
U5642-J-Z125-3-7600 1

1 Preface
This chapter briefly describes the product DRIVE/WINDOWS, the target group for this
manual and the organization of the suite of DRIVE/WINDOWS manuals. It also contains a
list of changes incorporated since the last version of the manual and explains the special
notation used in the DRIVE/WINDOWS manuals.

1.1 Brief product description

DRIVE/WINDOWS is a fourth generation programming language (4GL) for the devel-
opment of commercial client-server applications. It is the 4GL used to access files or the
BS2000 database systems SESAM/SQL V1, SESAM/SQL V2 and UDS. DRIVE applica-
tions can be distributed across different computer types in accordance with various client-
server architectures since DRIVE/WINDOWS is available for BS2000, SINIX and
MS-Windows platforms and provides optimum support for client-server connections.

The uniform language with its powerful and easily learned statements allows programmers
to create complex applications for database access, reports, user interfaces, communica-
tions and processing. DRIVE/WINDOWS automatically provides system-specific interfaces
to components, thus relieving the programmer of this task.

DRIVE/WINDOWS provides programmers with an integrated debugger to help them test
their DRIVE applications.

DRIVE applications can be created and tested with or without a transaction monitor and can
run unmodified irrespective of whether or not a transaction monitor is connected.

Performance can be improved by compiling the DRIVE applications using the
DRIVE/WINDOWS-COMP compiler.

DRIVE server applications running under SINIX allow you to access INFORMIX files and
databases and can also be used as part of a distributed application using DRIVE applica-
tions under BS2000 or MS-Windows. Here again, as in BS2000, there is an integrated
report function and a compiler designed to ensure that the created server applications run
at top performance.

2 U5642-J-Z125-3-7600

Target group Preface

In addition to facilities for creating applications, DRIVE/WINDOWS under MS-Windows
provides a range of convenient tools which are fully integrated into the development
process. case/4/0 supports application design and is complemented by
DRIVE/DESIGNER which ensures a seamless transition to the coding phase and
guarantees that the DRIVE source programs are generated and installed correctly on the
basis of the design results. The DRIVE/WINDOWS software production environment thus
provides a convenient, graphical, menu-driven user environment for program creation,
testing and application control.

1.2 Target group

This manual is aimed at programmers who develop DRIVE applications or components of
client-server applications using DRIVE/WINDOWS on BS2000 computers. This means that
programmers must be familiar with the BS2000 operating system.

Depending on the application in question, programmers may need an understanding of:

– the UDS database system

– the SESAM database system

– the UTM transaction monitor

– the FHS Format Handling System for creating screen forms

– the client operating system (MS-Windows or SINIX)

1.3 Organization of manual suite

DRIVE/WINDOWS is described in three manuals:

– The "Programming System" [1] manual provides a general overview of the
DRIVE/WINDOWS system and explains the functions which are used to prepare, save,
test and execute DRIVE programs. It also contains information required by the system
administrator to prepare DRIVE/WINDOWS for use as well as information on config-
uring client/server architectures.

– The "Programming Language" [2] manual describes the rules governing a DRIVE
program. It deals with the programming logic, the creation of screen and list forms,
report design using the report generator and discusses client-server architectures.

U5642-J-Z125-3-7600 3

Preface Readme file

– The "System Directory" [3] contains all the DRIVE statements in alphabetical order
together with their syntax and a description of their functional scope. The SQL state-
ments are described in separate manuals (see below).

The statements are arranged in three sections: DRIVE statements, report statements
for the generation of lists, forms and reports, and the complex statement elements
known as “metavariables”.
The system directory also includes an introduction to the syntax of DRIVE statements
and a list of all DRIVE/WINDOWS messages and keywords.

Directories containing the DRIVE-SQL statements for the various database systems are
also available:

– "Directory of DRIVE-SQL statements for SESAM V1" [4]

– "Directory of DRIVE-SQL statements for SESAM V2" [5]

– "Directory of DRIVE-SQL statements for UDS" [6]

DRIVE/WINDOWS also offers the full functionality of DRIVE V5.1 in so-called “old style”
and mixed mode operation.
For a description of the old style functions, refer to the DRIVE V5.1 User Guide [14] and
System Directory [15]. Techniques for integrating old style programs into new DRIVE appli-
cations are described in the Programming Language" [2] manual. The "Programming
System" [1] manual describes how you generate DRIVE/WINDOWS for old style and mixed
mode operation.

1.4 Readme file

Please refer to the product-specific readme file for any functional modifications or additions
to the current product version. You can find the readme file on your BS2000 computer under
the filename SYSRME.product.version.language. Please ask your system administrator for
the login name under which the readme file is stored. You can view the file with the
/SHOW-FILE command or by opening it in an editor or you can print it at the default printer
by entering the following command:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL

or in the case of SPOOL versions earlier than 3.0A:

/PRINT-FILE FILE-NAME=filename,LAYOUT-CONTROL=
PARAMETERS(CONTROL-CHARACTERS=EBCDIC)

4 U5642-J-Z125-3-7600

Changes Preface

1.5 Changes compared to the version of December 1993
(DRIVE/WINDOWS V1.1)

Components

– DRIVE/WINDOWS supports SESAM V2 and therefore complies with the SQL2
language standard.

– SAM and ISAM files can be edited using DRIVE programs.

– Distributed DRIVE applications allow you to connect to client graphic user interfaces
(MS-Windows and SINIX).

– Old-style program can be integrated into new DRIVE applications using the CALL
program call. Parameters can be returned to the calling program.

– In old-style mode it is now possible to access SESAM V2, LEASY and DMS as well as
SESAM V1.

– DRIVE programs containing SQL statements for SESAM V2 can now only be compiled
if there are no open transactions.

– The interfaces to the products TOM-REF and QUERY are no longer supported.

Data types

– DRIVE/WINDOWS supports the TIME(3) and TIMESTAMP(3) data types.

– The VARCHAR data type occupies one byte more than previously. It is no longer
possible to redefine items as VARCHAR variables or manipulate the length field.

Functions

– The HELP statement is no longer present. Instead the DRIVE system directory is
provided as a file (softbook).

– You can specify background patterns (bases) for reports both for pages and for
individual lines.

– The call sequence for CALL and DO has changed: whereas DRIVE/WINDOWS previ-
ously searched for the intermediate code before looking for the source, it now always
looks for the member with the most recent date.

– The COMPILE statement does not generate an error list. Error messages are inserted
in the source section of the compiler listing.

– The PARAMETER DYNAMIC LIBRARY statement no longer automatically creates a
PLAM library. Instead, it can only assign an existing PLAM library.

U5642-J-Z125-3-7600 5

Preface Changes

– User-specific data types can be passed to called programs as transfer parameters. The
DECLARE TYPE statement may come in front of the PROCEDURE statement.

– The COMMIT WORK and ROLLBACK WORK statements are permitted without the
OPTION DBSYSTEM= statement and with the OPTION DBSYSTEM=OFF statement.
If no database transaction is open when the statements are executed, they refer exclu-
sively to UTM transactions.

– You can use the OPTION SCREENCHECK compiler option to specify whether or not
DRIVE/WINDOWS is to evaluate CHECK clauses in addressing aids.

– The DRIVE system variable &SQL_STATE contains the SQLSTATE of SESAM V2.

– The PERMIT statement is ineffective for SESAM V2. It simply sets the SQLSTATE.

– CURRENT TIMESTAMP outputs the current timestamp.

– You can specify fractions of a second (FRACTION) as a unit for intervals or in time
specifications.

– Date expressions can be linked to a result with the TIMESTAMP(3) data type.

– The LENGTH function returns the last non-space character in a string.

– The UPPERSTRING and LOWERSTRING functions convert characters in accordance
with the country-specific settings, while the TRSTRING converts them on the basis of
user-specific definitions.

– When calculating intervals and times (TIME), DRIVE/WINDOWS does not calculate
across changes of day. Instead it reports negative hours.

– In the absence of any declaration to the contrary, null values are represented on screen
by the special character @.

– PASCAL program calls are not supported.

Keywords

– DRIVE/WINDOWS uses new keywords. The Appendix to the DRIVE System Directory
[3] contains a list of all keywords.

Compatibility

– DRIVE programs whose code members were created using an earlier version of
DRIVE/WINDOWS must be recompiled before being executable.

– In the case of DRIVE programs which access SESAM databases, observe the notes on
migration in the "Directory of DRIVE-SQL statements for SESAM V2" [5].

6 U5642-J-Z125-3-7600

Notational conventions Preface

1.6 Notational conventions

The symbols and fonts used in the DRIVE/WINDOWS manuals have the following
meaning:

type-written text

is used for fixed names (e.g. operating system commands, filenames) and error messages
in the body text. It is also used in examples.

Italics

are used in secondary headings to denote examples and, in continuous text, for freely
selectable names and metavariables.

This character identifies very important information that it is essential that
you read.

The metalanguage used is described in chapter “Statement format and syntax” on page 7.

References to other publications, e.g. the manuals mentioned above, consist of an abbre-
viated title together with a number in square brackets. The appendix to each manual
contains a References section that lists these publications in ascending order by the
number in the brackets.

i

U5642-J-Z125-3-7600 7

2 Statement format and syntax

2.1 Format

DRIVE and SQL statements consist of the following elements:

– keywords
– names
– literals
– metavariables
– delimiters
– comments

Example

CYCLE cursor-name INTO variable WHILE char-name='literal' /*Loop*/

Keywords: CYCLE, INTO, WHILE

Names: cursor-name, char-name

Literals: literal

Metavariables: variable

Delimiters: blank, equals sign (=)

Comments: Loop

Keywords

Keywords are words that have to be specified as shown in the manual. A list of all the
keywords used in DRIVE/WINDOWS together with their abbreviations can be found in the
appendix.

Names

Names identify variable values that the user must replace with current values when entering
a statement.

8 U5642-J-Z125-3-7600

Format Statement format and syntax

Names can contain alphabetics, numerics and special characters provided that no special
restrictions are described.

Names containing alphabetics, numerics and underscore characters (_), do not need to be
specially marked. Names which additionally contain further special characters must be
enclosed in double quotes (").

Literals

Literals are constants that are passed to the language processor in the form
specified.Numeric literals are specified directly and hexadecimal literals are specified with
X'l iteral'.
Alphanumeric literals must be enclosed in single quotes.
In the case of date and time literals, you must specify whether the literal contains a date, a
time or a timestamp. In the case of interval literals, you must specify a unit for the time
range.

Any single quotes (') contained in literals must be cancelled by a second single quote.

Example

The literal "That's it" is expressed as follows:

'That''s it'

Metavariables

Metavariables are complex parts of statements that have been omitted from a statement to
facilitate comprehension. They are covered in a separate chapter (see chapter “DRIVE
metavariables” on page 271).

Delimiters

Delimiters must be specified between keywords, names, literals and metavariables in order
to uniquely identify them. The following can be used as delimiters:

– blank
– comma (,)
– concatenation operator ||
– all comparison operators = < > <= >= <>
– all arithmetic operators + - * / % **

A comment or an end-of-line character also acts as a delimiter outside strings enclosed in
single quotes (') or double quotes (").

U5642-J-Z125-3-7600 9

Statement format and syntax Format

Comments

A comment is introduced by the character string /* and terminated by the character string
*/. Any text may be written between these characters, even extending over more than one
line.

The character strings /* and */ do not indicate comments when they are enclosed in single
quotes (') or double quotes (").

10 U5642-J-Z125-3-7600

Statement syntax Statement format and syntax

2.2 Syntax

The following notation has been used for the formal representation of statements and
metavariables.

Formal
representation

Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote a keyword
which must be entered in the form
shown.

COLUMNS

Boldface Letters in boldface denote the
abbreviation for a keyword.

PERMANENT

Lowercase
letters

Lowercase letters denote a variable
for which you must enter the current
value.

LIBRARY=lib-name

() Parentheses are an integral part of
the statement.
Parentheses must be entered if a
value is shown in parentheses.

lib(member-name)
or
CONCAT (char-expression1,
 char-expression2)
or
ATTRIBUTE (attribute, ...)

{ } Braces are used to enclose units.
Braces are read from the inside
towards the outside.
Braces must not be entered.

STATUS={ OFF | ADD |
 REMOVE }
or
USING { [RETURN] [level]
 var-name data-type }, ...

[] Square brackets enclose optional
specifications.
Brackets are read from the inside
towards the outside.
Square brackets must not be
entered.

[set transaction]
or
[COBOL | C] TAC tacname

< > Angle brackets are an integral part
of the statement.
Angle brackets must be entered if a
value is shown in angle brackets.

aggregate=< {value | NULL}, ... >

| A vertical line separates alternative
operand values.

One of the alternatives shown in
braces must be entered.

LETTERS={ CAPITAL | BOTH |
 UNCHANGED }

U5642-J-Z125-3-7600 11

Statement format and syntax Statement syntax

... An ellipsis indicates that the variable
which immediately precedes the
ellipsis can be repeated several
times.

AT line ...

If the ellipsis is preceded by a unit
enclosed in brackets, the entire unit
must be entered.

USING { [RETURN] [level]
 var-name data-type }, ...

If a comma or semicolon precedes
the ellipsis, it must be specified in
each of the repetitions in order to
separate the specifications from
each other.

(attribute, ...)

Formal
representation

Meaning Example

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U5642-J-Z125-3-7600 13

3 DRIVE statements

ACQUIRE
Request memory area

This application is valid

– in the UTM start procedure as DRIVE start parameter

ACQUIRE is used to request dimensionable memory areas (= cache) for DRIVE UTM appli-
cations. These cache areas are used as buffers for internal, user-specific DRIVE infor-
mation and result in improved performance.

ACQUIRE MEMORY mlength USER n

mlength Size of a memory area in the cache, in Kbytes.

Value range: 0 < mlength < 2147483647.
mlength must be an integer.

The size of the cache in bytes is determined as:
n * mlength * 1024

This size is then rounded up to a whole multiple of:

– 64 Kbytes, if DRIVE/WINDOWS is loaded in the lower address
space (< 16 Mbytes)

– 1 Mbyte, if DRIVE/WINDOWS is loaded in the upper address
space (> 16 Mbytes)

If the same cache is to be accessed in mixed operation with DRIVE
V5.1, the total sizes must be the same.

14 U5642-J-Z125-3-7600

ACQUIRE DRIVE statements

n Number of DRIVE UTM users whose internal, user-specific DRIVE
information is to be simultaneously buffered in the common memory
pool (class 6 memory) between UTM dialog steps.
Value range: 0 < n < 32767.

Example

100 Kbytes of memory space is to be allocated to each of 15 DRIVE UTM users for
intermediate storage of user-specific data.

ACQUIRE MEMORY 100 USER 15

U5642-J-Z125-3-7600 15

DRIVE statements ADD BOX

ADD BOX
Output dialog box

This statement is valid

– in UTM mode but not in ansynchronous UTM mode and not in the receiving partner
environment in DTP mode

– in program mode

ADD BOX outputs a dialog box which you have previously created in IFG (see IFG [28]).

Any screen forms which have already been output (partial forms and dialog boxes) continue
to be displayed but are overlaid by the dialog box and are locked, i.e. the user cannot make
any input to these screen forms.

The last dialog box to be output is the current dialog box. Users can only input to the current
dialog box.

You may only enter the ADD BOX statement if an FHS-DE partial form has already been
ouput using the DISPLAY screenform statement as otherwise DRIVE/WINDOWS aborts
the program.

ADD BOX dialogbox
 [POSITION (line1 , column1)] [TO field1]
 [CURSOR { POSITION (line2 , column2) | TO field2 }
 [MESSAGE key[POSITION (line3 , column3) | TO field3]

dialogbox Name of the FHS-DE form (max. 7 characters).

The form must have been created in IFG and it must be intended for
display in a message box.

The form must be defined in the declaration section of the program
using the DECLARE SCREEN statement.

POSITION Specifies the position of the dialog box.

The position is specified using a starting or reference point
The starting point is the first character (top left) of the dialog box.
The reference point is the first character of field1 if field1 is specified
or, otherwise, the top left-hand corner of the dialog box/FHS-DE
partial form which is located under the current dialog box.

16 U5642-J-Z125-3-7600

ADD BOX DRIVE statements

If you do not specify POSITION or if you enter the value (0,0),
DRIVE/WINDOWS attempts to position the dialog box with the
default offset (+2,+2) to the reference point. If this is not possible,
the dialog box is moved so that it fits on the screen.

If you specify the POSITION but there is not enough space for the
dialog box at the defined position, UTM aborts the operation with
PEND ER.

line1 Line spacing between the reference point and the starting point of
the dialog box. line1 must be a whole number.

column1 Column spacing between the reference point and the starting point
of the dialog box. column1 must be a whole number.

field1 Field in the last FHS-DE form to be output (partial form and dialog
box). field1 must be a simple component of the associated screen
variable.

If variable is not a component of the screen variable of the last
screen form to have been output, UTM aborts the conversation with
PEND ER.

The first 8 characters of the field names in the last screen form to
have been output must differ in order to make the unambiguous
assignment of screen variable components possible.

CURSOR The cursor is set to a specific position in the dialog box.

You may not specify CURSOR unless the global attribute ““dialog
cursor position” was set for dialogbox in IFG (see IFG [28]).

POSITION Specifies the absolute position (line/column) of the cursor.

line2 Line (1 ≤ line2 ≤ number of screen lines). line2 must be a whole
number.

column2 Column (1 ≤ column2 ≤ number of screen columns). column2 must be
a whole number.

