapter “SERSLOG Software error logging in the SERSLOG file” on page 363.

2.1.2 Tracing

“Tracing” denotes the logging of execution or selected parts thereof. This involves the
continuous recording of certain data, regardless of whether or not a software problem
actually exists. This data is then retained for a certain time, i.e. until it is overwritten by
newer data. The recorded logs are managed by TRACE MANAGER (see chapter “TRACE
MANAGER Collect diagnostic information during the session” on page 401).

During normal system operation, a number of traces are logged automatically, and
additional ones can be activated as required in critical cases. However, some of these
additional traces can be very time-consuming.

Saving the contents of memory Software diagnosis methods in BS2000

18 U5663-J-Z125-11-76

The AUDIT function (see chapter “AUDIT Log addresses of executed branch instructions”
on page 21) constitutes a special kind of tracing. AUDIT records all branch instructions
whose conditions are fulfilled. This function is also available to nonprivileged users.

i The activation of additional traces or of the system-wide AUDIT can severely impair
the performance of the operating system and should therefore be avoided unless
absolutely necessary.

2.2 Saving the contents of memory

A memory dump saves the contents of, for example, registers, real memory, address
spaces or files at the time of an actual or suspected error. A dump is started either automat-
ically by an error detection facility of the operating system or of the currently active program
or explicitly by entering an appropriate command at the terminal or console. Depending on
the seriousness or scope of the error which has occurred, a distinction is made in BS2000
between:

● a full dump, which also terminates the operating system program, and

● a partial dump, which does not terminate the operating system.

If the cause and effect of an error cannot be localized, and if an essential part of the
operating system is affected, all main memory and background memory areas of BS2000
must be saved for diagnosis. Dumps of this sort are generated by the program SLED (Self-
Loading Emergency Dump, see chapter “SLED dump” on page 367). SLED operates
independently of BS2000.
Once a full dump has been generated, the operating system program is reloaded. It is
possible to set up the system so that saving of the memory contents and restarting of the
operating system are carried out automatically.

If the error can be narrowed down to a single task, only that part of the memory contents
used by the task needs to be saved. If the error occurred in the user program, a partial dump
therefore tends to cover solely the user address space of the errored task. However, if the
error occurred in an operating system function and has no consequences for other tasks,
then parts of the operating system address space are also saved.

Whereas the errored task is normally terminated by the error handling routine after a partial
dump has been generated, the operating system and all other tasks continue to run both
during and after output of the dump.

In BS2000, partial dumps (system, area or user dumps) can be created by means of the
CDUMP2 macro (see chapter “CDUMP Output area, user or system dump” on page 27).
CDUMP2 runs asynchronously, i.e. concurrently with other tasks under BS2000 control.
The scope of the partial dump generated by way of CDUMP2 varies depending on the
specified operands and on the privilege of the calling task.

Software diagnosis methods in BS2000 Evaluating dumps and logging data

U5663-J-Z125-11-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
8

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
2

SNAP dumps are a special form of partial dump (see chapter “SNAP dump” on page 395).
SNAP saves the class 1 and class 3 memory of the operating system and the name and
entry point lists of all operating system modules (EOLDTAB).

SNAP is called by the operating system from the status TPR or SIH. This generally happens
when an unusual operating system state arises that is not serious enough to terminate the
session. Following the call, SNAP automatically suspends BS2000 operation for a
maximum of 24 seconds, generates a dump independently of BS2000, and then reactivates
the operating system.

2.3 Evaluating dumps and logging data

The data saved by a dump or in a log can be evaluated later at any time.

The error logging file created by SERSLOG is evaluated by the program ELFE (see chapter
“ELFE Edit and evaluate the SERSLOG file” on page 351), which is capable of sorting the
individual entries on the basis of various criteria and then outputting them. ELFE also
provides statistical functions (such as recording how often each error has occurred, etc.).

Traces are not written to files, but are kept in main memory and cannot be output
separately. They are, however, also saved on generating a dump and are therefore
contained in the dump file and can be output when evaluating the dump. AUDIT traces are
an exception. They can be output interactively with the SHOW commands of the AUDIT
function.

A SLED dump can be analyzed with DAMP.
DAMP (see chapter “DAMP Dump analysis” on page 47), by contrast, is an interactive
editing routine, i.e. the actual diagnosis is performed on the screen. This enables the inter-
active user to track links between related processing steps or display tables on the screen
and then initiate any further diagnostic steps which prove necessary.
Partial dumps generated using SNAP or CDUMP (system, user or area dumps) can also
be evaluated interactively on the screen with the aid of DAMP.

The actual diagnosis presupposes familiarity with the system.

Data privacy Software diagnosis methods in BS2000

20 U5663-J-Z125-11-76

2.4 Data privacy

2.4.1 Data privacy during output of a dump

Data privacy precautions can be implemented for the generation and storage of a dump. By
marking memory pages as “secret pages”, you can prevent them from being transferred
from the system dump, user dump or area dump to the dump files.
In order to do this, the system parameter DUMPSEPA must have been set accordingly at
system initialization by using the parameter service (see the manual “Introduction to
System Administration” [6]). Pages can be marked as SECRET PAGES via the CSTAT
macro (see the “Executive Macros” manual [4]) or $CSTA. This is specially advisable when
dealing with sensitive data. You should check whether this data may be of relevance for
diagnostic purposes.
Dumps which contain confidential data are stored under special user IDs (SYSUSER,
SYSDUMP, SYSSNAP, TSOS); the access rights for these user IDs are assigned by
systems support.

2.4.2 Data privacy for dump files

Dump files enjoy the same protection facilities as any other file, namely standard access
control (USER-ACCESS/ACCESS), the basic access control list (BACL) and guards. As a
result, dump files can be protected against unauthorized access by means of defining and
assigning appropriate access rights.

2.4.3 Data privacy for logging files

Data destined for logging, e.g. for SERSLOG error logs, cannot be checked with regard to
its confidentiality. For this reason, logging files should be protected against unauthorized
access in the same way as dump files (see above).

2.4.4 Data privacy during diagnosis in an active system

Diagnosis in an active system is possible with the software product AID (see the “AID”
manual [1]) or with DAMP (see chapter “DAMP Dump analysis” on page 47). The system
administrator can influence data privacy by configuring the appropriate system parameters
and by assigning test privileges (see the manual “Introduction to System Administration”
[6]).

U5663-J-Z125-11-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
8

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
3

3 AUDIT
Log addresses of executed branch
instructions

The AUDIT function permits the logging of the addresses of executed branch instructions
so that, if necessary, the execution sequence of the program involved can subsequently be
reconstructed. Not only can this be used to log execution of the user’s own task, but it is
also possible to activate AUDIT in another task which, for example, is in a loop or is running
as a batch task.

There are two types of AUDIT functions:

● hardware AUDIT

● linkage AUDIT

In contrast to the hardware AUDIT function, which stores in an AUDIT table the source
address for every branch executed, the linkage AUDIT function stores the target address
in an AUDIT table each time certain branch or load commands are executed. Separate
tables are created for the hardware AUDIT and linkage AUDIT functions. The header line
indicates the relevant function when the table is output.
The hardware AUDIT and linkage AUDIT can be activated independently of one another.
The branch addresses of a process in the user’s own task (e.g. contingency process), the
entire run of one task or all the tasks of the current session and, in the case of the linkage
AUDIT, the branch addresses of a processor can be logged.

The hardware and linkage AUDITs can be prevented or allowed for a complete session by
setting the parameter AUDALLOW=YES/NO in the startup parameter service, but this can
only be done for both AUDITs together. Setting the parameter AUDALLOW=NO will also
automatically disable any linkage AUDIT that may have been enabled for a local processor.

The AUDIT function is offered at command level (see the following sections and the
“Commands” manual [8]) and as a macro (AUDIT, see the “Executive Macros” manual [4]).

AUDIT

22 U5663-J-Z125-11-76

Hardware and linkage AUDITs can also be allowed or prevented on a user or task basis via
the commands ADD-USER, MODIFY-USER-ATTRIBUTES and MODIFY-TEST-OPTIONS.

See also the “Commands” manual [8].

The parameter *UNCHANGED is not valid for the ADD-USER command.

Any attempts to call a hardware or linkage AUDIT without the required permission are
rejected with either a return code (macro call) or a message (command).

i The servers with x86 architecture lack the firmware requirements to trace branches
in programs, so the hardware AUDIT is not available. The commands HOLD-
HARDWARE-AUDIT, RESUME-HARDWARE-AUDIT, SHOW-HARDWARE-
AUDIT, START-HARDWARE-AUDIT and STOP-HARDWARE-AUDIT are rejected
with the message IDA0020. Macro calls for the hardware AUDIT return with error
code X'00000000'. Note, however, that facilities to analyze TU programs with
address stops and runtime tracing are also offered by the product AID. See the
“AID” manual [1] for details.

AUDIT=*PARAMETERS(...)

*PARAMETERS(...)

⏐ HARDWARE-AUDIT = *UNCHANGED/ *NOT-ALLOWED/ *ALLOWED

⏐ LINKAGE-AUDIT = *UNCHANGED/ *NOT-ALLOWED/ *ALLOWED

AUDIT Hardware AUDIT

U5663-J-Z125-11-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
8

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
3

3.1 Hardware AUDIT

If the hardware AUDIT function is activated, the source addresses of all branch commands
executed are stored in the hardware AUDIT table. This table is 256 bytes long (corre-
sponding to 64 single-word entries) and is overwritten cyclically.

If desired, the user can, on request, have the data from the AUDIT table placed in a save
table before it is overwritten. This additional table has a maximum size of 64 Kbytes for the
TU-AUDIT. For the TPR-AUDIT (only for privileged callers under the user ID TSOS),
instead of the 256-byte AUDIT table, only a larger 4-KB AUDIT table is created, and this
table also serves as the save table.

The save tables and the large-size AUDIT table are overwritten cyclically and can be output
using the SHOW-HARDWARE-AUDIT command and by specifying the relevant operands
with the AUDIT macro.

Command Meaning

HOLD-HARDWARE-AUDIT Interrupt hardware AUDIT mode

RESUME-HARDWARE-
AUDIT

Resume hardware AUDIT mode

SHOW-AUDIT-STATUS Shows the status of the linkage AUDIT and the hardware AUDIT

SHOW-HARDWARE-AUDIT Output hardware AUDIT table to SYSOUT or SYSLST

START-HARDWARE-AUDIT Start hardware AUDIT mode

STOP-HARDWARE-AUDIT Terminate hardware AUDIT mode and release hardware AUDIT
table

Macro Meaning

AUDIT Apply hardware and linkage AUDIT functions

Table 2: Interfaces for hardware AUDIT

Linkage AUDIT AUDIT

24 U5663-J-Z125-11-76

3.2 Linkage AUDIT

If the linkage AUDIT function is activated, the destination addresses are logged to a 4-KB
trace table (linkage AUDIT trace table) whenever the commands BASR, BALR, BASSM and
BAKR are executed. This table is overwritten cyclically and can optionally be stored in the
case of TU applications in a save table of up to 64 KB (see page 23) in the same way as for
the hardware AUDIT. It is not possible to create an additional save table in TPR.
Performance is reduced for the processor state for which the linkage AUDIT is activated.
In contrast to the hardware AUDIT, the branches logged by the linkage AUDIT occur far
more rarely than the conditional branches logged by the hardware AUDIT.

AUDIT control using the parameter service

The linkage AUDIT enables the linkage AUDIT to be activated on a CPU-specific basis for
all CPUs or all logical machines of a server configuration. For each CPU, a trace table is
created in privileged class 3 memory and retained throughout the entire session.The
linkage AUDIT can be enabled in the startup phase via the parameter service.

The linkage AUDIT is controlled by means of the SYSOPT-IPL parameter record,
which can be used to define different specifications for system initialization. The parameter
that applies to AUDIT is LINKAGE-AUDIT-SCOPE, which is defined as follows within the
SYSOPT-IPL record:

/BS2000 PARAMS
/BEGIN SYSOPT-IPL
LINKAGE-AUDIT-SCOPE=NO/INTERRUPT-HANDLING/SYSTEM-LEVEL
/EOF
/END-PARAMS

Meanings of the operands

LINKAGE-AUDIT-SCOPE = NO
The linkage AUDIT function is not activated (default value).

LINKAGE-AUDIT-SCOPE = INTERRUPT-HANDLING
The linkage AUDIT function is activated for the SIH processor state.

LINKAGE-AUDIT-SCOPE = SYSTEM-LEVEL
The linkage AUDIT function is activated for the TPR and SIH processor states.

In addition to this special AUDIT control, general control of the AUDIT can be achieved via
the system parameter AUDALLOW and various BS2000 commands (see page 23
for details).

AUDIT Linkage AUDIT

U5663-J-Z125-11-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
8

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
3

AUDIT control in the current session

The START-LINKAGE-AUDIT, STOP-LINKAGE-AUDIT and RESUME-LINKAGE-AUDIT
commands and the AUDIT macro are available to the system administrator to enable or
disable the AUDIT in the current session.

Command Meaning

HOLD-HARDWARE-AUDIT Interrupt linkage AUDIT mode

RESUME-HARDWARE-
AUDIT

Resume linkage AUDIT mode

SHOW-AUDIT-STATUS Shows the status of the linkage AUDIT and the hardware AUDIT

SHOW-HARDWARE-AUDIT Output linkage AUDIT table to SYSOUT or SYSLST

START-HARDWARE-AUDIT Start linkage AUDIT mode

STOP-HARDWARE-AUDIT Terminate linkage AUDIT mode and release linkage AUDIT table

Macro Meaning

AUDIT Apply hardware and linkage AUDIT functions

Table 3: Interfaces for linkage AUDIT

Linkage AUDIT AUDIT

26 U5663-J-Z125-11-76

U5663-J-Z125-11-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

4 CDUMP
Output area, user or system dump

The CDUMP2 macro (see the “Executive Macros” manual [4]) generates, under control of
a separate task, a memory dump. Depending on the specified operand value, this dump
may be an area dump, a user dump or a system dump (see section “Dump forms” on
page 29). The macro generates a 31-bit interface. CDUMP2 alone should be used in the
future, since development will only be continued for CDUMP2. The old CDUMP macro must
still be used to generate a 24-bit interface.

The dumps are stored in unedited form in a PAM file on disk or magnetic tape cartridge
(MTC). Dumps cannot be spread out over a number of tapes. Dumps can be copied from
an MTC to disk using the COPY-FILE command (see example on page 34). The structure
of the dump file corresponds to the SLEDFILE format. All the dump types generated by
CDUMP can be evaluated with the DAMP diagnostic program (see chapter “DAMP Dump
analysis” on page 47).

The CREATE-DUMP command (see the “Commands” manual [8]) is used at command
level to start a user dump.

Area and user dumps are cataloged under the user ID of the calling task (error task) unless
they contain memory pages with special attributes (see page 36) or read-protected data, in
which case they are cataloged under the user ID SYSUSER. System dumps are always
cataloged under the user ID SYSDUMP. If there is not enough memory space for the user
ID of the calling task or the user ID SYSUSER, an error message is output, and generation
of the dump is terminated. Memory is automatically extended for the SYSDUMP user ID
and output of the dump continued. If space saturation level 5 is reached during this process,
only error logging entries are generated instead of the dump.

In batch or procedure mode, user and area dumps are not generated unless the command
MODIFY-TEST-OPTIONS DUMP=YES has been specified.

If a system error during dump processing prevents a user dump from being generated,
CDUMP attempts to produce a system dump. If this likewise proves abortive, CDUMP
generates a SERSLOG entry containing the CDUMP work area with the TTSAV (internal
CDUMP data) as well as the TCB (Task Control Block) and the PCB (Program Control
Block).

CDUMP

28 U5663-J-Z125-11-76

Command Meaning

ADD-USER Define user-specific test privilege

CANCEL-JOB Control of CDUMP dump output

CREATE-DUMP Request a user or system dump

EXIT-JOB Control of CDUMP dump output

FORCE-JOB-CANCEL Control of CDUMP dump output

MODIFY-TEST-OPTIONS Control of CDUMP dump output

MODIFY-USER-ATTRIBUTES Modify test privileges user-by-user

SHOW-TEST-OPTIONS Display task-specific settings for test and diagnosis

SHOW-USER-ATTRIBUTES Display user-specific settings for test and diagnosis

Macro Meaning

CDUMP2 Initiate a memory dump without terminating the program

TERM Terminate program and job section;
if necessary, initiate a memory dump

Table 4: Interfaces for dump control

CDUMP Dump forms

U5663-J-Z125-11-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

4.1 Dump forms

4.1.1 Area dump

An area dump is requested via the operand specification SCOPE=*AREA of the CDUMP2
macro (permitted only from the TU area). It contains the areas of class 5 and 6 memory
selected with the call and is stored under the user ID of the caller (exceptions: see section
“Influence of page attributes” on page 36).

Some system parameters also influence memory area output (see section “Control by
means of system parameters” on page 38).

The DSCTRL operand can be used to address areas in a data space that are to be included
in the area dump.

The default setting is MODE=*STD; in this case, area dumps include the following items in
addition to the specified areas

– the AIDSYSD module
– the areas containing COMAREA
– P1-PCB
– the TCB.

If MODE=*EXP is specified, area dumps also contain the following items

– the areas containing COMAREA
– the AIDSYSD module
– trace dump list
– TTSAV (internal CDUMP data)
– P1 AUDIT table
– binder/loader metadata
– memory areas with the following tables

XTV (eXecutive Vector Table)
SVMT (System Virtual Memory Table)
UVMT (User Virtual Memory Table)
TCB (Task Control Block)
P1-PCBs (Process Control Block)

– pages to which the reference address specified in the PC operand points

Dump forms CDUMP

30 U5663-J-Z125-11-76

File name of the area dump

CDUMP creates the area dump under one of the following IDs:

– under the user ID of the caller, provided he or she is authorized to read all the data
output by the dump.

– under the SYSUSER system ID if the dump contains read-protected data (e.g.
programs protected with a read password that the user has not included in the task’s
password table).
Then only the system administrator can permit access to the user, e.g. by means of
/MODIFY-FILE-ATTRIBUTES dateiname, -
/ PROTECTION=*PARAMETERS(USER-ACCESS=*ALL-USERS,READ-PASSWORD=readpass)

The file name of an area dump has the following structure:

– :catid:$userid.SYS.ADUMP[.jobname].tsn.i,
if the file is saved under the caller’s user ID

– :catid:$SYSUSER.SYS.ADUMP[.jobname].tsn.i.userid,
if the file is saved under the SYSUSER system ID.

where:

catid is the catalog ID of the public volume set on which the dump was stored.

userid is the user ID of the caller.

jobname is the job name, comprising up to eight characters.

tsn is the four-digit task sequence number of the error task.

i is the five-digit sequence number of the area dump.

CDUMP Dump forms

U5663-J-Z125-11-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

4.1.2 User dump

A user dump is requested via the operand specification SCOPE=*USER of the CDUMP2
macro or via the CREATE-DUMP command. It covers the entire user address space, i.e.
class 5 and class 6 memory.
Some system parameters influence memory area output (see section “Control by means of
system parameters” on page 38).

Output options using CDUMP2 operands:
– user-specific data spaces with the DS operand
– user-specific DIV windows with the DIV operand
– imported SINIX files with the MMAP operand

If the error task instruction counter points to the system address space, all the pages refer-
enced via general registers and PCs (up to 256 PCBs of the error task) are output, including
the preceding five pages and the following five pages.

User dumps also contain the following memory areas:

– the AIDSYSD module
– trace dump list
– TTSAV (internal CDUMP data)
– P1 AUDIT table
– binder/loader metadata
– system trace table
– memory areas containing the following tables

XTV (eXecutive Vector Table)
SVMT (System Virtual Memory Table)
UVMT (User Virtual Memory Table)
TCB (Task Control Block)
P1-PCBs (Process Control Block)

– page to which the reference address specified in the PC operand points
– JIT390 administration data

i In the event of a user dump, the system trace table is buffered with its contents as
they were when CDUMP was called. When the dump is generated, the system trace
table is incorporated in the dump (at the position at which the table is located in the
system).

Dump forms CDUMP

32 U5663-J-Z125-11-76

File name of a user dump

CDUMP creates the user dump under one of the following IDs:

– under the user ID of the caller, provided he or she is authorized to read all the data
output by the dump.

– under the SYSUSER system ID if the dump contains read-protected data (e.g.
programs protected with a read password that the user has not included in the task’s
password table).

If the dump includes at least one page that is privileged but not “common readable”, the
user dump is output to the user ID SYSUSER as well.
If the dump is stored under $SYSUSER, only the system administrator can permit
access to the user, e.g. by means of
/MODIFY-FILE-ATTRIBUTES dateiname, -
/ PROTECTION=*PARAMETERS(USER-ACCESS=*ALL-USERS,READ-PASSWORD=readpass)

The file name of a user dump has the following structure:

– :catid:$userid.DUMP[.jobname].tsn.i,
if the file is saved under the caller’s user ID :

– :catid:$SYSUSER.DUMP[.jobname].tsn.i.userid,
if the file is saved under the SYSUSER system ID.

where:

catid is the catalog ID of the public volume set on which the dump is stored.

userid is the user ID of the caller.

jobname is the name of the job, comprising up to eight characters.

tsn is the four-digit task sequence number of the error task.

i is the five-digit sequence number of the user dump.

CDUMP Dump forms

U5663-J-Z125-11-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

4.1.3 System dump

A system dump is requested via the operand specification SCOPE=*SYSTEM of the
CDUMP2 macro and is always cataloged under the user ID SYSDUMP.
It covers the entire class 6, class 5, class 3 and class 1 memory with the exception of those
pages declared “secret pages”. Some system parameters influence memory area output
(see section “Control by means of system parameters” on page 38).

The areas containing the following tables are automatically output together with the class 5,
class 3 and class 1 memory:

– EXVT
– SVMT
– UVMT
– TCB
– PCB stack
– JCB
– TTSAV
– P1-AUDIT

All data pages of class 4 memory are output except “secret pages”.

The system dump also contains those pages of class 4 and class 2 memory which are offset
anywhere up to five pages before or after a reference address and the reference page itself.
These reference addresses are pointed to by the program counters (PC) in the PCBs and
the trace table and by the general-purpose registers in the PCBs and the bourse registers
in the PCBs. Memory pages which have the attribute “secret pages” are not output.

A system dump also contains the following:

– the AIDSYSD, EOLDTAB, DMCHD, NSISINF and CLASS2OP modules
– the trace dump list area
– the REPLOG and SERSLOG system files

(stored in separate dump segments, down to the last-page pointer).

In the CDUMP2 macro, buffering of the class 1, class 3 and the resident class 4 memory
can be requested with the SNAP operand (privileged users only) before the actual creation
of the dump. This so-called SNAP dump is then incorporated into the dump when
generating the system dump.

The operator is issued a message (IDA0N52) inquiring as to whether the system dump is to
be output to disk or MTC. Output of the message can be suppressed with the DUMPCTRL
and DUMPSD# system parameters .

Dump forms CDUMP

34 U5663-J-Z125-11-76

Normally, a system dump can be requested only from the privileged system area (TPR).
However, you can also request a system dump as a non-privileged user, provided you first
set your read privileges to m≥3. You do this with the following command:
/MODIFY-TEST-OPTIONS PRIVILEGE=*PARAMETERS(READ=m,WRITE=1)
You are only authorized to do this if you have been assigned this option for setting privileges
in the user catalog.
If you have the right privileges (see above), you may convert a user dump into a system
dump (with the MODIFY-TEST-OPTIONS command and the DUMP=*SYSTEM operand).
The message IDA0N45 is suppressed. The operator can control whether a system dump is
stored on disk or MTC.
In the event of an aborted system dump, message IDA0N99 is output, depending on the
system parameter DUMPCTRL.

A system dump that was loaded onto an MTC must be copied to a disk with the COPY-FILE
command. It can then be edited with the DAMP diagnostic routine. The PERCON utility
routine cannot be used to transfer the dump from MTC to disk in this case.

Example

/IMPORT-FILE SUPPORT=*TAPE
 VOLUME=<volume>,DEVICE=<device>, FILE-NAME=<filename> —————— (1)
/ADD-FILE-LINK LINK=DMCOPY11, FILE-NAME=<filename>,ACCESS-METHOD=*UPAM,
 BUF-LEN=*STD(2) —— (2)
/ADD-FILE-LINK LINK=DMCOPY22, FILE-NAME=<output-filename>,
 ACCESS-METHOD=*UPAM,BUF-LEN=*STD(2) ———————————————————————— (3)
/COPY-FILE FROM-FILE=<original-filename>,TO-FILE=<output-filename> ————— (4)

(1) Entry of the tape file in the system catalog.

(2) Specification of the link name DMCOPY11 for the tape file.

(3) Specification of the link name DMCOPY22 for the output file.

(4) The system dump is then copied from MTC to disk using COPY-FILE.

See also the description of COPY-FILE in the “Commands” manual [8].

CDUMP Dump forms

U5663-J-Z125-11-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

File name of a system dump

CDUMP saves a system dump under the SYSDUMP system ID and forms the file name of
the system dump in accordance with the following basic pattern:

:catid:$SYSDUMP. .pc.ec.tsn.date.time

Where:

catid is the catalog ID of the public volume set on which the dump is
stored. If the dump was output to MTC, no catalog ID is displayed.

module is the name of the module from which the dump is activated,
max 8 characters.

ABSOLU is used if no name for the module exists.

pc is the address in the program counter (relative to the start of the
module or absolute).

ec is the event code (hexadecimal). If the system dump was initiated
with the CREATE-DUMP command, the event code has the value
'C8'.

tsn is the TSN of the activating task.

date is the date in the form Dyymmdd (D=marker identifying the start of
a date, yy=year, mm=month, dd=day).

time is the time in the form hhmmss (hh=hours, mm=minutes,
ss=seconds).

ABSOLU

module

Influence of page attributes CDUMP

36 U5663-J-Z125-11-76

4.2 Influence of page attributes

Memory pages can be provided with attributes. The following page attributes affect the
processing of CDUMP:

– Secret pages
These are marked as such by the user by means of the CSTAT macro and then enjoy
special protection.
Depending on what has been specified for the DUMPSEPA system parameter (see
page 38), all secret pages, only secret pages from selected memory classes, or no
secret pages will be included in the dump file.

– Trusted pages
These are provided with a memory protect key which is not the same as that of the user
(e.g. pages used by the software product openUTM).
Pages of this type for a task are handled as follows:

If an area or user dump is called from a program section marked as “trusted”, the
trusted pages are included in the dump and the dump is stored under the user ID
SYSUSER.
If an area or user dump is called from a program section that has the user’s normal
memory protect key, the trusted pages are excluded from the dump (exception:
common readable pages, see below), where they are marked as “not accessible”. The
area or user dump is then stored under the user ID.

All trusted pages are included in a system dump.

– Common readable pages
These can be marked as such by the owner by means of the CSTAT macro (class 6
memory), which makes them generally accessible. Common readable pages are
included in the dump even if they are marked as trusted pages. However, if they are
also marked as secret pages, they are excluded from the dump.

– Read-protected areas
If programs or parts of programs indicated as being subject to special protection (e.g.
read-protected programs) are included in the dump, the user dump or area dump is not
output to the user’s ID, but to the ID SYSDUMP instead.

For example, a program or part of a program deserves special protection if it is loaded
or reloaded from a file that is protected with a read password and the user has not used
the /ADD-PASSWORD command to specify the password.

CDUMP Influence of page attributes

U5663-J-Z125-11-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

– Freshly-obtained pages
These are pages requested by and reserved for a user (allocated pages), but which
have not yet been used.
Freshly-obtained pages are not transferred directly to the dump file by CDUMP, but are
only marked as “freshly-obtained” in the index structure for the person evaluating the
dump.

– DIV pages
DIV pages constitute a data area from a file which is mapped and processed in virtual
memory.
These pages can be included in the user dump if the user so wishes (DIV operand in
the CDUMP2 macro with SCOPE=*USER). If the DIV operand is not specified in the
macro call, the value set using the DATA-IN-VIRTUAL operand in the MODIFY-TEST-
OPTIONS command determines how DIV pages are handled in a user dump.
DIV pages are always included in a system dump.

– MMAP pages
MMAP pages are data areas of POSIX files that are mapped and processed in the
virtual address space. These pages can be included as a part of the user dump if
requested by the user (MMAP operand in the CDUMP2 macro). If the MMAP operand
is not specified in the macro call, the value set using the MEMORY-MAP operand in the
MODIFY-TEST-OPTIONS command determines how MMAP pages are handled in a
user dump.
MMAP pages are always included in a system dump.

Note

User memory areas can also be located in data spaces. All the pages in a data space have
the same page attributes with the exception of “allocated” and “freshly obtained”. (This does
not apply to the pages in a particular program space.)

– Users can choose to include memory areas from data spaces in the user dump (DS
operand in the CDUMP2 macro with SCOPE=*USER). If the DS operand is not
specified when the macro is called, the value set using the DATA-SPACES operand in
the MODIFY-TEST-OPTIONS command determines how data spaces are handled in a
user dump.

– An area dump includes precisely those areas from data spaces specified by the user
when the CDUMP2 call was issued (DSCTRL operand in the CDUMP2 macro with
SCOPE=*AREA).

– A system dump only contains those areas from data spaces which the operating
system passed to CDUMP via an interface ($DMPDEF(I)).

Controlling the CDUMP functions CDUMP

38 U5663-J-Z125-11-76

4.3 Controlling the CDUMP functions

The CDUMP functions can be controlled by means of system parameters and task-specific
settings.

4.3.1 Control by means of system parameters

The system parameters are set in the startup parameter service and affect dump output
throughout the system.

● A corresponding setting for the DUMPSEPA system parameter enables the output of
protected memory areas (secret pages, see page 36) of the class 1 and class 6 memory
to be suppressed.

● The output of privileged class 5 memory in area and user dumps can be controlled by
setting the DUMPCL5P system parameter.

● The DUMPSD# system parameter defines how many system dumps per session are to
be output without interaction from the operator.

● The following functions can be controlled using the DUMPCTRL system parameter:

– detection of duplicates with system dumps (default: switched off)

– unmanned operation (default: switched off)

– output of the IDA0N99 message (default: switched off)

– output of the IDA0N52 message (default: switched on)

– use of the IOPERF= HIGH and IOUSAGE=WRITE operands in the FILE call for the
dump output file (default: switched on)

● Output of class 6 memory in system dumps can be controlled using the DUMPSREF
system parameter.

● The RDTESTPR system parameter defines the maximum read test privilege values.

A read test privilege value of Ï 3 is required in order to create a system dump from the
processor state TU or to convert an area dump or user dump into a system dump.

● If the DESTLEV system parameter was set to Ï 2, the dump files are created under the
SYSDUMP and SYSUSER user IDs with the operand DESTROY-BY-DELETE=YES.

More detailed information on the possible values and operands for system parameters can
be found in the “Introduction to System Administration” manual [6].

CDUMP Controlling the CDUMP functions

U5663-J-Z125-11-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

4.3.2 Control by means of task-specific settings

Task-specific settings used when creating the dump can be specified with the command
MODIFY-TEST-OPTIONS (see the “Commands” manual [8]).

The USERDUMP-OPTIONS operand controls if the output of the user and area dumps are
for your own task or for other tasks running under your user ID (this restriction does not
apply to user IDs with the TSOS privilege).
The user can specify:

– if any user or area dumps are to be made or if they are to be converted to system dumps
(DUMP=*SYSTEM),

– on which pubset the dumps are to be stored

– if dump duplicates are to be suppressed or not,

– the maximum number of dumps that can be made and

– if the user dump is to contain DIV windows, data spaces or POSIX memory mapping
areas.

The local task test privileges can be used with the PRIVILEGE operand to control if:

– user or area dumps are allowed to be converted to system dumps
(DUMP=*SYSTEM) and

– if system dumps are allowed to be requested for the CDUMP2 macro or for the
message IDA0N45.

A read test privilege Ï 3 is necessary, either in the task in which the dump occurred or in
the task that specified DUMP=*SYSTEM.

A requirement to be able to set the read test privilege Ï 3 locally for a task is that the user
ID under which the task is running has a sufficiently large value (see the ADD-USER or
MODIFY-USER-ATTRIBUTES commands, TEST-OPTIONS operand).

Dump-specific operands in BS2000/OSD commands CDUMP

40 U5663-J-Z125-11-76

4.4 Dump-specific operands in BS2000 commands

ADD-USER / MODIFY-USER-ATTRIBUTES command

System administration uses the ADD-USER command to define which test privilege a user
is to be granted, see the manual “Commands” [8]:
ADD-USER TEST-OPTIONS=*PARAMETERS(READ-PRIVILEGE=...,MODIFICATION=...).

User-specific test privileges can be modified with the MODIFY-USER-ATTRIBUTES
command.

i You can display the current settings for privileges on a user-specific basis using the
SHOW-USER- ATTRIBUTES command, TEST-OPTIONS operand (and on a task-
specific basis using the SHOW-TEST-OPTIONS command, INFORMATION=
*PRIVILEGE operand).

MODIFY-TEST-OPTIONS command

The user can employ the MODIFY-TEST-OPTIONS command to specify task-specific
settings for test and diagnostics.

DUMP operand

The DUMP operand of the MODIFY-TEST-OPTIONS command is used to determine
how the user dump generated with CDUMP is to be handled after the message IDA0N51
PROGRAM INTERRUPT AT LOCATION ... is issued. It is also used to indicate whether a
user or area dump is to be converted to a system dump.

i You can display the current settings for outputting user and area dumps using
the SHOW-TEST-OPTIONS command, INFORMATION=USERDUMP-
OPTIONS operand.

DUMP=*STD (interactive mode)

CDUMP issues the following message:
IDA0N45 DUMP DESIRED? REPLY (Y=USER-/AREADUMP TO DISK;

Y,<VOLUMETYPE>=USER-/AREADUMP TO TAPE;
Y,SYSTEM=SYSTEMDUMP TO DISK;
N=NO)

If the user responds with “N”, the dump is suppressed. If the user responds with “Y”
or “Y,SYSTEM”, CDUMP generates the dump and issues the message:
IDA0N53 DUMP BEING PROCESSED. PLEASE HOLD ON
If the user has a read test privilege Ï 3 and responds with “Y,SYSTEM”, a user or
area dump is converted into a system dump.
If <VOLUMETYPE> is specified, the dump is written to MTC.

CDUMP Dump-specific operands in BS2000/OSD commands

U5663-J-Z125-11-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

Message IDA0N53 is suppressed if CDUMP is called with the command
CANCEL-JOB DUMP= (see the CANCEL-JOB command below).

DUMP=*STD (in batch mode and in procedures)

Output of the dump is suppressed and the following message is issued:
IDA0N48 TASK/SYSTEM SETTINGS PROHIBIT DUMP

DUMP=*YES

The user and area dumps are generated and the following message output to
SYSOUT: IDA0N53 DUMP BEING PROCESSED. PLEASE HOLD ON
Message IDA0N45 is suppressed.

DUMP=*NO

Generation of user and area dumps is suppressed and the following message is
output to SYSOUT instead of message IDA0N45:
IDA0N47 DUMP PROHIBITED BY /MODIFY-TEST-OPTIONS COMMAND

DUMP=*SYSTEM

A user or area dump is converted to a system dump if the user possesses a read
test privilege Ï 3.
The message IDA0N45 is suppressed.

DUMP-CONTENTS operand

The DUMP-CONTENTS operand of the MODIFY-TEST-OPTIONS command can be
used to control inclusion of DIV windows, data spaces and POSIX MMAP areas in the
user dump. The DUMP operand must not be set to *NO or *SYSTEM if this control is
desired.

DUMP-CONTENTS=*PARAMETERS(DATA-IN-VIRTUAL=*NO/*STD/*YES)

If the operand value is set to *NO, no page of the DIV area is included in the user
dump. The *STD and *YES operand values have the same meaning and cause the
inclusion of DIV windows in the user dump.

DUMP-CONTENTS=*PARAMETERS(DATA-SPACES=*STD/*YES/*NO)

If the operand value is set to *NO, no page of the DS area is included in the user
dump. The *STD and *YES operand values have the same meaning and cause the
inclusion of data spaces in the user dump.

Dump-specific operands in BS2000/OSD commands CDUMP

42 U5663-J-Z125-11-76

DUMP-CONTENTS=*PARAMETERS(MEMORY-MAP=*STD/*YES/*NO)

The value *STD or *YES causes POSIX pages to be included in the user dump; the
value *NO means that no page of the MMAP area will be included in the user dump.

TSN operand

The TASK-ID operand can be used to specify the task for which the dump output
settings are to be changed.

TSN=*OWN

The changes to the dump output settings apply to the user’s own task.

TSN=<alphanum-name 1..4>/ <c-string 1..4>

The changes to the dump output settings apply to the task with the specified TSN.
Users who have not been assigned the TSOS privilege may only modify the settings
of tasks running under their own user ID.

OUTPUT-PUBSET operand

The OUTPUT-PUBSET operand is used to specify the pubset to which user dumps or
area dumps are saved.

OUTPUT-PUBSET=*DEFAULT-PUBSET

A user dump or area dump is saved to the default pubset defined for the user ID of
the task causing the dump, provided the dump does not contain data deserving
special protection. Otherwise, the dump is saved to the default pubset of the
SYSUSER user ID.

OUTPUT-PUBSET=<cat-id 1..4>

A user dump or area dump is saved to the specified pubset.

If the dump cannot be saved to the specified pubset (e.g. because insufficient space
is available), it is saved to the default pubset.

CDUMP Dump-specific operands in BS2000/OSD commands

U5663-J-Z125-11-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

MAXIMUM-NUMBER operand

The MAXIMUM-NUMBER operand can be used to set a maximum value for the number
of user and area dumps to be created.

MAXIMUM-NUMBER=*UNLIMITED

There is no upper limit on the number of user dumps and area dumps.

MAXIMUM-NUMBER=<integer 1..255>

The number of user dumps and area dumps is limited to the value specified here.

SUPPRESS-DUPLICATES=*NO/*YES operand

The SUPPRESS-DUPLICATES operand is used to specify whether a user dump or
area dump should be suppressed if it is a duplicate of a dump that has already been
generated. A dump is considered to be a duplicate if it occurs at the same location in
the same program and has the same interrupt weight as another dump.

PRIVILEGE operand

The operand PRIVILEGE = *PAR(READ=...) is used to set read task specific read test
privileges.
Users without privileges can only request a system dump if they have a read privilege
Ï 3 (see the ADD-USER command).

CANCEL-JOB command

The CANCEL-JOB command cancels a job. The DUMP operand determines whether a
dump should be generated for the job being canceled or whether a user dump or area dump
currently in progress should be aborted.

DUMP operand

The DUMP operand defines whether a dump is to be output for the job which is to be
canceled.

DUMP = *NO

A dump is not requested. If, however, a dump is already in progress for the job being
canceled, it is completed in full.

Dump-specific operands in BS2000/OSD commands CDUMP

44 U5663-J-Z125-11-76

DUMP = *STD

If the operand DUMP=*YES or DUMP=*STD was set with the MODIFY-TEST-
OPTIONS command, a dump is generated (even if *STD would imply a *NO, which
is the case in batch or procedure mode). No dump occurs if DUMP=*NO is explicitly
specified. If DUMP=*SYSTEM is specified a system dump is generated.

DUMP = *CANCEL-RUNNING-DUMP

If a user dump or area dump is already in progress for the job that is to be canceled,
the dump is aborted immediately and the dump file is deleted.

MODIFY-SYSTEM-PARAMETERS command

The MODIFY-SYSTEM-PARAMETERS command can be used by the system
administrator to set the CDUMP system parameters.

CDUMP Execution messages

U5663-J-Z125-11-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
0

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
4

4.5 Execution messages

The operator is informed via the console as to why the system dump has been taken.

Depending on the CDUMP2 parameter DIAG the following messages may or may not be
displayed (only if the system dump was requested by means of the CDUMP2 macro):

IDA0N50 SYSTEMDUMP CALLED AT LOCATION '(&00)'

insert =

The following message is always output:

IDA0N51 PROGRAM INTERRUPT AT LOCATION '(insert)'

insert =

The following message is then generally displayed to ask whether the operator wants to
generate a system dump and, if so, to which output medium (disk or MTC):

IDA0N52 SYSTEMDUMP DESIRED? REPLY (EOT=DISK; VOLUMETYPE=TAPE; N=NO)

The operator may enter the following:

The following entries, among others, can be made for <device-identifier> (see the DEVICE-
TYPE operand of the CREATE-FILE command in the “Commands” manual [8]):

As an alternative, responding to the following message (that appears when a user/area
dump is output to SYSOUT) leads to the selection of the output medium:

CDUMP-ad
Error-ad
module
EC
ELSN
CODE
INSERT

Hexadecimal CDUMP call address
Hexadecimal error address
Module name
Event code
Number of Error Logging Sequence Block
Cause of dump
String specifying the cause

<tsn>.EOT
<tsn>.<device-identifier>
<tsn>.N

Output to disk
Output to disk
Suppress dump

TA
TAPE
T-C4

Any MTC device
Any MTC device
MTC device of volume type TAPE-C4

<CDUMP-ad>.(module+nnnnn),EC=...[,ELSN=elsnr#]
<CDUMP-ad>.(ABSOLUT),EC=...[,ELSN=elsnr#]

[,CODE=code]
[,INSERT=insert]

<error-ad>.(module+nnnnn),EC=...[,ELSN=elsnr#]
<error-ad>.(ABSOLUT),EC=...[,ELSN=elsnr#]

[,CODE=code]
[,INSERT=insert]

Execution messages CDUMP

46 U5663-J-Z125-11-76

IDA0N45 DUMP DESIRED?
REPLY (Y=USER-/AREADUMP TO DISK;
Y,<VOLUMETYPE>=USER-/AREADUMP TO TAPE;
Y,SYSTEM=SYSTEMDUMP; N=NO)

The messages are repeated if an invalid MTC device identifier is entered.

If a valid MTC device identifier is entered, but the requested device is not available,
message IDA0N58 is output on the console and repeated until a correct response is entered.

IDA0N58 TAPE DEVICE TYPE NOT AVAILABLE?
REPLY: (EOT=OUTPUT TO DISK; <VOLUMETYPE>=OUTPUT TO TAPE; N=NO)

Messages IDA0N52 and IDA0N58 are followed by messages from device management and
from the data management system for controlling dump output (such as MOUNT
messages, volume requests etc.).

If an error occurs in the system during dump output, error information (possibly together
with an error code) is included in a message (IDA0N63). Output is terminated if necessary
(IDA0N61 message).

Correct termination of system dump output is indicated by the message:

IDA0N54 SYSTEMDUMP WRITTEN TO FILE '$SYSDUMP....'

If the dump was output to tape or tape cartridge, it must be copied to disk with COPY-FILE
(and not with PERCON!) before it is processed by DAMP.

U5663-J-Z125-11-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5 DAMP
Dump analysis

i Notes on the presentation of the DAMP version in this chapter:

– DAMP is used as the abbreviated form of DAMP V4.8 (BS2000 OSD/BC
V10.0).

– The character string <version> in sample outputs specifies the current version
of DAMP, in this version of DAMP: <version>=V4.8A00.

– The character string <ver> in file names specifies the current version of DAMP,
in this version of DAMP: <ver>=048.

5.1 Performance capabilities

DAMP is a program for analyzing diagnosis objects interactively. The diagnosis objects
involved may be a dump file or an active BS2000 system.

DAMP can be used to virtually and symbolically analyze dump files containing a BS2000
system as well as an active BS2000 system. It also supports a real analysis of dump files
which were created by some other operating system or which reflect a BS2000 system with
damaged BS2000 structures. If the dump file structures are also corrupt, it may
still be possible to perform an “emergency analysis” as a PAM file.

In order to work with DAMP, you will need to be familiar with the system and experienced
in the field of diagnostics, since there is no provision for guided screen dialogs.

The program DAMP which is described here runs on the following servers and operating
system versions:

– on servers with /390 architecture: BS2000/OSD-BC V8.0 and higher

– on servers with x86 architecture 1:

1 On servers with x86 architecture, DAMP runs in emulated form

 BS2000/OSD-BC V8.0 (OSD/XC V4.0) and higher

Performance capabilities DAMP Dump analysis

48 U5663-J-Z125-11-76

DAMP can process any dump files that were created on the following servers, regardless
of which BS2000 version is currently active.

● on servers with /390 architecture as of BS2000/OSD-BC V5.0

● on servers with x86 architecture as of BS2000/OSD-BC V8.0 (OSD/XC V4.0)

DAMP requires the access method ANITA V19.0 to analyze dump files from BS2000
OSD/BC V10.0. ANITA V19.0 is available with a correction version for BS2000/OSD-BC
V8.0 and higher.

5.1.1 Diagnostic log

All diagnostic activities and all screen outputs can be logged. All inputs and outputs are
written into a file. This makes it possible to retrace the diagnostic course at a later point in
time by analyzing the logged printouts or reviewing the logged session on the screen.

5.1.2 Creating lists

Since diagnosis is performed interactively on the screen, most of the lists needed for
conventional offline diagnosis are superfluous. If such lists are nonetheless created, the
type and scope of the information to be printed can be very easily specified.

5.1.3 Automating diagnostic processes

Actions which are repeated frequently can be automated. An automatic preliminary analysis
can, for example, be used to identify the pages of a dump that are relevant for the diagnosis
and to localize the error. By using the diagnostic language PRODAMP, the person
performing the diagnosis can create procedures of instructions, including decision-based
instructions, for diagnostic purposes. These procedures can then be saved in libraries and
subsequently called as required.

DAMP Dump analysis Performance capabilities

U5663-J-Z125-11-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.1.4 Additional functions

If additional message and error files such as CONSLOG or SERSLOG are needed for the
diagnosis, the editor EDT can be called as a subroutine. This editor can also be used to
create or modify PRODAMP procedures.

DAMP can edit memory areas, for example in the layout of BS2000 dummy sections, by
means of referring to elements in a symbol library.

In addition to the standard symbol library of the BS2000 basic configuration, users can also
make use of their own private symbol files, generated by means of DAMP, for special
analysis applications.

5.1.5 Behavior in the event of a program or system error

If an irregular program or system status is detected, DAMP outputs brief diagnostic infor-
mation to SYSOUT and then terminates with a dump (user dump).

If, however, task switch 30 is set and DAMP is executing in interactive mode, a message is
issued asking whether a dump should be generated.
If task switch 30 is set and DAMP is executing in batch mode, no dump is generated.

If you suspect an endless loop in DAMP, you should interrupt DAMP by pressing the
function key [K2]. The rest of the run can be controlled with the INFORM-PROGRAM
command (see the description of “Entering DAMP statements via the system command
INFORM-PROGRAM” on page 223). Entering /INFORM-PROGRAM MSG='?' switches to SDF
user guidance mode, and entering /INFORM-PROGRAM MSG='*DUMP' terminates the program
with a dump.

Performance capabilities DAMP Dump analysis

50 U5663-J-Z125-11-76

5.1.6 Diagnosis objects that can be analyzed

5.1.6.1 Active system

The diagnosis object “active system” (CURRENT SYSTEM) always contains a BS2000
system. During the diagnosis, bear in mind that the system continues to operate even
during the diagnostic session and is thus subject to constant changes. In order to diagnose
the active system, you will need to have read test privilege 8 (see also the MODIFY-TEST-
OPTIONS and SHOW-TEST-OPTIONS commands in the “Commands” manual [8]).

5.1.6.2 Dump files

DAMP can analyze not only dump files containing a BS2000 system, but basically all files
that can be recognized by DAMP as a BS2000 dump file due to their metadata and
analyzed as “real”. A BS2000 system can be analyzed virtually and symbolically.

SLED and SNAP

The diagnosis objects SLED and SNAP are created by dump file generators of the same
names and can be analyzed as “real” or “virtual”. A SNAP always contains the BS2000
operating system. A SLED could also have been generated for other operating systems.
Both types of dump files are created when the system is in an inactive state:

● SLED, following a system abort

● SNAP, on stopping the system for a brief period (up to 24 seconds)

The scope of both these dumps can be controlled via parameters, but the SNAP is subject
to significant restrictions due to the time limit.

A SLED may contain multiple products:

● Complete VM2000 SLED

A complete VM2000 SLED is a SLED file that contains the data of the VM2000 product
as well as the data of the VM2000 guest systems. VM2000 guest systems run as virtual
machines (VM) on a VM2000 system and may include both BS2000 as well as other
operating systems.

● SLED from a SLED

A SLED from a SLED is created if a further SLED was loaded before running the SLED.
A SLED from a SLED is a file containing the data of the product SLED as well as the
data of the product or products (for VM2000) that was run earlier.

DAMP Dump analysis Performance capabilities

U5663-J-Z125-11-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

System dump, user dump and area dump

The diagnosis objects SYSDUMP, USERDUMP and AREADUMP are created by the dump
file generator CDUMP. They always contain data of the BS2000 and can only be virtually
analyzed. The data is generated during the session and includes the memory areas of a
task and selected system areas. The system dump provides diagnostic
documentation for the system diagnostics staff; the user dump contains such details for the
nonprivileged BS2000 user. An area dump contains memory areas defined by
nonprivileged users.

SELF-LOADER

Any dump file that can be processed with DAMP as “real” can be opened by the user with
the SELF-LOADER attribute. This enables the real-time analysis of dump files (SLEDs and
SNAPs) that contain some other operating system or a BS2000 system with damaged
BS2000 structures.

5.1.6.3 PAM file as diagnosis object

Even files that do not have the BS2000 dump format can be processed with DAMP (with
some restrictions). In order to do this, they must be opened with the PAM attribute. This
function is primarily intended to enable an “emergency analysis” of damaged dump files.

Performance capabilities DAMP Dump analysis

52 U5663-J-Z125-11-76

5.1.7 Online helps

During a diagnostic session you can request help from DAMP if you require this. If you enter
a question mark (?) in one of the input fields and press the [DUE] key, DAMP supplies a
description of this field. To do this, DAMP switches to EDT. You can scroll to find more
detailed information on DAMP there. After EDT has terminated you can continue your
diagnostic session. EDT mode '@VDT F2' is required for this help function. This is only
available on 9763 data display terminals.

Online helps are available in German only.

A further (less user-friendly) help option is provided by the help window (see page 60).

5.1.8 Terms used

DAMP computer BS2000 system on which DAMP is loaded and on which the diagnosis object
is located.

DAMP screen All data displayed on a screen by DAMP. The contents of one or more
diagnostic windows can be displayed simultaneously on a DAMP screen.

Diagnostic window The attributes of a diagnostic window are the name (W0 - W9, W21 - W99),
the contents, and the representation of the contents. One section of the
diagnostic window (W0 - W3) is allocated to fixed contents, the rest (the
dump windows W4 - W9 und W21 - W99) can be allocated to different
contents. Generally only a segment of the total contents of the diagnostic
window is displayed on the DAMP screen.

Dump window Dump windows are windows with the name W4 - W9 or W21 - W99.
Depending on the contents of the window, they are also referred to as
standard dump windows or special windows.

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.2 Screen format

5.2.1 Screen mask

The DAMP screen mask has a uniform structure and the lines described below always have
the same meaning:

1 Title line
Displays the DAMP version and metadata on the diagnosis object.

2-3 Message lines
Output lines for DAMP and system messages.

4-22 Diagnostic area
Displays one or more diagnostic window(s), each with its own header line(s) and a
dividing line between the windows.

23 Command line
Input line for DAMP statements and system commands.

24 Key line
Shows the content of each of the 9 diagnostic windows W1 - W9 which can be set
using the P keys (the content of the other diagnostic windows is shown only in
window W0).

Figure 1: The DAMP screen mask

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

Analyzed Object: BS2000 V19.0A00G1 TID=000A00CB TSN=HSMS W2,PLK,L 8
Dumpfile: :1DQM:$DIAGDUMP.A0550438.DHSIHSM@.00502.50.HSMS.D06081 on /390-HSI/VM
MemSize: 256.0 MB ShareB: 00C00 UserXB: 01000 SysB: 71000

PCB# PCB-Ad IS-LNK SR Program Counter SVC/IW A_MODE
 1 739073A8 72F91008 070C0C00 71542CBE=CDUMPF1 +0117E EE=$PNUP 31
 2 72F91008 732DC578 070C0C00 7139ECB0=NRTINIT +01670 1A=CDUMP 31
 3 732DC578 00000000 070C0C00 7C584BC2=DHSIHSM@+00502 ED=TPR-Ter 31
--
ETCB +00344=720E2AEC TID=000A00CB W5,CBA,L 3
344 ETCBSTA : 739073A8 | 348 ETCBTRC@: 00000000 = 0
34C ETCBCTRC: 71FEC420 | 350 ETCBADM1: 00000000 = 0
--
DHSIHSM@ +004FC=7C584BBC TID=000A00CB W4,ASS,L 6
7C584BBC (04FC): 41 10 DD88 = LA R1,3464(,R13)
7C584BC0 (0500): 0A ED = SVC 237 (TPR-Ter)
7C584BC2 (0502): 98 A6 D0D0 = LM R10,R6,208(R13)
7C584BC6 (0506): 07 FE = BR R14
7C584BC8 (0508): 00060202 = DC X'00060202'
CMD:
Key: 1=Help 2=Plk 3=PCB 4=U7C584 5=ETCB 6=EXVT 7=MEMA 8=SUSY 9=FIND

line
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Screen format DAMP Dump analysis

54 U5663-J-Z125-11-76

The mask in figure 1 contains the following elements:
title line (line 1), two message lines (2-3), status window W2 with a length of 8 lines (4-11),
dividing line (12), window W5 in symbolic format with a length of 3 lines (13-15), dividing
line (16), window W4 in assembler format with a length of 6 lines (17-22), command line
(23) and key line (24).

The various lines in the DAMP screen mask have the following functions:

The title line (line 1)

The title line displays:
– the DAMP version number
– the type of the analysis object
– the dump generator version (only for a dump file)
– the name and version of the product contained in the diagnosis object
– the date and time the diagnosis object was created

The second field (type of the analysis object) can contain the following information:
– CURRENT SYSTEM
– SLED (including complete VM2000 SLED and SLED from a SLED)
– SNAP
– SYSDUMP
– USERDUMP
– AREADUMP
– SELFLOADER
– PAM FILE

See also section “Diagnosis objects that can be analyzed” on page 50.

If a diagnosis object (e.g. a VM2000 SLED file) includes data from multiple products, the
name and version refer to the product that that first appears on opening the object (in the
case of a VM2000 file, this is the product VM2000). This information remains in the title line
even if some other product from the object is subsequently selected.

Further information relating to the analysis object can be output in INF mode in the status
window (W2).

Figure 2: Title line when a system dump is the diagnosis object

Figure 3: Title line when the active system is the diagnosis object

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

DAMP <version> CURRENT SYSTEM from BS2000(19.0) <date> <time>

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The message lines (lines 2 and 3)

The message lines display messages from the DAMP system. You can use program keys
[P14] and [P15] to scroll backward or forward in the message history.

The user option “Blinking” can be used to activate and deactivate flashing messages (see
“Column separator (list)” on page 135).

Figure 4: Messages from the DAMP system in lines 2 and 3

In EDT mode, these messages are output on the last two data lines of the EDT screen.

The diagnostic area (lines 4 to 22)

The requested diagnostic windows (see page 58) are displayed in the diagnostic area of
the mask. These contain either the information from the dump under examination or various
help texts. This dividing line can be optionally deactivated. The substitution characters for
nonprinting characters and for window and column separators can be set according to the
generated terminal type.

The command line (line 23)

The command line starts with CMD: and is used for the entry of DAMP statements and the
permitted system commands (see page 167 for a list of possible DAMP statements).

Figure 5: Input area for DAMP statements and system commands

If a system command entered in the DAMP mask results in a system message, this
message is displayed in lines 2 and 3 (the message lines).

If you enter a question mark or the name of a statement followed by a question mark, the
system switches to SDF user guidance mode. This mode displays screen masks which
allow you to complete the statement by filling in the fields required and to then pass the
completed statement to DAMP by means of the execute function.

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>
DMP8751 CLASS 1 SEARCH INTERRUPTED; <F3> CONTINUE, <F1> CANCEL

FIND - Command SYS=000A00CB 21,D ,L16

71A6C336 (016E): D12C0DEF D5014006 A7444780 A0C6D203 <==> J...N. .x....FK.
71A6C346 (017E): D13CA50C 47F0A0CC D203D13C 400C4140 <==> J.v..0..K.J. ..
CMD:
Key: 1=Help 2=Plk 3=PCB 4=Dump 5=ETCB 6=Dump 7=Dump 8=U71A6C 9=Dump

Screen format DAMP Dump analysis

56 U5663-J-Z125-11-76

BS2000 system commands can be entered directly in the command line. If ambiguities
arise because a command has the same name as a DAMP statement, the command can
be prefixed by a command label such as /LABEL, which ensures that the command is then
interpreted as a system command.

The key line (line 24)

The key line shows the content of each of the 9 diagnostic windows W1 to W9 which can
be set using the P keys, regardless of whether or not these windows are visible on the
screen. The assignment of the other diagnostic windows is shown only in window W0. The
description of the diagnostic windows is provided on page 58.

To start with, the dump windows (W4 - W9 and W21 - W99) are freely available standard
dump windows. This can be seen for the dump windows W4 - W9 by means of the “Dump”
indicator in the key line.

If one of the dump windows (W4 - W9) was being used and this window is not a special
window, the page of the system memory or user memory of which a part is currently
displayed in this window is displayed in the corresponding position in the key line.

The key line contains the following display:

If this part of the page is displayed in symbolic format, the name of the control block name
is shown (abbreviated, if necessary, to 6 characters).

If hardware information is being displayed, the appropriate field in the key line shows one
of the following:

Snnnnn
Unnnnn
Dnnnnn

for system memory
for user memory
for data spaces

Rnnnnn for output with real addressing (ASEL=RM);
nnnnn: address specified relative to the associated 4GB segment

Annnnn for output with absolute addressing (ASEL=ABS);
nnnnn: address specified relative to the associated 4GB segment

Hnnnnn for output of the hardware system area (ASEL=HSA)

PSSnnn for output of the processor saved status (ASEL=PSS)
nnn: processor number

snnnnn for output of a dump file section (ASEL=SCT)

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

If a special function is assigned to a window, this function is also shown in the appropriate
position in the key line, namely:

It is thus possible to see, at any time, which diagnostic window contains which memory
segment and which diagnostic windows are still available for assignment. The statement
SHOW-EDITED-INFORMATION INFORMATION=*STORAGE-EDIT can be used to cancel use as a
special window, in which case “Dump” is displayed again.

Figure 6: Key line

Line 24 is the key line and shows the following:

– windows 1 to 3 have fixed assignments, namely as help, status and stack windows
– window 4 contains virtual system page 71234
– window 5 contains virtual system page 705FE of a data space
– window 6 contains user page 70F12
– window 7 contains the TCB of the current task in symbolic notation
– window 8 is not used
– window 9 is occupied by the trace table

AUDI
FILE
FIND
LIST
MEMA
OPTS
PROC
SUSY
TABL
TRAC

for
for
for
for
for
for
for
for
for
for

SHOW-EDITED-INFORMATION INFORMATION=*AUDIT-TABLE-EDIT
SHOW-EDITED-INFORMATION INFORMATION=*DUMPED-SYSTEM-FILE
START-PATTERN-SEARCH
START-LIST-GENERATION
SHOW-EDITED-INFORMATION INFORMATION=*MEMORY-ATTRIBUTES
START-OPTION-DIALOG
START-PRODAMP-EDITOR
SHOW-EDITED-INFORMATION INFORMATION=*SUBSYSTEM-INFORMATION
SHOW-EDITED-INFORMATION INFORMATION=*TASK-TABLES
SHOW-EDITED-INFORMATION INFORMATION=*TRACE-TABLE-EDIT

068 ETCB@19@ : 70F8E000 | 06C ETCB@20@ : 70F81F40
070 ETCB@21@ : 00000000 = 0 | 074 ETCB@22@ : 00000000 = 0
CMD:
Key: 1=Help 2=Plk 3=PCB 4=S71234 5=D705FE 6=U70F12 7=ETCB 8=Dump 9=TRAC

Screen format DAMP Dump analysis

58 U5663-J-Z125-11-76

5.2.2 Diagnostic windows

A total of 89 diagnostic windows are available for diagnosis on the screen. The windows
are designated W0 through W9 and W21 through W99 (W10 through W20 cannot be used
as diagnostic windows). These windows consist of

● the overview window (W0)

● the help window (W1)

● the status window (W2)

● the stack window (W3)

● the dump windows (W4 - W9 and W21 -W99)

A maximum of 19 lines of one or more windows, including the dividing and header line(s),
can be displayed on the screen.

The windows can be assigned contents during the diagnosis session:
Window W0 contains the assignment of all 89 diagnostic windows, window W1 is assigned
permanently to the online help function provided by DAMP, windows W2 and W3 are used
when a BS2000 diagnosis object is opened, while windows W4 to W9 and W21 to W99 can
be assigned freely, e.g. with the SHOW-EDITED-INFORMATION or START-PATTERN-SEARCH
statement.

You can control the number, order and length of the windows displayed on the screen with
the MODIFY-SCREEN-LAYOUT statement. Any assignment made for a window remains valid
even if the window is currently not visible. As an alternative to the MODIFY-SCREEN-LAYOUT
statement a window (of the currently valid length) can also be made visible by pressing a
P key (windows W1 through W9) or by entering the window number (0 - 9, 21 - 99) in the
command line and pressing [DUE].

For further information on the diagnostic window, see also page 84.

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.2.2.1 The overview window (W0)

The overview window (W0) always contains the current assignment of the available
diagnostic windows W0 through W9 and W21 through W99. As W10 through W20 may not
be used as diagnostic windows (to prevent conflict situations with the current use of P keys
P10 through P20), these must be marked as “reserved”.

If a diagnostic window is currently not assigned, this is displayed in window W0 by the
output of blanks, otherwise the current window assignment is displayed. The display takes
place in the key line (see the description of the “The key line (line 24)” on page 56) analo-
gously to the display for windows W1 through W9. Since more characters are available for
the assignment display in window W0 than in the key line, the address (instead of the page
number) is displayed here for memory areas.

Figure 7: Output in the overview window (W0)

To select a window for output on the screen, mark a window number with [MAR] and then
press [DUE]. Alternatively a window can also be selected in the manner described under
“Diagnostic windows” (see page 58).

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

DAMP Window Assignment W0,WIN,L19
00 = WINDOWS 01 = HELP 02 = PLK 03 = PCB 04 = U70FFD328
05 = S728D73E8 06 = 07 = U70FFCFC8 08 = D00000000 09 =
10-20: reserved 21 = EXVT 22 = ETCB 23 = S728BA380 24 =
25 = 26 = 27 = 28 = 29 =
30 = 31 = 32 = 33 = 34 =
35 = 36 = 37 = 38 = 39 =
40 = 41 = 42 = 43 = 44 =
45 = 46 = 47 = 48 = 49 =
50 = 51 = 52 = 53 = 54 =
55 = 56 = 57 = 58 = 59 =
60 = 61 = 62 = 63 = 64 =
65 = 66 = 67 = 68 = 69 =
70 = 71 = 72 = 73 = 74 =
75 = 76 = 77 = 78 = 79 =
80 = 81 = 82 = 83 = 84 =
85 = 86 = 87 = 88 = 89 =
90 = 91 = 92 = 93 = 94 =
95 = 96 = 97 = 98 = TRACCMD 99 = FINDCMD
CMD:
Key: 1=Help 2=Plk 3=PCB 4=U70FFD 5=S728D7 6=Dump 7=U70FFC 8=D-0000 9=Dump

Screen format DAMP Dump analysis

60 U5663-J-Z125-11-76

5.2.2.2 The help window (W1)

The help window is used to display information on the functions and operation of DAMP.
This information is divided into chapters and sections, with the chapter currently on display
being shown in the header line (“Chapter nnnn”).
The help information is available in German and English.

Keywords in the help information are displayed with high intensity and can be marked. rking
such a keyword with the [MAR] key and pressing [DUE] causes the chapter or section
containing more detailed information on this keyword to be displayed.

The following paging functions are available to you in the help window:
– to page to the start or end of a chapter, enter “--” or “++”
– to page n lines back or forward, enter “-n” or “+n”
– to page back or forward by one window length, enter “-” /[F1] or “+” / [F3]

Figure 8: Output in the help window (W1)

The help window has the input fields “Chapter,” “Language” and “Window length”, which are
located in the header line (see next page):
– You can select each chapter directly by entering the chapter number in the “Chapter”

input field.
– You can switch the language of the display in the help window, of the online help texts

(which are displayed in an input field when you enter “?”) and of the DAMP messages
from GERMAN or ENGLISH (default) in the “Language” input field. You can also
change the language using the special window OPTIONS (see page 133).

– The length of the help window is entered or displayed in the “Window length” field.

DAMP <version> No Object opened in BS2000 V19.0 <date> <time>

H E L P Kapitel 0001 DEUTSCH --------------------------------- W1,TXT,L19
 D A M P Version <version>
 Dump Analysis and Maintenance Program.

Dieses Programm dient zur Auswertung von Diagnoseobjekten (Dumpdateien und
aktives System) im Dialog. Die folgenden Dumpdateitypen werden unterstuetzt:
SLED (auch VM2000-Gesamtsled), SNAP, Systemdump, Userdump und Areadump.
Zur Diagnose des aktiven Systems ist die Lese-Testprivilegierung 8 erforderlich.

 Weitere Informationen: Inhalt / Stichwoerter markieren oder Kapitel angeben,
 Blaettern mit --, ++, - (F1), + (F3), -n, +n
 Beginn der Auswertung: Anweisung oder '?' in CMD-Zeile eingeben,
 Diagnosefenster mit P-Taste oder Fenster-Nr. auswaehlen

Durch Eingabe eines '?' in ein Eingabefeld eines Diagnosefensters erhalten Sie
direkte Hilfe zu diesem Feld (nur bei DSS 9763).

Note for English users:
By entering ’ENGLISH’ in the header line you can change the language!

CMD:
Key: 1=Help 2=Plk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 9: Input fields in the header line for the help window

In addition to the use of the help window, DAMP also offers the - often more user-friendly -
option of calling help information by entering a question mark ('?') in an input field of one of
the diagnostic windows (see page 52). However, the '?' help is only available on 9763 data
display terminals (with EDT mode '@VDT F2') in German and English.

5.2.2.3 The status window (W2)

The status window provides an overview of the opened diagnosis object. The first four lines
contain general information on the type of diagnosis object and on its environment during
creation (e.g. BS2000 version, CPU type or memory size).

The status window is displayed automatically on opening the diagnosis object and contains
the input fields “TID”, “TSN”, “Mode select” and “Window length”.

Figure 10: Input fields in the header line for the status window

Mode select

The information shown in the “Mode select” input field for the status window (W2) can be
influenced by different modes. The possible modes are INF, TSK, PLK and SLK:

INF Besides the standard details displayed in the first three lines of the status window,
additional information on the dump generator, diagnosis object and selected
product is returned. The INF mode is set automatically if the dump file contains
more than one object (product), e.g. in the case of a complete VM2000 SLED.

DAMP V4.7A10 No Object opened in BS2000 V19.0 <date> <time>

H E L P Kapitel 0001 / DEUTSCH ----------------------------- W1,TXT,L19

Window lengthChapter Language

TSN

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

Analyzed Object: BS2000 V19.0A00G1 TID=000A00CB TSN=HSMS W2,PLK,L 8

TID

Mode select

Window length

Screen format DAMP Dump analysis

62 U5663-J-Z125-11-76

DAMP can analyze the following objects:
– active BS2000 system
– system, user and area dumps with a BS2000 dump object
– SNAP dump with a BS2000 dump object
– SLED with a BS2000 dump object
– SLED with a VM2000 dump object (complete VM2000 SLED)
– SLED with a SLED dump object (SLED from a SLED)
– SLED with some other dump object such as SIR, for example
– virtual machine (VM) under VM2000
– predecessor system in SLED

(predecessor systems are BS2000, VM2000 or other systems)

Example windows for the mentioned object types can be found as of page 63.

The mode can be set by the user by means of the “INF” entry in the header line. If
an object selection was made in dump files with multiple objects (complete VM2000
SLED, SLED from a SLED), entering “-” /[F1] in INF mode cancels the selection.

In INF mode, as much information as possible is displayed. One exception is the
so-called SELF-LOADER (see page 141).
The following information is currently displayed:
– the name of the dump file and the HSI of the analyzed object
– the memory sizes of the analyzed object
– the CPU type followed by Virtual Machine when a virtual machine is con-

cerned
(after live migration, the new system name followed by (after Live-Mig) is
also output here)

– the type and version of the dump generator of the object to be analyzed
– the contents of the product ID; included in this is the name and the version of

the product, and if available, the address of the so-called dump testament
(contains internal SLED information).

By marking (see section “Marking” on page 86) the address of the dump testament,
the memory contents of the dump testament can be output to a standard window
with the RM or ABS addressing mode.

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Depending on the dump file type, the following information is included:

● For system, user, and area dumps
the complete contents of the “dump title” dummy section.

● In the case of a SLED
– The contents of the BS2000 crash message with printable text.

A VM2000 crash message is not recognized by DAMP.
– The contents of the Time of Day register is output in edited form.
– Information relating to additional dump objects, for example, PREVIOUS

SYSTEM or DUMPED SYSTEM. In the case of a VM2000 dump object, an
overall view of the virtual machines in the overall system is offered. The
required dump object is selected by means of marking.

– If a STARTUP dump exists, a message.

● In the case of a SNAP dump
– The address of the SNAP information.
– The contents of the SNAP message.
– Information relating to the $SNAP call, for example, the function area from

which the call was started, the TSN of the caller, the address of the SNAP
call, and the start address of the GP register record.

● If the file to be analyzed is opened as a PAM file, details on the opened file, e.g.
the file name, the file size and the last-page pointer, are automatically provided
in this mode.

Example windows for the various dump file types in INF mode

Figure 11: Information screen in the status window (W2). Dump created by CDUMP;
dump object: BS2000

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

Analyzed Object: BS2000 V19.0A00G1 TID=000A00CB TSN=HSMS W2,INF,L13
Dumpfile: :1DQM:$DIAGDUMP.A0550438.DHSIHSM@.00502.50.HSMS.D06081 on /390-HSI/VM
MemSize: 256.0 MB ShareB: 00C00 UserXB: 01000 SysB: 71000
CPU: 7.500- S210-40 / Virtual Machine
Generator Name: SYSDUMP Generator Version: 190
Product Name: BS2000 Product Version: V19.0A00G1

Dumptitle: TSN-HSMS ELSN- SYSTEMDUMP PC- 7C584BC2(DHSIHSM@+00502
) EC-50 VERS-190 DUMP-TIME <date> <time>

--

Screen format DAMP Dump analysis

64 U5663-J-Z125-11-76

Figure 12: Information screen in the status window (W2). Dump created by SNAP; dump object: BS2000

Figure 13: Information screen in the status window (W2). Dump created by SLED; dump object: BS2000

DAMP <version> SNAP(19.0) from BS2000(19.0) <date> <time>

Analyzed Object: BS2000 V19.0A00F1 TID=00010001 TSN= W2,INF,L13
Dumpfile: :2OS6:$SPMO.MEN.SNAP.WILLI on /390-HSI/VM
MemSize: 256.0 MB ShareB: 00C00 UserXB: 01000 SysB: 71000
CPU: 7.500- S210-40 / Virtual Machine
Generator Name: SNAP Generator Version: 190
Product Name: BS2000 Product Version: V19.0A00F1

SNAPID: NSPTEST
SNAP Insert:

Return Code of SNAP call: SNAP successfully processed
SNAP from SIH Address of SNAP call: 00000040
Address of SNAP internal data: 729A2800
--

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

Analyzed Object: BS2000 V19.0A00G1 TID=00010001 TSN= W2,INF,L13
Dumpfile: :SLED:$DUMPFILE.SLED.CS590K.1517 on /390-HSI/VM
MemSize: 256.0 MB ShareB: 00C00 UserXB: 01000 SysB: 71000
CPU: 7.500- S210-40 / Virtual Machine
Generator Name: SLED (ALL) Generator Version: 190.G1
Product Name: BS2000 Product Version: V19.0A00G1

Time of creating SLED: <date> <time>

ID of Crash Message: NRTT501 SETS. Crash ID: NRTC515
Crash Insert: SVC ERROR AT NIA F1251206

Crash Caller: F1251206 = ETMEIA + 004C6
--

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 14: Information screen in the status window (W2). Dump created by SLED;
dump object: VM2000

Figure 15: Information screen in the status window (W2). Dump created by SLED; dump object: SLED

DAMP <version> SLED(19.0) from VM2000(11.0)

Analyzed Object: VM2000 V11.0A1000 TID= TSN= W2,INF,L19
Dumpfile: :1DQM:$DIAGDUMP.QM113.36.SLED.S210
 (No Selection)

Generator Name: SLED (ALL) Generator Version: 190.G1
Product Name: VM2000 Product Version: V11.0A1000
Address of Dump-Testament: 00001024 (absolut)

Time of creating SLED: <date> <time>
Information about VM2000: Hypervisor pages FROM 0000 TO 0DFF
VMs created by VM2000: HYP VM01 VM02 VM03 VM04

VMs dumped by SLED and their page boundaries
VM01: 000E00 - 00ADFF VM02: 00AE00 - 014DFF VM03: 014E00 - 037DFF
VM04: 037E00 - 0E6DFF

CMD:
Key: 1=Help 2=Inf 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

DAMP <version> SLED(19.0) from SLED(19.0)

Analyzed Object: SLED V19.0A00E1 TID= TSN= W2,INF,L11
Dumpfile: :2OS6:$SPMO.SLEDFROMSLED

CPU:
Generator Name: SLED (ALL) Generator Version: 190.E1
Product Name: SLED Product Version: V19.0A00E1
Address of Dump-Testament: 021D18C0 (real)

Time of creating SLED: <date> <time>

Choose diagnosis system: DUMPED SYSTEM PREVIOUS SYSTEM
--

Screen format DAMP Dump analysis

66 U5663-J-Z125-11-76

Figure 16: Information screen in the status window (W2). Dump created by SLED;
dump object: BS2000 in the monitor VM

Figure 17: Information screen in the status window (W2). Predecessor system; dump object: BS2000

TSK This mode is set automatically if a SLED or SNAP with a BS2000 object or the
currently active system is to be analyzed and information relating to a number of
tasks is available. Only the first 14 tasks are initially shown in the status window
(W2). Each line contains the information for one task and can be marked.
The mode is indicated by the entry “TSK” in the key line.

You can scroll in the task list by entering +, -, ++, --, +n, -n in the command line and
pressing [DUE] . The [F3] or [F1] key can be used instead of “+” [DUE] or “-” [DUE].

i When diagnosing the active system, the task list is updated only on
positioning with “--” to the beginning of the list (i.e. when TID 0001 is
displayed).

When diagnosing the active system, the termination or creation of tasks can also
result in inconsistencies in other windows. If necessary, these have to be updated
by bringing the task list up to date.

DAMP <version> SLED(19.0) from VM2000(11.0) <date> <time>

Analyzed Object: BS2000 V19.0A00G1 TID=00010001 TSN= W2,INF,L 8
Dumpfile: :1DQM:$DIAGDUMP.QM113.36.SLED.S210 on /390-HSI/VM
MemSize: 160.0 MB ShareB: 00C00 UserXB: 01000 SysB: 71000 VM01
CPU: 7.500- S210-60 / Virtual Machine
Generator Name: SLED (ALL) Generator Version: 190.G1
Product Name: BS2000 Product Version: V19.0A00G1

Time of creating SLED: <date> <time>
--

DAMP <version> SLED(19.0) from SLED(19.0) <date> <time>

Analyzed Object: BS2000 V19.0A00E1 TID=00010001 TSN= W2,INF,L 8
Dumpfile: :2OS6:$SPMO.SLEDFROMSLED
MemSize: 456.0 MB ShareB: 00C00 UserXB: 01000 SysB: B0000 PREV SYS
CPU: 7.500- S210-60
Generator Name: SLED (ALL) Generator Version: 190.E1
Product Name: BS2000 Product Version: V19.0A00E1

Time of creating SLED: <date> <time>
--

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

In the event of a system dump the output of the task list can be set by entering “TSK”
in the field mode selection (PLK mode is set by default for the 'error task'). For a
system dump the task list also contains all tasks from the BS2000 system to be
diagnosed. A task can be selected for further diagnosis by marking a line.

v CAUTION!
The system dump contains system-wide data for all tasks, but only the
local task data of the 'error task'. When the system data (e.g. for PCB
chaining) of the other tasks is analyzed extra special care is called for
as these tasks cannot be stopped when the system dump is taken.

The task list can be sorted according to various criteria. To do this you must select
a column in the header line. Sorting takes place in ascending order in accordance
with the content of the column selected. The default setting is sorting according to
TID (1st column).

Figure 18: Task overview in the status window (W2)

PLK This mode is set automatically if an area, user or system dump containing only one
task is being edited. It can also be set by marking a task line or by entering a
TID/TSN in the TSK mode. The right-hand part of the 4-byte TID is sufficient when
selecting a task.
All PCBs associated with this task and the related information is then output. The
edited output of a PCB can be displayed in the stack window (W3) by marking a
PCB line.
The symbol PLK appears in the key line.

User PCBs are marked in the output line with an “*” (asterisk).

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>
DMP2307 TID 00010001 HAS BEEN SELECTED AS CURRENT TID

Analyzed Object: BS2000 V19.0A00H1 TID= TSN= W2,TSK,L19
Dumpfile: :SLED:$DUMPFILE.SLED.CS503K on /390-HSI/VM
MemSize: 512.0 MB ShareB: 00C00 UserXB: 01000 SysB: 71000

 TID TSN Typ Q-PND Act SVC/IW Current PCR Caller SVC/PCR
00010001 TSC PA 12 17 FA=$BOWT JSM@@@@@+00316
00010002 CLOG SYS 12 17 FA=$BOWT NBRCLOG +003D0
00010003 RMM PA 12 17 FA=$BOWT EMMRMRCM+02018
00010004 HERS SYS 11 6 EB=$PEND EHERSPT +001BC
00010005 PT5 PA 13 4 59=VPASS ETMPT5 +0027C
00010006 PT6 PA 12 17 FA=$BOWT JSSTASK@+00952
00010007 PGE PA 4 17 FA=$BOWT DJPGER +010FC
00010008 UCO PA 4 17 FA=$BOWT NBRMAIN +00048
00010009 REK PA 12 17 FA=$BOWT ETMRK2B +00190
0001000A VMM PA 0 0 F1=$PNDT NRTSEH +01662 48=Pag. Err MESCPUSS+2593C
0001000B MSG PA 12 17 FA=$BOWT ETMRK2F +000EA
0001000C KTT PA 4 4 59=VPASS NBCADM +01C5C
0001000D RUNT SYS 12 17 FA=$BOWT ECCLP +007D2
0001000E SEST SYS 12 17 FA=$BOWT NBESSWR@+036FE
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

Screen format DAMP Dump analysis

68 U5663-J-Z125-11-76

The column headed A_MODE in the PCB overview for x86 objects lists the context
type as well as the addressing mode. CIS stands for a PCB with a /390 context and
X86 for a PCB with an x86 context.. With these objects, the following output is
possible:

– x86 systems’ objects:
CIS 31 or CIS 24 if the PCB has a /390 context (code executing in /390 mode
– i.e. as an emulation – with 31-bit or 24-bit addressing)

– x86 systems’ objects:
X86 32, X86 31 or X86 24 if the PCB has an x86 context (code executing in x86
mode – i.e. natively – with 32-bit, 31-bit or 24-bit addressing)

You can return from the first PCB to the task overview with [F1]/ “-” or by entering
TSK in the Mode select field.

Figure 19: PCB overview in the status window (W2), dump file with X86 object

SLK In this mode, the call chain is output via the TPR program manager (SPL linkage).
To do this, the mode field in the title line of the window must be overwritten with the
symbol SLK. The edited output of this program manager stack can be displayed in
the stack window (W3) by marking one of the stack lines shown.
The symbol SLK appears in the key line.

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

Analyzed Object: BS2000 V19.0A00I1 TID=00010065 TSN=2WG7 W2,PLK,L 9
Dumpfile: :LOU3:$SYSDUMP.EVENT#SA.000D4.C8.2WG7 on X86-HSI
MemSize: 5.5 GB ShareB: 00C00 UserXB: 01000 SysB: BF000
Job: MENCHER /TSOS /ADMINSTR Cmd: CREATE-D Prg: SYSPRG.DAMP.<ver>
PCB# PCB-Ad IS-LNK SR Program Counter SVC/IW A_MODE
 1 C33271E0 C3327768 070C0C04 C0BE9094=CDUMPF1 +02B14 EE=$PNUP X86 32
 2 C3327768 C3327590 070C0C04 C1D687E6=NSCDUMP +00206 1A=CDUMP X86 32
* 3 C3327590 00000000 07ED2C00 010072D4 5C=BKPT CIS 31
 4 C33273B8 00000000 070C0C04 C05A456E=ETMSF +008EE E9=$FNAT X86 32
--

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 20: Chain of program manager calls in the status window (W2)

You can return from the first stack to the task overview with [F1]/ “-” or by entering
TSK in the “Mode select” field.

Paging in the status window

You may enter the following: +, -, ++, --, +n, -n or press the function keys [F3] (page forward
by one window length, which corresponds to +) and [F1] (page backward by one window
length, which corresponds to -). For further details, see the section on “Paging in a
diagnostic window” on page 86.

Note on paging forward

When paging forward (+, ++, +n, [F3]), you stop at the end of the listing involved, and
you are not automatically returned to the start of the listing.

Note on paging backward

– Pressing the[F1] key and entering “-” in the PLK and SLK modes pages back to the
task list if the first PCB or first stack is currently visible in the window. Selecting the
TSK mode also returns you to the task overview. The current task is then the first
task in the overview.

– When diagnosing the current system, the task list is regenerated on paging back to
the first task in the list with “--” in TSK mode.