TO The cursor is set to the first character of field field2. In the case of
lists, the cursor is set to the first column and first line of the list area.

field2 Field in the dialog box which is to be output. field2 must be a
component of the screen variable for dialogbox.

The first 8 characters of the field names in the current dialog box
must differ to make the unambiguous assignment of screen variable
components possible.

U5642-J-Z125-3-7600 17

DRIVE statements ADD BOX

MESSAGE This outputs the FHS-DE message with the message key key which
you created with IFG along with the dialog box. Depending on the
IFG specification, output either takes place in a message box or in
a message area in the dialog box.

You may not specify MESSAGE unless the global attribute
“Message Identifier” was set for dialogbox in IFG (see IFG [28]).

key Message key of the FHS-DE message. You can specify key either
as a variable (see the metavariable variable) or as an alphanumeric
literal (see char-literal in the metavariable literal).

key must be specified in the form AAAAnnn, where A is a letter
(A-Z) and n is a digit (0-9). AAAA may not have the value IDHS.

POSITION Specifies the absolute position of the message box. The message
box is positioned with an additional offset (+2,+2) to line3, column3.

POSITION is only evaluated if the IFG specification stipulates that
the message is to be output in a message box.

If a message is intended for output in a message box and you have
not specified either POSITION or TO then the message is output in
the middle of the screen.

If a message box which has been positioned using MESSAGE
POSITION covers a cursor which has been set with CURSOR
POSITION then MESSAGE POSITION is ignored.

line3 Line (1 ≤ line3 ≤ screen lines). line3 must be a whole number.

column3 Column (1 ≤ column3 ≤ screen lines). column3 must be a whole
number.

TO Specifies that the message box is to positioned with the default
offset (+2,+2) to field3.

TO is only evaluated if the IFG specification stipulates that the
message is to be output in a message box.

If a message is intended for output in a message box and you have
not specified either TO or POSITION then the message is output in
the middle of the screen.

field3 Field in the dialog box which is to be output. field3 must be a
component of the screen variable for dialogbox.

The first 8 characters of the field names in the current dialog box
must differ to make the unambiguous assignment of screen variable
components possible.

18 U5642-J-Z125-3-7600

AT DRIVE statements

AT
Declare testpoint and operation

This application is valid

– in TIAM mode
– in debugging mode

The AT statement can be used to define testpoints and operations for a program in
debugging mode.

DRIVE/WINDOWS always assigns each user-defined testpoint to a statement of the DRIVE
program.

The AT statement refers either to the program which is currently running in debugging mode
or, in the library or member-name specification, to a subprogram from the DRIVE library.

If no operations are specified, the program halts at the testpoint (= implicit operation
[STOP]). The testpoint becomes the breakpoint. You can specify one of the following
debugging statements at breakpoints:

– AT
– BREAK
– BREAK DEBUG
– CONTINUE
– DISPLAY FORM
– DISPLAY LIST
– REMOVE
– SET
– TRACE

If the CONTINUE statement is entered, debugging is resumed.

Multiple operations may be specified for the same testpoint by using several AT statements.
When a testpoint is reached, the operations specified are processed in the following order:
first, all DISPLAY and SET statements are processed in the order in which they were
entered. Then, either the CONTINUE or the TRACE statement is processed, or the
program stops (= implicit [STOP]), depending on which statement was declared last. The
COUNT statement is not executed until the program statement associated with the testpoint
was completed without errors.

The operations CONTINUE, TRACE and [STOP] override each other.

Operations that remain valid for a testpoint are processed whenever the statement to which
the testpoint is assigned is executed.

U5642-J-Z125-3-7600 19

DRIVE statements AT

AT { [library(member-name) | member-name] { line ... | line1 - line2 | ALL } |

 * }

 [{ CONTINUE | COUNT | DISPLAY FORM | DISPLAY LIST | SET | TRACE } ...]

library Specifies the DRIVE library (max. 54 characters) from which the
program is read.

library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

If the DRIVE library has been predefined with the PARAMETER
DYNAMIC LIBRARY statement, library need not be specified.

member-name Name of the member (max. 31 characters) which contains the
program.

DRIVE/WINDOWS searches for the last member to have been
processed, irrespective of whether this contains a source
(S-member) or an intermediate code (X-member).

If you do not enter a library specification then the library specified in
PARAMETER DYNAMIC LIBRARY is used.

If you do not enter a member-name specification then the testpoint is
set in the program which is running in debugging mode.

* The specification * designates the last testpoint entered.

line Refers to a line number in the interpreter listing. An executable
statement for which a testpoint is set begins in this line.

Exception: no testpoint can be defined for the PROCEDURE
statement of the program called with DEBUG.

Multiple line numbers may be specified. If more than one statement
begins in a given line, a testpoint is declared for each such
statement.

20 U5642-J-Z125-3-7600

AT DRIVE statements

line1-line2 Refers to line numbers in the interpreter listing. A testpoint is
declared for every program statement that begins in a line of this
section.

line1 must be smaller than line2.

ALL A testpoint is declared for all executable program statements.

CONTINUE When the testpoint has been reached and all statements included
there have been executed, the program running in debugging mode
is continued.

COUNT A counter is declared for each program statement which corre-
sponds to a testpoint . This counter is initialized with the value 0 and
is incremented each time the statement is successfully executed.
Counter values are output in the debugging list at the end of the
debugging session. You can use the REMOVE statement to delete
counters.

DISPLAY FORM See the DISPLAY FORM statement. The identification of variables
using RETURN is ignored.

DISPLAY LIST See the DISPLAY LIST statement.

SET See the SET statement.

TRACE See the TRACE statement.

AT statements refer to the current program or subprogram. They are ineffective for
any successor programs which are called with DO.

Example

The "test" program is tested in debugging mode.

All the executable program statements are counted. The statements in lines 15, 17 and
20 to 55 of the interpreter listing for the main program, "test", are testpoints. The
variable &var1 is first set to 1, output at the printer and then the screen. The program
run is then continued.

At the statement in line 33 of the interpreter listing for the"test2" subprogram which is
located in the predefined library, the variable &subvar1 is set to 2 and output at a printer.

As of line 99 of the main program, "test", program tracing is activated and the debugging
run continues.

i

U5642-J-Z125-3-7600 21

DRIVE statements AT

DEBUG test; /* DRIVE halts at the first executable statement*/
 /* in the program body */
AT ALL COUNT;
AT 15 SET &var1 = 1
AT 17 DISPLAY LIST &var1
AT 20 - 55 DISPLAY FORM &var1
AT * CONTINUE
AT test2 33 SET &subvar1 = 2
AT test2 33 DISPLAY LIST &subvar1
AT 99 TRACE
CONTINUE /* Only now does the debugging run continue */
...

22 U5642-J-Z125-3-7600

BREAK DRIVE statements

BREAK
Clear screen or abort logical program unit

This application is valid

– in TIAM and UTM applications
– in interactive, program and debugging mode with distinct functions (v.i.)

BREAK has three different functions depending on the active mode:

– In interactive mode the function which is currently active is aborted and the screen is
cleared. If you specify BREAK as part of a nested program run, all the programs are
aborted and the system switches to interactive mode.

– In debugging mode, following BREAK, control is passed to the final breakpoint of the
program being tested (after the END PROCEDURE statement).

If a counter was declared (with the AT ... COUNT statement), the result list is displayed
after BREAK DEBUG. The system then exits debugging mode and switches to inter-
active mode.

– In program mode, BREAK aborts logical program units (a loop, a branch, a program, a
program hierarchy, an internal subprogram).

There are two other ways to abort a program:

– by assigning the BREAK function to a K key (the default is the K1 key), or

– by entering the BS2000 command SEND-MESSAGE TO=PROGRAM,MESSAGE=BREAK
(This method is only possible in TIAM mode).

BREAK [CYCLE | DEBUG | PROCEDURE | SUBPROCEDURE]

CYCLE A loop is aborted and the program continues with the statement
following the corresponding END CYCLE.

An implicit CLOSE cursor-name is executed if BREAK CYCLE is
specified within a cursor loop (CYCLE cursor-name ... through END
CYCLE).

BREAK CYCLE must appear within cycle boundaries (CYCLE
through END CYCLE). A BREAK CYCLE within an internal
subprogram cannot abort a loop in the calling program.

U5642-J-Z125-3-7600 23

DRIVE statements BREAK

DEBUG The BREAK DEBUG statement is only permitted in debugging
mode. Following this statement, the result list is output, debugging
mode is aborted and the system switches to interactive mode.

PROCEDURE A program is aborted.

If the program was called with CALL, control returns to the calling
program and processing continues with the statement following the
CALL.

If the program was called with DO, DRIVE/WINDOWS switches to
interactive mode. All necessary resources are freed and all open
transactions are reset. It is not possible to restart the program.

If BREAK PROCEDURE is specified within a nested program
sequence, only the current program level is aborted. A BREAK
PROCEDURE within an internal subprogram has the same effect as
END PROCEDURE. The same rules apply (see the END
statement).

If BREAK PROCEDURE is specified for a program called with DO,
DRIVE/WINDOWS closes all files opened with the OPEN FILE
statement. If BREAK PROCEDURE is specified for a program
called with CALL, files opened with the OPEN FILE statement
remain open.

BREAK PROCEDURE may not occur within a DISPATCH block.

SUBPROCEDURE An internal subprogram is aborted and processing continues with
the statement following the CALL in the calling program. The calling
program may likewise be an internal subprogram.

BREAK SUBPROCEDURE must be specified as a static statement
within subprogram boundaries (SUBPROCEDURE through END
SUBPROCEDURE).

24 U5642-J-Z125-3-7600

BREAK DRIVE statements

Rules for database access

The following rules apply to BREAK DEBUG:

– If any transaction is still open, DRIVE/WINDOWS resets it and issues message
DRI0101.

– If any temporary SQL objects which have been defined in program mode (program
cursor or temporary views) are present, they are deleted by DRIVE/WINDOWS.
DRIVE/WINDOWS issues the message DRI0150 if it is unable to delete an SQL object.

– If dynamic, temporary views are present when SESAM V2.x is accessed,
DRIVE/WINDOWS deletes them and issues message DRI0488.

– When accessing SESAM V2.x, DRIVE/WINDOWS issues a SET SESSION, SET
CATALOG and SET SCHEMA statement. The operands for these statements are
defined in the previous PARAMETER DYNAMIC AUTHORIZATION, PARAMETER
DYNAMIC CATALOG and PARAMETER DYNAMIC SCHEMA statements respectively.

U5642-J-Z125-3-7600 25

DRIVE statements CALL

CALL
Call subprograms

This application is valid

– in TIAM and UTM mode
– in program mode

CALL is used within a program to call both internal and external subprograms.

The calling program is interrupted, and the subprogram is executed. Subsequently, control
returns to the calling program, and processing continues with the statement that immedi-
ately follows the CALL.

An internal subprogram is a named sequence of DRIVE statements that may be called
within a DRIVE program as often as desired. Other internal subprograms may only be
called within an internal subprogram if they have been previously defined.

An external subprogram is an independent program which can be called by other programs
as often as required. External subprograms can be written in DRIVE/WINDOWS (new style
or old style) or in another programming language (e.g. COBOL or C). They may also take
the form of UTM program units which are called with the transaction code.

Irrespective of the programming language used, external subprograms can be located
locally or on a remote system. Depending on the distribution information specified in
PARAMETER DISTRIBUTION, DRIVE/WINDOWS searches for a program in the local
system or remote system if OPTION DISTRIBUTION is set to ON. CALL statements which
call external subprograms in remote systems are referred to as remote CALL statements.

DRIVE programs in a remote system must not contain the following statements:

– CALL ... TAC (if the UTM subprogram is to be executed on the local system)
– COMMIT WORK WITH DISPLAY
– COMMIT WORK WITH SEND MESSAGE
– DISPLAY
– DO
– FILL
– ROLLBACK WORK WITH RESET
– SEND MESSAGE
– STOP WITH DISPLAY
– STOP WITH char-expression

External DRIVE subprograms can be available as intermediate code or as source code.
DRIVE/WINDOWS searches for the most recently processed program with the specified
name, irrespective of whether it is available as source code or intermediate code. If inter-
mediate code is found, no syntax or semantic checks are performed (see DO statement).

26 U5642-J-Z125-3-7600

CALL DRIVE statements

If CALL ... is specified without a library, DRIVE/WINDOWS searches for an internal
subprogram with the specified name in the current program (CALL subprogram-name) when
the source is compiled.
If there is no internal subprogram with the specified name, then at runtime
DRIVE/WINDOWS searches for a member in the library specified in the PARAMETER
DYNAMIC LIBRARY statement (CALL member-name). If no member having this name
exists, the program is aborted.

Within an EXECUTE statement, the CALL ... statement without a library specification calls
an external DRIVE subprogram.

Recursive program calls are not permitted and cause the program to abort.

CALL { subprog-name |
 library(member-name) |
 member-name |
 [COBOL | C | PASCAL] { MODULE module-name | TAC tac-name }

 [USING { [RETURN] { expression | NULL }
 [INIT expression [NOCHECK]] [INDICATOR] }, ...] }

subprog-name Name of an internal subprogram (max. 31 characters). The
subprogram must be defined in the current calling program with
SUBPROCEDURE subprog-name.

You may not specify a USING clause in CALL subprog-name.

library Specifies the DRIVE library (max. 54 characters) from which the
subprogram is read. library can also be the file link name of the
DRIVE library (in accordance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

If the DRIVE library has been preset for the (local or remote) system
using the PARAMETER DYNAMIC LIBRARY statement, you may
omit the library specification.

U5642-J-Z125-3-7600 27

DRIVE statements CALL

member-name Name of the member (max. 31 characters) which contains the
subprogram.

DRIVE/WINDOWS searches for the last member to have been
processed, irrespective of whether this contains a source
(S-member), an intermediate code (X-member) or an object code
(R-member).

member-name can be an old style program which was created using
DRIVE V5.1. Please refer to the DRIVE Programming Language [2]
manual for notes on calling old style programs.

The system only checks whether the PARAMETER DISTRIBUTION
statement was used to define distribution information if the compiler
option OPTION DISTRIBUTION=ON was defined.

A local or remote program is called in accordance with the distri-
bution information. If no distribution information has been defined
with the PARAMETER DISTRIBUTION statement, the system
searches for the program locally.

If you do not make a library specification, then the system uses the
library which has been preset for the (local or remote) system using
PARAMETER DYNAMIC LIBRARY.

COBOL Default

Language option for calling a subprogram written in COBOL or a
UTM program unit.

C Language option for calling a subprogram written in C or a UTM
program unit.

module-name Name of the subprogram (max. 8 characters) which is called
(applies only to external subprograms written in other programming
languages).

The external subprogram be present in the library with the file link
name USEROML. This library is automatically used if no other
library has been specified with the PARAMETER DYNAMIC
LIBRARY statement.

The external subprogram must not contain any database state-
ments (SESAM/UDS). Parameters are exchanged via a parameter
transfer area (see the DRIVE Programming Language manual [2]).

28 U5642-J-Z125-3-7600

CALL DRIVE statements

tac-name Name of the transaction code (max. 8 characters) of a user-specific
UTM program unit. The UTM program unit may form part of the local
or of a remote UTM application. The UTM statement can run under
SINIX or BS2000.

tac-name must not have the prefix dri, drt or drc. These names are
reserved for DRIVE/WINDOWS.

When you call a user-specific UTM program unit, you must specify
the programming language in which it was written.

The system does not check to determine whether distribution infor-
mation has been defined using the PARAMETER DISTRIBUTION
statement unless you have specified the OPTION
DISTRIBUTION=ON compiler option. A remote UTM program unit
is called as specified in the distribution information. If you do not
specify any distribution information with PARAMETER
DISTRIBUTION then the system searches for the UTM program
unit locally.

In TIAM mode, CALL TAC is ignored.

USING Enables parameters to be passed from the calling program to the
called program. The parameters must be compatible (see the
DRIVE Programming Language manual [2]). If this is not the case,
in debugging mode, the user is prompted for parameters when an
external DRIVE program is called (CALL [(library)]member-name)
(see the DRIVE Programming Language manual [2]).

If CALL MODULE ... USING or CALL TAC ... USING is specified, the
total length of the data values passed must not exceed 31 Kb. There
is no restriction when calling external DRIVE subprograms in local
systems.

If the external subprogram is a DRIVE program, it must have been
defined with PROCEDURE...USING...; otherwise, the program is
aborted.

If the external subprogram is a UTM program unit, the passed
parameters are placed in the message area. The UTM statement
MGET requests the passed data from UTM for the program unit
(see the DRIVE Programming Language [2] manual).

The rules described in the DRIVE Programming Language [2]
manual apply to external subprograms written in other programming
languages.

USING is not permitted when calling an internal subprogram (CALL
subprog-name).

U5642-J-Z125-3-7600 29

DRIVE statements CALL

RETURN Identifies the parameters to be returned to the calling program. In
the case of external subprograms in DRIVE, the called program
must have been defined with PROCEDURE...RETURN... . If no
RETURN clause was specified with PROCEDURE, the program is
aborted.

In the case of external subprograms in other programming
languages, the values stored by the subprogram in the parameter
transfer area are passed to the RETURN parameters.

If the external subprogram is a UTM program unit, the data values
placed in the message area by that program unit are transferred to
the RETURN parameters (see the section on distributed transaction
processing in the DRIVE Programming Language [2] manual).