– If a dump object was selected in dump files with multiple objects, entering [F1]
or “-” in INF mode cancels the selection.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

Analyzed Object: BS2000 V19.0A00G1 TID=000402FB TSN=0VGY W2,SLK,L19
Dumpfile: :SLED:$DUMPFILE.SLED.CS507K.1015 on /390-HSI
MemSize: 4.0 GB ShareB: 00C00 UserXB: 01000 SysB: 71000
Job: NKI10882/DMS10 /A Cmd: CALL-PRO Prg:
Stk# Stack-Ad ADF Params (R1) Caller (R14) ADF-Ind
 1 6F3D22D0 6F3D2328 6F3D2398 F14477FA=ECTYP +037FA N current
 2 6F3D2428 6F3D2480 6F3D23D0 F144587A=ECTYP +0187A N
 3 6F3D2580 6F3D25D8 6F3D2FE4 F1444D82=ECTYP +00D82 N
 4 6F3D2740 6F3D2798 6F3D2FE4 FF71922C=NMHRPUT +00BAC N
 5 6F3D3160 6F3D31B8 7F719F8A FF71CD22=NMHRSPL +00A22 N
 6 6F3D3AB0 6F3D3B08 6F3D3BE0 F154BEFC=CDUMPF3 +02D7C N
 7 6F3D3C58 6F3D3CB0 00000002 F15453A4=CDUMPF1A+00B24 N
 8 6F3D3D80 6F3D3DD8 70FA2000 F1541E3E=CDUMPF1 +002FE N
 9 6F3FC2D8 6F3FC330 00000000 00000000 N
 10 6F3FD590 6F3FD5E8 6F3FEFE8 FD586B74=CLIKREA@+03E34 N
 11 6F3FF238 6F3FF290 6F3FFF68 FD56BBEA=CLIISL@@+007FA N
 12 70FDA870 70FDA8C8 70FDB1DC F1390018=NLKISLS +00558 O
 13 70FDA938 70FDA990 70FDB1DC FF23F57A=SSMLIBR@+0056A N
 14 70FDBE60 70FDBEB8 70FDD1B8 FF24BF8E=JSYLIBR +0004E N
CMD:
Key: 1=Help 2=Slk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

Screen format DAMP Dump analysis

70 U5663-J-Z125-11-76

5.2.2.4 The stack window (W3)

The stack window displays the contents of the first TU or TPR stack or the contents of the
TU or TPR stack that was selected and marked in window W2 (PCB mode), or the contents
of a TPR program manager stack (SPL mode). The remaining information depends on the
mode selected in the status window (W2).

Figure 21: Stack window (W3) with a PCB

Figure 22: Stack window (W3) with a program manager stack

The stack window (W3) has the input fields “Stack #”, “TID”, “TSN”, “Stack select” and
“Window length”.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

SYS-PCB (31BIT) # 1 Addr: 73B001D8 TID=000402FB TSN=0VGY W3,PCB,L11
PC : 7103B916=ETMBON1 +001D6 SVC: FA = $BOWT LNK: 74135AE8 ISL: 7460AAE8
R00 : 00000000 = 0 R01 : F103B803=ETMBON1 +000C3
R02 : 74692008=ETCB-2FB R03 : 71000800=NCTXVT +00800
R04 : 7103C548=ETMBON1 +00E08 R05 : 73B001D8
R06 : 71247B40=ETMBOWK R07 : 71248A00=ETMBOWK +00EC0
R08 : 6F3D2328 R09 : 6F3D2398
R10 : 7103B740=ETMBON1 R11 : 7F7194C8=NMHRPUT +00E48
R12 : 80800102 R13 : 71248A38=ETMBOWK +00EF8
R14 : F103B908=ETMBON1 +001C8 R15 : 71021974=NLCNLMAN+03234
Bourse Caller: 714477FA=ECTYP +037FA
--

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

SPL-Stack # 1 Addr: 6F3D22D0 TID=000402FB TSN=0VGY W3,SPL,L10
ADF : 6F3D2328 (User) *** current *** LNK: 6F3D2428 ADFI: P NYN
R00 : 74692008=ETCB-2FB R01 : 6F3D2398
R02 : C2404040 R03 : FF718986=NMHRPUT +00306
R04 : 714458E8=ECTYP +018E8 R05 : 00000001 = 1
R06 : 00000002 = 2 R07 : 7348D600
R08 : 7A8E3A90 R09 : 6F3D25D8
R10 : 71447748=ECTYP +03748 R11 : 7F7194C8=NMHRPUT +00E48
R12 : 7100DA78=NLKSYSPM+014B8 R13 : 6F3D2328
R14 : F14477FA=ECTYP +037FA R15 : 7103B740=ETMBON1
--

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 23: Input fields in the header line of the stack window

Switching from one output format to another is achieved by overwriting the entry “PCB” in
the input field “Stack select” in the header line of the stack window with “SPL” or vice versa,
and then hitting the [DUE] key.

If possible, register contents are interpreted and output as addresses or decimal values. All
the fields in the output can be marked.

In order to display a memory area in one of the standard dump windows (W4-W9, W21-
W99), highlight the address field and assign it an output window, see the section “Marking”
on page 86.

If the access register mode flag (AR mode flag) is set in the PCB being displayed, and if the
access register of the same name contains a value (ALET) other than zero, the act of
marking a general-purpose register immediately assigns the corresponding data space and
displays it in the requested window.
The access registers are “behind” the general-purpose registers in the stack window if the
AR mode flag is set in the PCB.
If the AR mode flag is not set in the PCB, the access registers can be found in the PCB
under the symbolic name ESTKARx(x=0,1,...15).

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

SYS-PCB (31BIT) # 1 Addr: 73B001D8 TID=000402FB TSN=0VGY W3,PCB,L11

Stack #

 TID Stack select

Window length TSN

Screen format DAMP Dump analysis

72 U5663-J-Z125-11-76

Notes

– A PCB with an x86 context is presented with all 16 registers of x86 mode. An example
of this is shown in figure 24. As a /390 context can be contained in registers r12 - r15,
these registers are displayed in /390 register notation (R12 - R15). All other registers
have the x86-specific names.

The contents of /390 registers R0 - R11 are not stored in x86 registers by the firmware,
but in the ASSTRAN stack. These areas are also displayed in x86 mode.

i Because of the ASSTRAN optimizations, the memory areas from which DAMP
obtains the contents of the /390 registers are not updated immediately each
time a change occurs. Consequently the /390 registers cannot be used for
reliable diagnosis in x86 mode. In this mode only the x86 registers permit
reliable diagnosis!

The type of register context shown is displayed in a special header line. You can select
the context required by marking it:

CISC /390 register in word length

x86 x86 register in double word length

You can also page forward and back between contexts using “>” and “<”.

The special header line also contains the markable address of the CSA (Context Save
Area). This is marked with an arrow in the left-hand margin in figure 24.

Figure 24: Example of a PCB stack window showing an x86 context

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

SYS-PCB (XA 32BIT)# 1 Addr: C2E0E768 TID=00010062 TSN=SPMG W3,PCB,L19
PC : C054B508=ETMBON3 +00548 SVC: FA = $BOWT LNK: 00000000 ISL: 00000000
----- X86 Registers ------ CISC / X86 CSA-Addr: C33F1000
X86 General Purpose Registers
rax: 00000000 C2724008=ETCB-062 rcx: FFFF9700 FF04186E
rdx: 00000000 00000000= 0 rbx: C0547D00 C054B202=ETMBON3 +00242
rsp: FFFF9700 FEFFFE70 rbp: 00000000 00000000= 0
rsi: 00000000 03000000 rdi: 00000000 00000000= 0
r8 : 00000000 BFFFE800=NCTXVT +00800 r9 : 00000000 C32E8843
r10: FFFF9700 FE033E30=YDBADD@ +023B0 r11: 00000000 00000202= 514
R12: 00000000 80850103 R13: 00000000 BEFFD520
R14: 00000000 C054B4F0=ETMBON3 +00530 R15: 00000000 C0062F7C=NLCNLMAN+1253C
Additional Registers in ASSTRAN Stack
R0 : 00000000= 0 R1 : C054B202=ETMBON3 +00242
R2 : C2724008=ETCB-062 R3 : BFFFE800=NCTXVT +00800
R4 : C054D438=ETMBON3 +02478 R5 : C2E0E768
R6 : C054FAC0=ETMBOWK R7 : C30D34C0
R8 : BEFFD520 R9 : BEFFD81C
R10: C054AFC0=ETMBON3 R11: FA70C0F0=SPMMGR +000F0
CMD:
Key: 1=Help 2=Plk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.2.2.5 The dump windows (W4 - W9 and W21 - W99)

You can assign these windows various functions. By default, these windows are used as a
standard dump window for the output of memory areas in edited form. This corresponds to
the statement SHOW-EDITED-INFORMATION INFORMATION=*STORAGE-EDIT, WINDOW=<w>.

The windows W4 to W9 and W21 to W29 can be used as so-called special windows for
special output. This is done using the SHOW-EDITED-INFORMATION statement and by speci-
fying the intended dump window as well as the editing required. Other statements, e.g.
START-PATTERN-SEARCH, also open a special window (see description, page 108). If no
specific window is specified, DAMP positions the output in the next free window.

The occupied window is once again made available for standard output using the statement
SHOW-EDITED-INFORMATION INFORMATION=*STORAGE-EDIT.

The following statements are supported in the W4 - W9 and W21 - W29 windows:

SHOW-EDITED-INFORMATION INFORMATION=*AUDIT-TABLE-EDIT

SHOW-EDITED-INFORMATION INFORMATION=*STORAGE-EDIT

SHOW-EDITED-INFORMATION INFORMATION=*DUMPED-SYSTEM-FILE

START-PATTERN-SEARCH

START-LIST-GENERATION

SHOW-EDITED-INFORMATION INFORMATION=*MEMORY-ATTRIBUTES

START-OPTION-DIALOG

START-PRODAMP-EDITOR

SHOW-EDITED-INFORMATION INFORMATION=*SUBSYSTEM-INFORMATION

SHOW-EDITED-INFORMATION INFORMATION=*TASK-TABLES

SHOW-EDITED-INFORMATION INFORMATION=*TRACE-TABLE-EDIT

The assignment of a function to a dialog window can also be achieved with the following
abbreviated format:

 ATT[ACH] window#, function

where window# specifies the desired window number (4...9, 21...99).

Screen format DAMP Dump analysis

74 U5663-J-Z125-11-76

The following entries are supported for function:

Examples

ATT 4,DUMP or ATT 99,FIND

Use of the W4 - W9 and W21 - W99 windows as standard dump windows

The standard dump windows can display memory segments of the diagnosis object in
dump format, hexadecimal format, character format, Assembler format or symbolic format.
With the exception of character and Assembler formats, you can display memory segments
in one of the standard dump windows by marking address fields and assigning them output
windows, see the section “Marking” on page 86.

Figure 25: Output of an area in dump format

In the case of objects from servers with x86 architecture you can have addresses which are
displayed in Little Endian format in the x86-HSI converted by marking and pressing [F4]
before outputting the associated memory area of DAMP in BS2000 address format (Big
Endian, see page 87).

AUDI, AUDIT Show information on AUDIT tables

DUMP Restore standard dump window

FILE Information on system files / sections

FIND Find strings

LIST Generate and print listings

MEMA, MEMATTR Display memory attributes

OPTS, OPTIONS Modify user options

PROC, PRODAMP Use PRODAMP procedures

SUSY Display information on subsystems

TABL, TABLE Show tables of task-specific values

TRAC, TRACE Show system trace table

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

ASAFNAT +00000=7F2774C0 SYS=000402FB W4,D ,L19
7F2774C0 (0000): 05A058F0 A36E0DEF 5510A372 4770A018 <==> ???0t>????t?????
7F2774D0 (0010): 58F0A376 0DEF47F0 A0345510 A37A4770 <==> ?0t????0????t:??
7F2774E0 (0020): A0340DE0 47F0E008 7103F264 41A0E012 <==> ?????0????2?????
7F2774F0 (0030): 58E0E004 07FE0700 4110A03E 47F0A04E <==> ?????????????0?+
7F277500 (0040): 00061202 FFFFFFFF 02C9C4C1 F0F1F5F7 <==> ????~~~~?IDA0157
7F277510 (0050): 0AED0000 00000000 05A05860 23449640 <==> ???????????-??o

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.2.2.6 Input fields of a standard dump window (W4 - W9 and W21 - W99)

The input fields in the header line of the standard dump window are the “Symbolic address”,
“Relative address”, “Absolute address”, “ASEL”, “ASID”, “Output format” and “Window
length”.

In the special windows activated with the SHOW-EDITED-INFORMATION statement and
the FIND, LIST, OPTS or PRODAMP window, additional or different types of input are
possible (see page 108).

Figure 26: Input fields in the header line of the standard dump window

Symbolic address

Module names, control block names and control block field names can be entered in the
input field “Symbolic address” (see figure 26).
By default, the output always shows the module name. If the memory area cannot be
allocated to any module, blanks are displayed.
If a control block (field) name is displayed (CBA/CBM output format), the module name can
be shown by entering “NAM” in the “Output format” field.
The names of CSECTs in subsystems or in a loaded user program may also be specified.
If the current task is connected to the nonprivileged subsystem or if the CSECT is contained
in the user program, the memory area is localized automatically. If privileged subsystems
are loaded, the memory area is localized by DAMP even if the task is not connected.
If the module-relative display is not desired, it can be deactivated by entering “ALT” in the
“ASEL” field. DAMP then relates all addresses to the current start address in this window.
Furthermore, in this format, output extends beyond the module boundary.

In order to indicate that the module-relative display has been switched off, the module name
is deleted.
This output format is retained during paging and if a relative or absolute address is entered.

Absolute address

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

ASAFNAT +00000=7F2774C0 SYS=000402FB W4,D ,L19

Symbolic address

Relative address ASEL ASID Output format

Window length

Screen format DAMP Dump analysis

76 U5663-J-Z125-11-76

Relative address

The current displacement between the start of the module and “Absolute address” is
displayed. If the relative address is changed within the CSECT/control block area, only the
relative address and the start address of the window contents change (“Absolute address”).
If, however, this displacement exceeds the boundaries of the module area, the relative and
absolute address outputs are adapted automatically (this also occurs when paging in the
dump window).

Absolute address

The input field “Absolute address” displays the start address of the current contents of the
window.

Output format

The following output formats are available:

D Dump format (default value or value after “D” is entered)
Each screen line displays 16 bytes in both hexadecimal and printable form.
The 4 word fields in hexadecimal format can be marked.

HEX Hexadecimal format (after “H” is entered)
Each screen line displays 32 bytes in hexadecimal form. All 8 word fields can be
marked.

CHR Character format (after “C” is entered)
Each screen line displays 64 bytes in the form of printable characters; non-printable
characters are displayed as smudges. By setting the user option “Trash character”
(see page 133), any other printable character can be selected instead of the
smudge).

ASS Instruction display (after “A” is entered).
Each line displays one instruction both in “disassembled” form and in machine
code.
In the case of x86 objects, DAMP selects the disassembly mode in accordance with
the processor mode of the CSECT (PMODE byte).
If this results in meaningless outputs, the CAS, PAS or XAS mode can be set
explicitly. In the output, ASS indicates that the /390 disassembly was used.

CAS Input: the /390 disassembly is to be used
(ASS then appears in the output).

XAS Input: the x86 disassembly is to be used.
Output: the x86 disassembly was used.

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

CBA Symbolic format with automatic localization of the control block
(control block automatic).

CBM Symbolic format with manual localization of the control block (control block
manual).

NAM Symbolic format where the name of the module containing the control block is
displayed in the symbol field in place of the name of the control block.

Window length

The input field “Window length” displays the current window length of the window, including
the header line. The separator line which results from a user option is not included in the
displayed window size. Inputs greater than 19 are reduced to the maximum permissible
size of 19 lines.

The program keys [P10] to [P12] (9750 Data Display Terminal) can be used to position the
cursor to the input fields “Window size” of the following diagnostic windows, provided that
at least three windows are open on screen:

[P10] positions on the “Window length” field of the first diagnostic window on
screen

[P11] positions on the “Window length” field of the second diagnostic window on
screen

[P12] positions on the “Window size” field of the third diagnostic window on
screen

If only two windows are displayed on the screen, the [P12] key positions the cursor on the
command line, and if only one window is open, the [P11] key also positions the cursor on
the command line.

Screen format DAMP Dump analysis

78 U5663-J-Z125-11-76

ASEL and ASID

The memory areas shown in the standard dump windows can be sections of the following
areas:

– a virtual address space
– the main memory area (real/absolute addresses)
– the hardware system area (HSA)
– a protected processor status (PSS)
– data spaces
– dumpfile sections (SCT).

The data spaces exist alongside the task-specific and system-specific virtual address
spaces and thus represent, in effect, a duplication of the virtual address spaces.

In DAMP, even a task or system-specific address space can be set as a data space. In such
cases, DAMP omits the module-specific qualification.

Addressing data spaces

In addition to the 16 general-purpose registers, each process has a further 16 access
registers. Depending on the way in which a particular option is set (AR mode), these access
registers (with the exception of register 0) are also used for addressing memory areas.

The access register with the same name as the base register is used to address a data
space if it contains any value other than zero. This data space can be up to 2 Gbytes in size
and is addressed in the normal way using the base register, index register and offset.

For addressing purposes, the access registers are given an ALET (access list entry token)
which uniquely identifies the data space for an address space (task or system address
space). Throughout the system, the data space is identified uniquely by the SPID (space
identification).

The names ASEL (Address Space Selector) and ASID (Address Space Identifier) refer to
fields which can contain the following symbols:

ASEL ASID Meaning of the symbols

TID <tid>
(hexadecimal)

The address space is a user address space specified by its <tid> (task
identifier).

TSN <tsn>
(string)

The address space is a user address space specified by its <tsn> (task
sequence number).

SYS ignored The address space is the system address space.

ALT <alet>-<tid>
(hexadecimal)

The address space is a data space identified by <alet> (plus <tid> for
user data spaces).

SPI <space-id>
(hexadecimal)

The address space is a data space identified by the (system-wide)
<space-id> .

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The fields “ASEL” and “ASID” are highlighted and can be overwritten.

If ALET is specified together with TID, the TID must be appended to ALET with a hyphen.
If you want to set a task- or system-specific address space as the data space, you only need
to enter “ALT” as “ASEL” (plus <tid> as “ASID”).

By default, the TID is displayed in the “ASID” field for areas in the user address space. If
you want to have the TSN displayed, you must enter it in the “ASEL” field.

The “ASEL” field is switched to SYS when areas in the user address space are output. The
TID, which is still assigned to the window, continues to be displayed in the “ASID” field. This
TID can be modified as before by entering “TID” in the “ASEL” field and <tid> in the “ASID”
field.

In the case of a complete VM2000 SLED, entering “ABS” - beginning at the hypervisor -
causes absolute addressing to be performed regardless of whether a VM was selected.
With the input “RM”, addressing is performed within a selected VM.

Abbreviated entries

All entries in the “ASEL” field can be abbreviated as desired as long as they remain
unambiguous.
The TID can always be entered in abbreviated form in the “ASID” field, provided the relevant
task is uniquely identified. As a rule, the last four digits of the TID are sufficient for this
purpose. The TID is always output in its entirety.

RM <segm>
(hexadecimal)

The address space is the real main memory in the selected object.
<segm> identifies the 4GB segment (0, 1, ...) in which the address is
located.

ABS <segm>
(hexadecimal)

The address space is the absolute main memory in the selected object.
<segm> identifies the 4GB segment (0, 1, ...) in which the address is
located (only for complete VM2000 SLED files).

PSS <processor>
(hexadecimal)

The address space is the processor save area of the specified
processor.

HSA ignored The address space is the hardware system area.

SCT <section-name>
(string)

The address space is a dumpfile section identified by <section-name>.

ASEL ASID Meaning of the symbols

Screen format DAMP Dump analysis

80 U5663-J-Z125-11-76

Examples of entries in the “Symbolic address” and “Output format” fields

This section describes a number of important applications by providing examples of various
combinations of entries in the “Symbolic address” and “Output format” fields.
The entries in the “Output format” field can be abbreviated, provided they remain
unambiguous.

● Localizing a control block which can be found automatically (e.g. EXVT)

Input: Control block name in the “Symbolic address” field

Output: Control block name in the “Symbolic address” field
CBA in the “Output format” field

● Localizing a control block which can be found manually

Assuming: The memory area is already set

Input: Control block name in the “Symbolic address” field

Output: Control block name in the “Symbolic address” field
CBM in the “Output format” field

● Localizing a field in the control block currently displayed

Assuming: The control block name is already set in the window

Input: Field name in the “Symbolic address” field

Output: Control block name in the “Symbolic address” field
CBM or CBA in the “Output format” field

● Localizing a field in an “automatic” control block

Input: Field name in the “Symbolic address” field

Output: Control block name in the “symbolic address” field
CBA in the “Output format” field

● Localizing an “automatic” control block manually

Assuming: The memory area is already set.

Input: Control block name in the “Symbolic address” field
CBM in the “Output format” field or input in the “Absolute address” field

Output: Control block name in the “Symbolic address” field
CBM in the “Output format” field

DAMP Dump analysis Screen format

U5663-J-Z125-11-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

● Overlaying an area with a control block as of a field name

Assuming: The memory area is already set

Input: Field name in the “Symbolic address” field
CBM in the “Output format” field

Output: Control block name in the “Symbolic address” field
CBM in the “Output format” field

● Overlaying an area with a control block as of a relative address

Assuming: The memory area is already set

Input: Control block name in the “Symbolic address” field
Relative address (relative to start of control block)

Output: Control block name in the “Symbolic address” field
CBM in the “Output format” field

● Displaying the module in which a control block is located

Input: NAM in the “Output format” field

Output: Module name in the “Symbolic address” field
NAM in the “Output format” field

● Switching from symbolic representation to dump format

Input: D in the “Output format” field

Output: Module name in the “Symbolic address” field
D in the “Output format” field

● Displaying an area in a module

Input: Module name (plus relative address if required) in the “Symbolic address”
field

Output: Module name in the “Symbolic address” field
Display in the “Output format” field is retained; CBA, CBM or NAM is
changed to D

● Switching from dump format to disassembled format

Input: ASS in the “Output format” field

Output: Module name in the “Symbolic address” field
ASS in the “Output format” field

Operation DAMP Dump analysis

82 U5663-J-Z125-11-76

5.3 Operation

5.3.1 Basic functions

5.3.1.1 Calling DAMP

DAMP is called in the system on which the diagnosis object exists with /START-DAMP.
DAMP is then started from the user ID saved under IMON. Depending on the selected
function, the appropriate processing modules are loaded dynamically from the set module
library by the load program.

If DAMP was not installed on a system with the default installation or if DAMP is to be
started with special user options (see page 133), /START-EXECUTABLE-PROGRAM
must be used with the name of the possibly modified DAMP load phase (delivery name:
SYSPRG.DAMP.<ver>).

For analysis in the current system, the calling user ID must have the read test privilege 8.
The privilege must be activated beforehand with the MODIFY-TEST-OPTIONS command.

When DAMP is called in interactive mode, functions are automatically assigned to the
programmable keys and the DAMP screen is then displayed with the HELP window active
(this does not apply to batch and procedure modes).

DAMP can also be started as a batch job (see page 165). In this case, the entries are read
from SYSDTA and processed as if they were entered in the command line. This function is
primarily intended for generating lists.

DAMP can also be started in procedure mode (see page 165). This function is particularly
suited for a standard preliminary “on-screen diagnosis run”.

5.3.1.2 Controlling program execution

Program execution is controlled by the automatically programmed P keys, the K keys, the
F keys, by marking fields with the [MAR] key and by entering suitable statements.

DAMP Dump analysis Operation

U5663-J-Z125-11-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.1.3 Assigning and opening the diagnosis object

The object to be diagnosed (dump file or system) can be assigned in one of two ways:

– The statement OPEN-DIAGNOSIS-OBJECT dumpfilename assigns a SLED, SNAP, system,
user or area dump for diagnosis. It is advisable to assign the link names #0,#1,...,#9 to
these files before or during program execution, since this permits the assignment to be
abbreviated as follows:

OPEN-DIAGNOSIS-OBJECT #n (n = 0,...,9)

Partially qualified file names and wildcards may be used in the file name. If a file is
uniquely identified by the partial qualification or wildcard, DAMP opens this file.

The KIND-OF-OBJECT parameter can be used to specify whether the dump object is
to be opened as a BS2000 object, a SELF-LOADER or a PAM file. For more
information, see also the OPEN-DIAGNOSIS-OBJECT statement on page 196.

The statement OPEN-DIAGNOSIS-OBJECT *SYSTEM is used to assign the active system as
the object to be diagnosed. Note, however, that the calling user ID must have the read
test privilege 8 for this purpose.

– The list mask can also be used to select, assign and open a dump file, even if no list is
to be printed out. It is also possible to enter a partially qualified file name or a file name
containing wildcards in a field provided for this purpose and then to select a file from the
list of matching file names found by the system. For further details, see section “Gener-
ating and printing lists (special window: LIST)” on page 147.

Operation DAMP Dump analysis

84 U5663-J-Z125-11-76

5.3.1.4 Modifying the diagnostic windows

Since the diagnostic windows are displayed in the diagnostic area of the screen, they
cannot be longer than this area, i.e. the maximum length of a window is 19 lines. However,
the diagnostic windows can be shortened if, for example, several windows are to be
displayed simultaneously in the diagnostic area. The minimum length of a diagnostic
window is 2 lines.

The order in which the windows are displayed, their length, their contents and their output
formats can be controlled by:

– the MODIFY-SCREEN-LAYOUT statement

– the program keys [P1] to [P9] or by entering the window number (0...9, 21...99) on the
command line

– marking address fields, keywords and certain output lines (task line, PCB line, hit lines,
etc.)

– paging forward and backward with --, ++, -, +, -n, +n and [F3] or [F1] or via the
corresponding program keys (see the section on “Paging in a diagnostic window” on
page 86)

– making entries in the input fields in the header lines

– the SHOW-EDITED-INFORMATION, START-PATTERN-SEARCH, START-LIST-GENERATION,
START-OPTION-DIALOG, START-PRODAMP-EDITOR statements.

When the program is started, the diagnostic windows contain their default values:

– The default length for a diagnostic window is 19 lines, except for windows W2 and W3,
where the window length is matched to the actual amount of information to be
displayed.

– The output format for the dump windows (W4 - W9 and W21 - W99) is, by default, the
dump format (display D). These windows are flagged as unused (empty).

– Output in the “RM” or “ABS” dump format is used if virtual addressing is not possible.
The page “0” is then displayed.

After DAMP is called, the HELP window (W1) is displayed with an overview of the help
chapters.

If the diagnosis object to be processed is changed by means of an OPEN-DIAGNOSIS-OBJECT
statement, all assignments previously set for the diagnostic windows are reset. Only the
settings for the window length and output format are retained. The LIST and PRODAMP
windows are an exception; they are retained even if the dump object is changed.

DAMP Dump analysis Operation

U5663-J-Z125-11-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Restoring the screen contents

If a line fault or an operator message causes the screen display to be displaced, the original
display can be restored by means of hitting [K3].

The MODIFY-SCREEN-LAYOUT statement

The MODIFY-SCREEN-LAYOUT statement moves the specified window(s) to the beginning of
the window display sequence and optionally defines a new window size (see page 194).

Program keys P1 - P15

Program keys [P1] to [P9] move the corresponding windows W1 to W9 to the beginning of
the window display sequence and display them in the diagnostic area. After you have
marked an address field the associated memory area is assigned to the diagnostic window
which is selected via keys [P1] to [P9].

Program keys [P10] to [P12] can be used to position the cursor to the input field “Window
size” of the first three diagnostic windows displayed. If less than three windows are
displayed, [P12] and [P11] position the cursor to the command line.

If you transfer an entry using program key [P13], DAMP passes it directly to any PRODAMP
procedure which may be active. This allows you to write your own user interface for
PRODAMP applications.

You can use program keys [P14] and [P15] to scroll in the DAMP message history. [P14]
enables you to scroll back in the message lines (lines 2 and 3) and [P15] to scroll forward.

The program keys [P1] to [P15] are automatically loaded when DAMP is started. If the
settings for the P keys have been lost (e.g. after a task switch via OMNIS), they can be reset
by interrupting the program by hitting the [K2] key and then entering the /RESUME-PROGRAM
command.

On data display terminals which incorporate the “read P area” function (as of 9762 Data
Display Terminals), DAMP saves the current contents of the program keys before loading
them with the new values if Save P-Keys = yes is set in the DAMP options (see page 135).
Every time that DAMP is interrupted using [K2] or when DAMP is terminated, the contents
of the program keys most recently saved are reloaded. Any changes to the contents of the
function keys made while DAMP is suspended are saved when the /RESUME-PROGRAM
command is issued.

Alternative to program keys P1 - P9 and P13

Instead of using the program keys [P1] through [P9] and [P13] it is possible to enter the
appropriate number (1 through 9 or 13) in the command line and activate by pressing the
[DUE] key.

Operation DAMP Dump analysis

86 U5663-J-Z125-11-76

Paging in a diagnostic window

Function keys [F3] and [F1] can be used to page forwards and backwards within a
diagnostic window. This function of [F1] and [F3] is also mapped onto the last two program
keys: on a terminal with 17 program keys (8160), [P16] is equivalent to [F1] and [P17] to
[F3]; on a terminal with 20 program keys (9750) [P19] is equivalent to [F1] and [P20] to
[F3]. Paging can also be controlled by entering “+” and “-” in the command line.

In general, the use of +, -, ++, --, +n, -n for paging is also supported:

+ page forward by one window

- page backward by one window

++ page to end of list, chapter or module

-- page to beginning of list, chapter or module

+n page forward n lines

-n page backward n lines

If two or more windows are displayed on the screen, paging occurs in the most recently
used window. Paging with [F1] or “-” initially moves back only to the start of the current
module, control block or chapter. This boundary can then be crossed by entering another
paging command.

Marking

The contents of standard dump windows are generally a portion of the system or user
memory which contains command, data and address fields. Marking an address field, i.e.
positioning the cursor to this field and pressing the [MAR] key, assigns this address as the
start address of the current dump window or of a new one. Similarly, addresses can be
marked in the stack window (W3) and various information can be marked in function-
specific special windows (FIND, AUDIT, etc.).

A marked memory location is as far as possible not displayed in the window which contains
the marking.
To assign a particular standard dump window to a marked address, after you have marked
it press one of the program keys [P4] through [P9] (for output in one of the windows, W4
through W9) or enter the window number (4..9, 21..99) in the command line and then
press[DUE]. Standard dump windows can also be assigned using the MODIFY-SCREEN-
LAYOUT statement.
If you select no dump window after entering marking, i.e. only press [DUE], DAMP selects
the next standard dump window which is displayed in the diagnosis area. If no further dump
window is available in the diagnosis area, DAMP selects the dump window which is
currently set as standard.

DAMP Dump analysis Operation

U5663-J-Z125-11-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Depending on the number of windows displayed in the diagnosis area, the display can take
place in up to six standard dump windows simultaneously. If more fields are marked, the
surplus fields are ignored.

Highlighted keywords in the help window (W1) and the task or PCB lines in the status
window (W2) can also be marked. Hitting the [DUE] key then provides more detailed infor-
mation on the marked term or the PCB.

In standard dump windows, the first column in each line can be marked. The line marked
in this manner is positioned to the top of the window in the next output.

Inadvertently marked fields can be cleared by hitting the [MAR] key again.

Converting the address display for contexts in the x86-HSI

On servers with x86 architecture memory addresses in x86 contexts exist in “Little Endian”
format. BS2000 uses”Big Endian” format to display addresses. During ongoing operation
the firmware converts the addresses to the correct format at the HSI transition.

When editing BS2000 tables, DAMP automatically displays the addresses in the Big Endian
format of BS2000 in special windows (e.g. when editing a PCB with x86 context in W3).

However, when a memory area with x86 context is displayed in a standard dump window,
the specified area is displayed unchanged by DAMP. This is also the case when a DSECT
is applied to the area. You can have an address converted before the associated memory
area is displayed by DAMP by marking it and pressing [F4]. When a standard dump window
is specified as the output window, the area from the converted address is output to the
selected window. However, the address display at the marked position is not converted.

The possible output windows are described in the section “Marking” on page 86.

[F4] is only effective for x86-HSI objects.

Operation DAMP Dump analysis

88 U5663-J-Z125-11-76

5.3.1.5 Interrupting and resuming DAMP operation

The [K2] key can be used at any time to interrupt execution of DAMP and to switch to the
command line, where any system command may be entered.

Control is returned to the DAMP program by means of the RESUME-PROGRAM
command. You can, however, also resume working with DAMP from the command level,
namely via the STXIT interrupt routine and the INFORM-PROGRAM command (see
section “System level” on page 223).

5.3.1.6 Terminating DAMP

DAMP can be terminated in a number of ways:

– by entering the END statement in the command line

– by pressing the [K1] key. Confirmation is only required if the appropriate user option has
been set (see page 133).

Alternatively, DAMP can also be terminated as follows:

– Press the [K2] key (which interrupts the current program and switches to the command
level) and enter the INFORM-PROGRAM command with one of the following texts:

/INFORM-PROGRAM MSG='*END'
/INFORM-PROGRAM MSG='*HALT'
/INFORM-PROGRAM MSG='*TERMINATE'

 Terminate without a dump

/INFORM-PROGRAM MSG='*DUMP'
/INFORM-PROGRAM MSG='*TERMD'

 Terminate with a dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2 Output of dump data

Since every software problem is essentially unique, this manual cannot offer patent
solutions for all of them. It can only tell you what information can be found in a diagnosis
object and how to find it. It is up to you to decide what you should be looking for.

Diagnosis is initiated by calling the DAMP program. The help window W1 is displayed with
an overview of the help chapters.

What happens next is controlled by means of DAMP statements, function keys, modifying
input fields and marking fields.

It is a good idea to activate logging of the diagnosis run so that it is possible for the same
or different diagnostic technicians to reconstruct, at a later time, diagnostic actions taken.

5.3.2.1 Automatic interpretation of the output data

During display of the status and stack windows and during output of a memory segment in
symbolic format (overlaid with a DSECT), DAMP attempts to interpret the contents of the
various fields. In particular, it attempts to relocate addresses, i.e. to represent them as a
module and a displacement within this module. This is done in accordance with the
following rules.

In dump windows,
the start address is interpreted relative to a specific module. Furthermore, all displayed
relative addresses refer to the beginning of the module visible in the window. The contents
are edited, at most, up to the end of the module.

If this form is not desired (when, for example, the relative addresses are to refer to the start
of a table located within a module), the following steps must be carried out:

– position to the start of the table

– enter “ALT” in the ASEL field.

DAMP then uses the current start address of the window as the basis for address
relocation. In this case, output is also continued past the end of the module.

All addresses in diagnosis objects are always interpreted as 31-bit addresses (/390 objects)
or 32-bit addresses (x86 objects). If this is not desired, you will need to overlay the memory
segment with a DSECT and then proceed as in the case of symbolically edited segments
(see section “Symbolic layout” on page 97).

Operation DAMP Dump analysis

90 U5663-J-Z125-11-76

In TU-PCBs,
the addresses are interpreted as 24-bit, 31-bit or 32-bit addresses, depending on the
addressing mode set in the PCB. 32-bit addresses are only possible for x86 objects.
Modules from the connected nonprivileged subsystems and CSECTs of any loaded user
program are taken into account for address relocation. General-purpose registers 0 and 1
are never addressed relatively.

If the access register mode flag (AR mode flag) is set in the PCB being displayed, and if the
access register of the same name contains a value (ALET) other than zero, the act of
marking a general-purpose register immediately assigns the corresponding data space and
displays it in the requested window.

In TPR-PCBs,
addresses are always interpreted as 31-bit addresses (/390 objects) or 32-bit addresses
(x86 objects). Modules of the Control Program (CP) and of all privileged subsystems thar
are loaded are taken into account for address relocation.

The same applies to TPR PCBs where the AR mode flag is set as described above for
TU PCBs.

In symbolically edited memory segments,
addresses are always interpreted as 31-bit addresses (/390 objects) or 32-bit addresses
(x86 objects).
In special cases (for example, when viewing user parameter lists), this may not be desired.
In such cases, the statement

MODIFY-OBJECT-ASSUMPTIONS ADDRESSING-MODE=*PAR(<control-block>, *NXS/ *XS31)

can be used to specify that the addresses are to be regarded as 24-bit addresses for the
specified control block. Depending on whether the data is in user memory or in system
memory, all modules or only modules belonging to the Control Program and to class 4
subsystems are taken into account for address relocation.

In function-specific windows
such as the TRACE, FIND, SUSY or TABL window, addresses are always interpreted in the
same way as for memory segments.

Exception

Address relocation is performed in the same way as for TU-PCBs only in the case of
AUDIT windows for a TU AUDIT.

DAMP Dump analysis Operation

U5663-J-Z125-11-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.2 Output of status information

If you open one of the diagnostic objects SLED, SNAP dump or active system, or if you
enter TSK mode in the status window (W2) after opening a system dump, you obtain the
status information on the tasks which occur. The amount of data to be displayed will
generally exceed the maximum permitted window length, but the remainder of the data can
be displayed by paging.

Marking a task line or entering the name of the desired task in the appropriate input field in
the header line and hitting the [DUE] key causes information on all PCBs of this task (PLK
mode) to be displayed. If the entered TSN is shorter than 4 characters, it is extended by
leading zeros to a length of 4 characters. If a TSN begins with blanks (e.g. in system tasks),
then these must be entered.

For PCB output, the size of the status window (W2) is implicitly set to the number of lines
needed to display the actual information. When the first PCB is displayed, the [F1] key
returns you to the task overview.

In the case of system, area and user dumps, the PLK mode is immediately set when the
dump file is opened, i.e. the list of PCBs of the task which caused the dump is displayed.

The TPR program manager stack can be displayed by entering “SLK” in the “Mode select”
field.

In INF mode, the object currently open is always described. If, in the case of dump files with
a number of objects, selection is possible, it is done by marking the required objects. This
selection can be undone by setting the INF mode in the status window and pressing the
[F1] key.

You can always switch between the different modes (INF, TSK, PLK, SLK) of the status
window by making entries in the “Mode select” field.

If a PCB is marked, the stack for this PCB is displayed in the stack window (W3). If no PCB
is marked when the stack window is activated by means of either [P3] or a MODIFY-SCREEN-
LAYOUT statement, the stack for the first PCB is displayed.

Operation DAMP Dump analysis

92 U5663-J-Z125-11-76

5.3.2.3 Output of stack contents

The contents of program control blocks (PCB) are displayed in the stack window (W3).
Every address field contained in the stack window can be marked.

The following applies to system, user or area dumps:
In order to view the first PCB of this task, you only need to press the [P3] or [DUE]key. This
causes the stack window (W3) to be displayed with the contents of the first PCB (default
value).
If you want to view the contents of another PCB, first press either the[P2] or [DUE]key. This
produces the status window (W2) containing the PCB list. Mark the line with the desired
PCB and then press the [P3] key. The stack window (W3) with the contents of the marked
PCB will now be displayed.

If a SLED or SNAP is available, a task must first be selected. Task 1 is set by default. You
select a task by marking a task line in the status window (W2) and sending it off with [DUE].
This causes the PCB list for the marked task to be displayed in the status window. Marking
the line containing the desired PCB and then hitting the [P3] causes the stack window (W3)
with the contents of the marked PCB to be displayed.

The data to which the registers of the PCB refer can be displayed by marking the program
counter or an address field in the PCB registers. Subsequently hitting one of the program
keys [P4] to [P9] assigns the marked address to a dump window. Alternatively the dump
window can be selected using the MODIFY-SCREEN-LAYOUT statement or by specifying
the window number (4...9, 21...99) in the command line and transferring it with [DUE].

Up to six addresses can be marked and assigned to dump windows at any one time. To do
this, the MODIFY-SCREEN-LAYOUT statement must first be entered, e.g. as follows:

MODIFY-SCREEN-LAYOUT FIRST=3(SIZE=10), SEC=4(SIZE=2), THIRD=5(SIZE=2),
FOURTH=6(SIZE=2)

This causes the windows to be displayed in the specified order and with the specified sizes.
Subsequently marking three address fields of the PCB and hitting the [DUE] key causes the
marked addresses to be assigned to dump windows W4, W5 and W6.

If you want to output the TPR program manager information instead of the PCB information,
enter
– “SLK” in the “Mode select” input field of the status window (W2) (see page 61) or

– “SPL” in the “Stack select” input field of the stack window (W3).

DAMP Dump analysis Operation

U5663-J-Z125-11-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.4 Output of system tables

DAMP can automatically localize the following system tables in the assigned diagnosis
object and display them in “symbolic format” (in accordance with their DSECT layout) in a
dump window

Entering the DSECT name in the input field “Symbolic address” of a dump window (W4 -
W9 or W21 - W99) causes the memory segment to be localized and displayed from the
beginning of the table in symbolically edited form, i.e. with the displacement address, the
DSECT field names, the field contents and with a possible interpretation in accordance with
the field definition. In the case of the task-specific tables TCB, JCB, and UVMT, it may also
be necessary to enter the desired task when processing SLED and SNAP files. Otherwise,
the Task 1 or the last task which was selected is used as the default value.

Figure 27: Output of the SVMT in symbolic format; display in the key line: EVSMT

Instead of one of the DSECT names mentioned in table 5, it is also possible to enter a field
name from the DSECTs. The output then begins with the corresponding memory address.

Name Abbreviation DSECT name

Executive Vector Table
Task Control Block
Job Control Block
System Virtual Memory Table
User Virtual Memory Table

XVT
TCB
JCB
SVMT
UVMT

EXVT
ETCB
EJCB
EVSMT
EVUMT

Table 5: System tables that can be automatically localized

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

EVSMT +00000=711A5000 TID=000A00CB W4,CBA,L19
000 EVSMID : E2E5D4E3 | 004 EVSMVER : 00F4F6F0
008 : 0000000000000000 | 010 EVSMRASZ: 00010000 = 65536
014 EVSMRASM: 00010000 = 65536 | 018 EVSMRASI: 00010000 = 65536
01C EVSMMMLM: 0000FFFF = 65535 | 020 EVSMHFR#: 0000FFFF = 65535
024 EVSM#AFR: 00010000 = 65536 | 028 EVSMC1FR: 000003F2 = 1010
02C EVSMMBFR: 00000000 = 0 | 030 EVSMPPTP: 710E0100 = EMMENTAL+40100
034 EVSMPPTE: 710E0900 = EMMENTAL+40900
038 EVSMPPTA: 710E0900 = EMMENTAL+40900
03C EVSMPPAT: 710E0000 = EMMENTAL+40000
040 EVSMPPAE: 710E0040 = EMMENTAL+40040
044 : 00000000 | 048 EVSMPPID: 0000000080000600
050 EVSMPPTI: 02 | 051 : 00
052 EVSMPPSH: 000A = 10 | 054 EVSMPPM1: 0FFFE000
058 EVSMPPM2: 00001FFF = 8191 | 05C EVSMPPRS: 0100 = 256
05E EVSMPPVS: 2000 | 060 EVSMPPES: 0020 = 32
062 : 0000 | 064 EVSMPPTR: 000E0900
068 : 00000000 | 06C EVSMPAGP: 0000D149 = 53577
070 EVSM#CFR: 0000D0E8 = 53480 | 074 EVSM#CFB: 0000D0E8 = 53480
CMD:
Key: 1=Help 2=Plk 3=PCB 4=EVSMT 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

Operation DAMP Dump analysis

94 U5663-J-Z125-11-76

The [F3] and [F1] keys or +/-/++/-- can be used to page forwards and backwards within the
DSECT, but they cannot be used to leave the DSECT area. Leaving the DSECT area can
be done only by switching to another layout in the “Output format” field.

Other system tables are not localized automatically. The person carrying out the diagnosis
must find them via address chaining. Symbolic output of these tables can be effected by
overlaying them with a DSECT from the symbol file (see section “Symbolic layout” on
page 97).

“Displaced” overlaying is also possible. In this case, the memory segment is edited only as
of the specified DSECT field name, rather than in the format of the entire DSECT.

5.3.2.5 Output of processor storage areas

The local XVTs for multiprocessors can be displayed as follows:

– After opening a SLED or SNAP dump, enter the field name EXVTLMD1 in the “Symbolic
address” input field of a dump window and press [DUE]. This causes the global XVT to
be displayed in this window.

– Set up two free windows with the aid of the MODIFY-SCREEN-LAYOUT statement.

– Mark the addresses in the fields EXVTLMD1, EXVTLMD2 etc. and press [DUE]. This
causes the local XVTs to be displayed in the new windows in dump format.

– You can overlay the memory segments with the format of the EXVT, starting at field
EXPROCAR (beginning of the local part).
Do this by entering the field name EXPROCAR in the input field “Symbolic address” and
entering the keyword “CBM” in the “Output format” input field.

DAMP offers the following alternative options for simplification purposes:

– Enter the “pseudo” CSECT EXVT-XXX in the “Symbolic address” field and press [DUE].
XXX is the 3-digit hexadecimal number of the required logical machine.

– Replace EXVT-XXX with EXVT or EXPROCAR and enter the “CBM” key word in the
“Output format” field. Then press [DUE].

DAMP Dump analysis Operation

U5663-J-Z125-11-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example

Output of the local XVTs for multiprocessors

Figure 28: Output of the local XVT in symbolic format

In addition, you can automatically locate a processor-local processor storage area (PSA)
by entering the “pseudo” CSECT PSA-XXX.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

EXVT +00CE8=710014E8 SYS=00010001 W4,CBA,L 3
CE8 EXVTLMD1 : 71F9D800 = EXVT-001 | CEC EXVTLP02 : 71F9E800 = EXVT-002
CF0 EXVTLP03 : 71F9F800 = EXVT-003 | CF4 EXVTLP04 : 71FA0800 = EXVT-004
--
EXVT +00000=71F9D800 SYS=00010001 W5,CBM,L11
000 EXPROCAR : E7E5E3F4 | 004 : 00000000
008 EXVTTSCE : 0000000000000000 | 010 EXVTCWKA : 00000000 = 0
014 : 00
034 : 00
054 : 00
074 : 000000000000000000000000
080 EXVTTSPD : 7111E000 = EMMINIT1+3A000
084 EXVTTSTD : 0010307F | 088 EXVTTST@ : 71103000 = EMMINIT1+1F00
08C EXVTASTO : 0011F040 | 090 EXVTSSPD : 00000000 = 0
094 EXVTSSTD : 00000000 = 0 | 098 EXVTSST@ : 00000000 = 0
--
EXVT +00000=71F9E800 SYS=00010001 W6,CBM,L11
000 EXPROCAR : E7E5E3F4 | 004 : 00000000
008 EXVTTSCE : 0000000000000000 | 010 EXVTCWKA : 00000000 = 0
0MD:
Key: 1=Help 2=Tsk 3=PCB 4=EXVT 5=EXVT 6=EXVT 7=Dump 8=Dump 9=Dump

Operation DAMP Dump analysis

96 U5663-J-Z125-11-76

5.3.2.6 Output of hardware information

In SLED files, DAMP can localize the hardware information and display it in a diagnostic
window.

Entering the appropriate keyword in the input field “ASEL” and any parameter required in
the input field “ASID” in one of the dump windows W4 - W9 or W21 - W99 causes DAMP to
localize the corresponding memory segment and to display it in the selected output format
in this dump window.
The following entries are permitted:

Ê in ASEL: „HSA“
in ASID: input ignored

Ê in ASEL: “PSS”;
in ASID: <processor-number>(hexadecimal)

Figure 29: Output of the “Processor Saved Status” in the dump window W4

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

 +00000= 000000 PSS=0 W4,D ,L19
00000000 (00000):E2E3C1E3 0600E500 00000000 00000000 <==> STATV
00000010 (00010):00000000 00000000 00000000 00000000 <==>
00000020 (00020):31020001 21600000 DC400000 00000000 <==> -
00000030 (00030):00000000 00000000 00000000 00000000 <==>
00000040 (00040):0125C000 00280000 040A0000 80FFFFFF <==> ~~~
00000050 (00050):FFFFFFFE 78F9AB00 FFFFFFFF FFFFF000 <==> ~~~9~~~~~~0
00000060 (00060):00000000 00000000 00000000 00000000 <==>
00000070 (00070):00000000 00000000 00000000 00000000 <==>
00000080 (00080):0CB5FC40 0040A07F 00173440 00000000 <==> "
00000090 (00090):00000000 00120200 FF000000 0010507F <==> ~&"
000000A0 (000A0):00000000 00000000 00000000 00000000 <==>
000000B0 (000B0):00000000 0040A07F FF000000 70FD8BE8 <==> "~}Y
000000C0 (000C0):00000000 00000000 00000000 00000000 <==>
000000D0 (000D0):00000000 00000000 00000000 00000000 <==>
000000E0 (000E0):00000040 711B9011 F12663D4 711B9000 <==> 1M
000000F0 (000F0):00000000 00000000 17D78400 711B9DD8 <==> PdQ
00000100 (00100):0003F480 7103F480 71000000 71000800 <==> 44
00000110 (00110):71266550 711B9E20 711B9000 00000000 <==> &
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=PSS-0 5=Dump 6=Dump 7=Dump 8=Dump 9=OPTS

DAMP Dump analysis Operation

U5663-J-Z125-11-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.7 Output of memory segments

Memory segments which cannot be localized automatically can be found either by marking
the corresponding address fields, by explicitly entering the addresses in the input fields of
a dump window, or by paging within a displayed memory segment.

The memory segment is displayed in the output format which was last selected. The output
format can be changed by changing the entry in the corresponding input field in the header
line. However, this also changes the amount of information displayed:

When a dump window is assigned for the first time, the default setting is dump format D with
a window size of 19 lines.

Symbolic output cannot be selected by an entry in the relevant input field. It is automatically
selected for the output of tables which can be localized and for cases where a memory
segment is overlaid with a DSECT (where a DSCET is specified in the field “symbolic
address”).

5.3.2.8 Symbolic layout

If a memory segment is structured in the form of a standard DSECT, then DAMP can
display this segment in the format of this DSECT. (The term DSECT is used below to refer
to structures from the various programming languages, e.g. for ASS-DSECTs, MODELs
(SPL), STRUCTUREs (C).) The various fields of the DSECT are interpreted in accordance
with their data types. Numeric values are displayed both in hexadecimal form and as an
address or decimal value. Strings are always displayed as strings.

Since the definitions of the field names in the DSECTs being used do not always match their
meanings (e.g. CL4 instead of AL4), some of the interpretations may be slightly inaccurate.
This can be rectified by modifying the DSECTs and then generating a new or modified

Format Display Input Information
per line

Information
per window

Dump D d,D 16 bytes 288 bytes

Hexadecimal HEX h,H 32 bytes 576 bytes

Character CHR c,C 64 bytes 1152 bytes

Assembler ASS, PAS, XAS
ASS
PAS
XAS

a,A
cas,CAS

p,P
x,X

1 statement

Symbolic CBA
CBM
NAM

cba,CBA
cbm,CBM

n,N

max. 32 bytes

Table 6: Relationship between output format and the amount of information output

Operation DAMP Dump analysis

98 U5663-J-Z125-11-76

symbol file (see section “Using private symbol elements” on page 142).

In addition to the global and task-specific tables which can be localized automatically, any
desired memory segment can be displayed in the format of a DSECT. Two different
methods are available.

Overlaying with a complete DSECT

In order to overlay a memory segment with a DSECT, the beginning of the displayed
memory segment must correspond to the beginning of the DSECT. Entering the DSECT
name in the input field “Symbolic address” and entering the keyword “CBM” in the input field
“Output format” causes the output to be displayed in symbolic format. It is not necessary to
enter the keyword “CBM” if DAMP cannot automatically localize the DSECT.

If the memory segment is localized by entering an absolute address in the header line, a
DSECT name can be entered at the same time. The output of the memory area then follows
immediately in symbolic format.

Figure 30: Output of a stack in symbolic format. The DSECT name is displayed in the key line.

The contents of the “Output format” field indicate whether a DSECT has been localized
automatically by DAMP (field contains CBA = control block automatic) or whether the user
has positioned the DSECT (field contains CBM = control block manual). If the field contains
the entry CBM, this means that entering a field name of the overlaid DSECT in the input
field “Symbolic address” will cause paging within the DSECT format. Automatic positioning
to the field name of the corresponding system table, which may be possible here, is not
active.

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

ESTK +00000=739073A8 TID=000A00CB W5,CBM,L19
000 ESTKTBLH: D7C3C2 | 003 : 04
004 ESTKSIND: 84 | 005 ESTKHSI : 01
006 ESTKIND : 01 | 007 ESTKIND1: 01
008 ESTKAFIN: 60 | 009 ESTKEIAF: 00
00A ESTKPCBL: 01C8 | 00C ESTKSLNK: 72F91008
010 ESTKISLK: 72F91008 | 014 ESTKTSF1: 00
015 ESTKTSF2: 00 | 016 ESTKTSS : 00
017 : 00 | 018 ESTKAUDM: 00000000 = 0
01C ESTKEXRT: 713974A0 = NLMLOCK5+0CA0 | 020 ESTKCLK : 00000000 = 0
024 ESTKCCLK: 0000FFFF = 65535 | 028 ESTKSTXC: FF
029 ESTKSTXB: FF | 02A ESTKP1EV: EF
02B ESTKP1SE: FF | 02C ESTKPOST: 71E63140
030 ESTKBOID: 000A00CB |
034 : 000A00CBF1A94186000600050000000000000000
048 ESTKLPSC: 00000000 = 0 | 04C ESTKBRSE: 00000000 = 0
050 ESTKBRS@: 71249400 = ETMBOWK +18C0 | 054 ESTKCONF: 80
055 ESTKCLEV: EF | 056 ESTKSTID: 00
057 ESTKPLVL: 00 | 058 : 0000000000000000
CMD:
Key: 1=Help 2=Plk 3=PCB 4=ESMFHD 5=ESTK 6=Dump 7=Dump 8=Dump 9=FIND

DAMP Dump analysis Operation

U5663-J-Z125-11-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The assignment of a DSECT to a window is stored. As a result, if the same structure is
localized in another memory segment (e.g. in the case of chained lists) and this memory
segment is then assigned to this diagnostic window by, for example, marking it and pressing
the appropriate P key, the window is not switched to dump layout. Instead, the output is
immediately edited symbolically to match the previously saved DSECT.

This also happens if some other memory segment is assigned to the window. This segment
is then displayed in the format of the saved DSECT, which will probably be incorrect. If this
is the case, you will then need to either enter the name of the correct DSECT or switch to
dump format by entering D in the “Output format” of the header line.

Overlaying with an offset DSECT

If a memory segment is formatted in accordance with only a part of a DSECT (as is the case
for the local XVTs for multiprocessors, see figure 28 on page 95), then a displaced overlay
must be used. In this case, the appropriate DSECT field name must be entered in the input
field “Symbolic address” and the entry “CBM” must be made in the “Output format” field.
The keyword “CBM” need not be entered if the DSECT cannot be localized automatically.

This can also be used to save having to page back to the start address of a table. If the field
name of the start of the displayed memory segment is known, the displayed segment can
be overlaid by specifying the field name again.

Paging within a DSECT is possible via [F1] / [F3] and +/-/++/--, but only as far as the
beginning or end of the DSECT. The symbolic layout is not affected by this.

Lists of all DSECTs that can be specified for all supported BS2000 versions can be found
on page 329. DSECTs from private symbol files can also be used (see section “Using
private symbol elements” on page 142 for further details).

i In the symbolic output, X'4F' is used as the column separator character. With certain
terminal settings and with certain printer character sets, this character is not repre-
sented as the vertical line “|”. This can be remedied with the aid of the user
parameter “Column separator (list)” (see page 135).

Operation DAMP Dump analysis

100 U5663-J-Z125-11-76

Overlaying with the pseudo-DSECT WORDLIST

If a memory segment is not described in the form of a DSECT which can be overlaid, but
(possibly) contains address references to system areas, then these addresses can be
edited symbolically with “module name + displacement” with the aid of the pseudo-DSECT
WORDLIST.

For each word of the memory segment, this pseudo-DSECT assumes the Assembler
declaration DS AL4. If the contents of the word formally permit, they are displayed as
“module name + displacement”.

It is thus possible, for example, to overlay the constant area of a module with WORDLIST
in order to implement module-relative editing of the external addresses used therein.

Figure 31: Editing with the DSECT WORDLIST; display in the key line: WORDLIST

i In the case of class 6 memory, only addresses from the user program and from
connected nonprivileged subsystems are relocated. If special circumstances
dictate that relocated addresses are also required for privileged subsystems, the
memory segment must be identified as a data space by entering “ALT” in the ASEL
field.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

WORDLIST +00000=AFFEA4FC TID=000101E1 W4,CBM,L19
000 WORD000 : B13DF520 = DPSUSTA +00A0 | 004 WORD001 : B13EB7B8 = DPSUSTA@+B1F8
008 WORD002 : B13DF520 = DPSUSTA +00A0 | 00C WORD003 : AFFA0000
010 WORD004 : AFFEA3C0 | 014 WORD005 : B13EBAC8 = DPSUSTA@+B508
018 WORD006 : B13E3010 = DPSUSTA@+2A50 | 01C WORD007 : AFFEFB6E
020 WORD008 : AFFEA720 | 024 WORD009 : B1019140 = DKCMSPL@+3B80
028 WORD010 : B10124A0 = DKCMSPL +00A0 | 02C WORD011 : B0427D80 = NLKSYSPM+1F40
030 WORD012 : AFFEA378 | 034 WORD013 : B1019C00 = DKCMSPL@+4640
038 WORD014 : B1021258 = DKCMSPL@+BC98 | 03C WORD015 : AFFEF006
040 WORD016 : B101A040 = DKCMSPL@+4A80 | 044 WORD017 : AFFEAF48
048 WORD018 : 00000003 = 3 | 04C WORD019 : 00000001 = 1
050 WORD020 : B03FE160 = NCTXVT +2160 | 054 WORD021 : 00000004 = 4
058 WORD022 : AFFEA3C0 | 05C WORD023 : B13E3064 = DPSUSTA@+2AA4
060 WORD024 : B13E2AC8 = DPSUSTA@+2508 | 064 WORD025 : AFFEFB6E
068 WORD026 : AFFEA720 | 06C WORD027 : AFFEA720
070 WORD028 : B10128B0 = DKCMSPL +04B0 | 074 WORD029 : B10226E8 = DKCMSPL@+D128
078 WORD030 : B10124A0 = DKCMSPL +00A0 | 07C WORD031 : B0427D80 = NLKSYSPM+1F40
080 WORD032 : AFFEA378 | 084 WORD033 : B1022A54 = DKCMSPL@+D494
088 WORD034 : B1020B48 = DKCMSPL@+B588 | 08C WORD035 : AFFEF006
CMD:
Key: 1=Help 2=Plk 3=PCB 4=WORDLI 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Handling substructures

Substructures are permitted in control blocks that were defined in a high-level language.
DAMP allows substructures of this sort to be “revealed” or “hidden”.

To start with, the substructures are ignored when a control block is output, i.e. the fields
concerned are output as an “ARRAY OF BYTES”. The names of the fields containing the
substructures are prefixed by an asterisk (*).
If you overwrite this character with a “+”, the corresponding substructure is “revealed” and
if you overwrite it with a “-”, the substructure is “hidden”.

The choice of transmission key ([DUE1] or [DUE2]) determines whether the substructure is
revealed in “edited” format or “compressed” format.

– [DUE1] “edited” format. Only one data field of the substructure is displayed below the
superordinate name in each line. The field names are indented.

– [DUE2] “compressed” format. The substructure is displayed in the same way as a
normal control block. It is merely inserted in the appropriate position in the window.

Figure 32: Hidden sample substructure

Figure 33: Fully revealed substructure in edited format

Figure 34: Revealed substructure in compressed format

DAMP <version> USERDUMP(19.0) from BS2000(19.0) <date> <time>

ESMFHDR +00000=0125AB64 TID=000400E4 W4,CBM,L19
000*IF_ID : 00580201 | 004*RETURNCODE: 0E400009

DAMP <version> USERDUMP(19.0) from BS2000(19.0) <date> <time>

ESMFHDR +00000=0125AB64 TID=000400E4 W5,CBM,L19
000+IF_ID :
 000 UNIT : 0058 = 88
 002 FUNCTION: 02
 003 VERSION : 01
004+RETURNCODE:
 004+STRUCTURED_RC:
 004+SUBCODE :
 004 SUBCODE2: 0E
 005 SUBCODE1: 40
 006 MAINCODE : 0009

DAMP <version> USERDUMP(19.0) from BS2000(19.0) <date> <time>

ESMFHDR +00000=0125AB64 TID=000400E4 W7,CBM,L19
000+UNIT : 0058 = 88 | 002 FUNCTION: 02
003 VERSION : 01 | 004+SUBCODE2: 0E
005 SUBCODE1: 40 | 006 MAINCODE : 0009

Operation DAMP Dump analysis

102 U5663-J-Z125-11-76

5.3.2.9 Output in Assembler format

A memory segment displayed in a dump window can be disassembled and displayed in
Assembler format. Data sequences which can be interpreted beyond doubt as not being
instructions are displayed in the form of DC constants. Output always starts at a half-word
boundary. If parts of the disassembled data area are to be displayed as DC constants, the
corresponding lines must be marked in the operation code column. When the [DUE] key is
pressed, disassembly of these instructions is disabled, and the corresponding memory
locations are displayed as constants.

The Assembler format is determined by the “ASS”, “CAS” or “XAS” entry in the “Output
format” field.
If “ASS” is entered, DAMP automatically determines via the CSECT attribute whether /390
or x86 instructions are to be output. You can, however, also determine the format of the
disassembly yourself (e.g. if the CSECT attributes are missing or corrupt). /390 instructions
are displayed for the “CAS” entry or Xx86 instructions for “XAS”.
In the output, DAMP returns either “ASS” (/390 format) or “XAS” (x86 format) in the “Output
format” field.
Address levels and operation codes can be marked in the output, but operation codes only
in the case of /390 objects.

Figure 35: Example of disassembled output of x86 code

The USE-REGISTER statement (see page 221) can be used to control the symbolic display of
the instruction addresses in /390 code but not in X86 code. In this case, the address instruc-
tions are no longer displayed as a register and a displacement but as a module-relative
address or in the form of a field name in the specified DSECT.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

ASTRACE +0004C=C0ADE70C SYS=00010001 W4,XAS,L19
C0ADE70C (0004C):448B5C2448 = mov r11d,DWORD PTR [rsp+X'48'(R1)]
C0ADE711 (00051):90 = nop
C0ADE712 (00052):458D5570 = lea r10d,[R13+X'70']
C0ADE716 (00056):41C60226 = mov BYTE PTR [r10],X'26'
C0ADE71A (0005A):41C6420101 = mov BYTE PTR [r10+X'01'],X'01'
C0ADE71F (0005F):418BF3 = mov esi,r11d
C0ADE722 (00062):0FCE = bswap esi
C0ADE724 (00064):41897204 = mov DWORD PTR [r10+X'04'],esi
C0ADE728 (00068):44895C2420 = mov DWORD PTR [rsp+X'20'(R11)],r11
 d
C0ADE72D (0006D):41BF24000000 = mov R15d,X'00000024'
C0ADE733 (00073):6641C1CF08 = ror R15w,X'08'
C0ADE738 (00078):6645897A02 = mov WORD PTR [r10+X'02'],R15w
C0ADE73D (0007D):4489542448 = mov DWORD PTR [rsp+X'48'(R1)],r10d
C0ADE742 (00082):41BF8C027FC0 = mov R15d,X'C07F028C'
C0ADE748 (00088):4C0BBC2440010000 = or R15,QWORD PTR [rsp+X'00000140'
]
C0ADE750 (00090):448D3503000000 = lea R14d,[X'C0ADE75A']
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=SC0ADE 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The /390 instruction format used for disassembly is selected automatically by DAMP on the
basis of the CPU series used. The MODIFY-OBJECT-ASSUMPTIONS statement can be used to
change this preset value. Instruction formats 1 to 5 are available (see the description of the
MODIFY-OBJECT-ASSUMPTIONS statement on page 192).

Any USE-REGISTER statements used always apply to all disassembly operations for the
same module, even if this is displayed in several dump windows. The DROP-REGISTER
statement (see page 187) can be used to cancel these assignments.

Figure 36: Output in Assembler format; the following statements were entered:
USE-REG MOD-NA=ASTRACE,REG=10,FOR=*MOD-BASE(DISPL=X'458')

USE-REG MOD-NA=ASTRACE,REG=11,FOR=*CONTR-BLOCK(NAME=WORDLIST)

The statement ADD-LIST-OBJECTS WINDOW=<w> can be used to have the disassembled
memory segment output to a list.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

ASTRACE +0047E=7151563E SYS=00010001 W5,ASS,L19
7151563E (047E): D2 03 9008 B010 = MVC 8(4,R9),WORD004
71515644 (0484): D2 03 9014 B018 = MVC 20(4,R9),WORD006
7151564A (048A): D5 03 B01C A098 = CLC WORD007(4),LOC#04F0
71515650 (0490): 47 70 A05C = BNZ LOC#04B4
71515654 (0494): 58 40 A09C = L R4,LOC#04F4
71515658 (0498): 95 01 4A28 = CLI 2600(R4),1
7151565C (049C): 47 70 A052 = BNZ LOC#04AA
71515660 (04A0): D2 03 9018 A0A8 = MVC 24(4,R9),LOC#0500
71515666 (04A6): 47 F0 A058 = B LOC#04B0
7151566A (04AA): D2 03 9018 A0AC = MVC 24(4,R9),LOC#0504
71515670 (04B0): 47 F0 A062 = B LOC#04BA
71515674 (04B4): D2 03 9018 B01C = MVC 24(4,R9),WORD007

Operation DAMP Dump analysis

104 U5663-J-Z125-11-76

5.3.2.10 Output in areas with real addresses

Areas with real addresses are contained in SLED and SNAP dumps as well as in complete
VM2000 SLED files after selection of a virtual machine.

If the start address of a memory segment is available as a real address, this segment can
be output directly to a dump window without address conversion. This is done by entering
the keyword RM in the “ASEL” input field in the header line of a dump window and the desired
real address in the “Absolute address” input field.

DAMP automatically sets “0” as the 4GB segment if the “ASID” field is not filled. If a real
address above 4GB is to be output, the associated 4GB segment must be entered as
“ASID” and the relative displacement of the address to the start of the segment must be
entered as the “Absolute address”.

The result is displayed in the currently selected output format. However, this can be
changed to one of the other output formats either beforehand or later.

Figure 37: Output of area starting at real address 1000; display in the key line: R-0001

Output with real addressing is useful, for example, for the analysis of CCW chains in the
memory management tables, for fixed hardware areas (e.g. save areas) or for diagnosis in
the case of “overwriters”.

With standard list editing, output with real addresses applies only to the hardware areas
provided as defaults. If required, other areas can be output to a list by specifying
ADD-LIST-OBJECTS.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

 +00000= 001000 RM =00000000 W8,D ,L19
001000 (0000) : D7C9C401 00000000 00000000 C2E2F2F0 <==> PID?????????BS20
001010 (0010) : F0F04040 E5F1F94B F0C1F0F0 C7F10000 <==> 00 V19.0A00G1??
001020 (0020) : 00000000 E7E5E3F4 FFFFFFFF 72AFA008 <==> ????XVT4~~~~????
001030 (0030) : 7DD2C040 710011BC FFFFFFFF 71001264 <==> 'K? ???\~~~~????
001040 (0040) : 713CE380 710011A4 7FA8BCF0 72C6A0E0 <==> ??T????u"y\0?F??
001050 (0050) : 710011F8 71001648 FFFFFFFF 710011F8 <==> ???8????~~~~???8
001060 (0060) : FFFFFFFF FFFFFFFF FFFFFFFF 7FD5E000 <==> ~~~~~~~~~~~~"N??
001070 (0070) : 71001160 7FAE23A8 FFFFFFFF 71294D40 <==> ???-"??y~~~~??(
001080 (0080) : FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF <==> ~~~~~~~~~~~~~~~~
001090 (0090) : 7D6E0A10 FFFFFFFF 7FD3C940 FFFFFFFF <==> '>??~~~~"LI ~~~~
0010A0 (00A0) : 7F295710 71001148 7FD1B000 FFFFFFFF <==> "???????"J??~~~~
0010B0 (00B0) : 7100114C 71001154 FFFFFFFF FFFFFFFF <==> ???<????~~~~~~~~
0010C0 (00C0) : FFFFFFFF 7FD3EF80 FFFFFFFF FFFFFFFF <==> ~~~~"L??~~~~~~~~
0010D0 (00D0) : FFFFFFFF 71F8F8E0 7F302000 7100161C <==> ~~~~?88?"???????
0010E0 (00E0) : FFFFFFFF FFFFFFFF FFFFFFFF 71001278 <==> ~~~~~~~~~~~~????
0010F0 (00F0) : 72925000 7289DC60 72899CC0 7DC20A60 <==> ?k&??i?-?i??'B?-
001100 (0100) : 733E4D90 FFFFFFFF FFFFFFFF FFFFFFFF <==> ??(?~~~~~~~~~~~~
001110 (0110) : 710014E0 FFFFFFFF 00000000 00000000 <==> ????~~~~????????
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=S714CB 5=S71515 6=Dump 7=Dump 8=R-0001 9=Dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.11 Output in areas with absolute addresses

Absolute addresses occur in a complete VM2000 SLED file. The entire VM2000 system can
be addressed using absolute addresses.

An area with absolute addresses can be output in a dump window. This is done by entering
the keyword ABS in the “ASEL” input field in the header line of a dump window and the
required address in the “Absolute address” input field.

For an absolute address above 4GB, enter the associated 4GB segment in the “ASID” field
and the relative displacement of the address to the start of the segment in the “Absolute
address” field.
The information is output in the set output format. A different output format can be set before
or after this occurs.

Figure 38: Output as of absolute address 1000

DAMP <version> SLED(19.0) from VM2000(11.0)

 +00000= 001000 ABS=00000000 W4,D ,L19
001000 (0000) : D7C9C401 00001024 00000000 E5D4F2F0 <==> PID?????????VM20
001010 (0010) : F0F04040 E5F1F14B F0C1F1F0 F0F00000 <==> 00 V11.0A1000??
001020 (0020) : 00000000 00470101 FFFFFFFF D7C9C401 <==> ????????~~~~PID?
001030 (0030) : 00000000 00000000 E2E8E2E2 E3C1D9E3 <==> ????????SYSSTART
001040 (0040) : E5F1F94B F0C1F0F0 C7F10601 00000000 <==> V19.0A00G1??????
001050 (0050) : 00000000 00000010 E85CE3C5 E2E3C1D4 <==> ????????Y*TESTAM
001060 (0060) : C5D5E35C 00000000 00E00000 00E8C4D6 <==> ENT*?????????YDO
001070 (0070) : D4C1C9D5 00E00000 0A000000 01E8C4D6 <==> MAIN?????????YDO
001080 (0080) : D4C1C9D5 0AE00000 0A000000 02D5C4D6 <==> MAIN?????????NDO
001090 (0090) : D4C1C9D5 14E00000 23000000 03D5C4D6 <==> MAIN?????????NDO
0010A0 (00A0) : D4C1C9D5 80037E00 800AF000 04D5C4D6 <==> MAIN??=???0??NDO
0010B0 (00B0) : D4C1C9D5 00000000 00000000 D5E8C4D6 <==> MAIN????????NYDO
0010C0 (00C0) : D4C1C9D5 00000000 00000000 D5E8C4D6 <==> MAIN????????NYDO
0010D0 (00D0) : D4C1C9D5 00000000 00000000 D5E8C4D6 <==> MAIN????????NYDO
0010E0 (00E0) : D4C1C9D5 00000000 00000000 D5E8C4D6 <==> MAIN????????NYDO
0010F0 (00F0) : D4C1C9D5 00000000 00000000 D5E8C4D6 <==> MAIN????????NYDO
001100 (0100) : D4C1C9D5 00000000 00000000 D5E8C4D6 <==> MAIN????????NYDO
001110 (0110) : D4C1C9D5 00000000 00000000 D5E8C4D6 <==> MAIN????????NYDO
CMD:
Key: 1=Help 2=Inf 3=PCB 4=A-0001 5=Dump 6=Dump 7=Dump 8=Dump 9=Dump

Operation DAMP Dump analysis

106 U5663-J-Z125-11-76

5.3.2.12 Output of dump file sections

The structure of dump file sections is determined by the dump generator (SLED, SNAP or
CDUMP).

Parts of dump file sections can be viewed in a dump window. You do this as follows: In the
header line, type the keyword “SCT” into the “ASEL” input field and the name of the section
you want into the “ASID” input field.

The output is displayed in the currently selected format. You can switch to other output
formats either beforehand or subsequently.

DAMP supports the output of dump file sections with a sequential, homogeneous, or mixed
structure; it does not support the output of dump file sections with an inhomogeneous
structure.

Figure 39: Output of the SLEDMEM dump file section; s-0001 is shown in the key line

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

 +00000= 001000 SCT=SLEDMEM W7,D ,L19
001000 (0000) : 10480100 01000000 00000000 C1C4E2F1 <==> ADS1
001010 (0010) : 010ED000 010ED400 010EDC00 D4E2C7C2 <==> M MSGB
001020 (0020) : E4C6C67A 01111000 E2C4E37A 01145000 <==> UFF: SDT: &
001030 (0030) : 0116D500 0116D600 00000000 00000000 <==> N O
001040 (0040) : 00000000 00000000 00000000 00000000 <==>
001050 (0050) : 00000000 00000000 00000000 00000000 <==>
001060 (0060) : 00000000 00000000 00000000 00000000 <==>
001070 (0070) : 00000000 00000000 40D9C9C7 C8E3E240 <==> RIGHTS
001080 (0080) : D9C5E2C5 D9E5C5C4 D7D7D7D7 D7D7D7D7 <==> RESERVEDPPPPPPPP
001090 (0090) : 010010A0 010013F0 00350000 00000000 <==> 0
0010A0 (00A0) : 01001000 D5E2C9C9 D7D3C8E6 F000F000 <==> NSIIPLHW0 0
0010B0 (00B0) : 01010000 C5E3E2E5 D7404040 F002F700 <==> ETSVP 0 7
0010C0 (00C0) : 0103F700 D5E2C9C4 C5D94040 F0006400 <==> 7 NSIDER 0
0010D0 (00D0) : 01045B00 D5E2C9C5 E7D4C7E3 F0003000 <==> $ NSIEXMGT0
0010E0 (00E0) : 01048B00 D5E2C9C9 D7D3C3D6 F000A800 <==> NSIIPLCO0 y
0010F0 (00F0) : 01053300 D5E2C9C9 D7D3C4D4 F000F800 <==> NSIIPLDM0 8
001100 (0100) : 01062B00 D5E2C9C9 D7D3C4E3 F0004000 <==> NSIIPLDT0
001110 (0110) : 01066B00 D5E2C9C9 D7D3C9C8 F0006400 <==> , NSIIPLIH0
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=s-0001 8=Dump 9=Dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.13 Tracing chains

If you have found the beginning of a longer chain in a dump window and want to trace that
chain, the best method of doing this is as follows:

– Keep the beginning of the chain in one dump window (e.g. W4) and assign two free
dump windows or windows which are no longer needed (e.g. W6 and W8) by means of
the statement

MODIFY-SCREEN-LAYOUT FIRST=6(SIZE=5), SECOND=8(SIZE=5), THIRD=4

– Mark the first chaining address in W4 with + [DUE] (the third window on the screen).
The marked address appears in window W6.

– Alternately mark the next chaining address in the two upper windows W6 and W8 until
the desired address is reached.

This method has the advantage that tracing can be restarted at any time from the previous
address or even the first address if you make a mistake.

If this safety precaution is not desired, or if only a certain memory segment in the chaining
sequence is needed for further processing, the following method can be used:

– Assign the entire screen to the window in which the first chaining address is displayed
(e.g. W4) by means of the statement

MODIFY-SCREEN-LAYOUT FIRST=4(SIZE=19)

– Mark the chaining address in this (single) window W4 until the desired memory segment
is found.

This method ensures that a window whose old contents are needed for further processing
is not inadvertently overwritten with the chaining addresses.

Another useful feature is the fact that any DSECT selected for a window remains stored.
Consequently, if various elements of the chain are displayed sequentially in the same
window, each area is immediately edited in the symbolic format of the selected DSECT.

Operation DAMP Dump analysis

108 U5663-J-Z125-11-76

5.3.2.14 Output of system trace tables (special window: TRACE)

The SHOW-EDITED-INFORMATION statement allows you to output the system trace table in
edited format in a specific window.

SHOW-EDITED-INFORMATION INFORMATION=*TRACE-TABLE-EDIT, WINDOW=<w>

Following the call, the trace table entries of all tasks contained in the diagnosis object are
displayed. The contents of the “Task select” input field can be changed to a <tid> or to ALL.
The number of a logical machine or the value ALL can be entered in the “LM” field.

Figure 40: Output format of the system trace table

Besides selecting a task, you can also modify the length of a window and page within a
window. See “Paging in a diagnostic window” on page 86 for more details.

The entries in “SEQ#” as well as all the fields that contain the addresses can be marked.
You mark the address of a system trace table entry with the sequence number. This is
useful if you want to look at an entire entry.

The CPU number and the logical machine number are shown in the GP and the LM column
of the trace list.

i By default, DAMP sorts the trace entries chronologically on the basis of the time
stamp, which is also recorded. If required, however, output can be specified for a
specific logical machine. This is done by entering a number in the LM field in the
header line. Note that it is not possible to select a task at the same time as a logical
machine and vice versa.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

SEQ# GP LM =ALL TID PS P_COUNTER IDENTIFIER (TID=ALL) W9,TRC,L19
 1 00 01 SI ETMSLMG +00058 CRSH NRTC516
 ?2 00 01 SI ETMSLMG +00058 PROG 58 Inv Opcd PCB=00000000 R13=00000000
 3 00 01 WT SYSTEM IDLE I/O 0000 00C3 CSW=00929008 CSW=0C000000
 4 00 01 00010002 TP*ETMBON1 +001D6 SVC FA $BOWT LOC=F1BE43B8 BRS=7125C8C0
? 5 00 01 0001000E TP DQPAM +01764 SVC D7 $XCPW PCB=71175918 R1=733C5028
? 6 00 01 00010008 TP*ETMBON1 +001D6 SVC FA $BOWT LOC=F1BEE230 BRS=7125C880
 7 00 01 0001000C TP*ETMBON1 +001D6 SVC FA $BOWT LOC=F12A86CE BRS=7125C740
 8 00 01 0001000C TP NBCCNTS +001F0 SVC D5 $EXCP PCB=71180720 R1=71FF9F00
 9 00 01 00010008 TP*ETMBON1 +001D6 SVC FA $BOWT LOC=F1BEE230 BRS=7125C880
? 10 00 01 000100C1 TP*ETMBON1 +001D6 SVC FA $BOWT LOC=FC688E82 BRS=73895B00
 11 00 01 000100C1 TP NEHMSTAT+0007E SVC EA $FNDT PCB=73286008 R1=70FFAA10
 12 00 01 00010075 TP*ETMBON3 +001EA SVC FA $BOWT LOC=FF512072 BRS=7125D440
? 13 00 01 00010075 TP EMMREQM1+004E0 SVC F6 $UNMASK LOC=F12188CC ATT=80EF0000
 14 00 01 00010075 TP DISTRIB +00F72 SVC EA $FNDT PCB=732861D8 R1=6EC83020

CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=TRAC 9=OPTS

DAMP Dump analysis Operation

U5663-J-Z125-11-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.15 Output of memory attributes (special window: MEMATTR)

Edited memory attributes are displayed by entering the following statement:

SHOW-EDITED-INFORMATION INFORMATION=*MEMORY-ATTRIBUTES, WINDOW=<w>

This special window is used to display the table containing the attributes of the allocated
virtual memory pages. It can also be used to have the memory class limits displayed.

Information can be output on a specific user address space or, if so desired, for the system
address space. The attributes can be shown in symbolic format or in the original output
format of the VAT (Virtual Attribute Table).

In order to enable these options, the title line of the window contains the two fields “ASN”
and “Output format”.
A TID or the string “SYSTEM” can be entered in the “ASN” field allowing you to specify the
address space.
The following abbreviations can be entered in the “Output format” field:
– “LIM” for the memory class limits
– “SYM” for symbolic representation
– “HEX” for hexadecimal representation of the first byte of the virtual attribute
– “HX2” for hexadecimal representation of the second byte of the virtual attribute

The output of the page attributes contains one line for every 16 pages, and this line, in turn,
contains a three-character entry for each page. Depending on the output format selected,
these entries contain either a symbolic representation of the attributes of this page (memory
class, partial page indicator, privilege indicator) or the original byte from the VAT in
hexadecimal format.

Ellipses (...) indicate that this page is not allocated. If the virtual attributes cannot be
accessed (normal for area dumps, but also possible for other dump types), (...) only
indicates that the page is not contained in the dump file.

A question mark and two dots (?..) indicate that the page is contained in the dump file but
that the virtual attributes cannot be accessed.

An asterisk (*) in the first column of a line indicates that the entries of the preceding page
have not changed since the last time an entry was output. The attributes for this page are
displayed in the extreme right of the preceding line.

Memory pool segments are indicated by the string “Pool” in the right margin.

The significance of the symbols for the SYM output or of the bits for the HEX and HX2
outputs is explained in the header line.

When displaying page attributes, a page number may be entered in the first line in the
“PAGE” field. The edited output then begins at the specified page.