A variable identified with RETURN may only be specified once in
the USING clause.

expression Specifies the parameters to be passed (send fields).

Variables (including structured variables), vectors, matrices, aggre-
gates, literals and arithmetic expressions can be passed to external
subprograms in DRIVE/WINDOWS.

Variables (including structured variables), vectors, matrices, literals
and arithmetic expressions can be passed to external subprograms
in the remote system in DRIVE/WINDOWS.

Variables (including structured variables), vectors and matrices can
be passed to external subprograms written in other programming
languages (CALL MODULE) as well as to transaction codes (CALL
TAC). expression must be a variable (see the metavariable variable).

The INDICATOR clause must be specified if expression has the value
NULL with CALL MODULE or CALL TAC. If this is not the case, the
program is aborted.

If RETURN or INIT is specified, expression must be a variable.

NULL The NULL value is passed to the subprogram.

NULL is not permitted for CALL MODULE or CALL TAC.

INIT INIT is used to assign a value to expression. If expression is a vector
or matrix, all the components receive the value literal.

expression1 expression1 may only contain literals, NULL or functions whose
arguments are literals (not CURRENT DATE/TIME/TIMESTAMP).
This means that expression1 must be able to be calculated at compi-
lation time.

30 U5642-J-Z125-3-7600

CALL DRIVE statements

NOCHECK Specifies that expression1 is not to be checked for any existing
CHECK clause which apply to expression.

INDICATOR INDICATOR is used to create an indicator variable. The value of the
indicator variable specifies whether the transfer parameter contains
the null value or a defined value. The INDICATOR specification is
only permitted with CALL MODULE and CALL TAC.

Example

The external DRIVE subprogram "empcorr", located in the preset library is called. the
parameter &cmp1 is passed to the subprogram.

CALL empcorr USING &cmp1;

Relationship to other statements

– CALL statements that call a UTM program unit (CALL TAC) are not permitted in
programs started with ENTER.

– CALL statements which call an old style program are not permitted in programs which
are started with ENTER.

– Remote CALL statements within a dispatch block are executed simultaneously, not
sequentially (see the DISPATCH statement).

– Remote CALL statements are not permitted in programs started with ENTER.

– If the subprogram was compiled with the compiler option OPTION OBJECT=ON, no
library may be specified when calling the program.

– If a program was compiled with the compiler option OPTION DISTRIBUTION= ON,
DRIVE/WINDOWS searches for a program in the local or remote system in accordance
with the distribution information.

U5642-J-Z125-3-7600 31

DRIVE statements CALL

Access rules for databases

The following rules apply for subprograms called in the local system:

– If different database systems are assigned to the calling program and subprogram
called (DBSYSTEM ≠ OFF), then the CALL statement is aborted. You can only assign
different database systems if CALL calls intermediate code or object code which was
generated using another database system in a previous DRIVE session.

– If the SESAM V2.x database system is assigned to the calling program and subprogram
called (DBSYSTEM = SESAMSQL), the CALL statement is only executed if there is no
transaction open for the calling program or if intermediate code has been generated for
the subprogram called. It should be noted that DRIVE/WINDOWS always uses the last
member to have been processed, irrespective of whether this contains a source
(S-member), an intermediate code (X-member) or an object code (R-member).

– If a database system is assigned to the calling program (DBSYSTEM ≠ OFF) and not
to the subprogram called (DBSYSTEM = OFF), the subprogram called accesses the
same database system as the calling program.

– If a BS2000 database system is assigned to the called subprogram
(DBSYSTEM = UDS / SESAM / SESAMSQL), the CALL statement is only executed if
this database system matches the loaded variant.

– If the called subprogram is an old style program, the CALL statement is aborted if the
UDS database system is assigned to the calling program (DBSYSTEM = UDS).

– If the called subprogram is an old style program, the CALL statement is only executed
if there is no (new style) transaction open for the calling program.

32 U5642-J-Z125-3-7600

CASE DRIVE statements

CASE
Program conditional branches

This application is valid

– in TIAM and UTM mode
– in program mode

CASE indicates the start of a CASE block. The end of the block is indicated by END CASE.
The first statement after CASE must be an OF statement. The sequence of statements
following an OF statement through to the next OF statement or, if there is no further OF
statement, through to END CASE is known as an OF branch.

Conditional branches are defined within a CASE block. This involves comparing values with
patterns defined in the OF branches. If the comparison returns the truth value TRUE,
DRIVE/WINDOWS branches to the subsequent statements in the OF branch.

Statements with CASE can be nested as often as required, i.e. CASE ... END CASE can
also occur within the OF branches. CASE, IF and CYCLE can be nested, but must not
overlap.

Within a program, the statement CASE [ALL] [expression1] must be followed by a
semicolon.

CASE [ALL] [expression1]
 { OF { expression2, ... | condition | REST } [programming ...] } ...

ALL ALL executes all OF branches for which the corresponding
condition is found to be TRUE.

expression1 The condition expression1=expression2 is formed from expression1
and expression2 and then evaluated. If the truth value TRUE is
returned, the statements in the OF branch are executed.

If expression1 is not specified, the OF statement must contain a
condition.

The value of expression1 is calculated. It remains constant until the
END CASE statement is reached.

The equals sign is used as the comparison operator.

i

U5642-J-Z125-3-7600 33

DRIVE statements CASE

OF Either a condition is evaluated or expression2 and expression1 are
combined using an equals sign to form a condition which is then
evaluated.

If you did not specify ALL and the comparison returns the value
TRUE, the OF branch is executed and the program branches to
END CASE.

If you specified ALL and the comparison returns the value TRUE,
the OF branch is executed and the program branches to the next
OF branch (if there is one).

If none of the comparisons return the value TRUE, DRIVE/
WINDOWS executes the statements following REST or, if REST
was not specified, terminates the branch at END CASE.

expression2 If more than one expression has been specified with OF, the results
of the individual comparisons of expression1 with expression2 are
ORred and then checked for the truth value (TRUE or FALSE).

condition If the comparison with condition returns the value TRUE, the OF
branch is executed.

condition must not contain a column (see the column metavariable in
the SQL Directories [8-11]).

REST OF REST is used to evaluate the results of previous OF branches.
OF REST applies if all previous conditions of the OF statements
resulted in FALSE. The statement may occur only once and must be
the last OF branch.

programming See the metavariable programming

34 U5642-J-Z125-3-7600

CASE DRIVE statements

Example

The variable &cross is defined as a vector with a repetition factor of 3. The program
checks whether &cross(1), &cross(2) or &cross(3) contains a value other than ' ' (i.e.
whether an entry has been made).
Depending on the component for which an entry has been made, one of the subpro-
grams "terminate", "display" or "reminder" is called.
If no entry has been made, the message "Input please (DUE) " is outputein Meldungs-
fenster ausgegeben.

...
DECLARE VARIABLE &cross(3) CHAR (1);
...
CASE;
 OF &cross(1) <> ' ' CALL terminate;
 OF &cross(2) <> ' ' CALL display USING &database, &project, &delay;
 OF &cross(3) <> ' ' CALL reminder USING &database, &project;
OF REST SEND MESSAGE ‘Input please (DUE)‘ WAIT;
END CASE;
...

Defining error exits

If an error occurs during comparisons or calculations, a branch is made to END CASE and,
if applicable, WHENEVER is evaluated. Execution errors in DRIVE statements within OF
branches are treated as described for the individual statements.

U5642-J-Z125-3-7600 35

DRIVE statements CLEAR

CLEAR
Reset variable or DRIVE form

This application is valid

– in TIAM and UTM mode
– in program mode

CLEAR sets variables to their starting values and deletes DRIVE forms which have not yet
been output (DECLARE FORM), with the exception of the page header and footer.

In particular, CLEAR can be used to reset the contents of input and output fields. You can
reset input and output fields either individually or in groups. The statement also applies to
screen variables (CLEAR screenvariable).

Variables are reset to the INIT value declared in DECLARE VARIABLE.

If you did not declare an INIT value when you declared the variables, the variable is set to
the initial value for the relevant data type when the CLEAR statement is executed (see
DRIVE Programming Language [2]). Variables with a time or date data type which have
been declared as TEMPORARY are in this case assigned the current date (CURRENT
DATE), the current time (CURRENT TIME) or the current timestamp (CURRENT
TIMESTAMP).

The following applies to DRIVE forms: All FILL statements for the specified form which have
not yet been output using DISPLAY are reset. This means that the statement sequence

DECLARE FORM name ...
...
FILL name ...
FILL name ...
CLEAR name
DISPLAY name ...

results in the output of a form which contains only the page header and footer declared in
DECLARE FORM (TTITLE and BTITLE) but which is otherwise empty.

CLEAR has no effect on an implicit DISPLAY resulting from a screen overflow in a FILL
statement.

CLEAR { variable | form-name }, ...

36 U5642-J-Z125-3-7600

CLEAR DRIVE statements

variable Name of the variable to be reset.

The name must refer to a variable which is valid in the current
program unit (see DRIVE Programming Language [2]).

form-name Name of the DRIVE form which is to be reset and which has been
declared in DECLARE FORM.

U5642-J-Z125-3-7600 37

DRIVE statements CLOSE FILE

CLOSE FILE
Close file

This application is valid

– in TIAM and UTM mode
– in program mode

CLOSE FILE closes an open file.

CLOSE FILE file

file Logical name of a file (max. 31 characters).

The file must have been defined with this name in the program using
the DECLARE FILE statement.

Special characteristics in UTM mode

– ISAM files with the attribute SHARED-UPDATE=YES are not closed until the UTM
application terminates.

– Files opened using "INPUT" are not closed until the UTM application terminates.

– Files are closed on screen display (e.g. DISPLAY ..., SEND MESSAGE, = end of dialog
step) and re-opened in the next dialog step if necessary. In such cases,
DRIVE/WINDOWS monitors the current file position.

38 U5642-J-Z125-3-7600

COMPILE DRIVE statements

COMPILE
Compile program

This application is valid

– in TIAM and UTM mode
– in interactive mode

COMPILE is used to check a source program for syntax and semantic errors. Options for
controlling compilation can be specified (e.g. that the intermediate code generated in an
error-free compiler run is to be stored in the DRIVE library). The options specified with
COMPILE overwrite those in the source program.

An interpreter listing is generated when the source program is compiled. The option
OPTION LISTING=LIST/LIBRARY/BOTH controls the output of this listing which consists of

– a header (member name, library name, date and time of the check),

– the source listing. This contains all source statements and the resolution of all the
COPY members, USE members and EUA forms which are present.

– an overview of the compiler options, the number of errors, and the size of objects.

If errors occur during compilation, error messages are additionally entered in the source
listing.

A program can only be compiled if no transaction is open.

If COMPILE identifies errors in a source program located in EDT work file 0, no error list is
generated. At the next EDT statement, the error messages are inserted into the source
program contained in EDT work file 0 (see the EDT statement). The interpreter listing is
written to EDT work file 9.

If COMPILE is specified without operands, the source program located in EDT work file 0
is checked. The OPTION entries LISTING=LIBRARY and CODE=ON are not evaluated in
this case and are skipped without warning.

U5642-J-Z125-3-7600 39

DRIVE statements COMPILE

COMPILE [library1(member-name1) | member-name1]

 [INTO { library2(*) | library2(member-name2) | member-name2 }]

 [OPTION]

library1 Specifies the DRIVE library (max. 54 characters) from which the
source program to be compiled is read.

library1 may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library1 first as a file link name, then
as a library name.

If the DRIVE library has been preset using the PARAMETER
DYNAMIC LIBRARY statement, you can omit the library1 specifi-
cation.

member-name1 Specifies an S-type member (max. 31 characters) to be compiled.

If there is no library1 specification, the library which has been preset
in PARAMETER DYNAMIC LIBRARY is used.

An error message is issued if member-name1 is not present in the
specified DRIVE library.

If you do not specify member-name1 then the source which is present
in EDT work file 0 is analyzed and compiled.

INTO INTO identifies the members and DRIVE libraries to which the inter-
mediate code, object code, or interpreter listing is written if
CODE=ON, OBJECT=ON, or LISTING=LIBRARY has been
specified with OPTION.

With the option CODE=ON, a member of type X is created,
containing the generated intermediate code.

With the option OBJECT=ON, a member of type R is created,
containing the object code.

With the option LISTING=LIBRARY or =BOTH, a member of type P
is created, containing the interpreter listing.

40 U5642-J-Z125-3-7600

COMPILE DRIVE statements

The following applies if the INTO clause is not specified:

Members of type X and P are overwritten in the library named in
library1 or in the current DRIVE library. Members of type R are
stored in library1 under a name that is constructed from the first 4
and last 3 characters of member-name1 (4-3 rule); invalid characters
are replaced by #.

library2 Specifies the DRIVE library (max. 54 characters) to which the
generated intermediate code, object code, or interpreter listing is
written.

library2 may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

If library2 is not specified, library1 is used.

* The member containing the intermediate code, object code or inter-
preter listing is assigned the name member-name1.

member-name2 Specifies the member containing the intermediate code, object
code or interpreter listing.

The name for members of type X or P must not exceed 31
characters; the maximum length for members of type R is 7
characters. If the name for an R-type member exceeds 7
characters, it is reduced by applying the 4-3 rule. Invalid characters
are replaced by #.

If you do not specify library2, member-name2 is saved in library1.

If you do not specify either library1 or library2 then the library
specified in PARAMETER DYNAMIC LIBRARY is used

OPTION Specifies the desired options (see the OPTION statement).

U5642-J-Z125-3-7600 41

DRIVE statements COMPILE

Examples

The source with the name "prog1" is read from the current DRIVE library and compiled.
The intermediate code is stored under the same name in the current DRIVE libary.

COMPILE prog1 OPTION CODE=ON

The source with the name "prog1" is read from the current DRIVE library and compiled.
The intermediate code is stored under the name "prog2" in the current DRIVE library.

COMPILE prog1 INTO prog2 OPTION CODE=ON

The source with the name "prog1" is read from the DRIVE library "lib1" and compiled.
The intermediate code is stored under the name "prog2" in the DRIVE library “lib2”.

The specification "lib1" must not be omitted, because the DRIVE library was not defined
with the PARAMETER DYNAMIC LIBRARY statement.

COMPILE lib1(prog1) INTO lib2(prog2) OPTION CODE=ON

The source with the name "prog1" is read from the current DRIVE library and compiled.
The interpreter listing is stored under the name "list" in the DRIVE library "lib2".

COMPILE prog1 INTO lib2(list) OPTION LISTING=LIBRARY

The source with the name "prog1" is read from the current DRIVE library and compiled.
The interpreter listing is stored under the name "list" in the DRIVE library "lib2". At the
same time, the interpreter listing is output to SYSLIST in TIAM mode or to the central
print file in UTM mode.

COMPILE prog1 INTO lib2(list) OPTION LISTING=BOTH

42 U5642-J-Z125-3-7600

CONTINUE DRIVE statements

CONTINUE
Continue loop cycle or debugging run

This application is valid

– in TIAM and UTM mode
– in program and debugging mode with distinct functions (v.i)

CONTINUE has different functions depending on the mode:

– In program mode, CONTINUE CYCLE embedded in a statement sequence enclosed
between CYCLE ... END CYCLE can be used to jump prematurely to END CYCLE.

– In debugging mode, program execution is continued (in debugging mode) after
CONTINUE.

You may only specify the CONTINUE statement without the CYCLE operand in debugging
mode.

CONTINUE [CYCLE]

CYCLE CONTINUE CYCLE is only permitted in program mode and must be
within a cycle (CYCLE ... END CYCLE).

The loop is repeated or terminated, depending on the condition
defined for it.

U5642-J-Z125-3-7600 43

DRIVE statements COPY

COPY
Insert copy member

This application is valid

– in TIAM and UTM mode
– in interactive and program mode with distinct functions (v.i)

COPY is used to insert copy members into a program. These consist of a sequence of
statements or parts of statements and must be stored in a DRIVE library (see the DRIVE
Programming System [1] manual). Statement units can be concatenated as COPY
members to form a complete statement. COPY members may be located in either the
declaration section or the program body.

Copy members may not be nested, i.e. copy members may not include COPY statements.

In program mode, COPY members are copied to the source during compilation. The usual
source restrictions apply (e.g. program structure).

In interactive mode, only the first statement in the specified copy member is output at the
terminal. The statement may be modified and then executed.

COPY { library(member-name) | member-name }

library Specifies the DRIVE library (max. 54 characters) from which the
copy member is read.

library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

You can omit the library specification if the DRIVE library has been
preset in the PARAMETER DYNAMIC LIBRARY statement.

member-name Specifies the copy member (max. 31 characters). The copy member
of type S is copied from the specified DRIVE library.

member-name must be specified, otherwise an error message is
issued.

If you do not specify library, the library specified in PARAMETER
DYNAMIC LIBRARY is used.

44 U5642-J-Z125-3-7600

COPY DRIVE statements

An error message is output if the COPY member is not present in
the DRIVE library.

Example 1

The COPY member "MITVAR" from the "DRI.LIB" library is inserted into a program.

COPY "DRI.LIB"(MITVAR)

Example 2

A select-expression completes a cursor declaration as COPY member "select1".

DECLARE c1 CURSOR FOR COPY select1;;

– The first semicolon terminates the COPY statement
– The second semicolon terminates the DECLARE statement

If the copy member "select1" has the contents:

SELECT * FROM tab1 WHERE ...

the result is:

DECLARE c1 CURSOR FOR SELECT * FROM tab1 WHERE ...;

U5642-J-Z125-3-7600 45

DRIVE statements CYCLE

CYCLE
Program loop

This application is valid

– in TIAM and UTM mode
– in program mode

CYCLE marks the beginning of a CYCLE block whose end is defined with END CYCLE. A
loop in a CYCLE block can be traversed any number of times or until a terminating condition
is met.

A loop which accesses a cursor (CYCLE cursor-name) is executed until the end of the
cursor table has been reached. This statement is a simple method of processing all the
rows of a cursor table.

If CYCLE is specified without operands, it defines an endless loop which can be terminated
only with BREAK CYCLE or by aborting the program.

Loops can be nested to any depth. The only restriction is the amount of memory required
by DRIVE/WINDOWS for processing.

Loops, conditions (IF) and branches (CASE) may likewise be nested, but are not permitted
to overlap.

A semicolon must follow the CYCLE statement in a program.

CYCLE [cursor-name INTO variable, ... |

 WHILE condition |

 FOR variable1=value-expression1 [BY value-expression2] TO value-expression3]

cursor-name Name of a cursor. The cursor must have already been declared and
closed.
CYCLE cursor-name is simply an output function. If no row is found,
running the loop is no longer useful. The loop is terminated and the
cursor is closed.

i

46 U5642-J-Z125-3-7600

CYCLE DRIVE statements

INTO Causes a row to be transferred from the cursor table cursor-name to
variable at the beginning of each cycle. The loop is traversed as long
as there are entries in the cursor table.

The cursor is opened at the start of the first cycle. It is then
positioned at the next row in the cursor table and the variable is
supplied with values from these columns. The loop is terminated
when the last row in cursor-name is reached. The cursor is closed at
"TABLE END" or following BREAK CYCLE.

The CYCLE ... INTO statement implicitly executes all SQL calls.
These must be formulated explicitly in a 3GL environment (OPEN,
FETCH and CLOSE).

If WHENEVER was used to define an error exit ≠ CONTINUE for
"TABLE END", it is not executed if the event "TABLE END" occurs
with CYCLE cursor-name INTO variable,... .

variable Name of a variable.

WHILE If WHILE is specified, the loop is traversed so long as condition
returns the true value.

condition Condition(s) to be applied to data values.

At the beginning of each cycle, a check is made to see if condition is
still met. The loop is traversed as long as condition returns the true
value. condition may not contain expression or *.

FOR At the beginning of each loop the value of value-expression1 is
assigned to variable1. Before the loop is traversed for the first time,
a check is run to see if the new value of variable1 is smaller than or
equal to value-expression3 (greater than or equal to if value-
expression2 has a negative value). If this is the case, the sequence
of statements between CYCLE FOR and END CYCLE is
processed. If not, the loop is ended with END CYCLE.

Before any further loop, the value of value-expression is added to
variable1 and the comparison with value-expression3 is carried out
again.

If errors occur while the values are calculated and compared, the
loop is ended and a branch is made to END CYCLE. From this
point, it may be possible to handle the error with WHENEVER.

-expr1 and the result of the increment before every loop must be
compatible with variable1.

U5642-J-Z125-3-7600 47

DRIVE statements CYCLE

variable1 variable1 controls the FOR loop. variable1 must not be structured,
indexed, redefined or redefining. Only the data types NUMERIC,
DECIMAL, INTEGER, SMALLINT, EXTENDED DECIMAL or XDEC
are permitted.

An explicit DRIVE statement (e.g. SET or RETURN clause for an
input/output) must not assign a value to variable1 within the loop.
variable1 cannot be used again as the controlling variable within the
current loop.
If the FOR loop is ended as it reaches value-expr3 or BREAK
CYCLE, variable1 holds the most current data value. This value may
be different from value-expr3.

value-expr1 Specifies the start value of the FOR loop. If the value of value-expr1
at the start of the FOR loop is the null value, the loop is ended with
END CYCLE.

BY value-expr2 Specifies the increment for the FOR loop. value-expr2 may not have
the value 0.
If value-expr2 has the null value, the FOR loop is aborted with an
error message.
At the beginning of the loop the current sign of value-expr2 deter-
mines the direction of the FOR loop for the entire loop. The value of
value-expr2 is constant for this time.

TO value-expr3 Specifies the end value of the FOR loop. If the value of value-expr3
at the start of the FOR loop is the null value, the loop is ended with
END CYCLE.
The value of value-expr3 remains constant for the entire loop.

If CYCLE is used to process a cursor, COMMIT WORK is only permitted if the
cursor was saved and restored with STORE and RESTORE, respectively. i

48 U5642-J-Z125-3-7600

CYCLE DRIVE statements

Defining error exits

Defining an error exit with WHENEVER is the only way to avoid a program abortion due to
a semantic error identified during loop evaluation. It must be defined in the declaration
section. The program is continued in accordance with the error exit defined with
WHENEVER following END CYCLE (see the WHENEVER statement).

Example 1

All the rows in cursor table "cr" are transferred to the variable &var until the end of the
cursor table has been reached (&DML_STATE='TABLE END'):

CYCLE cr INTO &var.*;
/* Processing */
...
END CYCLE; /* CYCLE End of cursor */

The system variable &ERROR_STATE='OK' is set.

The statements shown implicitly contain the following sequence of statements:

OPEN cr;
CYCLE;
FETCH cr INTO &var.*;
IF &DML_STATE='TABLE END'
 THEN
 BREAK CYCLE;
END IF;
/* Processing */
...
END CYCLE;
CLOSE cr;

DRIVE/WINDOWS closes the cursor (CLOSE cr) and the STATUS returned by the
CLOSE operation is passed to the system variable &ERROR_STATE.

Notes on the example:

– The loop must not contain a transaction variable.
– If a cursor is opened and no rows are found, the processing part of the loop is not

executed.

U5642-J-Z125-3-7600 49

DRIVE statements CYCLE

Example 2

All rows in the "print-cursor" cursor table are to be transferred to the variable &printrow.*
until the end of the table is reached. The output fields of the list form "personnel" are to
be filled with this data.

CYCLE print-cursor INTO &printrow.*;
 FILL personnel TABLE NAMES &printrow.*;
END CYCLE;

Example 3

A loop is used to assign the value NULL to all the fields of the vector &language(5).

SET &index = 1;
CYCLE WHILE &index <= 5;
 SET &language(&index) = NULL;
 SET &index = &index + 1;
END CYCLE;

Example 4

Example 4 behaves in the same way as example 3.

CYCLE FOR &index=1 TO 5;
 SET &language(&index) = NULL;
END CYCLE;

Example 5

A loop is used to assign the value NULL to the last four fields of the vector &month(12).

CYCLE FOR &index=12 BY -1 TO 9;
 SET &month(&index) = NULL;
END CYCLE;

Example 6

The following loop is not executed, since the termination condition
value-expression3 > &index is already fulfilled before the first iteration, where 12 > 10.

CYCLE FOR &index=10 BY -1 TO 12;
 SET &month(&index) = NULL;
END CYCLE;

50 U5642-J-Z125-3-7600

CYCLE DRIVE statements

Example 7

The screen form "form1" continues to be output and the variable &article.* continues to
be entered as a record in the table "v_article" as long as the system variable &KFKEY
has the value 'K3' (i.e. until the K3 key is pressed).

PARAMETER KFKEY = 'K3';
...
CYCLE;
 DISPLAY form1;
 IF &KFKEY = 'K3'
 THEN BREAK CYCLE;
 ELSE INSERT INTO v_article VALUES (&article.*);
 ...
 END IF;
END CYCLE;

U5642-J-Z125-3-7600 51

DRIVE statements DEBUG

DEBUG
Start program and switch to debugging mode

This application is valid

– in TIAM mode
– in interactive mode

The DEBUG statement can be used to switch to debugging mode and to start a DRIVE
program (with subprogram) or an external DRIVE subprogram under the control of the
debugger, thus enabling a controlled analysis and execution of the program.

For this to be possible, the program must have been compiled and an interpreter listing
must be available.
If there is no intermediate code corresponding to the source, DEBUG causes implicit compi-
lation to be performed. However, no interpreter listing is implicitly created. Instead, it must
be created using, for example, the statement OPTION LISTING=LIBRARY.

Debugging mode does not modify program processing. Nevertheless, it is possible to
interrupt program execution and perform certain operations (see below). In this way, the
debugging mode allows you to detect and locate program errors and determine their cause.

On starting the debugging mode, an initial breakpoint is automatically set after the
PROCEDURE statement of the program started with DEBUG.

As soon as the prompt (*) appears, you can enter debugging statements at this initial break-
point.

The following debug statements can be entered at breakpoints:

– AT
– BREAK
– BREAK DEBUG
– CONTINUE
– DISPLAY FORM
– DISPLAY LIST
– REMOVE
– SET
– TRACE

If subprograms are called with the CALL or DO statement, the USING clause may be
omitted from the DEBUG statement. In this case, DRIVE/WINDOWS requests the required
parameters by means of parameter prompting. You can supply the parameters with the SET
statement. DRIVE/WINDOWS stops the called subprogram after the PROCEDURE
statement. You may then enter debug statements.

52 U5642-J-Z125-3-7600

DEBUG DRIVE statements

In mixed mode operation, the following comments apply to the debugging mode:
If, in a new style program, an old style program is called with CALL, the old style program
is executed. Processing then switches to new style debugging mode.
If, in a new style program, an old style program is called with DO, debugging mode is termi-
nated in the new style program and the old style program is executed. Processing then
reverts to new style.
If, in an old style program, a new style program is called with DO, processing switches to
new style. However, the program is not executed in debugging mode.

The SET statement cannot be used to assign field attributes to a variable or global attributes
to a screen variable in debugging mode.

The BREAK DEBUG statement causes the program to exit debugging mode and switch to
interactive mode.

DEBUG { library(member-name) | member-name }

 [USING { expression | NULL }, ...]

library Specifies the DRIVE library (max. 54 characters) from which the
program is read to be analyzed and executed under the control of
the debugger.

library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

You can omit the library specification if the DRIVE library has been
preset in the PARAMETER DYNAMIC LIBRARY statement.

member-name Name of the member (max. 31 characters) which contains the
program.

DRIVE/WINDOWS searches for the last member to have been
processed, irrespective of whether this contains a source
(S-member) or an intermediate code (X-member).

If you do not specify library, the library which has been preset in
PARAMETER DYNAMIC LIBRARY is used.

If you do not specify member-name then DRIVE/WINDOWS uses the
source which is present in EDT work file 0.

U5642-J-Z125-3-7600 53

DRIVE statements DEBUG

USING Enables parameters to be passed to the program to be started. This
program must have been defined with PROCEDURE ... USING.

The parameters must not contain any variables at compile time. If
the parameters are not compatible, or if the USING clause is
omitted from the DEBUG statement, DRIVE/WINDOWS displays
the following message:
DRI0561 PLEASE SUPPLY USING PARAMETERS. At this point, the
user may either supply all parameters with the SET statement or
exit debugging mode with the BREAK DEBUG statement.

In debugging mode, you are also prompted for DRIVE subprograms
called with DO or CALL.

expression Identifies the parameters that are passed to the program to be
started (send fields).

The following may be passed as transfer parameters: literals,
aggregates composed of literals, and arithmetic expressions
containing no variables.
Variable values may also be passed.

expression must be calculable at compile time.

NULL Passes the null value to the program to be started.

Error handling

If an error occurs in a statement when in debugging mode, a check is made to determine if
WHENEVER has been declared for that error.

If WHENEVER was not declared, the program will stop before the statement containing the
error.

If WHENEVER was declared, one of the following is initiated, depending on the
WHENEVER operation defined:
If the declared WHENEVER operation is CALL or CONTINUE, the program is not inter-
rupted. If the operation is BREAK, the program stops before the statement containing the
error.

In debugging mode, if a transaction cannot be rolled back because a COMMIT WORK
statement is missing, control is passed to the final breakpoint.

If an error occurs in a debug statement in debugging mode, DRIVE/WINDOWS first
displays an error message: DRI0553 PLEASE ENTER DEBUG STATEMENT. The program
stops at the breakpoint at which the invalid debug statement was entered. Debug state-
ments which follow the one containing the error are not executed. Corrections made to the
cause of the error do not take effect until the testpoint is reached again.

54 U5642-J-Z125-3-7600

DEBUG DRIVE statements

Relationship to other statements

– If neither library nor member-name is specified with DEBUG, the OPTION entries
LISTING=LIBRARY and CODE=ON in the source are not executed and are skipped
without warning.

– If an analysis phase is included in DEBUG, the following options specified in the source
program are ignored:

UREF=ON, CODE=ON.

Other options are executed, e.g. if LISTING=LIBRARY is specified, the interpreter
listing will be written to a library member.

Tracing cannot be activated (TRACE) if the program is located in EDT work file 0.

Access rules for databases

– The DEBUG statement is only executed if no (new style) transaction is open for the
interactive mode.

– If different database systems are assigned to interactive mode and the program called
(DBSYSTEM ≠ OFF), then the DEBUG statement is aborted. You can only assign
different database systems if DEBUG calls intermediate code or object code which was
generated using another database system in a previous DRIVE session.

– If the SESAM V2.x database system is assigned to both interactive mode and the called
program (DBSYSTEM = SESAMSQL), then the DEBUG statement is only executed if
no transaction is open for interactive mode.

– If a database system is assigned to interactive mode (DBSYSTEM ≠ OFF) and not to
the called program (DBSYSTEM = OFF), then the called program accesses the same
database system as interactive mode.

– If a BS2000 database system is assigned to the called program
(DBSYSTEM = UDS / SESAM / SESAMSQL), then the DEBUG statement is only
executed if this database system matches the loaded variant.

– If the called program is an old style program, the DEBUG statement is aborted if the
UDS database system is assigned interactive mode (DBSYSTEM = UDS).

i

U5642-J-Z125-3-7600 55

DRIVE statements DEBUG

Example

The "test" program is tested in debugging mode.

All the executable program statements are counted. The statements in lines 15, 17 and
20 to 55 of the interpreter listing for the main program, "test", are testpoints. The
variable &var1 is first set to 1, output at the printer and then the screen. The program
run is then continued.

At the statement in line 33 of the compiler listing for the"test2" subprogram which is
located in the predefined library, the variable &subvar1 is set to 2 and output at a printer.

As of line 99 of the main program, "test", program tracing is activated and the debugging
run continues.

DEBUG test; /* DRIVE halts at the first executable statement*/
 /* in the program body */
AT ALL COUNT;
AT 15 SET &var1 = 1
AT 17 DISPLAY LIST &var1
AT 20 - 55 DISPLAY FORM &var1
AT * CONTINUE
AT test2 33 SET &subvar1 = 2
AT test2 33 DISPLAY LIST &subvar1
AT 99 TRACE
CONTINUE /* Only now does the debugging run continue */
...

56 U5642-J-Z125-3-7600

DECLARE CONSTANT DRIVE statements

DECLARE CONSTANT
Define constant

This application is valid

– in TIAM and UTM mode
– in program mode

DECLARE CONSTANT is used to define constants.

Within a DRIVE program, the defined constant can syntactically represent a variable, but
not a literal.

DECLARE CONSTANT must precede all executable statements in the declaration section
of the program.

DECLARE CONSTANT { var-name
 { literal |
 MSGSTRING (value-expr1[[, value-expr2], name]) } }, ...

var-name Name of a constant

var-name must start with an ampersand (&) and may be up to 32
characters in length.

literal Literal whose value is assigned to var-name.

MSGSTRING The value of the following expression is generated at compile time
and stored in the intermediate code.
The message is taken from the message file (= current MIP file)
which is specified by the parameter.

If you specify three parameters (value-expr1, value-expr2, name) then
value-expr2 is ignored.
If you specify two parameters then the second parameter must be
name (value-expr1, name).

If no message can be unambiguously identified, DRIVE/WINDOWS
returns: MESSAGE NOT FOUND.

value-expr1 Second part of the message code (= message number).
value-expr1 must be a numeric expression without decimal places. If
value-expr1 contains the null value, the complete expression results
in the null value.

U5642-J-Z125-3-7600 57

DRIVE statements DECLARE CONSTANT

value-expr2 value-expr2 is ignored if a value is specified.

value-expr2 is supported for reasons of compatibility only.

name First part of the message code (= identification of the system
component that generates the message). name can have a
maximum length of 3 characters.

58 U5642-J-Z125-3-7600

DECLARE FILE DRIVE statements

DECLARE FILE
Define file

This application is valid

– in TIAM and UTM mode
– in program mode

DECLARE FILE defines files, i.e. you use the statement to declare the logical name of a file
to the program. This logical name is assigned to the file when it is opened with the OPEN
FILE statement.

This statement also defines a replacement character for representing null values. If no
character is defined for representing null values, DRIVE/WINDOWS issues an error
message when an attempt is made to write a null value to a file.

DECLARE FILE must precede all executable statements in the declaration section of the
program.

DECLARE FILE { file [NULL character] }, ...

file Logical name of a file (max. 31 characters).

NULL Defines a character for representing null values.

This character is written to the file or expected in the file in place of
the null value a number of times corresponding to the length of the
field containing the null value.

character Specifies the null replacement character (one character).

You should not specify the following items for character:
– in alphanumeric data fields: a blank (Ë)
– in numeric data fields: the characters + - , or .
since this could lead to unexpected results.

The character must be specified as an alphanumeric literal
(char-literal, see the literal metavariable) or as a hexadecimal
character (hex-literal, see the literal metavariable).