Operation DAMP Dump analysis

110 U5663-J-Z125-11-76

Figure 41: Output of memory attributes

Figure 42: Output of memory class limits

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

The Symbols mean: <Class>,(P)artial-Pg,(N)onpriv-Pg ASN=SYSTEM W9,SYM,L19
 PAGE : 0 1 2 3 4 5 6 7 8 9 A B C D E F Remarks
 00C0X : ShrBase : 00C00000
 00C0X :
*00F8X : 4P- 4P- ... 4--
*00FFX : 4-- 4-- 4-- 4-- 4-- 4-- 4-- 4-- 4-- 4-- 4-- 4-- 4-- 4--
 7100X : Cl1Base : 71000000
 7100X : 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1-- 1--
*713FX : 1-- 1--
 713FX : Cl2Base : 713F2000
 713FX : 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2--
*71E0X : 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2-- 2--
 71E1X : Cl2Limit : 71E0FFFF
 71E1X :
*71E6X : ... 3-- 3-- 3-- 3P- 3P- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3--
*71ECX : 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3P- 3P- 3-- 3-- 3-- 3-- 3-- 3--
*71EEX : 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3P- 3P- 3-- 3--
*71FBX : 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P- 3P-
 71FCX : 3P- 3P- 3P- 3P- 3P- 3P- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3-- 3--
CMD:
Key: 1=Help 2=Plk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=Dump 9=MEMA

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

Class Limits for System / User Space : ASN=SYSTEM W9,LIM,L19
 PAGE Space Start End

 00C00 : Shared Code = 00C00000 - 00FFFFFF

 71000 : Class 1 = 71000000 - 713F1FFF

 713F2 : Class 2 = 713F2000 - 71E0FFFF

 71E10 : Class 3/4 = 71E10000 - 7FFFEFFF

DAMP Dump analysis Operation

U5663-J-Z125-11-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.16 Output of tables with task-specific values (special window: TABLE)

The TABLE function provides a clear overview of task-specific values for all tasks contained
in the diagnosis object.

Following the

SHOW-EDITED-INFORMATION INFORMATION=*TASK-TABLES, WINDOW=<w>

call, the requested dump window W4 - W9 or W21 - W99 is displayed as a TABLE window
in the first position of the current window size, but does not contain any output values in the
diagnosis area as yet.

Figure 43: Dump window after calling the TABLE function

The user can then enter, in the header line, a list of field names of the task-specific DSECTs
ETCB, ETCB, EJCB and EVUMT, separated by blanks. The following output then consists
of one line per task with the contents of these fields.

If task-specific data fields from other control blocks are to be shown, the path to the data
field required must be described unambiguously. Enter a sequence of field names in the
header line of the window in the following form:

field-name1 -> field-name2 -> field-name3 -> ... -> field-namex

The field name field-name1 must come from one of the DSECTs mentioned above, which
can be localized automatically, and must point to the beginning of the structure containing
field-name2. field-name2, in turn, points to the beginning of the structure containing
field-name3, and so on. The required field with the field name field-namex is at the end of
the list.

If one of the specified field names contains a value of 0 or if the address indicated has not
been allocated, DAMP stops resolving the sequence of field names.

If, for instance, you wish to identify tasks in which more than three files are open, the
following construction can be used:

ETCBTFT -> IDMFRLNK -> IDMFRLNK -> IDMFRLNK -> IDMFRLNK

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

 TID dsectfld, dsectfld->dsectfld ... W6,TBL,L19

Operation DAMP Dump analysis

112 U5663-J-Z125-11-76

Figure 44: Output of chaining sequences; specification in input line:
ETCBTSN(C) ETCBTFT->IDMFRLNK->IDMFRLNK->IDMFRLNK->IDMFRLNK
The TSN is also output in printable format

The output formats of the fields match their definitions in the DSECT; if desired, however,
the format can be modified by explicitly specifying a format character in parentheses after
the field name. The permitted format characters are:

C Display in character format

X Display in hexadecimal format

I Display as an integer

You can page through the output by entering [F3]/+, ++, [F1]/- , --, +n and -n; see “Paging
in a diagnostic window” on page 86 for further details.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

 TID ETCBTSN ETCBTFT->IDMFRLNK->IDMFRLNK->IDMFRLNK->IDMFRLNK W6,TBL,L19
000100DD FTCP 70F9A000->70F9A0A8->70F9A150->70F9A1F8->00000000
000100DE 0S91 70F44000->
000900DF XAE8 00000000->
000900E0 XAEY 00000000->
000900E1 XAE9 00000000->
000D00E2 0TTK 70F9A000->
000900E3 PR03 70F60000->00000000->
000100E4 PR1C 70F60000->00000000->
000D00E5 0TTB 70F9A000->70F9A0A8->70F9A150->70F9A1F8->70F9A2A0
000100E6 XAD7 00000000->
000D00E7 0TTQ 70F9A000->70F9A0A8->70F9A150->70F9A1F8->70F9A2A0
000400E8 0TR6 00000000->
000E00E9 0TTT 70F9A000->
000A00EA 0TRM 00000000->
000200EB 0TVE 70F9A000->70F9A0A8->70F9A150->70F9A1F8->70F9A2A0
000200EC 0TVF 70F9A000->70F9A0A8->70F9A150->70F9A1F8->70F9A2A0
000900ED 0TRT 00000000->
000200EE 0TT8 70F9A000->70F9A0A8->70F9A150->70F9A1F8->70F9A2A0
CMD:
Key: 1=Help 2=Plk 3=PCB 4=ETCB 5=ESTK 6=Dump 7=Dump 8=TABL 9=Dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.17 Output of information on subsystems (special window: SUSY)

The SUSY function enables the DAMP user to display information on

– the BS2000 nucleus (Control Program, CP)
– all subsystems that were loaded with DSSM
– all loaded user program contexts

The Control Program and the user program contexts are assigned pseudo subsystem
names by DAMP. The Control Program receives the subsystem name 'CP', and all user
contexts are given the subsystem name 'USERPROG'. If there are several loaded user
contexts in a task, the uniqueness of the subsystem name is ensured by DAMP by means
of an internally assigned 'USERPROG' version number CTXNRxxx (where 'xxx' is a
sequential number starting with 001, 002, ...).

User dumps contain information on the following subsystems:
– all loaded user contexts
– all nonprivileged subsystems connected to the task

This information is usually missing in area dumps.

In the case of system dumps, SLEDs, SNAPs and the active system, details on the
following subsystems are displayed:
– Control Program
– all loaded privileged and nonprivileged subsystems.

SUSY is called as follows:

SHOW-EDITED-INFORMATION INFORMATION=*SUBSYSTEM-INFORMATION, WINDOW=<w>

For information on the layout of the generated window and an explanation of the fields, see
page 116.

You can page within the SUSY window with [F3]/+, ++, [F1]/ -, --, +n and -n; see “Paging in
a diagnostic window” on page 86 for further details.

i ENTRY names are not supported in the SUSY window.

Operation DAMP Dump analysis

114 U5663-J-Z125-11-76

The header lines of the SUSY window

The header lines of the SUSY window contains several input fields in which the
subsystems, holder tasks or CSECTs to be output can be entered.

Figure 45: Header lines of the SUSY window

Possible entries in the header lines of the SUSY window

It is possible to combine new entries in the various fields with previous entries, i.e. entries
made in the input fields earlier which are still being displayed retain their validity and new
entries can be made.

– Subsystem field

If no entry is made in any other field, a list of the CSECTs of this subsystem is displayed.
Entering *USER is equivalent to entering USERPROG.
If, however, a CSECT name or an address is also entered, the system only searches
the specified subsystem.
If Subsystem=*ALL and, for example, a CSECT name is entered, all the subsystems
are searched for this CSECT.
If only Subsystem=*ALL is specified, the system switches to the subsystem list. Any
entry made in the “Holder-Task” field is taken into account to only a limited extent.
If you mark a subsystem name in one of the output lines, the corresponding CSECT list
is displayed.

The context names are output in the overview window as an alternative to the other
information on the subsystems. To do this, you must either mark a subsystem version
or enter “CTX” in the mode field.

– Version field

The version of the desired subsystem can be entered in this field.

– Holder-Task field

If a TID is entered in the field “Holder-Task”, the list of subsystems is abbreviated to
those whose holder task matches the specified TID. The same effect can be achieved
by marking the TID under “Holder” in one of the output lines.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

Subsystem: *ALL Version : Holder-Task: *ALL W8,SSA,L19
Address : Csect-Name:
Subsystem / Vers Holder Mem SubS-Type META FirstAd.

Mode

DAMP Dump analysis Operation

U5663-J-Z125-11-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

At the same time, the system attempts to change the active task (the task with the
specified TID is activated if necessary). One side-effect of this can be that a user
program is added to or disappears from the end of the subsystem list.
The original overview can be redisplayed by entering *ALL in this field or SSA in the
“Mode” field.

– Csect-Name field

If a CSECT name is entered in the field, the output format changes and a list of all
subsystems in which this CSECT occurs is displayed.
You can restore the subsystem list by entering *ALL in the “Subsystem” field.

This function is also permitted for modules of the CP (Control Program) in order, for
example, to display their identification field (ETPND).

– Address field

An address which is to be localized, i.e. converted into a module and a displacement,
can be entered in the field “Addr”. The resulting output is in the format of the CSECT list
and contains all modules within which this address could lie.

– Mode field

This field is a combined input/output field and has the following meaning:

The current task (in the SLED or SNAP) is the last task selected by the person
performing the diagnosis (by marking an item in window W2 or by explicitly
entering a TID or TSN etc.).

SSA A list of all subsystems is displayed.

SSC Only the subsystems connected with the current task are displayed.

SSH A list of all subsystems whose holder task matches the specified TID is
displayed (only as an output field).

CTX The context name is output for all subsystems.

INF CTX is reversed.

CS2 The layout of the CSECT list is switched. Instead of the ETPDN, the
P mode and the HSI byte is output for each CSECT. This mode is only
supported for diagnostic objects of servers with x86 architecture.

CS1 or CSE CS2 is reversed.

EDT The data corresponding to the settings of the SUSY window is output in
its entire length to the current EDT area.

LST The entire subsystem and CSECT information of the object is output to
the current EDT area.

Operation DAMP Dump analysis

116 U5663-J-Z125-11-76

Layout of the subsystem list

Figure 46: Subsystems overview

The individual columns of the subsystem list shown in figure 46 have the following
meanings:

– The column Subsystem
Name of the subsystem.
If a field in this column is marked, output switches to the CSECT list format for this
subsystem.

– The column Vers
Version number of the subsystem.
If a field in this column is marked, a switch occurs to output of the context name for the
marked subsystem.

– The column Holder
TID of the holder task (if it exists).
If a field in this column is marked, an abbreviated subsystem list with all subsystems
“held” by this task is displayed.

– The column Mem
Memory area in which the subsystem was loaded. The value “SYS” for system memory
or “USR” for user memory is displayed.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

Subsystem: *ALL Version : Holder-Task: *ALL W8,SSA,L19
Address : Csect-Name:
Subsystem / Vers Holder Mem SubS-Type META FirstAd.
CP / 19.0 00000000 SYS Nuc 71000000
AID / 03.4 0001001D SYS Priv 7CFDF000 7CC00000
AIDSYS / 19.0 0001001D SYS Priv 7D45D000 7D3F5000
AIDSYSA / 19.0 0001001D SYS Priv 7EF1A000 73199000
ANITA / 19.0 0001001D SYS Priv 7C7FA000 7D0A7000
ASE / 01.0 0001001D SYS Priv 7D5EC000 7D508000
ASTI / 02.0 0001001D SYS Priv 7E5CA000 7E92C000
BCAM / 21.0 0001001D SYS Priv 7F436000 72BE8000
BLSSERV / 02.8 0001001D SYS Priv 7F50D000 7F533000
BLSSYS / 02.8 0001001D SYS Priv 7FACB000 7FABC000
CALENDAR / 19.0 0001001D SYS Priv 7FAE8000 7F82B000
CAPRI / 02.0 0001001D SYS Priv 7E1A8000 7DA3C000
CCOPY / 08.0 0001001D SYS Priv 7D7FE000 7D995000
CMX-TP / 01.4 0001001D SYS Priv 7E1A2000 7D985000
CPR / 19.0 0001001D SYS Priv 7E1E1000 7D96C000
CRYPT / 01.3 0001001D SYS Priv 7E5C0000 732AF000
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=SUSY 9=Dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

– The column SubS-Type
Subsystem type.
This column can contain the values Nuc, Priv, NPriv, TU, Usr-Ctx, Pool-Ctx, TaskLoc,
and undefined.

– The column META
Address of the ANITA metadata.
If a field in this column is marked and one of the keys [P4] to [P9] is pressed, the ANITA
metadata for this subsystem is displayed in the desired window. This area contains a
list of load information that was generated for the subsystem.
This field is empty for the subsystem CP.
There is likewise no display for subsystems loaded before DSSM.

– The column First Ad.
Start address of the subsystem.
This field contains the lowest address of the found CSECTs of the subsystem. If no load
information for the subsystem is available, the start address is not supplied.

Operation DAMP Dump analysis

118 U5663-J-Z125-11-76

Layout of the CSECT list

Figure 47: List of CSECTs of the subsystem AIDSYSA

The columns of the CSECT list shown in figure 47 have the following contents:

– The Subsystem column
shows the name of the subsystem only if CSECTs which belong to several subsystems
are displayed. Otherwise, this field is empty, and the subsystem name displayed in the
title line applies.

– The Address column
contains the address of the CSECT or an address within the CSECT. The former is the
case only if the list was generated by entering an address in “Address” field. This field
can be marked. If, for example, one of the keys [P4] to [P9] is then pressed, the
selected window is positioned to the marked address.

– The Module and Reladd columns
show the address from the “Address” column after conversion to module-relative form.

– The Length column
contains the module length.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

Subsystem: AIDSYSA Version : 19.0 Holder-Task: 0001001D W8,CSE,L19
Address : Csect-Name:
Subsystem/Version Address = Module + Reladd Length ETPND-Info
 73199000 = ASASHS + 0 00001E00 ASASHS 897A 20080730
 7EEF0000 = ASAIDENT + 0 00000600 ASAIDENT 866A 20080730
 7EEF0600 = ASYTPRV + 0 00000EC0 ASYTPRV 810A 20080730
 7EEF14C0 = ASAFNAT + 0 00000980 ASAFNAT 890A 20080730
 7EEF1E40 = ASACMD + 0 00000980 ASACMD 8901 20080730
 7EEF27C0 = ASACMD@@ + 0 00001B40 ASACMD@@ 8901 20080730
 7EEF4300 = ASASSD + 0 00000080 ASASSD 8901 20080730
 7EEF4380 = ASAENAT + 0 00000240 ASAENAT 8991 20080730
 7EEF45C0 = ASAENAT@ + 0 000017C0 ASAENAT@ 8991 20080730
 7EEF5D80 = ASAEVT + 0 000002C0 ASAEVT 8911 20080730
 7EEF6040 = ASAEVT@@ + 0 00002A00 ASAEVT@@ 8911 20080730
 7EEF8A40 = ASAUTIL + 0 00000900 ASAUTIL 8971 20080730
 7EEF9340 = ASAUTIL@ + 0 00001900 ASAUTIL@ 8971 20080730
 7EEFAC40 = ASASHC + 0 00000900 ASASHC 8971 20080730
 7EEFB540 = ASASHC@@ + 0 0000AE80 ASASHC@@ 8971 20080730
 7EF063C0 = ASASH2 + 0 00000880 ASASH2 8971 20080730
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=SUSY 9=Dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

– The ETPND-Info column
contains the ETPND information with the module name, version number and the
compilation date.

In the case of prelinked modules, the module length may be zero. In system, user or
area dumps, the ETPND information may be missing if the associated virtual page is
not contained in the diagnosis object, since the dump generator only stores the refer-
enced code pages.

In the standard window, CSECTs of all subsystems can be specified when localizing
memory segments. Even the automatic relocation of address fields considers the
CSECTs of all subsystems. This means that SUSY is no longer required for localizing
CSECTs. However, this applies only if the CSECT names in the scope covered by all
the subsystems are unique. If this condition is not met (e.g. in the NKVT and NKVD
subsystems or if different versions of the same subsystem coexist), this procedure
always displays the first matched name. Targeted localization is then only possible
using SUSY or the SEARCH-IN-SUBSYSTEM statement (see page 208).

– The PMODE/HSI column
contains, for diagnosis objects of servers with x86 architecture, information on the
processor mode in which the code is executed and on the type of code generation. This
output occurs in the CS2 mode.

The different possible types of output have the following meanings:

You can use the keys and entries normally used for paging in the SUSY overview window.
The paging functions +/[F3], ++, - / [F1], --, +n, -n are supported.

i There are some class 5 subsystems which occupy different address space strips in
the holder task and in the connected user tasks. The information used by DAMP for
localization contains the addresses which are valid in a user task. However, the
expected modules will not be found at this location in the holder task.

PMODE Meaning

CISC emulation in /390 mode

X86 native on a server with x86 architecture

HSI Meaning

R mixed binary_no

U mixed binary_yes

00 BLS information is not available or is obsolete.
This value is generally displayed in the case of CISC coding.

Operation DAMP Dump analysis

120 U5663-J-Z125-11-76

5.3.2.18 Information on system files and sections of the dump file (special window: FILE)

The FILE function is used for the overview, display, output of lists and generation of system
files contained (stored) in dump files.

You also get an overview of all sections of the dump file that are not empty. All system files
are stored as sections in the dump file.

If you enter
SHOW-EDITED-INFORMATION INFORMATION=*DUMPED-SYSTEM-FILE, WINDOW=<w>
the required dump window W4 - W9 or W21 - W99 is output as the uppermost window in
the current window size in the form of an overview screen and select screen in INF mode.
All sections contained in the dump file are displayed on this screen. You can page using the
usual scroll commands.

Figure 48: Layout of the generated overview and selection screen

The following entries are possible in the mode field:

ALL Switch to a detailed overview. It contains an edited form of the saved catalog entries
of the system files contained in the overview.

LST Output of the detailed overview in accordance with *SYSLST.

INF Revert to the compact overview mode and select mode, if the ALL mode was
previously set.

The edit modes available for this section and a brief description of the section are output
directly beside the section name. The relevant section is selected and edited by marking an
edit mode.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

Section Available Modi * Overview and Selection Screen * W8,INF,L19
 Mark mode of wanted section to select - or enter right above
 "LST" to list this overview, "ALL" for more, "INF" for compact info.
SLEDLOG DSP EDT LST GEN
 Loggingfile of dump generator
CONSLOG DSP EDT LST GEN
 Dumped Systemfile $SYSAUDIT.SYS.CONSLOG.08.06.09.075.001
EQUISAMQ GEN
 Dumped Systemfile $TSOS.EQUISAMQ
HELFILE GEN
 Dumped Systemfile $TSOS.SYS.HEL.2008-05-29.065621
MSCFTRAC GEN
 Dumped Systemfile $TSOS.SYS.MSCF-TRACE.2008-06-09.166.075.001
REPLOG DSP EDT LST GEN
 Dumped Systemfile $SYSAUDIT.SYS.REPLOG.2008-06-09.075.01
SERSLOG GEN
 Dumped Systemfile $TSOS.SYS.SERSLOG.2007-06-09.075.01
SJMSFILE GEN
 Dumped Systemfile $TSOS.SJMSFILE.WORK
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=FILE 9=OPTS

DAMP Dump analysis Operation

U5663-J-Z125-11-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The following editing modes can be selected:

DSP Display the contents of the section in the diagnostic window.

LST Output the contents of the section in accordance with *SYSLST.

EDT Call EDT and read the contents of the section into an EDT area.

GEN Generate a file from the stored system file.

i Note on the generation of system files

DAMP does not perform automatic conversion of the file formats.
For example, for a file with PAMKEYs, a disk that supports this format must be
accessible. This information does not apply to the generation of REPLOG,
CONSLOG or SLEDLOG.
Using ADD-FILE-LINK and the section name as a link name, data media, names,
etc. can be agreed for the generation. If no link name exists, DAMP generates the
file under the caller’s user ID with a name automatically specified by DAMP.

If a mode was marked for a section, and DSP is also available for this mode, the layout of
the window changes to the “Layout for a selected section” after the requested processing
has been executed (e.g. on returning from EDT). The following input options are available
in the title line of this “Layout for a selected section”:

Possible entries in the title line for a selected section

Figure 49: Input options in the title line of the FILE window with a selected section

– FILE/SECTION field
Here the name of a system file or a dump section can be specified (see above).

– Line field
Here the number of the first line to be displayed can be specified.

– Column field
Here the number of the first column to be displayed can be specified.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

FILE/SECTION : CONSLOG LINE : 1 COL : 0 W8,Dsp,L19

File Section Line Column Mode

Operation DAMP Dump analysis

122 U5663-J-Z125-11-76

– Mode field
The following six modes exist:

Figure 50: Layout of the FILE window after selection of system file REPLOG as of line 140

Dsp
Edt
Gen
Lst
Inf
All

Display information in window (default)
Call EDT and transfer information to the current EDT work area
Generate as BS2000 file
Output information to SYSLST
Revert to the overview and selection screen (INF mode)
Revert to the ALL mode of the overview and selection screen

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

FILE/SECTION : REPLOG LINE : 140 COL : 0 W8,Dsp,L19
 REP 001F4 103 X'92A106B2A2E1001826F6000892F80016' 0000 FA0434308692 2#1DPSIMPO
 REP 00204 103 X'37180001A2F800162659018003200008' 0000 0A0434308692 2#1DPSIMPO
 REP 00214 103 X'00000000' 0000 FA0434308692 2#1DPSIMPO
 REP 004FC 112 X'24090006000E682591B800003404007A' 26AD FA0434354251 2#1NASDSPP@
 REP 0050C 112 X'130400150000000091B800003404004B' 25A4 BA0434354251 2#1NASDSPP@
 REP 0051C 112 X'130400110000000025AD00012529FFFF' 0320 EA0434354251 2#1NASDSPP@
 REP 0052C 112 X'1520FFF500000000012948261000000A' 2405 3A0434354251 2#1NASDSPP@
 REP 0053C 112 X'00000000' 25A6 3A0434354251 2#1NASDSPP@
 REP 0458C 114 X'1000' 1704 EA0434434307 2#1NSPSERV@
 REP 02DC8 142 X'92D80014330400081080003700000000' 92D8 DA0434520058 2#1DOCPFA@@
 REP 02DD8 142 X'92D80010340400011704000300000000' 92D8 0A0434520058 2#1DOCPFA@@
 REP 02DE8 142 X'1000000C00000000' 1000 3A0434520058 2#1DOCPFA@@
 REP 02E28 142 X'8EB700801000001E00000000' 2405 DA0434520058 2#1DOCPFA@@
 REP 0303C 142 X'8EB7016C16E0010F00000000' 8EB7 2A0434520058 2#1DOCPFA@@
 REP 03480 142 X'8EB700801000FF0800000000' 0000 EA0434520058 2#1DOCPFA@@
 REP 07B2C 119 X'267901100320000800000000' 8EF6 AA0434806307 2#1DPSCMGR@
 REP 001B0 119 X'8EF6000412C000040000000026590F00' 0000 3A0434806307 2#1DPSCMGR
 REP 001C0 119 X'03200008000000008E570FE002E0B009' 0000 DA0434806307 2#1DPSCMGR
CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=FILE 9=OPTS

DAMP Dump analysis Operation

U5663-J-Z125-11-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.19 Information on AUDIT tables (special window: AUDIT)

The AUDIT function is used to display the AUDIT tables in a SLED or system dump
(hardware and linkage AUDIT).

If you enter
SHOW-EDITED-INFORMATION INFORMATION=*AUDIT-TABLE-EDIT, WINDOW=<W>
the required dump window W4 - W9 or W21 - W99 is the first window displayed in the
current window length. If the dump contains AUDIT tables, one of them is selected and
displayed. The title line of the window contains several input fields, by means of which the
various AUDIT table types and areas and the required task can be selected.

In addition to the hardware AUDIT, there is also the linkage AUDIT in processor-local (SIH
or SIH+TPR) and task-local (TPR and TU) forms. The AUDIT tables are selected by DAMP
after the command SHOW-EDITED-INFORMATION INFORMATION=AUDIT-TABLE-EDIT in the
sequence “task-local hardware AUDIT (TPR) -> task-local hardware AUDIT (TU) -> task-
local linkage AUDIT (TPR) -> task-local linkage AUDIT (TU) -> processor-local linkage
AUDIT. The first table found is displayed.

Hardware audit will only be supported on S servers.

Possible entries in the title line

Figure 51: Entries in the title line of the AUDIT window

– State field
Here the program status of the required AUDIT tables can be specified:

– LM field
Indicates the hexadecimal number of the LM (only for “Kind = PLA”)

– TID field
Indicates the task identifier (only for “Kind = LKA” or “Kind = HWA”)

– TSN field
Indicates the task sequence number (only for “Kind = LKA” or “Kind = HWA”)

SIH
TPR
TU

System interrupt handling (only for “Kind = PLA”)
Task privileged (only for “Kind = LKA” or “Kind = HWA”)
Task unprivileged (only for “Kind = LKA” or “Kind = HWA”)

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

SIH (Processor Local)-AUDIT (SIH) LM = 1 TID=0002007D TSN=0BFG W8,PLA,L19

State LM TSN KindTID

Operation DAMP Dump analysis

124 U5663-J-Z125-11-76

– Kind field
AUDIT table type:

The paging functions+/[F3], ++, - / [F1], +n, -n are supported for AUDIT table output. See
“Paging in a diagnostic window” on page 86 for further details.

All addresses can be marked. The addresses are shown in virtual format and where
possible edited symbolically (module name + offset).

When the processor-local linkage AUDIT is displayed, the input fields “TID” and “TSN” are
not evaluated.

If an AUDIT table is output, the second line shows the addresses of the AUDIT
management area (“EXVTLAUD”) and the relevant AUDIT trace table (“AuditTable”). The
“AuditTable” field is marked “(current)” if the displayed AUDIT was active at the time of the
dump. If the displayed AUDIT was placed in the DISCONTINUE state by the HOLD-
LINKAGE-AUDIT or HOLD-HARDWARE-AUDIT command before the dump, “(obsolete)”
is added to the “AuditTable” field.

Layout of an AUDIT window

Figure 52: Information on AUDIT tables

PLA
LKA
HWA

Processor-local linkage AUDIT
Task-local linkage AUDIT
Hardware AUDIT

DAMP <version> SYSDUMP(19.0) from BS2000(19.0) <date> <time>

SIH (Processor Local)-AUDIT (SIH) LM = 1 TID=0002007D TSN=0BFG W8,PLA,L19
EXVTLAUD=72408C40 AuditTable (current)=7241E000 ">" indicates LAST branch
> F10053A0 NLCNLMAN+003A0 | F10450E0 EMMPGSRV+00860 | F1064AC0 ETMPI$X +00000
 F1062648 EMMPLATO+00288 | F1064DE8 ETMPI$X +00328 | F1064AC0 ETMPI$X +00000
 F1062648 EMMPLATO+00288 | F106084C ETMTIM$X+002CC | F1062648 EMMPLATO+00288
 F1006E30 NLCNLMAN+01E30 | F1006CAC NLCNLMAN+01CAC | F1064F72 ETMPI$X +004B2
 F1056158 ETMPSUBR+01298 | F1006E30 NLCNLMAN+01E30 | F1055C40 ETMPSUBR+00D80
 F10559B8 ETMPSUBR+00AF8 | F1055660 ETMPSUBR+007A0 | F1060EA0 ETMTIM$X+00920
 F1056028 ETMPSUBR+01168 | F1056080 ETMPSUBR+011C0 | F1006CAC NLCNLMAN+01CAC
 F1055790 ETMPSUBR+008D0 | F1063C58 ETMPSHEL+00258 | F1031186 NDISERV +02546
 F10058F0 NLCNLMAN+008F0 | F10053A0 NLCNLMAN+003A0 | F10450E0 EMMPGSRV+00860
 F1045000 EMMPGSRV+00780 | F1025320 EMMPGFIX+022A0 | F10450E0 EMMPGSRV+00860
 F1045000 EMMPGSRV+00780 | F1025320 EMMPGFIX+022A0 | F10450E0 EMMPGSRV+00860
 F1045000 EMMPGSRV+00780 | F1025320 EMMPGFIX+022A0 | F10450E0 EMMPGSRV+00860
 F1045000 EMMPGSRV+00780 | F1025320 EMMPGFIX+022A0 | F10450E0 EMMPGSRV+00860
 F1045000 EMMPGSRV+00780 | F1025320 EMMPGFIX+022A0 | F10450E0 EMMPGSRV+00860
 F1045000 EMMPGSRV+00780 | F1025320 EMMPGFIX+022A0 | F10450E0 EMMPGSRV+00860
 F1045000 EMMPGSRV+00780 | F1025320 EMMPGFIX+022A0 | F10450E0 EMMPGSRV+00860
 F1045000 EMMPGSRV+00780 | F1025320 EMMPGFIX+022A0 | F100521C NLCNLMAN+0021C
CMD:
Key: 1=Help 2=Plk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=AUDI 9=Dump

DAMP Dump analysis Operation

U5663-J-Z125-11-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.2.20 String search (special window: FIND)

The FIND function can be used to search for strings in the entire area of the diagnosis
object. The area to be searched can be defined by specifying a memory interval, load units
or memory class.
DAMP supports searching with one or two search patterns. If the search involves two
patterns, the displacement (offset) from the start of the first pattern to the start of the second
patterns must be specified.

The user can specify a special memory alignment with respect to the first search pattern.
For both search patterns, DAMP supports the use of various string formats (hexadecimal,
character, string and text) and variable wildcard symbols. The search can be restricted by
specifying the maximum number of hits.

In order to execute the FIND function, the diagnosis object must be open. The call to search
for strings is issued with the statement:

START-PATTERN-SEARCH WINDOW=<w>

Following the call, the FIND selection window initially appears. This selection window is
used to define the search area and the search patterns. You can search within any address
space supported by DAMP by making a corresponding entry in the “ASEL” and “ASID”
fields (see also page 78):
– in the virtual address space (ASEL = TSN | TID)
– in the data space (ASEL = ALT | SPI)
– in the real address space (ASEL = RM)
– in the absolute address space (ASEL = ABS)
– in the Processor Saved Status (ASEL = PSS)
– in the Hardware System Area (ASEL = HSA)
– in a dumpfile section (ASEL = SCT).

The FIND window is based on the following input principles:
– All entered data is retained on executing the FIND function and serves as the

default for the next function to be executed. You can thus always expand on
the earlier specification.

– All input fields are interpreted on executing the function exactly a they appear on the
screen.

– Before executing the function, only one input field needs to be modified. The only
exception is a new FIND window, where at least the search area and the first search
pattern must be defined.

– Only blanks may be used to reset inputs to “not specified”. NULL characters (X'00') may
not be used for this purpose (except in the case of the two search patterns).

Operation DAMP Dump analysis

126 U5663-J-Z125-11-76

Figure 53: Selection mask for searching in the virtual address space

Figure 54: Selection mask for searching within other address spaces (example using ASEL=ALT)

By default the output is directed to the screen, to the same diagnostic window as the input.
The user can also specify a file, *SYSLST or *EDT, as the output medium (Output Area). In
addition, the user can also only have the number of hits found output and suppress the hit
list (“Count only=Y”).

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

FIND - Command TID=00010001 W9,D ,L19
 Interval : Start = End =
or Load Unit : Scope = ALL CLASS4 PRIV NONPRIV USER
 Subsystem = Version =
 Module =
or Memory Class : ALL Cl1 Cl2 Cl3-PP Cl4-PP Cl5-PP Cl6-FP
 Cl3-FP Cl4-FP Cl5-FP Cl6-MP
 Cl4-NP Cl5-MP

 Wildcard Symbol = * Alignment (B/H/W/D/P) = H
 Number of Hits = 18 Count only (Y/N) = N
Output Area: *SYSOUT

1.Search Strg C:
Offset :
2.Search Strg C:

Cancel possible with K2 + /INFORM-PROGRAM MSG='CANCEL' (/INTR CANCEL).

CMD:
Key: 1=Help 2=Plk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=Dump 9=FIND

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

FIND - Command ALT=00000000-00010017 W9,D ,L19
 Interval : Start = End =

 Wildcard Symbol = * Alignment (B/H/W/D/P) = H
 Number of Hits = 18 Count only (Y/N) = N
Output Area: *SYSOUT

1.Search Strg C:
Offset :
2.Search Strg C:

Cancel possible with K2 + /INFORM-PROGRAM MSG='CANCEL' (/INTR CANCEL).

CMD:
Key: 1=Help 2=Plk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=Dump 9=FIND

DAMP Dump analysis Operation

U5663-J-Z125-11-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Specifying the search area

When selecting the search area in the virtual address space, you can specify a memory
interval (Interval), one or more load units (Load Unit), or one or more memory classes
(Memory Class). All three specifications for the search area are mutually exclusive
(disjunct), i.e. only one specification can be valid at a given time, and no combinations are
supported.
Only an Interval can be specified in the other address spaces.

The selection of the currently valid search area occurs in DAMP as follows:
– If precisely one search area is specified - either explicitly or as a default setting from the

previous FIND call - that search area is selected.
– If two search areas have been specified, of which only one was specified explicitly, the

explicitly specified search area applies.
– If multiple search areas are explicitly specified, the call to the function is rejected with

the output of a message.

A search area is considered explicitly specified whenever any changes are not exclusively
restricted to overwriting fields with blanks.
After a search area has been selected, all values of the other search areas are implicitly
reset by DAMP and do not need to be explicitly reset.

For the virtual address space (ASEL=TSN | TID), the function supports searching in a
selected address space (ASID=<tsn>|<tid>) as well as all address spaces (ASID=*ALL)
contained in the object. With ASID=<tsn>|<tid>, you can enter search areas from the user
and system memory; with ASID=*ALL, only the areas that are fully located in the user
address space are allowed.

– Interval search area

The search area is defined fully only when both the Start and End addresses have been
specified. There are no default settings.

– Load Unit search area
This search area specifies the modules of BLS or DSSM load units.

The delineation of the search area occurs hierarchically in the following levels:

Scope → Subsystem → Version → Module.

If “Load Unit” is set as the search area, it is not necessary to specify all the available
fields. An implicit assumption is made for each of the omitted fields.

 Start field Specifies the start address of the search area

 End field Specifies the end address of the search area

Operation DAMP Dump analysis

128 U5663-J-Z125-11-76

Scope selection bar Specifies one or more BLS or DSSM load areas
ALL All modules (from the CP, all subsystems and the

user program)
CLASS4 All modules from the system address space,

except CP
PRIV All modules from CP and the privileged

subsystems
NONPRIV All modules from the nonprivileged subsystems

and the user program
USER All modules from the user program

If “Load Unit” is set as the search area and “Scope” is not
specified, “Scope=ALL” is implicitly assumed.
For “NONPRIV” and “USER”, the result of the search
depends on whether the set task is connected to the
subsystems or whether the task has loaded a program.

Subsystem field Specifies one or more subsystems
Subsystem names can be entered with a length of up
to 8 characters. The use of wildcards to specify multiple
subsystems is supported: the “*” symbol matches any
number of characters in the name, and “/” matches exactly
one character.
If “Load Unit” is set as the search area and “Subsystem”
is not specified, “Subsystem=*” (i.e. all subsystems from
the specified “Scope”) is assumed.

Version field Specifies one or more subsystem versions
Versions can be specified with a length of up to 8 characters.
The use of wildcards to specify multiple versions is
supported (as explained under the “Subsystem” field).
If “Load Unit” is set as the search area and “Version” is
not specified, “Version=*” (i.e. all versions of the specified
subsystems) is assumed.

Module field Specifies one or more modules
Module names can be entered with a length of up to
32 characters. The use of wildcards to specify multiple
modules is supported (as in the “Subsystem” field).
If “Load Unit” is set as the search area and “Module” is
not specified, “Module=*” (i.e. all modules of the specified
subsystems) is assumed.

DAMP Dump analysis Operation

U5663-J-Z125-11-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

– Memory Class search area

This search area specifies one or more memory classes as the search area(s). The
memory classes are selected by marking, and all possible combinations are allowed.
The selection of memory classes from the user address space always applies only to
the currently set task.

The following memory classes and subclasses are supported:

Field Selected area

ALL

CL1
CL2
CL3PP
CL3FP
CL4PP
CL4FP
CL4NP

CL5PP
CL5FP
CL5MP
CL6FP
CL6MP

Class-1-Memory
Class-2-Memory
Class-3-Partial-Pages
Class-3-Full-Pages
Class-4-Partial-Pages
Class-4-Full-Pages
Class-4-Nonpriv-Pages

Class-5-Partial-Pages
Class-5-Full-Pages
Class-5-Memory-Pool
Class-6-Full-Pages
Class-6-Memory-Pool

All memory classes

Resident system modules
Pageable system modules
Resident partial pages
Resident full pages
Pageable partial page
Pageable full pages
Nonprivileged class 4 pages

Privileged partial pages
Privileged full pages
Class 5 memory pool
Nonprivileged full pages
Class 6 memory pool

System
address
space

User-
address
space

Table 7: Memory classes (selected by marking)

Operation DAMP Dump analysis

130 U5663-J-Z125-11-76

Specifying the search patterns

You can specify one or two search patterns. If you are specifying two search patterns, you
will need to specify the offset between the start of the first search pattern and the start of
the second pattern. Search patterns are specified via the 1.Search Strg, Offset and
2.Search Strg fields.

The Alignment field can be used to specify a memory alignment with respect to the first
search pattern. In addition, you can also change the Wildcard Symbol field.

– 1.Search Strg field
Specifies the first search pattern. This search pattern must always be specified. You
can enter up to 64 characters, which are preceded by on byte to indicate the format
type.

The following formats are supported:

The default setting is the “C” format.

The use of wildcards in the search pattern is supported. The wildcard symbol
corresponds to the character defined in the “Wildcard Symbol” field. It can be used at
any position in the search pattern and matches exactly one character at that position.

– Offset field
Specifies the offset between the start of the “1.Search Strg” and the start of the
“2.Search Strg”. The “Offset” is specified as a hexadecimal value. In order to set
the offset to “not specified”, the input field must be overwritten with blanks.

– 2.Search Strg field
Specifies the second search pattern. The “2.Search Strg” field is defined like the
“1.Search Strg” field and is only taken into account in the search if an “Offset”
has been specified.

– Wildcard Symbol field
Specifies a character to be used as a wildcard symbol in the first and second search
patterns (i.e. the “1.Search Strg” and “2.Search Strg” fields). The wildcard symbol is set
to “*” by default, but may be modified by the user. All characters except digits, letters
and blanks are allowed.

X
C

S
T

Hexadecimal format
Character format

String format
Text format

The allowed characters are 0..9 and A..F
Conversion of lowercase to uppercase in the search
pattern, followed by a match
No conversion
Conversion of uppercase to lowercase, both for the
search pattern and for the search area contents,
followed by a match

DAMP Dump analysis Operation

U5663-J-Z125-11-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

– Alignment field
Specifies a memory alignment, with respect to the first pattern (“1.Search Strg”).

The following alignment types are supported:

B Byte boundary
H Half-word boundary
W Word boundary
D Double-word boundary
P Page boundary
The default setting is the “H” format.

A page boundary (“P”) generally means that the search is aligned on a 4 KB boundary.
The only exception is when searching in objects that were opened as PAM files, in
which case the alignment is on a 2 KB boundary.

Specifying the output for the FIND function

The output medium is defined using the “Output Area” field. By default the output is directed
to the screen, to the same diagnostic window as the input. The maximum number of hits for
the search is set in the “Number of Hits” field, and “Count Only” defines whether the hit list
should be output or just the number of hits. The format of the output can be selected using
the “Mode field” in the header line.

– Output Area field
Specifies the output medium.

The following output media are supported:

*SYSOUT Screen, same dialog window as for the input
<filename> File
*SYSLST Temporary file *SYSLST
*EDT EDT window which was used last or EDT window 0
The default setting is *SYSOUT.

– Number of Hits field
Specifies the maximum number of hits after which the search is to be interrupted and
the found hits displayed. The ’Number of Hits‘ is entered as a decimal value. The
maximum number of hits displayed is, however, also restricted by the size of the output
window.

– Count only field
Specifies whether the hit list is to be output or only the number of hits.

The following specifications are supported:

N Hit list
Y Only number of hits
The default setting is Count only=N, i.e. the hit list is output.

Operation DAMP Dump analysis

132 U5663-J-Z125-11-76

– Mode field in the header line

The following output formats are supported:

D(MP) Normal dump format
C(HR) Character format
H(EX) Hexadecimal format
The default setting is the D(MP) format:

The output format can be entered in the selection and output windows.

Output window of the FIND function

After starting the FIND function with Output Area = *SYSOUT (default setting), the hits are
shown in the same diagnosis window. If one search pattern was specified, one line is output
for each hit; if two search patterns were specified, each hit is displayed in two lines, where
the second line is always preceded by the “Offset” in the output.

Figure 55: FIND output window (when searching with two patterns)

The search is interrupted when the window is completely filled with hits in accordance with
the current window length or when the maximum number of hits set in the “Number of Hits”
field is reached. It can then be resumed with +/[F3] or aborted with - /[F1] .

Furthermore, you can force a cancellation of the search with [K2] followed by
 /INFORM-PROGRAM MSG='*CANCEL'. All hits found up to that point are then displayed.

If the search area includes pages that are not contained in the diagnosis object, this
is indicated by messages, but the search is not aborted.

The address of the found search pattern can be marked in each line of the hits and the
memory area can be displayed in a dump window, see the section “Marking” on page 86.

In the D and HEX output modes, the individual words in the output area can be marked
with [MAR] and assigned as start addresses to the individual dump windows.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

FIND - Command TID=000A01EB W8,D ,L19
724FD008 (ETCB-002+00000) E3C3C240 00010002 C8C5D9E2 00008000 = TCB ????HERS????
724FD016 = * + 0000000E 80000400 00000000 00000000 00000000 = ????????????????
724FD7A8 (ETCB-004+00000) E3C3C240 00010004 C3D3D6C7 00008000 = TCB ????CLOG????
724FD7B6 = * + 0000000E 80000400 00000000 00000000 00000000 = ????????????????
72500008 (ETCB-00D+00000) E3C3C240 0001000D E3C1D7F1 00008000 = TCB ????TAP1????
72500016 = * + 0000000E 80000400 00000000 00000000 00000000 = ????????????????

DAMP Dump analysis Operation

U5663-J-Z125-11-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.3 Modification by the user (special window: OPTIONS)

You can set user options for your DAMP application to suit your requirements, regardless
of the default settings on delivery or the settings defined by system administration. These
settings include the user ID for the path names of the files required by DAMP and other
options.

Standard names

All DAMP product files along with their release names and their significance are listed in
section “Software and hardware prerequisites” on page 326.

The standard name of a product file is taken to mean the path name provided by IMON.

The standard names of the system symbol library and the system PRODAMP library are
the fixed path names $TSOS.SYSSMB.DAMP and $TSOS.SYSDMP.DAMP, respectively.

DAMP always works with these standard names. Other names can be set in a DAMP
generated individually (see “Possible parameter settings” on page 134).

Setting user options

DAMP users can set user options specifically to suit their application.
User options are set or changed by the START-OPTION-DIALOG command after DAMP is
loaded. This command opens a window where the settings can be changed by overwriting
and marking. OPTS appears in the key line for the diagnostic window used.

The user options can be changed temporarily each time DAMP is called. The default entry
in the “output format” field of the diagnostic window title line is TMP.
To make the setting permanent, it is best to first copy the load program
SYSPRG.DAMP.<ver>, supplied as a standard DAMP component, at system level to a
user-specific file with the name “DAMP”.
Then call DAMP with the new program name, issue the START-OPTION-DIALOG statement,
set your user options, and overwrite the “output format” field with SAV. After pressing [DUE],
the procedure S.PRC.DAMP.<ver>.OPTIONS is generated. This procedure must be started
with /call-proc s.proc.damp.<ver>.options when DAMP is terminated; it then modifies
the specified load program.

Operation DAMP Dump analysis

134 U5663-J-Z125-11-76

Figure 56: OPTS window

Possible parameter settings

The following user options are available in DAMP; the default values set on delivery are
shown in bold print.

The value *STD for one of the user IDs specified below means that the relevant standard
name (see page 133) is used as a path name for the file it describes.

If a user ID is entered as the value for the field, DAMP searches for the corresponding file
only under the entered user ID.

Joint user ID for the DAMP module library and the system PRODAMP library.
The system PRODAMP library contains the PRODAMP routines for automatic
pre-diagnosis among other things.

User ID for the standard symbol library that is accessed by default when loading
the symbols.

Joint user ID of the auxiliary files, the message files, and the user SDF syntax
files containing the DAMP statements.

User IDs: SYSLNK/SYSDMP = *STD | <userid>

SYSSMB = *STD | <userid>

SYSMSH / SYSSDF = *STD | <userid>

DAMP <version> No Object opened in BS2000 V19.0 <date> <time>

DAMP user options W9,TMP,L19

Userids: SYSLNK / SYSDMP = *STD SYSPAR (REDUCE) = *STD
 SYSSMB = *STD SYSLNK (ANITA) = *STD
 SYSMSH / SYSSDF = *STD

Window separation: yes/no Window separator = -/X'60'
Column separator (screen) = |/X'4F' Column separator (list) = |/X'4F'
Trash character = ?/X'07'

Message: Language = ENGLISH Blinking: yes/no

Lines per list page = 65

K1 check-back: yes/no Save P-Keys: yes/no

PRODAMP: Source = *STD
 Object = *STD

CMD:
Key: 1=Help 2=Plk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=OPTS 9=OPTS

DAMP Dump analysis Operation

U5663-J-Z125-11-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

User ID under which the dynamically loadable library of ANITA is cataloged.
Specifying a user ID causes a search to be performed for the SYSLNK.ANITA
library under the specified user ID. If an older version of an ANITA library is
loaded, the old version is unloaded, and the new version is loaded instead. (The
access method ANITA is used by DAMP when accessing dump files and the
current system.)

The diagnostic windows are separated from each other with or without dashed
lines

Window separator for output at the terminal.

Column separator for output at the terminal because X'4F' is not represented as
“|” on all terminals.

Column separator for list output because X'4F' is not output as “|” on all printers.

Replacement character for non-printable characters on the terminal. X'00', X'07'
and printable characters are possible.

Language in which the texts in the help window, the online help texts and the
DAMP messages are output. The language can also be set via the help window
(W1), see page 60.

Sets the output of DAMP messages in lines 2 and 3 to blinking or not blinking.

Defines how many lines are to be printed on a page in a list output.

Defines whether DAMP should be terminated immediately after the K1 key is
pressed or whether the system requests users to confirm their entry

SYSLNK (ANITA) = *STD | <userid>

Window separation: yes | no

Window separator = - / X'60'

Column separator (screen) = | / X'4F'

Column separator (list) = | / X'4F'

Trash character = . / X'07'

Message: Language = ENGLISH | DEUTSCH

Blinking: yes | no

Lines per list page = 65

K1 check-back: yes | no

Operation DAMP Dump analysis

136 U5663-J-Z125-11-76

.

Defines whether the P keys are saved by DAMP before they are overwritten,
and restored by DAMP after interruptions or termination This option is only
evaluated on some terminals (firmware program version FW_976x=X'20').

Library in which the user source programs are stored.

Library in which the user objects are stored.
In both cases, *STD stands for the SYS.USRDMP.DAMP.<ver> library of
the execution user ID.

i A temporary setting for the user PRODAMP libraries does not take
effect immediately. It is merely a default value for the *STD value in the
SOURCE-LIBRARY and OBJECT-LIBRARY operands of the DAMP
statement ASSIGN-PRODAMP-LIBRARIES. If the settings are to take
effect immediately, this statement should be issued after setting the
user options.

Save P-Keys: yes | no

PRODAMP: Source = *STD | <filename>

Object = *STD | <filename>

DAMP Dump analysis Operation

U5663-J-Z125-11-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.3.4 Additional functions

5.3.4.1 Calling EDT as a subroutine

The EDIT-FILE statement can be used to call EDT as a subroutine, thus making the EDT
functions available (see the “EDT” manual [2]). This enables additional document files such
as CONSLOG, SERSLOG, HERSFILE, etc. to be used for on-screen diagnosis in parallel
with the processing of the dump file in the diagnostic windows .

DAMP itself also uses EDT for certain functions:

– the descriptor list from the automatic preanalysis is stored in EDT area 8

– system files and dump sections can be processed with EDT in special FILE windows

– the diagnostic language PRODAMP uses EDT for editing procedures and for output
from procedures which are running

All EDT functions except the EDT statements @LOAD and @EXEC are available in EDT.
These statements are always rejected.

At the EDT program level, messages from EDT and DAMP are displayed in the last one or
two data lines on the EDT screen. If this causes some of the screen contents to be lost, the
original status can be restored by pressing the [K3] key.

Normally, the [K1] key is used to return to the DAMP program level, but the same effect
can be achieved by entering HALT or END in F mode and @HALT or @RET in L mode.

The HALT statement can also be entered with the following operands:

HALT @ Output of the current EDT statement symbol in a DAMP message
line.

HALT msg Output of the string “msg” in the DAMP message line.

HALT #msg Output of the string “msg” in the DAMP command line.

This also applies to @HALT and @RET (but not END).

Operation DAMP Dump analysis

138 U5663-J-Z125-11-76

5.3.4.2 Logging and replaying a diagnostic session

If desired, all screen inputs and outputs can be logged, i.e., saved to a file.

● The logging file can be edited for printing with the PRINT-LOGGING-FILE statement. The
actual printing is also initiated with this command (see description of the statement on
page 201).

● The diagnosis steps can, for example, be replayed and checked by a different person.

● The diagnosis steps performed up to now can be replayed by the same person if the
diagnosis run was interrupted either on purpose or unexpectedly.

Logging a diagnostic session

Logging of a diagnostic session is activated at program level by using the LOG-SESSION
statement and at system level by using the BS2000 command:
INFORM-PROGRAM MSG='*LOG-SESSION'

The name of the logging file is specified at program level with the statement
LOG-SESSION LOGGING-FILE=filename or at system level with the BS2000 command:
ADD-FILE-LINK LINK-NAME=DAMPLOG,FILE-NAME=filename

After the logging file has been closed, the link name DAMPLOG is released.
If this is not done, the file name is generated automatically in the form
S.LOG.DAMP.<ver>.<date>.<time>.

Logging is terminated at program level with the STOP-LOGGING statement and at system
level with the BS2000 command: INFORM-PROGRAM MSG='*STOP-LOGGING'

If the problem is being passed on to another diagnostic technician for further analysis, the
logging file should be included in file form.

Printing a diagnostic session

The diagnostic log is printed with the PRINT-LOGGING-FILE statement (see description of
the statement on page 201).

DAMP Dump analysis Operation

U5663-J-Z125-11-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Replaying a diagnostic session

Any logging file created with DAMP can be replayed with DAMP by the person who created
it or by any other DAMP user.

Replay of a diagnostic session is started at program level using the statement
REPEAT-SESSION <loggingfilename> and at system level using the command
INFORM-PROGRAM MSG='*REPEAT-SESSION(<loggingfilename>)'.

All inputs and outputs of the logged DAMP dialog are displayed on the screen and each
must be acknowledged by means of [DUE] or [K3].

Pressing the [K2] key causes a switch to system mode. If you are already in system mode,
you can return to the replay function with the RESUME-PROGRAM command.

[K1] can be used to terminate the replay function prematurely.

If the entire logging file is replayed, the system returns to the level at which the replay
function was started.
If the replay function was started by means of REPEAT-SESSION <loggingfilename>, the
DAMP screen mask will be displayed at the end of the replay.

If a replay is started from system mode with the command
INFORM-PROGRAM MSG='*REPEAT-SESSION(<loggingfilename>)' you will be returned to
system mode at the end of the replay. In this case, diagnosis with DAMP can be resumed
with the RESUME-PROGRAM command.

Operation DAMP Dump analysis

140 U5663-J-Z125-11-76

5.3.4.3 Processing files in PAM format

With certain restrictions, it is also possible to analyze files which are not stored in the
BS2000 dump format. This function is provided primarily intended for an “emergency
analysis” of damaged dump files.

The statement OPEN-DIAGNOSIS-OBJECT filename(KIND-OF-OBJECT=*PAM) can be used to
open any disk file in PAM format. The file itself can, of course, also be a SAM or ISAM file.

During processing, all DAMP functions which do not require the file to be diagnosed to
have a normal BS2000 structure can be used, i.e. it is possible

– to display PAM pages of the file in the usual formats (D, H, C, ...) in various dump
windows

– to (manually) assign any symbol file for symbolic editing

– to search for strings (START-PATTERN-SEARCH) using wildcards, with restriction of the
search area also being possible

– to output edited PAM page ranges to SYSLST

– to use procedures written in the diagnostic language PRODAMP.

With respect to addressing, PAM files differ from BS2000 files in the following respects:

– PAM page numbers

PAM page numbers are used instead of the module-relative addresses normally used
for BS2000 dumps. The PAM page is entered in the form P-XXXXXX (hexadecimal
page number) as of column 1 of the title line of a dump window. The first page of a file
is the page P-000001.

– Absolute addresses

For absolute addressing, the entire file is regarded as an unstructured “stream” of bytes.
The absolute address numbers these bytes (starting with 0) throughout the file. The
absolute address of the first byte on page P is thus A = (P - 1) * 2048. Absolute
addresses may be entered in column 40 of the title line of a dump window.

When address fields are marked, addressing via PAM pages is used, i.e. the rightmost
three bytes of the marked word are interpreted as a page number and this page is assigned
to the appropriate window. This corresponds, for example, to the method used to represent
chaining in dump files via PAM pages.

When memory segments are output to SYSLST, only entire PAM pages are output. For this
reason, page numbers (without “P-”) must be entered in LIST windows.

DAMP Dump analysis Operation

U5663-J-Z125-11-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

There are two ways of searching for strings:

– within a single page whose page number is specified

– as absolute addresses within a segment whose limits are specified.

i In the case of large files, the length of a data section may exceed the
4-GB boundary. Since the absolute addresses used in DAMP cannot be
greater than this, an internal segment number is used to distinguish
between the
4-GB segments. When a PAM page number is specified, the correct
segment is selected automatically. The absolute addresses are then
relative to the start of the segment. With START-PATTERN-SEARCH , it is
possible to enter a segment number for the search explicitly.

The stack window (W3) and most of the function-specific windows of DAMP assume that
the object to be diagnosed has a BS2000 structure. Consequently, these windows cannot
be used to process files in PAM format.

When processing PAM files, the status window (W2) contains information on the currently
open file itself, e.g. the file size and the last-page pointer.

5.3.4.4 Editing SLEDs without a BS2000 structure

Using DAMP, SLEDs produced on an operating system other than BS2000 (e.g. IPL,
BOOT, STARTUP or SLED) can also be processed.

Any dump file can be opened without virtual addressing with the statement
OPEN-DIAGNOSIS-OBJECT <filename> (KIND-OF-OBJECT=*SELF-LOADER).

DAMP does not offer an automatic edit function for the editing of files opened as
self-loaders. All addresses are interpreted as real addresses. The areas in main
memory can only be accessed via real addresses.

The following functions are possible:

– output of memory pages in the usual formats (D, H, C, ...) to various dump windows

– (manual) assignment of any symbol file for symbolic editing of the output

– selective search for strings (FIND function) using wildcards, with the option of restricting
the search area

– output of page areas to SYSLST in the normal DAMP layout

– use of PRODAMP procedures that permit the easy analysis of SLEDs without a BS2000
structure

Operation DAMP Dump analysis

142 U5663-J-Z125-11-76

5.3.4.5 Using private symbol elements

DAMP is supplied with the standard library SYSSMB.DAMP.<ver>, which is merged into the
library $TSOS.SYSSMB.DAMP. This library contains the most frequently used DSECTs. An
overview of the DSECTs can be found in section “List of DSECTs from the standard symbol
files” on page 329.

It is also possible to generate, extend or modify symbol elements and to then assign them
for the diagnosis. Typical examples are:

– DSECT tables for DCM

– DSECTs for the data structures used in a TU program (for evaluating user dumps
generated by this program).

On opening the diagnosis object, DAMP automatically assigns the matching BS2000
system version symbol element.
This automatic function can be disabled by explicitly specifying a symbol element in the
OPEN-DIAGNOSIS-OBJECT statement. This symbol element will then be used to process the
object to be opened. You should, however, note that the standard BS2000 symbols must
be included in this object.

Additional symbol elements can be assigned using the ADD-SYMBOLS statement. When a
DSECT is subsequently specified, all assigned symbol elements are searched for the
matching information, starting with the symbol element most recently entered.

All assignments are reset on switching the dump file.

Generating private symbol elements

You can generate your own symbol element in the following manner:

– Assemble the additional or modified DSECTs with TEST-SUPPORT=*AID or with
*COMOPT ISD (a dummy CSECT should be added to the source code after the last
DSECT since the Assembler will otherwise calculate the length of the last DSECT incor-
rectly).

In the case of SPL models, the option *COMOPT SYMTEST=ALL must be specified for the
compiler.

If a module containing symbol information already exists, a new compilation run is not
necessary.

C structures must be compiled using TEST-SUPPORT=YES. A pointer must be defined for
each symbol (=type) to be generated, since the C compiler only stores the name of the
variable. Structures and arrays are supported in this manner. The pointers should be
defined in the same sequence as the structures to which they refer. Only in this manner
can the reference between the structures and the pointers be analyzed, this also saves
memory space. When performing a search for a symbol, DAMP does not differentiate

DAMP Dump analysis Operation

U5663-J-Z125-11-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

between uppercase and lowercase which means that the sole distinction between the
names of main structures (DSECTs) must not be in the form of uppercase and
lowercase letters. For this reason, the symbol generator checks the generated main
structures for uniqueness, keeps the first relevant structure it finds, and eliminates the
next one.

– After the statement /START-DAMP-SYMBOL-GENERATOR has been issued, the system
queries whether symbols are to be generated (enter “g”) or whether symbol information
is to be output (enter “i”). If you enter “g”, the system then asks for the module and
library containing the system information. The symbol information is then stored in a
PLAM library as a type X element. The system queries the name of the library and the
element.

The library for standard BS2000 symbols has the fixed name $TSOS.SYSSMB.DAMP. The
element name is the same as that of the product to which the symbols refer, and the
element version is likewise derived from the product version (e.g. BS2000/190 for
BS2000 V19.0A = BS2000 OSD/BC V10.0)

If there is already a symbol library with the same name under the active user ID, the
newly compiled DSECTs can be included in this library. If a symbol element with the
same name already exists in the specified library, you can choose either to replace it or
to supplement it with the new information.

– If required, copy the symbol library or symbol element under the desired user ID or into
the desired library and set the user option “SYSSMB” (see page 134).

The following two examples illustrate the use of /START-DAMP-SYMBOL-GENERATOR.

Operation DAMP Dump analysis

144 U5663-J-Z125-11-76

Example 1

/start-damp-symbol-generator
You wish to : - Generate symbols ? --> g

 - Get information about symbols ? --> i

*g
 Creation of a DAMP-Symbolfile.
 Please give name of : - library with object module or
 - old symbol file for conversion
*my.object.lib
 Please enter name and type of object module
 (e. g. 'MODNAME/R' [type R is default])
 In C it is the R-element with "@" as termination.
 In SPL it is the 8 B long R-element with "@" as termination.
*dmpbs2a/r
 Element DMPBS2A/@/R
 from library MY.OBJECT.LIB successfully opened.
 Symbolic information will be taken from LSD-cards.
 The symbol information is from BS2000 V190, PVLU E1.
 Proposal : The element BS2000/190.E1
 will be generated in the library
 SYSSMB.DAMP

 Please enter one of the following answers :

 Y[ES] -> You accept the proposal.
 L[IBR] -> You will further be asked for the name
 of the output library where the element
 BS2000/190.E1
 will be generated.
 U[SER] -> By user, you will further be asked
 for the name of the output library and
 for the name and version of the element.
 P[ROD]/N[O]-> You will further be asked for the name,
 the version and the PVLU of the product.
 Lib : SYSSMB.<prod>.<vers>.<PVLU>
 El : <prod>/<vers>.<PVLU>
 I[NPUT] -> Output library/element/version =
 Input library/element/version.
 Output element type = X.
*u

 Please enter valid names !!!

 1. -> Enter library name :
*my.symbol.lib
 2. -> Enter element name :
*my_element
 3. -> Enter element version :
*190
 Output Symbol Library : MY.SYMBOL.LIB
 Output Symbol Element : MY_ELEMENT/190

 Element MY_ELEMENT/190 from
 library MY.SYMBOL.LIB successfully opened.
 Starting to write symbol element.
 There are to be generated 75 structures.
 Symbol element written.
 There have been written 75 structures into the file.
 Program terminated normally.

DAMP Dump analysis Operation

U5663-J-Z125-11-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example 2

/START-DAMP-SYMBOL-GENERATOR can also be used to have the DSECTs, structures
and symbols stored in symbol elements listed on the screen or saved in a file.

/start-damp-symbol-generator
You wish to : - Generate symbols ? --> g

 - Get information about symbols ? --> i
*i
Please enter the library name :
*syssmb.damp.<ver>
You wish to : - list the library elements and the contained symbols
 on screen ? --> s
 - write the names of the DSECTs into a file ? --> n
 - write a DSECT, converted to a Pascal-Record,
 into a file ? --> r
 - search for a symbol with wildcards ? --> w
 - write the alphabetical list of symbols into EDT--> a
 - show the global info of a symbol element --> g
 - go to EDT ? --> @
 - assign a new library ? --> l
 - terminate the program ? --> e
*s
The library SYSSMB.DAMP.<ver> contains the following elements :
BS2000/160 BS2000/170 BS2000/180 BS2000/190
BS2000-USER/160 BS2000-USER/170 BS2000-USER/180 BS2000-USER/190
NSDI0/160 NSDI0/170 NSDI0/180 NSDI0/190
STATUS/000 STATUS/001 STATUS/002 STATUS/003
STATUS/004 STATUS/005 STATUS/006 STATUS/007
STATUS/008 STATUS/009 STATUS/010 STATUS/011
XA2000/170 XA2000-USER/170 XA2000/180 XA2000-USER/180
XA2000/190 XA2000-USER/190
You wish to : - list the symbols --> name/version
 - stop this function --> *e, *end
*BS2000/190
 ASAVDSSM ASIMDBHD
 ASIPUCON BS_CTX_VECTOR_REC_MDL
 CTX_VECTOR_REC_MDL DBL_OPTIONS_COM_MDL
 DBL_OPTIONS_P_C_MDL DBL_OPTIONS_S_P_MDL
 DSTE DWQE
 DWQH EBWL
 ECSA ECSE
 ECSX ECTLP
...

You wish to : - list the library elements and the contained symbols
 on screen ? --> s
 - write the names of the DSECTs into a file ? --> n
 - write a DSECT, converted to a Pascal-Record,
 into a file ? --> r
 - search for a symbol with wildcards ? --> w
 - write the alphabetical list of symbols into EDT--> a
 - show the global info of a symbol element --> g
 - go to EDT ? --> @
 - assign a new library ? --> l
 - terminate the program ? --> e
*e
Program terminated normally.

Operation DAMP Dump analysis

146 U5663-J-Z125-11-76

5.3.4.6 Writing private Assembler user routines

If the situation demands it, you can write your own user routines for list editing or for the
special evaluation of dumps. You can then call these routines from DAMP by means of the
LOAD-MODULE and START-MODULE statements. However, this makes you dependent on the
structure of the dump file and on the BS2000 version being used. These dependencies are
dissolved if you use the diagnostic language PRODAMP instead. Within PRODAMP, you
can call Assembler routines using the PRODAMP function ENTER-MODULE. This has the
advantage of allowing you to transfer diagnostic data as parameters.

When writing private user routines the interface must comply with the following conditions:

Register 1 contains the address of the parameter string (up to 80 characters)
which can be specified in the START-MODULE statement.

Register 13 contains the address of an 18-word save area which is made
available by DAMP and which can be used in accordance with
the VMOS (Virtual Memory Operating System) conventions.

Register 14 contains the return address.

Register 15 contains the entry address.

All registers must be reset to their original values before control is returned to DAMP.

The module called cannot have any specific requirements regarding the status of the
diagnosis object currently being processed under DAMP. Neither does DAMP provide
any interfaces which can be used by external routines. Moreover, the external procedures
are called in 31-bit mode, which means that they must contain at least one 31-bit adapter.
The user module may be stored in any module library. Before the routine is called via
START-MODULE, the module must be loaded dynamically by means of a LOAD-MODULE
statement.

If the user module is stored in the dynamically loadable library of DAMP, the START-MODULE
statement can be omitted.

In the case of teleprocessing problems, you can initiate the DCM user routine, which
provides you with edited DCM tables.

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.4 Generating and printing lists (special window: LIST)

In spite of the convenience provided by on-screen diagnosis, it is often useful to print the
dump on paper. If, for example, you have used PRODAMP for special evaluations and to
group together certain structures which are normally scattered throughout memory, you can
print the results on a printer of the local computer or on an external computer. You can, of
course, also print the entire dump, but the resulting stack of paper can be up to one and a
half meters high and has little value, except for demonstrating how big a dump can be,
compared with the ease of diagnosis offered by DAMP.
Editing lists for printing can be controlled in interactive mode or by means of batch
statements.

5.4.1 Controlling list output in interactive mode

When the START-LIST-GENERATION statement is entered, the list mask is displayed in the
last free diagnostic window. If a dump file has already been opened, the name of this file is
displayed in the field Dumpfile. If there is no dump file open, or if some other dump file is
to be edited for printing, you must first select a file (see page 148). The extent and the
contents of the list to be printed are then defined by marking or filling out the various fields
in the mask.
If an area dump is being processed, the specification of selection criteria has no effect since
only the standard tables belonging to an area dump and the requested segments are
edited.

Figure 57: List mask

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

LIST - Command SYS=0 W8,LST,L19

Dumpfile = :SLED:$DUMPFILE.SLED.CS507K
Listfile = *SYSLST REMOTE: YES/NO

FUNCTION : OPN/LST/LSTALL/RESET SELECT : INF/SYS/MIN/ALL OR
 --
SELECT FROM |TRACES: ALL STT TM NO |
 |MAPS : ALL CS CRI NO |
 |TABLES: ALL XVT TCB PCB SPL TFT AUD NO|
 |MEMORY: ALL CL1 CL2 CL3 CL4 CL5 CL6 NO|
 | PP FP PP FP NP PP FP MP FP MP |
 |MODULE: |
 --
 |PAGES FROM: TO: |
 --
WINDOW:
DIAG: YES/NO DESCR: YES/NO PROC:

CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=LIST 9=Dump

Generating and printing lists (special window: LIST) DAMP Dump analysis

148 U5663-J-Z125-11-76

The list mask remains displayed on the screen during and after processing of the print job.
The print job does not close the last dump file which was processed, and diagnosis of
this dump can be continued. Switching to another diagnostic window interrupts LIST
processing. You can return to the list mask by pressing the appropriate P key or by entering
a new START-LIST-GENERATION statement.

If no further editing is desired, the window occupied by the list mask can be released for
other outputs by means of the statement SHOW-EDITED-INFORMATION *STORAGE-EDIT.

The list mask appears on the screen only in interactive mode. The current settings are
displayed with increased intensity, i.e. marking a field and pressing the [DUE] key causes
the marked field to be highlighted and any alternative fields (as in the case of SYS/MIN/ALL)
are displayed with normal intensity.

5.4.1.1 Selecting a file

The desired file is selected by entering a fully or partially qualified file name in the field
“Dumpfile” of the list mask. Wildcards may be used in the file name. In addition, the string
“$TSN” within the file name is replaced by the TSN of the calling task; this is particularly
useful for locating currently generated user dumps.

Figure 58: Fields for file selection

If wildcards are used in the file name, sending off the modified window with [DUE] will cause
an internal list of matching file names to be created and the first of these names to be
displayed in the list mask. You can page forwards and backwards within the list of file
names with [F3] / + or [F1] / - until you find the desired dump file(s).

This file selection process has no effect on any currently open dump file. The currently open
dump file will be closed, and the selected file(s) opened, only when one of the functions
OPN, LST or LSTALL is marked.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

LIST - Command SYS=0 W8,LST,L19

Dumpfile = :SLED:$DUMPFILE.SLED.CS507K
Listfile = *SYSLST REMOTE: YES/NO

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.4.1.2 Selecting the output location of the list

Figure 59: Fields for the output location of the generated list

The REMOTE option and the “Listfile” field are provided for specifying the output location
of a generated list. By default, the list is output to SYSLST on the same computer.

The output file can be directed to a remote computer by marking the REMOTE option and
using file transfer.

YES If YES is marked, new input fields are offered in lines 7 and 8 in which the options
for the file transfer must be specified (see figure 60). There is no default for these
options.

The name of the output file to be sent via file transfer is generated automatically by
DAMP (SYSLST.DAMP.<ver>.<date>.<time>). The name contains the current time
stamp so that no file is corrupted on the target user ID.

If there is no file transfer connection active, the target computer must be entered in
the “Partner” field. The file transfer authorization can be specified using the name
of an FTAC profile or explicitly by means of a user ID, account number and
password.

NO If NO is marked, the list is output on the same computer. The name of the output file
can be entered in the “Listfile” field for this.

Figure 60: Options for file transfer (after marking REMOTE: YES)

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

LIST - Command SYS=0 W8,LST,L19

Dumpfile = :SLED:$DUMPFILE.SLED.CS507K
Listfile = *SYSLST REMOTE: YES/NO

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

LIST - Command SYS=0 W8,LST,L19

Dumpfile = :SLED:$DUMPFILE.SLED.CS507K
Partner = FTAC = REMOTE: YES/NO
Userid = Account = Password =

Generating and printing lists (special window: LIST) DAMP Dump analysis

150 U5663-J-Z125-11-76

5.4.1.3 Selecting a function

Figure 61: Function selection options

Marking one of the alternatives listed after FUNCTION and sending it off with [DUE]
determines what is to be done with the selected dump file:

OPN The dump file specified after Dumpfile is opened. Any currently open dump
file is closed before this is done. This makes it possible, before starting the
interactive list output, to check that the correct dump file has been selected.
The OPN field can generally be used for opening dump files (instead of
using the OPEN-DIAGNOSIS-OBJECT statement).
In the case of dump files with multiple objects (complete VM2000 SLED file,
SLED from a SLED), in contrast to using the OPEN-DIAGNOSIS-OBJECT
statement to open dump files in interactive mode, the object to be analyzed
is selected automatically here.

LST The dump file specified after “Dumpfile” is printed. All high-intensity
parameters in the list mask and all marked parameters are thereby
enforced.

LSTALL All dump files (with a BS2000 object) contained in the file list are printed.
The parameters highlighted in the list mask and the marked parameters
apply to each of these files.

RESET All parameters in the list mask are reset to their default values. At the same
time, any existing list of dump file names is deleted.

i The functions OPN, LST and LSTALL close any dump file which is currently open
if the output is not to be taken from this file.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

LIST - Command SYS=0 W8,LST,L19

Dumpfile = :SLED:$DUMPFILE.SLED.CS507K
Listfile = *SYSLST REMOTE: YES/NO

FUNCTION : OPN/LST/LSTALL/RESET SELECT : INF/SYS/MIN/ALL OR

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.4.1.4 Selecting a task

You select a task in a SLED or SNAP by overwriting the “SYS” field in the LIST mask. You
can enter the permitted combinations of ASEL and ASID (see page 78).
If a task is specified, only the task-specific areas of this task are output (as if a system dump
had been generated for this task).

In the LIST mask it is also possible to enter the keyword *ALL or *ERR when entering a
TSN.

*ALL For a SLED or SNAP file, task editing is performed for all active tasks instead of just
the areas of the error task selected by DAMP, as is normally the case.

*ERR causes a search to be started for the possible error task by means of the DIAG
pre-diagnosis routine. This entry is equivalent to marking YES in the DIAG field
(see page 156).

5.4.1.5 Specifying the scope of the list

Figure 62: Global selection parameters for the scope of the list

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

LIST - Command SYS=0 W8,LST,L19

Dumpfile = :SLED:$DUMPFILE.SLED.CS507K
Listfile = *SYSLST REMOTE: YES/NO

FUNCTION : OPN/LST/LSTALL/RESET SELECT : INF/SYS/MIN/ALL OR
 --
SELECT FROM |TRACES: ALL STT TM NO |
 |MAPS : ALL CS CRI NO |
 |TABLES: ALL XVT TCB PCB SPL TFT AUD NO|
 |MEMORY: ALL CL1 CL2 CL3 CL4 CL5 CL6 NO|
 | PP FP PP FP NP PP FP MP FP MP |
 |MODULE: |
 --
 |PAGES FROM: TO: |
 --
WINDOW:
DIAG: YES/NO DESCR: YES/NO PROC:

CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=LIST 9=Dump

Generating and printing lists (special window: LIST) DAMP Dump analysis

152 U5663-J-Z125-11-76

The scope of the list is determined by marking the SELECT fields. These permit the
selection of four global output formats (INF/SYS/MIN/ALL) and of the selected output of
certain user-specified areas (OPT). In the first case, DAMP decides which areas are output;
in the second case, you decide. In order to make the difference between these two possi-
bilities more obvious, only the detailed selection parameters permitted in connection with
SELECT FROM are shown within the inner frame of the list mask. Filling out or marking any
field within this frame causes an automatic switch to SELECT FROM.

The parameters for the global outputs have the following meanings:

INF Information edited in INF mode in the status window is output to SYSLST.

SYS Only the system overview is output. Depending on the settings of the DIAG and
DESCR parameters, this may include output of the error descriptors (see
page 156).

MIN A minimum list is output (see page 160). This list generally contains all the data
necessary for an initial diagnosis. If necessary, any gaps can be filled by selecting
additional explicit lists (SELECT FROM). This is the default value.

ALL A complete list is output (see page 160). For system and user dumps, this means
that all pages saved by CDUMP are included in the list.

i The complete list of a system dump produces a stack of paper about one
and a half meters high.

Otherwise, only those areas selected explicitly are output within the frame. An explanation
of the options can be found in section “Selecting individual areas for output” on page 153.

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.4.1.6 Selecting individual areas for output

Figure 63: Individual areas that can be marked for output

The parameters shown within the frame are used for the explicit selection of individual
areas for output. Filling out or marking any field within the frame causes an automatic switch
to SELECT FROM. Conversely, marking any option outside the SELECT frame deactivates
the settings within this frame. However, the settings are not “forgotten” and can be activated
again by marking SELECT FROM.

Some of the fields are used to specify the memory area by marking or entries. A task must
be selected for these so-called memory options when analyzing SLED or SNAP files and
specifying task-local memory.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

LIST - Command SYS=0 W8,LST,L19

Dumpfile = :SLED:$DUMPFILE.SLED.CS507K
Listfile = *SYSLST REMOTE: YES/NO

FUNCTION : OPN/LST/LSTALL/RESET SELECT : INF/SYS/MIN/ALL OR
 --
SELECT FROM |TRACES: ALL STT TM NO |
 |MAPS : ALL CS CRI NO |
 |TABLES: ALL XVT TCB PCB SPL TFT AUD NO|
 |MEMORY: ALL CL1 CL2 CL3 CL4 CL5 CL6 NO|
 | PP FP PP FP NP PP FP MP FP MP |
 |MODULE: |
 --
 |PAGES FROM: TO: |
 --
WINDOW:
DIAG: YES/NO DESCR: YES/NO PROC:

CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=LIST 9=Dump

Generating and printing lists (special window: LIST) DAMP Dump analysis

154 U5663-J-Z125-11-76

The following options are available:

TABLES This selects the system tables to be output.
The output has the same format as for the implicit output of these tables as
part of a minimum or full list output. The required tables are selected by
marking their names. If task-local tables (TCB, PCB, etc.) are marked in a
SLED file, a task must also be selected (see section “Selecting a task” on
page 151).

MEMORY This defines the precise limits of memory segments which are to be output
in dump format in the list. Whereas the standard list output (= minimum)
contains only memory pages referenced from PCBs or save areas via
general-purpose registers, this option permits the specification of
contiguous memory segments.
This can be done by simply marking the abbreviations of the memory
segments to be output (e.g. CL1) transferring them with [DUE]. The
abbreviations are interpreted in exactly the same way as when searching
for strings (see page 125).

For all MEMORY parameters, a task must also be selected when analyzing
SLED or SNAP files and specifying task-local memory (see section
“Selecting a task” on page 151).

TRACES This specifies which system trace is to be output:

ALL
STT
TM
NO

all traces
the system trace table
the overview of the traces managed by the trace manager
no trace

MAPS This specifies which information for the localization of addresses and
corrections is to be output:

ALL
CS
CRI
NO

the CSECT maps and the Rep information
only the CSECT maps
only the contents of the SAVEREP or REPLOG section
no maps

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The following are additional memory options:

PAGE FROM Defines a page as a lower limit for the memory area to be output; the
contents of the ASID input field is taken into account for real/absolute
addresses (ASEL=RM/ABS).

PAGE TO Defines a page as an upper limit for the memory area to be output; the
contents of the ASID input field is taken into account for real/absolute
addresses.

WINDOW Specifies a standard dump window whose contents (a memory area) are to
be printed. In order to list the contents of a window, the window must be
filled, which means that a dump file must be opened. Consequently,
LSTALL cannot be used in combination with this option. In the case of
symbolic output, the output extends to the end of the DSECT; for all other
output formats, it extends to the next page boundary. It may thus be
necessary to increment the output address and repeat the output in order
to obtain all the information.
The following window formats can be output to SYSLST:
– memory areas in dump, hexadecimal and character format
– memory area in Assembler format (disassembled)
– output in real and absolute addressing mode
– symbolic output
– hardware information

MODULE Specifies a system module that is to be output in its entirety.

Generating and printing lists (special window: LIST) DAMP Dump analysis

156 U5663-J-Z125-11-76

5.4.1.7 Fields for pre-diagnosis and error descriptors

Figure 64: Marking fields for the list output

Additional parameters for list output are defined in the DIAG and DESCR fields. Either YES
or NO can be specified for each of these options.

DIAG The default value for this field is NO.
If YES is marked, automatic pre-diagnosis is started. This marks a number
of memory pages which are subsequently output as part of a minimum list.
Automatic pre-diagnosis is not yet supported for user dumps.

DESCR The default value for this switch is NO.
If YES is marked, a list of error descriptors is output in the system overview.
DIAG=YES is a prerequisite for DESCR=YES.
On the other hand, it can be useful to perform automatic pre-diagnosis
without outputting descriptors since pre-diagnosis references a number of
memory pages which are automatically output as part of any subsequent
minimum list.

Any illegal combination of the DIAG and DESCR fields is automatically changed to a valid
combination.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

LIST - Command SYS=0 W8,LST,L19

Dumpfile = :SLED:$DUMPFILE.SLED.CS507K
Listfile = *SYSLST REMOTE: YES/NO

FUNCTION : OPN/LST/LSTALL/RESET SELECT : INF/SYS/MIN/ALL OR
 --
SELECT FROM |TRACES: ALL STT TM NO |
 |MAPS : ALL CS CRI NO |
 |TABLES: ALL XVT TCB PCB SPL TFT AUD NO|
 |MEMORY: ALL CL1 CL2 CL3 CL4 CL5 CL6 NO|
 | PP FP PP FP NP PP FP MP FP MP |
 |MODULE: |
 --
 |PAGES FROM: TO: |
 --
WINDOW:
DIAG: YES/NO DESCR: YES/NO PROC:

CMD:
Key: 1=Help 2=Tsk 3=PCB 4=Dump 5=Dump 6=Dump 7=Dump 8=LIST 9=Dump

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.4.1.8 Using PRODAMP procedures or editing programs

The name of a PRODAMP procedure or an editing program can be entered in the PROC
field, regardless of which area is selected. The procedure or the program is started once
editing of the list is complete, and the lists are generated in addition to those selected in the
SELECT frame. The procedure or the program must be available in compiled form as an
object in the user PRODAMP library. The library may have to be set by means of the
ASSIGN-PRODAMP-LIBRARIES statement.

5.4.1.9 Using an editing program

The DMP_ANALYSE_DMS_TABLES program

By entering *DMS in the PROC field of the LIST mask, special DMS editing can be initiated,
regardless of the error components detected by the automatic preanalysis. This contains
the task-specific DMS tables (TFT, TPR-FCB, TU-FCB) of the relevant task.
The editing is performed via the PRODAMP procedure DMP_ANALYSE_DMS_TABLES,
which is supplied with DAMP as part of the standard package.

The MEMCNTRL program

If problems occur in terms of memory assignment, address space bottlenecks, etc.,
you can start the analysis of the address space assignment by using the MEMCNTRL
program within the DAMP application. The MEMCNTRL program is supplied in the system
PRODAMP library and must be set with the statement
ASSIGN-PRODAMP-LIBRARIES OBJECT-LIBRARY=PRODAMP-SYSTEM-LIBRARY
before calling the program.

The NDM program

In the case of problems from the scope of device management, you can start editing
procedures for the NDM tables from within the DAMP application and have the analyses
output to SYSLST by making an appropriate entry in the PROC field of the LIST mask. For
more information on this topic, see also the chapter “NDMDAMP Generating diagnostic
documents” on page 339.

As in the case of the MEMCNTRL program, the system PRODAMP library must be set as
the OBJECT-LIBRARY before calling the NDM program.

i The output to a list is usually not sufficient documentation when forwarding an error
message. In general, the dump file should also be supplied on a data medium for
all error messages to permit a diagnosis with DAMP for subsequent instances as
well.

Generating and printing lists (special window: LIST) DAMP Dump analysis

158 U5663-J-Z125-11-76

5.4.2 Controlling list output in batch or procedure mode

There are three stages involved in controlling the scope of a list:

1. start list generation with the START-LIST-GENERATION statement

2. select memory areas with the ADD-LIST-OBJECTS and REMOVE-LIST-OBJECTS
statements

3. start list output using the PRINT-LIST statement

Any number of ADD-LIST-OBJECTS and REMOVE-LIST-OBJECTS statements can be inserted in
any sequence between the START-LIST-GENERATION and PRINT-LIST statements. The
selected areas are added together and take effect only when the final PRINT-LIST
statement is issued.

The START-LIST-GENERATION statement contains all the specifications regarding the input
medium, in other words the names of the dump files to be evaluated. The PRINT-LIST
statement defines the output medium (SYSLST, file or file transfer to a remote system).
Please refer to the relevant statement descriptions for details.

Every list generated by DAMP includes at the end of the report a list of the objects selected
in the form of ADD-LIST-OBJECTS statements. Thus, for instance, the required options can
be set interactively by marking them and then the corresponding statements can be taken
from the generated list.

Examples of statement sequences

The following examples are intended to illustrate the possible structure of a statement
sequence in batch or procedure mode in DAMP.
The statement sequences, which start with START-LIST-GENERATION and end with
PRINT-LIST, could, of course, be stored in a file, which is then assigned at execution
time using the DAMP statement START-STATEMENT-SEQUENCE.

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example 1

/BEGIN-PROCEDURE
/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/MODIFY-JOB-SWITCHES ON=5
/START-DAMP
START-LIST-GENERATION FILES-TO-EVALUATE=DUMP.HUGO ————————————————————— (1)
ADD-LIST-OBJECTS TASK-INFORMATION=*PARAMETERS(SELECT=C'RP01', -

INFORMATION=*PARAMETERS(CONTROL-BLOCKS=*TCB, -
PAGES=*INTERVAL(FROM=X'0',TO=X'FFF'))) ——————————————— (2)

ADD-LIST-OBJECTS GLOBAL-INFORMATION=*PARAMETERS(CONTROL-BLOCKS=*XVT, -
MODULE=DOPEN) ————————————————————————————————————— (3)

PRINT-LIST OUTPUT=#REPORT ——— (4)
END
/MODIFY-JOB-SWITCHES OFF=5
/END-PROCEDURE

(1) The dump file to be analyzed is specified with START-LIST-GENERATION.

(2) The TCB and pages 0 to FFF are to be output for the task SRPM.

(3) The global XVT objects and the module DOPEN are to be output.

(4) Output is sent to the temporary file #REPORT.

Example 2

/BEGIN-PROCEDURE
/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/ADD-FILE-LINK FILE=SYSDUMP.FROM.YESTERDAY, LINK=#1 ——————————————————— (1)
/MODIFY-JOB-SWITCHES ON=5
/START-DAMP
OPEN-DIAGNOSIS-OBJECT OBJECT=*#1 —————————————————————————————————————— (2)
START-LIST-GENERATION ——— (3)
PRINT-LIST —— (4)
END
/MODIFY-JOB-SWITCHES OFF=5
/END-PROCEDURE

(1) /ADD-FILE-LINK assigns the dump file to be evaluated.

(2) The OPEN-DIAGNOSIS-OBJECT statement opens the dump file for processing by
DAMP.

(3) List output is started. A FILE-TO-EVALUATE assignment (as seen in example 1) can
be omitted, since the file opened and the file to be output are one and the same.

(4) Output is directed to SYSLST.

DAMP selects the areas to be output (minimum output).

Generating and printing lists (special window: LIST) DAMP Dump analysis

160 U5663-J-Z125-11-76

5.4.3 Components and scope of the output lists

The components and scope of the output lists are contingent upon:

– the dump from which they originate; the different dump forms, e.g. SLED dumps and
area dumps, have different contents and scopes, and this is reflected in the lists

– the type of list selected (MINIMUM or ALL).

The following overview shows the different types of list and what they are made up of.

Overview of the scope of the minimum and full analysis

List type
Components

Area User
Min

User
All

Sys
Min

Sys
All

SLED
Min

SLED
All

SNAP

General dump file info
System overview
Trace manager
Descriptors
CSECT-MAP privileged
REPLOG
Trace table (total)
Class 1 memory
Class 2 memory
Class 3/4 memory
AUDIT tables (processor-local)
CSECT-MAP nonprivileged
Trace table (task)
TCB
TFT
PCB
SPL stacks
Audit tables
Class 6 memory
Class 5 memory

A
P
-
-
-
-
-
-
-
-
-
-
-
A
-
A
-
-
T
T

A
P
-
-
-
-
A
-
-
-
-
A
A
A
D
A
-
A
R
A

A
P
-
-
-
-
A
-
-
-
-
A
A
A
D
A
-
A
A
A

A
A
A
A
A
A
A
R
R
R
A
A
A
A
D
A
A
A
R
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A
A
A
A
E

A
A
A
A
A
A
A
R
R
R
A
-
E
E
D
E
E
E
-
E

A
A
A
A
A
A
A
A
A
A
A
-
E
E
D
E
E
E
-
E

A
P
P
-
A
-
A
A
-
T
-
-
E
E
-
E
-
-
-
-

Key: -
A
P
R
D
E

is not included
is included
partial areas are included
only referenced pages are included
only for special DMS evaluation
data output once for each error task or explicitly selected task

Table 8: Components and scope of the output lists

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Description of the individual sections of the list:

Output of the general dump file information

This section contains the output from the status window in INF mode and is of particular
importance if the dump file contains a number of objects. The object currently selected is
displayed.

The section is contained in each of the modes SYS, MIN and ALL under SELECT but can
also be requested explicitly with SEL=INF.

Output of the system overview

Each SLED, SNAP or system dump list requested with SEL=MIN/ALL starts with a system
overview which is identical to that requested explicitly via SEL=SYS.

The system overview shows

– which system environment existed at the time of the dump,
– which global system problems, if any, existed at this time and
– which further system files belong to the diagnostic environment.

The overview contains the following items of information:

– server type
– memory configuration
– number of active processors
– BS2000 file name
– loader name
– name of the active SERSLOG file
– name of the active CONSLOG file
– overview of the software configuration (subsystems)
– overview of the active traces managed by the trace manager
– the system parameters set
– references to global system problems (saturation, FORCE-JOB-CANCEL, etc.)
– any error descriptors created during automatic preanalysis
– for SLED lists, the entire system trace table, the processor-local linkage AUDIT tables

and the task overview, together with the system type-dependent hardware areas
– for system dumps and possibly user or area dumps, the task-specific edited system

trace table, the process control blocks (PCBs), and program manager stacks of the
task, the TCB and the task-local AUDIT tables.

Generating and printing lists (special window: LIST) DAMP Dump analysis

162 U5663-J-Z125-11-76

Output of the CSECT list

The CSECT list is output per subsystem and version for privileged and nonprivileged
subsystems, the CSECTs being sorted by their addresses. The ETPND module information
is also output.

In order to save paper, the CSECT list, sorted by names, contains only the associated
addresses of the CSECTs; it is intended simply as a cross-reference list (name →
address).

i For SLED or SNAP, the list generated by default does not contain the module
version numbers. These can be obtained by explicitly marking CS or ALL in the
MAPS field in the LIST window, but it should be noted that the generation of such a
list takes several minutes.

Output of REP information

The REP information contained in the dump (REPLOG or SAVEREP in earlier operating
system versions) is output.

Output of the system trace table

The system trace table is output both in its entirety and also in the form of an extract
containing all entries for the task concerned (once per task-specific analysis). Matching
entries can be identified by reference to the trace entry numbers.

Output of the process control blocks (PCBs)

The PCBs are edited and output. The edited PCBs are followed by the PCB chain in
non-edited format (dump format).

Output of the SPL stacks

The SPL stacks are output in edited form.

Output of the system tables

The XVT and the TCB are output without being edited (dump format); the addresses are
relocated to the start of the table.

The JCB and JTBP are not output: only selected information from these tables (such as the
name of the loaded program) is edited and output.

DAMP Dump analysis Generating and printing lists (special window: LIST)

U5663-J-Z125-11-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Output of the task file table and task-local DMS tables

The TFT and the task-local DMS tables are output only if the parameter PROC *DMS is
selected or if the automatic preanalysis determines that DMS is the faulty component.
Global DMS tables are not processed by DAMP.

Output of memory pages

The memory pages are output as follows:

– Minimum output (default value):
The memory pages of memory classes 1, 2, 3, 4 and 6 are output only if they are
referenced via a register of a PCB, an SPL stack or a save area.
Any memory pages which were addressed during a preceding interactive diagnosis,
implicitly during the automatic pre-diagnosis or during the initialization of DAMP are
also regarded as marked.
The class 5 memory is output fully, depending on the contents of the dump file.
Pages marked as “secret pages” may or may not be contained in the dump file,
depending on the system parameter DUMPSEPA.

– Full output:
All pages of memory classes 1, 2, 3, 4, 5 and 6 which are included in the dump file are
output.

Automating operations DAMP Dump analysis

164 U5663-J-Z125-11-76

5.5 Automating operations

5.5.1 Automatic preanalysis

PRODAMP procedures providing a basis for automatic preanalysis are supplied as
standard components of DAMP. The diagnosis steps carried out during analysis and the
resultant diagnostic information

– generate an internal list of referenced memory pages which are relevant for diagnosis,
– produce a description of the cause of the error and of the error environment, and
– attempt to pinpoint the error to a specific component (and, in the case of SLED and

SNAP files, also to the error task).

The results of the preanalysis affect the way in which the dump is subsequently edited for
printing: additional tables are output and the list is restricted to the error task.

Starting the preanalysis
– for a list analysis (START-LIST-GENERATION) (see page 158) or
– by calling a PRODAMP procedure with the statement

START-PRODAMP-PROGRAM NAME=DIAG.

A SLED, SNAP or system dump must already be assigned with the OPEN-DAIGNOSIS-
OBJECT statement.

The relevant PRODAMP routines are supplied in the file $TSOS.SYSDMP.DAMP. When
you start the PRODAMP routine DIAG with START-PRODAMP-PROGRAM, you should ensure
that this system PRODAMP library is assigned as the current user PRODAMP library. If
necessary, you must assign the library with the ASSIGN-PRODAMP-LIBRARIES statement. You
can display the current setting with the SHOW-PRODAMP-LIBRARIES statement.

Indexing, i.e. briefly describing the problem in hand in the form of a chain of descriptors
(= descriptive keywords), is an established method for detecting duplicates. Automatic
indexing of a problem with DAMP produces a string of such descriptors, which are output

– on paper at the beginning of the output list (as part of the system overview) if
preanalysis is performed within the context of a list evaluation.

– on the terminal in EDT area 8, which can be accessed via the DAMP statement EDT
and the EDT statement “[$]8”.

If preanalysis is called by means of START-PRODAMP-PROGRAM NAME=DIAG, no implicit print
editing is carried out.

Automatic preanalysis also attempts to allocate the problem in hand to an error component.
If this error component belongs to the subsystem DMS (allocator, catalog management,
open/close, tape processing, access methods other than ISAM), the descriptor “DMS” is
placed in the descriptor string.

DAMP Dump analysis Automating operations

U5663-J-Z125-11-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Location of the error component in the subsystem DMS also affects print editing:
task-specific DMS tables are output in addition to the system tables of the standard list.

In the case of SLED and SNAP files, automatic preanalysis controls the scope of list editing
if an unambiguous error task is detected (e.g. $CRASH or a program error in a pre-allocated
task). During standard editing, task-specific evaluation of this task is then initiated.

Preanalysis for task-specific problems in SLED or SNAP files (e.g. for the tasks which, at
the time of the SLED run, were displaying the query “DUMP desired? YES/NO”) can be
controlled via task selection in the list mask (DIAG=YES/NO). If this is done, the descriptor
“TASK.ONLY” is included in the string.

i Automatic preanalysis cannot reveal all problems correctly, nor can it carry out
in-depth analysis of the ones it does detect. Particularly in the case of SLED
analyses and, within these, in the case of deadlock problems, the results of
automatic preanalysis will often be of little practical use.

5.5.2 Batch and procedure modes, statement sequences

DAMP can also be started from within a BS2000 procedure or executed as a batch job.
A procedure file can, for example, contain the necessary ADD-FILE-LINK commands for
assigning the dump and logging files, together with the appropriate DAMP statements for
assigning user-defined symbol files, for switching on the logging function or for calling dump
analysis and print editing routines. Before the DAMP program is called, task switch 5 must
be set in the procedure.

i If, in procedure mode, a DAMP statement is followed by a system command that is
not permitted at the DAMP program level (see page 223), DAMP switches from
procedure mode to interactive mode and resets task switch 5. The last DAMP
output screen is then displayed on the screen. In batch mode, a system command
which is not permitted causes the job to be aborted.

Before calling DAMP on 3270 terminals, task switch 5 must always be set, since
procedure mode only can used on these terminals with DAMP.

Statement sequences which are required frequently during diagnosis with DAMP can also
be stored in files. Such a file can then be activated in interactive, batch or procedure mode
by means of the START-STATEMENT-SEQUENCE statement. In interactive mode, the last output
which was initiated is displayed on the screen after the statement sequence has been
executed. In procedure or batch mode, processing of the procedure or batch file is
continued when all statements in the sequence have been executed.

i When the START-STATEMENT-SEQUENCE statement is used, SYSDTA is temporarily
redirected to the specified file. Changing the assignment for SYSDTA in this
procedure (or, for example, in a procedure called via START-MODULE) may have

Automating operations DAMP Dump analysis

166 U5663-J-Z125-11-76

unexpected consequences. In particular, the statement START-MODULE DCM should
never be used in a statement file, since this can result in an endless loop.

Examples of statement sequences:

Contents of the file DAMP.STATEMENT.DCM

5.5.3 Automation with PRODAMP

PRODAMP (PROcedure language for DAMP) is a language similar to Pascal designed for
the formulation of diagnostic algorithms in DAMP. With PRODAMP, it is possible to write
decision-based statements, which would otherwise have to be entered individually by hand,
into a procedure and to execute them automatically. It is possible, for example, to follow
chains down to a structure which contains a specific data item, to search tables and process
(e.g. arithmetically) the values they contain, or to have questions such as “Is this task
holding a lock?” answered automatically.

PRODAMP is described in detail in section “PRODAMP” on page 226.

LOG-SESSION
OPEN-DIAGNOSIS-OBJECT OBJECT=#1
ADD-SYMBOLS MY.SYMBOLS(PCS(029))
START-PATTERN-SEARCH
SHOW-EDITED-INFO INFO=*TRACE, WINDOW=8
MODIFY-SCREEN FIRST=3(10), SECOND=4(8)

Switch on logging
Assign the dump file
Private symbol file PCS V2.9
Prepare string search
Trace output to window W8
Window order for 1st screen

DAMP Dump analysis Program statements

U5663-J-Z125-11-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.6 Program statements

5.6.1 Program level

DAMP statements must be entered in the command line on the screen. The SDF dialog
interface supports interactive entry. The metasyntax for the applications is described in the
“Commands” manual [8].
Since the command line can only accommodate 75 characters, longer statements must be
abbreviated in such a way that there is no risk of confusion.
In batch and procedure mode, statements are the only type of entry permitted and are the
only entries read and processed by SYSDTA.

The following DAMP statements are available. They are sorted according to fields of
application:

Handling the diagnosis object

Controlling representation

Logging and repeating a DAMP session

OPEN-DIAGNOSIS-OBJECT Open diagnosis object for processing

ADD-SYMBOLS Assign symbols for output

MODIFY-OBJECT-ASSUMPTIONS Modify default settings for diagnosis object

MODIFY-SCREEN-LAYOUT Define new sequence and size for diagnostic windows

SHOW-EDITED-INFORMATION Output specially edited diagnosis data

USE-REGISTER Define representation for disassembled output

DROP-REGISTER Cancel setting made with USE-REGISTER

LOG-SESSION Activate logging of the diagnosis run. This creates a logging
file.

REPEAT-SESSION Replay a diagnostic log

PRINT-LOGGING-FILE Edit and print a logging file.

STOP-LOGGING Terminates logging of the diagnosis run started with LOG-
SESSION.

Program statements DAMP Dump analysis

168 U5663-J-Z125-11-76

Supporting automated diagnosis runs

a) PRODAMP

b) External subroutines via VMOS linkage

c) DAMP procedures

Creating lists

Miscellaneous statements

SHOW-PRODAMP-LIBRARIES Show current PRODAMP libraries

ASSIGN-PRODAMP-LIBRARIES Assign libraries for the PRODAMP compiler and/or
PRODAMP editor

START-PRODAMP-EDITOR Call editor for the PRODAMP-COMPILER

START-PRODAMP-PROGRAM Load and start a PRODAMP program

RESUME-PRODAMP-PROGRAM Resume an interrupted PRODAMP program

LOAD-MODULE Load external subroutine

START-MODULE Start external subroutine

START-STATEMENT-SEQUENCE Read and execute DAMP statements from file

START-LIST-GENERATION Initiate list output

ADD-LIST-OBJECTS Specify scope of list by adding areas to be output

REMOVE-LIST-OBJECTS Specify scope of list by excluding areas from output

PRINT-LIST Start list output and specify output destination

START-PATTERN-SEARCH Initiate string search

START-OPTION-DIALOG Set user options

EDIT-FILE Call EDT as a subroutine

SHOW-LAST-STATEMENT Show last DAMP statement

END Terminate DAMP

SEARCH-IN-SUBSYSTEM Restrict CSECT search to specific subsystem

SHOW-SUBSYSTEM-FOR-SEARCH Display subsystem selected for CSECT search

DAMP Dump analysis Program statements

U5663-J-Z125-11-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

DAMP statements using the system command INFORM-PROGRAM

Details on controlling DAMP functions with the system command INFORM-PROGRAM can
be found in section “System level” on page 223.

The following sections describe the DAMP statements in alphabetical order.

Operand MSG Communicate with DAMP from system level

ADD-LIST-OBJECTS statement Program Statements

170 U5663-J-Z125-11-76

ADD-LIST-OBJECTS
Define scope of list output

The ADD-LIST-OBJECTS statement specifies the scope of list output. All instances of this
statement which occur between START-LIST-GENERATION and PRINT-LIST are
collected and taken into account when the PRINT-LIST statement is issued. Similarly, all
instances of the REMOVE-LIST-OBJECTS statement are registered and taken into
account.
Due to the complexity of the statement, it is advisable to use multiple ADD-LIST-OBJECTS
statements when many different objects are to be selected.

Format

ADD-LIST-OBJECTS

GLOBAL-INFORMATION = *NONE /*INF / *STD / *OVERVIEW / *ALL-MEMORY-AREAS /

 *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ TRACES = *NONE / *ALL / list-poss(2): *SYSTEM-TRACE-TABLE / *TRACE-MANAGER-TABLES
⏐ ⏐ ,MAPS = *NONE / *ALL / list-poss(2): *CSECT-MAPS / *CONCISE-REP-INFORMATION
⏐ ⏐ ,CONTROL-BLOCKS = *NONE / *ALL / list-poss(2): *XVT / *AUDIT-TABLES
⏐ ⏐ ,MEMORY-AREAS = *NONE / *ALL / list-poss(9): *CL1 / *CL2 / *CL3 /

⏐ *CL3-PARTIAL-PAGES / *CL3-FULL-PAGES / *CL4 / *CL4-PARTIAL-PAGES /

⏐ *CL4-FULL-PAGES / *CL4-NON-PRIVILEGED
⏐ ⏐ ,PAGES = *NONE / <x-string 1..6>(...) / *INTERVAL(...)
⏐ ⏐ <x-string>(...)
⏐ ⏐ ⏐ SPACE = *VIRTUAL-MEMORY / *REAL-MEMORY (...) / *ABSOLUTE-MEMORY (...) /

⏐ ⏐ *PAM-PAGES / *HARDWARE-SYSTEM-AREA /

⏐ ⏐ *PROCESSOR-SAVED-STATUS(...) / *ALET(...)/ *SPID(...)
⏐ ⏐ ⏐ ⏐ *REAL-MEMORY(...)

⏐ ⏐ ⏐ SEGMENT = x'0' / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ *ABSOLUTE-MEMORY(...)

⏐ ⏐ ⏐ SEGMENT = x'0' / <x-string 1..8>

(part 1 of 3)

Program Statements ADD-LIST-OBJECTS statement

U5663-J-Z125-11-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

⏐ ⏐ *PROCESSOR-SAVED-STATUS(...)
⏐ ⏐ ⏐ ⏐ ⏐ CPU-NUMBER = <integer 0..31> / <x_string 1..2>
⏐ ⏐ ⏐ ⏐ *ALET(...)
⏐ ⏐ ⏐ ⏐ ⏐ IDENTIFIER = <x-string 1..8>

⏐ ⏐ *SPID(...)
⏐ ⏐ ⏐ ⏐ ⏐ IDENTIFIER = <x-string 1..16>
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = <x-string 1..6>
⏐ ⏐ ⏐ ⏐ ,TO = <x-string 1..6>
⏐ ⏐ ⏐ ⏐ ,SPACE = *VIRTUAL-MEMORY / *REAL-MEMORY(...) / *ABSOLUTE-MEMORY(...) /

⏐ ⏐ *PAM-PAGES / *HARDWARE-SYSTEM-AREA /

⏐ ⏐ *PROCESSOR-SAVED-STATUS(...) / *ALET(...) / *SPID(...)
⏐ ⏐ ⏐ ⏐ *REAL-MEMORY(...)

⏐ ⏐ ⏐ SEGMENT = x'0' / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ *ABSOLUTE-MEMORY(...)

⏐ ⏐ ⏐ SEGMENT = x'0' / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ *PROCESSOR-SAVED-STATUS(...)
⏐ ⏐ ⏐ ⏐ ⏐ CPU-NUMBER = <integer 0..31> / <x_string 1..2>
⏐ ⏐ ⏐ ⏐ *ALET(...)
⏐ ⏐ ⏐ ⏐ ⏐ IDENTIFIER = <x-string 1..8>
⏐ ⏐ ⏐ ⏐ *SPID(...)
⏐ ⏐ ⏐ ⏐ ⏐ IDENTIFIER = <x-string 1..16>
⏐ ⏐ ,MODULE = *NONE / <name 1..32>
⏐

,TASK-INFORMATION = *NONE / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ SELECT = *ERROR-TASK / *ALL-TASKS / <x-string 1..8> /

⏐ <alphanum-name 1..4> / <c-string 1..4>

(part 2 of 3)

ADD-LIST-OBJECTS statement Program Statements

172 U5663-J-Z125-11-76

⏐ ,INFORMATION = *STD / *INF / *OVERVIEW / *ALL-MEMORY-AREAS / *PARAMETERS(...)
⏐ ⏐ *PARAMETERS(...)

⏐ ⏐ TRACES = *NONE / *SYSTEM-TRACE-TABLE
⏐ ⏐ ⏐ ⏐ ,MAPS = *NONE / *USER-CSECTS
⏐ ⏐ ⏐ ⏐ ,CONTROL-BLOCKS = *NONE / *ALL / list-poss(5): *TCB / *PCBS / *SPL-STACKS /

⏐ ⏐ *TFTS / *AUDIT-TABLES
⏐ ⏐ ⏐ ⏐ ,MEMORY-AREAS = *NONE / *ALL / list-poss(7): *CL5 / *CL5-PARTIAL-PAGES /

⏐ ⏐ *CL5-FULL-PAGES / *CL5-MEMORY-POOLS / *CL6 /

⏐ ⏐ *CL6-FULL-PAGES / *CL6-MEMORY-POOLS
⏐ ⏐ ⏐ ⏐ ,PAGES = *NONE / <x-string 1..6>(...) / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ <x-string>(...)
⏐ ⏐ ⏐ ⏐ ⏐ SPACE = *VIRTUAL-MEMORY / *ALET(...)
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ *ALET(...)
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ IDENTIFIER = <x-string 1..8>
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = <x-string 1..6>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = <x-string 1..6>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,SPACE = *VIRTUAL-MEMORY / *ALET(...)
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ *ALET(...)
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,IDENTIFIER = <x-string 1..8>
⏐ ⏐ ⏐ ⏐ ,MODULE = *NONE / <name 1..32>

,USER-LIST-PROCEDURE = *NONE / <name 1..32 with-under> / <structured-name 1..32>

,WINDOW = *NONE / <integer 4..99>

,DUMP-DIAGNOSIS = *NONE / *PREANALYSIS(...)

*PREANALYSIS(...)
 ⏐ ERROR-DESCRIPTION = *NO / *YES

(part 3 of 3)

Program Statements ADD-LIST-OBJECTS statement

U5663-J-Z125-11-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Operands

GLOBAL-INFORMATION = *NONE / *INF / *STD / *OVERVIEW /
*ALL-MEMORY-AREAS / *PARAMETERS(...)
This operand is used to select global (as opposed to task-specific) areas for list output.

GLOBAL-INFORMATION = *NONE
The list output is not to include any global memory areas.

GLOBAL-INFORMATION = *INF
The list output should contain general information relating to the object to be analyzed.

GLOBAL-INFORMATION = *STD
A minimal scope list is output. This list will generally contain all the data required for
preliminary diagnosis (see section “Components and scope of the output lists” on
page 160).

GLOBAL-INFORMATION = *OVERVIEW
A system overview is output (see section “Components and scope of the output lists” on
page 160 for the contents of this overview).

GLOBAL-INFORMATION = *ALL-MEMORY-AREAS
A complete list is output (see the section “Components and scope of the output lists” on
page 160 for the contents of this list). In particular, all the pages saved by CDUMP are
output to the list in the case of system, user and area dumps.

GLOBAL-INFORMATION = *PARAMETERS(...)
This operand allows global areas to be selected individually.

TRACES = *NONE / *ALL / list-poss(2): *SYSTEM-TRACE-TABLE /
*TRACE-MANAGER-TABLES
This operand specifies the system traces to be output.

TRACES = *NONE
No system traces are to be output. This is the default value.

TRACES = *ALL
All the system traces are to be output.

TRACES = list-poss(2): *SYSTEM-TRACE-TABLE / *TRACE-MANAGER-TABLES
The system trace table and an overview of the traces managed by the trace manager
can be selected individually or in the form of a list.

MAPS = *NONE / *ALL / list-poss(2): *CSECT-MAPS /
*CONCISE-REP-INFORMATION
This parameter specifies the information to be output on loaded CSECTs and on the
correction status of the system.

MAPS = *NONE
No maps are to be output.

ADD-LIST-OBJECTS statement Program Statements

174 U5663-J-Z125-11-76

MAPS = *ALL
Both CSECT maps and the REPLOG are to be output if they exist in the diagnosis
object.

MAPS = list-poss(2): *CSECT-MAPS / *CONCISE-REP-INFORMATION
The CSECT maps and the REPLOG can be selected individually or in the form of a list.

CONTROL-BLOCKS = *NONE / *ALL / list-poss(2): *XVT / *AUDIT-TABLES
This operand specifies which tables are to be output.

CONTROL-BLOCKS = *NONE
No tables are to be output.

CONTROL-BLOCKS = *ALL
The XVT and AUDIT tables are to be output.

CONTROL-BLOCKS = list-poss(2): *XVT / *AUDIT-TABLES
The global system table XVT and the AUDIT tables can be selected individually or in
the form of a list.
If the XVT is selected, it is output in unedited form. In the case of the AUDIT tables, any
processor-local linkage AUDIT tables are to be output.

MEMORY-AREAS = *NONE / *ALL / list-poss(9): *CL1 / ... / *CL4-NON-PRIVILEGED
This parameter specifies certain global areas of the virtual address space which are
identified by their memory class and which are to be output in their entirety in standard
dump format. The default value specifies that none of these areas are to be output. The
operand *ALL combines all the memory areas listed.

PAGES = *NONE / <x-string 1..6>(...) / *INTERVAL(...)
Direct selection of memory pages or memory areas in the address space. The default
setting does not specify any particular pages for output.

PAGES = <x-string 1..6>(...)
Direct selection of a memory page.

CL1:
CL2:
CL3:
CL3-PARTIAL-PAGES:
CL3-FULL-PAGES:
CL4:
CL4-PARTIAL-PAGES:
CL4-FULL-PAGES:
CL4-NON-PRIVILEGED:

resident system modules
pageable system modules
resident tables and subsystem modules
resident partial pages
resident full pages
pageable tables and subsystem modules
pageable partial pages
pageable full pages
nonprivileged memory system pages

Program Statements ADD-LIST-OBJECTS statement

U5663-J-Z125-11-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

SPACE = *VIRTUAL-MEMORY / *REAL-MEMORY /
*ABSOLUTE_MEMORY/*PAM-PAGES/*HARDWARE-SYSTEM-AREA /
*PROCESSOR-SAVED-STATUS(...) / *ALET(...) / *SPID(...)
This operand specifies the memory type referred to by the page specification.

SPACE = *VIRTUAL-MEMORY
If no specification is made, VIRTUAL-MEMORY is assumed, i.e. virtual memory is
used by default.

SPACE = *REAL-MEMORY(...)
This operand indicates that the main memory is to be used (real address space).

SEGMENT = x'0' / <x-string 1..8>
Indicates the 4 GB segment (0,1,...) associated with the real page.
Segment 0 is the default.

SPACE = *ABSOLUTE-MEMORY(...)
This operand indicates the host-absolute addresses (e.g. in the case of a complete
VM2000 SLED file).

SEGMENT = x'0' / <x-string 1..8>
Indicates the 4 GB segment (0,1,...) associated with the absolute page.
Segment 0 is the default.

SPACE = *PAM-PAGES
The page specification refers to PAM pages.

SPACE = *HARDWARE-SYSTEM-AREA
This operand indicates that the hardware system area HSA is to be used (this area
contains, for instance, tables used for communication between the CPU and the
I/O processor). The specified page must lie within the HSA.

SPACE = *PROCESSOR-SAVED-STATUS(...)
The page specification refers to a processor saved status area.

CPU-NUMBER = <integer 0..31>
If page 0 of the processor saved status area is to be output, the CPU number
must be specified in decimal format.

CPU-NUMBER = <x-string 1..2>
If page 0 of the processor saved status area is to be output, the CPU number
must be specified in hexadecimal format.

SPACE = *ALET(...)
This operand indicates that pages from data spaces are to be used (data spaces
are extensions of the system’s virtual address space). The ALET (access list entry
token) is used to identify the data space for the system address space.

IDENTIFIER = <x-string 1..8>
The 4-byte ALET is specified in hexadecimal format.

ADD-LIST-OBJECTS statement Program Statements

176 U5663-J-Z125-11-76

SPACE = *SPID(...)
This operand indicates that pages from data spaces are to be used (data
spaces are extensions of the system’s virtual address space). The SPID (space
identification) is used to identify the data space throughout the system.

IDENTIFIER = <x-string 1..16>
The 8-byte SPID is specified in hexadecimal format.

PAGES = *INTERVAL(...)
This parameter allows a number of memory pages to be specified by means of an
interval.

FROM = <x-string 1..6>
This operand indicates the first memory page of the memory area.

TO = <x-string 1..6>
This operand indicates the last memory page of the memory area.

SPACE = *VIRTUAL-MEMORY / *REAL-MEMORY(...) /
*ABSOLUTE-MEMORY(...) / *PAM-PAGES / *HARDWARE-SYSTEM-AREA /
*PROCESSOR-SAVED-STATUS(...) / *ALET(...) / *SPID(...)
This operand specifies the type of memory to which the page specification refers.

SPACE = *VIRTUAL-MEMORY
If no specification is made, VIRTUAL-MEMORY is assumed, i.e. virtual memory is
used by default.

SPACE = *REAL-MEMORY(...)
This operand indicates that the main memory is to be used (real address space).

SEGMENT = x'0' / <x-string 1..8>
Indicates the 4 GB segment (0,1,...) associated with the real page.
Segment 0 is the default.

SPACE = *ABSOLUTE-MEMORY(...)
This operand indicates the host-absolute addresses (e.g. in the case of a complete
VM2000 SLED file).

SEGMENT = x'0' / <x-string 1..8>
Indicates the 4 GB segment (0,1,...) associated with the absolute page.
Segment 0 is the default.

SPACE = *PAM-PAGES
The page specification refers to PAM pages.

SPACE = *HARDWARE-SYSTEM-AREA
This operand indicates that the hardware system area HSA is to be used. The
specified pages must lie within the HSA.

Program Statements ADD-LIST-OBJECTS statement

U5663-J-Z125-11-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

SPACE = *PROCESSOR-SAVED-STATUS(...)
The page specification refers to a processor saved status area.

CPU-NUMBER = <integer 0..31>
If page 0 of the processor saved status area is to be output, the CPU number
must be specified in decimal format.

CPU-NUMBER = <x-string 1..2>
If page 0 of the processor saved status area is to be output, the CPU number
must be specified in hexadecimal format.

SPACE = *ALET(...)
This operand indicates that pages from data spaces are to be used (data spaces
are extensions of the system’s virtual address space). The ALET (access list entry
token) is used to identify the data space for the system address space.

IDENTIFIER = <x-string 1..8>
The 4-byte ALET is specified in hexadecimal format.

SPACE = *SPID(...)
This operand indicates that pages from data spaces are to be used (data
spaces are extensions of the system’s virtual address space). The SPID (space
identification) is used to identify the data space throughout the system.

IDENTIFIER = <x-string 1..16>
The 8-byte SPID is specified in hexadecimal format.

MODULE = *NONE / <name 1..32>
This operand specifies the entire memory area occupied by the specified system
module. The default setting specifies that this area is not output.

TASK-INFORMATION = *NONE / *PARAMETERS(...)
This operand is used to select task-specific areas.

TASK-INFORMATION = *NONE
The list output is to contain no task-specific memory areas.

TASK-INFORMATION = *PARAMETERS(...)
Selection of specified task-specific memory areas.

SELECT = *ERROR-TASK / *ALL-TASKS / <x-string 1..8> /
<alphanum-name 1..4> / <c-string 1..4>
Selection of the task for which memory areas are to be output.

SELECT = *ERROR-TASK
Selection of the error task. For system, user and area dumps, this is the only task
contained in the dump file. With SLEDs, the error task is defined by the automatic
preanalysis within DAMP.

ADD-LIST-OBJECTS statement Program Statements

178 U5663-J-Z125-11-76

SELECT = *ALL-TASKS
In the case of a SLED, task editing is carried out for all active tasks.

SELECT = <x-string 1..8>
The required task is specified by the 4-byte TID in hexadecimal format.

SELECT = <alphanum-name 1..4>
The required task is identified by an alphanumeric name which is interpreted as the
task’s TSN.

SELECT = <c-string 1..4>
The required task is identified by a character string which is interpreted as the task’s
TSN.

INFORMATION = *STD / *INF / *OVERVIEW / *ALL-MEMORY-AREAS /
*PARAMETERS(...)
This operand controls the scope of output for task-specific data.

INFORMATION = *STD
A minimal scope list is output. This list will generally contain all the data required for
preliminary diagnosis (see section “Components and scope of the output lists” on
page 160).

INFORMATION = *INF
The output list contains general information on the selected task.

INFORMATION = *OVERVIEW
A system overview is output (see section “Components and scope of the output lists”
on page 160 for the contents of this overview).

INFORMATION = *ALL-MEMORY-AREAS
A complete list is output (see section “Components and scope of the output lists” on
page 160 for the contents of this list). In particular, all the pages saved by CDUMP are
output to the list in the case of system, user and area dumps.

INFORMATION = *PARAMETERS(...)
This operand allows task-specific areas to be selected individually.

TRACES = *NONE / *SYSTEM-TRACE-TABLE
This operand defines whether task-specific information is to be output from the
system trace table. Default: no output.

MAPS = *NONE / *USER-CSECTS
This operand controls the output of information on the loaded user CSECTs.
Information on user CSECTs can only be output for user and area dumps if the
binder/loader information in class 5 memory is contained in the object.
Default: no output.

Program Statements ADD-LIST-OBJECTS statement

U5663-J-Z125-11-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

CONTROL-BLOCKS = *NONE / *ALL / list-poss(5): *TCB / ... / *AUDIT-TABLES
This operand specifies whether the task-specific control blocks are to be output in
standard dump format.

CONTROL-BLOCKS = *NONE
The task-specific control blocks are not output. This is the default setting.

CONTROL-BLOCKS = *ALL
All task-specific control blocks are to be output.

CONTROL-BLOCKS = list-poss(5): *TCB / *PCBS / *SPL-STACKS / *TFTS /
*AUDIT-TABLES
This operand allows explicit selection of task-specific control blocks. The blocks can
be selected individually or in the form of a list. TCB (task control block), PCBS
(process control blocks), SPL-STACKS, (TPR program manager stacks), TFTS
(task file tables), and AUDIT-TABLES (hardware AUDIT and linkage AUDIT).
If PCBS is specified, the PCBs are additionally output in edited format.

MEMORY-AREAS = *NONE / *ALL / list-poss(7): *CL5 / ... /
*CL6-MEMORY-POOLS
This parameter specifies certain areas of the virtual task address space which are
identified by their memory class and which are to be output in their entirety in
standard dump format.

MEMORY-AREAS = *NONE
No special areas of the virtual task address space are selected.

MEMORY-AREAS = *ALL
All memory areas of class 5 and class 6 memory are to be output in standard dump
format.

MEMORY-AREAS = list-poss(7): *CL5 / *CL5-PARTIAL-PAGES /
*CL5-FULL-PAGES / *CL5-MEMORY-POOLS / *CL6 / *CL6-FULL-PAGES /
*CL6-MEMORY-POOLS
The class 5 and class 6 memory segments can be selected individually or in the
form of a list.

CL5:
CL5-PARTIAL-PAGES:
CL5-FULL-PAGES:
CL5-MEMORY-POOLS:
CL6:
CL6-FULL-PAGES:
CL6-MEMORY-POOLS:

complete class 5 memory
privileged partial pages of class 5 memory
privileged full pages of class 5 memory
memory pool pages of class 5 memory
complete class 6 memory
nonprivileged full pages of class 6 memory
memory pool pages of class 6 memory

ADD-LIST-OBJECTS statement Program Statements

180 U5663-J-Z125-11-76

PAGES = *NONE / <x-string 1..6>(...) / *INTERVAL(...)
Direct selection of memory pages to be output.

PAGES = *NONE
If no specification is made, *NONE is assumed, i.e. no specific memory pages are
output.

PAGES = <x-string 1..6>(...)
This operand directly selects one specific memory page via a hexadecimal page
specification.

SPACE = *VIRTUAL-MEMORY / *ALET(...)
This operand specifies the memory type referred to by the page specification.

SPACE = *VIRTUAL-MEMORY
If no specification is made, VIRTUAL-MEMORY is assumed, i.e. virtual memory
is used by default.

SPACE = *ALET(...)
This operand indicates that pages from data spaces are to be used (data
spaces are extensions of the system’s virtual address space). The ALET
(access list entry token) is used to identify the data space for the task address
space.

IDENTIFIER = <x-string 1..8>
The 4-byte ALET is specified in hexadecimal format.

PAGES = *INTERVAL(...)
This parameter allows a number of memory pages to be specified by means of an
interval.

FROM = <x-string 1..6>
This operand indicates the first memory page of the memory area.

TO = <x-string 1..6>
This operand indicates the last memory page of the memory area.

SPACE = *VIRTUAL-MEMORY / *ALET(...)
This operand specifies the memory type referred to by the page specification.

SPACE = *VIRTUAL-MEMORY
If no specification is made, VIRTUAL-MEMORY is assumed, i.e. virtual memory
is used by default.

Program Statements ADD-LIST-OBJECTS statement

U5663-J-Z125-11-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

SPACE = *ALET(...)
This operand indicates that pages from data spaces are to be used (data
spaces are extensions of the system’s virtual address space). The ALET
(access list entry token) is used to identify the data space for the task address
space.

IDENTIFIER = <x-string 1..8>
The 4-byte ALET is specified in hexadecimal format.

MODULE = *NONE / <name 1..32>
This operand specifies the name of a module from the loaded user program, which
is to be output in its entirety in standard dump format. If no specification is made,
*NONE is assumed, i.e. no module is assigned.

USER-LIST-PROCEDURE = *NONE / <name 1..32 with under> /
<structured-name 1 .. 32>
This operand specifies the name of a PRODAMP program located in the currently set user
PRODAMP object library. This program is started automatically once output of this list has
been completed.

WINDOW = *NONE / <integer 4..99>
The specified window is output to a list using the current layout. Windows 4 - 9 and 21 - 99
are supported; windows 10 - 20 are 'reserved'. Only windows using standard format (dump
format, hexadecimal format, character format, assembled or symbolic) can be output.

DUMP-DIAGNOSIS = *NONE / *PREANALYSIS(...)
This operand indicates whether automatic preanalysis of the diagnostic data is to be
performed.
It is equivalent to entering DIAG=YES/NO in the LIST window, i.e. the preanalysis
procedure DIAG is either started or is not started.
The results of analysis regarding diagnosis-relevant memory pages, error causes, error
environment and error localization influences the scope of the subsequent lists.

DUMP-DIAGNOSIS = *NONE
No preanalysis is to be performed.

DUMP-DIAGNOSIS = *PREANALYSIS(...)
The preanalysis procedure DIAG is to be started. DIAG is a PRODAMP procedure from the
system PRODAMP library.
The automatic preanalysis of user and area dumps is currently not supported.

ERROR-DESCRIPTION = *NO / *YES
Indicates whether the error descriptors are to be output in the format of the retrieval
system SIS at the beginning of the output list for the system overview. These
descriptors can then be used to search for duplicates with SIS.

ADD-LIST-OBJECTS statement Program Statements

182 U5663-J-Z125-11-76

ERROR-DESCRIPTION = *NO
No error descriptors are to be output. However, the memory pages referenced during
preanalysis and relevant to diagnosis are automatically included in output for any
subsequent minimum evaluation.

ERROR-DESCRIPTION = *YES
Error descriptors are to be output.
This is equivalent to entering DESCR=YES in the LIST window, i.e. the preanalysis
procedure DESCR is started. DESCR is a PRODAMP procedure from the system
PRODAMP library.

Example

START-LIST-GENERATION
ADD-LIST GLOBAL-INFORMATION=*PAR(CONTROL-BLOCKS=*XVT) —————————————————— (1)
ADD-LIST GLOBAL-INFORMATION=*PAR(MEMORY-AREAS=(*CL1,*CL3)) ————————————— (2)
ADD-LIST TASK-INFORMATION=*PAR(X'00040333,
 INFO=(CONTROL-BLOCKS=*TCB,PAGES=X'14'(*ALET=X'05')))) ————————— (3)
ADD-LIST TASK-INFORMATION=*PAR(3UVW,INFO=*PAR(MEM=*CL6)) ——————————————— (4)

PRINT-LIST

(1)/(2) Output of global system information: XVT, class 1 and class 3 memory.

(3) The TCB and page 14 from the data space with ALET X'00000005' is to be output
for the task with TID X'00040333'.

(4) Class 6 memory is to be output for the task with TSN 3UVW.

i See the PRINT-LIST statement on page 200.

Program Statements ADD-SYMBOLS statement

U5663-J-Z125-11-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

ADD-SYMBOLS
Assign symbols for output

The ADD-SYMBOLS statement assigns additional symbol elements for use in editing
symbolic output.

Format

ADD-SYMBOLS

LIBRARY = *STD(...) / <filename 1..54 without-gen-vers>(...)

*STD(...)
 ⏐ ELEMENT = <filename 1..54 without-cat-user-gen-vers>(...)
⏐ ⏐ <filename>(...)
⏐ ⏐ ⏐ VERSION = <text 1..24>

<filename 1..54 without-gen-vers>(...)
 ⏐ ELEMENT = <filename 1..54 without-cat-user-gen-vers>(...)
⏐ ⏐ <filename>(...)
⏐ ⏐ ⏐ VERSION = <text 1..24>

ADD-SYMBOLS statement Program Statements

184 U5663-J-Z125-11-76

Operands

LIBRARY = *STD(...) / <filename 1..54 without-gen-vers>(...)
Specifies the name of the symbol library containing the symbol element.

LIBRARY = *STD(...)
The *STD operand value stands for the DAMP standard symbol library.

ELEMENT = <filename 1..54 without-cat-user-gen-vers>(...)
Specifies the name of the element containing the symbols. The symbol elements
supplied as standard with DAMP have the same name as the product to which they
belong, e.g. BS2000 or DAB.

VERSION = <text 1..24>
Specifies the version ID of the symbol element. The symbol elements supplied as
standard with DAMP have the same version ID as the version of the product to
which they belong, e.g. 190 oder 190.x1, where x=A,B,

LIBRARY = <filename 1..54 without-gen-vers>(...)
Name of the symbol library.

ELEMENT = <filename 1..54 without-cat-user-gen-vers>(...)
Specifies the name of the element containing the symbols. The symbol elements
supplied as standard with DAMP have the same name as the product to which they
belong, e.g. BS2000 or DAB.

VERSION = <text 1..24>
Specifies the version ID of the symbol element. The symbol elements supplied as
standard with DAMP have the same version ID as the version of the product to
which they belong, e.g. 190 or 190.x1, where x=A,B,

Examples

ADD-SYMBOLS SYSSMB.DAMP.<ver>(BS2000(190.H1))

ADD-S *STD(BS2000(190))

Program Statements ASSIGN-PRODAMP-LIBRARIES statement

U5663-J-Z125-11-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

ASSIGN-PRODAMP-LIBRARIES
Assign libraries for PRODAMP compiler and PRODAMP editor

The ASSIGN-PRODAMP-LIBRARIES statement is used to assign one library each for
PRODAMP source files and PRODAMP objects.

Format

Operands

SOURCE-LIBRARY = *UNCHANGED / *STD / <filename 1..54> /
*PRODAMP-SYSTEM-LIBRARY
Specifies the name of the library the PRODAMP editor is to use when locating and storing
PRODAMP source files.

SOURCE-LIBRARY = *UNCHANGED
The current name of the library is not changed.

SOURCE-LIBRARY = *STD
The user library defined in the OPTION window for which the standard
SYS.USRDMP.DAMP.<ver> is specified is selected.

SOURCE-LIBRARY = <filename 1..54>
The specified library name is used for the PRODAMP sources.

SOURCE-LIBRARY = *PRODAMP-SYSTEM-LIBRARY
Designates the PRODAMP system library. For standard installations, this is the library
$TSOS.SYSDMP.DAMP.

ASSIGN-PRODAMP-LIBRARIES

SOURCE-LIBRARY = *UNCHANGED / *STD /<filename 1..54> / *PRODAMP-SYSTEM-LIBRARY

,OBJECT-LIBRARY = *UNCHANGED / *STD / *SOURCE-LIBRARY / <filename 1..54> /

 *PRODAMP-SYSTEM-LIBRARY

ASSIGN-PRODAMP-LIBRARIES statement Program Statements

186 U5663-J-Z125-11-76

OBJECT-LIBRARY = *UNCHANGED / *STD / *SOURCE-LIBRARY / <filename 1..54> /
*PRODAMP-SYSTEM-LIBRARY
Specifies the name of the library to be used by the PRODAMP compiler for storing
PRODAMP objects and by the PRODAMP runtime system when loading PRODAMP
objects.

OBJECT-LIBRARY = *UNCHANGED
The current name of the library is not changed.

OBJECT-LIBRARY = *STD
The user library defined in the OPTION window for which the standard
SYS.USRDMP.DAMP.<ver> is specified is selected.

OBJECT-LIBRARY = *SOURCE-LIBRARY
Source library and object library are identical.

OBJECT-LIBRARY = <filename 1..54>
The specified library name is used for the PRODAMP objects.

OBJECT-LIBRARY = PRODAMP-SYSTEM-LIBRARY
Designates the PRODAMP system library. For standard installations, this is the library
$TSOS.SYSDMP.DAMP.

Examples

ASSIGN-PRODAMP-LIBRARIES SOURCE=LIB.FOR.PRODAMP, OBJECT=*SOURCE

ASSIGN MY-SOURCE-LIB, MY-OBJECT-LIB

Program Statements DROP-REGISTER statement

U5663-J-Z125-11-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

DROP-REGISTER
Define representation for disassembler

The DROP-REGISTER statement is used to cancel register declarations made by
means of the USE-REGISTER statement. If the specified module is represented in
disassembled format, the Assembler commands which use the specified register are edited
using the base address and the offset (the instruction addresses are not shown in symbolic
representation).

The DROP-REGISTER statement and the corresponding USE-REGISTER statement do
not support the output of disassembled x86 code. x86 registers may not be specified.

Format

Operands

MODULE-NAME = <name 1..32>
Specifies the module or control block (DSECT) for which the register declarations are to be
canceled.

REGISTER = *ALL / <integer 0..15>
Specifies one or more registers for which base address and offset are to be used for
disassembled representation. If *ALL is specified, the format used for all registers
previously specified in a USE-REGISTER statement is the base address and the offset
format.

REGISTER = <integer 0..15>
Specifies a /390 general register.

Examples

DROP-REGISTER MODULE-NAME=DOPEN, REGISTER=12

DROP-REGISTER DOPEN, *ALL

DROP-REGISTER

MODULE-NAME = <name 1..32>

,REGISTER = *ALL / <integer 0..15> / *RISC-REGISTER(...) 1

1 This operand is no longer meaningful because the corresponding hardware is no longer supported.
It can still be specified for reasons of compatibility.

EDIT-FILE statements Program Statements

188 U5663-J-Z125-11-76

EDIT-FILE
Load EDT as subroutine

The EDIT-FILE statement calls EDT as a subroutine and loads any file specified into the
EDT work area.

Format

Operands

NAME = *NONE / <filename 1..54 without-gen-vers>
Specifies the name of a file to be read into the EDT work area. If the work area already
contains a file, EDT is called but the new work file is not loaded. If this happens, an
appropriate message is issued in the EDT message line.

Example

EDIT-FILE FILE.HUGO

END
Terminate DAMP

The END statement terminates DAMP.

This statement has no operands.

EDIT-FILE

NAME = *NONE / <filename 1..54 without-gen-vers>

Program Statements LOAD-MODULE statement

U5663-J-Z125-11-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

LOAD-MODULE
Load module from library

The LOAD-MODULE statement loads a module from a library. In order to do this, it must be
possible to call the module via the VMOS linkage. The module can then be executed as
often as required using the START-MODULE statement. This means that DAMP users can
write their own external procedures and run them under DAMP in the way described.
A module loaded using LOAD-MODULE is only unloaded once DAMP is terminated.
LOAD-MODULE can be used within PRODAMP to improve the performance and increase
the flexibility of ENTER_MODULE (see page 269).

Format

LOAD-MODULE

LIBRARY = *STD(...) / *PRODAMP-USER-OBJECT-LIBRARY(...) / *PRODAMP-SYSTEM-LIBRARY(...) /

 <filename 1..54 without-gen-vers>(...)

*STD(...)
 ⏐ ELEMENT = <name 1..8>

*PRODAMP-USER-OBJECT-LIBRARY(...)

⏐ ELEMENT = <name 1..8>

 *PRODAMP-SYSTEM-LIBRARY(...)

⏐ ELEMENT = <name 1..8>

<filename 1..54 without-gen-vers>(...)
 ⏐ ELEMENT = <name 1..8>

LOAD-MODULE statement Program Statements

190 U5663-J-Z125-11-76

Operands

LIBRARY = *STD(...) / *PRODAMP-USER-OBJECT-LIBRARY(...) /
*PRODAMP-SYSTEM-LIBRARY(...) / <filename 1..54 without-gen-vers>(...)
Specifies the name of the library from which the module is to be loaded.

LIBRARY = *STD(...)
The DAMP module library is assigned.

ELEMENT = <name 1..8>
Name of the module to be loaded.

LIBRARY = *PRODAMP-USER-OBJECT-LIBRARY(...)
The module is loaded from the current user PRODAMP library.

ELEMENT = <name 1..8>
Name of the module to be loaded.

LIBRARY = *PRODAMP-SYSTEM-LIBRARY(...)
The module is loaded from the current system PRODAMP library. For standard
installations, this is the library $TSOS.SYSDMP.DAMP.

ELEMENT = <name 1..8>
Name of the module to be loaded.

LIBRARY = <filename 1..54 without-gen-vers>(...)
Name of the library.

ELEMENT = <name 1..8>
Name of the module to be loaded.

Examples

LOAD-MODULE *STD(MYOWNUTI)

LOAD-MODULE ELEM=MYOWNUTI

Program Statements LOG-SESSION statement

U5663-J-Z125-11-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

LOG-SESSION
Activate logging of diagnosis run

The LOG-SESSION statement causes all subsequent inputs and outputs of the DAMP
session to be logged in the specified file.

Format

Operands

LOGGING-FILE = *STD / <filename 1..54>
Name of the file in which the inputs and outputs are to be logged. If *STD is specified,
DAMP generates the file name S.LOG.DAMP.<ver>.<date>.<time>.

Example

LOG-SESSION LOGGING-FILE=LOG.HUGO

LOG-SESSION

LOGGING-FILE = *STD / <filename 1..54>

MODIFY-OBJECT-ASSUMPTIONS statement Program Statements

192 U5663-J-Z125-11-76

MODIFY-OBJECT-ASSUMPTIONS
Modify default settings for diagnosis object

The MODIFY-OBJECT-ASSUMPTIONS statement allows the user to modify the assump-
tions made automatically by DAMP regarding the data from the diagnosis object. Thus, for
instance, it is possible to use a different Assembler instruction set from the one selected by
DAMP for disassembly.

Format

MODIFY-OBJECT-ASSUMPTIONS

ADDRESSING-MODE = *UNCHANGED / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ CONTROL-BLOCK = <name 1..32 with-under> / <structured-name 1..32>
⏐ ⏐ ,MODE = *STD / *XS31 / *NXS

,INSTRUCTION-SET = *UNCHANGED / *SET1 / *SET2 / *SET3 / *SET4 / *SET5 / *STD 1

1 This operand values *SET1 through *SET4 are no longer meaningful because the corresponding hardware is
no longer supported. They can still be specified for reasons of compatibility.

Program Statements MODIFY-OBJECT-ASSUMPTIONS statement

U5663-J-Z125-11-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Operands

ADDRESSING-MODE = *UNCHANGED / *PARAMETERS(...)
The way in which the address fields are interpreted can be changed for the data structure
specified under CONTROL-BLOCK. By default, DAMP interprets all addresses as 31-bit
addresses (for /390 objects) or 32-bit addresses (for x86 objects). Switching to 24-bit or 31-
bit addresses may be desirable in some cases.

ADDRESSING-MODE = *PARAMETERS(...)
The addressing mode for the data structure specified under CONTROL-BLOCK can be
changed.

CONTROL-BLOCK = <name 1..32 with-under> / <structured-name 1..32>
This specifies the name of the data structure (DSECT, model etc.) to which the new
addressing mode is to apply.

MODE = *STD / *XS31 / *NXS
This specifies the new addressing mode. The default value (*STD) specifies that DAMP
is to interpret addresses as 31-bit addresses (for /390 objects) or 32-bit addresses (for
x86 objects). *XS31 stands for 31-bit addressing and *NXS stands for 24-bit
addressing.

INSTRUCTION-SET = *UNCHANGED / *SET5 / *STD
This specifies the Assembler instruction set for disassembled representation of /390 code.
The instruction sets are assigned to the HSI as follows:

SET5 for CFCS 3/3 (ESA server)

If INSTRUCTION-SET=*STD is specified, DAMP automatically selects the instruction set
on the basis of the hardware. DAMP also makes this setting automatically before you enter
the MODIFY-OBJECT-ASSUMPTIONS statement or if the statement is not entered at all.

Example

MODIFY-OBJECT-ASSUMPTION ADDRESSING-MODE=(ID1FCB,*NXS)

MODIFY-SCREEN-LAYOUT statement Program Statements

194 U5663-J-Z125-11-76

MODIFY-SCREEN-LAYOUT
Define new sequence and size for diagnostic windows

The MODFIY-SCREEN-LAYOUT statement is used to change the sequence and size of the
diagnostic windows displayed on the screen.

Format

MODIFY-SCREEN-LAYOUT

FIRST-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

,SECOND-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

,THIRD-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

,FOURTH-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

,FIFTH-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

,SIXTH-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

,SEVENTH-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

(part 1 of 2)

Program Statements MODIFY-SCREEN-LAYOUT statement

U5663-J-Z125-11-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Operands

FIRST-WINDOW = *UNCHANGED / <integer 0..99>(...)
...
NINTH-WINDOW = *UNCHANGED / <integer 0..99>(...)
The specified window is located at the position indicated by the operand name (FIRST-,
SECOND-, ..., NINTH-WINDOW). For instance, specifying SECOND-WINDOW=5 causes
window number 5 to be placed in the second position on the screen, provided that there is
sufficient space on the screen. Windows 0 - 9 and 21 - 99 are supported; windows 10 - 20
are 'reserved'.

SIZE = *UNCHANGED / <integer 2..19>
A new size is defined for the specified window. It is possible to specify anything from 2
to 19 lines.

Example

MODIFY-SCREEN-LAYOUT FIRST-WINDOW = 9(SIZE=4),
 SECOND-WINDOW = 33,
 THIRD-WINDOW = 4

Restriction

If the operand names FIRST-WINDOW, ... NINTH-WINDOW are used in the statement,
they must be used in an unbroken sequence and FIRST-WINDOW must be the first
operand used.

This means that the following statements are not permitted:

MODIFY-SCREEN-LAYOUT THIRD-WINDOW = 1(SIZE=4)
MODIFY-SCREEN-LAYOUT FIRST-WINDOW = 4,
 THIRD-WINDOW = 5

It is recommended that you use positional operands for the entries:

MODIFY-SCREEN-LAYOUT 9, 4, 6, 33(2)

,EIGHTH-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

,NINTH-WINDOW = *UNCHANGED / <integer 0..99>(...)

<integer>(...)
 ⏐ SIZE = *UNCHANGED / <integer 2..19>

(part 2 of 2)

OPEN-DIAGNOSIS-OBJECT statement Program Statements

196 U5663-J-Z125-11-76

OPEN-DIAGNOSIS-OBJECT
Open diagnosis object for processing

The OPEN-DIAGNOSIS-OBJECT statement assigns a diagnosis object (BS2000 dump,
SELF-LOADER dump, PAM file, active BS2000 system) for diagnosis.

DAMP requires the standard BS2000 symbols for the relevant version in order to open a
BS2000 object.

Format

OPEN-DIAGNOSIS-OBJECT

OBJECT = *SYSTEM(...) / *#0(...) / *#1(...) /... / *#9(...) / <filename 1..80 without-gen-vers with-wild>(...) /

<partial-filename 2..79 with-wild>(...)

*SYSTEM(...)

⏐ KIND-OF-SYSTEM = *BS2000

*#0(...) / *#1(...) /... / *#9(...)

⏐ KIND-OF-OBJECT = *STD / *BS2000 / *SELF-LOADER / *PAM

<filename 1..80 without-gen-vers with-wild>(...)
 ⏐ KIND-OF-OBJECT = *STD / *BS2000 / *SELF-LOADER / *PAM

<partial-filename 2..79 with-wild>(...)
 ⏐ KIND-OF-OBJECT = *STD / *BS2000 / *SELF-LOADER / *PAM

,SYMBOLS = *STD(...) / <filename 1..54 without-gen-vers>(...)

*STD(....) / <filename 1..54>(...)

⏐ ELEMENT = *BS2000(...) / <filename 1..54 without-cat-user-gen-vers>(...)

⏐ *BS2000(...)

⏐ ⏐ VERSION=*STD / <text 1..24>

⏐ <filename 1..54 without-cat-user-gen-vers>(...)

⏐ ⏐ VERSION=*STD / <text 1..24>

Program Statements OPEN-DIAGNOSIS-OBJECT statement

U5663-J-Z125-11-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Operands

OBJECT = *SYSTEM(...) / *#0(...) / *#1(...) / ... / *#9(...) /
<filename 1..80 without-gen-vers with-wild>(...) /
<partial-filename 2..79 with-wild>(...)
This specifies the type of the diagnosis object.

OBJECT = *SYSTEM(...)
*SYSTEM assigns the active system as the diagnosis object. The user must have test
authorization in order to access the active system. The system administrator can grant this
authorization using the MODIFY-USER-ATTRIBUTES command and activate it by issuing
the command MODIFY-TEST-OPTIONS PRIVILEG=*PAR(READ=8,WRITE=1) before the
program is started.

KIND-OF-SYSTEM = *BS2000
This operand permits diagnosis in the current BS2000 system.

OBJECT = *#0(...) / *#1(...) / ... / *#9(...) /
<filename 1..80 without-gen-vers with-wild>(...) /
<partial-filename 2..79 with-wild>(...)
A file is assigned as a diagnosis object. The keywords *#0 through *#9 (or #0 through #9
for short) are interpreted as link names if the ADD-FILE-LINK command was issued
beforehand with these link names.
In addition, all the wildcards permitted for SHOW-FILE-ATTRIBUTES may be specified.
If a file can be uniquely identified using the wildcards specified or the partial qualification, it
is opened. Otherwise, a message is issued stating that the specification must be qualified
in more detail. If the file name contains the expression $TSN, it is replaced by the TSN of
the task under which DAMP is currently executing.

KIND-OF-OBJECT = *STD / *BS2000 / *SELF-LOADER / *PAM
This passes the data structure of the diagnosis object to DAMP.

KIND-OF-OBJECT = *STD
For dump files with multiple objects (e.g. for a complete VM2000 SLED), the status
window (W2) is initially displayed in the dialog in INF mode with the possible selection.
The required diagnosis object can be selected by marking. Otherwise *STD has the
same effect as *BS2000.

KIND-OF-OBJECT = *BS2000
DAMP searches in the dump file for a BS2000 object for diagnosis. If no BS2000 object
is found, the dump file is opened as a self-loader.

KIND-OF-OBJECT = *SELF-LOADER
Any number of files with the structure of a dump file can be opened. DAMP does not
provide any automatic functions for SELF-LOADER dumps. All addresses are
interpreted as real addresses, so only real memory segments can be displayed in the
normal formats (see also page 141). More detailed analyses can only be performed via

OPEN-DIAGNOSIS-OBJECT statement Program Statements

198 U5663-J-Z125-11-76

PRODAMP procedures.

KIND-OF-OBJECT = *PAM
If a file does not have the same structure as a dump file, it can only be opened as a PAM
file. The data in a PAM file can only be accessed using the methods described in the
section “Processing files in PAM format” on page 140.

SYMBOLS = *STD(...) / <filename 1..54 without-gen-vers>(...)
The SYMBOLS operand must not normally be assigned a value.
This means that the default settings (SYMBOLS=*STD(*BS2000(*STD))) then take effect,
which means that DAMP loads the BS2000 symbols that match the open BS2000 object
from the standard library. If KIND-OF-OBJECT=*SELF-LOADER or *PAM was used, no
symbols are loaded. If the SYMBOLS operand is used with other values, DAMP always
tries to load symbols (also for KIND-OF-OBJECT=*SELF-LOADER or *PAM).

The SYMBOLS operand assigns the symbols that are required by DAMP to open the
diagnosis object symbolically. Additional symbols for subsequent processing can be
assigned with the ADD-SYMBOLS statement.

SYMBOLS = *STD(...) / <filename>(...)
The standard symbol library is selected as the library if *STD is specified.

If some other symbols are to be used for a BS2000 object or if special symbols are needed
for a non-BS2000 object, a symbol library containing the required symbol element can be
defined.

ELEMENT = *BS2000(...)
The BS2000 element name is selected. In the standard symbol library, this element
name contains the symbols for the analysis of the BS2000 system.

VERSION = *STD
The element version that matches the open diagnosis object is selected.

VERSION = <text 1..24>
Selects the specified element version.
The symbols in the standard symbol library have the same version name as the
product for which they are valid.

Program Statements OPEN-DIAGNOSIS-OBJECT statement

U5663-J-Z125-11-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

ELEMENT = <filename 1..54 without-cat-user-gen-vers>(...)
This specifies the name of the element containing the symbols. The symbol elements
supplied as standard with DAMP have the same name as the product to which they
belong.

VERSION = *STD
The element version that matches the open diagnosis object is selected.

VERSION = <text 1..24>
Selects the specified element version.
The symbols in the standard symbol library have the same version name as the
product for which they are valid.

Examples

OPEN-DIAGNOSIS-OBJECT OBJECT=*SYSTEM

OPEN OBJECT=$SLED.SLED.1234,SYMBOLS=syssmb.damp.<ver>(BS2000(190))

PRINT-LIST statement Program Statements

200 U5663-J-Z125-11-76

PRINT-LIST
Start list output

The PRINT-LIST statement is used to output a set of objects previously selected by means
of the statements START-LIST-GENERATION, ADD-LIST-OBJECTS or REMOVE-LIST-
OBJECTS. Output can be directed to a file or to SYSLST.

Format

Operands

OUTPUT = *SYSLST / <filename 1..54>
This specifies the destination for the output.

OUTPUT = *SYSLST
By default, output is directed to SYSLST.

OUTPUT = <filename 1..54>
Output is directed to a cataloged file (SAM file).

Note

The following steps should be followed to print a list in batch mode:

START-LIST-GENERATION —— (1)
ADD-LIST-OBJECTS ... ——— (2)
ADD-LIST-OBJECTS ...
REMOVE-LIST-OBJECTS ...
PRINT-LIST ... —— (3)

(1) Start list generation

(2) Define scope of list

(3) Print list

In interactive mode, the START-LIST-GENERATION statement displays the LIST window
where the user can define the scope of the list by marking objects and filling in masks. In
interactive mode, a corresponding field can be marked instead of issuing the PRINT-LIST
statement.

PRINT-LIST

OUTPUT = *SYSLST / <filename 1..54>

Program Statements PRINT-LOGGING-FILE statement

U5663-J-Z125-11-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

PRINT-LOGGING-FILE
Start list output

The PRINT-LOGGING-FILE statement defines the output layout of a logging file and
initiates printing of the file.

Format

Operands

LOGGING-FILE = <filename 1..54 without-gen-vers>
Specifies the name of the logging file to be processed.

OUTPUT-FILE = *STD / <filename 1..54 without-gen-vers>
Specifies the name of the output file to be generated.
*STD means output to SYSLST.

LAYOUT = *STD / *TOMDOC / *OPTIONS(...)
Specifies the format of the output file.

LAYOUT = *STD
Sets default values for the format of the output file.

LAYOUT = *TOMDOC
The output file is to be edited using the control characters from the text editing system
TOM-DOC.

PRINT-LOGGING-FILE

LOGGING-FILE = <filename 1..54 without-gen-vers>

,OUTPUT-FILE = *STD / <filename 1..54 without-gen-vers>

,LAYOUT = *STD / *TOMDOC / *OPTIONS(...)

*OPTIONS(...)
 ⏐ LINES-PER-PAGE = <integer 1..100>
⏐ ⏐ ,LOWER-CHARACTERS = *YES / *NO
⏐ , ⏐ ,NIL-CHARACTERS = <x-string 1..2> / <c-string 1..1>
⏐⏐ ,TRASH-CHARACTERS = <x-string 1..2> / <c-string 1..1>

,PRINT = *NO / *YES / *ERASE

PRINT-LOGGING-FILE statement Program Statements

202 U5663-J-Z125-11-76

LAYOUT = *OPTIONS(...)
The layout of the output file can be defined using the following options:

LINES-PER-PAGE = <integer 1..100>
Determines the number of lines to be printed per page.

LOWER-CHARACTERS = *YES / *NO
Specifies whether lowercase letters are to be printed (*YES) or whether
they are to be converted to uppercase before printing (*NO).

NIL-CHARACTERS = <x-string 1..2> / <c-string 1..1>
Defines the representation of the NIL character.

TRASH-CHARACTERS = <x-string 1..2> / <c-string 1..1>
Defines the representation of the smudge character.

PRINT = *NO / *YES / *ERASE
Specifies whether the generated output file is to be printed and whether it should
subsequently be deleted.

PRINT = *NO
The generated output file is not printed. This is the default value.

PRINT = *YES
The generated output file is printed but not subsequently deleted.

PRINT = *ERASE
The generated output file is printed and is subsequently deleted.

Examples

PRINT-LOGGING-FILE LOGGING-FILE=LOG.HUGO,OUTPUT-FILE=LOG.ABC.EDITED,
 PRINT=*ERASE

Program Statements REMOVE-LIST-OBJECTS statement

U5663-J-Z125-11-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

REMOVE-LIST-OBJECTS
Control list output

The REMOVE-LIST-OBJECTS statement allows users to exclude from output areas
previously assigned by means of the ADD-LIST-OBJECTS command.
The options available for canceling selected objects are, however, of a relatively general
nature. If only specific areas are to be excluded from output for a given task, the entire task
must first be canceled using the REMOVE-LIST-OBJECTS statement. The areas to be
output must then be assigned by way of the ADD-LIST-OBJECTS statement. The areas not
required for output are not assigned during this process.

Format

Operands

GLOBAL-INFORMATION = *NONE / *ALL / *TRACES / *MAPS /
*CONTROL-BLOCKS / *MEMORY-AREAS / *PAGES / *MODULE
Output of global information can be suppressed entirely or for specific areas.

GLOBAL-INFORMATION = *NONE
If no selection is made, the areas declared by way of ADD-LIST-OBJECTS are output.

GLOBAL-INFORMATION = *ALL
This specification excludes not only the areas declared by means of ADD-LIST-OBJECTS,
but also the default areas (see brief report).

GLOBAL-INFORMATION = *TRACES
The global traces declared by means of ADD-LIST-OBJECTS are not output.

GLOBAL-INFORMATION = *MAPS
Information on the loaded CSECTs and the correction status of the system selected by the
ADD-LIST-OBJECTS statement is not output.

GLOBAL-INFORMATION = *CONTROL-BLOCKS
All control blocks selected for output by the ADD-LIST-OBJECTS statement are not output.

REMOVE-LIST-OBJECTS

GLOBAL-INFORMATION = *NONE / *ALL / *TRACES / *MAPS / *CONTROL-BLOCKS /

*MEMORY-AREAS / *PAGES / *MODULE

,TASK-INFORMATION = *NONE / *ALL / <x-string 1..8> / <alphanum-name 1..4> / <c-string 1..4>

,USER-LIST-PROCEDURE = *NONE / *ALL / <name 1..32 with-under> / <structured-name 1..32>

,WINDOW = *NONE / *ALL / <integer 4..99>

,DUMP-DIAGNOSIS = *NONE / *ALL

REMOVE-LIST-OBJECTS statement Program Statements

204 U5663-J-Z125-11-76

GLOBAL-INFORMATION = *MEMORY-AREAS
The areas of the virtual address space selected for output by the ADD-LIST-OBJECTS
statement are not output.

GLOBAL-INFORMATION = *PAGES
Pages or areas of the address space (virtual, main memory, HSA, ...) selected for output by
the ADD-LIST-OBJECTS statement are not output.

GLOBAL-INFORMATION = *MODULE
The memory area of the specified module selected for output by the ADD-LIST-OBJECTS
statement is not output.

TASK-INFORMATION = *NONE / *ALL / <x-string 1..8 > /<alphanum-name 1..4> /
<c-string 1..4>
Output of task-specific information can be suppressed entirely or for individual tasks.

TASK-INFORMATION = *NONE
If no selection is made, the information declared in ADD-LIST-OBJECTS for the specified
tasks is output.

TASK-INFORMATION = *ALL
This specification excludes not only the information declared in ADD-LIST-OBJECTS for
the tasks specified there, but also the information for the default tasks.

TASK-INFORMATION = <x-string 1..8 >
The specified hexadecimal value is interpreted as the TID of the task for which information
is not to be output.

TASK-INFORMATION = <alphanum-name 1..4>
The specified alphanumeric name is interpreted as the TSN of the task for which
information is not to be output.

TASK-INFORMATION = <c-string 1..4 >
The specified character string is interpreted as the TSN of the task for which information is
not to be output.

Program Statements REMOVE-LIST-OBJECTS statement

U5663-J-Z125-11-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

USER-LIST-PROCEDURE = *NONE / *ALL / <name 1..32 with-under>
<structured-name 1..32>
This operand specifies the name of a PRODAMP program located in the current
PRODAMP object library. This program should be started automatically when list output is
complete.

USER-LIST-PROCEDURE = *NONE
If no specification is made, the user programs declared by means of ADD-LIST-OBJECTS
are started automatically after the list has been output.

USER-LIST-PROCEDURE = *ALL
None of the user programs declared with ADD-LIST-OBJECTS are started when list output
is complete.

USER-LIST-PROCEDURE = <name 1..32 with-under> / <structured-name 1..32>
The specified user program is not started when list output is completed.

WINDOW = *NONE / *ALL / <integer 4..99>
This specifies a window whose layout was selected for output to a list using the ADD-LIST-
OBJECTS statement.
The user can exclude all windows or specify individual windows for exclusion.

WINDOW = *NONE
All the windows declared by means of ADD-LIST-OBJECTS are output.

WINDOW = *ALL
None of the windows declared by means of ADD-LIST-OBJECTS is output.

WINDOW = <integer 4..99>
The specified window is not output. Windows 4 - 9 and 21 - 99 are supported; windows 10
- 20 are 'reserved'.

DUMP-DIAGNOSIS = *NONE / *ALL
Invocation of automatic preanalysis can be deactivated (*ALL).
The information set in the status window (W2) in INF mode can be output.

Example

REMOVE-LIST-OBJECTS TASK-INFORMATION=X'0004000E',WINDOW=*ALL

i Once the PRINT-LIST statement has been issued, the selection of the areas to be
output is reset to the default. However, the scope of the standard output list can be
restricted even further by means of the REMOVE-LIST-OBJECTS statement
(see the description of the GLOBAL-INFORMATION and TASK-INFORMATION
operands).

REPEAT-SESSION statement Program Statements

206 U5663-J-Z125-11-76

REPEAT-SESSION
Replay diagnostics log

The REPEAT-SESSION statement is used to replay the inputs and outputs made during a
DAMP session and recorded in a file.

Format

Operands

LOGGING-FILE = <filename 1..54>
Specifies the name of the file containing the log to be replayed.

Example

REPEAT-SESSION LOGGING-FILE=LOG.HUGO

REPEAT-SESSION

LOGGING-FILE = <filename 1..54>

Program Statements RESUME-PRODAMP-PROGRAM statement

U5663-J-Z125-11-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

RESUME-PRODAMP-PROGRAM
Resume interrupted PRODAMP program

The RESUME-PRODAMP-PROGRAM statement resumes an interrupted PRODAMP
program. If the program was not interrupted, it is started from from the beginning.

Format

Operands

NAME = *INTERRUPTED / <integer 4..99> / <structured-name 1..32> /
<name 1..32 with-under>
Specifies the PRODAMP program to be resumed.

NAME = *INTERRUPTED
If a number of programs have been interrupted, the program most recently interrupted is
resumed.

NAME = <integer 4..99>
Specifies the number of the window to be assigned to the PRODAMP compiler. The object
already generated by the compiler is to be resumed. Windows 4 - 9 and 21 - 99 are
supported; windows 10 - 20 are “reserved”.

NAME = <structured-name 1..32> / <name 1..32 with-under>
Specifies the name of a program already started with this name using the START-
PRODAMP-PROGRAM statement or which has been compiled without errors under this
name by the PRODAMP compiler.

PARAMETERS = *NONE / list-poss(32): <integer -2147483648..2147483647> /
<x-string 1..8> / <c-string 1..80>
This operand allows a list of up to 32 parameters to be passed to the interrupted PRODAMP
program. The parameters can be declared in numeric or hexadecimal format or as a
character string. See page 257 for details on how the PRODAMP program takes over the
values passed.

Examples

RESUME-PRODAMP-PROGRAM NAME=*INTERRUPTED, PAR=(X'10000','HUGO')
RESUME-PRODAMP-PROGRAM PROC1,(12,13,14)

RESUME-PRODAMP-PROGRAM

NAME = *INTERRUPTED / <integer 4..99> / <structured-name 1..32 / <name 1..32 with-under>

,PARAMETERS = *NONE / list-poss(32): <integer -2147483648..2147483647> / <x-string 1..8> /

<c-string 1..80>

SEARCH-IN-SUBSYSTEM statement Program Statements

208 U5663-J-Z125-11-76

SEARCH-IN-SUBSYSTEM
Perform CSECT search in subsystem

Function

The SEARCH-IN-SUBSYSTEM statement restricts the CSECT search to a single
subsystem. This restriction can be undone with the same statement. If no subsystem
version is specified, the first subsystem from the subsystem list is used. The unique context
name can be specified as an alternative to specifying SUBSYSTEM/VERSION.

All subsystems are still taken into account for the qualification of addresses.

Format

Operands

SUBSYSTEM = *ALL / <name 1..8>(...) / <c-string 1..8>(...) / *CONTEXT(...)
Specifies the name of the subsystem..

SUBSYSTEM = *ALL
This entry undoes a previously imposed restriction.

SUBSYSTEM = <name 1..8>(...) / <c-string 1..8>(...)
Specifies the name of the subsystem as displayed in the SUSY window.

VERSION = *FIRST-FOUND / <filename 1..8> / <c-string 1..8>
Specifies the version of the selected subsystem. If no subsystem version is specified,
the first subsystem in the subsystem list with the specified name is used.

SUBSYSTEM = *CONTEXT(...)
Specifies the context name corresponding to the subsystem.

CONTEXT = <text 1..32>
The context name specified here can be taken from the SUSY window (see the CTX
setting on page 115).

SEARCH-IN-SUBSYSTEM

SUBSYSTEM = *ALL / <name 1..8>(...) /<c-string 1..8>(...) / *CONTEXT(...)

<name 1..8>(...)

⏐ VERSION = *FIRST-FOUND / <filename 1..8> / <c-string 1..8>

*CONTEXT(...)

⏐ CONTEXT = <text 1..32>

Program Statements SHOW-EDITED-INFORMATION statement

U5663-J-Z125-11-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

SHOW-EDITED-INFORMATION
Output edited diagnostic data

The SHOW-EDITED-INFORMATION statement is used to output edited diagnostic data to
the specified dump window.

Format

Operands

INFORMATION = *STORAGE-EDIT / *AUDIT-TABLE-EDIT / *TRACE-TABLE-EDIT /
*TASK-TABLES / *SUBSYSTEM-INFORMATION / *DUMPED-SYSTEM-FILE /
*MEMORY-ATTRIBUTES / *SPECIAL(...)
Specifies the method used to edit the data.

INFORMATION = *STORAGE-EDIT
The data is edited using the layout of the standard DAMP window. Any special editing
method previously selected for the data will be canceled.

INFORMATION = *AUDIT-TABLE-EDIT
If AUDIT tables (hardware AUDIT or linkage AUDIT) are contained in a dump, the first table
found is edited and displayed in the specified window.
The AUDIT window allows you to display other AUDIT tables subsequently. See page 123
for further details.

INFORMATION = *TRACE-TABLE-EDIT
In the case of SLEDs and SNAP dumps, the entire trace table is edited, while in the case
of system dumps the task-specific trace table is edited. The table is then displayed in the
specified window. See page 108 for further details.

INFORMATION = *TASK-TABLES
The contents of a number of freely-selectable fields are displayed in the form of a tabular
overview for all the tasks active in the system. See page 111 for further details.

SHOW-EDITED-INFORMATION

INFORMATION = *STORAGE-EDIT / *AUDIT-TABLE-EDIT / *TRACE-TABLE-EDIT / *TASK-TABLES /

*SUBSYSTEM-INFORMATION / *DUMPED-SYSTEM-FILE / *MEMORY-ATTRIBUTES /

*SPECIAL(...)

*SPECIAL(...)
 ⏐ NAME = <structured-name 1..255>

,WINDOW = *NEXT-FREE / <integer 4..99>

SHOW-EDITED-INFORMATION statement Program Statements

210 U5663-J-Z125-11-76

INFORMATION = *SUBSYSTEM-INFORMATION
Selected data is edited and output for the subsystems currently active in the system. See
page 113 for further details.

INFORMATION = *DUMPED-SYSTEM-FILE
This displays, edits and generates system files and dump sections. See page 120 for
further details.

INFORMATION = *MEMORY-ATTRIBUTES
This provides information on memory allocation and memory attributes of the current
address space. See page 111 for further details.

INFORMATION = *SPECIAL(...)
This operand provides the option of special ad hoc formats. You must specify the name of
a dynamically loadable DAMP module which implements this function. The module is then
dynamically loaded from the library SYSLNK.DAMP.<ver>.

NAME = <structured-name 1..255>
This specifies the name of the module in the library SYSLNK.DAMP.<ver> which
implements the required special function.
This operand is only supported for reasons of compatibility.

WINDOW = *NEXT-FREE / <integer 4..99>
This specifies the window in which the edited diagnostic data is to be output.
Windows 4 - 9 and 21 - 99 are supported; windows 10 - 20 are 'reserved'.

Examples

SHOW-EDITED-INFORMATION INFORMATION=*TRACE-TABLE-EDIT, WINDOW=99

Program Statements SHOW-LAST-STATEMENT statement

U5663-J-Z125-11-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

SHOW-LAST-STATEMENT
Display last DAMP statement

The statement SHOW-LAST-STATEMENT redisplays the most recently issued DAMP
statement in the DAMP command line. This allows the statement to be modified if
necessary and then issued again.

This statement has no operands.

Multiple input of the SHOW-LAST-STATEMENT statement enables you to scroll back in the
statement history.

i The statement is compatible with the ISP statement #.

SHOW-PRODAMP-LIBRARIES
Display PRODAMP libraries

The SHOW-PRODAMP-LIBRARIES statement displays the names of the user libraries
currently assigned for PRODAMP in the message lines of the DAMP screen.

This statement has no operands.

SHOW-SUBSYSTEM-FOR-SEARCH
Display currently set subsystem

Function

The SHOW-SUBSYSTEM-FOR-SEARCH statement displays the subsystem set by means
of SEARCH-IN-SUBSYSTEM.

This statement has no operands.

START-LIST-GENERATION statement Program Statements

212 U5663-J-Z125-11-76

START-LIST-GENERATION
Prepare list output

The START-LIST-GENERATION statement is used to prepare for list output. The areas to
be output are selected in the LIST window or using the ADD-LIST-OBJECTS and
REMOVE-LIST-OBJECTS statements. List output is actually started using the PRINT-LIST
statement.

Format

Operands

FILES-TO-EVALUATE = *CURRENT / *#0 / *#1 / ... / *#9 /
<filename 1..80 without-gen-vers-with-wild>(...) /
<partial-filename 2..79 with-wild>(...)
This specifies the files on which list editing is to be performed.
This operand has no effect in interactive mode.

FILES-TO-EVALUATE = *CURRENT
The dump file which is currently open (*CURRENT) is used. This is the default value.