U5642-J-Z125-3-7600 59

DRIVE statements DECLARE FORM

DECLARE FORM
Define DRIVE screen form

This application is valid

– in TIAM and UTM mode
– in program mode

DECLARE FORM is used to define a DRIVE screen form for data input and output.

DECLARE FORM creates a memory area for a screen form and defines its layout. The
memory area is filled in using FILL statements. Output formatting is concluded with
DISPLAY form-name. At the same time, output is initiated.

DECLARE FORM must precede all executable statements in the declaration section of the
program.

The program is aborted at runtime if the page header or footer contains an input or
output field which does not fit into the space provided.

DECLARE FORM form-name

 [PERMANENT | TEMPORARY]
 [NULL null-value]
 [{ COLUMNS n | LINES n }, ...]

 [TTITLE [format] { [RETURN] expression[INIT expression1 [NOCHECK]]
 [ATTRIBUTE (attribute, ...)] [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...]

 [BTITLE [format] { [RETURN] expression[INIT expression1 [NOCHECK]]
 [ATTRIBUTE (attribute, ...)] [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...]

i

60 U5642-J-Z125-3-7600

DECLARE FORM DRIVE statements

form-name Name of the DRIVE form (max. 31 characters).

PERMANENT The contents of a form defined with PERMANENT are retained
beyond the end of a subprogram and are available when the same
subprogram is called again.

TEMPORARY Default

The contents of a form defined with TEMPORARY are dropped at
the end of a subprogram.

NULL Definition of a character which is to represent the null value.

This overwrites a null value representation defined in PARAMETER.

null-value Specifies the null value character (max. 1 character). The null value
representation is specified for the character data type
(CHARACTER, VARCHAR) or for numeric data types (NUMERIC,
DECIMAL, INTEGER, SMALLINT, REAL and FLOAT). See also the
metavariable null-value.

The character null value representation is also valid for the data
types DATE and TIME. The numeric null value representation is
also valid for the data type INTERVAL.

COLUMNS n Specifies the number of columns per screen.

COLUMNS may only be specified once within DECLARE FORM.

0 < n ≤ number of screen columns

Default value: number of columns in the screen involved.

LINES n Specifies the number of lines per screen.

LINES may only be specified once within DECLARE FORM.

0 <n ≤number of screen lines minus 1

Default value: number of screen lines in the screen involved minus 1

The last line is reserved as a message line.

Line count (TTITLE) + line count (BTITLE) < LINES

U5642-J-Z125-3-7600 61

DRIVE statements DECLARE FORM

TTITLE Defines a page header to be output with each new screen.

The total number of lines for TTITLE, BTITLE and FILL must not
exceed: the number of screen lines - 1.
The last line is reserved for use as a message line. There must
always be at least one FILL line.

In the case of a screen overflow, TTITLE is output as the page
header.

BTITLE Defines a form footer output with each new screen.

The number of lines that can be defined for a page footer is the
same as the number of lines under TTITLE.

In the case of a screen overflow, BTITLE is output as a page footer.

format format specifies the format of the screen form.

If TABLE is specified for format, NEWLINE is not permitted.

If LINE is specified for format, TABULATOR and BLANK result in line
feed with an empty line.

RETURN Specifies that a variable becomes an entry field, which may be
preset. A variable for which RETURN has been specified may be
used as an entry field only once for each form.

expression Defines output and/or entry fields for the screen form.

expression may be one or more variables (including system
variables) and/or one or more literals.

When RETURN or INIT is specified, expression must be a variable
not qualified with ".*".

INIT An initial value is assigned to expression. The INIT clause is
permitted only if expression is a variable.
If expression is a vector or a matrix, all components are given the
corresponding initial value literal or NULL.

INIT expression1 expression1 may be only a literal, NULL or a function whose
arguments are literals (except CURRENT DATE/TIME). expression1
must be calculable at compile time.

NOCHECK A CHECK clause (see the metavariable check) specified when
declaring the expression variable is not evaluated for the assignment
of the initial value.

NOCHECK is not permitted for redefined variables or variables
which redefine other variables.

62 U5642-J-Z125-3-7600

DECLARE FORM DRIVE statements

ATTRIBUTE (attribute,...)
Screen forms are assigned field attributes.

Only the following may be specified as color attributes:

GREEN, RED, WHITE and YELLOW.

Default values for output fields are: VISIBLE, PROTECTED,
NOUNDERLINE, NORMALINTENSITY.

Default values for entry fields are: VISIBLE, UNPROTECTED,
NOUNDERLINE, HIGHINTENSITY.

INVISIBLE may be specified for entry fields only (with RETURN).

mask Defines the representation options for masked input and output
(= output editing).

mask may only be specified if expression is a simple variable or a
simple component.

NEWLINE n Defines the position of the screen fields. NEWLINE causes an
advance of n lines. The current line is completed with NEWLINE 1.
Any subsequent data is written in the next line.
Even if the current line has already been filled, i.e. it already
contains as many characters as are defined in the COLUMNS
specification of the corresponding DECLARE statement, NEWLINE
1 does not cause a blank line to be output. Instead it positions to the
next line.

If n has the value "0", a conditional line feed is performed, i.e. if the
current line is blank, NEWLINE 0 is ignored; if the current line is not
blank, NEWLINE 0 has the same effect as NEWLINE 1.

TABULATOR n Defines the position of the screen fields.

The output is continued from column n. If the value is less than the
current column position, a line or page feed is performed. The
resulting gap is filled with blanks.

If TABULATOR is specified without a value n, either this has no
effect or only one line feed is performed. The following applies:
1 ≤ TABULATOR ≤ COLUMNS

BLANK n Defines the position of the screen fields. BLANK causes n blanks to
be inserted. This may result in a line feed or page feed.

n is an integer.

U5642-J-Z125-3-7600 63

DRIVE statements DECLARE FORM

Example

The page header of the screen form "output-staff" consists of five lines and the footer
of two lines.
The header has the following structure (the current date and time are output in the first
line):

1995-12-20 13:30:31

 Staff

The footer consists of a blank line and a line containing 80 equals signs (=).

DECLARE VARIABLE &date DATE;
DECLARE VARIABLE &time TIME;
...
DECLARE FORM output-staff
 TTITLE &date,' '(50),&time,NL 2,
 ' '(30),'Staff',NL 1,
 ' '(29),'-'(13),NL 2
 BTITLE NL 2,'='(80);

64 U5642-J-Z125-3-7600

DECLARE LIST DRIVE statements

DECLARE LIST
Define list form

This application is valid

– in TIAM and UTM mode
– in program mode

DECLARE LIST is used to define a list form. This is done by creating a memory area for the
list form and defining the layout for the printed list. The memory area is filled using FILL
statements. Output formatting is concluded with DISPLAY list-name.

The system variable &PAGES records the number of pages printed thus far. &PAGES is
incremented following each form feed. Initialization of the page count requires that an initial-
izing value be explicitly supplied. This is not necessary at the start of a program.

In UTM applications, the list file must be generated. There are three options for generation:

– the DRI.LIST.FILE already exists,

– the file is assigned via the file link name DRILIST,

– the DRI.LIST.FILE is generated when the first DRIVE/WINDOWS DISPLAY statement is
executed.

The actual output on the printer occurs at the next STOP or LIST (see the LIST and STOP
statements).

DECLARE LIST must precede all executable statements in the declaration section of the
program.

U5642-J-Z125-3-7600 65

DRIVE statements DECLARE LIST

DECLARE LIST list-name

 [PERMANENT | TEMPORARY]
 [NULL null-value]
 [{ COLUMNS n | LINES n }, ...]

 [TTITLE [format] { expression [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...]

 [BTITLE [format] { expression [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...]

list-name Name of the DRIVE list form (max. 31 characters).

PERMANENT The contents of a list defined with PERMANENT are retained
beyond the end of a subprogram and are available when the same
subprogram is called again.

TEMPORARY Default

The contents of a list defined with TEMPORARY are dropped at the
end of a subprogram.

NULL Definition of a character which is to represent the null value. This
overwrites any null value representation defined in PARAMETER.

null-value Specifies the null value character (max. 1 character). The null value
representation is specified for the data type CHARACTER or the
numeric data types NUMERIC, DECIMAL, INTEGER, SMALLINT,
REAL and FLOAT.
The character null value representation is also valid for the data
types DATE and TIME. The numeric null value representation is
also valid for the data type INTERVAL.

COLUMNS n Specifies the number of columns per list line.

COLUMNS may only be specified once within DECLARE FORM.

n may have the value: 0 < n ≤ 255

Default value: 132

66 U5642-J-Z125-3-7600

DECLARE LIST DRIVE statements

LINES n Specifies the number of lines per list page.

LINES may only be specified once within DECLARE LIST.

n may have the value: 0 < n ≤ 999

Default value: 60

LINES may have the value: number of lines (TTITLE) + number of
lines (BTITLE) <LINES

TTITLE Defines a list header output with each new page.

BTITLE Defines a list footer output with each new page.

format Specifies the format of the list form.

If TABLE is specified for format, NEWLINE is not permitted.

If LINE is specified for format, TABULATOR and BLANK result in a
line feed with a blank line.

expression Defines output fields for the list form.

mask Defines the representation options for masked output (= output
editing).
mask may only be specified if expression is a simple variable or a
simple component.

NEWLINE n Defines the position of the output fields within the list form.
NEWLINE causes an advance of n lines. The current line is
completed with NEWLINE 1. Any subsequent data is written in the
next line.
Even if the current line has already been filled, i.e. it already
contains as many characters as defined in the COLUMNS specifi-
cation of the corresponding DECLARE, NEWLINE 1 does not cause
a blank line to be output. Instead it positions to the next line.

If n has the value "0", a conditional line feed is performed, i.e. if the
current line is blank, NEWLINE 0 is ignored; if the current line is not
blank, NEWLINE 0 has the same effect as NEWLINE 1.

TABULATOR n Defines the position of the output fields within the list form.

The output is continued from column n. If the value is less than the
current column position, a line or page feed is performed. The
resulting gap is filled with blanks.

If TABULATOR is specified without a value n, either this has no
effect or only one line feed is performed. The following applies:
1 < TABULATOR < COLUMNS.

U5642-J-Z125-3-7600 67

DRIVE statements DECLARE LIST

BLANK n Defines the position of the output fields within the list form.
BLANK causes n blanks to be inserted. This may result in a line feed
or page feed.

n is an integer.

Example

The page header of the list form "staff-list" consists of six lines and the footer of two
lines.
The header has the following structure (the current date, time and page number are
output in the first line):

1995-12-20 14:30:22 Page: 1

 Staff

The footer consists of a blank line and a line containing 80 equals signs (=).

DECLARE VARIABLE &date DATE;
DECLARE VARIABLE &time TIME;
...
DECLARE LIST staff-list
 TTITLE &date,' ',&time,TAB 60,'Page:',&PAGES,NL 3,
 TAB 31,'Staff',NL 1,
 TAB 30,'-'(13),NL 2
 BTITLE NL 2,'='(80);

68 U5642-J-Z125-3-7600

DECLARE SCREEN DRIVE statements

DECLARE SCREEN
Start editing FHS form

This application is valid

– in TIAM and UTM mode
– in program mode

DECLARE SCREEN defines an FHS form which you have previously created with IFG (see
IFG [28]). DECLARE SCREEN must be located ahead of all executable statements in the
declaration section of the program.

When compiling DECLARE SCREEN, DRIVE/WINDOWS generates a structured variable
from the addressing aid of the screen form, the screen variable. DRIVE/WINDOWS
exchanges data with FHS via this screen variable.

The addressing aids for DRIVE programs must be stored for the forms addressed in the
form library.

DECLARE SCREEN screenform [variable]
 [PERMANENT | TEMPORARY]
 [ERRORATTRIBUTE (attribute, ...)]

screenform FHS partial form (max. 7 characters).

variable Name of the variable created by DECLARE SCREEN. The FHS
form is copied to this variable (addressing aid). The DISPLAY
statement passes this variable to FHS. It is also known as a screen
variable. If you do not specify variable, the screen variable contains
the FHS form name with the prefix "&". variable may be a maximum
32 characters in length (including "&").

PERMANENT The contents of a variable defined with PERMANENT are retained
beyond the end of a subprogram and are available when the same
subprogram is called again.

TEMPORARY Default

The contents of a variable defined without PERMANENT are lost
once the subprogram terminates.

U5642-J-Z125-3-7600 69

DRIVE statements DECLARE SCREEN

ERRORATTRIBUTE Field attributes are assigned to data fields for error handling
purposes. These attributes are evaluated during the automated
error dialog (see the statements DISPLAY screenform, SCREEN-
ERROR REPEAT). If you omit this specification, then the specifi-
cation in PARAMETER DYNAMIC is used.

attribute Field attribute (see the metavariable attribute).

Allocating resources

DRIVE/WINDOWS searches for the forms selected with DECLARE SCREEN in the format
library with the file link name FORMOML. If no such file link name is known in a TIAM appli-
cation, DRIVE/WINDOWS searches for the selected forms in the format library
($userid.)DRI.LIB. The statement PARAMETER STATIC FORMLIB=... may be used,
however, to assign a different format library prior to the first processing statement.

Special characteristics in UTM mode

If you want to use FHS forms in UTM mode you must specify the form library in the UTM
start procedure:

SET-FILE-LINK LINK-NAME=FORMOML,FILE-NAME=form-library or
PARAMETER STATIC FORMLIB=form-library

You must also specify the following UTM start parameters in the UTM start procedure:

.FHS DE=NO if no FHS-DE forms are used or

.FHS DE=YES if FHS-DE forms are used

and

.FHS MAPLIB=form-library

Example

The FHS partial form "form" is defined. The associated screen variable is given the
name &imagevar.

DECLARE SCREEN form &imagevar

70 U5642-J-Z125-3-7600

DECLARE TYPE DRIVE statements

DECLARE TYPE
Define data type

This application is valid

– in TIAM and UTM mode
– in program mode

DECLARE TYPE defines user-specific data types.

DECLARE TYPE can precede the PROCEDURE statement in a program or can precede
all executable statements in the declaration section of the program.
DECLARE TYPE must precede any OPTION statements in programs which use them.

DECLARE TYPE { [level] user-type data-type }, ...

level Specifies a one-digit or two-digit level number.

This defines the hierarchical structure of a data type declaration.
The level number need not be specified as long as the data type to
be defined is unstructured. The level number is thus used only for
data groups and repeating groups.

user-type A data type defined by the user. It must not exceed 31 characters in
length.

data-type Since the syntax for data-type is extremely complex, the following
only refers to clauses contained in data-type, but which are not clear
from the syntax above.

The following must be observed for the individual data types which
can be specified for data-type.

– Basic data type (for time periods)

In the case of the data type INTERVAL, date-time-field1 must be
equal to date-time-field2 in date-time-unit.

– Structure type (structured variable)

structure-type must not contain any LIKE clauses.

U5642-J-Z125-3-7600 71

DRIVE statements DECLARE TYPE

– Base type (redefined variable)

base-type must not contain a REDEFINES clause.

In the CHECK clause, the check condition condition may not
contain a variable. The check condition condition may contain
the keyword VALUE instead of the variable which is defined in
user-type.

Examples

The variable &apartment has the user-specific data type "address".

DECLARE TYPE 1 address,
 2 street CHARACTER (30),
 2 zip NUM (5),
 2 city CHARACTER (30);
...
DECLARE VARIABLE &apartment address;

The user-specific data type "db-type" is declared in a program and specified in the
USING clause.
DECLARE TYPE follows the OPTION statement and precedes the PROCEDURE
statement.

OPTION LISTING=LIST;
DECLARE TYPE 1 db-type,
 2 db-system CHARACTER (3),
 2 function, CHARACTER (10),
 2 data,
 3 column CHARACTER (20),
 3 type-name CHARACTER (15);
PROCEDURE h-prog USING &db-parameter db-type;
...

72 U5642-J-Z125-3-7600

DECLARE VARIABLE DRIVE statements

DECLARE VARIABLE
Define variable

This application is valid

– in TIAM and UTM mode
– in program mode

DECLARE VARIABLE is used to define variables. Initial values, check conditions and
attributes for displaying data values can be defined for the variables. You also have the
option of redefining variables.

DECLARE VARIABLE must precede all executable statements in the declaration section of
the program.

DECLARE VARIABLE { [level] var-name
 [PERMANENT | TEMPORARY]
 { data-type | LIKE { CURSOR cursor-name | TABLE table } } }, ...

level Specifies a one-digit or two-digit level number.

This defines the hierarchical structure of a variable declaration. The
level number need not be specified as long as the variable is
unstructured. The level number is thus used only for data groups
and repeating groups.

var-name Name of variable.

var-name must be preceded by an ampersand (&) and must not
exceed 32 characters in length.

It is possible to define simple variables, vectors, matrices, data
groups and repeating groups.
The value range of a variable, excluding its indicator value range
must not be greater than 32 Kb.

PERMANENT Specifies the lifetime of the variable if the program in which the
variable is defined is called with CALL.

– Variables are only initialized on the first CALL. These values are
retained for subsequent CALLs.

– Variable values are retained after the subprogram has termi-
nated.

U5642-J-Z125-3-7600 73

DRIVE statements DECLARE VARIABLE

TEMPORARY Default

– Variables are re-initialized on every CALL.
– Variable values are lost after the subprogram has terminated.

data-type Data type for the variable to be defined. The following data types are
available for DRIVE variables:

– Alphanumeric data type
– Numeric data type
– Time data type
– INTERVAL data type
– User-defined data types
– Structured data types

The structured data types include vector, matrix, data group and
repeating group. Data group and repeating group are also catego-
rized as "groups" in the DRIVE manuals.