FILES-TO-EVALUATE = *#0 / *#1 / ... / *#9
The file that was assigned to the selected link name with the ADD-FILE-LINK command is
used.

START-LIST-GENERATION

FILES-TO-EVALUATE = *CURRENT / *#0 / *#1 / *#2 / *#3 / *#4 / *#5 / *#6 / *#7 / *#8 / *#9 /

<filename 1..80 without-gen-vers with-wild>(...) /

<partial-filename 2..79 with-wild>(...)

<filename>(...)
 ⏐ EVALUATE = *FIRST-MATCH / *ALL-MATCHES

<partial-filename>(...)
 ⏐ EVALUATE = *FIRST-MATCH / *ALL-MATCHES

,WINDOW = *NEXT-FREE / <integer 4..99>

Program Statements START-LIST-GENERATION statement

U5663-J-Z125-11-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

FILES-TO-EVALUATE = <filename 1..80 without-gen-vers-with-wild>(...)
It is possible to select more than one file by specifying a fully qualified file name including
wildcards.

EVALUATE = *FIRST-MATCH / *ALL-MATCHES
If more than one file matches the file name specified using wildcards, the EVALUATE
operand specifies whether only the first file is to be evaluated (*FIRST-MATCH) or
whether all matched files are to be evaluated (*ALL-MATCHES). The default setting is
that only the first matching file is evaluated.

FILES-TO-EVALUATE = <partial-filename 2..79 with-wild>(...)
It is possible to select more than one file by specifying a partially qualified file name
including wildcards.

EVALUATE = *FIRST-MATCH / *ALL-MATCHES
If more than one file matches the file name specified using wildcards, the EVALUATE
operand specifies whether only the first file is to be evaluated (*FIRST-MATCH) or
whether all matched files are to be evaluated (*ALL-MATCHES). The default setting is
that only the first matching file is evaluated.

WINDOW = *NEXT-FREE / <integer 4..99>
This operand is only permitted in interactive mode
This specifies the window in which the selection mask for generating a list is to be displayed
(the LIST window).
The default value (*NEXT-FREE) specifies that the next free window is to be used as the
LIST window. Windows 4 - 9 and 21 - 99 are supported; windows 10 - 20 are 'reserved'.

Examples

START-LIST-GENERATION FILES=$SYSDUMP.*DCLOSE*(EVAL=*ALL)

S-L-G FILES=*CURRENT, WINDOW=98

START-MODULE statement Program Statements

214 U5663-J-Z125-11-76

START-MODULE
Start external subroutine

The START-MODULE statement calls an external subroutine using the VMOS linkage. If
the subroutine is not yet loaded, DAMP attempts to load it from the SYSLNK.DAMP.<ver>
library. The LOAD-MODULE statement must be used to inform DAMP of the location of
subroutines from other libraries. If an error occurs in a subroutine, the subroutine is aborted,
but not by DAMP.
If the subroutine is in an endless loop, it can be aborted by pressing [K2] and then entering
the BS2000 command INFORM-PROGRAM MSG='*CANCEL'. DAMP then continues
normally. See also the LOAD-MODULE statement on page 189.

Format

Operands

NAME = <name 1..8>
This specifies the name of the external subroutine to be called.

PARAMETERS = <cmd-rest 0..4096>
This defines a character string which is passed unchanged to the subroutine, i.e. the
program to be called is passed the address of the string in register R1.

Example

START-MODULE NAME=DCM, PARAMETERS=WHATEVER YOU WANT

START-MODULE

NAME = <name 1..8>

,PARAMETERS = <cmd-rest 0..4096>

Program Statements START-OPTION-DIALOG statement

U5663-J-Z125-11-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

START-OPTION-DIALOG
Set user options

The START-OPTION-DIALOG statement displays a selection mask (OPTIONS window)
where the user can set the global default values for DAMP.
The START-OPTION-DIALOG statement is only permitted in interactive mode.

See page 135 for further details.

Format

Operands

WINDOW = *NEXT-FREE / <integer 4..99>
This specifies the window in which the selection mask for setting the default values is to be
displayed (the OPTIONS window).
The default value (*NEXT-FREE) specifies that the next free window is to be used as the
OPTIONS window. Windows 4 - 9 and 21 - 99 are supported; windows 10 - 20 are
'reserved'.

Example

START-OPTION-DIALOG WINDOW=4

START-OPTION-DIALOG

WINDOW = *NEXT-FREE / <integer 4..99>

START-PATTERN-SEARCH statement Program Statements

216 U5663-J-Z125-11-76

START-PATTERN-SEARCH
Prepare string search

The START-PATTERN-SEARCH statement displays the selection mask for a selective
string search in the required window.

See page 125 for further details.

Format

Operands

WINDOW = *NEXT-FREE / <integer 4..99>
This specifies the window in which the selection mask (FIND window) is to be displayed.
The default value (*NEXT-FREE) specifies that the next free window is to be used.
Windows 4 - 9 and 21 - 99 are supported; windows 10 - 20 are 'reserved'.

Example

START-PATTERN-SEARCH WINDOW=5

START-PATTERN-SEARCH

WINDOW = *NEXT-FREE / <integer 4..99>

Program Statements START-PRODAMP-EDITOR statement

U5663-J-Z125-11-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

START-PRODAMP-EDITOR
Load editor for PRODAMP compiler

The START-PRODAMP-EDITOR statement assigns a special DAMP window (PRODAMP
window). This window can then be used to edit, compile and execute PRODAMP
procedures.
It is possible to read a PRODAMP source into this window from a file when the window is
called (see the SOURCE operand).
For details on working with the PRODAMP compiler, see section “Working with procedures
(special window: PROC)” on page 298.

Format

Operands

WINDOW = *NEXT-FREE / <integer 4..99>
This specifies the window to be used to display the PRODAMP window.
The default value (*NEXT-FREE) specifies that the next free window is to be used as the
PRODAMP window. Windows 4 - 9 and 21 - 99 are supported; windows 10 - 20 are
'reserved'.

SOURCE = *NONE / <filename 1..54>
This specifies the name of a file whose contents act as the source to be read into the
PRODAMP window. The default setting does not assign a file.

Example

START-PRODAMP-EDITOR WINDOW=6, SOURCE=MY.PRODAMP.SOURCE

START-PRODAMP-EDITOR

WINDOW = *NEXT-FREE / <integer 4..99>

,SOURCE = *NONE / <filename 1..54>

START-PRODAMP-PROGRAM statement Program Statements

218 U5663-J-Z125-11-76

START-PRODAMP-PROGRAM
Load and start PRODAMP program

The START-PRODAMP-PROGRAM statement loads and starts PRODAMP program from
a PRODAMP library.

Format

Operands

NAME = <name 1..32 with-under> / <structured-name 1..32> /
*LIBRARY-ELEMENT(...)
Designates the name of the PRODAMP program.

NAME = <name 1..32 with-under> / <structured-name 1..32>
Loads and starts a PRODAMP program from the currently set PRODAMP user object
library. This name is identical to the name of the library element.

NAME = *LIBRARY-ELEMENT(...)
Loads and starts a PRODAMP program from the selected PRODAMP library. The name of
the program is identical to the name of the library element.

LIBRARY = *PRODAMP-USER-OBJECT-LIBRARY /
*PRODAMP-SYSTEM-LIBRARY / <filename 1..54 without-gen-vers>
Designates the PRODAMP library from which the program is to be loaded.

LIBRARY = *PRODAMP-USER-OBJECT-LIBRARY
Loads the PRODAMP program from the currently set PRODAMP user object library.

LIBRARY = *PRODAMP-SYSTEM-LIBRARY
Loads the PRODAMP program from the PRODAMP system library. For standard
installations, this is the library $TSOS.SYSDMP.DAMP.

LIBRARY = <filename 1..54 without-gen-vers>
Loads the PRODAMP program from the specified PRODAMP library.

START-PRODAMP-PROGRAM

NAME = <name 1..32 with-under> / <structured-name 1..32> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

⏐ LIBRARY = *PRODAMP-USER-OBJECT-LIBRARY / *PRODAMP-SYSTEM-LIBRARY /

⏐ <filename 1..54 without-gen-vers>

⏐ ELEMENT = <name 1..32 with-under> / <structured-name 1..32>

,PARAMETERS = *NONE / list-poss(32): / <integer -2147483648..2147483647> / <x-string 1..8> /

<c-string 1..80>

Program Statements START-PRODAMP-PROGRAM statement

U5663-J-Z125-11-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

ELEMENT = <name 1..32 with-under> / <structured-name 1..32>
Designates an element from a PRODAMP library. The name of the element is identical
to the name of the PRODAMP program that is to be loaded and started.

PARAMETERS = *NONE / list-poss(32): <integer -2147483648..2147483647> /
<x-string 1..8> / <c-string 1..80>
This operand can be used to pass a list of up to 32 parameters to the PRODAMP program.
The parameters can be defined numerically or as hexadecimal or character strings. For
more details on transferring values to the PRODAMP program, see page 257.

Example

START-PRODAMP-PROGRAM NAME=TEST, PARAMETER = (1,2,X'ED','HUGO')

Notes

– In contrast to the ASSIGN-PRODAMP-LIBRARIES statement, the *LIBRARY-
ELEMENT operand switches the PRODAMP user object library only for the duration of
the PRODAMP program; on exiting the program, the earlier state is restored.

– On terminating the PRODAMP program started with START-PRODAMP-PROGRAM,
all PRODAMP objects loaded for this run are unloaded. Note, however, that further
objects may have been dynamically loaded due to subroutine calls. The objects are not
unloaded on interrupting the program with the PRODAMP statement INTERRUPT.

– However, when a PRODAMP program is executed or compiled without errors in a
PROC window (see page 299), this object and the dynamically loaded objects are not
unloaded until the associated PROC window is closed or “New” is entered in the mode
field.

– If, when loading a PRODAMP object, DAMP determines that an object of the same
name is already loaded, the object is not reloaded. This also applies to the implicit
dynamic loading of objects on calling a subroutine.

START-STATEMENT-SEQUENCE statement Program Statements

220 U5663-J-Z125-11-76

START-STATEMENT-SEQUENCE
Read DAMP statements from file

The START-STATEMENT-SEQUENCE statement reads DAMP statements from a file and
then executes them. All output from DAMP is suppressed until the last statement has been
read.
If the file itself in turn contains a START-STATEMENT-SEQUENCE statement calling a
statement sequence from a different file, statements are then read from this second file. The
remaining statements in the original file are, however, no longer executed. For this reason,
it only makes sense to use the START-STATEMENT-SEQUENCE statement as the last
statement in a file of this sort.

Format

Operands

FILENAME = <filename 1..54>
Specifies the file from which the DAMP statements are to be read.

STOP-LOGGING
Terminate logging of diagnosis run

The STOP-LOGGING statement terminates the logging of the diagnosis run started with
the LOG-SESSION statement.

This statement has no operands.

START-STATEMENT-SEQUENCE

FILENAME = <filename 1..54>

.......

.......
START-STATEMENT-SEQUENCE
DAMP.AUTO1
.......

......

......

......
START-STATEMENT-SEQUENCE
DAMP.AUTO2

......

......

......

......

DAMP (dialog or batch) /
PRODAMP

DAMP.AUTO1 DAMP.AUTO2

Program Statements USE-REGISTER statement

U5663-J-Z125-11-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

USE-REGISTER
Define register use for disassembled output

The USE-REGISTER statement specifies that a particular register in the specified module
is to be taken as the base for an area of the module or for a particular control block (DSECT)
in the event of disassembled output. This means that the instructions are no longer
specified using the base/offset format, but as an relative offset within the module or via the
field names from the relevant control block.

The USE-REGISTER statement and the corresponding DROP-REGISTER statement do
not support the output of disassembled x86 code. x86 registers may not be specified.

Format

USE-REGISTER

MODULE-NAME = <name 1..32>

,REGISTER = <integer 0..15> / *RISC-REGISTER(...) 1

,FOR = *MODULE-BASE(...) / *CONTROL-BLOCK(...)

*MODULE-BASE(...)

⏐ DISPLACEMENT = 0 /<integer -2147483648..2147483647> / <x-string 1..8>

*CONTROL-BLOCK(...)

⏐ NAME = <structured-name 1..32> / <name 1..32 with-under>

1 The operand value *RISC-REGISTER(...) is no longer meaningful because the corresponding hardware is no
longer supported. It can still be specified for reasons of compatibility.

USE-REGISTER statement Program Statements

222 U5663-J-Z125-11-76

Operands

MODULE-NAME = <name 1..32>
Specifies the name of the module to which the declaration for the disassembled
output is to apply.

REGISTER = <integer 0..15>
Specifies the register to be used as the base register.

REGISTER = <integer 0..15>
Specifies a /390 general register.

FOR = *MODULE-BASE(...)
The register is to be used as the base register for the specified module.

DISPLACEMENT = 0 / <integer -2147483648..2147483647> / <x-string 1..8>
Specifies the relative starting address of the area (within the specified module) for which
the register is to be used as the base.

FOR = *CONTROL-BLOCK(...)
The register is to be used as the base register for a control block.

NAME = <structured-name 1..32> / <name 1..32 with-under>
Specifies the name of the control block for which the register is to be used as the base.

Examples

USE-REGISTER MODULE-NAME=DOPEN, REGISTER=10,
FOR=*MODULE-BASE(DISPLACEMENT=X'1000')

USE-REGISTER MODULE=DCLOSE, REG=4, FOR=*CONTROL-BLOCK(NAME=EXVT)

Program Statements System level

U5663-J-Z125-11-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.6.2 System level

DAMP statements via the system command INFORM-PROGRAM

If DAMP is interrupted using the [K2] key, DAMP functions can also be addressed via the
BS2000 command INFORM-PROGRAM.
The MSG operand of the command is used to communicate with DAMP.

Format: INFORM-PROGRAM

Input in system mode is as follows: /INFORM-PROGRAM MSG='<function>'

Format: MSG = '<function>'

INFORM-PROGRAM

MSG = *NO / <c-string 1..64>

,JOB-IDENTIFICATION = *OWN / *TSN(...) / *MONJV(...)

*TSN(...)
 ⏐ TSN = <alphanum-name 1..4>

*MONJV(...)
 ⏐ MONJV = <filename 1..54 without-gen>

INFORM-PROGRAM MSG='<function>'

FUNCTION = *RESUME / HALT / *END / *TERMINATE / *DUMP / *TERMD / *ESCAPE / *BREAK /

*CANCEL / *LOG-SESSION / *STOP-LOGGING / *REPEAT-SESSION(...) /

*MODIFY-PAGE-ACCESS(...)

*REPEAT-SESSION(...)
 ⏐ LOGGING-FILE = <filename 1..54>

*MODIFY-PAGE-ACCESS(...)
 ⏐ AREA = <x-string 1..8> / <name 1..8>(...)
⏐ ⏐ <name>(...)
⏐ ⏐ ⏐ DISPLACEMENT = 0 / <integer 0..9> / <x-string 1..8>
⏐ ⏐ ,STATE = *READ-ONLY / *WRITEABLE

System level Program Statements

224 U5663-J-Z125-11-76

Operands

FUNCTION = *RESUME / *HALT / *END / *TERMINATE / *DUMP / *TERMD / *ESCAPE /
*BREAK / *CANCEL / *LOG-SESSION / *STOP-LOGGING / *REPEAT-SESSION(...) /
*MODIFY-PAGE-ACCESS(...)
Indicates the functions which can be assessed using the INFORM-PROGRAM command.

FUNCTION = *RESUME
DAMP is resumed at the point it was interrupted with the [K2] key.

FUNCTION = *HALT / *END / *TERMINATE
This terminates DAMP without a memory dump.
If DAMP is terminated abnormally and if a START-MODULE statement was active at the
time of the interruption, the command /INFORM-PROGRAM MSG='*HALT' only aborts the
external subroutine. DAMP can be resumed.

FUNCTION = *DUMP / *TERMD
This terminates DAMP with a memory dump.

FUNCTION = *ESCAPE / *BREAK
This displays the point at which DAMP was interrupted by [K2].

FUNCTION = *CANCEL
This aborts any current DAMP function.

FUNCTION = *LOG-SESSION
This activates logging.

FUNCTION = *REPEAT-SESSION(...)
This replays the diagnostics log.

LOGGING-FILE = <filename 1..54>
This specifies the name of the file in which the inputs and outputs from the DAMP
session were logged.

FUNCTION = *STOP-LOGGING
This deactivates logging.

FUNCTION = *MODIFY-PAGE-ACCESS(...)
This changes the status of memory pages in the address space in which DAMP is running.

AREA = <x-string 1..8> / <name 1..8>(...)
This specifies an area in the virtual address space for which the attributes are to be
changed.

AREA = <x-string 1..8>
A hexadecimal string is interpreted as the number of a 4-Kb page.

Program Statements System level

U5663-J-Z125-11-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

AREA = <name 1..8>(...)
An alphanumeric entry is interpreted as a module name from the DAMP system.

DISPLACEMENT = 0 / <integer 0..9> / <x-string 1..8>
This specifies an address within the module relative to the start of the module. It is
only possible to change the attributes of a page where the specified address lies
between the beginning and end of the page.

STATE = *READ-ONLY / *WRITEABLE
This specifies whether or not it is to be possible to overwrite the specified memory area.

i INFORM-PROGRAM MSG='?' activates DAMP’s SDF user guidance mode; DAMP
treats “FUNCTION” like any other DAMP statement.

Examples

/INFORM-PROGRAM MSG='FUNCTION=*CANCEL'

Entering system commands in the command line

Any BS2000 system command can be entered in the command line. The user alone is
responsible for ensuring that no commands are issued which would terminate the program
(e.g. EXIT-JOB).
If abbreviated commands are entered and the command abbreviation corresponds to an
abbreviated DAMP statement, the DAMP statement is always executed. You can have the
input interpreted as a system command by prefixing a label, for example, /.LABEL.
System command outputs are displayed in the DAMP message lines.

PRODAMP DAMP Dump analysis

226 U5663-J-Z125-11-76

5.7 PRODAMP

5.7.1 Introduction

PRODAMP (PROcedure language for DAMP) is a language similar to Pascal for the
formulation of diagnostic algorithms in DAMP. PRODAMP runs under DAMP and utilizes
the functions offered there, such as symbolic addressing of data structures or output in
various formats in screen windows.

With PRODAMP, it is possible to write decision-based statements, which would otherwise
have to be entered individually by hand, into a procedure and to execute them automati-
cally. It is possible, for example, to follow chains down to a structure which contains a
specific data item, to search tables and process (e.g. arithmetically) the values they contain,
or to have questions such as “Is this task holding a lock?” answered automatically.

Example

Let us assume that you frequently have to analyze problems where the program
crashes due to a DMS error, and where the only aid at your disposal is a user dump.
In order to identify which file and which DMS error code are involved, the following basic
steps are necessary:

1. Assign a dump file.

2. Select the PCB which issued the DMS macro.

3. Mark register 1 in this PCB.

4. Assign the area (FCB) addressed by register 1 to another window.

5. Overlay this area with the DSECT of the FCB.

6. Position to the field ID1FILE (file name).

7. Position to the field ID1ECB (error code).

Steps 3 through 7 can be written as a PRODAMP procedure and subsequently
executed automatically whenever it is needed.

For example, if the procedure was stored under the name “DMSERR”, the overhead
involved in determining the DMS error code is reduced to the following steps:

1. Assign the dump file.

2. Select the PCB which issued the DMS macro (to provide values for
CURRENT.PCB).

3. Issue the DAMP statement START-PRODAMP-PROGRAM DMSERR.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The PRODAMP procedure DMSERR would look something like this:

FNAM := ' '*54;
ERR := 0;
P := CURRENT.PCB;
FCB@ := P.ESTKGR1;
FNAM := FCB@.ID1FILE;
ERR := FCB@.ID1ECB ;
MESSAGE ('DMS ERROR '+HEX_STRING(ERR)+' FOR FILE '+FNAM);

This procedure offers even more than the individual steps listed above: the desired
information is edited and displayed on the screen, saving you the bother of searching
through the contents of the output window.

A procedure written in the PRODAMP language (PRODAMP source code) cannot be
executed directly, but must first be compiled to form a PRODAMP program (PRODAMP
object code). Compilation can be carried out in a PRODAMP window, which also provides
a complete development environment for PRODAMP procedures. This window is called
using the DAMP statement START-PRODAMP-EDITOR. In this window, you can store
source code and generated objects in a PRODAMP library as well as perform editing and
compilation operations and run procedures on an ad hoc basis. The DAMP statement
START-PRODAMP-PROGRAM also allows you to run PRODAMP programs from a
PRODAMP
library.

PRODAMP can thus handle routine tasks which have to be executed before you reach the
actual heart of the problem.

5.7.2 Syntax

The PRODAMP syntax is very similar to that of standard block-oriented languages such as
Pascal, Modula-2 or Ada, but has the advantage of being simpler. There is, for example, no
declaration division for types, variables and constants; this makes it possible to create ad
hoc algorithms for solving special problems without having to formulate them as precisely
as is necessary for normal programs.

The syntax reflects the fact that, in addition to the familiar language elements found in the
above-mentioned programming languages, PRODAMP contains language elements which
are tailor-made for special diagnostic requirements. PRODAMP can, for example, address
the diagnostic data symbolically, using field names taken from the associated symbol file.
You can also modify the meta-characteristics of such symbols or define the formats of the
output windows.

A complete definition of the can be found in section “Syntax diagrams” on page 311.

PRODAMP DAMP Dump analysis

228 U5663-J-Z125-11-76

5.7.3 Language elements

5.7.3.1 Lexical elements

Character set

The character set of PRODAMP consists of

– letters
– special characters
– digits
– separators.

With regard to letters, string literals and comments are the only case where PRODAMP
makes a distinction between uppercase and lowercase.

Separators
Whenever the names, numbers, etc. in a sequence are not separated by special
characters, such characters must be inserted. Possible separator characters are blanks
and comments.

A comment can contain any characters and is delimited by double quotes ("). Comments
do not affect program execution; they serve simply to facilitate reading.

Names

Names (identifiers) are required in order to identify the various objects which can be used
in a procedure (variables, subroutines, etc.).

They are made up of letters, digits, the characters $, # or @ and the underscore character
(“_”), which can only be present once.

The first character must be a letter or one of the characters $, # or @, and the last character
must not be an underscore. Furthermore, names must not be word symbols (operator,
name of a statement, etc.). Names can be up to 31 characters in length.

Examples

HUGO
X123
A_ONE
@LABEL
T#1234
THIS_IS_AN_EXTREMELY_LONG_NAME

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Length of source code lines

End-of-line characters have no meaning in the PRODAMP language. Nevertheless, the
following rules should be observed:

i Program lines should only be created with a maximum of 72 characters in the editor.
If a line contains less than 72 lines, it must not end in the middle of an identifier, a
literal etc.

When the PRODAMP source code is loaded into a PRODAMP window for compilation, line
breaks are added to lines with more than 72 characters. Then lines with less than
72 characters are padded with blanks until they are 72 characters in length and lowercase
characters outside strings and comments are converted to uppercase.

5.7.3.2 Operators

The following operators are permitted in PRODAMP:

Two or more conditions can also be combined using the logical operators:

AND,
OR and
NOT

Since the operators have different priorities (see page 230), it may be necessary to use
parentheses to achieve the desired effect. The operators AND and OR operate in short-
circuit mode, i.e. evaluation of the condition is terminated as soon as its truth value has
been determined.

The following operator is available for bit pattern expressions:

IN

This operator can be used to test single bits and bit combinations. It returns the value TRUE
if and only if all the bits tested are set in the bit pattern.

=
<>
<
<=
>
>=
+
-
*
/
MOD

(equal to)
(not equal to)
(less than)
(less than or equal to)
(greater than)
(greater than or equal to)
(plus)
(minus)
(times)
(divided by) and
(modulo operation)

PRODAMP DAMP Dump analysis

230 U5663-J-Z125-11-76

Priority of the operators

Figure 65: Priority of the operators

5.7.3.3 Data types

PRODAMP recognizes the following three data types:

● the numeric data type with a length of 1 to 4 bytes,

● the string with a length of 1 to 133 bytes and

● the bit pattern with a length of 1 to 4 bytes.

The numeric data type with a length of 4 bytes is the only numeric data type used for
variables and constants and is simply referred to as a numeric data type. It can hold an
integer in the range -2147483648 to +2147483647. The integer -2147483648 is accepted
as a literal only in the hexadecimal form (X'80000000').

This data type is also used for addressing diagnostic data. Note that only the first 31 bits
are used to construct addresses of /390 objects; all 32 bits are used for x86 objects.

The addressing mode is an HSI-dependent constant for PRODAMP.

The numeric data types with a length of 1 to 3 occur with symbols only and constitute the
numeric interpretation of fields 1 to 3 bytes in length. For numeric data types with a length
of 2, the contents are interpreted as a signed number (halfword arithmetic).

Numeric literals may be specified in decimal or hexadecimal format.

1. * / MOD

+ -

= > >= < <= <>

IN

NOT

AND

OR

2.

3.

4.

5.

6.

7.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Examples

123
-1234
X'0AFFE'

The string is used to represent character strings enclosed in apostrophes. Two
consecutive apostrophes are used to represent a single apostrophe within a string. The
maximum length of a string in PRODAMP is 133 characters. If a string contains non-
printable characters, it can be declared as a hexadecimal string. In this case, the Pascal
convention of using the string #' as the left-hand delimiter and the apostrophe ' as the right-
hand delimiter is used.

Examples

'1'
'Long string literal',
'Value: X''01''',
#'C100C600C600C500';

Bit patterns are data items with a length of 1 to 4 bytes in which each individual bit can be
addressed. Bit pattern literals are defined either in binary (up to one byte long) or in
hexadecimal form. The notation for binary definition is the same as for Assembler. For
hexadecimal notation, the string P' is used as the left-hand delimiter and the apostrophe '
as the right-hand delimiter in order to avoid confusion with hexadecimal numeric literals.

PRODAMP also has the symbolic bit pattern constants TRUE and FALSE.

Examples

B'10101001' corresponds to P'A9'
TRUE corresponds to P'01' or B'1'
FALSE corresponds to P'00' or B'0'

PRODAMP DAMP Dump analysis

232 U5663-J-Z125-11-76

Compatibility of data types

The following table shows the permissible type mixtures for assignments (see page 247)
and comparison operations.

*) The entries in this line apply only to assignments. For comparisons, the operands
may have to be regrouped to ensure that the left-hand operand is not “undefined”.

The basic rule is: the type of an expression is determined by the type of the first term.

For assignments, “left” denotes the variable to the left of the assignment operator and “right”
denotes the expression to the right of this operator. The field at the intersection point shows
whether the assignment is permitted or prohibited and specifies the result type (the latter is
interesting only if the type was previously undefined).

For comparison operations, “left” denotes the expression to the left of the comparison
operator and “right” denotes the expression to the right of this operator. The field at the
intersection point shows whether the comparison is permitted and how it should be
interpreted.
(For an arithmetical comparison, for instance, the operator “IN” is prohibited.)

In expressions, types may be mixed in only two ways:

In the second case, only the operator “*” is accepted (for string replication). Expressions in
which the first term is undefined receive the type “numeric”.

Right →
Left↓

Undefined Numeric Bit pattern String

Undefined Arithmetic Arithmetic Bit pattern String *)

Numeric Arithmetic Arithmetic Arithmetic -----

Bit pattern Bit pattern ----- Bit pattern -----

String String ----- ----- String

Table 9: Permissible type mixtures for assignments and comparison operations

<numeric><operator><bit pattern>
<string><operator><numeric>

(results in a numeric) and
(results in a string).

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

i Symbols are always “undefined” because the symbol file is accessed only when the
procedure is executed. This can lead to undesired results, as shown in the following
example.

Example

Let us assume you are interested in the rightmost bit in field EXVTAUDI. You thus
want to mask out the high-order bits and write:

MY_BITS:=.EXVTAUDI-P'FE';
IF MY_BITS=P'01' THEN

In this case, EXVTAUDI is set to arithmetic, the bit pattern literal is also interpreted
as arithmetic and the result in MY_BITS is either the arithmetical value -253
(X'FFFFFF03') if the bit is set or -254 if it is not set. The following IF statement is
accepted by the compiler, because it regards MY_BITS as arithmetic and therefore
converts the bit pattern to arithmetic again (see table 9 on page 232). However, this
was not what you wanted.

To get what you actually wanted you have to enter

MY_BITS:=P'0'+.EXVTAUDI-P'FE';
IF MY_BITS=P'01' THEN

Alternatively, you can initialize variables to ensure that the correct operations are
generated when symbols are used.

In order to access the diagnosis object via symbols whose types are not known at
compilation time, it is thus necessary to consider all the implications if you want to
avoid unpleasant surprises. Systematically assigning all diagnostic data to
initialized variables is one way of avoiding such problems.

PRODAMP DAMP Dump analysis

234 U5663-J-Z125-11-76

The following table shows how the data types contained in the symbol files in the form of
LSD codes (Assembler data types) are converted into the data types used by PRODAMP.

LSD
code

Ass.
type

Data
length

PRODAMP
 type

Data
description

00
01
03
04
05
0F
10

C
Z
E
D
P

n
n
4
8
n
n
n

STRING

Character
Unpacked decimal
Floating-point, single-precision
Floating-point, double-precision
Packed decimal
Machine instruction
CSECT, COM, DSECT, XDSEC

06
07

H
F

2
4

NUMERIC
NUMERIC

Signed binary
Signed binary

0A Y
A

2
4

PATTERN
NUMERIC

Unsigned binary
Unsigned binary

0A

X
1 - 3
 4

otherwise

PATTERN
NUMERIC
STRING

Unsigned binary

Table 10: Conversion of Assembler data types to PRODAMP data types

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.7.3.4 Symbols

Symbols are used to access the object being diagnosed (dump file or the active system) or
the metadata of the DAMP program. Each symbol has a name beginning with a period, a
relative address, a type and a length.

Symbols cannot be named freely, but must

– be known to DAMP from the symbol file,
– be created by means of the ARRANGE statement within the PRODAMP procedure or
– be defined internally, i.e. by the PRODAMP programming language.

The name, relative address, type and length of a symbol are stored in the DAMP symbol
files or in the private symbol files assigned by means of ADD-SYMBOLS. The relative
address always refers to the beginning of the structure (DSECT) which contains the
appropriate symbol. This means that a data structure in the diagnosis object can be
accessed via a symbol only if the base address of the structure concerned is specified. This
fact is taken into account in the syntax of a symbol.

Examples

.ETCBTFT

“.ETCBTFT” is identified as a symbol by the initial period. The base address does not need
to be specified explicitly in this case because the TCB belongs to the structures which
DAMP can localize automatically (other such structures are the JCB, UVMT, SVMT and
EXVT).

A_FCB.ID1FILE

“A_FCB” is a variable which contains the base address of the structure concerned - in this
case, a TU-FCB. “ID1FILE” is a field name in the DSECT “ID1FCB”.

PTR.NKLCB_MDL.COPY_PARAMETER.USER_ALLOCATION.WAIT_FACTOR

This example shows symbols in substructures. These are specified in terms of the nesting
structure of the substructure or by calling the standard PRODAMP procedure
REFERENCE.
It is only necessary to specify the DSECT (NKLCB_MDL) if the first symbol
(COPY_PARAMETER) is not unique among all the DSECTS contained in the symbol file.

PRODAMP DAMP Dump analysis

236 U5663-J-Z125-11-76

The following names are reserved as identifiers in PRODAMP and cannot be used for
variables:

The following names are reserved as symbol identifiers in conjunction with CURRENT and
INFIELDS in PRODAMP. If they are not included in the list above, they can be used as
variables, but not as symbol names.

PRODAMP procedures with these names cannot be called as user subroutines.

All identifiers that begin with DMP_ are reserved for future PRODAMP extensions and
should therefore not be used in user programs.

ABS-ADDRESSING ADDRESS ALET AND ARRANGE

ASEL COMMAND CPU CURRENT DEC_BINARY

DEC_STRING DMP_#REFRESH DO DSECT DUMP_MEMORY

ELSE ELSIF END ENTER_MODULE EXTRACT

FALSE FOLLOW HEX_BINARY HEX_STRING HSA

IF IN INFIELDS INSERT INTERRUPT

ITN LAYOUT LENGTH LIST LOCATION

MESSAGE MOD NAME NEW_TASK NEXT_WINDOW

NOT NUMBER NUMERIC OFF OFFSET

ON OPC_TABLE OR OUTPUT PARAMETER

PATTERN PCB PCK_BINARY READ READ_WINDOW

REAL REFERENCE RELATIVE RETURN SET_HEADER

SPID STRING SVC_TABLE THEN TID

TRACE TRUE TSN TYPE UNDEFINED

UNSIGNED_OFF UNSIGNED_ON VIRTUAL WHILE WINDOW

WRITE

ADDRESS ALET ASEL ASID ATYPE

COMMAND CONFIGURATION CPU CSMA DTYPE

DUMPTIME ERROR FILENAME HSA ITN

LAYOUT LENGTH LEVEL MARK1 MARK2

MARK3 MARK4 MARK5 MARK6 PARAMETER

PCB PTYPE RELATIVE SEGMENT SPID

STACK SYMBOL TIME TID TSN

VERSION WNDNO WNDTSK

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.7.3.5 Variable

A variable is an object to which values can be passed during program execution. It belongs
to one of the data types and can be both written to and read.

Variables can be fixed-length strings (up to 133 characters), numeric values (4 bytes) or bit
patterns (1 to 4 bytes).
During compilation, the data type of a variable is defined by statically the first assignment,
and by the defined data type on the right of the assignment. See table 9 on page 232 for
more details.
During runtime, any attempts to read a variable that has not yet been dynamically defined
will result in a runtime error and in termination of the PRODAMP program.

5.7.3.6 Expressions

Expressions are calculation rules which, after evaluation, return a value. They are formed
by combining operands with operators (see section “Syntax diagrams” on page 311). The
meanings of the operator symbols are shown in the following table:

In PRODAMP, the operators are thus ambiguous, i.e. they are interpreted differently for
different operand types.

Examples

33 + 16 Result: 49
X'10' * 4 Result: 64
'System' + ' crash' Result: 'System crash'
#'C1' * 5 Result: 'AAAAA'
B'1001' + B'11' Result: B'1011' or P'0B'
P'1A' * B'1001' Result: B'1000' or P'08'

The modulo operation returns the (integer) remainder left over by a division.

Numeric String Bit pattern

+ Addition Concatenation Set union

- Subtraction Set difference

* Multiplication Replication *) Set intersection

/ Division

MOD Modulo operation

*) The second operand must in this case be numeric.

Table 11: Meanings of the operators

PRODAMP DAMP Dump analysis

238 U5663-J-Z125-11-76

Examples

29 MOD 7 produces 1
35 MOD 11 produces 2

i The MOD operand can also be used, for example, to convert addresses “manually”
to 24-bit addresses.

Example

X'887C0A0E' MOD X'01000000' Result: X'007C0A0E'

Expressions can be enclosed in parentheses in the normal manner and can be combined
as required (providing the types are compatible).

Examples

X * Y + 3 * (A - B) + X'ABC'
A_FCB.ID2IND1 - P'80' All bits from ID2IND1 except ID2DUMMY
NUM - (NUM / 16) * 16
('a'+'b'*2) * 4 Result: 'abbabbabbabb'

5.7.3.7 Statements

A PRODAMP procedure consists of a number of statements. Each statement is terminated
by a semicolon. Since there are no declarations in PRODAMP, each statement generates
code which can be interpreted only when the procedure is executed.

PRODAMP incorporates the following statements:

Statement name Function

ARRANGE
FOLLOW
IF
INTERRUPT
RETURN
TRACE
WHILE
Procedure call
Assignment

Define symbol attributes
Monitor variables
Issue conditional statements
Interrupt procedures
Leave a procedure
Control tracing
Form program loops
Call a procedure
Assign a value

Table 12: Overview of PRODAMP statements

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

ARRANGE
Define symbol attributes

The ARRANGE statement can be used to declare the names, lengths, relative addresses
and types of symbols.
ARRANGE WINDOW can be used to specify that a particular dump window is to be
displayed as the top window on screen. In addition, it is possible to specify that values from
the PRODAMP procedure are to be entered in the input fields in the window. The keywords
and their assignments are given in figure 66.

Figure 66: Header line of a dump window.

ARRANGE WINDOW

ARRANGE WINDOW moves the specified window to the top of the window chain in DAMP.
After several ARRANGE WINDOW statements for different windows, followed by the
screen display in each case, the last window which was defined thus appears as the
topmost window on the screen. The other windows are displayed in the reverse order,
provided there is enough space to accommodate their defined sizes.

ARRANGE WINDOW specifications are not permitted for the help window (W1), PROC
window(s) and other special windows and are rejected. The parameters TID, TSN and
LENGTH may be declared for the status window (W2) and the stack window (W3); for W3,
also the PCB with which a PCB can be selected from the PCB chain of the task via its
sequence number.

ARRANGE WINDOW acts just like an input in the header line of a diagnostic window. Each
possible input in the header has a corresponding keyword in the ARRANGE statement. The
only exception to this is the parameter NUMBER, via which the desired window number is
specified.

NAME RELATIVE ASEL ASID OUTPUT
 ADDRESS LENGTH

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

ETMBON1 +00000=71056A80 SYS=00010001 W6,D ,L 4
71056A80 (0000): 47F0C260 71057166 00000070 00000000 <==> .0B-............
71056A90 (0010): 4140AE08 58604970 58304974 18915820 <==> -.......j..
71056AA0 (0020): 31C8188D 5850233C 17FFD503 10004978 <==> .H...&...~N.....
--
TEST Version=001 TID= TSN= W8,Dsp,L19
 1: ARRANGE
 2: WINDOW: NUMBER=6, LENGTH=4, NAME='ETMBON1';
 3: END ARRANGE;

PRODAMP DAMP Dump analysis

240 U5663-J-Z125-11-76

ARRANGE

Data structures which are not stored in a symbol file can be made available on the fly by
means of the ARRANGE statement. ARRANGE is also always necessary when unstruc-
tured dump data is to be addressed (see “Example 5 for ARRANGE” on page 241).

The symbols (re)defined via ARRANGE are available only within the PRODAMP
procedure: they are not placed in the binary symbol tree of DAMP. This means that these
changes have no effect when a window is overlaid with a DSECT.

New symbols must be defined completely, i.e. LENGTH, TYPE and RELATIVE must be
specified explicitly. Otherwise, PRODAMP attempts to fill out the missing specifications with
information from the symbol file; if the symbol cannot be found, PRODAMP aborts
execution of the procedure.

Conversely, existing characteristics can be reset explicitly by specifying the keyword
UNDEFINED for them. The next time this symbol is accessed, the missing characteristic is
then filled out with information from the symbol file.

Example 1 for ARRANGE WINDOW

ARRANGE WINDOW:
NUMBER=5, ADDRESS=0, LENGTH=8, TID=X'ABC', OUTPUT='ASS' ;
END ARRANGE ;

Window 5 is to display the user memory of task ABC, starting at address 0. The output is
to be disassembled (OUTPUT='ASS'). Furthermore, the size of the window is to be 8 lines.

Example 2 for ARRANGE WINDOW

ARRANGE WINDOW:
NUMBER=7, NAME='IDMFILE', DSECT = 'IDMTFT', OUTPUT='CBM',
ADDRESS=TFT_AD;
END ARRANGE ;

Window 7 is to display a memory area starting at address TFT_AD. The area is to be edited
symbolically in the format of DSECT IDMTFT. The DSECT is positioned such that the
DSECT IDMFILE is at the base address TFT_AD and the field IDMFILE is in the first line of
the window. The window start address is TFT_AD + offset(IDMFILE).

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example 3 for ARRANGE

ARRANGE
.ESTK#ICL : TYPE = STRING ;
END ARRANGE ;

IF 'P' = STK1.ESTK#ICL THEN ...

The field ESTK#ICL in DSECT ESTK is redefined. It is defined as DS XL1, which means
that it is interpreted as a bit pattern, but it contains a letter. Assignment of the type STRING
makes it possible to interpret this field as a letter in subsequent statements.

Example 4 for ARRANGE

ARRANGE
.STDHD : RELATIVE = 0, LENGTH = 8, TYPE = STRING ;
.PAR_1 : RELATIVE = 8, LENGTH = 4, TYPE = NUMERIC ;
.PAR_2 : RELATIVE =12, LENGTH = 1, TYPE = STRING ;
.PAR_3 : RELATIVE =13, LENGTH = 1, TYPE = PATTERN;
END ARRANGE ;

P_LATTE := ;
FRST_PAR := P_LATTE.PAR_1 ;

Within PRODAMP, a DSECT is constructed, e.g. for a newly developed interface whose
parameter list has not yet been passed officially. The fields of the parameter list can now be
addressed symbolically using the newly defined names; the related base address must, of
course, be specified as well. A similar method is used to pass parameters
between PRODAMP procedures.

Example 5 for ARRANGE

ARRANGE
.BYTE : TYPE=NUMERIC,LENGTH=1,RELATIVE=0;
END ARRANGE;
INT_AD := STK.ESTK#ICR; "Address of the paging error"
OPCODE := INT_AD.BYTE; "Machine instruction at this point"
IF OPCODE = X'D2' THEN

ARRANGE can be used to address unstructured data of the diagnosis object (such as
coding, for example).

PRODAMP DAMP Dump analysis

242 U5663-J-Z125-11-76

Example 6 for ARRANGE

ARRANGE
 .HALFWORD: OFFSET = 0, LENGTH = 2, TYPE = NUMERIC;
END ARRANGE
WORD := PTR.HALFWORD

If a field is defined as NUMERIC with LENGTH=2, then special care must be taken to
ensure that the sign is taken into account when the contents of the file are assigned to a
variable.
If HALFWORD contains, for instance, the sequence of characters C'AB' at the address
indicated by PTR, this does not correspond to the numeric value X'C1C2' = 49602 after the
field has been defined. Instead, it corresponds to the value X'FFFFC1C2' = -15943, which
is the value subsequently assigned to the variable WORD. If the sign for the contents is to
be ignored, the field must be defined with TYPE=PATTERN. The general rule for
TYPE=NUMERIC is that the sign is taken into account if the length is an even value and
the value transferred is always positive if the length is an odd value.

Example 7 for ARRANGE

ARRANGE
 .WAIT_FACTOR: LENGTH = 1, TYPE = STRING,
 REFERENCE = .NKLCB_MDL.COPY_PARAMETER.USER_ALLOCATION
END ARRANGE;

The elements of a substructure can also be redefined using ARRANGE. To do this, you
must use the name REFERENCE in order to localize the symbol within a reference chain.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

FOLLOW
Monitor variable

The FOLLOW statement is used to monitor variables. This is possible only if the variable
has already been declared, i.e. initialized.

Following execution of the FOLLOW statement, all assignments to the specified variable
are logged in an EDT area (by default, area 8). The output includes the number of the line
in which the variable is assigned, the name of the variable, and its value after assignment.

In addition, every change to the CURRENT.ERROR value is logged.

If the EDT area is changed during procedure execution by means of @WRITE
(“@PROC XX”), the output for variable monitoring is likewise directed to the new EDT area.

FOLLOW is very useful for searching for errors in PRODAMP procedures.

i Variable monitoring can be activated but not deactivated, i.e. it is not terminated
until the end of the procedure or until leaving the procedure by means of RETURN.

Example for FOLLOW

The procedure

1) S := ' '*8;
2) STR := '12XY34';
3) NUM := ' ';
4) I := 0;
5) A := 0; FOLLOW A;
6) WHILE I <= 5 DO
7) EXTRACT (NUM,STR,I);
8) INSERT (NUM,S,3);
9) A := DEC_BINARY (S);
10) I := I + 1;
11) END WHILE;

generates the following log:

TEST (0) %STMT 9: 'A' <- 1 (X'00000001')
TEST (0) %STMT 9: 'A' <- 2 (X'00000002')
TEST (0) %STMT 9: 'A' <- 1 (X'00000001')
TEST (0) %STMT 10: 'CURRENT.ERROR' <- 4
TEST (0) %STMT 9: 'A' <- 1 (X'00000001')
TEST (0) %STMT 9: 'A' <- 3 (X'00000003')
TEST (0) %STMT 10: 'CURRENT.ERROR' <- 0
TEST (0) %STMT 9: 'A' <- 4 (X'00000004')

Output of the change to the CURRENT.ERROR value caused by a standard procedure
comes after the statement that caused it. The example also shows that DEC_BINARY
returns an undefined value if the string is not a decimal number.

PRODAMP DAMP Dump analysis

244 U5663-J-Z125-11-76

IF
Issue conditional statements

The IF statement can be used to make the execution of other statements contingent on
specified conditions. The condition to be fulfilled is defined by combining several expres-
sions with the aid of logical operators (see page 229).

Example 1 for IF

IF PCB.ESTKGR15 <> 0 THEN
 RC := PCB.ESTKGR15 MOD 256 ;
 MESSAGE ('Returncode '+HEX_STRING(RC)+' for $REQM.');
END IF;

If the contents of field ESTKGR15 are not equal to zero, i.e. if register 15 contains a return
code, the message given after it is displayed on the screen.

Example 2 for IF

IF 'TSOS ' = .EJTPUSR THEN
 IF 'HELGA' + ' '*49 = .EJTPXPRG THEN
 DANGER := 100 ;
 END IF ;
ELSIF 'SERVICE ' = .EJTPUSR THEN
 DANGER := 180 ;
ELSE
 DANGER := 0 ;
END IF;

The user and the program used are queried in fields EJTPUSR and EJTPXPRG. The
results determine what value is set for the DANGER variable.

Example 3 for IF

EVIPLFLG := B'00000100' ; 'SYSTEM LOADING COMPLETED'
EVCL2REQ := P'02' ; 'CLASS 2 MEMORY REQUESTED'
IF EVIPLFLG + EVCL2REQ IN .EVSVMIND THEN

Two fields are defined. A check is made as to whether the contents of these fields can be
found in the EVSVMIND field.

i Example 3 is interesting for another reason: it deals with concrete equates from the
DSECT SVMT. Since DAMP does not store the equates in the
symbol file, the corresponding bit patterns have to be defined in PRODAMP.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

INTERRUPT
Interrupt procedure

The INTERRUPT statement enables the use to interrupt a procedure and branch to the
DAMP program, where it is then possible to enter any DAMP statements. Control is
returned to the procedure by means of the RESUME-PRODAMP-PROGRAM statement.

INTERRUPT is useful, for example, when a chain of data structures has to be examined
sequentially. For instance, if the INTERRUPT statement is contained in a loop that localizes
the data structures one after the other and assigns them to a screen window, the user can,
with the added aid of the RESUME-PRODAMP-PROGRAM statement, as it were hop from
one link of the chain to the next.

Example for INTERRUPT

INTERRUPT WINDOW=4

The parameter WINDOW= causes the entire DAMP screen to be refreshed. If several
outputs are sent one after the other to the same window by means of INTERRUPT, this
can often be somewhat irritating. The refresh operation can be avoided by using
INTERRUPT without an explicit window specification; in this case, only the modified
fields on the screen are rewritten.

RETURN
Leave procedure prematurely

Issuing the RETURN statement in a PRODAMP procedure returns control to the point
where the procedure was called. This may be either another procedure or the DAMP dialog.

RETURN is also generated implicitly by the compiler at the end of each procedure.

RETURN WINDOW=
Terminate procedure prematurely

In contrast to a simple RETURN, the statement RETURN WINDOW=<window-number>
not only exits the current procedure, but aborts the entire call hierarchy. In addition,
<window-number> specifies the number of the diagnosis window that is to be displayed in
the dialog at the topmost position on the DAMP screen after aborting the procedure.

Example for RETURN

RETURN WINDOW = CURRENT.WNDNO;

This statement fully exits the procedure and sets the diagnosis window to the one specified
in the CURRENT.WNDNO field.

PRODAMP DAMP Dump analysis

246 U5663-J-Z125-11-76

TRACE
Control tracing

The statements TRACE ON and TRACE OFF activate and deactivate tracing. All source
line numbers encountered between TRACE ON and TRACE OFF are logged in an EDT
area (unless otherwise specified, area 8). Both statements can be entered anywhere within
a procedure.

If, in the course of procedure execution, the EDT procedure area is changed by means of
WRITE (“@PROC XX), the trace is also output to the new area.

Activation and deactivation of the trace are contingent upon the dynamic statement
sequence.

TRACE is extremely useful for searching for errors in PRODAMP procedures.

Example for TRACE

Execution of the procedure PROCNAME:

1) IF CURRENT.LEVEL < 4 THEN
2) TRACE ON;
3) I := 1234;
4) PROCNAME;
5) I := 5678;
6) END IF;

causes the following line numbers to be logged:

PROCNAME (0) %STMT 3
PROCNAME (0) %STMT 4
PROCNAME (1) %STMT 3
PROCNAME (1) %STMT 4
PROCNAME (2) %STMT 3
PROCNAME (2) %STMT 4
PROCNAME (3) %STMT 3
PROCNAME (3) %STMT 4
PROCNAME (3) %STMT 5
PROCNAME (3) %STMT 6
PROCNAME (3) %STMT 7
PROCNAME (2) %STMT 5
PROCNAME (2) %STMT 6
PROCNAME (2) %STMT 7
PROCNAME (1) %STMT 5
PROCNAME (1) %STMT 6
PROCNAME (1) %STMT 7
PROCNAME (0) %STMT 5
PROCNAME (0) %STMT 6
PROCNAME (0) %STMT 7

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The procedure name is output first, followed by the value of CURRENT.LEVEL in paren-
theses, to enable the subprogram levels of the procedure to be distinguished. Then the line
number of the processed statement is output. At the end of a procedure PRODAMP always
implicitly generates a RETURN statement.

As a result, the log will contain STMT 7, which is not contained in the above procedure.

If tracing is activated, any further TRACE ON statements will be ignored. The first TRACE
OFF statement deactivates tracing.

WHILE
Form program loops

The WHILE statement can be used to form loops.

Example for WHILE

WHILE ADDR <= MAX DO
 IF ADDR.TABVAL = BAD_VAL THEN
 RETURN ;
 END IF ;
 ADDR := ADDR + TAB_LEN ;
END WHILE ;

As long as the variable ADDR does not become greater than the variable MAX, the subse-
quent statement sequence will be processed repeatedly.

Assignment

The simplest form of statement is the assignment. The assignment operator is the
character combination “:=”. This operator must be preceded by the name of a variable and
followed by an expression, i.e. the name of a variable, a symbol, a literal, a function call or
an arithmetic expression.

The data type of a variable is defined by the first static assignment (i.e. in the sequence of
the source) to this variable, as shown in table 9 on page 232. The data type on the right is
determined and transferred, taking into consideration any existing type assignments. If the
data type on the right is undefined, it is set to numeric. A data type is undefined if, for
example, the first operand is a symbol; all symbols, including those defined with the
PRODAMP statement ARRANGE, have the value “undefined” during compilation.

PRODAMP DAMP Dump analysis

248 U5663-J-Z125-11-76

Examples

A_FCB := X'ABC';
FNAM := A_FCB.ID1FILE;
TEXT := 'The specified FCB does not exist.';
XY := FALSE;

In the above examples (assuming that these are statically the first assignments to the
variables concerned), A_FCB will therefore be defined as numeric, TEXT as a string with a
length of 33, and XY as a bit pattern.

Since the type for the symbol ID1FILE cannot be determined at compilation time, FNAM
receives the default type “numeric”. (Otherwise, the symbol file which is to be used later for
procedure execution would have to be assigned during compilation, even if the procedure
is intended for use with a completely different version of BS2000.) For this reason, it is best
to declare variables by assigning them an initial value in cases where (possibly non-
numeric) data from the diagnosis object is to be assigned to them later with the aid of a
symbol.

Examples

A_FCB := X'ABC' ;
FNAM := ' ' * 54 ;
FNAM := A_FCB.ID1FILE ;

The right side of an assignment may also consist of function calls (for standard functions)
and expressions.

i If a string is assigned to a string of another length that has already been initialized,
the source string is truncated in the case of a shorter target string, or padded with
blanks in the case of a longer target string.

5.7.3.8 Pseudo-structures

The pseudo-bases CURRENT and PARAMETER can be used to access operating data of
the DAMP program.

The pseudo-base CURRENT

Diagnostic algorithms require not only the data of the object being diagnosed, but
sometimes also the “operating data” of the DAMP program. This can be achieved by means
of the pseudo-base “CURRENT.item”. The available items are explained below.

i With the exception of CURRENT.ALET, CURRENT.ATYPE, CURRENT.ERROR,
CURRENT.SPID and CURRENT.SEGMENT, the fields cannot be overwritten. Any
attempt to assign a value to a read-only field will result in a compiler error.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

CURRENT.ALET

When accessing data spaces (see CURRENT.ATYPE), CURRENT.ALET must be set to the
required value for ALET (4-digit numeric value). The corresponding TID must be set using
the standard procedure NEW_TASK (see page 276).

CURRENT.ATYPE

Unless otherwise specified, addresses are interpreted as virtual addresses in PRODAMP.
However, it is also possible to address real memory, the hardware system area (HSA) or
data spaces. This is done with the aid of the pseudo-symbol CURRENT.ATYPE and the
pseudo-constants VIRTUAL, REAL, HSA, ABS_ADDRESSING, ALET and SPID, which
can be assigned to this pseudo-symbol. Such an assignment defines which memory is to
be addressed by the subsequent statements.

By assigning ABS_ADDRESSING to the pseudo symbol CURRENT.ATYPE, absolute
memory can be addressed in the complete VM2000 SLED, e.g. to analyze the hypervisor.

Example 1 for CURRENT.ATYPE: Addressing the HSA

HSA_START := CURRENT.HSA;
TEST_VALUE := 0;
ARRANGE
 .TEST_SYMBOL : TYPE=NUMERIC,LENGTH=1,RELATIVE=0;
END ARRANGE ;
CURRENT.ATYPE := HSA;
TEST_VALUE := HSA_START.TEST_SYMBOL;
IF CURRENT.ERROR <> 0 THEN
 MESSAGE ('Hardware system area is not addressable !!');
ELSE

END IF;
CURRENT.ATYPE := VIRTUAL;

However, certain restrictions must be noted: the selected memory type applies only when
addressing memory areas with the aid of symbols and is effective only locally within the
current procedure. If called procedures are also to address real memory, the HSA, absolute
memory or data spaces, then the memory type must also be set locally in these procedures.
The only exception to this rule is the predefined procedure DUMP_MEMORY (see
page 268), which permits real memory, HSA memory, absolute memory or areas from data
spaces to be output directly to a list.

PRODAMP DAMP Dump analysis

250 U5663-J-Z125-11-76

If ALET and SPID are specified, the required values must be set before they are accessed
using CURRENT. This is demonstrated in the following example:

Example 2 for CURRENT.ATYPE

ARRANGE
 .TEST.SYMBOL : TYPE = NUMERIC, LENGTH = 4, OFFSET = 0;
END ARRANGE;
CURRENT.ATYPE := ALET;
CURRENT.ALET := X'01010003';
PTR := 0;
OUT := PTR.TEST_SYMBOL;
IF CURRENT.ERROR <> 0 THEN
 MESSAGE ('Access error, ALET = '
 + HEX_STRING(CURRENT.ALET,8) + ', TID = '
 + HEX_STRING(CURRENT.TID,8));
ELSE
...
END IF;
CURRENT.ATYPE := VIRTUAL;

If ALET is specified, the TID currently set is always used for access purposes. The TID can
be reset as required using the standard procedure NEW_TASK (see page 276).

Furthermore, symbols which are localized automatically are always addressed virtually.
Consequently, if you want to address real memory, absolute memory or the HSA, you must
always specify a base address (as in the example above).

More than a simple assignment is also possible. Since the pseudo-symbol
CURRENT.ATYPE has, internally, the type numeric, you do not have to explicitly specify
VIRTUAL, REAL, HSA, ABS_ADDRESSING, ALET or SPID. Instead, you could perform
calculations with the value (although this is rather pointless), transfer the current value to
another variable or, for example, pass the memory type as a parameter to another
procedure. If an invalid value is assigned to CURRENT.ATYPE, this is not detected until
runtime and causes the procedure to be aborted. The validity of the values is not checked
at compilation time.

Example 3 for CURRENT.ATYPE

CURRENT.ATYPE:=35

This assignment is syntactically correct.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example 4 for CURRENT.ATYPE transferring parameters

A procedure which returns the contents of the real address 0 as a printable string is called.

CALLER:

 VALUE := ' ';
 PRINTABLE_VALUE (0, REAL, VALUE);

PROCEDURE PRINTABLE=VALUE :

 LOC := 0;
 ARRANGE
 .ADDR : TYPE=NUMERIC, LENGTH=4, RELATIV=0; 'PARAMETER 1'
 .MEMORY : TYPE=NUMERIC, LENGTH=4, RELATIV=4; 'PARAMETER 2'
 .TARGET : TYPE=STRING, LENGTH=8, RELATIV=8; 'PARAMETER 3'
 .CONTENTS : TYPE=NUMERIC, LENGTH=4, RELATIV=0;
 END ARRANGE
 CURRENT.ATYPE := PARAMETER.MEMORY;
 LOC := PARAMETER.ADDR;
 PARAMETER.TARGET := HEX_STRING (LOC.CONTENTS, 8);
 RETURN;

CURRENT.CPU

CURRENT.CPU contains the name of the CPU from the diagnosis object in the form of a
string with a length of 8. If a file is opened as a PAM file, the CPU of the current system is
displayed.

CURRENT.CONFIGURATION

CURRENT.CONFIGURATION contains the designation of the hardware configuration from
the diagnosis object in the form of a string with a length of 21 (e.g.: 7.500- S210-60). The
output corresponds to the designation in the /SHOW-SYSTEM-INFORMATION command.
The configuration of the active system is output for a file opened as a PAM file.

CURRENT.CSMA

CURRENT.CSMA contains the (absolute) start address of the common shadow memory
area (CSMA), i.e. a 4-digit numeric value.

PRODAMP DAMP Dump analysis

252 U5663-J-Z125-11-76

CURRENT.DTYPE

CURRENT.DTYPE contains a 1-byte (8-bit) numeric value describing the opened medium.
This value has the following format:

The following meanings apply:

The Medium = 2 case can only occur in the dialog if the dump file contains multiple objects
and if no subsequent selection (e.g. complete VM2000 SLED, SLED from a SLED) has
been made in the INF screen as yet. In such cases, the program should therefore be
aborted and a selection made in the INF screen. If no selection was made in the INF screen,
access to the object (only a complete VM2000 SLED) with PRODAMP is only possible in
the absolute addressing mode (CURRENT.ATYPE = ABS_ADDRESSING).

If Medium = 3 (0011), f and dump are both set. The following meanings apply:

If f is set to 1 (only for a SLED or user dump), the SLED is a snap file or the user dump is
an area dump.

Example for CURRENT.DTYPE

The following query could be issued if you wish to check whether the opened medium is a
user dump:

IF CURRENT.DTYPE / 16 = 3 AND
 CURRENT.DTYPE MOD 8 = 2
THEN

Medium f Dump

Medium = 0 (B'0000') :
Medium = 1 (B'0001') :
Medium = 2 (B'0010') :
Medium = 3 (B'0011') :
Medium = 4 (B'0100') :
Medium = 5 (B'0101') :

Medium not defined
System
Object can be selected
Dump
PAM file
Self-loader

Dump = 0 (B'000') :
Dump = 1 (B'001') :
Dump = 2 (B'010') :

SLED
System dump
User dump

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

CURRENT.DUMPTIME

CURRENT.DUMPTIME contains the date and time of the dump file in the format of a string
19 characters long: yyyy-mm-dd hh:mm:ss. The current date and time is supplied for the
diagnosis of the active system.

CURRENT.ERROR

If the program detects an inconsistency which can be handled internally, i.e. which does not
force the PRODAMP procedure to be aborted, then CURRENT.ERROR is set to a value
other than 0. For example, if a requested page is missing from a dump file, this does not
justify abortion of the procedure. But if, in contrast, a specified symbol cannot be found in
the associated symbol file, PRODAMP aborts the procedure, as this problem can usually
be traced to a typing error in the source code of the PRODAMP procedure, which will have
to be corrected.

Theoretically, each access to a datum of the diagnosis object can result in an error. This
should be checked by inspecting the contents of CURRENT.ERROR, since further
execution of the PRODAMP procedure will be unpredictable if an error has occurred. To
avoid impairing performance and to keep the procedure as simple as possible, this check
can be restricted to a one-off query after the first access, albeit only if several objects within
the same data structure are accessed one after the other and if you are sure that the data
structure does not exceed the memory page.

i The error code that may possibly be stored in CURRENT.ERROR is irrelevant for
the diagnosis. You should therefore compare CURRENT.ERROR only against 0.

CURRENT.ERROR can be explicitly reset by assigning it the value 0
(CURRENT.ERROR := 0). This is not required in many cases, however, since PRODAMP
automatically resets the CURRENT.ERROR in the following situations:

– On entering a procedure (CURRENT.ERROR is maintained on a local procedure
basis).

– Following a successful read access on the data of the diagnosis object or the operating
data of DAMP by means of a symbol (see section “Symbols” on page 235).

Example

X:=.ETCBTID, Z:= CURRENT.DTYPE, Y:=PARAMETER .P1

Exception: read access on CURRENT.ERROR.

– On successfully using one of the standard functions of DAMP.
Exception: the call to PATTERN does not change CURRENT.ERROR.

– On successfully executing the standard procedures NEW_TASK or READ.

PRODAMP DAMP Dump analysis

254 U5663-J-Z125-11-76

CURRENT.ERROR is not reset by any of the other standard procedures and assignments
within PRODAMP.

Example for CURRENT.ERROR

TEST := P2_FCB.ID2CFLID ; "PSEUDO-HARDVALIDATION"
IF CURRENT.ERROR = 0 THEN
 "ACCESS POSSIBLE WITHOUT RISC"
 IF P2_FCB.ID2IND1 = ID2PRIVC THEN
 IF P2_FCB.ID2LOCK = ID2OUTL THEN
 "DO SOMETHING"
 END IF ;
 END IF ;
END IF ;

CURRENT.FILENAME

CURRENT.FILENAME contains the name of the currently open diagnosis object in the form
of a string with a length of 54. If the diagnosis object is the active system, the string contains
only blanks.

CURRENT.HSA

CURRENT.HSA contains, for SLED files, the (absolute) start address of the hardware
system area. It is thus a numerical value with a length of 4. Since only SLED files have a
hardware system area, CURRENT.HSA has the value 0 for other dump files.

CURRENT.ITN

See CURRENT.TID.

CURRENT.LEVEL

The pseudo-symbol CURRENT.LEVEL contains a numerical value with a length of 1 which
shows the nesting depth of subroutine calls. A procedure in which RETURN would return
control to the DAMP environment has CURRENT.LEVEL 0; a procedure called by this
procedure has CURRENT LEVEL 1, and so on.

CURRENT.PCB

The pseudo-symbol CURRENT.PCB contains the address of the current PCB, which is set
in diagnostic window 3. It is thus a numeric value with a length of 4. If no PCB has been set,
CURRENT.PCB contains the value -1 (X'FFFFFFFF').

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

CURRENT.PTYPE

CURRENT.PTYPE contains a 1-byte numerical value indicating the DAMP execution
mode.
The following values are possible:

CURRENT.PTYPE = 0 (B'00000000') : DAMP is running in interactive mode
CURRENT.PTYPE = 1 (B'00000001') : DAMP is running in procedure mode
CURRENT.PTYPE = 2 (B'00000010') : DAMP is running in batch mode

CURRENT.SEGMENT

CURRENT.SEGMENT is required when the diagnosis object is to be accessed with very
large addresses (i.e. with an address width of more than 32 bits). Two situations must be
differentiated here:

1. Access using large real or absolute addresses.

The 4 GB segment to be automatically considered for every subsequent read access
with CURRENT.ATYPE=REAL or =ABS_ADDRESSING, i.e. for a real or absolute
address interpretation, must be passed in CURRENT.SEGMENT.

2. PAM access on a large file.

If the opened diagnosis object is a PAM file, absolute addresses must be specified for
the localization of data. These addresses consist of the PAM page number P and the
relative displacement D and are calculated using the following formula:

In the case of large PAM files (a maximum of 16 777 215 pages are possible), more
than 4 bytes may be needed for A.
A PAM file is therefore subdivided into a total of 8 segments of 2 097 152 pages each.

In order to find data, you will always need to specify the 4 GB segment (in
CURRENT.SEGMENT) and the relative address within that segment in a PRODAMP
procedure.

To calculate the segment for a specified PAM page, you should use unsigned arithmetic
(UNSIGNED_ON) as illustrated in the example given below.

CURRENT.SEGMENT is maintained on a local procedure basis and is initially set to 0.

In most cases (address < 4 GB), an explicit assignment is not needed. The provision of
a negative value or a value greater than 255 always leads to a runtime error.

A = (P - 1)*2048 + D with 0 Î D Î 2047

PRODAMP DAMP Dump analysis

256 U5663-J-Z125-11-76

Example 1 for CURRENT.SEGMENT: Conversion of PAM page number to segment and address

UNSIGNED_ON;
" The PAM page PAM_PAGE is to be converted to a 4 GB segment number
- which is directly placed in CURRENT.SEGMENT -
and a 32-bit address 'BYTE_ADDRESS'"

IF PAM_PAGE > X'1000000' THEN
" Every BS2000 file has at most 2 raised to 24 pages "

MESSAGE ('** ERROR: PAM PAGE TO LARGE **');

RETURN WINDOW=CURRENT.WNDNO;

END IF;

CURRENT.SEGMENT := (PAM_PAGE-1)/X'200000';
"divided by 2 raised to (32-11)"

BYTE_ADDRESS := (PAM_PAGE-1)*X'800';
"multiplied by 2 raised to 11"

Example 2 for CURRENT.SEGMENT: Absolute read on the address X'1 8000 0000'

CURRENT.A_TYPE := ABS_ADDRESSING;

 CURRENT.SEGMENT := 1;

 A:=X'80000000';
"Address in the 44 GB segment"

 ARRANGE .FULLWORD: LENGTH=4,TYPE=NUMERIC,OFFSET=0;

Value := A.FULLWORD;
"Access on a word at address X'000000'"

 IF CURRENT.ERROR = 0 THEN

 "etc."

CURRENT.SPID

CURRENT.SPID must be set to the required value for SPID (8-character string) when data
spaces are accessed (see CURRENT.ATYPE).

CURRENT.TIME

CURRENT.TIME contains the CPU time, in milliseconds, that has elapsed since LOGON in
the form of a numeric value with a length of 4. If the maximum time (approx. 25 days) is
exceeded, the maximum value is returned and CURRENT.ERROR is set to a value other
than 0.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

CURRENT.TID, CURRENT.TSN and CURRENT.ITN

The pseudo-symbols CURRENT.TID and CURRENT.TSN permit access to the current
task. CURRENT.ITN refers to the rightmost halfword of the TID, which unambiguously
identifies the task at diagnosis time.

In the case of system, user and area dumps, the current task is always the dump task and
cannot be changed. For SLED and SNAP dumps or in the active system, the current task
is determined either by selecting a task in the status window (W2), by entering a TID
(or ITN) or TSN in the header line of a window or, in PRODAMP, by calling the procedure
NEW_TASK. The current task can be addressed via CURRENT.TID, CURRENT.ITN or
CURRENT.TSN. All accesses to task-specific tables (TCB, JCB, etc.) and to addresses in
the user address space always refer to the current task.

i CURRENT.TID and CURRENT.ITN are numeric, while CURRENT.TSN is a
4-character string.

CURRENT.TSN

See CURRENT.TID.

CURRENT.VERSION

The pseudo-symbol CURRENT.VERSION contains the current BS2000 version of the
diagnosis object in the form of a string with a length of 4. The format of the string is XX.X,
for example 19.0. If a file is opened as an ordinary PAM file, the version in question is the
version of the current operating system.

CURRENT.WNDNO

The pseudo-symbol CURRENT.WNDNO contains the number of the current diagnostic
window, i.e. of the window which would appear at the top in a subsequent screen output.
Since ARRANGE changes the order of the windows, CURRENT.WNDNO can be used, for
example, to set the PRODAMP window as the current window again if an error occurs
during window assignment.

The pseudo-base PARAMETER

Parameters can be transferred to PRODAMP procedures when calling from the DAMP
program level or as a subprocedure of a PRODAMP procedure (see also section “Working
with procedures (special window: PROC)” on page 298).
During the call, a parameter area is generated from the parameters, and contains a list of
the parameter values. In the parameter area, numeric data values and bit patterns are
always entered right-justified in a 4-byte field.
The first static call from a PRODAMP procedure is used by the compiler to define the

PRODAMP DAMP Dump analysis

258 U5663-J-Z125-11-76

parameter area. The call consists of the name of the called procedure and a list of the
current parameters enclosed in brackets.
PRODAMP also supports subprocedures with no parameters. Recursive calls are
permitted.

In order to access the parameters, ARRANGE symbols must be defined with the
PRODAMP statement. These symbols can then be addressed with the aid of the pseudo-
base PARAMETER.

Example 1 for the pseudo-base PARAMETER

The GETOPC procedure is to return the operation code found at the address MOD +
ADD in the symbol OPC.

Procedure GETOPC:

ARRANGE
.MOD : TYPE = STRING, RELATIVE = 0, LENGTH = 8;
.ADD : TYPE = NUMERIC,RELATIVE = 8, LENGTH = 4;
.OPC : TYPE = NUMERIC,RELATIVE =12, LENGTH = 4;
END ARRANGE ;
ARRANGE
.BYTE : TYPE=NUMERIC,RELATIVE=0,LENGTH=1;
END ARRANGE ;
A := ADDRESS (PARAMETER.MOD,'CP') + PARAMETER.ADD ;
PARAMETER.OPC := A.BYTE ;

Procedure call:

MOD := 'DOPEN' ;
ADD := X'4ADC' ;
GETOPC (MOD, ADD, OPC) ;
IF OPC = X'47' THEN
.....

The structure variable PARAMETER.XX may be assigned a value. This value is assigned
to the parameter variables used by the calling procedure at the same place.

i At compilation time, the types and lengths of the parameter symbols and of all other
structure variables are not known (see section “Working with procedures (special
window: PROC)” on page 298).

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example 2 for the pseudo-base PARAMETER

The data is transferred with the default values “numeric” and “length 4”, even though
other values were specified.:

ARRANGE
 .DST:TYPE=STRING,RELATIVE=0,LENGTH=8;
 .SRC:TYPE=STRING,RELATIVE=8,LENGTH=8;
END ARRANGE
PARAMETER.DST:=PARAMETER.SRC;

The correct assignment can be ensured by using an auxiliary variable:

STR:=' ' * 8;
STR:=PARAMETER.SRC;
PARAMETER.DST:=STR;

In the case of a call from the DAMP program level, parameters are passed by means of the
RESUME-PRODAMP-PROGRAM or START-PRODAMP-PROGRAM statement.
However, results cannot be returned to the calling level in this case; results can be returned
only if a procedure calls another procedure. It is nevertheless possible to write procedures
which work correctly, regardless of whether they are called from the DAMP program level
or from another procedure, by interrogating CURRENT.LEVEL in order to identify the level
at which the procedure is running.

This means that all parameters are passed by the “call by reference” method, i.e. the
address of the parameter is passed to the procedure. However, literals and expressions can
also be passed directly as parameters. The corresponding structure variables can also be
described in the called procedure, but they cannot be used to return values to the calling
procedure.

Various parameter lists can be defined by means of ARRANGE and subsequently overlaid
on the pseudo-base PARAMETER after an INTERRUPT statement. Admittedly, in a later
RESUME statement it is necessary to specify all the parameters which are evaluated after
the associated INTERRUPT statement, but this method makes it possible to program a
“guided dialog”.

PRODAMP DAMP Dump analysis

260 U5663-J-Z125-11-76

Example 3 for the pseudo-base PARAMETER

ARRANGE
.TSN : TYPE=STRING,LENGTH=4, RELATIVE=0;
END ARRANGE;
MESSAGE ('Please enter TSN. (RESUME window,''tsn'')') ;
INTERRUPT;
TASK := PARAMETER.TSN ;
ARRANGE
.NUM : TYPE=NUMERIC,LENGTH=4,RELATIVE=0;
END ARRANGE;
MESSAGE ('Please enter number of passes. (RESUME window,num)');
INTERRUPT;
PASSES := PARAMETER.NUM ;

In a case of a symbolic access with the pseudo-base PARAMETER, it is only checked
whether the datum to be accessed lies within the parameter area supplied by the
caller, and if this is not the case, the program aborts with a corresponding runtime error
message (see Examples 4 and 5).

Other errors - e.g. when the types of the call parameters do not match the fields defined
with ARRANGE in the called procedure - cannot be detected by DAMP and can thus result
in unpredictable side-effects at runtime.

You can query the overall length of the parameter area in the called procedure with the
standard function LENGTH. This allows you to respond to missing parameters in the called
procedure, for example.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example 4 for the pseudo-base PARAMETER: Checking the length of the parameter area

The following PRODAMP program is to be called with two parameters, an address and an
optional counter to be specified. If the second parameter is not supplied, a default value is
to be used for the calculation instead.

"Layout of the parameter block (the 2nd. parameter may be missing)"
ARRANGE .ADDR_OF_STRUCT : OFFSET=0,LENGTH=4,TYPE=NUMERIC; "1st.parameter"
 .COUNTER : OFFSET=4,LENGTH=4,TYPE=NUMERIC; "2nd. parameter"
END ARRANGE;
" Transfer of parameters to the variables ADDR_OF_STRUCT and COUNTER."
" If counter is not specified, set COUNTER=100."
L:=LENGTH('*PARAMETER','DS');
IF CURRENT.ERROR <> 0 THEN
MESSAGE (' Program aborted. DAMP Version V4.2 or later required ');
RETURN WINDOW=CURRENT.WNDNO;
ELSIF L=4 THEN
ADDR_OF_STRUCT:= PARAMETER.ADDR_OF_STRUCT;
COUNTER := 100;
ELSIF L=8 THEN
ADDR_OF_STRUCT:=PARAMETER.ADDR_OF_STRUCT;
COUNTER:=PARAMETER.COUNTER;
ELSE
MESSAGE ('Program aborted. Invalid parameter supplied');
END IF;
" etc. (ADDR_OF_STRUCT and COUNTER are now supplied)"

PRODAMP DAMP Dump analysis

262 U5663-J-Z125-11-76

Example 5 for the pseudo-base PARAMETER: Artificial parameter area

In some cases, it is useful to provide a special work area in the parameter area for a
PRODAMP program, which can then be “freely” accessed. This can very easily be
implemented by calling the program a second time, but now with an extended parameter
area:

PROZEDUR XY

"Parameter layout"
ARRANGE :
.ADDR_IN: TYPE=NUMERIC,LENGTH=4,OFFSET=0;
.WORKAREA: TYPE=STRING,LENGTH=128,OFFSET=4;
END ARRANGE;
"Only ADDR_IN should be supplied for a direct call"

L:=LENGTH('*PARAMETER','DS');
WORKAREA := #'00'*64;
IF L = 4 THEN

XY(PARAMETER.ADDR_IN,WORKAREA); "Recursive call"
ELSIF L <> 4+64 THEN

MESSAGE(' Invalid parameter supplied or DAMP prior to V4.2 ');
END IF;
"A work area initialized with binary zero is now available to the program
XY in the parameter area."

5.7.3.9 Predefined variables

PRODAMP provides two predefined variables, OPC_TABLE and SVC_TABLE, to control
access to internal DAMP tables. On the one hand, these variables can be used as normal
numeric variables, i.e. you can assign values to them and use them in arithmetic
expressions. However, the length of the variables is less than that of normal numeric
variables and thus not every numeric variable can be assigned.
An assigned value is, however, also used as an index for localizing an entry within a DAMP
table. This index can then be used to address symbols which describe this entry.

OPC_TABLE

This variable is 2 bytes long and is used as an index for an entry in the DAMP table which
describes the instruction code and is used during disassembly. If the contents of
OPC_TABLE are less than 256 (i.e. if only one byte is used), they are understood to be the
operation code for an instruction. If the contents are greater than 255 (if 2 bytes are used),
they are understood to be the first two bytes of an instruction, the second byte being a
subcode. An entry in the instruction table is described by the following DSECT:

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

INST DSECT
INSTTYPE DS X INSTRUCTION TYPE
INSTNO EQU 0 NO VALID INSTRUCTION
INSTRR EQU 4 RR INSTRUCTION
INSTRX EQU 8 RX INSTRUCTION
INSTRS EQU 12 RS INSTRUCTION
INSTSI EQU 16 SI INSTRUCTION
INSTSS EQU 20 SS INSTRUCTION
INSTUN EQU 24 UNKNOWN INSTRUCTION TYPE
INSTFLAG DS X FLAG
INSTPRIV EQU X'80' PRIVILEGED OPERATION
INSTSVAL EQU X'40' SUBFUNCTION VALID/AVAILABLE
INSTSVMN EQU X'20' SUBFUNCTION MNEMONIC VALID
INSTPSMN EQU X'10' PSEUDO MNEMONIC AVAILABLE
INSTFPI EQU X'08' FLOATING POINT INSTRUCTION
INSTSPEC EQU X'04' SPECIAL OPERATION
INSTADW EQU X'03' ACCESS DOUBLE WORD
INSTAWD EQU X'02' ACCESS WORD
INSTAHW EQU X'01' ACCESS HALFWORD
INSTXCPT DS X EXCEPTIONS
INSTOP1 EQU X'80' OPERAND 1 EXCEPTION
INSTOP1M EQU X'40' OPERAND 1 = MASK/R0=0 IF RR,RX
INSTOP1E EQU X'20' OPERAND 1 = EVEN/EXTENDED
INSTOP2 EQU X'10' OPERAND 2 EXCEPTION
INSTOP2M EQU X'08' OPERAND 2 = MASK/R0=0 IF RR
INSTOP2E EQU X'04' OPERAND 2 = EVEN/EXTENDED
INSTOP3 EQU X'02' OPERAND 3 EXCEPTION
INSTOP3M EQU X'01' OPERAND 3 = MASK
INSTOPC DS X OPERATION CODE
INSTSVC EQU X'0A' OPERATION CODE = SVC
INSTRS2 EQU X'20' RS INSTRUCTION WITH 2 SIZES
INSTOMN DS CL5 INSTRUCTION MNEMONIC
INSTO2M DS X MASK FOR OPERAND 2
INSTFCT DS 0XL6 SUBFUNCTION
INSTFCD DS X FUNCTION DISPLACEMENT
INSTMSK DS X FUNCTION MASK
INSTFCU EQU X'F0' FUNCTION CODE IN UPPER HALFBYTE
INSTFCL EQU X'0F' FUNCTION CODE IN LOWER HALFBYTE
INSTFCF EQU X'FF' FUNCTION CODE IN FULL BYTE
INSTPTR DS A FUNCTION POINTER
 ORG INSTFCT
INSTFPT DS X FUNCTION PSEUDO TYPE (RR ONLY)
INSTFTM EQU X'FC' FUNCTION MASK FOR PSEUDO TYPE
INSTFTD EQU X'03' FUNCTION MASK FOR DISPLACEMENT
INSTFMN DS CL4 FUNCTION MNEMONIC
INSTILEN EQU *-INST ITEM LENGTH

PRODAMP DAMP Dump analysis

264 U5663-J-Z125-11-76

The following example is intended to illustrate how to address entries in the relevant DAMP
table using the variable OPC_TABLE. As a prerequisite, a disassembly table must have
been assigned, as is done when a diagnosis object is opened. If no such table has been
assigned, you will need to declare one with the MODIFY-OBJECT-ASSUMPTIONS
statement.

Example for OPC_TABLE

OPC_TABLE := X'B223';
MNEMO := ' '*7;
PSEUDO := 'none';
INSTSVAL := P'40';
INSTSVMN := P'20';
INSTTYPE := OPC_TABLE.INSTTYPE;
IF CURRENT.ERROR <> 0 THEN
 MESSAGE ('No instruction table available.');
 RETURN;
END IF;
IF INSTTYPE = 0 THEN
 MNEMO := 'invalid';
ELSIF INSTTYPE = 24 THEN
 MNEMO := 'unknown';
ELSE
 MNEMO := OPC_TABLE.INSTOMN;
END IF;
IF INSTSVAL + INSTSVMN IN OPC_TABLE.INSTFLAG THEN
 IF OPC_TABLE > 255 THEN
 PSEUDO := OPC_TABLE.INSTFMN;
 ELSE
 PSEUDO := ' ';
 END IF;
END IF;
MESSAGE ('Mnemonic: '+MNEMO+' Pseudo: '+Pseudo);

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

SVC_TABLE

This single-byte variable is used as an index for an entry in the internal DAMP SVC table,
which contains an 8-byte mnemonic for each SVC. The symbol file does not include a
DSECT for these entries. The entries must be described using an ARRANGE statement as
illustrated by the example below.

Example for SVC_TABLE

SVC_TABLE := X'5C';
ARRANGE .MNEMO : TYPE = STRING, LENGTH = 8, OFFSET = 0;
END ARRANGE;
MNEMO := ' '*8;
MNEMO := SVC_TABLE.MNEMO;
IF CURRENT.ERROR <> 0 THEN
 MESSAGE ('No SVC table available.');
ELSE
 MESSAGE ('SVC ' + HEX_STRING(SVC_TABLE,2)+' = '+MNEMO);
END IF;

PRODAMP DAMP Dump analysis

266 U5663-J-Z125-11-76

5.7.3.10 Standard procedures

Overview

The standard procedures incorporated in PRODAMP can only be called from within
procedures. The syntax of the procedure calls corresponds to the Pascal syntax.

PRODAMP makes use of the following standard procedures:

The specified names should not be used for separate procedures, as this may lead to the
program being interpreted incorrectly.

Procedure name Function

COMMAND Issue DAMP statements from within a procedure

DMP_#REFRESH Refresh the data area

DUMP_MEMORY Output a memory area to SYSLST

ENTER_MODULE Provide an interface between PRODAMP procedures and Assembler modules

EXTRACT Manipulate strings

INSERT Manipulate strings

LIST Output a string to SYSLST

MESSAGE Output a message

NEW_TASK Set a new 'current' task

NEXT_WINDOW Switch to a PRODAMP procedure in the next visible window of the DAMP
screen

READ Read from an EDT area

READ_WINDOW Interrupt the PRODAMP procedure and allow entries or markings to be made
in a diagnostic window

REFERENCE Define a symbol as an element of a substructure

SET_HEADER Create a header for a listing

UNSIGNED_ON Turn on unsigned arithmetic

UNSIGNED_OFF Turn off unsigned arithmetic

WRITE Write to an EDT area

Table 13: Overview of PRODAMP standard procedures

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

COMMAND
Issue DAMP statements

The standard procedure COMMAND enables the user to issue DAMP statements from
within a PRODAMP procedure, e.g. in order to assign a private symbol file.

Procedure call

Operands

text This specifies the text of the DAMP statement. “text” must be a string
expression and must contain the statement in the form in which it was
entered in the DAMP batch task or procedure.

“text” cannot be any of the following:
– REPEAT-SESSION
– RESUME-PRODAMP-PROGRAM
– SHOW-LAST-STATEMENT
– START-OPTION-DIALOG
– START-PATTERN-SEARCH
– START-PRODAMP-EDITOR
– START-PRODAMP-PROGRAM
– START-STATEMENT-SEQUENCE

DMP_#REFRESH
Refresh data areas

The standard procedure DMP_#REFRESH enables you to refresh data areas within a PRODAMP
procedure. This may be required every now and then when diagnosing the active system.

Procedure call

Operation Operands

COMMAND (text)

Operation Operands

DMP_#REFRESH

PRODAMP DAMP Dump analysis

268 U5663-J-Z125-11-76

DUMP_MEMORY
Output memory area

The standard procedure DUMP_MEMORY can be used to output a memory area to
SYSLST in one of the standard dump formats. All parameters must be numeric expres-
sions.

Procedure call

Operands

address Specifies the start address of the area. Depending on the value of
CURRENT.ATYPE, the virtual (default value), real, absolute or HSA
memory or areas from data spaces are output.

In the case of large real and absolute addresses, only a value within a
4 GB segment can be specified in “address”. The associated segment must
be specified in CURRENT.SEGMENT (see page 255).
CURRENT.SEGMENT is maintained on a local procedure basis and is
preset to “0”.

relad Sets an initial value for the address relocation output in the list. If “relad” is
set to 0, the addresses are output relative to the start of the area. (DAMP
uses this format, for example, for output of the TCB.)
If a negative value is specified for “relad”, no relative addresses are output
(used by DAMP, for example, for output of full pages).

length Specifies the length of the area to be output.

Example

A := .ETCBTFT; DUMP_MEMORY (A, 0, LENGTH ('IDMTFT','DS'))

The first TFT is output to SYSLST with the length of DSECT “IDMTFT” (see also the
description of the standard function LENGTH, page 293).

Operation Operands

DUMP_MEMORY (address,relad,length)

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

ENTER_MODULE
Call modules

The standard procedure ENTER_MODULE provides an interface between PRODAMP
procedures and Assembler modules. It is also possible to branch to modules created with
other languages provided that they conform to the conventions described below.

Procedure call

Operands

module Indicates the module to be called. The system expects module to be
contained as an R type element in the PRODAMP library which has been
defined as the object library. module must be a string type expression
containing the name of the module in uppercase characters. Only the first
8 characters are evaluated. If module contains less than 8 characters, it is
padded with blanks until it is 8 characters in length.

par1, par2, ... This is the list of parameters to be made available to the called module.
Each parameter must be an identifier for a PRODAMP variable or (in more
general terms) a PRODAMP expression. These expressions or variables
can be of any type. The list (par1, par2, ...) can be empty.

The registers are set as follows when the system branches to module:

R1 points to a parameter area supplied with values by PRODAMP.

R13 points to an 18-word (72-byte) area created by PRODAMP where the registers can
be saved.

R14 contains the return address.

R15 contains the branch address.

When control is returned from the module, PRODAMP expects registers R1 to R12 to
contain the same values they contained when control was passed to the module.

Operation Operands

ENTER_MODULE (module, par1, par2, ...)

PRODAMP DAMP Dump analysis

270 U5663-J-Z125-11-76

The parameter area has the following format:

The entire parameter area must not exceed the length of a 4K page (4096 bytes). This
means that the total length of the transfer area must not be greater than 4084 bytes.

When control is returned from the module, each variable which was passed as a parameter
is updated using the value from the transfer area. This means that ENTER_MODULE also
provides write access to PRODAMP variables.

ENTER_MODULE can also be used to start a module that was loaded in some other way.
Thus, you can use the PRODAMP procedure COMMAND to issue the DAMP statement
LOAD-MODULE in which a load library can be specified.

An entered module is unloaded on returning to the PRODAMP procedure only if it
was not loaded with LOAD-MODULE. The loading of modules with the DAMP statement
LOAD-MODULE (which is also possible from within PRODAMP via the COMMAND
statement) can thus reduce the runtime of PRODAMP procedures considerably if these
modules are called frequently. Furthermore, a load library can be specified in the
LOAD-MODULE statement.

Byte 0-1 Total length of the parameter area.

Byte 2-3 Contains the value 0.

Byte 4-11 Name of the module called.

Byte 12-n Transfer area containing the values of the parameters par1, par2,... in
unbroken sequence.

– Numeric parameters and pattern type parameters are always 4 bytes in
length.

– The length of a string type parameter depends on how it was defined in
the PRODAMP procedure (1-133 bytes).

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Examples

Example of a PRODAMP procedure that enters the ASSEMBLER module “TEST”, which changes
the string “CARSICK” to “SEASICK”:

PRODAMP procedure

STR := 'CARSICK';
ENTER_MODULE ('TEST', STR);
MESSAGE (STR);

Assembler module TEST

TEST CSECT
TEST AMODE ANY
 USING *,15
 STM 14,12,12(13)
 MVC 12(3,1),='SEA'
 LM 14,12,12(13)
 BR 14
 END

The example also shows how to save and restore registers. (In this case, this is in fact
unnecessary, since TEST does not change the registers.)

Example of a PRODAMP procedure to reduce the runtime

COMMAND ('LOAD-MODULE *P-U-O-L(TEST)');
"The error case leads to the runtime error (Abort)"
 MESSAGE ('The module TEST was loaded');
"No unloading now occurs for ENTER_MODULE"
N := 0;
STR := ' '*4;
WHILE (N<100) DO
 ENTER_MODULE ('TEST',STR); N := N+1;
END WHILE;

PRODAMP DAMP Dump analysis

272 U5663-J-Z125-11-76

EXTRACT
Manipulate strings

The standard procedure EXTRACT transfers as many characters from a source string,
starting at a specified position, to a target string as will fit into this target string. If the length
of the target string is greater than the number of characters to be transferred, the remaining
characters in the target string are unaffected.

Procedure call

Operands

target Must be an identifier for an initialized variable of the type string. This
variable contains the target string.

source Specifies the source string (as a string type expression).

position Specifies the position of the first character to be transferred within the
source string. The first character of the source string is located at position 0.

Examples

A := 'XXXX' ;
EXTRACT (A, 'Output for TSN 1234 under TSOS',15);

Once the statement has been executed, A contains the text “1234”.

A := 'without problems';
EXTRACT (A, 'This will probably not work.',19);

Following execution of the EXTRACT procedure, A contains the string “not work.roblems”.
Both examples assume that A has already been initialized by the statement shown.

Operation Operands

EXTRACT (target,source,position)

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

INSERT
Manipulate strings

INSERT replaces the characters of a target string, starting at a specified position, with the
characters of a source string. Characters are replaced until the last character from the
source string has been transferred or the last character in the target string has been
replaced.

Procedure call

Operands

source Specifies the source string (expression of the type string).

target Must be an identifier for an initialized variable of the type string. This
variable contains the target string.

position Specifies the position of the character as of which the target string is to be
overwritten.
“position” is specified relative to the start of the target string, i.e. the first
character in the target string has the position 0.

Examples

A := 'Output for TSN XXXX under user ID $$$$$$$$.';
INSERT ('1234',A,15); INSERT ('TSOS ',A,34);

Once the statements have been executed, A contains the following text:
“Output for TSN 1234 under user ID TSOS.”

A := 'This will probably not work.'
INSERT ('function.',A,22);

Once the statements have been executed, variable A contains the text:
“This will probably not funct”

Both examples assume that A has already been initialized by the statement shown.

Operation Operands

INSERT (source,target,position)

PRODAMP DAMP Dump analysis

274 U5663-J-Z125-11-76

LIST
Output strings to SYSLST

The standard procedure LIST serves to output a string to SYSLST.

Procedure call

Operands

string Specifies the string to be output.

skiplines Defines how many empty lines are to be inserted before the string.
0 Î skiplines Î 15. If no value is specified, then skiplines = 0.

Operation Operands

LIST (string[,skiplines])

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

MESSAGE
Display message on screen

When issued without the optional numeric parameter “line”, the standard procedure
MESSAGE causes a specified text to be displayed in one of the two message lines in the
DAMP screen mask (lines 2 and 3) as soon as the PRODAMP procedure is terminated and
the screen is refreshed. If the value 1 or 2 is assigned to the line parameter, the specified
text is output to screen immediately.

i line parameter not specified:

As soon as the buffer for the two message lines is full, any additional messages are
ignored. For this reason, it is advisable to follow a MESSAGE call with either an
INTERRUPT or a RETURN statement. If INTERRUPT is used, the user can read
the text and then, if desired, resume the procedure with RESUME. However, if the
message is an error message and the procedure is to be aborted, it is better to use
RETURN.

line parameter specified:

This allows interim messages providing information on the current state of
processing in the procedure to be issued during PRODAMP procedures which run
over longer periods.

Procedure call

Operands

text Text to be displayed.

line stands for a numeric expression with the value 0, 1 or 2. The values indicate
the message lines to which the messages are to be written.
Message line 1 ï line 2 of the screen
Message line 2 ï line 3 of the screen
A specification of 0 for line corresponds to the procedure call MESSAGE
(text).

Operation Operands

MESSAGE (text[,line])

PRODAMP DAMP Dump analysis

276 U5663-J-Z125-11-76

NEW_TASK
Set current task

The standard procedure NEW_TASK sets a new current task as defined by DAMP. This is
meaningful only for SLED dumps, SNAP dumps and the active system. All accesses to
task-specific tables (ETCB, EJCB etc.) or to addresses in user memory then refer to the
new task.

Procedure call

Operands

task Specifies the new current task.

“task” must be a string expression or a numeric expression. NEW_TASK
works differently in both cases.

If task is a string expression, it must contain a TSN (up to 4 characters in
length). If a task exists with this TSN, it is set as the current task. If this is
not the case, CURRENT.ERROR is set.

If task is a numeric expression, the last 3 half-bytes of this value are inter-
preted as an ITN. If an active task with this ITN exists in the diagnosis
object, this task is set. If this is not the case, the subsequent task (in the
TLT) is set. CURRENT.ERROR is only set if it is not possible to find a task
in this
manner.
If the numeric expression is an identifier for a numeric variable, it returns the
TID set. This allows you to work through all active tasks sequentially (see
example 3, “Changing the current task”, on page 309).

map Specifies whether the existing system overview (CSECT map) is to be
extended to include the overview of the nonprivileged subsystems for the
new task.
The value TRUE or FALSE can be used for the parameter map. The value
TRUE requests the additional CSECT map. No specification is equivalent
to the specification FALSE.

i The specification TRUE results in decreased performance and can
easily cause a memory overflow on systems with a large number of
active tasks. The optional parameter map should therefore only be
used when absolutely necessary.

Operation Operands

NEW_TASK (task[,map])

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example

NEW_TASK ('0A33'); —— (1)
TASK_ID := X'AB'; ——— (2)
NEW_TASK (TASK_ID);

(1) The task with the TSN 0A33 is selected first. If this task does not exist,
CURRENT.ERROR is set.

(2) Then the task with the ITN X'AB' is selected as the current task. If this task does not
exist either, the next task in the TLT (which could be X'AE') is selected and its TID
is returned in TASK_ID. CURRENT.ERROR is set only if task X'AB' is not active and
there are no more active tasks in the TLT.

PRODAMP DAMP Dump analysis

278 U5663-J-Z125-11-76

NEXT_WINDOW
Switch to next visible window

NEXT_WINDOW can only be called if READ_WINDOW has previously been called
successfully. It provides the pseudo symbols INFIELDS.xxx for the next diagnostic window
in the screen read by READ_WINDOW. Please refer to READ_WINDOW for further
information.
If the DAMP screen does not have any more visible windows, the pseudo symbol
CURRENT.ERROR is set to a value other than 0.

i The pseudo symbol INFIELDS.COMMAND can always be used to access the
command line of the DAMP screen, irrespective of the viewed window.

Procedure call

Example

READ_WINDOW; —— (1)
WHILE (CURRENT.ERROR = 0) DO —— (2)

WRITE (DEC_STRING (INFIELDS.WNDNO)); ——————————————————————————————— (3)
NEXT_WINDOW; ——— (4)

END WHILE;

(1) The procedure is interrupted. The procedure is reactivated when the [P13] key is
pressed, and the entries made in the last screen are stored internally. The topmost
diagnostic window on the screen is the current diagnostic window to which
INFIELDS.xxx refers.

(2) Aborts the procedure if NEXT_WINDOW does not display any further visible
window.

(3) This allows the pseudo symbols INFIELDS.xxx to be evaluated for the current
window. In the example, the window number is written to the EDT area.
Since INFIELDS.WNDNO always exists, it is not necessary to evaluate
CURRENT.ERROR.

(4) Switch to next window.

Operation Operand

NEXT_WINDOW

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

READ
Read from EDT area

The standard procedure READ reads sequentially from the current EDT area and assigns
the record read to a string variable text. If this string variable has not yet been initialized, a
string with the maximum permissible length (133 bytes) is created. If the EDT line is too
short, the variable is filled with blanks; if it is too long, surplus characters are ignored.

In addition to being used to access diagnostic data that is not in the diagnosis object (such
as the REP file), this function can be used, for example, to store table layouts in separate
files and to read them into the PRODAMP procedure, thereby doing away with the need for
resource-intensive initialization operations.

i The user is advised not to alternate between the procedures READ and WRITE,
since it is possible that WRITE will change the current line number set internally by
EDT. A subsequent READ operation could possibly return the wrong line.

Procedure call

Operands

text String variable to be assigned to the text read.
Maximum length: 133 characters.

Operation Operand

READ (text)

PRODAMP DAMP Dump analysis

280 U5663-J-Z125-11-76

READ_WINDOW
Interrupt PRODAMP procedure and allow entries or markings to be made in
diagnostic window

The standard procedure READ_WINDOW interrupts the PRODAMP procedure. The
PRODAMP procedure is reactivated after you press the [P13] key. Until you do this, you
can carry out any work required in the DAMP screens.
When the procedure is reactivated using the [P13] key, the entries in the last DAMP screen
are not passed to the DAMP screen, but to PRODAMP instead. The pseudo symbols
INFIELDS.xxx (see below) make available entries in the topmost diagnostic window on the
screen as well as entries in the command line. The standard procedure NEXT_WINDOW
allows access to the entries in any subsequent diagnostic window (on the same screen).
Calling the NEXT_WINDOW procedure a number of times in succession makes the entries
from all the diagnostic windows on the screen (from top to bottom) available.

As well as entries, READ_WINDOW allows you to determine a number of values assigned
to the windows (such as the window number). Not all entries are available. This applies
particularly to entries in most of the special windows. Please refer to the list below for
details. This list contains the permitted INFIELDS.xxx pseudo symbols.

Users can program their own interfaces for DAMP by incorporating READ_WINDOW and
NEXT_WINDOW procedures in a PRODAMP procedure and always using the [P13] key
for transferring data. This allows implementation of new, user-specific DAMP statements.

Procedure call

The following pseudo-symbols can be accessed:

INFIELDS.ADDRESS
Contains any entry made in the Absolute address field in the header line of the viewed
window; 4-digit numeric value.

INFIELDS.ASEL
Contains any entry made in the ASEL (Address Space Selector) field in the header line of
the viewed window; 3-character string.

INFIELDS.ASID
Contains any entry made in the ASID (Address Space Identifier) field in the header line of
the viewed window; 17-character string.

INFIELDS.COMMAND
Contains any entry made in the DAMP statement line; 72-character string.

Operation Operands

READ_WINDOW

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

INFIELDS.LAYOUT
Contains any entry made in the Window layout field in the header line of the viewed
window; 3-character string.

INFIELDS.LENGTH
Contains any entry made in the Length field in the header line of the viewed window; 1-digit
numeric value.

INFIELDS.MARK1 to INFIELDS.MARK6
Contains any addresses marked in the viewed window; 4-digit numeric value (for each
address).

INFIELDS.RELATIVE
Contains any entry made in the Relative address field in the header line of the viewed
window; 4-digit numeric value.

INFIELDS.STACK
Contains any entry made in the Stack number field in the header line of the viewed stack
window; 4-digit numeric value.

INFIELDS.SYMBOL
Contains any entry made in the Symbol field in the header line of the viewed window;
31-character string.
(For reasons of compatibility, the last (i.e. 32nd) character of the Symbol field is ignored.

INFIELDS.TID
Contains any entry made in the TID field in the title line of the viewed dump window;
4-digit numeric value.

INFIELDS.TSN
Contains any entry made in the TSN field in the title line of the viewed dump window;
4-digit numeric value.

INFIELDS.WNDNO
Contains the window number of the viewed window; single-digit numeric value.

INFIELDS.WNDTSK
Contains the TID to which the data in the viewed window belongs; 4-digit numeric value.

PRODAMP DAMP Dump analysis

282 U5663-J-Z125-11-76

Notes

– If the pseudo-symbol is queried even though no entry has been made in the corre-
sponding field in the DAMP window, the pseudo-symbol CURRENT.ERROR is set to a
value other than 0. The pseudo-symbols WNDNO and WNDTSK are set implicitly.
WNDNO is always valid and WNDTSK is valid whenever the window contains data from
a user task. If the data is system data, the value contained in WNDTSK is not valid
(CURRENT.ERROR is set).

– If the PRODAMP procedure interrupted with READ_WINDOW is resumed using the
RESUME-PRODAMP-PROGRAM statement, the procedure is always aborted if an
attempt is made to access one of the pseudo-symbols. In this event, an appropriate
message is issued.

– The data stored in the pseudo-symbols is not destroyed if the PRODAMP procedure is
interrupted normally using the INTERRUPT statement. It remains available after the
procedure has been resumed (using the RESUME-PRODAMP-PROGRAM) statement.
Each time a PRODAMP procedure is restarted, however, the data area accessed by
the pseudo-base INFIELDS is set to an invalid value. This is also the case if a different
procedure was started between the INTERRUPT and RESUME-PRODAMP-
PROGRAM statements.

– Irrespective of the number of windows displayed on the screen, a maximum of
6 markers are transferred and assigned to the relevant windows with the
READ_WINDOW and NEXT_WINDOW procedures. The markers are available in the
PRODAMP procedure via the pseudo-symbols INFIELDS.MARK1 through
INFIELDS.MARK6.

Example

The following procedure waits in the background until an address field is marked and trans-
ferred using the [P13] key. If this happens, the procedure outputs the first word located at
the marked address in the message line.

ARRANGE
 .WORD : OFFSET = 0, LENGTH = 4, TYPE = NUMERIC;
END ARRANGE;
B := 0;
WHILE B=B DO
 CURRENT.ERROR := 0;
 READ_WINDOW;
 WHILE CURRENT.ERROR = 0 DO
 A := INFIELDS.MARK1;
 MESSAGE (HEX_STRING(A,8)+': '+HEX_STRING(A.WORD,8));
 NEXT_WINDOW;
 END WHILE;
END WHILE;

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

REFERENCE
Localize symbol which is element of substructure

The standard procedure REFERENCE is only used in conjunction with the standard
functions ADDRESS and LENGTH. The procedure is used for specifying references if the
symbol to be processed using ADDRESS or LENGTH is an element of a substructure. The
REFERENCE procedure must be called for each symbol which lies on the “path” to the
required element. This must be done in the correct sequence (see example). Symbols must
be specified as a string of up to 32 characters. These are collected by the REFERENCE
calls, but not checked for validity. The strings are only checked when the ADDRESS or
LENGTH function is called.

i All REFERENCE calls are only valid locally within a procedure. If the calls are not
resolved by calling ADDRESS or LENGTH when the procedure is terminated, the
procedure is aborted. If the call is resolved, the referenced path is deleted. If the
element is required again, you must make new REFERENCE calls.

Procedure call

Operands

symbol Specifies the symbol to be localized; 31-character string.

Example

NKLCB_MDL.COPY_PARAMETER.USER_ADMINISTRATION.WAIT_FACTOR —————————————— (1)
REFERENCE ('NKLCB_MDL');
REFERENCE ('COPY_PARAMETER');
REFERENCE ('USER_ADMINISTRATION'); —————————————————————————————————— (2)
A := ADDRESS ('WAIT_FACTOR', 'RF'); ————————————————————————————————— (3)

(1) This SPL structure field is to be evaluated.

(2) The REFERENCE procedure is used three times to indicate the path
(“NKLCB_MDL.COPY_PARAMETER.USER_ADMINISTRATION”) leading to the
WAIT_FACTOR symbol.

(3) This returns the address of the WAIT_FACTOR symbol. The address is calculated
relative to the first symbol of the chain of references (NKLCB_MDL in the example).
Specifying “RF” indicates that REFERENCE calls were required to find this symbol.

Operation Operand

REFERENCE (symbol)

PRODAMP DAMP Dump analysis

284 U5663-J-Z125-11-76

SET_HEADER
Generate header for list output

SET_HEADER can be used to generate a header for a list output. This header is output for
the first time when SET_HEADER is called; after this, it is output after each subsequent new
page in the list until the text is changed by a new SET_HEADER call.

Procedure call

Operands

string must be an expression of the type “string” and contains the text for the
header.

skiplines must be a numeric expression and specifies the number of lines to be
skipped before the header is printed for the first time. 0 ≤ skiplines ≤ 255.

reservelines must be a numeric expression and has the following effect: if there are less
than “reservelines” lines left on the current page before the next page break,
a form feed to a new page is executed before the header is printed for the
first time.
0 Î reservelines Î 255.
Specifying “255” forces a form feed.

Example

SET_HEADER ('TEXT',0,255); —— (1)
SET_HEADER ('TFT FOR TASK'+CURRENT.TSN, 2, 20); ——————————————————————— (2)

(1) This forces a form feed before the header.

(2) 2 lines are skipped before the header (one line is always skipped after the header).
If there are less than 20 lines left on the current page, a form feed is executed.

Operation Operands

 SET_HEADER (string,skiplines,reservelines)

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

UNSIGNED_ON and UNSIGNED_OFF
Enable and disable unsigned arithmetic

When performing calculations with addresses, it can sometimes be a disadvantage to work
with signed arithmetic. For this reason, it is possible to select between unsigned and signed
arithmetic for the numeric data type of PRODAMP by calling a standard procedure.

In the signed interpretation of 32-bit data, the leading bit has a value of -231; in the unsigned
interpretation, its value is 231.

A PRODAMP main routine initially runs with signed arithmetic enabled (UNSIGNED_OFF,
the default setting for PRODAMP). Unsigned arithmetic must be enabled with the
procedure UNSIGNED_ON and can be disabled again with UNSIGNED_OFF.

On calling a subroutine, this arithmetic execution mode (i.e. signed or unsigned) is inherited
by the subroutine. Changing the mode in the called routine has no effect on the arithmetic
execution mode in the calling routine.

The arithmetic execution mode only affects calculations with the arithmetic data type of
length 4 (32-bit data). The addressing of data objects is not affected.

Signed arithmetic (UNSIGNED_OFF)

Calculations with signed arithmetic are performed as usual in PRODAMP. If errors occur
(overflow on addition, subtraction and multiplication; division by zero), the PRODAMP run
is aborted with a runtime error.

Unsigned arithmetic (UNSIGNED_ON)

Overflows on addition, subtraction and multiplication are ignored (the result is
“modulo 232”, which is correct) and, in particular, do not result in a runtime error.
In the case of a division by zero, the PRODAMP run is aborted with a runtime error.
Comparisons in unsigned arithmetic are performed as binary “logical comparisons”.

In the standard functions “DEC_BINARY - Convert decimal number” and
“DEC_STRING - Convert numeric values”, the switch to signed arithmetic with
UNSIGNED_ON is ignored.

Procedure call

Operation Operand

UNSIGNED_ON

UNSIGNED_OFF

PRODAMP DAMP Dump analysis

286 U5663-J-Z125-11-76

WRITE
Write to EDT area

The standard procedure WRITE causes a text to be written to an EDT area (namely area
8, unless otherwise specified). This makes it possible, for example, to generate a table of
system values in the EDT area and then evaluate this table in EDT.

The EDT output area can be modified at any time with the aid of WRITE (“@PROC nn”).

i Strings which begin with the character “@” are interpreted as EDT statements.
“@WRITE ''filename''” can thus be used to save the contents of the EDT area to a
file.
However, only EDT statements accepted in EDT F mode are accepted in the
WRITE procedure. Other statements can only be issued by way of an EDT
procedure file.

PRODAMP simulates the EDT statements @PROC and @END, albeit with the
following restrictions:
– Only procedure files 1 to 9 can be used.
– If the system recognizes the number of a valid procedure file, no further syntax

checking is carried out. Any further command entry is ignored.
– The @END command must not be abbreviated.
– It is not possible to chain @PROC or @END together with other EDT

commands.

If old PRODAMP procedures which still use L mode EDT commands are recom-
piled under DAMP V4.7, they will no longer run.

i The standard procedure WRITE may modify the current line number set internally
by EDT. If it is followed by a READ procedure, the resultant line contents will be
other than expected. For this reason, alternate use of WRITE and READ should be
avoided.

Procedure call

Operands

text Specifies the string expression to be written to the EDT area.

Operation Operands

WRITE (text)

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.7.3.11 Standard functions

The standard functions contained in PRODAMP can only be called within procedures. The
syntax of the function calls corresponds to Pascal syntax.

The listed names should not be used for user-written procedures, since this may lead to
misinterpretation of the program.

Function name Function

ADDRESS Return the address of a module or control block

DEC_BINARY Convert a decimal string to a numeric variable

DEC_STRING Decimal editing for printing

HEX_BINARY Convert a hexadecimal string to a numeric variable

HEX_STRING Hexadecimal editing for printing

LENGTH Output the length of a module, control block or parameter area

LOCATION Return the module name for an address

PATTERN Convert a numeric value to a PATTERN type value

PCK_BINARY Unpack packed numbers from a diagnosis object

Table 14: Overview of PRODAMP standard functions

PRODAMP DAMP Dump analysis

288 U5663-J-Z125-11-76

ADDRESS
Return address of module or control block

The standard function ADDRESS supplies the address of a module. Consequently, the
result variable must be numeric. If the result variable has not yet been initialized, it is
assigned the type “numeric” and the length “4”. ADDRESS can also be used to determine
relative addresses of fields in a control block.

User program modules can normally only be found in user dumps.

Function call

Operands

modname Specifies the name of the required module. 'modname' may not contain
more than 32 characters; however, leading and trailing blanks are permitted
before and after the module name.

i In string types, a distinction is made between uppercase and lowercase
notation. modname must therefore be specified in uppercase letters.

susyname Specifies the subsystem in which the relevant module is to be localized.
susyname is a string containing the name of a subsystem or one of the
following symbolic names:

i If the relative address of a control block is to be determined, modname must contain
the field name and susyname must contain the character string “DS”. If the name of
a symbol is specified for modname, and if this symbol is the element of a
substructure localized by REFERENCE calls, the character string “RF” must be
entered for susyname.
(For further details see the example for the standard procedure REFERENCE on
page 283.)

Operation Operands

 ADDRESS (modname, susyname)

CP Control Program, i.e. all class 1 and class 2 modules are
searched for “modname”.

*PRIV All privileged subsystems are searched for “modname”.

*NONPRIV All nonprivileged subsystems are searched for “modname”.

*USER Only the user CSECTs are searched for “modname”.

*ALL The entire system is searched for “modname”.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example

A := ADDRESS ('DOPEN', 'CP') ;
MODULE := 'FAUTEM' ;
A := ADDRESS (MODULE, 'ARCHIVE');
A := ADDRESS ('EXVTDSSM','DS');

If the module or symbol is not found, the pseudo-symbol CURRENT.ERROR is given a
value î 0. In this case, the returned result is undefined.

DEC_BINARY
Convert decimal number

The standard function DEC_BINARY interprets the contents of a string as a decimal
number and returns this number as data of the 4-byte numeric type. Any blanks before and
after the relevant characters are ignored.

If the string does not contain a valid decimal value or if the value lies outside the limits for
numeric variables, CURRENT.ERROR is set. In this case, the result of DEC_BINARY is
undefined.

The enabling of unsigned arithmetic with the standard procedure UNSIGNED_ON
is ignored.

Function call

Operands

string String variable that is to be converted.

Operation Operand

 DEC_BINARY (string);

PRODAMP DAMP Dump analysis

290 U5663-J-Z125-11-76

DEC_STRING
Convert numeric values

The standard function DEC_STRING converts a specified number into a decimal string.
The enabling of unsigned arithmetic with the standard procedure UNSIGNED_ON
is ignored.

Function call

Operands

number Specifies the number that is to be converted.

length Specifies the length of the string generated. The decimal number is entered
in the string right-justified and is padded to the left with blanks. If the
specified length is insufficient, leading characters are truncated.

If you do not specify a length, only the significant characters are returned
(compact format without leading blanks).

Exception

X := DEC_STRING(I) has the same effect as X := DEC_STRING(I,L), if X is
a string variable which has already been initialized with the length L.

If you use DEC_STRING without specifying a length for initializing a
variable or as a parameter for an expression to be passed to one of your
own PRODAMP subroutines, 10 bytes are reserved for the result. In both
cases it is better to specify a length explicitly.

Operation Operands

 DEC_STRING (number[,length])

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Example

Task: Result:
X := 'XXXXXXXX'; —— (1)
X := DEC_STRING (123); ' 123'
X := 'XXX';
X := DEC_STRING (123456); '456' —————————————————— (2)
X := 'ABC' + DEC_STRING (12) + 'XYZ'; 'ABC12XYZ ' ————— (3)
X := 'ABC' + DEC_STRING (12,5) + 'XYZ'; 'ABC 12XYZ' —————————— (4)

(1) X initialized as an 8-byte string.

(2) X initialized as a 3-byte string.

(3) X not initialized. A string of the length 3 + 10 + 3 is produced.

(4) X not initialized. The “length” operand, however, is passed a value of 3 + 5 + 3 when
the DEC_STRING function is called.

HEX_BINARY
Convert hexadecimal number

The standard function HEX_BINARY interprets the specified string as a hexadecimal
number and returns the result as data of the 4-byte numeric type. Any blanks before and
after the relevant characters are ignored.

If the string does not contain a valid hexadecimal value or if the value lies outside the limits
for numeric variables, CURRENT.ERROR is set. In this case, the result of HEX_BINARY is
undefined.

Function call

Operands

string String variable that is to be converted.

Operation Operands

 HEX_BINARY (string);

PRODAMP DAMP Dump analysis

292 U5663-J-Z125-11-76

HEX_STRING
Convert numeric values

The standard function HEX_STRING converts a specified number into a hexadecimal
string.

Function call

Operands

number Specifies the number that is to be converted.

length Specifies the length of the string generated. The hexadecimal number is
entered in the string right-justified and is padded to the left with zeros. If the
specified length is insufficient, leading characters are truncated.

If you do not specify a length, only the significant characters are returned
(compact format without leading blanks). In the same way as with
DEC_STRING, there are exceptions where no length is specified. Where
necessary, the compiler reserves 8 characters for the result of
HEX_STRING.

Examples

Task: Result:

X := 'XXXXXXXX';
X := HEX_STRING (123) '0000007B'

X := 'XXX'; "too short"
X := HEX_STRING (4097) '001'

X not yet initialized
X := HEX_STRING (123,8) '0000007B'

X not yet initialized
X := HEX_STRING (123) '0000007B'

Operation Operands

 HEX_STRING (number[,length])

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

LENGTH
Output length of a module, control block or parameter area

The standard function LENGTH can be called in three variants:

– Variant 1: outputs the length of a module
– Variant 2: outputs the length of a control block

(DSECT/SPL structure, substructure and field)
– Variant 3: outputs the length of the parameter area with which the current procedure

was called

The result is of type “numeric” and has the length “4”.

Function call

Operands

The following values of the string “susyname” have a special meaning:

Operation Operands

 LENGTH (modname, susyname);

modname Variant 1: 'modname' is the name of a module, whose length is to be
determined. 'modname' can have a maximum of
32 characters, but blanks before or after the module name are
allowed.

Variant 2: 'modname' is the name of a control block, whose length is to
be determined; maximum 32 characters, but also with
additional blanks allowed before or after the name.

Variant 3: 'modname' is the string '*PARAMETER'

susyname Variant 1: The name of the subsystem in which the module is to be
searched.

CP The control program is searched, i.e. among all Cl1 and Cl2
modules.

*PRIV All privileged subsystems are searched.

*NONPRIV All nonprivileged subsystems are searched.

*USER Only the user CSECTs are searched.

*ALL Everything is searched.

PRODAMP DAMP Dump analysis

294 U5663-J-Z125-11-76

Notes

1. The call format LENGTH('*PARAMETER','DS') sets the value of CURRENT.ERROR
to 0 and returns the entire length of the parameter area with which the current
procedure was called. This length is 0 if the call occurred without parameters.

Examples for the use of LENGTH('*PARAMETER','DS') can be found starting on
page 260.

2. When LENGTH is called for a module or control block, a subsequent examination of
CURRENT.ERROR should indicate whether or not this module or control block was
actually found.
This allows you to check for the existence of a control block field in the currently loaded
symbol elements before a symbolic access with that control block field and to respond
accordingly.

Examples

L:=LENGTH('NCTVXVT','CP');
L:=LENGTH('EXVT','DS');
L:=LENGTH('EXVTPRD','DS');
L:=LENGTH('*PARAMETER','DS');

L:=LENGTH('MYDSECT','DS');
IF CURRENT.ERROR <> 0 THEN
" Error case; continue by dynamically loading required symbols via "
" COMMAND ('ADD-SYMBOLS ...'), for example, or error exit "
END IF;

susyname Variant 2: 'susyname' contains 'DS' or 'RF'.
This indicates that the length of the control block or field is to
be determined. 'RF' is used in cases where the field is an
element of a substructure and used for localizing
REFERENCE calls.

Variant 3: 'susyname' contains 'DS', and “modname” is the string
“*PARAMETER”.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

LOCATION
Return module name for address

The standard function LOCATION returns the name of the module in which the specified
module name is located. Consequently, the result must be assigned to a string variable.

The module name is transferred in 32 characters at the most. If the string variable is too
short to accommodate the module name, it is truncated. If it is longer than the module
name, the remaining space is filled with blanks. If the target variable has not yet been
initialized, it is assigned the type “string” and the length “8”.

If the specified expression does not match any address from a system module, LOCATION
sets the pseudo-symbol CURRENT.ERROR. If the address is found in user memory, the
target variable receives the value “ABSOLUTE”; if not, it receives the value “?”.

The displacement of this module from the start of the module can then be determined with
the aid of the standard function ADDRESS.

Function call

Operands

address Address of the module that is to be localized.

susyname Subsystem in which the module is to be localized. susyname is a string that
contains either the name of the subsystem or one of the following symbolic
identifiers:

Example

NAM := LOCATION (ADDR, 'CP');
REL := ADDR - ADDRESS (NAM, 'CP') ;

 Operation Operands

 LOCATION (address, susyname);

CP The control program is searched, i.e. among all Cl1 and Cl2
modules.

*PRIV All privileged subsystems are searched.

*NONPRIV All nonprivileged subsystems are searched.

*USER Only the user CSECTs are searched.

*ALL Everywhere is searched.

PRODAMP DAMP Dump analysis

296 U5663-J-Z125-11-76

PATTERN
Convert numeric value

The PATTERN function converts a numeric value to a value of the type PATTERN. If the
result variable does not exist, it is assigned a length of 4 bytes.

A conversion of this type is required if, for instance, a loop is to be used to check data to
see whether certain bits are set or not. Since no operations are available which, for
instance, produce the value P'02' from P'01', this can only be done by converting numeric
values.

Function call

Operands

num Specifies the numeric value to be converted.

Example

L := 1;
U := 1;
WHILE L < 8 DO
 IF PATTERN (U) IN .EXVTULM THEN

 END IF;
 U := U * 2;
 L := L + 1;
END WHILE;

Operation Operands

 PATTERN (num)

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

PCK_BINARY
Unpack packed numbers

PCK_BINARY converts packed numbers into unpacked numbers. The result is numeric
and has the length “4”.

If the string does not contain a packed number, CURRENT.ERROR is set.

Function call

Operands

string Specifies the number that is to be unpacked.

Operation Operand

 PCK_BINARY (string)

PRODAMP DAMP Dump analysis

298 U5663-J-Z125-11-76

5.7.4 Working with procedures (special window: PROC)

Every PRODAMP procedure can be called either from the DAMP program level or as a
subroutine. In the first case, the procedure is called either after compilation by specifying
MODE=Xqt or MODE=Go, by means of the DAMP statement RESUME-PRODAMP-
PROGRAM (with the option of passing parameters), or using the DAMP statement START-
PRODAMP-PROGRAM, should the PRODAMP procedure be in a library in the form of an
object (here also with the option of passing parameters).

A PRODAMP procedure can be called as a subroutine only if it is stored in object form in a
library or if it has already been compiled and is currently in a PROC window. The procedure
is then called by specifying its name together with the list of parameters, if appropriate. The
procedure name is identical to the element name of the PRODAMP object in the library (see
section “Archiving private procedures” on page 306).

Creating private procedures

The creation of PRODAMP procedures comprises two components: editing and compi-
lation.

In order to create a procedure, the PRODAMP compiler must first be assigned to one of the
dump windows. This is done using the following statement:

START-PRODAMP-EDITOR WINDOW=<w>, SOURCE=filename

WINDOW Specifies the window (4 to 9 or 21 to 99) in which the PRODAMP procedure
is to be edited, compiled and possibly executed.

SOURCE Specifies a file that already contains a PRODAMP source file. This file is
then read immediately into the specified window. This specification is
optional.

i A window being used by a PRODAMP procedure is not reset when the dump file is
switched by means of the DAMP statement OPEN-DIAGNOSIS-OBJECT.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Input fields in the PROC window

Figure 67: Dump window to which the PRODAMP compiler has been assigned

Within a procedure that has been read in or written, it is possible to scroll back (+nn) and
forth (-nn) or position to a specific line (#nn) in the same way as in EDT. You can also enter
text in the header line and in the text lines. Entries in the header line (“Procedure”, “Version”
and “Mode”) initiate PRODAMP functions, while entries in the program lines are regarded
as changes to these lines.

Meanings of the three fields in the header line

Mode Mode; specifies what is output in the dump window or what action the
PRODAMP compiler is currently performing or is to perform. Entering one
of the following strings and sending the screen off by hitting the [DUE] key
triggers the corresponding action.

=Beg (Begin); positions the window to line 1 of the source file.

=Cmp (Compile); starts the compiler for the current contents of the window.

=Dsp (Display); default setting for modifying source file lines within the
PRODAMP window.

=Edt (Edit); transfers the current PRODAMP procedure to an EDT area. Major
changes to the PRODAMP source file should always be made in EDT. The
PRODAMP window permits only simple editing functions (scrolling,
overwriting, deleting). When the editor is terminated by means of END,
HALT or RET, the edited source file is transferred back to the PRODAMP
window and the EDT area is then cleared.

=Go is equivalent to “compile + execute + begin”.

=Inf (Inform); outputs a list of the source elements contained in the current
source library and releases a lock set using Lck (Lock). If the keyword
OBJECT is entered in the “Procedure” field, the display switches to the
directory of the object elements. By the same token, entering SOURCE
restores the original display.

DAMP <version> SLED(19.0) from BS2000(19.0) <date> <time>

MY_PROC Version=001 TID= TSN= W8,Dsp,L19
 1: ARRANGE
 2: WINDOW: NUMBER=6, LENGTH=4, NAME='ETMBON1';
 3: END ARRANGE;

Procedure Version Mode

PRODAMP DAMP Dump analysis

300 U5663-J-Z125-11-76

=Lck (Lock); has the same effect as Read, but also locks the element of the
source library to be read against concurrent accesses. The lock is released
using Update, New or Inform. New and Inform do not change the original
contents of the library. Only Update overwrites the old data.

=New clears the PRODAMP window so that a new PRODAMP procedure can be
displayed.
Any lock set by Lck (Lock) is canceled. The system does not request confir-
mation.

i The PRODAMP window is cleared without a request for confir-
mation.

=Rea (Read); an element is read from the selected source library. As for M=Wrt,
the element name and the version are taken from the fields “Procedure” and
“Version” in the header line. If no version is specified, DAMP automatically
accesses the highest existing version.

=Sav (Save); stores a PRODAMP object in the selected object library. The name
specified in the “Procedure” field is used as the element name, and the
number specified in the “Version” field is used as the version number. An
element with the same name and version will be overwritten without first
asking for confirmation.

=Upd (Update); in the selected source library the element with the name specified
in the “Procedure” field and the version specified in the “Version” field is
overwritten. Any lock set using Lck is released. If there was no element with
this version, an error message is issued. In this case, Mode=Wrt must be
used.

=Wrt (Write); the current source is written to the library set via ASSIGN or to the
default library. The name specified in the “Procedure” field is used as the
element name, and the number specified in the “Version” field is used as
the version number. If no version is specified, DAMP automatically assumes
001. An existing element with the same name and version will not be
overwritten unless explicitly requested by way of Mode=Upd.

=Xqt (execute); executes a compiled PRODAMP procedure.

Procedure Displays the name of the procedure currently being output.

Version Specifies the version of the procedure with the specified name.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Useful information for practical application

The following sequence of actions is recommended when trying out PRODAMP for the first
time:

– Start PRODAMP using START-PRODAMP-EDITOR.
– Switch to EDT via Mode=Edt.
– Edit the PRODAMP procedure in EDT.
– If desired, save the procedure by means of WRITE.
– Return to DAMP by entering HALT.
– Compile the procedure via Mode=Cmp.
– If necessary, correct any syntax errors in the PROC window or using EDT again.
– Execute the syntactically correct procedure via Mode=Xqt.
– If necessary, debug the procedure.

Common errors

– A symbol which can be localized automatically is entered without the period that forms
part of the symbol. As a result, PRODAMP does not recognize this as a symbol, but
interprets it as a variable.

– When using symbols, the programmer forgets that the types and lengths of the symbols
are not known until runtime. If a value is assigned to a variable which has not been
initialized, the variable can thus receive only the default type (numeric, length 4). It is
therefore best to declare all variables by initializing them.

– After accessing the object to be diagnosed, you forget to check the value of the
pseudo-symbol CURRENT.ERROR and continue working with meaningless values.

– The rules governing truncation and padding when assigning string variables of different
lengths to each other are not taken into account.

– When the object library is switched, object modules which were loaded from the first
object library are not deleted from memory. If, for example, a procedure with the name
“PROC” is loaded from one object library by means of the START-PRODAMP-
PROGRAM statement, “START-PRODAMP-PROGRAM PROC” will still call this
procedure after switching to another object library, even if the new library contains
another procedure with the same name.

PRODAMP DAMP Dump analysis

302 U5663-J-Z125-11-76

Cleaning up addresses

In addressing mode 31, PRODAMP cleans up the addresses in the following cases during
execution:

– if a numeric variable is used as the base for a symbolic access.

Example

P := X'82CD0000';
A := P.ESTKGR0;

Here, depending on the addressing mode, only X'02CD0000' or X'82CD0000' is
used in the second statement to form the address.

– if the numeric variable is used as the input for the standard function LOCATION.

i For DAMP, the addressing mode is a global constant that depends on the
HSI. On servers with /390 architecture, DAMP uses 31-bit addressing. On
servers with x86 architecture, DAMP uses 32-bit addressing. It may
therefore be necessary, particularly when using PRODAMP procedures for
the diagnosis of user programs, to clean up the addresses there “manually”
into 24-bit addresses.

Example

X'887C240C' MOD X'01000000' produces X'007C240C'.

Passing parameters to PRODAMP

There are four ways of passing parameters to PRODAMP:

– by means of RESUME-PRODAMP-PROGRAM

– by means of START-PRODAMP-PROGRAM

– by making the appropriate entry in the procedure window, and then compiling and
starting the run. In this case, the procedure should be written so that the variables which
are to accept the parameters are contained in the first lines of the procedure. Then
issue a MODIFY-SCREEN-LAYOUT statement to arrange the windows so that only
these initial lines (with the parameter variables) are visible in the PRODAMP window. If
you then overwrite the values for the parameters in this window with the current values
and select the option “Go” (for “compile and go”), the procedure is recompiled and
executed with the new values.

– by means of the standard PRODAMP procedure READ_WINDOW

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Effects of PRODAMP on the list output

All pages in the diagnosis object which are referenced during execution of a PRODAMP
procedure are regarded as referenced pages for a subsequent list output (just like pages
referenced during a DAMP dialog). They are thus automatically included in a minimum list
output. This feature can be used to explicitly reference in PRODAMP all the pages that are
definitely to be printed.

Using EDT as a “replacement window”

The PRODAMP statements WRITE and READ, which write into and read from an EDT
area, can be used to obtain pseudo-formatted dialog outputs. For this, only the following
PRODAMP statements are necessary:

WRITE ('desired information');
....
WRITE ('desired information');
WRITE ('@COL 80 O & C'' '''); 'Truncate all lines to max. 80 characters'
WRITE ('@PRO9'); 'Switch to procedure area 9'
WRITE ('@DEL'); 'Delete'
WRITE ('@@PRINT1-.$VN); 'Enter PRINT statement'
WRITE ('@END'); 'Switch back procedure area'
WRITE ('@DO9'); 'Display the lines on the screen'

Truncation of the lines is necessary because the WRITE statement always pads the
PRODAMP string with blanks up to the maximum length (133).

Example: guided input

ABC := ' '*4; XYZ := ' '*10;
WRITE ('@PRO9');
WRITE ('@DEL');
WRITE ('@@CREATE1READ''PLEASE ENTER ABC''');
WRITE ('@END');
WRITE ('@DO9');
READ (ABC);
WRITE ('@DEL');
WRITE ('@PRO9');
WRITE ('@DEL');
WRITE ('@@CREATE1READ''PLEASE ENTER XYZ''');
WRITE ('@END');
WRITE ('@DO9');
READ (XYZ);
WRITE ('@DEL');

PRODAMP DAMP Dump analysis

304 U5663-J-Z125-11-76

The WRITE “@D” statements are needed to ensure that the READ statement starts at the
first record of the EDT area each time. The sequence of statements shown above could be
abbreviated as follows:

ABC := ' '*4; XYZ := ' '*10;
WRITE ('@PRO9');
WRITE ('@D');
WRITE ('@@CREATE1READ''PLEASE ENTER ABC''');
WRITE ('@@CREATE2READ''PLEASE ENTER XYZ''');
WRITE ('@END');
WRITE ('@DO9');
READ (ABC);
READ (XYZ);
WRITE ('@D');

Reading via READ always uses the actual length of the EDT record. The remaining
characters of the string variable remain unchanged.

In addition, the string variables should always be initialized, since the default length of 133
will otherwise be assumed.

List output via the COMMAND statement

Any DAMP statements issued via COMMAND must be formulated as if they had been
entered in batch or procedure mode.
This is especially important for printing lists. For this reason, the required specifications
must be entered by means of the ADD-LIST-OBJECTS statement.

Example

COMMAND ('START-LIST-GENERATION'); "Switch to LIST mode"
COMMAND ('ADD-LIST-OBJECTS GLOBAL=OVERVIEW');
COMMAND ('ADD-LIST-OBJECTS TASK=(C''UCON'')');
COMMAND ('PRINT-LIST');

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Calling private procedures

A PRODAMP object stored in the selected object library can be started directly by means
of the DAMP statement:

START-PRODAMP-PROGRAME procname, PAR=(par1, par2, ...)

In this case, it is not necessary to know where the source module is stored or to assign a
PRODAMP window. “procname” is the element name of the object module to be executed.
The element with the highest existing version number is always executed. The optional
parameters may be specified numerically, as decimal or hexadecimal numbers, or as
strings enclosed within single quotes. The parameter types and the order in which they are
specified must match the specifications in the parameter area defined within the procedure.

Example

ARRANGE
.P1 : RELATIVE=0,LENGTH=4,TYPE=NUMERIC;
.P2 : RELATIVE=4,LENGTH=1,TYPE=STRING;
.P3 : RELATIVE=5,LENGTH=4,TYPE=NUMERIC;
.P4 : RELATIVE=9,LENGTH=9,TYPE=STRING;
END ARRANGE;
N := PARAMETER.P1;
IF 'X' = PARAMETER.P2 THEN
....
END IF;

A procedure which uses the above parameters must therefore be called via a statement like
this:

START-PRODAMP-PROGRAM procnam, PAR = (1234,'Z ',X 'AEFF','ABCDEFGHI')

This assigns the value 1234 to parameter P1, the letter “Z” to parameter P2, the
hexadecimal number X'AEFF' to P3, and the string 'ABCDEFGHI' to parameter P4.

The parameters must be specified consecutively in the ARRANGE statement and must not
be aligned. Each numeric parameter (decimal or hexadecimal) specified in the START-
PRODAMP-PROGRAM statement is placed right-justified in a 4-byte field.

i Numeric values can also be interpreted as bit patterns or as hexadecimal strings
within the procedure.

Execution of a DAMP statement causes the entire input string to be converted into
uppercase letters. This also applies to the parameters.

PRODAMP DAMP Dump analysis

306 U5663-J-Z125-11-76

Interrupting private procedures

The INTERRUPT (see page 245) and RETURN (see page 245) statements can be used to
interrupt execution of a procedure.

For both statements it is possible to specify a window which appears in the DAMP screen
mask whenever there is an interrupt. If no window is specified, the current window appears.

RESUME-PRODAMP-PROGRAM resumes execution of the interrupted procedure at the
place where it was interrupted. If no procedure was active, the procedure loaded in the
PRODAMP window is started from the beginning.

Detecting and recovering execution errors

If the PRODAMP interpreter detects an error during procedure execution, it aborts the
PRODAMP procedure and outputs two error messages in the message lines of the DAMP
screen. The first message contains the name of the aborted PRODAMP procedure and the
number of the procedure line in which the error occurred. The second message describes
the error.

i Pressing the [K2] key and entering the statement INFORM-PROGRAM MSG='*CANCEL'
can be used to provoke a runtime error. This makes it possible, for example, to
terminate an endless loop and output a message indicating the name of the
procedure and the number of the error line.

PRODAMP supports two facilities for error diagnosis: tracing (see page 246) and variable
monitoring (see page 243).

Archiving private procedures

PRODAMP source and object modules can be stored in PLAM libraries as members of type
S or C and loaded from these libraries when needed. Modules addressed using the
ENTER_MODULE procedure are expected to be of the element type R.
Unless otherwise specified, the same library is used for all types. This library has the name
SYS.USRDMP.DAMP.<ver>.
Element types C and R must be contained in the same library.

Other libraries can be specified by means of the DAMP statement ASSIGN-PRODAMP-
LIBRARIES:

ASSIGN-PRODAMP-LIBRARIES [SOURCE=source-lib] [,OBJECT=object-lib]

or

ASSIGN-PRODAMP-LIBRARIES SOURCE=liname, OBJECT=*SOURCE

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

The specified libraries are then assigned for the desired types (if OBJECT=*SOURCE is
specified, the library is assigned for all types). To switch back to the standard library, you
may specify *STD instead of SYS.USRDMP.DAMP.<ver>. This switches to the library set in
the user options (see “Setting user options”). SHOW-PRODAMP-LIBRARIES causes the
current PRODAMP library assignments to be displayed.

PRODAMP source modules are saved and loaded exclusively via the PRODAMP window,
namely by entering the appropriate code in the “Mode” field of the header line (see
page 298).

Mode=Wrt (Write); the current source module is written either to the library selected by
means of ASSIGN-PRODAMP-LIBRARIES or to the default library.

Mode=Rea (Read); an element from the currently selected source module library is
read.

Mode=Upd (Update); the specified element is overwritten.

Mode=Inf (Inform); a list of the existing source members in the currently selected
library is displayed.

PRODAMP object modules can be created by way of the PRODAMP window, but they
can be loaded (and simultaneously started) only via the START-PRODAMP-PROGRAM
statement.

The code “Sav” is used in the “Mode” field of the PRODAMP window in order to save an
object module (after successful compilation):

Mode=Sav (Save); a PRODAMP object module is saved in the selected object library.

Examples

The following examples are concrete applications of the diagnostic language. Each
example illustrates a particular aspect of the language.

Example 1: HEX calculator

This very simple example implements a hexadecimal calculator with the aid of PRODAMP.
A MODIFY-SCREEN-LAYOUT statement should be entered beforehand to ensure that the
first line of the PRODAMP window is visible on the screen. Modifying the expression and
entering the option “Go” in the header line causes the “result” to be displayed in both
hexadecimal and decimal form in line 2 of the DAMP screen.
The object being diagnosed is not accessed in this example.

A := X'14' + X'3B' * 24 ; "ENTER THE DESIRED CALCULATION HERE"
MESSAGE ('RESULT HEX: '+HEX_STRING(A)+', DEC: '+DEC_STRING(A));

PRODAMP DAMP Dump analysis

308 U5663-J-Z125-11-76

Example 2: Searching the TFT chain of the current task

The following procedure searches through the TFT chain of the current task. Each TFT is
output in window 4 in the format of the TFT DSECT. The user can then page forward to the
next TFT with the aid of RESUME, or other DAMP statements can be issued.

IF CURRENT.TID = 0 THEN
 MESSAGE ('No TID/TSN given');
 RETURN;
 END IF;
TFT := .ETCBTFT; —— (1)
IF TFT = 0 THEN
 MESSAGE ('No TFT found');
 RETURN;
 END IF;
RET_WND := CURRENT.WNDNO; ——— (2)
ARRANGE
 WINDOW: NUMBER=4,DSECT='IDMTFT',NAME='IDMFRLNK'; ———————————————————— (3)
END ARRANGE;
WHILE TFT <> 0 DO
 ARRANGE
 WINDOW: NUMBER =4,ADDRESS = TFT; ———————————————————————————————————— (4)
END ARRANGE;
 INTERRUPT; —— (5)
TFT := TFT.IDMFRLNK;
 END WHILE;
RETURN WINDOW = RET_WND; —— (6)

(1) The anchor of the TFT chain is in ETCBTFT. Since DAMP can localize the TFT
automatically, it is not necessary to specify a base address. The task specified by
TID or TSN in the PRODAMP window is taken.

(2) The number of the current window (usually the PRODAMP window) is
saved so that it can be displayed again later as the topmost window.

(3) The settings for window 4 which do not change during execution are declared
outside the loop. The NAME is specified because the TFT DSECT begins with an
EQU * statement, which would cause the first field to be split.

(4) Only the address for the window is redefined within the loop. All other settings
(including the number) are fixed in the first ARRANGE statement and remain
unchanged. Interrogation of CURRENT.ERROR was omitted in this example
because an unallocated memory area will automatically result in output of the error
message “Requested memory area not accessible”. By default, the current task is
displayed (i.e. the task set in the PRODAMP window). It is possible to specify the
additional information TID=CURRENT.TID, but this is redundant.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

(5) INTERRUPT interrupts the procedure and displays the current window on the
screen. Due to the ARRANGE statement, window 4 is the topmost window in this
display. The user can resume procedure execution by issuing a RESUME
statement, causing the next TFT to be displayed.

(6) After output of the last TFT, control is returned to the window which was
saved at the beginning of the procedure.

Example 3: Changing the current task

This example shows how you can avoid scrolling “endlessly” in the status window to find a
task with a specific characteristic when analyzing a SLED file. It illustrates how to use
PRODAMP to search for tasks which have generated a system dump and to make each of
these tasks (one at a time) the current task. In other words, after execution of the procedure,
the DAMP status window (window 2) is positioned such that the PCB chain of the selected
task is displayed.

TASK := 0;
WHILE CURRENT.ERROR = 0 DO —— (1)
NEW_TASK (TASK);
 IF CURRENT.ERROR=0 THEN
 IF .ETCBCDSY <> 0 THEN —— (2)

ARRANGE WINDOW: NUMBER = 2,TID=TASK; END ARRANGE; ——————————————— (3)
INTERRUPT ;

 END IF;
 END IF;
TASK := TASK + 1; ——— (4)
END WHILE;

(1) Since the NEW_TASK procedure sets CURRENT.ERROR when no more tasks can
be found, this is the criterion for terminating the loop for all active tasks.

(2) The ETCBCDSY field contains the number of system dump requests for the task.
This field is a TCB field and can thus be localized automatically by DAMP. To this
end, DAMP uses the TCB of the current task, which is set correctly by NEW_TASK.

(3) An ARRANGE statement for window 2 with an ITN specification positions the
window to the entry point for this task.

(4) For the scan, the TID must be incremented by 1. NEW_TASK then returns the next
active task.

PRODAMP DAMP Dump analysis

310 U5663-J-Z125-11-76

Example 4: Outputting memory areas to SYSLST

This example shows how the standard procedures DUMP_MEMORY and
SET_HEADER can be used to output any desired memory areas to SYSLST.

TFT@ := .ETCBTFT;
WHILE TFT@ <> 0 DO
 P2FCB@ := TFT@.IDMP2FL;
 IF P2FCB@ <> 0 THEN
 SET_HEADER ('*** P2-FCB FOR FILE '+TFT@.IDMFILE+' ****', 2, 10);
 DUMP_MEMORY (P2FCB@, 0, LENGTH('ID2FCB','DS'));
 END IF;
 TFT@ := TFT@.IDMFRLNK;
END WHILE;

This procedure lists the P2-FCB of each open file.

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.7.5 Syntax diagrams

All permissible PRODAMP constructions can be determined with the aid of the syntax
diagrams. On the other hand, not all constructions possible with the syntax diagrams are
permissible, since type compatibility and possible restrictions with respect to names must
also be taken into account. However, strictly speaking, these are not syntactical character-
istics, since an expression which is illegal due, for example, to a type incompatibility can be
made acceptable by choosing other designators.

In order to keep the size of the diagrams within reasonable limits, the following convention
applies: connecting lines between boxes represent separators (see page 228). A separator
may be omitted only before or after a special character. Separators must not be used in
diagrams whose headers are framed by double lines.

The entry point for the syntax diagrams is the term “PRODAMP procedure”. This is followed
by an alphabetical list of all the terms used to define the “PRODAMP procedure”.

Figure 68: PRODAMP procedure

PRODAMP-Procedure

Block

PRODAMP DAMP Dump analysis

312 U5663-J-Z125-11-76

Figure 69: Statement

Figure 70: Expression

Statement

Symbol : = Expression

Procedure call

RETURN

INTERRUPT

 WINDOW = Simple expression

Identifier

Symbol

Function call

Simple expression

Expression

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 71: Condition

Figure 72: Condition term

Figure 73: Identifier

Condition

ORNOT

Condition term

Condition term

Condition term

Simple condition

Simple condition

AND

Identifier

-

Letter

Digit

Letter

PRODAMP DAMP Dump analysis

314 U5663-J-Z125-11-76

Figure 74: Binary digit

Figure 75: Bit pattern type

0 1

Binary digit

Bit pattern type

"'P'

B'

TRUE

FALSE

Binary digit

Hexadecimal digit

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 76: Block

Figure 77: Letter

Block

Statement ;

ELSIF ELSE Block

IF Condition THEN Block

WHILE

ARRANGE Declaration

Condition DO Block

;

END IF

END WHILE

END ARRANGE

A B Z # @ $

Letter

. . .

PRODAMP DAMP Dump analysis

316 U5663-J-Z125-11-76

Figure 78: Decimal number

Figure 79: Simple expression

Figure 80: Simple condition

Decimal number

Digit

+-

Term

Term

+ - --

Simple expression

()Condition

Simple condition

Expression Comparison Expression

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 81: Factor

Factor

Identifier

Symbol

Literal

Function call

Simple expression()

PRODAMP DAMP Dump analysis

318 U5663-J-Z125-11-76

Figure 82: Window declaration

:

Simple expression

,

WINDOW

NUMBER =

ADDRESS =

RELATIVE =

OFFSET =

LENGTH =

ITN =

NAME =

DSECT =

SPID =

String type

ASEL =

Window declaration

TID =

ALET =

CPU =

TSN =

OUTPUT =

LAYOUT =

PCB =

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 83: Comment

Figure 84: Literal

Figure 85: Procedure call

" "EBCDIC character without ""

Comment

Number

String type

Bit pattern type

Literal

Procedure call

Name

(,

Expression

)

PRODAMP DAMP Dump analysis

320 U5663-J-Z125-11-76

Figure 86: Hexadecimal number

Figure 87: Hexadecimal digit

Hexadecimal number

X' '

Hexadecimal digit

A B . . .Digit

Hexadecimal digit

E F

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 88: Special character

+

*

=

<

>

(

.

"

-

/

<>

<=

>=

)

,

:

'

;

:=

Special character

PRODAMP DAMP Dump analysis

322 U5663-J-Z125-11-76

Figure 89: String type

Figure 90: Symbol

Figure 91: Symbol reference

"

String type

" "

"

'

' '

'

'

EBCDIC character without '

Identifier

#' Hexadecimal digit

Identifier

Symbol reference

Symbol

Symbol body

Symbol reference

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 92: Symbol body

Figure 93: Symbol declaration

Figure 94: Term

Identifier.

Symbol body

Symbol body

TYPE =

RELATIVE =

LENGTH =

:

Simple expression

UNDEFINED

NUMERIC PATTERN STRING

,

Symbol declaration

OFFSET =

REFERENCE = Symbol reference

Term

Factor

Factor

* / MOD

PRODAMP DAMP Dump analysis

324 U5663-J-Z125-11-76

Figure 95: Separator

Figure 96: Declaration

Figure 97: Comparison

Comment

Line feed

Separator

Blank

Symbol declaration

Declaration

Window declaration

= <> <= < >= > IN

Comparison

DAMP Dump analysis PRODAMP

U5663-J-Z125-11-76 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Figure 98: Number

Figure 99: Digit

Number

Hexadecimal digit

Decimal digit

. . .

Digit

0 1 8 9

Software and hardware prerequisites DAMP Dump analysis

326 U5663-J-Z125-11-76

5.8 Software and hardware prerequisites

Installation

The following table shows all product files which are supplied with DAMP V4.7 (Release
Unit DAMP, Version 4.7) and which are required when working with DAMP.

For each release item, the logical ID (for IMON), the release name, and the function are
listed. The release items are contained in the installation file SYSSII.DAMP.<ver>.

Logical ID Release name Function

SYSSII SYSSII.DAMP.<ver> Installation for DAMP

SYSSDF SYSSDF.DAMP.<ver> SDF syntax file with the commands
START-DAMP and START-DAMP-
SYMBOL-GENERATOR

SYSLNK SYSLNK.DAMP.<ver> Dynamically loadable library of
DAMP

SYSPRG SYSPRG.DAMP.<ver> Load program of DAMP

SYSPRG.SYMBOLS SYSPRG.DAMP.<ver>.SYMBOLS.
GEN

Symbol generator for generating
private symbols

SYSMSH.D SYSMSH.DAMP.<ver>.D Online help German

SYSMSH.E SYSMSH.DAMP.<ver>.E Online help English

SYSMES SYSMES.DAMP.<ver> Message file. The message file is
activated by DAMP.

SYSSDF.USER SYSSDF.DAMP.<ver>.USER User SDF syntax file with the DAMP
statements. The syntax file is
activated by DAMP.

SYSSMB SYSSMB.DAMP.<ver> Supplied library with DAMP/BS2000
symbols. Only for delivery purposes
and not to be directly used.
See Note 3 below.

SYSDMP SYSDMP.DAMP.<ver> Supplied library with DAMP-
PRODAMP programs. This library
contains, among other things, the
PRODAMP programs for
prediagnosis. The file is only
needed for delivery purposes
and is not to be directly used.
See Note 3 below.

DAMP Dump analysis Software and hardware prerequisites

U5663-J-Z125-11-76 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Furthermore the following two files are essential for working with DAMP (see Note 3 below).

Notes

1. The SYSPRG.xxx files are also contained as C type elements in the SYSLNK library,
from which they are started using the START command. They are also supplied in file
format for compatibility reasons.

2. DAMP uses the access method ANITA to access dump files and the active system. This
access method must be installed correctly.

3. Note on the symbol system library and PRODAMP system library:
Under the default setting (SYSSMB=*STD in the OPTS window), DAMP expects to find
the symbols needed in order to open the diagnosis object in the file with the fixed name
$TSOS.SYSSMB.DAMP (without version suffix!). On installing/updating a BS2000
system with IMON, not only the symbols required by DAMP, but also the symbols of
other official products are merged into this file.

This also applies to the PRODAMP system library in a standard installation
(SYSLNK/SYSDMP=*STD in the OPTS window); the PRODAMP system library has
the fixed name $TSOS.SYSDMP.DAMP.

DAMP is not coupled with any BS2000 version

See section “Performance capabilities” on page 47.

DAMP is independent of versions

See section “Performance capabilities” on page 47.

DAMP can process dump files originating from other BS2000 versions and from other
servers.

In order to evaluate dump files from BS2000 OSD/BC V10.0, the library SYSLNK.ANITA
must be accessible on the system and must contain the access method ANITA V19.0A.

In order to evaluate the active system BS2000 OSD/BC V10.0 the subsystem ANITA V19.0
must be installed. In case of need it will be automatically started by DAMP..

File name Function

$TSOS.SYSSMB.DAMP Symbol system library

$TSOS.SYSDMP.DAMP PRODAMP system library

Software and hardware prerequisites DAMP Dump analysis

328 U5663-J-Z125-11-76

Calling DAMP from other user IDs

The program system DAMP with the files listed above can be installed under one or more
freely selectable user IDs.

In the case of private installations, it must be noted that the files are cataloged as shareable
(USER-ATTRIBUTES=ALL-USERS) and the installation user IDs (if not TSOS) are set via
START-OPTION-DIALOG (see section “Modification by the user (special window:
OPTIONS)” on page 133).

Other characteristics

You can use LOAD-MODULE to dynamically load your own analysis routines from any module
libraries and start them with START-MODULE (see the LOAD-MODULE statement on
page 189).

Users may set their own default values which are suitable for their applications (see “Setting
user options” on page 133).

Prerequisites for access to the active system

Test privileges are required in order to access information in the active system.

They must be defined by the system administrator via the following command:

ADD-USER USER-IDENTIFICATION=userid,...,
TEST-OPTIONS=*PARAMETERS(READ-PRIVILEGE=8,
WRITE-PRIVILEGE=1[,MODIFICATION=*CONTROLLED])

Before DAMP is called, the test privileges must be activated using the following command:

MODIFY-TEST-OPTIONS PRIVILEGE=*PARAMETERS(READ=8,WRITE=1)

Supported terminals

The 8160 and 9750 terminals and all compatible terminals are supported. In addition, the
9750 emulations of PCs are also supported.

i The “Restore P keys” function is only available for data display terminals with the
firmware program version X'20' (as of the 9762 terminal, and partially also for
9758 terminals).
You are not allowed to use KPAC=4 under OMNIS if DAMP is running on one of the
partners, since DAMP uses the K4 sequence for its own purposes.

DAMP Dump analysis List of DSECTs from the standard symbol files

U5663-J-Z125-11-76 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

5.9 List of DSECTs from the standard symbol files

The symbols required to analyze a BS2000 memory dump or the active BS2000 system are
listed below. These symbols must be available as LMS elements of type X in the symbol
library used on invocation.

By default, DAMP expects the symbols in the system symbol library. In the
case of a standard installation of DAMP V4.7, this is the file with the fixed path name
$TSOS.SYSSMB.DAMP.

The elements STATUS and NSDI0 are only required for special cases, but should be
present in the following versions in the symbol library:

STATUS: 000/ ... /011
NSDI0: 160/170/180/190

The differentiation between BS2000 elements, and XA2000 elements is due to HSI-
specific differences in a number of hardware-based DSECTs.

LMS Required for

Element name Version BS2000 OSD/BCVersion HSI

BS2000 160 16.0A / V7.0A /390

BS2000-USER 160 16.0A / V7.0A /390

BS2000 170 17.0A / V8.0A /390

BS2000-USER 170 17.0A / V8.0A /390

XA2000 170 17.0A / V8.0A x86

XA2000-USER 170 17.0A / V8.0A x86

BS2000 180 18.0A / V9.0A /390

BS2000-USER 180 18.0A / V9.0A /390

XA2000 180 18.0A / V9.0A x86

XA2000-USER 180 18.0A / V9.0A x86

BS2000 190 19.0A / V10.0A /390

BS2000-USER 190 19.0A / V10.0A /390

XA2000 190 19.0A / V10.0A x86

XA2000-USER 190 19.0A / V10.0A x86

STATUS * Depends on the type and version

NSDI0 * of the DUMP generator

Table 15: DAMP symbols in the $TSOS.SYSSMB.DAMP library

List of DSECTs from the standard symbol files DAMP Dump analysis

330 U5663-J-Z125-11-76

A BS2000 and a BS2000-USER element (or XA2000 and XA2000-USER elements) are
also required (in addition to STATUS and NSDI0).

On opening a diagnosis object with the default method (i.e. without entries or with defaults
for SYMBOLS in OPEN-DIAGNOSIS-OBJECT), the required symbols are automatically
loaded by DAMP. The DSECTs and SPL structures listed below are then available for the
analysis in DAMP windows and in PRODAMP programs.

DSECTs shown with their names printed in bold in the list below can be automatically
localized.

DAMP Dump analysis List of DSECTs from the standard symbol files

U5663-J-Z125-11-76 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Elements BS2000/160
(for BS2000 V16.0 = BS2000/OSD-BC V7.0 with /390-HSI)

Assembler DSECTs

SPL structures

ASAVDSSM ASIMDBHD ASIPUCON DSTE DWQE DWQH

EBWL ECSE ECTLP EERLWA EGCTRAC EJCB

EJTBP EMICWA EMMDDSMD EMRCWA EOLDTBLE EORD

EPDR ERTWA ESOFWA ESTK ETCB ETLT

ETMGPT ETRAC EVSMT EVUMT EVYVWA EXVT

FPTA34 FPTE34 HCTX IAR IBW IDMTFT

ID1FCB ID1FCBE ID2FCB IELS INTE INTEMMP

INTESMP ML NDXMTE NDXT NI0SC NLKDEXT

NLKDHEA NLKDSAV NLKSJDS NOTEDS NRXDPL NRXIPL

NRXPPL NSCDH NSCDL NSDI0 NSDI1 NSDLPLD

NSDPPLD NSDTPLD NSICONFT NSISWID PDTHDR PDTREC

PPTE PSA RECBUFF STRCWA TERMMSG TLTE

TTSAVE VATE XD1FCB

BS_CTX_VECTOR_REC_MDL CTX_VECTOR_REC_MDL

DBL_OPTIONS_COM_MDL DBL_OPTIONS_P_C_MDL

DBL_OPTIONS_S_P_MDL LIBRARY_TAB_D_MDL

LU_CTX_VECTOR_REC_MDL LU_MEM_POOL_VECTOR_REC_MDL

MEM_POOL_REC_MDL NSIVR_MDL

NTFHOOK_MDL PBMM_ATTR_MDL

PROGRAM_LOAD_LIST_MDL RECORD_D_MDL

RECORD_H_MDL TABLE_D_MDL

TASK_TAB_MDL VERSION_MDL

List of DSECTs from the standard symbol files DAMP Dump analysis

332 U5663-J-Z125-11-76

Elements BS2000-USER/160
(additionally for BS2000 V16.0 = BS2000/OSD-BC V7.0 with /390-HSI)

Assembler DSECTs

SPL structures

CSTMP DDZCCB DECRCOD DECRNAM DRPVST DSFTB

DSHED DSPTB DSSTB DSUTB DS3BCB DS4LBL

DS6STK EACQ EBVDT ECSE EGCARIGT EGCMXLDS

EGCW_MDL EGSTRAC ENRTPL EPDMM EPPT ESTK

ETCOMEV ETCOMTBL ETCOPRTL ETMCH ETMMH GARE

IBO ICACFCP ICACFDP ICACFFP ICACFHP ICACFMP

ICACFPP ICAEE4 ICO IDBCHAPL IDBCOPPL IDBERAPL

IDBFSTPL IDBPFLPL IDBPFLPX IDBRELPL IDCEG IDCES

IDCEXS IDEE3 IDJES IDJEXT IDJEXT2 IDKCATPL

IDPBTAPL IDQPAMPL IDVTS INST LFCB NAR

NDVESPDS NEHX$MDL NERRLOCK NLOCK NLPT NLWALOCK

NRTSEHDT NSCB NSPAPLD NSPR NSUBLOCK NTIM

NTRCLOCK NVPSPL RKLOG SD SPAD SPOD

WORDLIST XDBFSTPL XDPBTAPL XDQPAMPL XRD

$JCBRW_PL_MDL $SSMCEO_PL_MDL

$SSMENT_PL_MDL $SSMERA_PL_MDL

ADDPLNK_MDL CREPOOL_MDL

DELPOOL_MDL EAM_MDL

ESMFHDR ESMIFID_MDL

ESMRETC_MDL ESTK_MDL

NSIVR_MDL PAM_MDL

REMPLNK_MDL VERSION_MDL

DAMP Dump analysis List of DSECTs from the standard symbol files

U5663-J-Z125-11-76 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Elements BS2000/170 and XA2000/170
(for BS2000 V17.0 = BS2000/OSD-BC V8.0 with /390-HSI resp. x86-HSI)

Assembler DSECTs

SPL structures

ASAVDSSM ASIMDBHD ASIPUCON DSTE DWQE DWQH

EBWL ECSA ECSE ECSX ECTLP EERLWA

EGCTRAC EJCB EJTBP EMICWA EMMDDSMD EMRCWA

EOLDTBLE EORD EPDR ERTWA ESOFWA ESTK

ETCB ETLT ETMGPT ETRAC EVSMT EVUMT

EVYVWA EXVT FPTA34 FPTE34 HCTX IAR

IBW IDMTFT ID1FCB ID1FCBE ID2FCB IELS

INTE INTEMMP INTESMP ML NDXMTE NDXT

NEHX$MDL NI0SC NLKDEXT NLKDHEA NLKDSAV NLKSJDS

NOTEDS NRXDPL NRXIPL NRXPPL NSCDH NSCDL

NSDI0 NSDI1 NSDLPLD NSDPPLD NSDTPLD NSICONFT

NSISWID PDTHDR PDTREC PPTE PSA RECBUFF

STRCWA TERMMSG TLTE TTSAVE VATE XD1FCB

BS_CTX_VECTOR_REC_MDL CTX_VECTOR_REC_MDL

DBL_OPTIONS_COM_MDL DBL_OPTIONS_P_C_MDL

DBL_OPTIONS_S_P_MDL LIBRARY_TAB_D_MDL

LU_CTX_VECTOR_REC_MDL LU_MEM_POOL_VECTOR_REC_MDL

MEM_POOL_REC_MDL NSIVR_MDL

NTFHOOK_MDL PBMM_ATTR_MDL

PROGRAM_LOAD_LIST_MDL RECORD_D_MDL

RECORD_H_MDL TABLE_D_MDL

TASK_TAB_MDL VERSION_MDL

List of DSECTs from the standard symbol files DAMP Dump analysis

334 U5663-J-Z125-11-76

Elements BS2000-USER/170 and XA2000-USER/170
(additionally for BS2000 V17.0 = BS2000/OSD-BC V8.0 with /390-HSI resp. x86-HSI)

Assembler DSECTs

SPL structures

CSTMP DDZCCB DECRCOD DECRNAM DRPVST DSFTB

DSHED DSPTB DSSTB DSUTB DS3BCB DS4LBL

DS6STK EACQ EBVDT ECSE EGCARIGT EGCMXLDS

EGCW_MDL EGSTRAC ENRTPL EPDMM EPPT ESTK

ETCOMEV ETCOMTBL ETCOPRTL ETMCH ETMMH GARE

IBO ICACFCP ICACFDP ICACFFP ICACFHP ICACFMP

ICACFPP ICAEE4 ICO IDBCHAPL IDBCOPPL IDBERAPL

IDBFSTPL IDBPFLPL IDBPFLPX IDBRELPL IDCEG IDCES

IDCEXS IDEE3 IDJES IDJEXT IDJEXT2 IDKCATPL

IDPBTAPL IDQPAMPL IDVTS INST LFCB NAR

NDVESPDS NEHX$MDL NERRLOCK NLOCK NLPT NLWALOCK

NRTSEHDT NSCB NSPAPLD NSPR NSUBLOCK NTIM

NTRCLOCK NVPSPL RKLOG SD SPAD SPOD

WORDLIST XDBFSTPL XDPBTAPL XDQPAMPL XRD

$JCBRW_PL_MDL $SSMCEO_PL_MDL

$SSMENT_PL_MDL $SSMERA_PL_MDL

ADDPLNK_MDL CREPOOL_MDL

DELPOOL_MDL ECSA_MDL

EAM_MDL ESMFHDR

ESMIFID_MDL ESMRETC_MDL

ESTK_MDL NSIVR_MDL

PAM_MDL REMPLNK_MDL

VERSION_MDL

DAMP Dump analysis List of DSECTs from the standard symbol files

U5663-J-Z125-11-76 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Elements BS2000/180 and XA2000/180
(for BS2000 V18.0 = BS2000/OSD-BC V9.0 with /390-HSI resp. x86-HSI)

Assembler DSECTs

SPL structures

ASAVDSSM ASIMDBHD ASIPUCON DSTE DWQE DWQH

EBWL ECSA ECSE ECSX ECTLP EERLWA

EGCTRAC EJCB EJTBP EMICWA EMMDDSMD EMRCWA

EOLDTBLE EORD EPDR ERTWA ESOFWA ESTK

ETCB ETLT ETMGPT ETRAC EVSMT EVUMT

EVYVWA EXVT FPTA34 FPTE34 HCTX IAR

IBW IDMTFT ID1FCB ID1FCBE ID2FCB IELS

INTE INTEMMP INTESMP ML NDXMTE NDXT

NEHX$MDL NI0SC NLKDEXT NLKDHEA NLKDSAV NLKSJDS

NOTEDS NRXDPL NRXIPL NRXPPL NSCDH NSCDL

NSDI0 NSDI1 NSDLPLD NSDPPLD NSDTPLD NSICONFT

NSISWID PDTHDR PDTREC PPTE PSA RECBUFF

STRCWA TERMMSG TLTE TTSAVE VATE XD1FCB

BS_CTX_VECTOR_REC_MDL CTX_VECTOR_REC_MDL

DBL_OPTIONS_COM_MDL DBL_OPTIONS_P_C_MDL

DBL_OPTIONS_S_P_MDL LIBRARY_TAB_D_MDL

LU_CTX_VECTOR_REC_MDL LU_MEM_POOL_VECTOR_REC_MDL

MEM_POOL_REC_MDL NSIVR_MDL

NTFHOOK_MDL PBMM_ATTR_MDL

PROGRAM_LOAD_LIST_MDL RECORD_D_MDL

RECORD_H_MDL TABLE_D_MDL

TASK_TAB_MDL VERSION_MDL

List of DSECTs from the standard symbol files DAMP Dump analysis

336 U5663-J-Z125-11-76

Elements BS2000-USER/180 and XA2000-USER/180
(additionally for BS2000 V18.0 = BS2000/OSD-BC V9.0 with /390-HSI resp. X86-HSI)

Assembler DSECTs

SPL structures

CSTMP DDZCCB DECRCOD DECRNAM DRPVST DSFTB

DSHED DSPTB DSSTB DSUTB DS3BCB DS4LBL

DS6STK EACQ EBVDT ECSE EGCARIGT EGCMXLDS

EGCW_MDL EGSTRAC ENRTPL EPDMM EPPT ESTK

ETCOMEV ETCOMTBL ETCOPRTL ETMCH ETMMH GARE

IBO ICACFCP ICACFDP ICACFFP ICACFHP ICACFMP

ICACFPP ICAEE4 ICO IDBCHAPL IDBCOPPL IDBERAPL

IDBFSTPL IDBPFLPL IDBPFLPX IDBRELPL IDCEG IDCES

IDCEXS IDEE3 IDJES IDJEXT IDJEXT2 IDKCATPL

IDPBTAPL IDQPAMPL IDVTS INST LFCB NAR

NDVESPDS NEHX$MDL NERRLOCK NLOCK NLPT NLWALOCK

NRTSEHDT NSCB NSPAPLD NSPR NSUBLOCK NTIM

NTRCLOCK NVPSPL RKLOG SD SPAD SPOD

WORDLIST XDBFSTPL XDPBTAPL XDQPAMPL XRD

$JCBRW_PL_MDL $SSMCEO_PL_MDL

$SSMENT_PL_MDL $SSMERA_PL_MDL

ADDPLNK_MDL CREPOOL_MDL

DELPOOL_MDL ECSA_MDL

EAM_MDL ESMFHDR

ESMIFID_MDL ESMRETC_MDL

ESTK_MDL NSIVR_MDL

PAM_MDL REMPLNK_MDL

VERSION_MDL

DAMP Dump analysis List of DSECTs from the standard symbol files

U5663-J-Z125-11-76 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
5

Elements BS2000/190 and XA2000/190
(for BS2000 V19.0 = BS2000 OSD/BC V10.0 with /390-HSI resp. x86-HSI)

Assembler DSECTs

SPL structures

ASAVDSSM ASIMDBHD ASIPUCON DSTE DWQE DWQH

EBWL ECSA ECSE ECSX ECTLP EERLWA

EGCTRAC EJCB EJTBP EMICWA EMMDDSMD EMRCWA

EOLDTBLE EORD EPDR ERTWA ESOFWA ESTK

ETCB ETLT ETMGPT ETRAC EVSMT EVUMT

EVYVWA EXVT FPTA34 FPTE34 HCTX IAR

IBW IDMTFT ID1FCB ID1FCBE ID2FCB IELS

INTE INTEMMP INTESMP ML NDXMTE NDXT

NEHX$MDL NI0SC NLKDEXT NLKDHEA NLKDSAV NLKSJDS

NOTEDS NRXDPL NRXIPL NRXPPL NSCDH NSCDL

NSDI0 NSDI1 NSDLPLD NSDPPLD NSDTPLD NSICONFT

NSISWID PDTHDR PDTREC PPTE PSA RECBUFF

STRCWA TERMMSG TLTE TTSAVE VATE XD1FCB

BS_CTX_VECTOR_REC_MDL CTX_VECTOR_REC_MDL

DBL_OPTIONS_COM_MDL DBL_OPTIONS_P_C_MDL

DBL_OPTIONS_S_P_MDL LIBRARY_TAB_D_MDL

LU_CTX_VECTOR_REC_MDL LU_MEM_POOL_VECTOR_REC_MDL

MEM_POOL_REC_MDL NSIVR_MDL

NTFHOOK_MDL PBMM_ATTR_MDL

PROGRAM_LOAD_LIST_MDL RECORD_D_MDL

RECORD_H_MDL TABLE_D_MDL

TASK_TAB_MDL VERSION_MDL

DAMP messages DAMP Dump analysis

338 U5663-J-Z125-11-76

Elements BS2000-USER/190 and XA2000-USER/190
(additionally for BS2000 V19.0 = BS2000 OSD/BC V10.0 with /390-HSI resp. X86-HSI)

Assembler DSECTs

SPL structures

5.10 DAMP messages

The DAMP messages have the message class DMP. Information on individual messages
can be obtained in ongoing operation with /HELP-MSG-INFORMATION.