Groups consist of multiple group components, while vectors and
matrices consist of a single, simple component and a repetition
factor and simple variables consist of a single component only.

The syntax of data-type is extremely complex. The following only
refers to the specification of clauses for data-type (which are not
given in the syntax diagram above).

INIT clause.

INIT is used to initialize a variable with a literal or the null value.
DRIVE assigns each variable an initial value, even if no INIT clause
has been specified (see "Initializing variables with a data type",
below).

LIKE clause.

LIKE is used to copy the structure of one variable to another
variable (= variable) component by component.

CHECK clause

CHECK is used to define a condition that is checked during program
execution.

MASK clause

MASK is used to define the attributes for output formatting data
types.

74 U5642-J-Z125-3-7600

DECLARE VARIABLE DRIVE statements

REDEFINES clause

REDEFINES is used to specify multiple declarations for a storage
area of a variable.

LIKE LIKE is used to copy the structure of a cursor or table to a variable
component by component. The variable must be a data group or a
repeating group. The level numbers are adapted during copying.

The specifications for the components are of the same data type as
the columns in the specified table or cursor. If there are data type
differences between the database system and DRIVE/WINDOWS
then the data type used in the database system is unambiguously
converted into a DRIVE-compatible data type (see Programming
Language [2] manual).

The components receive the same names as the columns in the
table or cursor. If ambiguities or empty strings are present (e.g. in
an expression in select-list, see the SQL directories[4-6]), the name
"FILLER" is used.

cursor-name Name of the cursor, which must already be declared (see SQL
directories [4-6], DECLARE... CURSOR... statement).

table Name of a base table or of a persistent or temporary view which
must already be declared (see SQL directories [4-6]).

U5642-J-Z125-3-7600 75

DRIVE statements DECLARE VARIABLE

Initializing variables with a data type

If no INIT clause is specified for a variable, the variable is initialized according to its type:

Example 1

Definition of simple variables:
The alphanumeric variable "name" has a length of 20 characters and the numeric
(packed) variable "number" has a length of 10 characters. &number has 2 decimal
places.

DECLARE VARIABLE &name CHAR (20);
DECLARE VARIABLE &number NUM (10,2);

Example 2

Definition of a vector (= one-dimensional variable):
The vector &language(3) defines the alphanumeric field "language" three times with a
length of 10 characters, e.g. for the languages English, French and Spanish.

DECLARE VARIABLE &language(3) CHAR (10);

Data type Default

CHARACTER Blank (Ë)

CHARACTER VARYING,
VARCHAR

Empty string

DECIMAL, INTEGER, NUMERIC,
SMALLINT, REAL, FLOAT,
DOUBLE PRECISION, XDEC,
EXTENDED DECIMAL

0 (not the null value!)

DATE Compilation date if PERMANENT is
specified, otherwise execution date

TIME, TIME(3), Compilation time if PERMANENT is
specified, otherwise execution time

TIMESTAMP(3) Timestamp for compilation time if
PERMANENT is specified, otherwise
timestamp for execution time

INTERVAL 0 (not the null value!)

76 U5642-J-Z125-3-7600

DECLARE VARIABLE DRIVE statements

Example 3

Definition of a matrix (= two-dimensional variable):
The matrix "&monthly-sales / branch" (12,5) defines the numeric field
"monthly-sales / branch" 60 times. The "monthly-sales / branch" field has a length of 12
characters, 2 of which are decimal places and contains the sales figures for one of 5
branches in a single month.

DECLARE VARIABLE "&monthly-sales / branch"(12,5) NUM(12,2);

The special characters (blanks and slash) in the variable name mean that the name
must be enclosed in double quotes ("). The sales figure for August for branch 3 are, for
instance, in the variable "&monthly-sales / branch" (08,3).

Example 4

Definition of a data group:

DECLARE VARIABLE 1 &staff-member,
 2 staff-no CHAR (06),
 2 last-name CHAR (20),
 2 first-name CHAR (20),
 2 address,
 3 country CHAR (03),
 3 street CHAR (26),
 3 zip CHAR (10),
 3 city CHAR (20),
 2 salary NUM (7,2),
 2 dept-manager CHAR (06),
 2 dept-emp INT,
 2 proj-emp INT;

Example 5

Definition of a repeating group:
The repetition factor is to be set to 5.

DECLARE VARIABLE 1 &w(5),
 2 i INT,
 2 c CHAR (3);

U5642-J-Z125-3-7600 77

DRIVE statements DECLARE VARIABLE

Example 6

In addition to the data type and length the following items are declared for the compo-
nents "adept-emp-no", "esalary", "dept-emp-no" and "salary" in the data group "rows":

The initial value 0000 is assigned to the variable &adept-emp-no. If a non-numeric value
is assigned to the variable during program execution, the message "Please enter a
number" is issued.

If a value less than 20000 is assigned to the variable &esalary during program
execution, the message "Salary is too low" is issued.

The variable &dept-emp-no redefines the variable &adept-emp-no.

Values in the variable &salary are displayed without leading zeros, with at least one digit
before the decimal point, the decimal point itself, two digits after the decimal point and
the string "ËGBP".

DECLARE VARIABLE 1 &rows,
 2 adept-emp-no CHAR (4) INIT '0000'
 CHECK &adept-emp-no IS NOT NUMERIC
 MESSAGE 'Please enter a number',
 2 entry-row,
 3 elast-name CHAR (20),
 3 efirst-name CHAR (20),
 3 esalary NUM (7,2)
 CHECK &esalary < 20000
 MESSAGE 'Salary is too low',
 2 print-row,
 3 dept-emp-no CHAR (4) REDEFINES &adept-emp-no,
 3 last-name CHAR (20),
 3 first-name CHAR (20),
 3 salary NUM (7,2) MASK 'ZZZZ9P99'' GBP''';

DRIVE system variables

DRIVE/WINDOWS provides system variables which can be used in DRIVE programs. You
will find a list of these system variables in the DRIVE/WINDOWS Programming Language
manual [2].

The scope of the system variables is restricted to the program involved. It is not possible to
use system variables to pass information to other, external DRIVE programs, except by
means of the USING clause.

78 U5642-J-Z125-3-7600

DELETE FILE RECORD DRIVE statements

DELETE FILE RECORD
Delete record in ISAM file

This application is valid

– in TIAM and UTM mode
– in program mode

DELETE FILE RECORD deletes the data record with the specified ISAM key in an open
ISAM file.

DELETE FILE RECORD file KEY char-expression

file Logical name of a file in which a record is to be deleted.

The file must be declared with this name in the program using the
DECLARE FILE statement.

char-expression ISAM key of the record to be deleted.

U5642-J-Z125-3-7600 79

DRIVE statements DISPATCH

DISPATCH
Call subprograms concurrently in distributed system

This application is valid

– in UTM mode, in UTM mode without function(v.i)
– in program mode

DISPATCH identifies the start of a dispatch block. The end of this block is defined with END
DISPATCH. If a dispatch block has been defined, all CALL statements that call subpro-
grams on a remote system (remote CALL statements) are executed concurrently at END
DISPATCH. All other permissible statements in the dispatch block are executed sequen-
tially.

The calling program waits at END DISPATCH until all called subprograms have been
executed and then continues with the next statement.

The following statements are not permitted in dispatch blocks:

– BREAK PROCEDURE
– COMMIT WORK
– DISPATCH
– DO
– STOP

Identical RETURN parameters are not permitted in the remote CALL statements of a
dispatch block.

If an error occurs while a remote CALL statement is being executed, the calling program is
aborted. The WHENEVER statement is not supported.

If variable values have been altered in a DISPATCH block before an incorrect remote CALL
statement, the variable values are not reset.

The DISPATCH and END DISPATCH statements are ignored in TIAM mode and the CALL
statements are executed sequentially.

The statements BREAK CYCLE, BREAK SUBPROCEDURE, and CONTINUE CYCLE
cannot be used to exit DISPATCH blocks.

Dispatch blocks, loops (CYCLE), conditions (IF), and branches must not overlap.

80 U5642-J-Z125-3-7600

DISPATCH DRIVE statements

DISPATCH

Example

DISPATCH;
 CALL local_proc1 USING RETURN &a;
 CALL remote_proc1 USING RETURN &a;
 SET &b = &a;
 CALL TAC remote_tac USING RETURN &b;
END DISPATCH;

(For an example see the DRIVE Programming Language [2] manual, section Starting
concurrent distributed processing via dispatch)

Rules for distributed transaction processing

Remote CALL statements in the same dispatch block must be located in the compilation
unit of that dispatch block. This means that if an external subprogram is called locally with
CALL within a dispatch block, the external subprogram must not contain any remote CALL
statements.

U5642-J-Z125-3-7600 81

DRIVE statements DISPLAY FORM

DISPLAY FORM
Define and display compact screen form

This application is valid

– in TIAM mode
– in UTM mode but not in asynchronous UTM applications and not in the receiving

environment of distributed transactions
– in program and debugging mode

Used in the program body of a program, DISPLAY FORM defines an ad hoc compact
screen form, fills it with its content and outputs it on screen.

The DISPLAY FORM statement allows input to and output from the screen form. It implicitly
contains the DECLARE FORM, FILL and DISPLAY statements. This means that you can
use just one statement in place of three. The compact screen form is a special type of
DRIVE form.

Once the compact screen form has been output, it is not possible to output the contents of
the form again since the form cannot be addressed by name.

DISPLAY FORM [format] { [RETURN] expression[INIT expression1[NOCHECK]]
 [ATTRIBUTE (attribute, ...)] [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...

 [{ COLUMNS n | LINES n }, ...]

 [TTITLE [format] { [RETURN] expression[INIT expression1 [NOCHECK]]
 [ATTRIBUTE (attribute, ...)] [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...]

 [BTITLE [format] { [RETURN] expression [INIT expression1 [NOCHECK]]
 [ATTRIBUTE (attribute, ...)] [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...]

82 U5642-J-Z125-3-7600

DISPLAY FORM DRIVE statements

format Specifies the format of the screen form (see the metavariable
format).

If TABLE is specified for format, NEWLINE must not be specified.

If LINE is specified for format, TABULATOR and BLANK result in a
line feed with a blank line.

RETURN Specifies that a variable becomes an entry field, which may be
preset. A variable for which RETURN has been specified may only
be used as an entry field once for each form.

If an input variable (with RETURN) does not fit on one screen page,
the program is aborted when the statement is executed.

If an output variable (without RETURN) does not fit on one screen
page, it is truncated for the output. The last three characters of the
output variable are represented by ">>>".

If an entry or output field in TTITLE or BTITLE does not fit into the
space allocated to it, the procedure is aborted when the statement
is executed.

RETURN is ignored in debugging mode.

expression Defines output and/or entry fields for the screen form (see the
metavariable expression).
expression may not exceed 31 Kbytes in length.

When RETURN or INIT is specified, expression must be a variable
that may not be qualified with ".*".

INIT Assigns an initial value to expression. The INIT clause is permitted
only if expression is a variable.
If expression is a vector or a matrix, all components are given the
corresponding initial value literal or NULL.

expression1 expression1 may only be literal, NULL or a function which possesses
literal arguments (but not CURRENT DATE/TIME/TIMESTAMP).
expression1 must be calculable at compilation time.

NOCHECK A CHECK clause (see the metavariable check) specified when
declaring the expression variable is not evaluated for the assignment
of the initial value.

NOCHECK is not permitted for redefined variables or variables
which redefine other variables.

ATTRIBUTE Assigns field attributes to screen forms.

ATTRIBUTE is ignored in debugging mode.

U5642-J-Z125-3-7600 83

DRIVE statements DISPLAY FORM

attribute Field attribute (see the metavariable attribute).

Only the following color attributes are permitted:

GREEN, RED, WHITE and YELLOW.

Output fields are preset with the following values: VISIBLE,
PROTECTED, NOUNDERLINE, NORMALINTENSITY.

Input fields are preset with the following values: VISIBLE,
UNPROTECTED, NOUNDERLINE, HIGHINTENSITY.

INVISIBLE can only be specified for input fields (with RETURN).

mask Defines the representation options for masked input and output
 (= output editing).
mask may only be specified if expression is a simple variable or a
simple component.

NEWLINE n Defines the position of the screen fields. NEWLINE causes an
advance of n lines. The current line is completed with NEWLINE 1.
Any subsequent data is written in the next line.

Even if the current line has already been filled, i.e. it already
contains as many characters as defined in the COLUMNS specifi-
cation of the corresponding DECLARE, NEWLINE 1 does not cause
a blank line to be output. Instead it positions to the next line.

If n has the value "0", a conditional line feed is performed, i.e. if the
current line is blank, NEWLINE 0 is ignored; if the current line is not
blank, NEWLINE 0 has the same effect as NEWLINE 1.

TABULATOR n Defines the position of the screen fields. The output is continued
from column n. If the value is less than the current column position,
a line or page feed is performed. The resulting gap is filled with
blanks.

If TABULATOR is specified without a value n, either this has no
effect or only one line feed is performed. The following applies:
1 < TABULATOR < COLUMNS

BLANK n Defines the position of the screen fields. BLANK causes n blanks to
be inserted. This may result in a line feed or page feed.

n is an integer.

84 U5642-J-Z125-3-7600

DISPLAY FORM DRIVE statements

COLUMNS n Defines the number of columns per screen.

You can only specify COLUMNS once within the DISPLAY FORM
statement.

n can have the following value: 0 < n ≤ number of screen columns.

Default: number of columns in current screen.

LINES n Defines the number of lines per screen.

You can only specify LINES once within the DISPLAY FORM
statement.

n may have the following value: 0 < n ≤ number of screen lines - 1

Default: number of lines in current screen - 1

The last line is reserved as a message line.

LINES may have the following value:
number of lines (TTITLE) + number of lines (BTITLE) < LINES.

TTITLE Defines a page header to be output with each new screen.

The total number of lines for TTITLE, BTITLE and FILL must not
exceed: the number of screen lines - 1.

The last line is reserved for use as a message line. There must
always be at least one FILL line.

In the case of a screen overflow, TTITLE is output as the page
header.

BTITLE Defines a page footer to be output with each new screen.

The number of lines that can be defined for a page footer is the
same as the number of lines defined under TTITLE.

In the case of screen overflow, BTITLE is output as a page footer.

Masking CHAR expressions in the NUM function only has the effect that the CHAR
expression is checked on entry with regard to permissibility in the mask, i.e. the
mask has no effect on the output.

i

U5642-J-Z125-3-7600 85

DRIVE statements DISPLAY FORM

Relations to other statements

– Screen output is determined by assigning structured variables (see DECLARE
SCREEN statement). You may, for example, use SET to perform this variable
assignment (see SET statement).

Example

The compact screen form is empty up to line 15. The 15th line contains the text "Enter
serial number:" indented by five characters.

DECLARE VARIABLE &number NUM(3);
...
DISPLAY FORM NL 15, TAB 5,'Enter serial number: ',RETURN &number;

86 U5642-J-Z125-3-7600

DISPLAY form-name DRIVE statements

DISPLAY form-name
Display DRIVE form

This application is valid

– in TIAM mode
– in UTM mode but not in asynchronous UTM applications and not in the receiving

environment of distributed transactions
– in program mode

DISPLAY form-name is used to conclude DRIVE form editing and display the form on the
screen. The memory area with the DRIVE screen form is not released following display.
Thus, a form can be displayed again and again if no new FILL statement is issued for that
memory area. When a FILL statement is specified for that memory area, form memory is
cleared and new contents generated.

DISPLAY form-name is not permitted in asynchronous UTM applications and in the receiving
environment of distributed transactions.

DISPLAY form-name

form-name Name of the DRIVE form (max. 31 characters).

The specified form must be defined in the declaration section of the
program using DECLARE FORM.
form-name may be specified only once.

U5642-J-Z125-3-7600 87

DRIVE statements DISPLAY LIST

DISPLAY LIST
Define and output compact list form

This application is valid

– in TIAM and UTM mode
– in program and debugging mode

Used in the program body of a program, DISPLAY LIST defines an ad hoc compact list
form, fills it with its content and outputs it at the printer.

The DISPLAY LIST statement implicitly contains the DECLARE LIST, FILL and DISPLAY
statements. This means that you can use just one statement in place of three. The compact
list form is a special type of DRIVE form.

Once the compact list form has been output, it is not possible to output the contents of the
form again since the form cannot be addressed by name

If you use this statement under UTM you must generate the central print file. There are
three ways of generating this file:

– the DRI.LIST.FILE file may already be present,

– the file may be assigned using the file link name DRILIST,

– the file DRI.LIST.FILE may be generated by DRIVE/WINDOWS on the first DISPLAY
statement.

Actual output to the printer is performed on the next STOP (see STOP statement) or LIST
(see LIST statement).

88 U5642-J-Z125-3-7600

DISPLAY LIST DRIVE statements

DISPLAY LIST [format] { expression [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...

 [{ COLUMNS n | LINES n }, ...]

 [TTITLE [format] { expression [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...]

 [BTITLE [format] { expression [mask] |
 NEWLINE n |
 TABULATOR n |
 BLANK n }, ...]

format Specifies the format of the list form (see the metavariable format).

If TABLE is specified for format, NEWLINE must not be specified.