CSTMP DDZCCB DECRCOD DECRNAM DRPVST DSFTB

DSHED DSPTB DSSTB DSUTB DS3BCB DS4LBL

DS6STK EACQ EBVDT ECSE EGCARIGT EGCMXLDS

EGCW_MDL EGSTRAC ENRTPL EPDMM EPPT ESTK

ETCOMEV ETCOMTBL ETCOPRTL ETMCH ETMMH GARE

IBO ICACFCP ICACFDP ICACFFP ICACFHP ICACFMP

ICACFPP ICAEE4 ICO IDBCHAPL IDBCOPPL IDBERAPL

IDBFSTPL IDBPFLPL IDBPFLPX IDBRELPL IDCEG IDCES

IDCEXS IDEE3 IDJES IDJEXT IDJEXT2 IDKCATPL

IDPBTAPL IDQPAMPL IDVTS INST LFCB NAR

NDVESPDS NEHX$MDL NERRLOCK NLOCK NLPT NLWALOCK

NRTSEHDT NSCB NSPAPLD NSPR NSUBLOCK NTIM

NTRCLOCK NVPSPL RKLOG SD SPAD SPOD

WORDLIST XDBFSTPL XDPBTAPL XDQPAMPL XRD

$JCBRW_PL_MDL $SSMCEO_PL_MDL

$SSMENT_PL_MDL $SSMERA_PL_MDL

ADDPLNK_MDL CREPOOL_MDL

DELPOOL_MDL ECSA_MDL

EAM_MDL ESMFHDR

ESMIFID_MDL ESMRETC_MDL

ESTK_MDL NSIVR_MDL

PAM_MDL REMPLNK_MDL

VERSION_MDL

U5663-J-Z125-11-76 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
6

6 NDMDAMP
Generating diagnostic documents

NDMDAMP is a PRODAMP procedure package within DAMP that extracts and analyzes
the data relevant for NDM from a SLED, system dump or the active system.

Three methods are offered to control the output scope of the dump function:

● a normal analysis,

● a comprehensive “maximum” analysis or

● a restricted analysis (tailored to each problem).

NDMDAMP can be called interactively, directly via DAMP or via predefined ENTER jobs.
The method used for parameterization depends on how it is called.

6.1 Calling NDMDAMP

NDMDAMP can be called by various methods:

● interactively, via the START-NDM-DIAGNOSIS command

The START-NDM-DIAGNOSIS command is available following the statement
MOD[IFY]-SDF[-OPTIONS] [$TSOS.]SYSSDF.NDMDAMP.160.USER.

● from DAMP

When called from DAMP, the standard analyses or special analyses can be selected.
The settings of the options must be explicitly entered in the PRODAMP procedure
NDM.

● with predefined ENTER jobs

The LMS library SYSENT.NDMDAMP.160 is supplied with six ENTER jobs, which
provide various analyses.

START-NDM-DIAGNOSIS NDMDAMP

340 U5663-J-Z125-11-76

START-NDM-DIAGNOSIS
Analyze NDM data

Function

The START-NDM-DIAGNOSIS command analyzes the NDM data from the active system,
a system dump or a SLED dump using NDMDAMP.

Format

START-NDM-DIAGNOSIS

OBJECT = *SYSTEM / <filename 1..54> / *LINK(...)

*LINK(...)

⏐ LINK-NAME = <filename 1..8 without-gen>

,INFORMATION = *STD / *ALL / *TRACE / *DRV / *DRV-ALL / *EXECUTION-TRACE / *PARAMETERS(...)

*PARAMETERS(...)

⏐ IO-CONTROL-DATA = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE

⏐ ,BAVOLMON = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE

⏐ ,NKA = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE

⏐ ,NKV = *STD / *NO / *STD-WITH-EXECUTION-TRACE

⏐ ,NKS = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE

⏐ ,NKR = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE

⏐ ,DRV = *STD / *NO / *STD-WITH-EXECUTION-TRACE

⏐ ,TRACE = *STD / *NO / *STD-WITH-EXECUTION-TRACE

⏐ ,SHC-OSD = *STD / *NO / *STD-WITH-EXECUTION-TRACE

,ENVIRONMENT = *STD / *PARAMETERS(...)

*PARAMETERS(...)

⏐ PROGRAM-NAME = *STD / <filename 1..54 without-gen>

⏐ ,SYMBOL-LIBRARY = *STD / <filename 1..54 without-gen>

⏐ ,PRODAMP-LIBRARY = *STD / <filename 1..54 without-gen>

⏐ ,NUMBER-OF-RESTARTS = 1 / <integer 0..5>

⏐ ,OUTPUT = *STD / *SYSLST / <filename 1..54>

NDMDAMP START-NDM-DIAGNOSIS

U5663-J-Z125-11-76 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
6

Operands

OBJECT = *SYSTEM / <filename 1..54> / *LINK(...)
Specifies which dump file is to be analyzed.

OBJECT = *LINK(...)

LINK-NAME = <filename 1..8 without-gen>
The dump file is specified via its link name.

INFORMATION =
Specifies the scope of the dump analysis.

INFORMATION = *STD
Maximum analysis, without EXPDT, without task-local data of NKA and NKS, and without
NKR modules.

INFORMATION = *ALL
Maximum analysis.

INFORMATION = *TRACE
Only NDM traces.

INFORMATION = *DRV
Only DRV and NDM trace.

INFORMATION = *DRV-ALL
NKA, NKV, DRV, IO-CONTROL without EXPDT, BAVOLMON and NDM traces.

INFORMATION = *EXECUTION-TRACE
Maximum analysis with PRODAMP trace enabled. EDT must be available for this purpose.

INFORMATION = *PARAMETERS(...)

IO-CONTROL-DATA = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE
Analysis of IO-CONTROL data. For *ALL, the EXPDT data module is also output.

BAVOLMON = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE
Analysis of basic volume monitoring. For *ALL, additional information for NDIVT is
output.

NKA = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE
Analysis of NKALLOC (NDM allocator). For *ALL, additional task-local data is
output.

NKV = *STD / *NO / *STD-WITH-EXECUTION-TRACE
Analysis of NKVMOUNT (NDM volume monitoring).

NKS = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE
Analysis of NKSECRES (NDM Secure). For *ALL, additional task-local data is
output.

START-NDM-DIAGNOSIS NDMDAMP

342 U5663-J-Z125-11-76

NKR = *STD / *NO / *ALL / *ALL-WITH-EXECUTION-TRACE
Analysis of NKRECONF (NDM reconfiguration administration).For *ALL, the NKR
are also output.

DRV = *STD / *NO / *STD-WITH-EXECUTION-TRACE
Analysis of DRV (Dual Recording by Volume).

TRACE = *STD / *NO / *STD-WITH-EXECUTION-TRACE
Analysis of the NDM trace.

SHC-OSD = *STD / *NO / *STD-WITH-EXECUTION-TRACE
Analysis of the SHC-OSD (Storage Host Component for BS2000).

i A dump file from a system with an active subsystem SHC-OSD can be analyzed
correctly (i.e. without errors) with NDMDAMP on a system without SHC-OSD
only if NDMDAMP is started as follows:

START-NDM-DIAGNOSIS OBJECT=..., INF = *PAR(SHC-OSD=*NO)

ENVIRONMENT = *STD / *PARAMETERS(...)
Defines the dump environment.

ENVIRONMENT = *PARAMETERS(...)

PROGRAM-NAME = *STD / <filename 1..54 without-gen>
Specifies the DAMP file.
For *STD, /START-DAMP is used.

SYMBOL-LIBRARY = *STD / <filename 1..54 without-gen>
Name of the symbol library.
For *STD, the system library of DAMP is used: SYSSMB.DAMP.

PRODAMP-LIBRARY = *STD / <filename 1..54 without-gen>
Name of the PRODAMP library with NDMDAMP.
For *STD, the system library of DAMP is used: SYSDMP.DAMP.

NUMBER-OF-RESTARTS = 1 / <integer 0..5>
Number of attempts to be made to restart with the next procedure following the
occurrence of errors in NDMDAMP. If a value greater than 0 is specified, EDT must be
available.

OUTPUT = *STD / *SYSLST / <filename 1..54>
Name of the output file.
For *STD, the file SYSLST.NDMDAMP.<date>.<time> is used.

NDMDAMP Call from DAMP

U5663-J-Z125-11-76 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
6

6.1.1 Calling NDMDAMP from DAMP

When NDMDAMP is called from DAMP, the standard analyses or the special analyses can
be selected.

Standard analyses

The standard analyses consist of the analyses described for the INFORMATION
operand of the START-NDM-DIAGNOSIS command (see page 341), except for
INFORMATION=*PARAMETERS(...).

Prerequisites:

● The dump file (or the active system as the dump object) must be open.

● The system symbol library ($TSOS.SYSSMB.DAMP) must be available and must
include the elements NDM, NDMNUC, DRV and possibly SHC-OSD for the system
version to be analyzed. Otherwise, they are assigned as follows:

ADD-SYMBOLS LIBRARY = *STD / <file> (ELEMENT = NDM / NDMNUC / DRV /
SHC-OSD (VERSION = <version>))

or

SYMBOLS <file> (NDM / NDMNUC / DRV / SHC-OSD (<version>).

● The system PRODAMP library ($TSOS.SYSDMP.DAMP) must contain the
NDMDAMP PRODAMP objects.

The system PRODAMP library is not predefined in DAMP by default. Consequently, it
must usually be assigned as follows:

ASSIGN-PRODAMP-LIBRARIES OBJECT-LIBRARY = *PRODAMP-SYSTEM-LIBRARY

or in abbreviated format with:

A-P-L O=*P.

Instead of the keyword *PRODAMP-SYSTEM-LIBRARY, it is also possible to specify
the path name of the library containing the NDMDAMP PRODAMP objects.

● The logical system file SYSLST can, if desired, be assigned to a file.

Call from DAMP NDMDAMP

344 U5663-J-Z125-11-76

The procedures can be started by entering:

START-PRODAMP-PROGRAM NAME = NDM / NDMTRACE / NDMALL / NDMSTD / DRV / DRVALL

on the DAMP command line.

The PRODAMP procedures correspond to the analytical scope that can be selected with
the INFORMATION operand of the /START-NDM-DIAGNOSIS command. The scope of the
analysis for NDM is equivalent to that of NDMSTD, except for the fact that a restart is
possible for NDM, but not for NDMSTD.

With the exception of NDMSTD, the analysis can be restarted in the event of errors with:

START-PRODAMP-PROGRAM NAME = NDM-RESTART

Note, however, that EDT must be available for the restart, since all the data relevant for the
restart is contained in work file 9. This file must not be modified or deleted before the
Restart call.

Special analyses

The special analyses are the analyses that can be individually set with
INFORMATION=*PAR in the START-NDM-DIAGNOSIS command:

Prerequisites:

● The dump file (or the active system as the dump object) must be open.

● The system symbol library must be available and must include the elements NDM,
NDMNUC, DRV and possibly SHC-OSD for the system version to be analyzed.
Otherwise, an appropriate library must be specified when modifying the source NDM
see below).

● The system PRODAMP library ($TSOS.SYSDMP.DAMP) must contain the
NDMDAMP PRODAMP objects as well as the source NDM. Otherwise, they are
assigned as follows:

ASSIGN-PRODAMP-LIBRARIES SOURCE-LIBRARY = <prodamp-library>,
ASSIGN-PRODAMP-LIBRARIES OBJECT-LIBRARY = <prodamp-library>

● The logical system file SYSLST can, if desired, be assigned to a file.

NDMDAMP Call from DAMP

U5663-J-Z125-11-76 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
6

The settings for the options must be explicitly entered in the PRODAMP procedure NDM as
described below:

● Loading PRODAMP dynamically:

START-PRODAMP-EDITOR [abbr. PROC] <window-no> (between 4 and 9 or 21 and
99)

● Reading the source NDM:

– Overwrite “(procedure/index-identifier)” with “NDM”
– Set MODE (field after “W<window-no>”) from “Dsp” to “Rea”
– Send the screen with DUE (SEND)

● Modifying the source NDM:

The source NDM essentially consists of the call to the PRODAMP procedure
NDM_MAIN with appropriate parameters for the symbol library and the
individual elements.
The desired values from the specified value range are entered in the PRODAMP
window. Note that the lengths of the individual parameters, which are predefined
by the positions of the single quotes, must not be modified in the process.
The significance of the individual parameters and the possible values are explained in
the source on the following pages. The “+” and “-” keys can be used to scroll within the
PRODAMP window.

● Compiling and executing the source NDM:

– Set MODE=Go
– Send the screen with DUE (SEND)

The source with the entered parameters is compiled and executed.

Call from predefined ENTER jobs NDMDAMP

346 U5663-J-Z125-11-76

6.1.2 Call from predefined ENTER jobs

The LMS library SYSENT.NDMDAMP.160 is supplied with the following ENTER jobs, which
run under the TSOS user ID:

Note that the editor EDT must be available for all ENTER jobs where a restart is possible.

The ENTER jobs do not make use of SDF-P. They require and expect the standard file
names of DAMP, e.g. the symbol files in $TSOS.SYSSMB.DAMP. If the standard names
were not assigned when installing DAMP, they must be adapted accordingly.

Instead of the ENTER jobs, it is also possible to use the SYSSPR.NDMDAMP.160
procedure in batch mode, provided it is called with the ENTER-PROCEDURE command
with at least the operand OBJECT=*SYSTEM specified.

ENTER job Analysis File name Restart
possible

STD Normal
EDT and job variables are not
used

SYSLST.NDMDAMP -

NDM Normal
Job variables
($SYSJV.DATUM,
$SYSJV.TIME) are used to
generate the date and time.

SYSLST.NDMDAMP.<date>.<time> x

NDMALL Maximum SYSLST.NDMDAMP.<date>.<time> x

NDMTRACE Trace data from NDM and
BAVOLMON

SYSLST.NDMDAMP.<date>.<time> x

DRV DRV and traces SYSLST.NDMDAMP.<date>.<time> x

DRVALL All DRV-relevant sections SYSLST.NDMDAMP.<date>.<time> x

Table 16: Predefined ENTER jobs for NDMDAMP

NDMDAMP Error handling

U5663-J-Z125-11-76 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
6

6.2 Error handling during the analysis

Following an aborted analysis due to an error in NDMDAMP, it is possible to effect a restart
at the next substep. The editor EDT must be available for the restart, since all the data
required for the restart is stored in the EDT work file 9.

EDT is also required when enabling the PRODAMP trace to diagnose NDMDAMP errors,
since the trace data for the NDMDAMP run is stored in the EDT work file 8.
This data is copied to the file NDMDAMP.TRACE at the end of the analysis if no restart has
occurred, and the contents of the EDT work file 8 are then deleted.

In the case of a restart with the PRODAMP trace enabled, the data stored in the EDT work
file 8 is transferred to the file NDMDAMP.TRACE.RESTART.<break#>. The substring
<break#> specified in the file name designates the internal number of the PRODAMP
procedure in which the analysis was aborted.
In order to enable an association between the various restarts and PRODAMP traces,
a corresponding <break#> is indicated at the breakpoint even in the SYSLST output.
The trace data generated after the last restart and until the end of the analysis is stored in
the file NDMDAMP.TRACE.

Since the trace files (NDMDAMP.TRACE, NDMDAMP.TRACE.RESTART.<break#>) can
grow to be very large in size, errors may occur on saving the trace data if not enough
storage space is available.
In such cases, NDMDAMP aborts the subsequent analysis.

Installation NDMDAMP

348 U5663-J-Z125-11-76

6.3 Installation

NDMDAMP is installed with IMON.

If this installation is not performed correctly, NDMDAMP cannot be run properly. The most
frequent errors and possible solutions for them are summarized below:

– DAMP reports that a PRODAMP object cannot be found (DMP4002).

If the error message refers to the object NDM or NDM_RESTART, the PRODAMP
library of NDMDAMP has not been merged into the general PRODAMP library
($TSOS.SYSDMP.DAMP).

If the error message refers to NDEDAMP_CHECK_SYMBOLS, the PRODAMP library
of SHC-OSD (SYSDMP.SHC-OSD.<version>) has not been merged. This library is
called by NDMDAMP when an analysis of SHC-OSD is required and SHC-OSD is also
loaded.

– NDMDAMP issues the message “Module NKATSOSM not found” and terminates.

This means that either the dump object is not supported or the symbol library for
BS2000 has not been correctly loaded.

– NDMDAMP reports that “no symbol file can be assigned” and terminates.

This means that the symbol elements for NDM (NDMNUC, DRV and SHC-OSD,
depending on the selected scope) have not been merged into the general or explicitly
specified symbol library.

NDMDAMP Installation

U5663-J-Z125-11-76 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
6

6.3.1 Release items for NDMDAMP

6.3.2 Logical units used by NDMDAMP

NDMDAMP does not evaluate the Logical Units of DAMP, but uses the default names set
by DAMP:

– DAMP startup program

For DAMP=*STD, the START-DAMP statement is used.

– Symbol library

When SYMBOLS=*STD is set, the system symbol library of DAMP is used
($TSOS.SYSSMB.DAMP).

– PRODAMP library

When PRODAMP=*STD is set, the system PRODAMP library of DAMP is used
($TSOS.SYSDMP.DAMP).

LOGICAL-ID Description Default name

SYSSDF.USER Syntax file with the command
/START-NDM-DIAGNOSIS

$.SYSSDF.NDMDAMP.160.USER

SYSSPR S procedure $.SYSSPR.NDMDAMP.160

SYSENT ENTER job $.SYSENT.NDMDAMP.160

SYSDMP PRODAMP procedures, which must be
incorporated into the system PRODAMP
library of DAMP

$.SYSDMP.NDMDAMP.160

SYSSII Contains a description of the release items $.SYSSSI.NDMDAMP.160

Table 17: Release items for NDMDAMP

Installation NDMDAMP

350 U5663-J-Z125-11-76

U5663-J-Z125-11-76 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
2

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
7

7 ELFE
Edit and evaluate the SERSLOG file

The utility routine ELFE edits the contents of a SERSLOG file or of all the SERSLOG files
belonging to a given session.

A SERSLOG file is made up of individual records written by SERSLOG (see chapter
“SERSLOG Software error logging in the SERSLOG file” on page 363) whenever an error
event occurs.

ELFE provides an overview of the logged error events by drawing up a list of all the error
event types in the file and the number of times each one occurs. ELFE can also be used to
output information of specific attributes of individual error events (e.g. error event type, TSN
responsible, time at which the error event occurred, etc.). The appropriate information can
be output on the screen or (via SYSLST) on a printer in either complete or abridged form.

Each error entry is accompanied by a general description explaining the corresponding
error event type (“rectype”) and offering diagnostic suggestions (which can be output either
(via SYSLST) on a printer or on the screen).

ELFE processes all SERSLOG files, no matter which version of the operating system was
used to create them. The SERSLOG file must not be active during processing.

Software and hardware prerequisites ELFE

352 U5663-J-Z125-11-76

7.1 Software and hardware prerequisites

The library containing the descriptions and diagnostic suggestions for SERSLOG files has
the default name:

i It is not possible to evaluate two libraries in the same ELFE run. Assignment of a
second library is rejected with error message ELF0012.

Supported terminal types and listing formats

ELFE supports all currently available terminal types.

The last line of the screen is reserved for inputs to the program.

The data is output to SYSLST with a format of 66 lines per page and 132 columns per line.

Storing SERSLOG files

SERSLOG files are generated using the logical block size STD(1).

Using aliases

The user can use ACS (alias catalog service) to define aliases for SERSLOG files and for
the description library for the record types. These aliases can be passed to ELFE.
If an alias is assigned to a SERSLOG file which does not exist, ELFE uses the alias in place
of the real file name in order to document errors which occur when processing this file.

ELFE messages

The ELFE messages have the message class ELF. Information on individual messages can
be obtained in ongoing operation with the /HELP-MSG-INFORMATION command.

SYSLNK.ELFE.140 for SERSLOG files of BS2000/OSD-BC V5.0

SYSLNK.ELFE.150 for SERSLOG files of BS2000/OSD-BC V6.0

SYSLNK.ELFE.160 for SERSLOG files of BS2000/OSD-BC V7.0

SYSLNK.ELFE.170 for SERSLOG files of BS2000/OSD-BC V8.0

SYSLNK.ELFE.180 for SERSLOG files of BS2000/OSD-BC V9.0

SYSLNK.ELFE.190 for SERSLOG files of BS2000 OSD/BC V10.0

SYSLNK.ELFE.190 Library contains the LLM.ELFE

ELFE Operation

U5663-J-Z125-11-76 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
2

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
7

7.2 Operation

The ELFE program is located in the SYSPRG.ELFE.180 library. It is called by means of
/START-ELFE.

OPEN filename is used to select the SERSLOG file and to open or select a specific session
and open its files. You select an evaluation library using the LIBRARY statement. You can
then examine the error event entries more closely. STOP or END terminates the program.

CONT
Continue evaluation of SERSLOG file or session

With the aid of the CONT statement, evaluation of a SERSLOG file or of a system run which
has already been started under the same user ID can be continued, providing the auxiliary
files which were created in the previous session are still available (see the KEEP statement,
page 359). If another SERSLOG file or another session is currently being evaluated, CONT
terminates this evaluation.

Format

Operands

sss Three-digit number of the session.

Statement Function

C(ONT) Process a system run whose auxiliary files are still available

D(ISPLAY) Display information on the screen

E(ND) Terminate ELFE

H(ELP) Display help information on ELFE statements on the screen

K(EEP) Retain auxiliary files at the end of the program or on changing the system run

L(IBRARY) Assign an evaluation library

O(PEN) Open SERSLOG files

P(RINT) Print error entries

S(TOP) Terminate ELFE

Table 18: Overview of ELFE statements

Operation Operands

C(ONT) sss

DISPLAY statement ELFE

354 U5663-J-Z125-11-76

DISPLAY
Display error entries on screen

The DISPLAY statement is used to display information about the system or error entries
from the SERSLOG file on the screen. The error entries can be selected by specifying the
appropriate operands for a number of different criteria, e.g. the error event type, the TSN or
the time of the event. The selected entries can be displayed either in their entirety, together
with the error environment data, or in an abbreviated form with only the most important
details.

Format

Operation Operands

D(ISPLAY) INFO
LOCMAP
FULL
ADDRESS=address
MODULE=modulename
DESCRIPT[,RECTYPE=rectype]
SHORT
SUMMARY

[,...] [,SHORT]

TIMESTP=date1/time1:date2/time2

RECTYPE=rectype

ELSN=

[TSN=tsn]
[TID=tid]

elsn
elsn1-elsn2

ELFE DISPLAY statement

U5663-J-Z125-11-76 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
2

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
7

Operands

ADDRESS=address Name of the module within which the specified address is located,
together with the displacement from the start of this module.
“address” must be specified as a 4-byte hexadecimal value.

DESCRIPT This operand causes descriptions of the specified error event types
(“rectypes”), accompanied by suggested diagnostic responses, to
be displayed. DESCRIPT should be specified together with the
RECTYPE operand, otherwise all the descriptions contained in the
description library will be output. The DESCRIPT operand is
accepted only if a description library has been assigned (see the
LIBRARY statement, page 359).

ELSN= This selects the entries on the basis of their ELSN (Error Log
Sequence Number); the entries are numbered sequentially during
creation of the SERSLOG file. “elsn”, “elsn1” and “elsn2” must be
specified in hexadecimal form. “elsn2” must be greater than “elsn1”.
The specification “elsn1-elsn2” selects all entries whose ELSN lies
between these limits (including the specified values).

FULL This specifies that all information on the system, the location map of
the modules, all entries (in ascending order of their ELSN) and the
SUMMARY list are to be output.

INFO This outputs information on the system (version, generation date,
etc.).

LOCMAP This outputs the location map of the system modules. The map
contains two lists, one sorted by module names and one sorted by
module addresses.

MODULE=modulename
This outputs the start address, the length and the version number of
the specified module.

RECTYPE=rectype The entries to be output are selected on the basis of the error event
type (“rectype”). The entries are output in ascending order of their
ELSN. If less than 7 characters are specified, all entries whose error
event type begins with the specified string are output
(r[e[c[t[y[p[e]]]]]]).

SHORT This outputs the selected SERSLOG entries in their abbreviated
form. The SHORT operand may be specified together with any of
the selection operands.
If SHORT is the only operand specified, all entries in the SERSLOG
file are output in their abbreviated form.

elsn
elsn1-elsn2

DISPLAY statement ELFE

356 U5663-J-Z125-11-76

SUMMARY This outputs a list containing all error event types found in the
current file or the current session, together with the number of times
each type occurs.

TID=tid The SERSLOG entries to be output are selected on the basis of the
task identifier. The entries are output in ascending order of their
ELSN.

TIMESTP= date1/time1:date2/time2
The entries to be output are to be selected using the ELSN written
to the SERSLOG file in the period date1/time1 through date2/time2.

Output is in ascending sequence of ELSN. The date and time are
specified in SDF format. The upper limit specified by date2/time2
must be greater than or equal to the lower limit specified by
date1/time1.

Example

DISPLAY TIMESTP=2008-10-25/12:45:00:2008-10-25/14:00:00

TSN=tsn The entries to be output are selected on the basis of the TSN.
The entries are output in ascending order of their ELSN. If a
non-numeric TSN with less than 4 characters is specified, the
entry is padded on the left with blanks.

ELFE DISPLAY statement

U5663-J-Z125-11-76 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
2

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
7

Example

The statement

DISPLAY TSN=1234,RECTYPE=NRT,SHORT

causes all SERSLOG entries with the TSN 1234 whose RECTYPE begins with the string
“NRT” to be output in their abbreviated (short) form. The entries are output to SYSOUT in
ascending order of their ELSN.

i If the number of entries to be output is greater than the number of lines on the
screen, one screen is displayed and the message

ENTER '+' OR NEW COMMAND

is displayed at the bottom of the screen. Entering “+” or a null input (simply pressing
[DUE]) causes the next screen to be displayed. Entering a new command termi-
nates the output and the new command is executed.

The following commands have the following effects:

Exceptions

The only exceptions to this are the statement

and

the statements KEEP, HELP and LIBRARY
These interrupt processing of the current information output only for output of
the requested data. The previous information output can then be continued.

All other operands of the DISPLAY statement terminate any current information
output.

STOP/END: Abort the current statement, processing of the session or file
and the ELFE session.

OPEN/CONT: Abort the current statement, processing of the session. Start
with the specified session.

PRINT/DISPLAY: Abort the current statement and begin processing the specified
statement.

DISPLAY
ADDRESS=

MODULE=

END/HELP statements ELFE

358 U5663-J-Z125-11-76

END
Terminate ELFE

The END statement terminates the ELFE utility routine and aborts any processing that is
still in progress. It also deletes the auxiliary files created during the session unless this has
been precluded by means of the KEEP statement.

Format

HELP
Display brief information on ELFE statements

The HELP statement enables the user to request help information on any of the ELFE state-
ments. If HELP is entered without an operand, information on all statements is displayed.

Format

Operands

statement The statement on which information is to be displayed.

Operation Operands

 E(ND)

Operation Operands

H(ELP) [statement]

ELFE KEEP/LIBRARY statements

U5663-J-Z125-11-76 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
2

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
7

KEEP
Retain auxiliary files

ELFE works with the auxiliary files S.SERSLOG.sss.ELSN, S.SERSLOG.sss.INFO,
S.SERSLOG.sss.MODULE and S.SERSLOG.sss.ADDRESS. These auxiliary files are
normally deleted when the ELFE program is terminated. However, the KEEP statement can
be used to retain them after termination, e.g. if it is necessary to interrupt processing.

Exception

If no operand or a file name was specified in the OPEN statement, the KEEP statement
is rejected.

Format

LIBRARY
Assign description library

The LIBRARY statement can be used to assign a library which contains descriptions of the
error event types and diagnostic responses.

Format

Operands

filename Name of the library to be assigned; see page 352. It is not possible
to assign more than one library during an ELFE session.
Any attempt to assign a second library will be rejected with error
message ELF0012.

Operation Operands

K(EEP)

Operation Operands

L(IBRARY) filename

OPEN statement ELFE

360 U5663-J-Z125-11-76

OPEN
Assign and open file to be evaluated

The OPEN statement is used to specify and open the files to be evaluated. The necessary
auxiliary files are created at the same time.
OPEN may be specified with a complete file name, with the three-digit number of a specific
session (together, if applicable, with the sequence number of the file), or without operands.
ELFE then locates and opens the appropriate file. If, necessary, this file must be stored
under the user’s own user ID.
If another file or session is currently being processed, OPEN terminates this processing and
initiates processing of the specified file or session.

Format

Operands

sss Three-digit decimal number of the session.
All files with the standard name
“SYS.SERSLOG.yyyy.mm.dd.sss.nn” which exist under the caller’s
user ID are included for evaluation, where “sss” is the specified
session number and “yyyy.mm.dd” and “nn” may have any value.
The date specification in the standard name uses the new format by
default (see the STD-NAME operand).

nn Two-digit decimal consecutive number of a SERSLOG file within a
session.
If both “sss” and “nn” are specified, the file under the caller’s user ID
with the standard name SYS.SERSLOG.yyyy.mm.dd.sss.nn is
evaluated, where “sss” is the specified session number, “nn” is the
specified consecutive number of the file within the specified
session, and “yyyy.mm.dd” may have any value. The date specifi-
cation in the standard name uses the new format by default (see the
STD-NAME operand).

Operation Operanden

O(PEN)
[]

sss[,nn][,STD-NAME=NEW/OLD]

filename

ELFE OPEN statement

U5663-J-Z125-11-76 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
2

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
7

STD-NAME=

NEW The date in the file name is specified as yyyy-mm-dd.

OLD The date in the file name is specified as yy.mm.dd.

filename Name of the SERSLOG file to be evaluated.

If, before calling the ELFE utility routine, the user enters a file with the link name SERSLOG
in the task file table (TFT) by means of an ADD-FILE-LINK command, the operands of the
OPEN statement may be omitted. ELFE then opens the file linked with the link name
SERSLOG.

Continuation of the screen output

If the amount of data to be output exceeds the number of screen lines, the contents of one
screen are output and the user then controls whether the current option is continued or
canceled.
Entering “+” or null input ([DUE] only) continues output.

Input options and effects:

Parallel calls

If ELFE is called in parallel, the DMS error 05B1 can occur as a result of auxiliary files
having the same names. The problem can be circumvented by specifying the number of the
session in the OPEN statement (OPEN 003,STD-NAME=NEW).

S/END: Cancels the current statement, processing of the session or the file
and the ELFE run.

O/C: Cancels the current statement and processing of the session. Starts
with the specified session.

P/D: Cancels the current statement and starts processing the specified
statement.
If a command was entered and accepted during the process of
opening a session, the session is considered open. Evaluation is
performed on the files open up to that point.

H/L Interrupts the current statement relating to processing this request.
The original statement is then edited further.

+ Continues the current statement.

PRINT/STOP statements ELFE

362 U5663-J-Z125-11-76

PRINT
Print error entries

The PRINT statement allows you to output information on the system or error entries from
the SERSLOG file (via SYSLST) to a printer. By means of specifying the appropriate
operands, the information can be selected on the basis of various criteria, such as the error
event type, the TSN or the time of the event. The selected entries can be printed either in
their entirety, together with the error environment data, or in an abbreviated form with only
the most important details.

Format

The operands of the PRINT statement are the same as those of the DISPLAY statement
(see page 354).

STOP
Terminate ELFE

The STOP statement terminates the ELFE utility routine and aborts any processing that is
still in progress. It also deletes the auxiliary files created during the session unless this has
been precluded by means of the KEEP statement.

Format

Operation Operands

P(RINT)

 Operation Operands

 S(TOP)

INFO
LOCMAP
FULL
ADDRESS=address
MODULE=modulename
DESCRIPT[,RECTYPE=rectype]
SHORT
SUMMARY

[,...] [,SHORT]

TIMESTP=date1/time1:date2/time2

RECTYPE=rectype

ELSN=

[TSN=tsn]
[TID=tid]

elsn
elsn1-elsn2

U5663-J-Z125-11-76 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
2

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
8

8 SERSLOG
Software error logging in the SERSLOG file

Software error logging in BS2000 consists of two parts: saving the data on all software
errors encountered, and editing this data. Data relevant to the software errors encountered
is saved with the aid of the operating system function SERSLOG. Selected data relating to
each software error is written into a special file, the SERSLOG file. In order to avoid
impairing system performance, this data is not subjected to further editing at this point. It
can be edited and evaluated later with the aid of the utility routine ELFE (Error Log File
Evaluation, see page 351).

The following overview contains all the commands available to the operator and the system
administrator for controlling software error logging. The commands are described in detail
in the “Commands” manual [8].

Commands Function

CHANGE-SERSLOG-FILE Closes the current SERSLOG file and opens a new one.

SHOW-SERSLOG-STATUS Shows the status of error logging and the name of the SERSLOG file.

START-SERSLOG Starts software error logging and opens a SERSLOG file.

STOP-SERSLOG Closes the SERSLOG file.

Table 19: Overview of SERSLOG commands

SERSLOG file SERSLOG

364 U5663-J-Z125-11-76

SERSLOG file

A SERSLOG file is made up of individual records written by SERLSOG when an error
occurs. Each record comprises the ELSN (Error Log Sequence Number), the designation
of the error event type (“rectype”), the TSN, the TID, the name of the module which caused
the entry, the time of the error event and data from the environment of the software error.

The SERSLOG file is opened during system startup when software error logging is
activated. The name of the SERSLOG file has the following format:

SYS.SERSLOG.yyyy-mm-dd.xxx.nn bzw. SYS.SERSLOG.yy.mm.dd.xxx.nn (depending on the
setting for the system parameter FMTYFNLH – for more details see the manual
“Introduction to System Administration” [6]).

where:

yyyy-mm-dd is the date on which the file is opened.

xxx is the number of the associated session.

nn is the sequence number of the SERSLOG file (01 to 99, always
begins with 01 at startup time). If nn becomes greater than 99, the
counter is reset to 01; this causes the first SERSLOG file to be
overwritten.

The SERSLOG file is not write-protected.

When the system run is terminated, the SERSLOG file is closed and software error logging
is terminated. The current SERSLOG file is included in the SLED output.

Only the operator and the system administrator can activate (START-SERSLOG) or
deactivate (STOP-SERSLOG) software error logging or switch the SERSLOG file
(CHANGE-SERSLOG-FILE). The SHOW-SERSLOG-STATUS command allows you to
request information on software error logging.

U5663-J-Z125-11-76 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
3

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k0
9

9 ASE
Auxiliary SERSLOG Extensions

The ASE (Auxiliary SERSLOG Extensions) subsystem permits automatic monitoring of
critical system statuses, which are reflected in SERSLOG events. Threshold values can be
defined for these events which, when they are exceeded, result in the events being logged
in one of the following ways: in an internal buffer, by a message at the console, and/or via
Remote Service. This logging can be restricted to selected SERSLOG events.

The following overview contains all the commands available to the operator and the system
administrator for controlling software error logging. The commands are described in detail
in the “Commands” manual [8].

Command Function

ADD-ASE-ELEMENT Declares an ASE element

MODIFY-ASE-PARAMETERS Changes global ASE settings

REMOVE-ASE-ELEMENT Deletes ASE elements

SHOW-ASE-ELEMENT Displays ASE elements

SHOW-ASE-LOGGING Displays internal ASE logging data

SHOW-ASE-PARAMETERS Displays global ASE settings

SHOW-ASE-STATUS Provides ASE status information

Table 20: Overview of the ASE commands

ASE

366 U5663-J-Z125-11-76

U5663-J-Z125-11-76 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

10 SLED dump

If it is not possible to pinpoint the cause and effect of a software error which impairs an
essential part of the operating system, the operating system must be terminated and the
memory areas of BS2000 must be dumped for diagnosis. A full dump of this type is created
by SLED V18.0 (Self-Loading Emergency Dump routine).

SLED runs independently of the BS2000 operating system.
The operating system has to be loaded again following a SLED run.

SLED execution can be either automatic (unattended) or controlled by the operator
(attended).
Automatic execution is possible only if the appropriate parameters have been set in the
standard SLED parameter file $TSOS.SYSPAR.SLED.nnn (nnn=190 for SLED V19.0
(BS2000 OSD/BC V10.0)).

SLED writes a dump file (SLEDFILE) to disk or tape. This file contains all the available,
requested data that is necessary for subsequent analysis by the editing routine DAMP.

If SLED was loaded as “DUMP from SLED”, the memory areas used by IPL-EXEC and
SLED are output.

SLED dump

368 U5663-J-Z125-11-76

Figure 100: Device configuration for SLED

Any
IPL disk

(load disk)

SLED

Console

Public
disk

Private
disk

Emulated tape device

SLED dump Loading and initializing SLED

U5663-J-Z125-11-76 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

10.1 Loading and initializing SLED

SLED runs as an application program under IPL-EXEC. IPL-EXEC is part of the initial
program loader (IPL), which is loaded and initialized before SLED is loaded.

When loading, a distinction must be made between loading SLED for the first time after a
system crash, repeating a SLED run and dumping from the SLED system.

Before loading SLED for the first time the memory areas used by IPL, BOOT and SLED
must be saved. This is done partly by the firmware (by copying data areas to save areas in
memory or to the service processor) but for the most part by the software by writing data
areas to the IPL disk to a save file (SLEDSAVE or BOOTSAVE) before they are used by
BOOT, IPL or SLED.

Initialization of SLED varies according to server type. It is described in full in the appropriate
manuals for each server type.

For the loading procedure, the load disk is searched for the following files, which must be
anchored in the SVL of the disk with SIR:

Before SLED is loaded, all the disks required for subsequent processing should already
have been mounted and switched online.

Once SLED has been loaded and started, a number of consistency checks are carried out
to establish:

● whether the version of the loaded SLED matches that of the loading IPL

● which system was previously loaded and if this was BS2000 (also under VM2000 or for
DUMP from SLED) whether its version matches that of SLED

● whether a part of main memory was overwritten without having been saved.

SLED performs these consistency checks regardless of whether the dump runs attended
or unattended. Unattended operation means that SLED runs automatically without operator
intervention, using the presettings in the SLED parameter file or default settings. Attended
operation means that SLED prompts the operator to enter or correct options and SLED is
controlled interactively.

Appropriate warnings regarding execution of the consistency checks are output at the
console and logged in the SLED output file.

– $TSOS.SYSPRG.BOOT.DSKnnn.SAVE (BOOTSAVE)

– $TSOS.SYSPRG.IPL.DSKnnn (IPL phase)

– $TSOS.SYSREP.IPL.DSKnnn (corrections for IPL)

– $TSOS.SYSREP.SLED.DSKnnn (corrections for SLED)

– $TSOS.SYSPRG.SLED.DSKnnn.SAVE (SLEDSAVE)

Loading and initializing SLED SLED dump

370 U5663-J-Z125-11-76

Diagnostic data can be output to the public disks, to private disks or tape.

The appropriate response must be entered to the following message during an attended
SLED run:
NSD1003 STANDARD SLED ? REPLY (Y; N; EOT=Y)

Standard SLED

By entering Y or <EOT> in response to message NSD1003, the operator selects standard
SLED. This results in the standard SLED behavior described below:

1. In both attended and unattended operation, a check is made as to the availability of the
disks of the home pubset and the paging disks (online scan). Unavailable (offline) disks
are logged via message NSD1400. If data from the missing disks is subsequently
required, SLED must be reloaded once these disks have been attached; it is not
possible to attach required disks during the SLED run.

The more pubsets SLED has to include (the home pubset of the system to be dumped,
the load pubset of SLED and possibly another pubset for the parameter file and one for
the SLED output file), the longer the online scan takes.

2. The default values for the MODE and TASK parameters (described below) are
initialized as EOT. Regardless of whether or not there has been a preceding system
crash, SLED selects the settings MODE=STD (see page 375) and TASK=STD (see
page 376).

Once the SLED initialization phase is complete, it becomes known whether
– all disks of the home pubset of the aborted session are online
– public disks from different pubsets are online
– all paging disks used in the aborted session are online

The operator dialog in standard SLED is continued with message NSD5200 (assignment of
a parameter file).

SLED dump Loading and initializing SLED

U5663-J-Z125-11-76 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

Nonstandard SLED

By entering N in response to message NSD1003, the operator selects nonstandard SLED.
The operator requests an extended dialog with SLED for controlling execution and receives
the following additional messages:

NSD0900 ONLINE SCAN ? REPLY (Y; N; IPL-CONF=I; GENERAL ONLINE SCAN=X; EOT=Y)

SLED asks whether an online scan is to be performed, i.e. whether the available device
configuration is to be checked.

Y IPL performs an online scan for each pubset required.
The behavior is the same as with standard SLED.

N IPL is not to perform an online scan
In this case only the SLED loading disk is available. The operator should only select
this value if SLED is not to be executable with an online scan or IPL-CONF evalu-
ation.

I Instead of an online scan, the server-specific partition in the file containing the
current configuration for system initialization, $TSOS.SYSDAT.IPL-CONF.nnn, is
evaluated. If this partition does not exist in the file or if errors occur during
processing, an online scan is initiated again for the pubsets required. After
successful processing, SLED knows the home pubset, the paging disks and the
SLED load disk if the associated disks were already attached when the system was
booted and could therefore be entered in the IPL-CONF file.

X IPL performs an online scan for all disks.

i SLED cannot use the general online scan for large systems, since it cannot
manage more than 1290 disk device entries. This option should only be
selected in special cases

The response is followed by two further messages which the operator must answer. The
responses determine the scope of the SLED file.

NSD3001 SPECIFY NOEDIT MODE.
REPLY (STD; NSF; REAL; ALL; EOT=STD; - (BACKTRACK))

For a description of this message, see page 375.

NSD3002 SELECT TASKS.
REPLY (STD; NONE; ALL;(TSN LIST); EOT=STD/ALL; - (BACKTRACK))

For a description of this message, see page 376.

Loading and initializing SLED SLED dump

372 U5663-J-Z125-11-76

Error conditions for standard and non-standard SLED

Although SLED can run if the SYSRES (system disk) is not available, no system files
(TSOSCAT, logging files etc.) and possibly no paging area data can be saved.

If the home pubset is only partially available, some system files may be only partially saved.

Unavailable paging disks may result in incomplete diagnostic information.

If SLED determines that one of the required disks is missing, this is logged via message
NSD1400. The operator can attach the missing disks and repeat the SLED run.

Repeat SLED

A repeat SLED refers to the loading and initialization of another SLED run following a first
SLED run in order to obtain the dump of the previously aborted session. This may be
necessary, for example, if a SLED was inadvertently loaded which was not compatible with
the version of the aborted system or the disks required during SLED initialization were not
available (online).

Consequently, with a repeat SLED the areas saved in BOOTSAVE and SLEDSAVE must
be used again and must not be saved a second time.

Both firmware and software attempt to recognize a repeat SLED and in this case suppress
the saving of data areas. This means that no data is lost in the case of a repeat dump. If the
newly loaded SLED does not belong to the same operating system version as the first
SLED, it may be that the repeat SLED is not recognized and some of the diagnostic data is
lost.

SLED dump Loading and initializing SLED

U5663-J-Z125-11-76 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

SLED dump

If an error occurs during a SLED run (message NSD1002), it may be necessary to take a
dump from SLED. This means that SLED is loaded again in order to generate information
on the errored SLED run.

Therefore, even though SLED was already loaded, it is necessary in this case to save the
memory areas in which SLED was loaded a second time since these areas are required for
SLED diagnostics. Both in the firmware and in the software it is necessary to note the
following:

● In the event of a SLED repetition, the data overwritten by BOOT, IPL and SLED has
already been saved and is therefore not saved again.

● In the case of a SLED dump, the data overwritten by BOOT, IPL and SLED (SLED data)
is now saved again.

It is therefore necessary to take special measures if it is necessary to generate a dump
relating to the execution of the dump function itself (SLED dump):

● In VM2000 operation, this is achieved at VM start (/START-VM) by specifying the
parameter UNLOCK-SAVEAREA=*YES

● On servers with x86 architecture at system start with ipl parameter [d|u]: u
(UNLOCK).

● However, on servers with /390 architecture it is necessary to perform certain actions.
The selection of the actions depends on the server in question. For a detailed
description see the manuals for the various server types.

The actions may include, for example:

– Stop CPU
– Log register contents
– Set the real address stop X'4000'
– On multiprocessor systems, set START/STOP mode to TARGET CPU
– Start dump function
– After the address stop is effective, overwrite real memory location X'1800' with X'00'
– Reset address stop
– Start CPU
– Proceed as for dump function
– Reset START/STOP mode after termination of dump function

Output to a dump file SLED dump

374 U5663-J-Z125-11-76

Function selection

The output medium is selected by responding to the following message:

NSD3000 SPECIFY OUTPUT DEVICE.
REPLY (DPUB; DPRIV; TAPE; PRINTER; EOT=DPUB; -(BACKTRACK))

Possible responses:

DPUB output to public disk (default value)

DPRIV output to private disk

T[APE] output to tape

P[RINTER] output to printer (obsolete)

10.2 Output to a dump file

SLED generates a dump file (SLEDFILE) which can be prepared and analyzed by the
DAMP dump analysis routine.

Defining the output data

The scope of the output data to be written to SLEDFILE is defined by means of the param-
eters MODE (as a response to message NSD3001) and TASK (as a response to message
NSD3002). The MODE parameter determines the selection of memory pages to be included
in the SLEDFILE. The TASK parameter determines the tasks whose address space is to
be saved.

The parameters MODE=ALL and TASK=ALL are set automatically when:

● the main memory is less than 128 MB

● the system tables for the page selection are corrupt

● the product ID or dump testament contains an error.

i In the case of a standard SLED (i.e. automatic SLED or the response to NSD1003 is
EOT or Y), the MODE and TASK parameters can be specified only by being entered
in advance or via the parameter file. If the two parameters are not specified, SLED
itself defines the values (implicit EOT response).
You are recommended not to specify the MODE and TASK parameters and instead
allow SLED to define these values.

SLED dump Output to a dump file

U5663-J-Z125-11-76 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

Page selection using the MODE parameter

NSD3001 SPECIFY NOEDIT MODE.
REPLY (STD; NSF; REAL; ALL; EOT=STD; - (BACKTRACK))

Depending on the response, the following pages from main memory and the paging area
are output:

EOT (no input)
The value of this parameter is determined by SLED:
SLED selects MODE=STD independently of whether or not a system crash previ-
ously occurred (SETS). In the case of a system crash, the task or module that
caused it is usually included in the scope of the output.

STD The following pages are output:
– pages of the privileged data spaces
– class 1 through class 4 memory pages (system address space)
– class 5 pages of all selected tasks
– class 6 pages of all selected system and SVC79 tasks
– class 6 pages of all tasks specified in the TSN list
– resident*) class 6 pages of all TICs (task in control)
– resident*) class 6 page 0 of all selected tasks.

*) “resident” in this context means that the page is located in main memory.

NSF (No System Files)
Has the same effect as STD, but without the system files that are also saved if
STD is specified, provided that they are accessible.

REAL All main memory pages (the subsequent TASK parameter is ignored); no data
in the paging area is saved.

ALL In addition to the pages selected by MODE=STD, the entire main memory is output.

i If MODE=ALL then the SLED dump can become extremely large!

Output to a dump file SLED dump

376 U5663-J-Z125-11-76

Task selection using the TASK parameter

In addition to the system address space (classes 1 through 4), the address space of the
specified tasks can also be saved, depending on the value of the TASK parameter.

NSD3002 SELECT TASKS.
REPLY (STD; NONE; ALL; (TSN LIST); EOT=STD/ALL; -(BACKTRACK))

EOT (no input)
The value of this parameter is determined by SLED:
SLED selects MODE=STD independently of whether or not a system crash previ-
ously occurred (SETS).

STD For each processor, the output includes the current TIC at the time of the
system crash and the tasks that occupied the CPU for a certain amount of time
before the crash occurred (internal BS2000 table with 64 entries per CPU).
– all TICs (tasks in control)
– all system tasks
– all privileged (SVC-79) tasks
– all CDUMP in progress tasks and dump tasks
– all tasks in queue Q10 (Permanently Pended)
– all tasks from the TIC trace tables (i.e. the last 64 tasks assigned to a logical

machine

NONE All TICs (tasks in control) on a CPU.

ALL All tasks

<tsn1>,<tsn2>,...,<tsn8>
In addition to the tasks listed under STD, the tasks specified in this list
(maximum 8) are saved in the dump.

SLED dump Output to a dump file

U5663-J-Z125-11-76 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

SLEDFILE contents (MODE = STD/ALL)

1. STATUS section (CPU status)

2. MAINMEM section: selected main memory pages

3. HSA section (only for servers with /390 architecture operated in native mode)

4. VM2HYPVS section (VM2000 Hypervisor on servers with /390 architecture, if a SLED
has been created in a VM2000 guest system)

5. IOHIOSDP (bus dump file; only on servers with x86 architecture)

6. FIRMWARE section: firmware code und datea (only on servers with x86 architecture)

7. PAGEPHYS section: selected pages of the paging area

8. PROTKEYS: memory protection key

The following may also be present if the data is accessible and BS2000, IPL, SYSTART,
VM2000 or SLED has been loaded:

9. TSOSCAT: system catalog

10. EQUISAMQ: SPOOL job queue

11. SJOBPOOL: job management queue

12. REPLOG: if it is not possible to access the REPLOG file then SLED saves the
SAVEREP file which contains only the BS2000 repairs.

13. CONSLOG: last console logging file of this session

14. CONSLOG1: first console logging file of this session

15. CONSLOG2: penultimate console logging file of this session

16. HELFILE: hardware error logging file - HEL

17. SERSLOG: last software error logging file of this session

18. SERSLOG1: first software error logging file of this session

19. SERSLOG2: penultimate software error logging file of this session

20. MSCFTRAC: MCF trace file

21. SJMSFILE: JMS file

22. PAGELOG section: table of tasks saved on last system abort

23. SLEDMEM section: IPL and SLED coding of the current SLED run

24. SLEDLOG section: recording of start of SLED dialog

Output to a dump file SLED dump

378 U5663-J-Z125-11-76

If REAL is specified then the SLEDFILE contains the items 1, 2, 3, 4, 5, 6, 7, 9, 24 and 25.
If NSF is specified then the SLEDFILE contains items 10 to 22.

The operator can initiate a maximum dump by specifying MODE=ALL and TASK=ALL as a
response to message NSD3001 or NSD3002.

Output to an emulated tape device

On all BS2000 servers two tape devices are configured which are emulated by the
Management Unit (SE servers), the SKP (S servers) or X2000 (SQ servers). One of the
tape devices operates in real mode on the basis of the integrated CD/DVD drive. The other
operates on the basis of a file which is stored in the file system of the MU, SKP or X2000.
In addition, further tape devices operating on file basis can be configured.

An emulated tape device operating on file basis must be used for SLED output. Tape
devices which operate on the basis of a CD/DVD drive cannot be used for SLED output.

i SLED output to an emulated tape device is provided for situations in which a SLED
file on disk is not available. SLED output is in particular not convenient in large
system configurations in which continuation tapes are required and calls for a
certain degree of preparation.

The tape in the tape device must already have been initialized, i.e. assigned standard labels
(VOL1, HDR1 and HDR2). Neither the volume serial number (VSN) nor the recording
density can be changed. A check is also carried out to determine whether the expiration
date entered in label HDR1 has been reached.

i In older servers and firmware versions the tape visible in the preconfigured tape
device will not yet have been initialized.
If the missing initialization is not to be implemented later (e.g. using the INIT utility
routine), subsequent SLED output to the tape will not be possible.

The SLED output file to tape is always named SLEDFILE.

SLED requests two entries via messages NSD3800 and NSD3822: the volume serial number
(VSN) and the device identifier (device mnemonic).

1. Volume serial number (VSN)

The VSN may be specified as a fully or partially qualified entry. The asterisk (*) is used
as a wildcard symbol (only allowed at the end of the entry). If * is entered by itself as
the VSN, SLED will accept all tapes, provided they have standard labels.

2. Device identifier

The device mnemonic mn is specified as the device identifier. SLED checks whether the
specified device exists and whether it can be used for output.
If the data specified is invalid, SLED repeats its request for the device identifier.

SLED dump Output to a dump file

U5663-J-Z125-11-76 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

These messages likewise appear if one tape is not sufficient to accommodate the entire
output and a continuation tape has to be used. If the VSN was specified as * this also
applies to the subsequent tapes.

All continuation tapes must be mounted on the same device.

Because of the emulation, a continuation tape is “mounted” only by means of the following
actions:

1. Backup of the file belonging to the tape emulation, e.g. by downloading it to a PC.

2. Overwriting the file belonging to the tape emulation with a prepared file which repre-
sents an empty tape with a different VSN. This is done, for instance, by uploading from
a PC.

The procedure for the two steps is described in the operating instructions of the server
concerned.

For reasons of data security, the files written should be overwritten (e.g. by reinitializing the
tape) or physically deleted after they have been analyzed.

Output to private disk

In the case of output to private disk, the SLED output file (SLEDFILE) must be contained
completely on one disk, i.e. it must not be distributed over several disks. The file must
already have been created and must be sufficiently large.

The operator is requested to specify the VSN of the disk. The device address of the disk is
then queried via message NSD3410.
An operator wishing to use only the device name can enter * or <EOT> in response to
message NSD3400. The parameter file should contain: VSN=*, DEV=<mn>.

Once the output disk has been defined and located, the name of the output file is requested.
If output is to private disk, the file is not accessed via the system catalog but exclusively via
the F1 labels on the disk. Consequently specification of a catalog ID is irrelevant in this case
and is rejected as an error.

i If there is already a catalog entry for the file on private disk, it is not updated. After
a SLED output file has been created on a private disk, the corresponding catalog
entry must be deleted by means of the command EXPORT-FILE FILE-NAME=
<filename>.

SLED files must not be created on DRV private disks.

Output to shareable private disks (SPD) is rejected.

Output to a dump file SLED dump

380 U5663-J-Z125-11-76

Output to public disks

In the case of output to a public disk, the pubset containing the output file must first be
identified. The output files for SLED can also be located outside the home pubset, but only
on disks or pubsets which would be suitable as an IPL disk or home pubset, i.e. for
example, not on SM pubsets. Output to shared pubsets is also rejected.

The pubset of the SLEDFILE is identified via the first file name to be requested. The
following rules apply:

1. If the file name was specified with catalog ID, this suffices to specify the pubset
containing SLEDFILE.

2. If the file name was specified without with catalog ID (or if the default name was
specified implicitly by a null input), an attempt is made to determine the pubset using
one of the following two standard rules:

a) SLED was loaded from a public disk: the pubset to which this disk belongs is the
pubset containing SLEDFILE.

b) SLED was loaded from a private disk but all the public disks that are online belong
to a single pubset: this is then the pubset containing SLEDFILE.

If neither of these rules is applicable, this means that SLED was loaded from a private
disk and that there are public disks online from various pubsets or no public disks online
at all. In this case the operator is requested to specify the catalog ID of the SLED output
file.

If the pubset containing SLEDFILE is known, first the associated SYSRES and then all the
other disks of the pubset are sought. SLED cannot execute unless all the disks of the
SLEDFILE pubset are online. If disks are missing, this is indicated by message NSD1400,
SLED must be reloaded once these disks have been attached (SLED repetition!).

Subsequently an attempt is made to locate the specified output file. To this end an acces-
sible catalog with the specified catalog ID must be available.

i If the software product HSMS is used on the system involved, systems support
must ensure that the file to be output is not automatically migrated and thus made
inaccessible if it is not used for a long time.

A pubset for SLED output must not be imported by a running system during SLED
operation.

SLED dump Output to a dump file

U5663-J-Z125-11-76 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

Checking the SLED output file

Once the output file (SLEDFILE) has been identified and located, it must be checked to
ensure that it is possible to work with it. This means:

1. It must not be protected by a password.

2. ACCESS=WRITE must have been specified.

3. The expiration date must have been reached.

4. It must be large enough to accommodate at least the main memory dump, the
CONSLOG and SERSLOG files and the hardware data. SLED writes very large main
memories as a number of different portions so that DAMP is able to prepare the dump
even if the main memory could not be saved in full.
However, excessively small SLED files should be avoided since precisely that data
might be missing that is required for error diagnosis.

5. If output to public disks has been requested, the file must not have been created on
private disk.

6. Output to shared pubsets, shareable private disks (SPD) and SM pubsets is prohibited
and is rejected by IPL.

If any of these conditions is not satisfied, the appropriate message (NSD32xx) is issued and
the name of the SLED output file is requested again.

If the SLED file is not logically empty, it is not used unless the operator makes a positive
response to the appropriate query (message NSD3204); otherwise the name of the SLED file
is requested again.

Size of SLED output files

If SLED output is to disk, a sufficiently large file must be available on disk.

As SLED operates without DMS support, the file cannot be extended dynamically during a
SLED run. A sufficiently large value must therefore be specified in the SPACE operand of
the CREATE-FILE command when creating a SLED output file.

The scope of the dump, i.e. the size of the SLED output file, is influenced by many factors
that are unknown before the dump is taken. At the time the dump is taken, the size of the
output file can be controlled via the MODE parameter (pages to be included in the file) and
the TASK parameter (tasks whose address space is to be saved). Setting the parameter
TASK=ALL to include all tasks' address space has a significant effect not only on the time
consumed by the SLED run but also the file size. TASK=ALL can result in a file many times
the size of that produced with TASK=STD.
The MODE parameter is decisive if the main memory or system files are large. In such
cases, MODE=ALL should only be specified if the file is sufficiently large.

Output to a dump file SLED dump

382 U5663-J-Z125-11-76

The following factors must be taken into account when calculating the required file size for
MODE=STD, TASK=STD (default case):

A: Size of the system address space used

B: Size of the system files TSOSCAT, EQUISAMQ, REPLOG, CONSLOG[x],
SJOBPOOL, HEL, SERSLOG[x], SJMSFILE, MSCFTRAC, etc.

n: Number of CPUs

t: Number of different tasks entered as tasks in control in the TIC table (maximum
64 entries per processor)

C: Size of a task's class 5 address space used

The influence of these factors is calculated using the formula (A + B + n * t * C)

Factors t and C are particularly problematic when calculating the file size. Simply setting the
upper limit for these factors results in impractically large values. It is difficult to calculate
average values that are generally applicable, since these values vary widely according to
the way in which the system is used and the system workload. It may be possible to use the
average results of openSM2 measurements in this case.

To summarize, it is difficult to recommend a size for the output file. In most cases, however
(except where TASK=ALL is specified), the user will find that double the size of main
memory is sufficient.

Rule of thumb for MODE=STD/ALL, TASK=STD

Size of SLEDFILE = 2 * size of main memory (but at most 32 GB).

Example for a SLED run

%S.NSI00E3 IPL-REPS READ: 0; EXECUTED: 0
%S.NSI1100 IPL DEVICE = HIP6.1; IPL PATH = B93E (MN=B93E)
%S.NSI1163 LOCAL DATE = <date>, TIME = <time> FROM SVP (MESZ)
%S.NSI00E3 SLED-REPS READ: 0; EXECUTED: 0
?S.NSD1003 STANDARD SLED ? REPLY (Y; N; EOT=Y)
s.
%S.NSD1000 SLED VERSION <version> LOADED FROM HIP6.1 TO 021D7000
%S.NSI3135 IPL DISK-SETUP READ FROM IPL-CONF PREPARED <date> <time>
%S.NSD1604 WARNING: SLEDSAVE ON VOLUME HIP6.1 TOO SMALL
%S.NSD1111 PRODUCT-ID OF DUMPED SYSTEM: BS2000 <version>
?S.NSD5200 SPECIFY NAME OF SLED PARAMETER FILE. REPLY (NO FILE=EOT; FILENAME; STANDARD
NAME=STD; END)
s.
?S.NSD1113 DO YOU WANT TO CHANGE CURRENT SLED RUNTIME LIMIT OF 045 MINUTES ? REPLY (Y;
N; EOT=N; - (BACKTRACK))
s.
?S.NSD3000 SPECIFY OUTPUT DEVICE. REPLY (DPUB; DPRIV; TAPE; PRINTER; EOT=DPUB; -

SLED dump Output to a dump file

U5663-J-Z125-11-76 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

(BACKTRACK))
s.tape
?S.NSD3800 SPECIFY VSN OF SLED OUTPUT TAPE. REPLY (VSN; VSN*; - (BACKTRACK))
s.cs563k
?S.NSD3822 SPECIFY MN OF SLED OUTPUT TAPE CS563K. REPLY (MN; - (BACKTRACK))
s.me
%S.NSD3810 TAPE CS563K ON DEVICE ME INITIALISED AS T6250
%S.NSD5000 DEFAULT TAKEN: MODE=STD
%S.NSD5000 DEFAULT TAKEN: TASK=STD
%S.NSD1112 SLED RUNTIME LIMIT SET TO 45 MINUTES
%S.NSD1800 STATUS SECTION : TERMINATED. LAST BLOCK = 8. TIME = 11:53:23
%S.NSD1800 PSA SECTION : TERMINATED. LAST BLOCK = 18. TIME = 11:53:23
%S.NSD1701 MAINMEM SECTION : PAGE SELECTION STARTED. TIME = 11:53:23
%S.NSD1702 MAINMEM SECTION : DUMP STARTED. TIME = 11:53:25
%S.NSD1800 MAINMEM SECTION : TERMINATED. LAST BLOCK = 80772. TIME = 11:54:11
%S.NSD1702 VM2HYPVS SECTION : DUMP STARTED. TIME = 11:54:11
%S.NSD1800 VM2HYPVS SECTION : TERMINATED. LAST BLOCK = 82442. TIME = 11:54:12
%S.NSD1800 IOHIOSDP SECTION : TERMINATED. LAST BLOCK = 82708. TIME = 11:54:12
%S.NSD1701 PAGEPHYS SECTION : PAGE SELECTION STARTED. TIME = 11:54:12
%S.NSD1702 PAGEPHYS SECTION : DUMP STARTED. TIME = 11:54:13
%S.NSD1800 PAGEPHYS SECTION : TERMINATED. LAST BLOCK = 84776. TIME = 11:54:15
%S.NSD1800 PROTKEYS SECTION : TERMINATED. LAST BLOCK = 84906. TIME = 11:54:16
%S.NSD1800 TSOSCAT SECTION : TERMINATED. LAST BLOCK = 101074. TIME = 11:54:33
%S.NSD1800 EQUISAMQ SECTION : TERMINATED. LAST BLOCK = 101114. TIME = 11:54:36
%S.NSD1800 SJOBPOOL SECTION : TERMINATED. LAST BLOCK = 101148. TIME = 11:54:38
%S.NSD1800 REPLOG SECTION : TERMINATED. LAST BLOCK = 102364. TIME = 11:54:39
%S.NSD1800 CONSLOG SECTION : TERMINATED. LAST BLOCK = 102588. TIME = 11:54:40
%S.NSD1800 HELFILE SECTION : TERMINATED. LAST BLOCK = 103000. TIME = 11:54:43
%S.NSD1800 SERSLOG SECTION : TERMINATED. LAST BLOCK = 174636. TIME = 11:56:08
%S.NSD1800 MSCFTRAC SECTION : TERMINATED. LAST BLOCK = 174712. TIME = 11:56:11
%S.NSD1800 SJMSFILE SECTION : TERMINATED. LAST BLOCK = 174782. TIME = 11:56:11
%S.NSD1800 PAGELOG SECTION : TERMINATED. LAST BLOCK = 174786. TIME = 11:56:11
%S.NSD1800 SLEDMEM SECTION : TERMINATED. LAST BLOCK = 176308. TIME = 11:56:12
%S.NSD1800 SLEDLOG SECTION : TERMINATED. LAST BLOCK = 176314. TIME = 11:56:12

%S.NSD1802 SLED OUTPUT COMPLETED
?S.NSD5200 SPECIFY NAME OF SLED PARAMETER FILE. REPLY (NO FILE=EOT; FILENAME; STANDARD
NAME=STD; END)
s.end
%S.NSD1001 SLED TERMINATED

SLED control SLED dump

384 U5663-J-Z125-11-76

10.3 SLED control

SLED can be controlled by various means.

– In attended SLED (= manual SLED), an operator dialog is performed. SLED is
controlled either by the statements defined in the parameter file (which is specified by
the operator) or by individual parameters entered by the operator.

– In unattended SLED (= automatic SLED), there is no operator dialog. SLED is
controlled via the standard SLED parameter file $TSOS.SYSPAR.SLED.nnn or through
the evaluation of default values.

– The use of asynchronous command inputs can terminate the SLED run or output infor-
mation about it.

Limiting the SLED runtime

The default value for the runtime limit for SLED is 45 minutes. The default value can be
changed in the dialog by replying to the following message with Y:

NSD1113 DO YOU WANT TO CHANGE CURRENT SLED RUNTIME LIMIT OF (&00) MINUTES ?
REPLY (Y; N; EOT=N; - (BACKTRACK))

When Y is entered as the reply, the following message is output:

NSD1114 SET RUNTIME LIMIT.
REPLY (1-999 (MINUTES); N (CURRENT LIMIT); EOT=N; - (BACKTRACK))

A runtime limitation of 1 up to 999 minutes can be specified.

SLED confirms the runtime limit set with message NSD1112.

If the runtime limit is enabled, a check is made for the first time to see if the time limit has
expired after main memory has been saved, and after that after every section. If it has
expired, then SLED is terminated after the SLEDMEM and SLEDLOG sections have been
written.

i During the dump of the paging area, the timer is checked after every 2Gbytes have
been saved and the save may be terminated prematurely. The dump containing the
data in the paging area may also be incomplete.

A premature termination of SLED due to the time limit expiring is announced by the
messages NSD1804 and NSD1803.

SLED dump SLED control

U5663-J-Z125-11-76 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

SLED dialog

Advance setting of parameters

In certain messages of the initial dialog it is possible both to enter a response to the appro-
priate query and also to set certain parameters in advance, which would otherwise have to
be queried in subsequent dialog steps or defined for the default values of SLED.

Example

NSD3000 SPECIFY OUTPUT DEVICE.
REPLY (DPUB; DPRIV; TAPE; PRINTER; EOT=DPUB; - (BACKTRACK))

The following responses are possible to the above message:

TAPE output to tape.

TAPE,VSN=vsn
The VSN of the output medium is made known in advance

TAPE,VSN=vsn,DEV=mn,MODE=NSF
The VSN of the output medium and the (partial) scope of the output data are
made known in advance

TAPE,VSN=vsn,DEV=mn,MODE=NSF,TASK=ALL
All parameters for the output to tape are made known in advance

The syntax is thus the same as for the parameter list of a BS2000 command, where not
more than one positional operand and optionally several keyword operands may occur. The
permissible combinations of positional and keyword operands can be found in the descrip-
tions of the individual messages.

The input must not contain any blanks. The first blank encountered is treated as the end of
the input.

If no positional operand is specified (i.e. either keyword operands only or no operands at
all), the default value is assumed.

If a keyword operand is specified without a value (e.g. MODE=), the default value is assumed.
The appropriate default value is defined by the message via which the operand value would
be interrogated if no advance setting is made.

Where parameters are entered in advance, errors may occur which have the effect of the
input being ignored. A message is displayed to draw attention to this fact.

SLED control SLED dump

386 U5663-J-Z125-11-76

Cancellation option

Some of the messages in the initial dialog can be canceled by entering “-” or “--”.

Entering “-” causes the last input to be canceled (simple cancellation).

Entering “--” causes all previous inputs to be canceled. The dialog is continued with
message NSD5200, the first message in the initial dialog. In the case of a SLED with a
parameter file, further processing of the parameter file is terminated after this entry.

In both cases any parameters set in advance are ignored after an appropriate message
(NSD5003).

If a message contains a simple cancellation option, this is indicated in the reply section of
the message:
NSDxxxx ... REPLY (...; - (BACKTRACK))

SLED with parameter file

All the instructions needed for running SLED in operator-assisted or automatic mode can
be parameterized in the form of a file. This parameter file, which must be created on a public
disk, is used to store all the inputs to SLED; the entries are not checked for correct syntax
until SLED is running.
The SLED parameter file must not be empty and must possess the following file attributes:

FILE-STRUC=SAM
BUF-LEN=STD or (STD,2)
REC-FORM=V
BLK-CONTR=PAMKEY or DATA

All the parameters for a SLED run must be contained in a record in the parameter file. The
individual parameters are separated by commas. The character string must not include any
blanks. Each parameter must be prefixed by the appropriate keyword. The sequence of
parameters is immaterial. The parameter records must not contain lowercase letters or
nonprintable characters.

For an aautomatic SLED run the parameters are read from the parameter file with the name
$TSOS.SYSPAR.SLED.nnn, which means that even in this case flexible control of the
dump is assured.

i If the software product HSMS is used on the system involved, systems support
must ensure that the parameter file is not automatically migrated and thus made
inaccessible if it is not used for a long time.

SLED dump SLED control

U5663-J-Z125-11-76 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

Assignment of the parameter file

The decision as to whether and which parameter file is to be used for the SLED run is made
by the operator by entering the following response to message NSD5200:

NSD5200 SPECIFY NAME OF SLED PARAMETER FILE.
REPLY (NO FILE=EOT; FILENAME; STANDARD NAME=STD; END)

FILENAME A parameter file is assigned for a SLED run by entering a valid fully qualified file
name in response to the message. If the catalog ID or user ID is omitted, the
default options (catalog ID of the home pubset and $TSOS) are inserted.

STD By entering STD in response to the message the default SLED parameter file of
the system, $TSOS.SYSPAR.SLED.nnn, is assigned.

EOT (no input)
A null input (EOT) in response to the message means that no parameter file is
used. In an operator-attended run, SLED prompts the operator for necessary
input to be made from the console.

Processing the parameter file

Parameter records that have already been processed and for which there is already a non-
empty output file on magnetic disk are ignored for the next SLED request (in automatic
mode without a confirmation prompt, in operator-assisted mode when the following
message is answered with N):

NSD3204 SLED OUTPUT FILE (&00) IS NOT EMPTY.
OVERWRITE ? REPLY (YES=Y; NO=N)

This makes it possible to react to multiple system interruptions (over a longer period of time)
with a parameter file containing several parameter records.
All the parameters for a session must be entered in one line, e.g.

● For output to private disk:
OUTPUT=DPRIV,FILE=...,MODE=,TASK=STD,VSN=*,DEV=D6

● For output to public disk:
OUTPUT=DPUB,FILE=...,MODE=,TASK=STD

● For output to tape:
OUTPUT=TAPE,VSN=SLED*,DEV=M0,MODE=NSF,TASK=(1EF0,1431,2EE4,5QA1)

End of processing is reached when a SLEDFILE is written or when a parameter record with
the character string OUTPUT=END is detected. Subsequent records are ignored and SLED
terminates. In automatic SLED mode system loading is initiated.

End-of-file is indicated by an appropriate message at the console.In attended operation
SLED issues the NSD5200 message again. In automatic SLED system loading is initiated.

SLED control SLED dump

388 U5663-J-Z125-11-76

Error behavior in operator-assisted mode (manual SLED)

● If an error occurs during processing of a parameter record as a result of incorrect or
missing entries, SLED prompts the operator to enter the required parameter at the
console.
Once the error has been corrected or the missing data supplied, SLED continues
processing the file.
If the operator decides on the cancel option, further processing is aborted.

● If, during processing, empty records or records containing lowercase characters or non-
printable characters are detected, SLED issues message NSD5245 asking the operator
how it should proceed.
Processing of this parameter file can either be aborted or continued with the next
record.

Error behavior in unattended mode (automatic SLED)

● If the $TSOS.SYSPAR.SLED.nnn file does not exist on the home pubset or SLED
cannot find it (e.g. because TSOSCAT has been destroyed), SLED proceeds as for
automatic SLED without a parameter file (see page 389.)

● If the parameter file does not have the required file attributes, it is rejected and the
system switches over to operator-assisted mode.

● If an error occurs during processing of a parameter record as a result of incorrect entries
or a lack of data, processing of the parameter file ceases and the system switches over
to operator-assisted mode.

● Empty parameter records of a parameter file are ignored.

● If no values are specified for the MODE or TASK parameter, SLED determines these
values itself.

SLED dump SLED control

U5663-J-Z125-11-76 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

Automatic SLED

Automatic SLED enables a memory dump to be taken without operator intervention and the
system to be subsequently reloaded.

SLED is loaded in automatic mode if the “Automatic Restart” function is switched on after
a system crash and SLED is set as the dump generator (see the command SET-RESTART-
OPTIONS MODE=*ON(...), DUMP=*SLED). Automatic SLED is loaded from the SYSRES
belonging to the home pubset of the aborted system run. Information on the automatic
restart control can be output with the SHOW-RESTART-OPTIONS command.

There are two modes in which an automatic SLED can take place:

1. Parameter file

First, SLED looks for the default parameter file $TSOS.SYSPAR.SLED.nnn on the
home pubset. When this file has been found and if it can be processed, SLED uses the
entries specified there.
Parameter records that write to non-empty disk files are ignored.
MTCs are suitable for automatic SLED only under certain conditions, since an MTC
device specified in the parameter record would be blocked in normal BS2000 operation.

2. Use of default values

If SLED does not find the standard parameter file $TSOS.SYSPAR.SLED.nnn, the
following default definitions are taken for executing the automatic SLED:

– dump file: $TSOS.SLEDFILE
– MODE parameter: EOT
– TASK parameter: EOT

This corresponds to the following statements in the parameter file:

OUTPUT=DPUB,FILE=$TSOS.SLEDFILE,MODE=,TASK=
OUTPUT=END

Error condition

In the event of a serious error, SLED switches from automatic SLED to attended operation.
This also applies if a parameter file is being used and missing or errored entries are
detected during processing of a parameter record.
In the event of a disk availability error during an automatic SLED run (message NSD1400),
the data involved is not available to SLED.

SLED control SLED dump

390 U5663-J-Z125-11-76

Conditions for execution without operator intervention

● The SLED version must match that of the operating system.

● All disk devices on which public disks or paging disks are mounted must be ready for
operation.

● The file $TSOS.SLEDFILE or the file assigned in the parameter file

– must be set up
– must have been created on the home pubset (for $TSOS.SLEDFILE only)
– must not be protected against write access
– must not be protected by a password
– must be at least twice the size of main memory
– must be logically empty
– must have reached the expiration date
– must not be on DRV disks.

Automatic system restart

Automatic system restart after an automatic SLED is assured in the following cases:

● The automatic SLED has been completed without errors and all the accessible data
could be written to a SLED output file.

● The automatic SLED works without a parameter file and output file $TSOS.SLEDFILE
was not empty. In this case, no data is dumped and the system is reloaded immediately.

● For an automatic SLED with a parameter file, non-empty output files on magnetic disk
are ignored until a SLEDFILE has been created or the end of the parameter file has
been reached or a parameter record containing the character string OUTPUT=END is
detected.

This enables more than one SLED output file to be made available which can then be
written to one after the other in different SLED runs.

● The parameter file contains only one parameter record with the instruction OUTPUT=END
The operator has the option in this case of initiating an automatic system restart without
creating diagnostic data.

SLED dump SLED control

U5663-J-Z125-11-76 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

Asynchronous command inputs

In the case of SLED, an asynchronous input is any input made from the console which is
not a response to a message. Analogous to the BS2000 commands all asynchronous
commands begin with a slash (/).

These commands cannot be entered at any desired point within the SLED run. Generally
they are not permitted unless the start dialog has been completed and processing of the
dump has begun.

The following asynchronous inputs are processed; all others are rejected with an appro-
priate message.

STATUS command

This command provides the operator with information on the status of the SLED run.

The last block that has been written by SLED is output. This gives the operator the oppor-
tunity to determine how far the SLED run has progressed, even while a section is still being
processed.

SLED control SLED dump

392 U5663-J-Z125-11-76

SLED messages

SLED messages begin with the message code NSDxxxx.

The number designated by “xxxx” has the following possible meanings:

09xx Execution of non-standard SLED

1xxx Execution:
10xx
11xx
12xx
14xx
16xx
18xx
19xx

Start and termination
Inconsistencies
Internal errors
Disk availability
Disk access
Scope of dump
Automatic SLED

3xxx Output:
30xx
32xx
33xx
34xx
36xx
38xx
39xx

General
Disk file
Disk error
Private disk
Public disks
MTC
MTC error

5xxx Input processing:

50xx
52xx
55xx
56xx

Advance setting of parameters
Parameter file
Specific checks
Asynchronous inputs

7xxx Sections of SLED output:

72xx
73xx
74xx
76xx
78xx
79xx

Main memory
HSA
PSA
System files
Virtual areas
SLEDLOG

SLED dump Extracting IOHDUMP and IOSDUMP from a SLED

U5663-J-Z125-11-76 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
0

10.4 Extracting IOHDUMP and IOSDUMP from a SLED

On servers with x86 architecture, the IOHDUMP and IOSDUMP diagnostic data is written
to the BS2000 SLED file, where it is stored in the IOHIOSDP section. This data is used to
diagnose HSI errors. It can be processed as follows:

/START-DAMP
//OPEN-DIAGNOSIS-OBJECT OBJECT <sledfile>
//SHOW-EDITED-INFORMATION INFORMATION=*DUMPED-SYSTEM-FILE ————————————— (1)
//END
/SHOW-FILE-ATTR *IOHIOSDP*,CREATION-DATE=*TODAY ——————————————————————— (2)

(1) The IOHIOSDP section is displayed. The only function that may be used on it is
“GEN”. Marking this function and pressing the [DUE] key causes DAMP to extract
this data and write it to a PAM file in BS2000. The name of this file is shown in the
first two lines of the DAMP screen.

(2) The name of the file generated is displayed.

You can then transfer this file from BS2000 to X2000 as follows:

/START-FTP
open <system> ——— (1)
<userid> —— (2)
<password> ——— (3)
bin —— (4)
put <filename> <tar_archive_name> —————————————————————————————————————— (5)
quit

(1) Create a connection to the X2000 system, specifying the systems IP address or
symbolic name.

(2) Specify the user ID of the X2000 system to which the data is to be transferred.

(3) Enter the password for this user ID.

(4) The PAM file has to be transferred in binary mode to avoid corrupting the file
structure.

(5) Transfer the file <filename> to the file <tar_archive_name> on the target system.

<tar_archive_name> must not contain a catalog ID or user ID.

Extracting IOHDUMP and IOSDUMP from a SLED SLED dump

394 U5663-J-Z125-11-76

You need to complete the following steps in order to process the file under X2000:

tar tf <tar_archive_name> ——— (1)
tar xf <tar_archive_name> <file_name> ————————————————————————————————— (2)
uncompress <file_name> —— (3)

(1) List the contents of the tar archive with the name <tar_archive_name>.

(2) Choose the file you want (IOHDUMP or IOSDUMP) from the list and extract it from
the tar archive.

(3) If necessary, uncompress the diagnostic data.

You can then process the diagnostic data in the usual way:

1. You can use MDEBUG to work with IOHDUMP (you open IOHDUMP as a dump file
with sd):

SYSDB Trace and PRKDUMP can be opened with exs and with exp, respectively; you
can use special MDEBUG statements to access the IOH data.

2. IOSDUMP can be analyzed with the CASADEBUG program.

U5663-J-Z125-11-76 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

. A
pr

il
2

01
5

 S
ta

n
d

13
:1

6.
24

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
1

00
\1

30
3

10
4_

d
ia

gn
os

e\
13

03
10

4
_b

h
b\

en
\d

ia
g

_e
.k

11

11 SNAP dump

The SNAP dump generator bridges the gap between the dump generators SLED and
CDUMP. SNAP is part of BS2000 OSD/BC.

During dump generation by CDUMP, the operating system continues to run and may thus
“corrupt” the data to be included in the dump. SLED terminates the operating system, so
you need a relatively long time to dump the data and restart the system.

SNAP interrupts the operating system for not more than 24 seconds, dumps specific
memory areas (see below) and then restarts the operating system. SNAP operates
independently of BS2000 and therefore does not corrupt the diagnostic data involved in the
dump.

SNAP is called by the operating system from the TPR or SIH status via the $SNAP
interface. It is generally called whenever there is an inconsistency in the operating system
status that is, however, not serious enough to cause the session to be aborted.

The SNAPTIME system parameter can be used to control when SNAP returns control to
BS2000. The default value is 24 seconds. This is the maximum value with SNAP, since the
system state “BS2000 terminated” could otherwise occur. Depending on SNAPTIME, the
size of the SNAP dump is limited. The maximum dump size depends primarily on the data
transfer rate of the channel and on the speed of the disk containing the file
$TSOS.SNAPFILE. With the servers and disks supported by SNAP, the maximum size of
a SNAP dump is 1 GB.

A SNAP dump contains the following data:

● class 1, class 3 and, optionally, resident1 class 4 memory

i In BS2000/OSD-BC V9.0 and higher main memory above the 2 GB boundary
and thus, possibly, the entire resident class 4 memory is also contained in the
SNAP dump.

● name list and entry point list of all operating system modules (EOLDTAB)

● administration data

● hardware status register of the current virtual machine

1 Here, resident means that the page is located in main memory.

SNAP files SNAP

396 U5663-J-Z125-11-76

The SNAP run is logged in the form of messages at the console.
The messages of SNAP have the message class NSP. Information on individual messages
can be obtained in ongoing operation with the HELP-MSG-INFORMATION command.

In particular, the SNAP function is also used by the CDUMP dump generator to create a
consistent (uncorrupted) backup of class 1, class 3 and resident class 4 memory.

11.1 SNAP files

In order for SNAP to run, a system file with the name SNAPFILE must be created on the
home pubset. It must be at least 16 MB in size and not larger than 1 GB. A value of at least
144 MB is recommended. It must not be copied from another pubset.

The SNAPFILE is installed during system generation using the SIR untility routine or when
SNAP is activated using the ACTIVATE-SNAPSHOT command. It is cataloged under the
TSOS user ID. During ongoing operation changes may be made to the SNAPFILE (config-
uration, changing size, deletion) only using the ACTIVATE-SNAPSHOT and DEACTIVATE-
SNAPSHOT commands, see the “Commands” manual [8].

If the SNAPFILE is not available, it is created in the standard size when startup takes place
(SNAP-ACTIVE-SWITCH=ON parameter) or in the specified size when the ACTIVATE-
SNAPSHOT command is executed.

SNAP writes the diagnostic data to the SNAPFILE. To make sure that this file is emptied
and thus available for subsequent SNAP calls, the SNAPFILE contents are automatically
written to a dynamically generated system file after BS2000 is reactivated. This operation
is given a high priority. These dump files are cataloged under the user ID SYSSNAP and
are given the name

SNAP.snap-id.date.time

where:

SNAP identification as SNAP output

snap-id 7-character ID from the associated SNAP call

date date in the form: yyyy.mm.dd

time time in the form: hh.mm.ss

The user ID SYSSNAP is created automatically during first startup.
The disk storage available for this ID should be at least twice as large as
$TSOS.SNAPFILE.

SNAP Activating and deactivating SNAP

U5663-J-Z125-11-76 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

. A
pr

il
2

01
5

 S
ta

n
d

13
:1

6.
24

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
1

00
\1

30
3

10
4_

d
ia

gn
os

e\
13

03
10

4
_b

h
b\

en
\d

ia
g

_e
.k

11

The file $TSOS.SNAPFILE cannot be processed directly by any dump analysis routine.
However, transferring the data from $TSOS.SNAPFILE to $SYSSNAP creates a file format
that can be analyzed by the DAMP dump analysis routine. If the system is no longer able
to transfer the file $TSOS.SNAPFILE to $SYSSNAP, $TSOS.SNAPFILE is automatically
saved to an editable file under $SYSSNAP the next time the system is started up or at
ACTIVATE-SNAPSHOT. In the case of a DRV home pubset, it is possible that the
SNAPFILE can no longer be converted in the next session, and this half-finished SNAP
dump is then lost.

The SNAPFILE file is discarded if it was created in the previous session within the
framework of a system dump (CDUMP).

The SNAPFILE is only copied or converted when the SNAP function is activated.

No further SNAP calls are accepted until the SNAPFILE is emptied.

11.2 Activating and deactivating SNAP

The SNAP-ACTIVE-SWITCH=ON/OFF parameter in the startup parameter service
specifies whether SNAP is activated immediately in the current session, see the “Intro-
duction to System Administration” [6]. When SNAP-ACTIVE-SWITCH=OFF, SNAP is
initially not available for this session. SNAP calls are terminated with a corresponding return
code. SNAP can later be activated or deactivated dynamically again as often as required
using the ACTIVATE- and DEACTIVATE-SNAPSHOT commands.

The commands for SNAP are described in detail in the “Commands” manual [8].

The ACTIVATE- and DEACTIVATE-SNAPSHOT commands are executed asynchronously.
Message NSP4000 confirms correct acceptance of the command. The SHOW-SNAPSHOT-
STATUS command enables you to check the changed settings.

Command Meaning

ACTIVATE-SNAPSHOT Activates dump generator SNAP

DEACTIVATE-SNAPSHOT Deactivates dump generator SNAP

SHOW-SNAPSHOT-STATUS Outputs information on SNAP

Table 21: Command overview for SNAP

Restrictions SNAP

398 U5663-J-Z125-11-76

11.3 Restrictions

SNAP runs on all BS2000 servers.

The data saved thus far is preserved and the fragmented SNAP dump is made available to
the diagnostic staff in the following cases

● the data to be saved by SNAP (maximum 1 GB) cannot be written within the time set
for SNAPTIME (Default: 24 seconds)

● the SNAPFILE file is too small

● an internal error occurs

In this case, message NSP1010 is output. For serious errors in SNAP, the SNAP process is
aborted.

Within BS2000 there are certain facilities which recognize if the BS2000 system has been
inoperable for longer than a predefined time. SNAP deactivates BS2000 so that it can
secure diagnostic data under its own runtime control. However, this does not been that
BS2000 is “dead”. When defining intervals for the detection of system failures, it should be
borne in mind that SNAP-EXEC is still active (as a “stand-in”) even though BS2000 is
inactive.

In this context, special attention is drawn to the product HIPLEX MSCF, which can be used
for vital-sign monitoring for BS2000 systems in conjunction with the MSCF configuration
parameter FAIL-DETECTION-LIMIT.

BS2000 OSD/BC and SNAP support a working memory of more than 2 GB.
As a result, not only the class 1 and class 3 memory may be contained in the SNAP dump,
but also the entire resident class 4 memory if the time limit set in the system parameter
SNAPTIME is not exceeded and the SNAPFILE file is sufficiently large.
The system parameter SNAPTIME is limited to the interval of 8 to 24 seconds. When too
low a value is set, it is rounded up to 8 seconds, and when too high a value is set, it is
rounded down to 24.

SNAP Automatic SNAP

U5663-J-Z125-11-76 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

. A
pr

il
2

01
5

 S
ta

n
d

13
:1

6.
24

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
1

00
\1

30
3

10
4_

d
ia

gn
os

e\
13

03
10

4
_b

h
b\

en
\d

ia
g

_e
.k

11

11.4 Automatic SNAP

The SNAP is activated in automatic mode if the "Automatic Restart" function is active at the
time of a system crash and SNAP is set as the dump generator
(see the command SET-RESTART-OPTIONS MODE=*ON(..., DUMP=*SNAP)).

Automatic SNAP makes it possible to create a memory dump without operator intervention
and then reload the system. Compared to automatic SLED, automatic SNAP has the
advantage that the system can be restarted after a short time but that, despite this, the most
important diagnostic data is saved.

The SHOW-RESTART-OPTIONS command can be used to output information relating to
the control of the automatic restart.

Automatic SNAP SNAP

400 U5663-J-Z125-11-76

U5663-J-Z125-11-76 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
5

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
2

12 TRACE MANAGER
Collect diagnostic information during the
session

The TRACE MANAGER collects all decentrally created component traces, a “trace” being
defined as the collection of diagnostic information, during a session, at previously defined
discrete locations in the system. This information consists of consecutive, individual records
containing data specific to a component or the system, such as system status variables,
program data, parameter lists, time stamps, etc. Traces are also saved when a dump is
taken, thus improving the facilities for BS2000 system diagnosis as part of dump evaluation.

Traces may be performed locally (for a task) or globally (for the entire system). Conse-
quently, the memory areas for storing the information (trace buffers) are located in either
the task address space or the system address space. A local trace has a trace buffer and
associated management data within each task. A global trace requires only one buffer and
one set of management data for the entire system.
The TRACE MANAGER does not itself manage the trace buffers; it simply holds pointers
to the buffers in its management tables. For this reason, the trace owners must inform the
TRACE MANAGER of the size and location of the buffers. Since traces tend to generate
large amounts of data in a very short time, the trace buffers are overwritten cyclically. The
data in the buffers is saved using SLED or CDUMP and analyzed using DAMP.

In the course of a dump using CDUMP, the TRACE MANAGER generates the trace dump
list (TDL), which contains buffer descriptors and selected trace description data (trace ID
and the address of the next or last entry). The TRACE MANAGER cannot generate this list
for a dump produced with the aid of SLED, since the operating system is no longer running
after SLED has been loaded. In this case, the DAMP analysis program handles this task.

Performance capabilities TRACE MANAGER

402 U5663-J-Z125-11-76

Figure 101: TRACE MANAGER functions

In the context of the central management of traces, various data is kept in tables under the
control of the TRACE MANAGER. This data can be divided into three groups with different
functions, which are kept in different tables. The management data comprises:

– address lists,
– operating data and
– descriptive data.

The figure 102 on page 403 shows how these data and tables are linked together.

The address lists form the basis of the management tables. The address list for global
traces is anchored in the central BS2000 table XVT, while an address list for a local trace
is anchored in the TCB of the relevant task. For each trace, the address list contains one
fixed-length (8-byte) record which contains the address of the operational data block and a
number of trace status flags. The address list is preceded by a list header containing the
data describing the table, together with the address of the TDL.

Each defined trace receives an entry in the TDL, which includes, among other things, the
address of the trace buffer, the name of the trace and the subsystem, and also the version
of the subsystem.

 User

Activate trace
Deactivate trace
Status indicator

SIGNON
Trace Manager

Request TDL
Dump generator

SIGNON Request TDL
Dump generator

Dynamic
trace

Static
trace

TRACE MANAGER Performance capabilities

U5663-J-Z125-11-76 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
5

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
2

Figure 102: TRACE MANAGER tables

The operational data block contains all the data which is required to access the trace buffer
or the next free record in this buffer in the most efficient manner (buffer descriptors). The
operational data block contains the address of the corresponding descriptive data block
which is chained to the operational data block. This contains all the data needed for
management by the TRACE MANAGER and for editing the trace buffer, such as the
description of the trace buffer layout, the trace ID etc.

The global trace management tables are set up during the system startup phase: the
TRACE MANAGER is called and initializes all the tables needed in connection with the
management of global traces.
It is possible to define new traces dynamically and initialize them using the appropriate
macros after the system has been started up. To do this, the trace management tables are
passed a fixed-length dummy entry for every initialized trace, thus allowing new traces to
be accepted (ïdynamically defined).

XVT/TCB Address list Trace buffer

Descriptive
data block

Trace 1

Trace buffer

Descriptive
data block

Header
Operational
data block

Operational
data block

Trace 1
Trace 2

...

Trace dump list

Trace 1
Trace 2

... Trace 2

Trace 1

Trace 1

Trace 2

Trace 2

Performance capabilities TRACE MANAGER

404 U5663-J-Z125-11-76

When setting up local trace management tables, the TRACE MANAGER is called by the
base system each time a new task is created. Upon termination of the task, the TRACE
MANAGER is called again, this time to release the local trace management tables.

During a system restart, the local task management tables are deleted and replaced by
the tables stored at the time of the checkpoint.
Local task traces can also be dynamically defined and initialized after the system has
been started up. The global system trace address list has spare entries for the local
task traces. The memory required for the local task trace tables is initialized when the tables
are installed.

It is also possible to suppress traces dynamically in the subsystem’s shutdown routine
as well as to define traces dynamically.

In order to define a trace, the TRACE MANAGER requires information, which it stores
in the global system management tables. This information can be passed to the TRACE
MANAGER either statically (data is already available as code in the trace tables) or
dynamically (using a macro).

The TRACE MANAGER is controlled via the following operator or system administrator
commands. The commands are described in detail in the “Commands” manual [8].

Command Description

SHOW-TRACE-STATUS Display information on system traces

START-TRACE Activate a trace

STOP-TRACE Deactivate a trace

Table 22: Overview of the TRACE-MANAGER commands

U5663-J-Z125-11-76 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
3

13 Online maintenance

Online maintenance comprises the following functions:

– Storage and analysis of the hardware error statistics file
(see the ELSA utility routine in the “ELSA” [3] manual).

– execution of hardware test and diagnostic programs (TDPs) as well as statistics and
trace routines under BS2000 control in parallel with user programs.

Online maintenance in BS2000 is carried out under a user ID which has the
HARDWARE-MAINTENANCE privilege. By default, this is the SERVICE user ID, which is
set up with the account number of the same name during first start.
To preclude unauthorized use of this user ID, the system module WARTOPT monitors all
activities under this ID.

WARTOPT system module

Monitoring with a maintenance task begins by entering the command
/SET-LOGON-PARAMETERS USER-ID=SERVICE,ACCOUNT=SERVICE,PASSWORD=...

It ends with deactivation by means of the /LOGOFF command.
Any number of maintenance tasks may be executed in parallel.

Functions of the WARTOPT system module:

● check commands for validity

● check programs for execution authorization

● forward information on system and device characteristics to TDPs

● check I/O operations defined by TDPs for data protection and security

● execute I/O operations

● set test privileges

● execute special functions

Online maintenance

406 U5663-J-Z125-11-76

Test and diagnostic programs (TDPs)

Hardware test and diagnostic programs enable the service to perform checks on the
functional integrity of the hardware and fault location and recovery during the session.

Devices to be checked by TDPs within a maintenance task must be made available to the
maintenance task during the TDP run.

The TDPs are supplied in the same way as the BS2000 operating system. Systems support
must install the TDPs under the SERVICE ID.
The descriptions of the individual programs are likewise in the form of files and can be
printed out using the QR$$ program and subsequently deleted.

Sample run

/SET-LOGON-PARAMETERS SERVICE, ACCOUNT=SERVICE, LOGGING=PAR(LIST=YES)
/START-EXECUTABLE-PROGRAM FROM-FILE=QR$$
 M000/TDP-MANAGER READY (REV=L06)
 M001/ENTER TDP COMMAND (M, D, S, E, R, C, SH, P, HELP):
 P
 M671/STATE OF PRINT-PARAMETERS: CHARACTERS = LOW
 M671/ COPIES = 000
 M671/ERASE OF DESCRIPTION SOURCE AFTER PRINT = NO
 M672/ENTER FILENAME / PAR(AMETER) / END
 PAR
 M678/PRINTABLE CHARACTERS LOW / CAPITEL (L/C)
 C
 M679/ENTER NUMBER OF COPIES (0-254)
 2
 M670/ENTER ERASE DESCRIPTION SOURCE AFTER PRINT NO/YES (N/Y) ?
 Y
 M671/STATE OF PRINT-PARAMETERS: CHARACTERS = CAPITEL
 M671/ COPIES = 002
 M671/ERASE OF DESCRIPTION SOURCE AFTER PRINT = YES
 M672/ENTER FILENAME / PAR(AMETER) / END
 QF*
 M673/FOLLOWING FILE(S) ARE SELECTED:
 /QFSBSG
 M674/PRINT (Y/N) ?
 Y
 % SCP0810 SPOOLOUT OF FILE ':Z:$WLE:QFSBSG:PRINT' ACCEPTED:
 M682/FILE QFSBSG ERASED
 M001/ENTER TDP COMMAND (M, D, S, E, R, C, SH, P, HELP)
 E
 M009/TSN=4R8P(0002) END OF PROGRAM
/LOGOFF

Online maintenance

U5663-J-Z125-11-76 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
3

Protection level system of the test and diagnostic programs

For reasons of data protection, the TDP run is dependent on a protection level (read test
privilege) assigned by systems support. This protection level is defined by system admin-
istration with the aid of the TEST-OPTIONS operand of the /ADD-USER command (possible
values: 1 through 9).
The service can set the protection level as high as this maximum value (command /MODIFY-
TEST-OPTIONS PRIVILEGE=*PAR(READ=x)).
Each TDP routine contains a protection level code. The routine is executed only if this code
is less than or equal to the defined protection level.
If a routine with a higher level of protection is to be executed, system administration must
increase the maximum value of the protection level, taking into consideration data privacy
legislation (/ADD-USER command, TEST-OPTIONS operand).
The protection level system is deactivated in the case of devices with service volumes, as
the F5 label of the volume is checked.

In addition, every file owner has the option of controlling access to shareable files for the
user ID with the HARDWARE-MAINTENANCE privilege on a file-by-file basis.
This can be done using the USER-ACCESS operand of the /MODIFY-FILE-ATTRIBUTES
command (or CATAL macro). If the access authorization SPECIAL is assigned to a file, that
file can be accessed by all user IDs, including the user ID with the HARDWARE-
MAINTENANCE privilege.

If cataloged programs (e.g. ELSA) are to be executed under a user ID with the
HARDWARE-MAINTENANCE system privilege, likewise a /MODIFY-FILE-ATTRIBUTES
command with the operand USER-ACCESS=*SPECIAL must be issued for these routines.
This access authorization is canceled by means of another /MODIFY-FILE-ATTRIBUTES
command (or CATAL macro) using the operand USER-ACCESS=*ALL / *OWNER-ONLY.

Value Characteristics

1 - 3 Safe with regard to data protection and data security.
Only the user’s own data patterns are used.

4 The program can read data from the customer area.

5 Not used

6 The program can overwrite data from the customer area.

7 - 8 Not used

9 This protection level cancels the monitoring (in the WARTOPT system module) of the
inputs/outputs to ensure they are not harmful to the system.
Security is not guaranteed for customer data.

Table 23: Protection levels (read test privileges) for online hardware maintenance

Online maintenance

408 U5663-J-Z125-11-76

SVP-HD error file evaluation

In order to be able to evaluate the error and flag code files on the SVP hard disk using
ELSA, corresponding IOGEN statements must be added at the time the I/O configuration
data (IOCF file) is generated, see the “System Installation” manual [5], section “SVP config-
uration”.

U5663-J-Z125-11-76 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
4

14 Error files and logging files

Error files and logging files are useful tools for systems support for detecting hardware
faults or software errors and for monitoring the entire message traffic between consoles,
authorized user programs and the system.

The error files SERSLOG and HEL and the logging files CONSLOG and RESLOG are
described.

The data supplied by the error files and logging files is evaluated by the diagnostic functions
and programs.

14.1 Hardware error logging file HEL

The Error Logging System ELS records the following events for diagnostic purposes:

● Error events

– machine errors
– errors related to channel interrupts
– errors in peripheral equipment

● other events

– statistical information from peripheral equipment
– statistical information from the CPU firmware
– processor context saves
– information from test and diagnostic programs (TDP)

The events are recorded by the HEL system task and documented in the central statistics
file which is automatically created. The name of the HEL file has the following structure
(yyyy-mm-dd.hhmmss: creation date and time):

$TSOS.SYS.HEL.yyyy-mm-dd.hhmmss

Evaluation of the HEL files is performed by the BS2000 utility routine ELSA.

The HEL task and the BS2000 evaluation program (ELSA) can access the statistics file at
the same time. ELSA is described in detail in the “ELSA” manual [3].

Hardware error logging file HEL Error files and logging files

410 U5663-J-Z125-11-76

Service who is logged on under a user ID which has the HARDWARE-MAINTENANCE
privilege can use the following commands to control the saving of HEL records as well as
to control and support monitoring by Remote Service:

Under the TSOS user ID, systems support can use the /SHOW-HEL-STATUS, /START- and
/STOP-HEL-LOGGING commands.

The commands are described in detail in the “Commands” manual [8].

Command Meaning

CHANGE-HEL-FILE Close the current HEL file and opens a new file

MODIFY-HEL-CHECK Control threshold monitoring

MODIFY-HEL-LOGGING Control saving of HEL records

MODIFY-HEL-
TELESERVICE- ALARM

Set the error threshold values for Remote Service messages

SHOW-HEL-CHECK Request information about threshold value monitoring

SHOW-HEL-LOGGING Request information about the logging records

SHOW-HEL-STATUS Request general information about hardware error logging

SHOW-HEL-
TELESERVICE-ALARM

Request information about the Remote Service parameters which are
set

START-HEL-LOGGING Activate the hardware error logging system function and opens the
logging file

STOP-HEL-LOGGING Terminate the hardware error logging system function and closes the
logging file

Error files and logging files Software error logging file SERSLOG

U5663-J-Z125-11-76 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
4

14.2 Software error logging file SERSLOG

The software error logging function SERSLOG has been provided to facilitate the diagnosis
of BS2000 errors. BS2000 error information can be written to the SERSLOG file by various
routines.
During startup, the SERSLOG file is opened and error logging activated. The name of the
SERSLOG file has the following format:

SYS.SERSLOG.yyyy-mm-dd.xxx.nn

The SERSLOG file is not write-protected.

During shutdown, the SERSLOG file is closed and error logging terminated.
The current (or most recent) SERSLOG file is included in the SLED dump.

Error logging can only be controlled by the operator and systems support, who can switch
the SERSLOG file and activate or deactivate error logging.
When nn is greater than 99, the counter is reset to 01, thus overwriting the first SERSLOG
file if the date and the session number are the same.

Automatic monitoring of critical system statuses which are reflected in SERSLOG events is
possible with ASE. For details, see the chapter “ASE Auxiliary SERSLOG Extensions” on
page 365.

yyyy-mm-dd Date on which the file was opened

xxx Number of the current session

nn Serial number of the SERSLOG file
(01-99; always 01 at startup).

Command Meaning

CHANGE-SERSLOG-FILE Close the current SERSLOG file and a open new file

SHOW-SERSLOG-STATUS Request information on the state of SERSLOG and the name
of the logging file

START-SERSLOG Activate the SERSLOG function

STOP-SERSLOG Terminate the SERSLOG function

CONSLOG logging file Error files and logging files

412 U5663-J-Z125-11-76

14.3 CONSLOG logging file

All the messages exchanged between consoles, authorized user programs and the system
are recorded in a logging file. This excludes the last messages of a session which are
output when the home pubset is written back to disk. In addition to the console dialog, the
CHANGE-CONSLOG-FILE command is also logged when entered from a data display
terminal.

Logging is activated automatically during system initialization.
A message indicates which logging file has been opened.

The file name of the logging file depends on the system parameters NBKESNR and
FMTYFNLG. These parameters allow the following file naming conventions to be specified
for the SYSAUDIT or TSOS IDs:

New format: SYS.CONSLOG.yy.mm.dd.xxx.nnn
SYS.CONSLOG.yyyy-mm-dd.xxx.nnn

Old format: SYS.CONSLOG.yy.mm.dd.xxx.nn
SYS.CONSLOG.yyyy-mm-dd.xxx.nn

where:

With the aid of the system parameter NBKESNR systems support can define whether the
CONSLOG file is cataloged under the user ID TSOS or under SYSAUDIT, and whether a
total of 99 CONSLOG files per session or 999 per day can be created.

Command Meaning

CHANGE-CONSLOG-FILE Close the current logging file and open a new one

SHOW-CONSLOG-ATTRIBUTES Determine the status of system logging and the name of the
logging file

SET-CONSLOG-READ-MARK Enable read access to the current CONSLOG file without
having to close it first.

TURN Evaluate the current logging file

yy.mm.dd /
yyyy-mm-dd

New format: date on which the file was opened
Old format: date on which the session started

xxx Number of the current session

nnn Serial number of the logging file (001-999 for each day on which the
CONSLOG file was switched)

nn Serial number of the logging file (01-99 per session)

Error files and logging files CONSLOG logging file

U5663-J-Z125-11-76 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
4

By using the system parameter FMTYFNLG systems support can define whether the date
in the name of the logging file is stored as two digits (omitting the century, in the format
yy.mm.dd) or alternatively is in four-digit form (including the century, in the format
yyyy-mm-dd).

If an unrecoverable DMS error occurs during logging, then the current logging file is closed
and a new one opened with the serial number +1.

If error message

DMS0541 INSUFFICIENT SPACE ON DISK

is output and

– the system parameter NBLOGENF (force console logging) is set, then the operator also
receives the message

NBR0953 ERROR DURING CONSOLE-LOGGING PROCESSING. REPLY (R=RETRY; H=HALT).

If memory space is created under the ID under which the CONSLOG file is stored
(TSOS or SYSAUDIT) then the query may be answered with “R”. Console logging is
continued with the logging file serial number +1. Data records are not lost. If the
operator enters an “H”, then the session is ended.

– the system parameter NBLOGENF (force console logging) is not set, then console
logging is deactivated. Message NBR0906 notifies the operator that console logging is
no longer active. If memory space is now created under the relevant ID, console logging
may be reactivated with the CHANGE-CONSLOG-FILE command. Data records up to
the time that console logging is reactivated are lost. In order to indicate that logging is
incomplete, the serial number of the new logging file is incremented by 2.

i Messages output from the SYS.CONSLOG file by TURN processing are not
included in the logging file in order to avoid multiple logging.

Systems support also has the option of closing the current logging file during the session
and opening a new logging file.
System administration can use the SET-CONSLOG-READ-MARK command to make the
current open logging file readable so that it can be copied, for example.

All closed logging files can be accessed during the session (e.g. PRINT-DOCUMENT
command).

CONSLOG logging file Error files and logging files

414 U5663-J-Z125-11-76

The maximum possible number of logging files during a session is 99 if the sequential
number of the logging file has been specified as two digits, or 999 per day if a three-digit
sequential number has been specified. There will be no automatic change of the logging file
(e.g. when the date changes). If the maximum number is exceeded, a message will be set
to the operator and nothing more is written to the logging file until the end of the session.
It is possible to prevent the maximum number of logging files being exceeded by means of
the system parameter NBLOGENF.

A short date record is written at intervals of approx. 25 records. If the date changes during
a session, this is shown in the logging file by the record type “change of day”.
When changing from winter time to summer time and vice versa, a change-of-day record
with the new season information is written to the logging file.
This record type is also entered as the first and last record in the logging file. It then contains
the date on which the file was opened or closed, and the number of CONSLOG files opened
in this session. If the logging file is interrupted due to an error, there is no assurance that
the change-of-day record will appear as the last record.
In the last logging file of a session, no final change-of-day record is written. The exportation
of the home pubset cannot be logged in the CONSLOG file any more.

The name of the current logging file can be output with the SHOW-CONSLOG-ATTRI-
BUTES command.

Structure of the logging file

CONSLOG files are always created as SAM files.

Format of a record:

Message

Change-of-day record

Recipient Blank Message
type

Sender - Job ID . or #
1)

Time of
day

Blank
6)

Text

1-4 5 6 7-10 11 12-14 15 16-21 22 23...

Blank T
2)

CLOG
3)

Blank . or #
1)

Time of
day

Blank *** Date
4)

*** Blank

1-5 6 7-10 11-14 15 16-21 22-23 24-26 27-36 37-39 40

Continued: Number of CONSLOG
per session

Blank *** Blank Time
zone

5)

Blank ***...***

41-46 47 48-51 52 53-61 62 63-128

Error files and logging files CONSLOG logging file

U5663-J-Z125-11-76 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
4

1) The system parameter SECSTART determines whether the separator is a period
(default setting) or a # (see the “Introduction to System Administration” manual [6]).

2) T is the identifier for the change-of-day record.

3) CLOG is the task that writes the messages of all the consoles to the logging file

4) date format: yyyy-mm-dd or **yy.mm.dd
(dependent on the system parameter FMTYFLNG, see the “Introduction to System
Administration” manual [6])

5) Difference between local time and UTC in hours and minutes; format of time zone
specification: UTC±hh:mm

6) Position 22 of the “response” message type contains a period or colon (. or :).

Date record

At intervals of 25 records, a date record is entered in the file.
The above representation applies only if the system parameter FMTYFNLG has the value
4; if FMTYFNLG = 2 is specified, the year is only two digits long, and the date record is
correspondingly 2 bytes shorter.

The following entries are allowed for “recipient” and “sender”:

– mnemonic name of console, in parentheses

– name of application

– routing code (recipient only)

– task sequence number (TSN) of a user or system task, e.g. of an OPRT

The following entries are possible for “message type”:

% system message which does not require a response

? system message requiring a response, which can also be issued by the operator

& request for additional information, requiring a response from the user who issued the
command

; system message requiring a response, which only a task can give

+ result of a command

Year - Month - Day

1-4 5 6-7 8 9-10

CONSLOG logging file Error files and logging files

416 U5663-J-Z125-11-76

! command termination message

* error message

E emergency message (message, query or response to an emergency query)

R response to a query (message type ? or &)

/ command

Logging file analysis and backup

The duties of systems support include the analysis and saving of logging files from
preceding sessions.
As the logging file is cataloged as a SAM file, it can be analyzed, for example, by means of
EDT procedures.

The current logging file can also be evaluated using the TURN command.
Messages can be selected on the basis of different criteria:

– day
– time
– destination
– source.

If the SECOS software product is used, the SATUT component can be applied to analyze
CONSLOG files as well. To this end the CONSLOG messages are converted into a SAT
logging data record. The code for the event type is always CLG
(see the “SECOS” manual [9]).

Error files and logging files CONSLOG logging file

U5663-J-Z125-11-76 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
4

Extracts from the logging file

Extract 1: Fetching system information

:
OPRT /(CB)-000.133328 SH-SYS-INF
(CB) +XACK-000.133328 CONFIGURATION = 7.500- S210-40
(CB) +XACK-000.133328 CPU-ID-LIST : ADR 0 = 3102000121600000
2008-10-24
(CB) +XACK-000.133328 ADR 1 = 3112000121600000
(CB) +XACK-000.133328 ADR 2 = 3122000121600000
(CB) +XACK-000.133328 ADR 3 = 3132000121600000
(CB) +XACK-000.133328 HSI-ATT : TYPE = IX
(CB) +XACK-000.133328 ASF = YES
(CB) +XACK-000.133328 OPERATION-MODE = VM2000
(CB) +XACK-000.133328 MEMORY-SIZE = 256 MB
(CB) +XACK-000.133328 MINIMAL-MEMORY-SIZE = 256 MB
(CB) +XACK-000.133328 BS2000-ID : NAME = I11BXS
(CB) +XACK-000.133328 VERSION = V19.0A00I1
(CB) +XACK-000.133328 OSD-BC-VERSION = V10.0A0000
(CB) +XACK-000.133328 UGEN-TIME = <date> <time>
(CB) +XACK-000.133328 IOCONF-ID : NAME = S2100001
(CB) +XACK-000.133328 VERSION = V19.0A00
(CB) +XACK-000.133328 UGEN-TIME = <date> <time>
(CB) +XACK-000.133328 FORMAT = IORSF01
(CB) +XACK-000.133328 IPL-TIME = <date> <time>
(CB) +XACK-000.133328 SYSTEM-CONF : SYSID = 129
(CB) +XACK-000.133328 HOME-PUBSET = SBZ7
(CB) +XACK-000.133328 HOST-NAME = D017ZE15
(CB) +XACK-000.133328 VM-INDEX = 11
(CB) +XACK-000.133328 VM-NAME = VM11S210
(CB) +XACK-000.133328 SYSTEM-NAME = *NONE
(CB) +XACK-000.133328 SYSPAR-BS2-SEL = *STD
(CB) +XACK-000.133328 VM2000-VERSION = V11.0A
(CB) +XACK-000.133328 VM2000-MONITOR- OSD-BC-VERSION = V11.0A0000
(CB) +XACK-000.133328 SYSTEM: HOST-NAME = D017ZE14
(CB) +XACK-000.133328 SYSTEM-TIME- ZONE = +01:00
(CB) +XACK-000.133328 PARAMETER: SEASON = S
(CB) +XACK-000.133328 SEASON-DIFFERENCE = 01:00
(CB) +XACK-000.133328 PREV-CHANGE-DATE = <date> <time>
(CB) +XACK-000.133328 NEXT-CHANGE-DATE = <date> <time>
(CB) +XACK-000.133328 SYNCHRONIZATION = SKP-X
(CB) ! UCO-000.133328 % NBR0740 COMMAND COMPLETED 'SH-SYS-INF';
 (RESULT: SC2=000, SC1=000, MC=CMD0001); DATE: <date>
:

CONSLOG logging file Error files and logging files

418 U5663-J-Z125-11-76

Extract 2: Issuing various operator commands

:
OPRT /(CB)-000.110956 SHMSG
 <* % UCO-000.110956 % NBR0970 OPERATOR TASK WITH TSN 'XACK' CREATED FOR
 CONSOLE '(CB)'
(CB) +XACK-000.110956 % NBR0031 NO MESSAGE OUTSTANDING ON THE CONSOLE
(CB) ! UCO-000.110956 % NBR0740 COMMAND COMPLETED 'SHMSG';
 (RESULT: SC2=001, SC1=000, MC=CMD0001); DATE: <date>
 <E %XACL-000.111003 % NBR0797 APPLICATION '@001' CONNECTED WITH '$CONSOLE',
 PROCESSOR NAME 'D017ZE14', STATION NAME 'OMS00062'
2008-10-18
OPRT /@001-000.111005 REQ-OPER-ROLE SYSADM
 <* % UCO-000.111005 % NBR0970 OPERATOR TASK WITH TSN 'XACM' CREATED FOR
 CONSOLE '@001'
@001 +XACM-000.111005 % NBR0980 OPERATOR ROLE 'SYSADM' ASSIGNED TO
 OPERATOR ID 'SYSOPR'
@001 ! UCO-000.111005 % NBR0740 COMMAND COMPLETED 'REQ-OPER-ROLE';
 (RESULT: SC2=000, SC1=000, MC=CMD0001); DATE: <date>
 <* %DIAA-000.111017 % TIA0300 $DIALOG APPLICATION CORRECTLY STARTED ON
 HOST *STDHOST
 <G %IOR1-000.111019 % NKR0175 CONFIGURATION UPDATE STARTED.
OPRT /@001-000.111019 SH-DEV A007
@001 +XACM-000.111019 MNEM DEV-TYPE CONF-STATE POOL VSN DEV-A PHASE ACTION
@001 +XACM-000.111019 A007 FTAPE1 DETACHED NO FREE
@001 ! UCO-000.111019 % NBR0740 COMMAND COMPLETED 'SH-DEV';
 (RESULT: SC2=000, SC1=000, MC=CMD0001); DATE: <date>
OPRT /(CB)-000.111047 ASR ADD,CS=C0,CD=ALL
(CB) ! UCO-000.111047 % NBR0740 COMMAND COMPLETED 'ASR';
 (RESULT: SC2=000, SC1=000, MC=CMD0001); DATE: <date>
 <J %0AFW-000.111055 % JMS0154 'TSOS' LOGGED ON FOR 'PGTD0666/STAT0C33'.
 JOB NAME 'QE13END'. CALLER '(NONE)'. TID 00020033
OPRT /@001-000.111113 ATT A007
 <G % MSG-000.111113 % NKR0042 'DEVICE =A007': ATTACH ACCEPTED
 <G % MSG-000.111113 % NKR0040 'DEVICE =A007' ATTACHED
@001 ! UCO-000.111113 % NBR0740 COMMAND COMPLETED 'ATT';
 (RESULT: SC2=000, SC1=000, MC=CMD0001); DATE: <date>
 <J %0AFX-000.111122 % JMS0154 'TSOS' LOGGED ON FOR 'PGTD0666/STAT0C50'.
 JOB NAME 'QE13END'. CALLER '(NONE)'. TID 00020031
OPRT /@001-000.111128 SH-DEV A007
@001 +XACM-000.111128 MNEM DEV-TYPE CONF-STATE POOL VSN DEV-A PHASE ACTION
@001 +XACM-000.111128 A007 FTAPE1 ATTACHED NO FREE
@001 ! UCO-000.111128 % NBR0740 COMMAND COMPLETED 'SH-DEV';
 (RESULT: SC2=000, SC1=000, MC=CMD0001); DATE: <date>
 <E %XACO-000.111134 % NBR0797 APPLICATION '@002' CONNECTED WITH '$CONSOLE',
 PROCESSOR NAME 'D017ZE14', STATION NAME 'OMS00068'
 <J %0AFZ-000.111134 % JMS0154 'TSOS' LOGGED ON FOR 'PGTD0666/STAT0C53'.
 JOB NAME 'QE13END'. CALLER '(NONE)'. TID 0002002C
 <J %0AFY-000.111205 % JMS0154 'TSOS' LOGGED ON FOR 'MCP0242C/STAT0690'.
 JOB NAME 'SQ13LUEN'. CALLER '(NONE)'. TID 0002002D
:

Error files and logging files RESLOG logging file

U5663-J-Z125-11-76 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
4

14.4 RESLOG logging file

BS2000 servers provide the option of exceeding the nominal server performance for a
limited time by attaching preinstalled CPUs (“extra CPUs”, see see the “Introduction to
System Administration” manual [6]).

The RESLOG subsystem records the attachment and detachment of extra CPUs in the
RESLOG log file.

The RESLOG subsystem

The RESLOG (RESource LOGging) subsystem is part of the basic configuration.

i In VM2000 mode RESLOG checks if it is running in the monitor system under
VM2000 and whether extra CPUs exist.

The RESLOG subsystem offers two command interfaces for working with the RESLOG log
file:

Command Meaning

CHANGE-RESLOG-FILE Change the log file

START-RESLOG-EVALUATION Evaluate the log file

RESLOG logging file Error files and logging files

420 U5663-J-Z125-11-76

The RESLOG log file

RESLOG creates a log file under the TSOS user ID with the following name:

SYS.RESLOG.<server-id>

The <server-id>, derived from the CPU-ID, identifies a server uniquely world-wide. With the
SHOW-SYSTEM-INFORMATION command all CPU-IDs of a configuration can be output.
They differ from each other only in their serial numbering which is provided at different
positions in the CPU ID depending on the architecture. These positions are set to “0”.
The result is the server ID.

This log file normally stays open during the entire session. Log data is appended to an
existing log file it its server ID is identical.

The log file can be changed with the CHANGE-RESLOG-FILE command.
The current file is then closed and renamed to SYS.RESLOG.<server-id>.<date> with the
date when the file was closed. A new file named SYS.RESLOG.<server-id> is then opened.

The log file contains various records:

– When RESLOG is started, the first thing done is to write a start record. The start record
contains date, time, OSD version and RESLOG version. It also contains the server ID,
the number of extra CPUs and the CPU numbers of the extra CPUs that are
ATTACHED.

– A stop record is written as the last record when the subsystem is terminated (meaning
at the time of shutdown) and when changing the log file. The stop record contains the
time and date as well as the reason for closing the log file (stop/change).

– Every ATTACH-/DETACH-DEVICE or ATTACH-/DETACH-VM-RESOURCES for an
extra CPU causes a CPU record with date, time, CPU number and
ATTACHED/DETACHED identifier to be written.

– Another record is written or updated once per hour, the alive record, so that the data is
still consistent even after a system crash.
The alive record is normally only located in the open file and is overwritten by a CPU or
stop record.
The only time an alive record can be found as the last record that is not overwritten the
next time RESLOG is started is after a system crash.

Error files and logging files RESLOG logging file

U5663-J-Z125-11-76 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
4

Evaluating the RESLOG log file

With the START-RESLOG-EVALUATION command you start the RESLOG evaluation. The
result can be output in abbreviated or detailed form on the screen or in a file.

The RESLOG evaluation runs as an independent program that is loaded, started and termi-
nated internally.

v WARNING!
If the RESLOG evaluation is called from a different program (e.g. after inter-
rupting with the K2 key), then this program is unloaded. You cannot return to
this program after terminating the RESLOG evaluation (e.g. with //RESUME).

Systems support defines the amount of data output and the destination of the output from
the RESLOG evaluation. The various operands of the START-RESLOG-EVALUATION
command are available for this purpose:

– Operand RESLOG-FILE=*CURRENT/<filename>/*FROM-FILE(...)
The current RESLOG file, a single RESLOG files or a list of RESLOG files can be
evalauted.
The following conditions apply when outputting a list of files:

– Only RESLOG files from one server (meaning RESLOG files with the same server
ID) can be evaluated in an evaluation run.

– The RESLOG files are to be specified in chronological order, starting with the
oldest.

– Operand PERIOD=*INTERVAL(...)
The evaluation can run the entire time or for a specific period of time.

– Operand INFORMATION=*SUMMARY/*ALL
The output is a short summary or also contains a list of every single ATTACH/DETACH
operation.

– Operand OUTPUT=*SYSOUT/<filename>
The output is sent to SYSOUT or to a file.

RESLOG logging file Error files and logging files

422 U5663-J-Z125-11-76

Example 1: Summary output of the current RESLOG log file to SYSOUT

/START-RESLOG-EVALUATION [RESLOG-FILE=*CURRENT,INF=*SUMMARY,OUTPUT=*SYSOUT]

 RESLOG EVALUATION

START DATE : <date> END DATE : <date>

OSD VERSION : 10.0A00 SERVER-ID : 1002000121900000
RESLOG VERSION : 01.6A00

NUMBER EXTRA CPUS : 1
NUMBER DAYS IN USE : 1

TIME WITHOUT DATA : 1 (hours) (2%)

The following items mean the following:

START DATE Start of the evaluation period

END DATE End of the evaluation period

OSD VERSION Operating system version at the start of the evaluation period

RESLOG VERSION Version of the RESLOG file at the start of the evaluation period

SERVER-ID Unique (world-wide) server ID of the server

NUMBER EXTRA CPUS Number of extra CPUs at the start of the evaluation period

NUMBER DAYS IN USE Number of days in which the extra CPUs were used;
Every day an extra CPU is ATTACHED is counted for every
extra CPU.

TIME WITHOUT DATA Time in hours/days in which RESLOG was not active;
The number of hours/days between the STOP and the following
START records are counted. The time is also output as a
percentage of the total evaluation period.

Error files and logging files RESLOG logging file

U5663-J-Z125-11-76 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.2
6

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

k1
4

Example 2:
Detailed output of the current RESLOG log file in the file PROT.EXTRA-CPU.002

/START-RESLOG-EVALUATION INFORMATION=*ALL, OUTPUT=PROT.EXTRA-CPU.002

:

<output just like for INF=*SUMMARY, see Example 1>:

 DETAILED STATISTICS OF EXTRA-CPUS
--------+-------------------------+-------------------------+----------------
 CPU NR ! ATTACH TIME ! DETACH TIME ! DURATION
--------+-------------------------+-------------------------+----------------
02 ! <date> <time> ! <date> <time> ! 1 (days)

 ! ! !
 02 ! <date> <time> ! <date> <time>*! 1 (days)
 ! ! !
NO DATA ! <date> <time> ! <date> <time> ! 1 (hours)

The following items mean the following:

CPU NR CPU number of the extra CPU or – when RESLOG is not loaded –
NO DATA

ATTACH TIME/
DETACH TIME

Time and date of the ATTACH or DETACH procedure for an extra CPU
(if there is a CPU number in CPU NR)
or
time and date of the beginning of a period in which RESLOG was not
active (if the text NO DATA is found in CPU NR)

DURATION Period in hours or days based on the ATTACH/DETACH TIME

– Output for extra CPU:
The number of calendar days of the period between the ATTACH and
DETACH of the extra CPU is output.

– Output for NO DATA:
The number of hours or days (rounded off) of the period in which
RESLOG was not active is output.

RESLOG logging file Error files and logging files

424 U5663-J-Z125-11-76

An asterisk (*) can be output to the right of the times for ATTACH TIME and DETACH TIME
with the following meaning:

– The exact time of the ATTACH is not known because the extra CPU was already
ATTACHED when RESLOG was started.

– The exact time of the DETACH is not known because the file was closed, the system
switched to a new one or the subsystem was terminated abnormally while an extra CPU
was ATTACHED.

– The actual time of the ATTACH/DETACH is not output because the evaluation period
begins after an ATTACH and/or ends before a DETACH.

– The current file is evaluated and an extra CPU is ATTACHED.
The date of the last alive or CPU record is written under DETACH TIME.

Messages with Remote Service

All ATTACH/DETTACH operations for extra CPUs are sent via the Remote Service to the
manufacturer to ensure that the contractual usage period of the extra CPUs can be
checked. These messages also serve as a way to check the data recorded by RESLOG.
Normally, however, the contractual duration of usage is only checked based on the
RESLOG data. You must therefore make sure that RESLOG is always running.

RESLOG also sends messages via Remote Service to the manufacturer when it abnor-
mally terminates due to an error. The following messages are intended to announce this:

NPR0001 SUBSYSTEM RESLOG COULD NOT BE INITIALIZED
Further information see SERSLOG.

NPR0002 SUBSYSTEM RESLOG TERMINATED ABNORMALLY AFTER SUCCESSFUL INITIATION.
Further information see SERSLOG.

U5663-J-Z125-11-76 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
0

15

S
ta

nd
 1

3:
16

.1
3

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
10

0\
13

03
1

04
_d

ia
gn

os
e\

13
0

31
04

_
bh

b\
en

\d
ia

g_
e.

ab
k

Abbreviations

ACS Alias Catalog Service

AID Advanced Interactive Debugger

ASE Auxiliary SERSLOG Extensions

CCB Channel Control Block

CCW Channel Command Word

CLTF Common Log Task Facility

CPU Central Processing Unit

CSECT Control SECTion

DAB Disk Access Buffer

DCAM Data Communication Access Method

DCM Data Communication Methods

DMS Data Management System

DSECT Dummy SECTion

DSSM Dynamic SubSystem Management

EDT BS2000 file editor

ELFE Error Logging File Evaluation

ELSN Error Log Sequence Number

EOLDTAB System module table

ETPND Identification table of the CP subsystem

EXVT/XVT eXecutive Vector Table

FCB File Control Block

FDDRL Fast Disk Dump and ReLoad

HSA Hardware System Area

HSI Hardware-software interface

IPL Initial Program Loading

ISAM Indexed Sequential Access Method

ITN Internal Task Number

Abbreviations

426 U5663-J-Z125-11-76

JCB Job Control Block

JTBP Job-To-Be-Processed block

JTBPX Job-to-be-processed block Extension

MTC Magnetic Tape Cartridge

NDM Nucleus Device Management

PAM Primary Access Method

PCB Program Control Block

PSA Processor Save Area

PSA Prefixed Storage Area

PSW Program Status Word

SDITT Start Device Interrupt Trace Table

SERSLOG Software Error Logging

SIH System Interrupt Handling

SIR System Install and Restore

SLED Self Loading Emergency Dump

SPL System Programming Language

SVC SuperVisor Call

SVMT System Virtual Memory Table

TCB Task Control Block

TDL Trace Dump List

TFT Task File Table

TIC Task in Control

TID Task IDentifier

TLT Task Location Table

TPR Task PRivileged

TSN Task Sequence Number

TTSAV System trace table

TU Task Unprivileged

UVMT User Virtual Memory Table

VAT Virtual Attribute Table

U5663-J-Z125-11-76 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 A

p
ril

 2
01

5
 S

ta
nd

 1
3:

16
.1

3
P

fa
d

: P
:\F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
10

0\
13

0
31

04
_

di
a

gn
o

se
\1

30
31

0
4_

bh
b

\e
n\

di
a

g_
e

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order
printed copies of those manuals which are displayed with an order number.

[1] AID (BS2000)
Advanced Interactive Debugger
Core Manual

[2] EDT (BS2000)
Statements
User Guide

[3] ELSA (BS2000)
Error Logging System Analysis
User Guide

[4] BS2000 OSD/BC
Executive Macros
User Guide

[5] BS2000 OSD/BC
System Installation
User Guide

[6] BS2000 OSD/BC
Introduction to System Administration
User Guide

[7] BS2000 OSD/BC
Utility Routines
User Guide

[8] BS2000 OSD/BC
Commands
User Guide

http://manuals.ts.fujitsu.com

Related publications

428 U5663-J-Z125-11-76

[9] SECOS (BS2000)
Security Control System - Audit
User Guide

U5663-J-Z125-11-76 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
A

pr
il

20
15

 S
ta

nd
 1

3:
16

.1
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
1

00
\1

3
03

10
4

_d
ia

gn
os

e\
13

03
1

04
_b

h
b\

en
\d

ia
g_

e.
si

x

Index

$CSTA macro 20
$TSOS.SYS.HEL.date.time (system file) 409

A
access list entry token (ALET) 78
access method ANITA 48
active system 50

access (DAMP) 328
data privacy 20

ADD-LIST-OBJECTS statement (DAMP) 158,
170, 200, 212

ADD-SYMBOLS statement (DAMP) 142, 183
ADDRESS function (PRODAMP) 288
address space selector (ASEL) 78
address, converting 74
addresses, clean up (PRODAMP) 302
addressing data spaces 78
ALET 78
ANITA (access method) 48
area dump (CDUMP) 29, 51

file name 30
output 27
scope 29

arithmetic expression (PRODAMP) 247
ARRANGE statement (PRODAMP) 239
ASE 365

command overview 365
ASEL (address space selector) 78
ASEL, input field (DAMP) 75
ASID (Address Space Identifier) 78
ASID, input field (DAMP) 75
Assembler format 102
Assembler user routines

private (DAMP) 146

ASSIGN-PRODAMP-LIBRARIES statement
(DAMP) 185

assigning libraries
for PRODAMP compiler 185
for PRODAMP editor 185

assignment (PRODAMP) 232, 247
asynchronous inputs with SLED 391
AUDIT 123

command 21
logging addresses of executed branch

instructions 21
macro 21

AUDIT table 123
for hardware AUDIT 23

automatic preanalysis (DAMP) 164
automatic restart

and SLED 389
and SNAP 399

automatic SLED 386, 389
automatic SNAP 399
automatic system restart after SLED 390
Auxiliary SERSLOG Extensions 365

B
basic functions, DAMP 82
batch and procedure modes, DAMP 165
Big Endian 74, 87
bit pattern (PRODAMP) 230
bit pattern literal (PRODAMP) 233
BOOTSAVE (save file) 369
branch commands 23
branch instructions

log, see AUDIT macro 21
BS2000 system commands 225

Index

430 U5663-J-Z125-11-76

C
calculation rules (PRODAMP) 237
calling

EDT as a subroutine (DAMP) 137
modules (PRODAMP) 269
PRODAMP procedure 298

CDUMP
execution messages 45
system parameter 38
task-specific settings 39

CDUMP functions
controlling 38

CDUMP macro 18
CDUMP2 macro 27
chains, trace (DAMP) 107
CHANGE-SERSLOG-FILE command 363
character set (PRODAMP) 228
checkpoint time 404
cleaning up addresses (PRODAMP) 302
CLOG task 415
combining operands (PRODAMP) 237
command

CHANGE-SERSLOG-FILE 363
START-SERSLOG 363
STOP-SERSLOG 363

command line 53
DAMP 55

command overview (SERSLOG) 363
COMMAND procedure (PRODAMP) 267, 298
COMMAND statement (PRODAMP) 304
common readable pages, CDUMP2 36
communication with DAMP 223
comparison operations (PRODAMP) 232
compatibility of data types (PRODAMP) 232
compilation (PRODAMP) 248
complete DSECT, overlay with (DAMP) 98
components, list (DAMP) 160
conditional statements (PRODAMP) 244
CONSLOG (logging file) 412
CONT statement (ELFE) 353
contingency process 21
controlling

list output 203
trace (PRODAMP) 246

converting
decimal number (PRODAMP) 289
hexadecimal number (PRODAMP) 291
numeric values 296
numeric values (PRODAMP) 290, 292

CREATE-DUMP command 27
creating private procedures (PRODAMP) 298
CSECT list (DAMP) 118, 162
CSECT search in a subsystem 208
CSTAT macro 20
current task, set (PRODAMP) 276
CURRENT, pseudo-base (PRODAMP) 248
CURRENT.ALET 249
CURRENT.ATYPE (PRODAMP) 249
CURRENT.CONFIGURATION 251
CURRENT.CPU 251
CURRENT.CSMA 251
CURRENT.DTYPE 252
CURRENT.ERROR (PRODAMP) 253
CURRENT.FILENAME (PRODAMP) 254
CURRENT.HSA (PRODAMP) 254
CURRENT.ITN (PRODAMP) 257
CURRENT.LEVEL (PRODAMP) 254
CURRENT.PCB (PRODAMP) 254
CURRENT.PTYPE (PRODAMP) 255
CURRENT.TID (PRODAMP) 257
CURRENT.TSN (PRODAMP) 257
CURRENT.VERSION (PRODAMP) 257
CURRENT.WNDNO (PRODAMP) 257

D
DAMP

basic functions 82
batch job 82
call 82
controlling execution 82
Dump Analysis and Maintenance

Program 47
files 326
generate lists 147
interactive mode 82
interrupt 88
load program 326
operation 82

Index

U5663-J-Z125-11-76 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
A

pr
il

20
15

 S
ta

nd
 1

3:
16

.1
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
1

00
\1

3
03

10
4

_d
ia

gn
os

e\
13

03
1

04
_b

h
b\

en
\d

ia
g_

e.
si

x

DAMP
performance capabilities 47
procedure mode 82
program statements 167
resume 88
screen 52
screen mask 53
server 52
setting language 60

DAMP statement
ADD-LIST-OBJECTS 170
ADD-SYMBOLS 183
DROP-REGISTER 187
EDIT-FILE 188
END 188
enter via INFORM-PROGRAM 223
LOAD-MODULE 189
LOG-SESSION 191
MODIFY-OBJECT-ASSUMPTIONS 192
MODIFY-SCREEN-LAYOUT 194
OPEN-DIAGNOSIS-OBJECT 196
PRINT-LIST 200
PRINT-LOGGING-FILE 201
read from file 220
REMOVE-LIST-OBJECTS 203
REPEAT-SESSION 206
RESUME-PRODAMP-PROGRAM 207
SEARCH-IN-SUBSYSTEM 208
SHOW-EDITED-INFORMATION 209
SHOW-LAST-STATEMENT 211
SHOW-PRODAMP-LIBRARIES 211
START-LIST-GENERATION 212
START-MODULE 214
START-OPTION-DIALOG 215
START-PATTERN-SEARCH 216
START-PRODAMP-EDITOR 217
START-PRODAMP-PROGRAM 218
START-STATEMENT-SEQUENCE 220
STOP-LOGGING 220
USE-REGISTER 221

DAMP.SYMBOLS.GENERATOR (program) 143
data areas

refresh (PRODAMP) 267

data privacy 20
during diagnosis in active system 20
for dump files 20
for logging files 20
test privileges 20

data types (PRODAMP) 230
compatibility 232

DEC_BINARY function (PRODAMP) 289
DEC_STRING function (PRODAMP) 290
decimal number, convert (PRODAMP) 289
default values

diagnostic windows, DAMP 84
defining

scope of list output 170
symbol attributes (PRODAMP) 239

descriptive data block 403
descriptors (DAMP) 164
DESTLEV (system parameter) 38
diagnosis methods

software 15
diagnosis object 50

modify default settings 192
open 196

diagnostic area 53
DAMP 55

diagnostic data
output in edited form 209

diagnostic log 48
diagnostic programs for hardware 406
diagnostic session

log (DAMP) 138
replay (DAMP) 138

diagnostic windows 52
DAMP 58
default values, DAMP 84
define sequence and size 194
modify, DAMP 84

diagnostics log, replay 206
disassembled output 221
disassembler, define representation 187
disks

public, output to 380
display

in Assembler format (DAMP) 102

Index

432 U5663-J-Z125-11-76

DISPLAY statement (ELFE) 354
displaying

last DAMP statement 211
message (PRODAMP) 275
PRODAMP libraries 211

DIV pages 37
DMP_#REFRESH procedure (PRODAMP) 267
DMS tables

list (DAMP) 163
DROP-REGISTER statement (DAMP) 187
DSECT lists (DAMP) 330
dump 18

background memory (SLED) 367
evaluate 19
main memory (SLED) 367
output (see CDUMP macro) 27

dump analysis programs 397
dump data, output (DAMP) 89
dump file 50

assign (DAMP) 83
data privacy 20
open (DAMP) 83

dump forms (CDUMP) 29
dump generator, SNAP 395
dump testament 62
dump window 52, 73

DAMP 74
DUMP_MEMORY procedure (PRODAMP) 268
DUMPCL5P (system parameter) 38
DUMPCTRL (system parameter) 38
DUMPSD# (system parameter) 38
DUMPSEPA (system parameter) 31, 38
DUMPSREF (system parameter) 38

E
EDIT-FILE statement (DAMP) 188
editor for PRODAMP compiler, load 217
EDT

call (DAMP) 137
load as subroutine (DAMP) 188
PRODAMP 303

EDT area
read (PRODAMP) 279
write to (PRODAMP) 286

ELFE 19
assign and open file 360
assign description library 359
CONT statement 353
description library 352
display brief information 358
DISPLAY statement 354
END statement 358
evaluate SERSLOG files 351, 353
HELP statement 358
KEEP statement 359
LIBRARY statement 359
OPEN statement 360
output error entries 354, 362
performance capabilities 351
PRINT statement 362
retain auxiliary files 359
software and hardware requirements 352
statement overview 353
STOP statement 362
store SERSLOG files 352
terminate 362
terminate, see END statement 358
use aliases 352

ELS (Error Logging System) 409
ELSA (error file evaluation) 408, 409
ELSN (Error Log Sequence Number) 364
END statement

DAMP 188
ELFE 358

ENTER_MODULE procedure (PRODAMP) 269
error event type (rectype) 364
error file analysis 408
Error Log Sequence Number (ELSN) 364
error logging system (ELS) 409
error type (ELFE) 351
evaluating

dumps 19
logging data 19
SERSLOG file (ELFE) 351

execution errors, recover (PRODAMP) 306
execution, logging (DAMP) 17
expressions (PRODAMP) 237, 247

Index

U5663-J-Z125-11-76 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
A

pr
il

20
15

 S
ta

nd
 1

3:
16

.1
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
1

00
\1

3
03

10
4

_d
ia

gn
os

e\
13

03
1

04
_b

h
b\

en
\d

ia
g_

e.
si

x

external procedures
write 189

external subroutine
load (DAMP) 189
start 214

EXTRACT procedure (PRODAMP) 272

F
FILE 120
file

$TSOS.SYSPAR.SLED... (SLED parameter
file) 386

select (DAMP) 148
SYS.CONSLOG.date.xxx.nn (logging

file) 412
SYS.RESLOG.server-id 420
with PAM format (DAMP) 140

file transfer 149, 200
FIND function (DAMP) 125
first start

and online maintenance 405
first-time use of PRODAMP 301
FMTYFNLG (system parameter) 412
FOLLOW statement (PRODAMP) 243
freshly-obtained pages 37
FTAC profile 149
full dump 18
full dump (SLED) 367
function

select (DAMP) 150
function call (PRODAMP) 247

H
hardware AUDIT 21, 23, 123

table 23
hardware error logging (HEL) 409
hardware error statistics file 405
hardware information output (DAMP) 96
hardware tests 406
HARDWARE-MAINTENANCE (privilege) 405
header line (PRODAMP) 299
header, generate (PRODAMP) 284
HEL task 409
HELFILE 409

HELP statement (ELFE) 358
help window (DAMP) 60
HEX_BINARY function (PRODAMP) 291
HEX_STRING function (PRODAMP) 292
hexadecimal number, convert (PRODAMP) 291
hiding substructures 101
HSMS (data saving and archiving) 380

I
IF statement (PRODAMP) 244
indexing, automatic (DAMP) 164
INFORM-PROGRAM (command) 223
information

on AUDIT tables 123
on system files 120

input field
'Absolute address' (DAMP) 76
'ASEL' (DAMP) 78
'ASID' (DAMP) 78
'Output format' 80
'Output format' (DAMP) 76
'Relative address' (DAMP) 76
'Symbolic address' 80
'Window size' (DAMP) 77

input fields, DAMP 75
INSERT procedure (PRODAMP) 273
INTERRUPT statement (PRODAMP) 245
interrupted PRODAMP program

resume 207
interrupting procedure (PRODAMP) 245
issuing DAMP statements (PRODAMP) 267

K
KEEP statement (ELFE) 359
key line 53

DAMP 56

L
language 60
language elements (PRODAMP) 228
last DAMP statement, display 211
LENGTH function (PRODAMP) 293
libraries

assign for PRODAMP compiler 185

Index

434 U5663-J-Z125-11-76

LIBRARY statement (ELFE) 359
linkage AUDIT 21, 123

trace table 24
linkage AUDIT trace table 24
LIST 147
list mask (DAMP) 147
list output

control 203
define scope 170
prepare 212
start 200

LIST procedure (PRODAMP) 274
LIST window 212
lists

components and scope (DAMP) 160
generate (DAMP) 147

literal (PRODAMP) 247
Little Endian 74, 87
LOAD-MODULE statement (DAMP) 189
loading

a PRODAMP program 218
EDT as subroutine (DAMP) 188
external subroutine (DAMP) 189

LOCATION function (PRODAMP) 295
LOG-SESSION statement (DAMP) 191, 220
logging 17

a diagnostic session (DAMP) 138
branch instructions, see AUDIT macro 21
software execution 17

logging data
evaluate 19

logging file 191
analysis and backup 416
CONSLOG 412, 414
DAMP 138
data privacy 20
print 138
RESLOG 419

logging of diagnosis run
activate 191

logical ID 326
logical operators (PRODAMP) 244

M
maintenance task 406
manipulating strings (PRODAMP) 272, 273
marking fields (DAMP) 86
meanings of operators (PRODAMP) 237
MEMATTR 109
memory area, output (PRODAMP) 268
memory attributes, output (DAMP) 109
memory contents, save 18
memory pages

list (DAMP) 163
memory segments, output (DAMP) 97
MEMORY-MAP 42
message lines 53

DAMP 55
MESSAGE procedure (PRODAMP) 275
mode

compiler (PRODAMP) 299
PRODAMP 307

MODIFY-OBJECT-ASSUMPTIONS statement
(DAMP) 192

MODIFY-SCREEN-LAYOUT statement
(DAMP) 85, 107, 194

modifying
default settings for diagnosis object 192
diagnostic windows (DAMP) 84

module address, output (PRODAMP) 288
module from library

load (DAMP) 189
module length, output (PRODAMP) 293
module name,output (PRODAMP) 295
monitoring, variable (PRODAMP) 243

N
names (PRODAMP) 228
NBKESNR (system parameter) 412
NDM (DAMP) 157
NEW_TASK procedure (PRODAMP) 276
NEXT_WINDOW procedure (PRODAMP) 278
nonstandard SLED 371
numeric data type (PRODAMP) 230
numeric values, convert (PRODAMP) 290, 292,

296

Index

U5663-J-Z125-11-76 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
A

pr
il

20
15

 S
ta

nd
 1

3:
16

.1
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
1

00
\1

3
03

10
4

_d
ia

gn
os

e\
13

03
1

04
_b

h
b\

en
\d

ia
g_

e.
si

x

O
offset DSECT, overlay with (DAMP) 99
online maintenance 405
OPC_TABLE

predefined variable (PRODAMP) 262
OPEN statement (ELFE) 360
OPEN-DIAGNOSIS-OBJECT statement

(DAMP) 196
operands (PRODAMP, combine 237
operational data block 402
operators (PRODAMP) 229

meaning 237
OPTIONS 133
OPTIONS window 215
output

dump data (DAMP) 89
edited diagnostic data 209
hardware information (DAMP) 96
information on subsystems (DAMP) 113
memory attributes (DAMP) 109
memory segments (DAMP) 97
module address (PRODAMP) 288
module length (PRODAMP) 293
module name (PRODAMP) 295
PCB contents (DAMP) 92
status information (DAMP) 91
system tables (DAMP) 93
system trace tables 108
task-specific values (DAMP) 111

overlaying
with complete DSECT (DAMP) 98
with offset DSECT (DAMP) 99
with pseudo-DSECT WORDLIST

(DAMP) 100
overview of PRODAMP statements 238
overview windows, DAMP 59

P
packed numbers

unpack (PRODAMP) 297
page attributes, CDUMP 36
paging in the status window 69
paging in windows (DAMP) 86
PAM file 51

CDUMP2 27
PAM format, file (DAMP) 140
PARAMETER pseudo-base (PRODAMP) 257
parameters, pass (PRODAMP) 302
partial dump 18
passing parameters (PRODAMP) 302
PATTERN function (PRODAMP) 296
PCB contents, output (DAMP) 92
PCBs, list (DAMP) 162
PCK_BINARY function (PRODAMP) 297
performance capabilities

DAMP 47
ELFE 351
SERSLOG 363
SLED 367
SNAP 395

PLAM libraries (PRODAMP) 306
preanalysis, automatic (DAMP) 164
predefined variable

OPC_TABLE 262
SVC_TABLE 262

preparing
list output 212

print logging file 201
PRINT statement (ELFE) 362
PRINT-LIST statement (DAMP) 158, 200, 205,

212
PRINT-LOGGING-FILE statement (DAMP) 201
private Assembler user routines (DAMP) 146
private disks

output with SLED 379
private procedures

create (PRODAMP) 298
private symbol elements 142
private symbol elements (DAMP) 142
privilege

HARDWARE-MAINTENANCE 405

Index

436 U5663-J-Z125-11-76

procedure
archive (PRODAMP) 306
call (PRODAMP) 305
interrupt (PRODAMP) 245, 306
leave prematurely (PRODAMP) 245

procedure mode
DAMP 165

process control blocks
list (DAMP) 162

PRODAMP 166, 226
ADDRESS function 288
call procedure 298
COMMAND procedure 267
DEC_BINARY function 289
DEC_STRING function 290
DUMP_MEMORY procedure 268
ENTER-MODULE procedure 269
EXTRACT procedure 272
HEX_BINARY function 291
HEX_STRING function 292
INSERT procedure 273
language elements 228
LENGTH function 293
LIST procedure 274
LOCATION function 295
MESSAGE procedure 275
NEW_TASK procedure 276
NEXT-WINDOW procedure 278
object modules 307
PATTERN function 296
PCK_BINARY function 297
READ procedure 279
READ_WINDOW procedure 280
REFERENCE procedure 283
SET_HEADER procedure 284
source modules 306
symbols 235
try out 301
WRITE procedure 286

PRODAMP libraries
display 211

PRODAMP procedure
DUMP_MEMORY 267
interrupt (PRODAMP) 280

PRODAMP program
load and start 218
resume 207

PRODAMP statements
overview 238

product file 326
program

form loops (PRODAMP) 247
program keys (DAMP) 85
program statements (DAMP) 167
PSA-XXX 95
pseudo-base

CURRENT (PRODAMP) 248
PARAMETER (PRODAMP) 257

pseudo-DSECT WORDLIST 100
pseudo-structures (PRODAMP) 248

R
RDTESTPR (system parameter) 38
READ procedure (PRODAMP) 279
READ statement (PRODAMP) 303
READ_WINDOW procedure (PRODAMP) 280
read-protected areas 36
reading EDT area (PRODAMP) 279
Readme file 12
real addresses (DAMP) 104
record type (ELFE) 351
rectype (error event type) 364
REFERENCE procedure (PRODAMP) 283
referenced pages 303
references, specify 283
release name 326
Remote Service

message from RESLOG 424
REMOVE-LIST-OBJECTS statement

(DAMP) 158, 200, 203
REP information, list (DAMP) 162
REPEAT-SESSION statement (DAMP) 206
replaying

diagnostic session 138, 139
diagnostics log 206

representation
for disassembled output (DAMP) 221

representation for disassembler 187

Index

U5663-J-Z125-11-76 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
A

pr
il

20
15

 S
ta

nd
 1

3:
16

.1
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
1

00
\1

3
03

10
4

_d
ia

gn
os

e\
13

03
1

04
_b

h
b\

en
\d

ia
g_

e.
si

x

RESLOG (log file) 419
restart

and automatic SNAP 399
restart, automatic

and automatic SLED 389
restoring the screen contents (DAMP) 85
RESUME-PRODAMP-PROGRAM statement

(DAMP) 207
resuming

interrupted PRODAMP program 207
RETURN statement (PRODAMP) 245
revealed or hidden substructures 101
revealing substructures 101

S
save file

BOOTSAVE 369
SLEDSAVE 369

saving memory contents 18
scope of list (DAMP) 160

specify 151
screen mask (DAMP) 53
SEARCH-IN-SUBSYSTEM statement

(DAMP) 208
secret pages 20

CDUMP 36
selecting

a file (DAMP) 148
function (DAMP) 150
task (DAMP) 151

selective dump (CDUMP) 29
selective string search 216
SELF-LOADER 51
self-loading emergency dump routine SLED 367
separators (PRODAMP) 228
sequence for diagnostic windows 194
SERSLOG

Auxiliary SERSLOG Extensions (ASE) 365
SERSLOG (function for saving data) 411
SERSLOG (software error logging) 17, 363

activate 364
commands overview 363
deactivate 364
switch the SERSLOG file 364

SERSLOG file 364, 411
contents 364
evaluate (ELFE) 351, 353
name 364
write-protection 364

SERVICE (user ID) 405, 406
SET_HEADER procedure (PRODAMP) 284
setting

current task (PRODAMP) 276
user options 215
user options (DAMP) 133

setting (DAMP) 60
SHOW-EDITED-INFORMATION statement

(DAMP) 209
SHOW-LAST-STATEMENT statement

(DAMP) 211
SHOW-PRODAMP-LIBRARIES statement

(DAMP) 211
SHOW-SERSLOG-STATUS command 363
size for diagnostic windows, define 194
SLED 18, 50

asynchronous inputs 391
dump background memory 367
dump main memory 367
manned operation 367
output to private disk 379
output to public disks 380
reload operating system 367
repeat dump 372
total dump 367
unmanned operation 367

SLED (dump generator)
automatic 386

SLED dump 373
SLEDFILE (dump file) 367
SLEDSAVE (save file) 369
SNAP 50, 395

automatic 399
call 395
dump 19
dump generator 395
dump, size 395
logging 396
restrictions 398

Index

438 U5663-J-Z125-11-76

SNAP files 396
SNAPFILE (system file) 396

size 396
SNAPFILE file 397
software diagnosis methods 15
software error logging 411
software error logging (SERSLOG) 17, 363
software execution, log 17
source modules (PRODAMP) 307
space identification

(SPID) 78
special window 73, 75

AUDIT 123
FILE 120
LIST 147
MEMATTR 109
OPTIONS 133
PROC 298
SUSY 113
TABLE 111
TRACE 108

specifying
references 283
scope of list (DAMP) 151

SPID 78
SPL stack, list (DAMP) 162
stack content 92
stack select, input field (DAMP) 61
stack window (DAMP) 70
standard BS2000 symbols 142
standard dump window 74
standard functions, overview (PRODAMP) 287
standard procedures, overview

(PRODAMP) 266
standard SLED 372
START-LIST-GENERATION statement

(DAMP) 147, 158, 200, 212
START-MODULE statement (DAMP) 189, 214
START-OPTION-DIALOG statement

(DAMP) 215
START-PATTERN-SEARCH statement

(DAMP) 125, 216
START-PRODAMP-EDITOR statement

(DAMP) 217

START-PRODAMP-PROGRAM statement
(DAMP) 218

START-SERSLOG command 363
START-STATEMENT-SEQUENCE statement

(DAMP) 158, 220
starting

a PRODAMP program 218
statement sequences (DAMP) 165
statements (PRODAMP) 238
status information, output (DAMP) 91
status window (DAMP) 61
STOP statement (ELFE) 362
STOP-LOGGING 220
STOP-SERSLOG command 363
string (PRODAMP) 231

manipulate 272, 273
output 274

string search
DAMP 125
prepare 216

subroutine, start 214
substructures 101

hide 101
reveal 101

subsystem
RESLOG 419

subsystem list (DAMP) 116
subsystems, output information (DAMP) 113
SUSY 113
SVC_TABLE

predefined variable (PRODAMP) 265
symbol (PRODAMP) 247
symbol elements, private (DAMP) 142
symbol library 142
symbolic address, input field (DAMP) 75
symbolic output

assign additional elements 183
symbols (PRODAMP) 235

define attributes 239
reset characteristics 240

symbols for output
assign 183

syntax (PRODAMP) 227
syntax diagrams (PRODAMP) 311

Index

U5663-J-Z125-11-76 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
A

pr
il

20
15

 S
ta

nd
 1

3:
16

.1
4

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
1

00
\1

3
03

10
4

_d
ia

gn
os

e\
13

03
1

04
_b

h
b\

en
\d

ia
g_

e.
si

x

SYS.CONSLOG.date.xxx.nn (logging file) 412
SYS.RESLOG.server-id (log file) 420
SYS.SERSLOG.date.xxx.nn 411
SYSAUDIT (user ID) 412
SYSSNAP

user ID (SNAP) 396
system dump 51
system dump (CDUMP) 33

file name 35
output (see CDUMP macro) 27
scope 33

system files, information on 120
system overview

list (DAMP) 161
system parameter

DESTLEV 38
DUMPCTRL 38
DUMPSD# 38
DUMPSEPA 31, 38
DUMPSREF 38
FMTYFNLG 412
NBKESNR 412
RDTESTPR 38

system tables
list (DAMP) 162
output (DAMP) 93

system tasks
HEL 409

system trace table
list (DAMP) 162
output (DAMP) 108

system version symbol element 142
system-global trace 401

T
TABLE 111
tables of task-specific values (DAMP) 111
target address 21
task

select (DAMP) 151
set (PRODAMP) 276

task file table, list (DAMP) 163
task-local DMS tables

list (DAMP) 163

task-local trace 401
task-specific values (DAMP) 111
TDL (trace dump list) 401, 402
TDP (test and diagnostic programs) 406
terminate 88, 188
test options see test privileges
test privileges

DAMP 328
data privacy 20
for online maintenance 407

test programs for hardware 406
TFT, list (DAMP) 163
title line, DAMP 53, 54
total dump (SLED) 367
TRACE 108
trace 401

system-global 401
task-local 401

trace buffer 401
evaluating the data with DAMP 401
evaluating the data with SODA 401
saving the data with CDUMP 401
saving the data with SLED 401

trace dump list (TDL) 401, 402
TRACE MANAGER 17, 401

address lists 402
capabilities 401
command overview 404
descriptive data 402
management tables 401
operating data 402

TRACE MANAGER tables
system-global 403
task-local 404

TRACE statement (PRODAMP) 246
TRACE-TABLE-EDIT 108
tracing 17

control (PRODAMP) 246
tracing chains (DAMP) 107
trusted pages (CDUMP) 36
TSOS (user ID) 412

Index

440 U5663-J-Z125-11-76

U
unpacking packed numbers (PRODAMP) 297
UNSIGNED_OFF procedure (PRODAMP) 285
UNSIGNED_ON procedure (PRODAMP) 285
USE 221
USE-REGISTER statement (DAMP) 221
user dump (CDUMP) 31, 51

file name 32
output (see CDUMP macro) 27
scope 31

user ID
SERVICE 405, 406
SYSAUDIT 412
SYSDUMP 27
SYSSNAP (SNAP) 396
SYSUSER 27
TSOS 412

user options
set 215
set (DAMP) 133

utility routine
ELSA 408, 409

V
variable (PRODAMP) 237, 247

monitoring 243
VM2000

logging extra CPUs 419
VMOS linkage 189, 214

W
WARTOPT (system module) 405
WHILE statement (PRODAMP) 247
WORDLIST (pseudo-DSECT) 100
WRITE procedure (PRODAMP) 286
WRITE statement (PRODAMP) 303
writing to EDT area (PRODAMP) 286

	Contents
	Preface
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manual
	Notational conventions

	Software diagnosis methods in BS2000
	Logging the progress of software execution
	Software error logging
	Tracing

	Saving the contents of memory
	Evaluating dumps and logging data
	Data privacy
	Data privacy during output of a dump
	Data privacy for dump files
	Data privacy for logging files
	Data privacy during diagnosis in an active system

	AUDIT Log addresses of executed branch instructions
	Hardware AUDIT
	Linkage AUDIT

	CDUMP Output area, user or system dump
	Dump forms
	Area dump
	User dump
	System dump

	Influence of page attributes
	Controlling the CDUMP functions
	Control by means of system parameters
	Control by means of task-specific settings

	Dump-specific operands in BS2000 commands
	Execution messages

	DAMP Dump analysis
	Performance capabilities
	Diagnostic log
	Creating lists
	Automating diagnostic processes
	Additional functions
	Behavior in the event of a program or system error
	Diagnosis objects that can be analyzed
	Active system
	Dump files
	PAM file as diagnosis object

	Online helps
	Terms used

	Screen format
	Screen mask
	Diagnostic windows
	The overview window (W0)
	The help window (W1)
	The status window (W2)
	The stack window (W3)
	The dump windows (W4 - W9 and W21 - W99)
	Input fields of a standard dump window (W4 - W9 and W21 - W99)

	Operation
	Basic functions
	Calling DAMP
	Controlling program execution
	Assigning and opening the diagnosis object
	Modifying the diagnostic windows
	Interrupting and resuming DAMP operation
	Terminating DAMP

	Output of dump data
	Automatic interpretation of the output data
	Output of status information
	Output of stack contents
	Output of system tables
	Output of processor storage areas
	Output of hardware information
	Output of memory segments
	Symbolic layout
	Output in Assembler format
	Output in areas with real addresses
	Output in areas with absolute addresses
	Output of dump file sections
	Tracing chains
	Output of system trace tables (special window: TRACE)
	Output of memory attributes (special window: MEMATTR)
	Output of tables with task-specific values (special window: TABLE)
	Output of information on subsystems (special window: SUSY)
	Information on system files and sections of the dump file (special window: FILE)
	Information on AUDIT tables (special window: AUDIT)
	String search (special window: FIND)

	Modification by the user (special window: OPTIONS)
	Additional functions
	Calling EDT as a subroutine
	Logging and replaying a diagnostic session
	Processing files in PAM format
	Editing SLEDs without a BS2000 structure
	Using private symbol elements
	Writing private Assembler user routines

	Generating and printing lists (special window: LIST)
	Controlling list output in interactive mode
	Selecting a file
	Selecting the output location of the list
	Selecting a function
	Selecting a task
	Specifying the scope of the list
	Selecting individual areas for output
	Fields for pre-diagnosis and error descriptors
	Using PRODAMP procedures or editing programs
	Using an editing program

	Controlling list output in batch or procedure mode
	Components and scope of the output lists

	Automating operations
	Automatic preanalysis
	Batch and procedure modes, statement sequences
	Automation with PRODAMP

	Program statements
	Program level
	ADD-LIST-OBJECTS Define scope of list output
	ADD-SYMBOLS Assign symbols for output
	ASSIGN-PRODAMP-LIBRARIES Assign libraries for PRODAMP compiler and PRODAMP editor
	DROP-REGISTER Define representation for disassembler
	EDIT-FILE Load EDT as subroutine
	END Terminate DAMP
	LOAD-MODULE Load module from library
	LOG-SESSION Activate logging of diagnosis run
	MODIFY-OBJECT-ASSUMPTIONS Modify default settings for diagnosis object
	MODIFY-SCREEN-LAYOUT Define new sequence and size for diagnostic windows
	OPEN-DIAGNOSIS-OBJECT Open diagnosis object for processing
	PRINT-LIST Start list output
	PRINT-LOGGING-FILE Start list output
	REMOVE-LIST-OBJECTS Control list output
	REPEAT-SESSION Replay diagnostics log
	RESUME-PRODAMP-PROGRAM Resume interrupted PRODAMP program
	SEARCH-IN-SUBSYSTEM Perform CSECT search in subsystem
	SHOW-EDITED-INFORMATION Output edited diagnostic data
	SHOW-LAST-STATEMENT Display last DAMP statement
	SHOW-PRODAMP-LIBRARIES Display PRODAMP libraries
	SHOW-SUBSYSTEM-FOR-SEARCH Display currently set subsystem
	START-LIST-GENERATION Prepare list output
	START-MODULE Start external subroutine
	START-OPTION-DIALOG Set user options
	START-PATTERN-SEARCH Prepare string search
	START-PRODAMP-EDITOR Load editor for PRODAMP compiler
	START-PRODAMP-PROGRAM Load and start PRODAMP program
	START-STATEMENT-SEQUENCE Read DAMP statements from file
	STOP-LOGGING Terminate logging of diagnosis run
	USE-REGISTER Define register use for disassembled output
	System level
	DAMP statements via the system command INFORM-PROGRAM

	PRODAMP
	Introduction
	Syntax
	Language elements
	Lexical elements
	Operators
	Data types
	Symbols
	Variable
	Expressions
	Statements
	Pseudo-structures
	Predefined variables
	Standard procedures
	Standard functions

	Working with procedures (special window: PROC)
	Syntax diagrams

	Software and hardware prerequisites
	List of DSECTs from the standard symbol files
	DAMP messages

	NDMDAMP Generating diagnostic documents
	Calling NDMDAMP
	START-NDM-DIAGNOSIS Analyze NDM data
	Calling NDMDAMP from DAMP
	Call from predefined ENTER jobs

	Error handling during the analysis
	Installation
	Release items for NDMDAMP
	Logical units used by NDMDAMP

	ELFE Edit and evaluate the SERSLOG file
	Software and hardware prerequisites
	Operation
	CONT Continue evaluation of SERSLOG file or session
	DISPLAY Display error entries on screen
	END Terminate ELFE
	HELP Display brief information on ELFE statements
	KEEP Retain auxiliary files
	LIBRARY Assign description library
	OPEN Assign and open file to be evaluated
	PRINT Print error entries
	STOP Terminate ELFE

	SERSLOG Software error logging in the SERSLOG file
	ASE Auxiliary SERSLOG Extensions
	SLED dump
	Loading and initializing SLED
	Output to a dump file
	SLED control
	Extracting IOHDUMP and IOSDUMP from a SLED

	SNAP dump
	SNAP files
	Activating and deactivating SNAP
	Restrictions
	Automatic SNAP

	TRACE MANAGER Collect diagnostic information during the session
	Online maintenance
	Error files and logging files
	Hardware error logging file HEL
	Software error logging file SERSLOG
	CONSLOG logging file
	RESLOG logging file

	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