If LINE is specified for format, TABULATOR and BLANK result in a
line feed with a blank line.

expression Defines output fields for the list form.

mask Defines the representation options for masked output (= output
editing).
mask may only be specified if expression is a simple variable or a
simple component.

NEWLINE n Defines the position of the output fields within the list form.

NEWLINE causes an advance of n lines. The current line is
completed with NEWLINE 1. Any subsequent data is written in the
next line.

Even if the current line has already been filled, i.e. it already
contains as many characters as defined in the COLUMNS specifi-
cation of the corresponding DECLARE, NEWLINE 1 does not cause
a blank line to be output. Instead it positions to the next line.

If n has the value "0", a conditional line feed is performed, i.e. the
current line is blank, NEWLINE 0 is ignored; if the current line is not
blank, NEWLINE 0 has the same effect as NEWLINE 1.

U5642-J-Z125-3-7600 89

DRIVE statements DISPLAY LIST

TABULATOR n Defines the position of the output fields within the list form.

The output is continued from column n. If the value is less than the
current column position, a line or page feed is performed. The
resulting gap is filled with blanks.

If TABULATOR is specified without a value n, either this has no
effect or only one line feed is performed. The following applies:
1 ≤ TABULATOR ≤ COLUMNS

BLANK n Defines the position of the output fields within the list form. BLANK
causes n blanks to be inserted. This may result in a line feed or page
feed.

n is an integer.

COLUMNS n Defines the number of columns per list line. You may only specify
COLUMNS once within the DISPLAY LIST statement.

n may have the following value: 0 < n≤ 255

Default: 132

LINES n Defines the number of lines per list page. You may only specify
LINES once within the DISPLAY LIST statement.

n may have the following value: 0 < n ≤ 999

Default: 60

Lines may have the following value:
number of lines (TTITLE) + number of lines (BTITLE) < LINES

TTITLE Defines a list header to be output with each new page.

BTITLE Defines a list footer to be output with each new page.

90 U5642-J-Z125-3-7600

DISPLAY LIST DRIVE statements

Example

The compact list form has the following structure: the second line contains the current
date, the current time and the current page number. The eleventh line contains the data
contents of the variables &surname, &firstname, &salary.

1995-12-20 15:03:42 Page: 1

 Staff

 Winterberg Abigail 3500.00 US$

DISPLAY LIST
 NL 1,&date,' ',&time,TAB 60,'Page: ',&PAGES,NL 3,
 TAB 31,'Staff',NL 1,
 TAB 30,'-'(13),NL 5,
 TAB 5,&surname,TAB 30,&firstname,TAB 55,&salary,' US$';

U5642-J-Z125-3-7600 91

DRIVE statements DISPLAY list-name

DISPLAY list-name
Output list form

This application is valid

– in TIAM and UTM mode
– in program mode

The DISPLAY list-name statement is used to complete editing a DRIVE list form and output
it to a printer.

The memory area containing the DRIVE list form is not released following output. Thus, a
form can be output again and again if no new FILL statement is issued for that memory
area. When a FILL statement is specified for that memory area, form memory is cleared
and a new form is generated.

If you use this statement under UTM you must generate the central print file. There are
three ways of generating this file:

– the DRI.LIST.FILE file may already be present,
– the file may be assigned using the file link name DRILIST,
– the file DRI.LIST.FILE may be generated by DRIVE/WINDOWS on the first DISPLAY

statement.

The actual output on the printer occurs at the next STOP or LIST (see the LIST and STOP
statements).

DISPLAY list-name

list-name Name of the DRIVE list form (max. 31 characters).

The specified list form must be defined in the declaration section of
the program using DECLARE LIST.

92 U5642-J-Z125-3-7600

DISPLAY screenform DRIVE statements

DISPLAY screenform
Output FHS form

This application is valid

– in TIAM mode only in the case of FHS without dialog extension (DE)
– in UTM mode but not in asynchronous UTM applications and not in the receiving

environment of distributed transactions
– in program mode

DISPLAY screenform outputs an FHS form which you have previously created with IFG (see
IFG [28]). You can output multiple partial forms simultaneously. If simultaneously outputting
multiple partial forms, you may not mix FHS forms for dialog extension (FHS-DE) with
simple FHS forms.

When a screen form is output, the screen variable, together with any available input values,
is passed to FHS and then output on the screen.

The screen variable is the structured variable which is created using DECLARE SCREEN
in order to receive the addressing aid of an FHS form.

The contents of the screen variable are not deleted after output. Forms may not overlap on
screen.

DISPLAY screenform, ...
 [SCREENERROR { REPEAT | CONTINUE }]
 [CURSOR { POSITION (line1, column1) | TO field1 }
 [MESSAGE key [POSITION (line2, column2) | TO field2]

screenform Name of FHS partial form (max. 7 characters).

The specified form must be defined in the declaration section of the
program using DECLARE SCREEN.

If you want to output multiple FHS partial forms simultaneously, you
may either only output forms with dialog extension (DE) or only
forms without dialog extension.

In the case of automatic error dialog, the last line must not be used
since DRIVE/WINDOWS uses this line to output messages.

In the case of a user-controlled error dialog, the last line may be
used, e.g. for the output of user-defined error messages.

U5642-J-Z125-3-7600 93

DRIVE statements DISPLAY screenform

SCREENERROR Specifies the behavior of DRIVE/WINDOWS in the case of invalid
field input.

REPEAT Default value

The partial form is repeatedly output until the input is correct or
aborted by means of BREAK (= automated error dialog). Incorrect
input values are all fields which do not satisfy the CHECK clause
(see the DECLARE VARIABLE statement.

The incorrect input values are indicated with the
ERRORATTRIBUTE operand defined in PARAMETER DYNAMIC
or DECLARE SCREEN (see the PARAMETER DYNAMIC and
DECLARE SCREEN statements).

The data of the individual partial forms is not transferred from
FHS-FORM format to the screen variable until input to all the screen
fields is correct.

CONTINUE The program is continued after DISPLAY (= user-controlled error
dialog). Invalid input causes the program to abort if no suitable
WHENEVER statement has been specified, and the
&ERROR_STATE system variable receives the following values:

&ERROR='FORMAT_ERROR'
&FORMAT_NAME=name of the first invalid partial form
&VAR_NAME=name of the first invalid entry field

If the program is aborted by illegal use of a K/F key, the
&ERROR_STATE system variable receives the following values:

&ERROR='FORMAT_ERROR'
&FORMAT_NAME= "%K/F_ERROR"
&VAR_NAME=INIT value of DECLARE VARIABLE

Invalid input values can be marked with SET ERRORATTRIBUTE
and the invalid forms redisplayed. Invalid input values are all fields
which do not satisfy the CHECK clause.

All valid fields are passed to the structured screen variable. The
other components are retained.

CONTINUE is used only if the CHECK clauses are not satisfied.

CURSOR The cursor is set to a specified position on the screen.

You may not specify CURSOR unless the partial form to be output
is an FHS-DE form and the global attribute “Cursor position” was set
for screenform in IFG (see IFG [28]).

94 U5642-J-Z125-3-7600

DISPLAY screenform DRIVE statements

POSITION Specifies the absolute position (line/column) of the cursor.

line1 Line (1 ≤ line2 ≤ number of screen lines). line2 must be a whole
number.

column1 Column (1 ≤ column2 ≤ number of screen columns). column2 must be
a whole number.

TO The cursor is set at the first character of field field1. In the case of
lists, the cursor is set to the first column and first line of the list area.

field1 Field in the partial form which is to be output. field1 must be a
component of the screen variable for screenform.

The first 8 characters of the field names of all screen forms output
using DISPLAY screenform must differ to make the unambiguous
assignment of screen variable components possible.

MESSAGE This outputs the FHS-DE message with the message key key which
you created with IFG. Depending on the IFG specification, output
either takes place in a message box or in a message area in the
partial form screenform.

You may not specify MESSAGE unless the partial form to be output
is an FHS-DE form and the global attribute “Message identifier” was
set for screenform in IFG (see IFG [28]).

key Message key of the FHS-DE message. You can specify key either
as a variable (see the metavariable variable) or as an alphanumeric
literal (see char-literal in the metavariable literal).

key must be specified in the form AAAAnnn, where A is a letter
(A-Z) and n is a digit (0-9). AAAA may not have the value IDHS.

POSITION Specifies the absolute position of the message box. The message
box is positioned with an additional offset (+2,+2) to line3, column3.

POSITION is only evaluated if the IFG specification stipulates that
the message is to be output in a message box.

If a message is intended for output in a message box and you have
not specified either POSITION or TO then the message box is
output in the middle of the screen.

If a message box which has been positioned using MESSAGE
POSITION covers a cursor which has been set with CURSOR
POSITION then MESSAGE POSITION is ignored.

line2 Line (1 ≤ line3 ≤ number of screen lines). line3 must be a whole
number.

U5642-J-Z125-3-7600 95

DRIVE statements DISPLAY screenform

column2 Column (1 ≤ column3 ≤ number of screen columns). column3 must be
a whole number.

TO Specifies that the message box is to positioned with the default
offset (+2,+2) to field2.

TO is only evaluated if the IFG specification stipulates that the
message is to be output in a message box.

If a message is intended for output in a message box and you have
not specified either TO or POSITION then the message box is
output in the middle of the screen.

field2 Field in the partial form which is to be output. field2 must be a
component of the screen variable for screenform.

The first 8 characters of the field names of all screen forms output
using DISPLAY screenform must differ to make the unambiguous
assignment of screen variable components possible.

Relationships to other statements

Screen output is determined by assigning structured variables (see DECLARE SCREEN
statement). You may, for example, use SET to perform this variable assignment (see SET
statement).

Example

The IFG/FHS partial form "form" is output. If input is incorrect, the form is output again.

DISPLAY form SCREENERROR REPEAT

96 U5642-J-Z125-3-7600

DO DRIVE statements

DO
Start interactive program

This application is valid

– in TIAM mode
– in UTM mode but not in asynchronous UTM applications and not in the receiving

environment of distributed transactions
– in interactive mode
– in program mode only within an interactive program

DO has two functions depending on the mode:

– If you specify DO in interactive mode, an implicit COMPILE is performed and the
program is then started.

If intermediate code has already been generated for the program and stored in the
current DRIVE library, DO accesses it directly and simply starts the program. Syntax
and semantic checking are omitted in this case.

DRIVE searches first for intermediate code under the specified name and only then
searches for a source program.

– If DO is specified within an interactive program, the program is aborted, and the
successor program called. This DO has the same effect as an END PROCEDURE
followed by DO in interactive mode. DO may not be specified so long as a transaction
is still open or screen output has not yet been concluded.

If the runtime system is used, a program can only be called with the DO statement if it is
available as intermediate code.

DO [library(member-name) | member-name]

 [USING { expression | NULL }, ...]

library Specifies the DRIVE library (max. 54 characters) from which the
DRIVE program is read.

library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

U5642-J-Z125-3-7600 97

DRIVE statements DO

If the DRIVE library has been preset using the statement
PARAMETER DYNAMIC LIBRARY then you do not need to specify
library.

member-name Name of the member (max. 31 characters) which contains the
DRIVE program as a source or intermediate code.

DRIVE/WINDOWS searches for the last member to have been
processed, irrespective of whether this contains a source
(S-member) or an intermediate code (X-member).

member-name can be an old style program which was created using
DRIVE V5.1. Please refer to the DRIVE Programming Language [2]
manual for notes on calling old style programs.

If you do not specify library, the library which has been preset in
PARAMETER DYNAMIC LIBRARY is used.

An error message is issued if member-name is not present in the
specified library.

You must specify member-name in UTM and program mode.

If you do not specify member-name then DRIVE/WINDOWS uses the
source which is present in EDT work file 0 (in interactive mode only).

USING Allows parameters to be passed to the interactive or successor
program to be started. These programs must have been defined
with PROCEDURE...USING..., and the parameters must be
compatible (see the "DRIVE Programming Language" manual [2]).
In debugging mode, the user is prompted for parameters if this is not
the case (see the "DRIVE Programming Language" manual [2]).

expression Specifies the parameters to be passed (send fields).

In interactive mode, only literals, aggregates whose components
are literals and arithmetic expressions without variables are
permitted as transfer parameters.
Values of variables can also be passed in interactive programs.

NULL Transfers the null value to the interactive or successor program to
be started.

98 U5642-J-Z125-3-7600

DO DRIVE statements

Displaying syntax and runtime errors

If a program is started with DO then an error list is generated if runtime errors occur. In TIAM
mode this list is written to SYSLST and in UTM mode it is written to the central print file.

No error list is generated if an error occurs when a member from EDT work file 0 is
executed. Instead the error messages are inserted in the member from EDT work file 0
when the next EDT statement is processed (see EDT statement).

If errors occur in external subprograms started with CALL then an error list is generated
even if the calling main program is located in EDT work file 0.

Relationship to other statements

– DO statements have no effect within transaction-driven programs which are started as
asynchronous UTM conversations. Instead you may use ENTER statements in such
cases.

– If you do not specify either library or member-name in the DO statement then the source
OPTION specifications LISTING=LIBRARY and CODE=ON are not executed and are
skipped without any comment.

– If an analysis phase is performed with DO, the compiler option CODE=ON specified in
the source program is ignored.

Other options are executed, e.g. if LISTING=LIBRARY is specified, the compiler list is
written to a library member.

– If the program is compiled with compiler option OPTION OBJECT=ON then you may
not specify library when the program is called.

Access rules for databases

– The DO statement is only executed if no (new style) transactions are open in interactive
mode.

– If different database systems are assigned to interactive mode and the subprogram
called (DBSYSTEM ≠ OFF), then the DO statement is aborted. You can only assign
different database systems if DO calls intermediate code or object code which was
generated using another database system in a previous DRIVE session.

– If a database system is assigned to interactive mode (DBSYSTEM ≠ OFF) and not to
the called subprogram (DBSYSTEM = OFF) then the called subprogram accesses the
same database system as interactive mode.

U5642-J-Z125-3-7600 99

DRIVE statements DO

– If a BS2000 database system is assigned to the called program
(DBSYSTEM = UDS / SESAM / SESAMSQL), then the DO statement is only executed
if this database system matches the loaded variant.

– If the called subprogram is an old style program then the DO statement is aborted if the
UDS database system is assigned to interactive mode (DBSYSTEM = UDS).

If an interactive program contains the DO statement, you should observe the rules relating
to END PROCEDURE in programs which are called using DO (see section “Access rules
for databases” on page 107)

Rules for distributed transaction processing

– DO in an interactive program is only permitted in the submitting partner environment.

– DO may not occur in DISPATCH blocks.

– DO cannot be executed until all receiving partner conversations have been terminated.

100 U5642-J-Z125-3-7600

DO DRIVE statements

Example

The program "prog1" passes the parameters &v1, &v2 and the literal "lit" to the program
"prog2". For each of these parameters, a comparable parameter (&x1, &x2, &x3) must
have been defined in "prog2".

&x1 contains the value of &v1.
&x2 contains the value of &v2.
&x3 contains the value 'lit'.

PROCEDURE prog1;
DECLARE VARIABLE &v1 INT,
 &v2 CHAR;
 .
 .
 .
DO prog2 USING &v1,&v2,'lit';
 .
 .
 .
END PROCEDURE;

PROCEDURE prog2 USING &x1 INT,
 &x2 CHAR,
 &x3 CHAR(3);
 .
 .
 .
END PROCEDURE;

U5642-J-Z125-3-7600 101

DRIVE statements EDT

EDT
Call editor

This application is valid

– in TIAM mode
– in interactive mode

EDT calls the standard BS2000 editor EDT.

If you specify EDT together with operands, a source is loaded in F mode into the EDT work
file 0. This source may have a maximum of 999 999 lines each consisting of up to 256
characters.

If you specify EDT without operands, processing branches to the EDT work file 0. This file
is empty if no file has yet been loaded into EDT during the current DRIVE session. If a file
has already been loaded then it is this file that is loaded into EDT work file 0.

EDT [library(member-name) | member-name]

 [SOURCE | LIST | COPYSOURCE | USERLABEL]

library Specifies the DRIVE library (max. 54 characters) from which the
member with the specified member-name is read.
 library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).
DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

If the DRIVE library is preset using the PARAMETER DYNAMIC
LIBRARY statement, you may omit the library specification.

member-name Name of the member which is to be read (max. 31 characters).

If you do not specify library, the library specified in PARAMETER
DYNAMIC LIBRARY is used.

If you do not specify member-name then DRIVE/WINDOWS uses the
source which is present in EDT work file 0 (in interactive mode only).

SOURCE Default

The member which is to be read is a source (S-member) in the
DRIVE library.

102 U5642-J-Z125-3-7600

EDT DRIVE statements

LIST The member which is to be read is an interpreter listing (P-member)
in the DRIVE library.

LIST must be specified when reading the interpreter listing into the
editor, because otherwise a source program with the name of the
interpreter listing would be searched for.

The interpreter listing should not be modified, because otherwise
program statements cannot be traced, or error messages referring
to line numbers in interpreter listings will not be correct.

COPYSOURCE The member which is to be read is a COPY member (S-member) in
the DRIVE library.

You must specify COPYSOURCE when you read a COPY member
into the editor as the system otherwise searches for a source with
the same name as the COPY member.

USERLABEL The member which is to be read is a user label (S-member) in the
DRIVE library.

USERLABEL must be specified when reading the user label into the
editor, because otherwise a source program with the name of the
user label would be searched for.

BS2000 standard editor EDT:

Rules

The end of a line is a delimiter, i.e. keywords, names and operators may not extend beyond
one EDT line.

Exception:

alphanumeric, hexadecimal literals, comments and all strings enclosed in quotes (").

U5642-J-Z125-3-7600 103

DRIVE statements EDT

Restrictions on the use of EDT functions

– You may not enter the following EDT statements:

@EDIT
@EXEC
@LOAD
@RUN
@SYSTEM

– EDT marks 1-4 can be used as required. In contrast, EDT marks 5-9 may not be used.
They are reserved for internal DRIVE use.

– The EDT work file 0 and EDT work files 1-8 can be used as required. The EDT work file
9 is reserved for DRIVE/WINDOWS. This is where the interpreter listing is written
following DO and COMPILE if no library(member-name) is specified.

Prompting to protect against accidental overwriting

The contents of EDT work file 0 that have not yet been stored with SAVE are protected by
DRIVE/WINDOWS against accidental overwriting. For example, if a new member is to be
read into EDT work file 0 with EDT, DRIVE/WINDOWS displays the message
DRI0046 OVERWRITE' member-name'? REPLY: (Y=YES, N=NO).

If the response is "Y", the member in EDT work file 0 is overwritten with the new member.

If the response is "N", the old member is retained, and no branch is made to EDT. The
source program can be saved with the SAVE statement or viewed with the EDT statement
(without operands).

Indication of errors in DRIVE programs (max. 4000 errors)

– DO and COMPILE applied to programs contained in EDT work file 0:

If DRIVE/WINDOWS finds syntax errors during analysis, the error messages are
inserted into the program contained in EDT work file 0 at the next EDT statement.
In addition, EDT work file 9 contains the complete interpreter listing.
EDT work file 9 should not be used by the user, since the contents of work file 9 are
overwritten without warning.

EDT lines should not exceed 230 characters in length. Longer lines cannot be
completely shown in the interpreter listing.

– If EDT is activated after analyzing a DRIVE program that contains errors, DRIVE/
WINDOWS will position EDT work file 0 to the line containing the first error and
additionally mark all program lines containing errors with EDT mark 5. It is thus possible
to move to each successive invalid program line by entering EDT +(5) and pressing the
F3 key.

104 U5642-J-Z125-3-7600

EDT DRIVE statements

– DRIVE/WINDOWS inserts a line after each program line containing an error and
indicates the respective error positions by asterisks (*) in the line. The line is marked
with EDT mark 13.
Additional lines containing error messages for the programming errors in question are
inserted after each line showing the positions of the errors. These lines are also marked
with EDT mark 13.

– Up to 48 error messages are shown per EDT line.

– If you switch back to DRIVE interactive mode via the EDT statement HALT or RETURN,
all lines with EDT mark 13 that have not been modified are deleted (i.e. all lines
containing error positions and messages which were not overwritten with the same or
new contents). All EDT marks are cleared.

On the other hand, if you exit EDT with the K1 key, the lines showing the positions of
errors and the lines containing error messages are retained. EDT marks 5 and 13
remain set. The errors are redisplayed when EDT is called again.

If the EDT statement DELETE MARK is entered, the marks set by DRIVE/WINDOWS
are also deleted.

– Behavior in the case of an error in a copy member.

The error message is inserted into the source program following the copy member
involved. Instead of the line containing asterisks, a message appears. This message
indicates that the error has occurred in a copy member and shows in which line of the
copy member the error can be found.

The interpreter listing in EDT work file 9 contains the expanded copy member and the
exact location of the error.

Relationship to other DRIVE statements

A DRIVE program in EDT work file 0 can be stored with SAVE. Entering SAVE causes the
current contents of EDT work file 0 to be stored in the current DRIVE library.

U5642-J-Z125-3-7600 105

DRIVE statements END

END
Mark end of logical program unit

This application is valid

– in TIAM and UTM mode
– in program mode

END marks the end of a logical program unit. A program unit may be: a branch (CASE), a
loop (CYCLE), a condition (IF), concurrent remote processing (DISPATCH), report gener-
ation (REPORT), internal subprograms (SUBPROCEDURE) or complete programs
(PROCEDURE).

END { CASE | CYCLE | DISPATCH | IF | PROCEDURE | REPORT | SUBPROCEDURE }

CASE End of a branch.

CYCLE End of a loop.

DISPATCH End of a DISPATCH block. All CALL statements in the dispatch
block that call subprograms on a remote system (remote CALL
statements) are executed. The calling program is interrupted until
all remote requests have been completed.

IF End of a condition.

PROCEDURE End of a program.

END PROCEDURE must be the last statement in the program, and
may occur only once in the program.

The program is terminated normally. DRIVE/WINDOWS displays
the message DRI0088 'program-name' TERMINATED NORMALLY.

If the program was called with CALL, control returns to the calling
program, and processing continues with the statement following the
CALL. The RETURN parameter values are passed to the calling
program. If you use END PROCEDURE to end a program which
was called with CALL, all open transactions and all files opened with
the OPEN FILE statement remain open.

106 U5642-J-Z125-3-7600

END DRIVE statements

If the program was called with DO, DRIVE/WINDOWS switches to
interactive mode. All the necessary system resources are freed. If a
transaction is open, the program is aborted with an error message
and the transaction is reset. Any files opened with the OPEN FILE
statement are closed. It is not possible to restart the program.

REPORT End of reporting.

SUBPROCEDURE End of an internal subprogram. END SUBPROCEDURE is always
the last statement in a subprogram.

The calling program is continued immediately following the CALL to
the internal subprogram.

Open loops (CYCLE without END CYCLE), open conditions (IF
without END IF), open DISPATCH blocks (DISPATCh without END
DISPATCH), open branches (CASE without END CASE), are not
permitted within an internal subprogram.

During error analysis, an incorrect END can cause any number of subsequent errors as
other possibly correct END statements are then reported as incorrect or missing (e.g. if an
IF structure within a loop is terminated with END IF before END CYCLE).

Relationship to other DRIVE statements (applies only to main
programs)

Output areas for forms set up with FILL FORM/LIST must be closed with DISPLAY FORM/
LIST before END PROCEDURE is reached.

Relationship to other DRIVE statements (applies only to subprograms
called with CALL)

Depending on whether output areas for forms were declared as PERMANENT or
TEMPORARY, they must be closed with DISPLAY FORM/LIST before END PROCEDURE
is reached.

U5642-J-Z125-3-7600 107

DRIVE statements END

Rules for distributed transaction processing

– The following applies to programs which were started using DO in the submitting
partner environment: All receiving partner programs which have been started in the
interactive program must have terminated when END PROCEDURE is issued.

– When END PROCEDURE is issued for a DRIVE program in the receiving partner
environment which was called directly by the submitting partner activity, processing
returns to the submitting partner activity. RETURN parameters are passed to the
submitting partner activity.

Access rules for databases

The following applies to END PROCEDURE in subprograms which were called with CALL
in the local system:

– If a database system is assigned to the calling program (DBSYSTEM ≠ OFF) and not
to the subprogram called (DBSYSTEM = OFF), the calling program accesses the same
database system as the subprogram called after the subprogram called has executed.

The following applies to END PROCEDURE in programs which were called with DO or
DEBUG:

– If any transaction is still open, DRIVE/WINDOWS resets it and issues message
DRI0101.

– If any temporary SQL objects which have been defined in program mode (program
cursor or temporary views) are present, they are deleted by DRIVE/WINDOWS.
DRIVE/WINDOWS issues the message DRI0150 if it is unable to delete an SQL object.

– If dynamic, temporary views are present when SESAM V2.x is accessed,
DRIVE/WINDOWS deletes them and issues message DRI0488.

– When accessing SESAM V2.x, DRIVE/WINDOWS issues a SET SESSION, SET
CATALOG and SET SCHEMA statement. The operands for these statements are
defined in the previous PARAMETER DYNAMIC AUTHORIZATION, PARAMETER
DYNAMIC CATALOG and PARAMETER DYNAMIC SCHEMA statements respectively.

108 U5642-J-Z125-3-7600

ENTER DRIVE statements

ENTER
Start program as asynchronous UTM conversation

This application is valid

– in UTM mode

– in interactive and program mode

In UTM mode, ENTER initiates the asynchronous execution of a program or a user-specific
program unit in local or remote UTM applications. ENTER statements which call programs
in remote systems are known as remote ENTER statements.

If a DRIVE program is called with ENTER, an implicit COMPILE is performed by DRIVE/
WINDOWS before starting the program.

If intermediate code has already been generated for this program and stored in the current
DRIVE library, ENTER accesses it directly and simply starts the program. Syntax and
semantic checking are omitted in this case. DRIVE/WINDOWS searches for the last
program to have been processed, irrespective of whether this is present as a source
(S-member) or an intermediate code (X-member).

If ENTER is a statement within a program started with ENTER, any subsequent program is
started as an asynchronous UTM conversation. The calling program continues to execute
normally.

The following applies to calling DRIVE programs:

– Options specified for the initiating asynchronous program (e.g. via PARAMETER) are
passed to successor programs in the case of local execution, but not for remote
execution.

– If errors occur within a program which was started with ENTER, the program is aborted.
An error list and the message DRI0087 ERROR program-name ABORTED are written to the
central print file (see DRIVE Programming System [1] manual).

In addition, a user ID can be specified with PERMIT, and transaction conditions can be
defined with SET TRANSACTION.

U5642-J-Z125-3-7600 109

DRIVE statements ENTER

ENTER { library(member-name) |
member-name |

 [COBOL | C] TAC tacname }

 [USING { expression | NULL [INDICATOR] }, ...]
 [PERMIT]
 [SET TRANSACTION]

library Name of the DRIVE library (max. 54 characters) in which the DRIVE
program is read.

library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

If the DRIVE library has been predefined with the PARAMETER
DYNAMIC LIBRARY statement, library need not be specified.

member-name Name of the member (max. 31 characters) which contains the
DRIVE program as a source or intermediate code.

DRIVE/WINDOWS searches for the last member to have been
processed, irrespective of whether this contains a source
(S-member) or an intermediate code (X-member).

In interactive mode, the system checks whether the PARAMETER
DISTRIBUTION statement was used to define distribution infor-
mation. In program mode, the system only checks for distribution
information if the compiler option OPTION DISTRIBUTION=ON is
defined.

A local or remote program is called in accordance with the distri-
bution information. If no distribution information has been defined
with the PARAMETER DISTRIBUTION statement, the system
searches for the program locally.

If you do not make a library specification, then the system uses the
library which has been preset for the (local or remote) system using
PARAMETER DYNAMIC LIBRARY.

COBOL Default.

Language option for calling a subprogram written in COBOL.

110 U5642-J-Z125-3-7600

ENTER DRIVE statements

C Language option for calling a program written in C.

TAC If ENTER TAC is specified, permit and set transaction (see below) are
not permitted.

In interactive mode, a check is made to determine whether distri-
bution information was specified with the PARAMETER DISTRI-
BUTION statement. In program mode, the distribution information is
only checked if the compiler option OPTION DISTRIBUTION=ON
was defined.

Depending on the distribution information, either a local or a remote
program is called. If no distribution information was defined with the
PARAMETER DISTRIBUTION statement, the program is searched
for locally.

The number of variables passed must be limited so that the total
length of all data values and descriptions does not exceed 31
Kbytes.

tacname Name of the transaction code (max. 8 characters) of a UTM user
program unit. The UTM program unit may be part of the local or a
remote UTM application. The UTM application can run under SINIX
or BS2000.

The prefixes dri, drt, drc and sql are not permitted in tacname.
These names are reserved for DRIVE/WINDOWS.

If a UTM user program unit is called, the programming language in
which it is written must be specified.

USING Enables parameters to be passed from the calling program to the
called program. The parameters must be compatible (see the
"DRIVE Programming Language" manual [2]).

If the called program is a DRIVE program, it must have been defined
with PROCEDURE...USING... .
If the called program is a UTM program unit, the passed parameters
are placed in the message area. The UTM statement MGET
requests the passed data from UTM for the program unit.

The USING clause must not be used when calling a UTM program
unit (ENTER TAC) in interactive mode.

U5642-J-Z125-3-7600 111

DRIVE statements ENTER

expression Specifies the parameters to be passed (send fields).

In program mode, it is possible to pass variables, vectors, matrixes,
aggregates, literals or arithmetic expressions to external subpro-
grams in DRIVE
(ENTER library(member-name) ..., ENTER member-name ...).
Simple variables, vectors, matrixes, literals, or arithmetic expres-
sions may be passed to external DRIVE subprograms on the
remote system.

In interactive mode, literals, aggregates composed of literals, and
arithmetic expressions which do not contain any variables may be
passed to external subprograms in DRIVE.

Simple variables, vectors, matrixes, or components of structured
variables may be passed to UTM program units (ENTER TAC).
expression must be of type variable.
The total length of all data values and descriptions passed must not
exceed 31 Kbytes.

If the value of expression is NULL in an ENTER TAC, the INDICATOR
clause must be specified; otherwise, the program is aborted.

NULL The NULL value is passed to the program which is to be started.

INDICATOR INDICATOR is used to create an indicator variable. The value of the
indicator variable specifies whether the transfer parameter contains
the null value or a defined value. The INDICATOR entry is only
permitted for ENTER TAC.

PERMIT PERMIT statement. See the description of the PERMIT statement
in the SQL directories [4], [5] and [6].

The PERMIT statement is evaluated when DRIVE programs are
called in the local system and ignored when they are called in the
remote system.

The PERMIT statement is not permitted when calling UTM program
units.

SET TRANSACTION SET TRANSACTION statement. See the SET TRANSACTION
statement in the SQL directories [4], [5] and [6].

set transaction is evaluated for calls to DRIVE programs in the local
system. It is ignored when calling DRIVE programs on the remote
system.

No set transaction entry is allowed when calling UTM program units.

112 U5642-J-Z125-3-7600

ENTER DRIVE statements

Runtime

The maximum number of asynchronous UTM conversations which can run in parallel is
determined by the UTM generation (see DRIVE Programming System [1] manual).

It is therefore possible that a program which is started with ENTER will not be executed
immediately.

The order in which programs which are started as asynchronous UTM conversations are
processed is not always identical to the sequence of ENTER statements read by the
system.

Relationship to other statements

– DO statements have no effect within transaction-driven programs which are started as
asynchronous UTM conversations. Instead you may use ENTER statements in such
cases.

– A program started as an asynchronous UTM conversation may not contain any CALL
statements which call a UTM program unit (CALL TAC).

– A program started as an asynchronous UTM conversation may not contain any CALL
statements which call an old style program.

– A program started as an asynchronous UTM conversation may not contain any remote
CALL statements.

– When a program is called in the local system, all the specifications for parameterizing
the program which is started as an asynchronous UTM conversation are taken over
from the PARAMETER statement of the calling process.

– If the program is compiled with compiler option OPTION OBJECT=ON then you may
not specify library when the program is called.

U5642-J-Z125-3-7600 113

DRIVE statements EXECUTE

EXECUTE
Generate and execute statement dynamically

This application is valid

– in TIAM and UTM mode
– in program mode

At runtime, EXECUTE generates exactly one statement, analyzes it and executes it
immediately.

The dynamically generated statement string must be a syntactically correct DRIVE or SQL
statement. This statement is then referred to as a "dynamic" DRIVE or SQL statement.

In contrast to the normal rule that DRIVE statements must be terminated with a semicolon,
statements in an EXECUTE statements need not be terminated with a semicolon.
This means, for instance, that either of the following are permissible:
EXECUTE 'OPEN c1;'; or EXECUTE 'OPEN c1';.
If two statements are specified, separated by a semicolon, only the first is executed dynam-
ically. The second is ignored.

Any declarative parts to be used in a statement must previously have been defined during
the execution of the program, either statically in the declaration section or dynamically in a
preceding EXECUTE. Declarative parts defined only dynamically using EXECUTE are
subject to the following restriction: dynamically declared parts cannot be accessed in non-
declarative statements in static programs.

Any cursor and views declared dynamically in a program remain in effect until the end of
the program or until a dynamic DROP is explicitly specified. Permanent cursors remain
valid until program mode is terminated.

When dynamic SQL statements are executed during access to a SESAM V2.x database,
any previous SET SESSION, SET CATALOG and SET SCHEMA statements are
evaluated. If there are no statements of this type, DRIVE/WINDOWS consults the corre-
sponding PARAMETER DYNAMIC statements (AUTHORIZATION, CATALOG, SCHEMA
operands).

EXECUTE { char-expression }

114 U5642-J-Z125-3-7600

EXECUTE DRIVE statements

char-expression The result of char-expression must be a syntactically correct DRIVE
statement (see the char-expression metavariable).

The following statements can be executed dynamically:

If char-expression is a literal, the complete statement (including the
terminating semicolon) must be enclosed in single quotes (').

If char-expression contains literals, these may not exceed 256
characters in length.

You may not specify any CALL, DO or ENTER statements if you use
the DRIVE compiler DRIVE/WINDOWS-Comp.

An error message is issued if an error occurs.
In UTM mode, the process is aborted.
In TIAM mode, the program is aborted.

If a "CALL ..." statement is included in an EXECUTE statement without specifying
a library then an external DRIVE subprogram is called.

SQL statements DRIVE statements

ALTER TABLE
CLOSE cursor
COMMIT WORK
CREATE SCHEMA
CREATE TABLE
CREATE VIEW
CREATE TEMPORARY VIEW
DECLARE ... CURSOR ...
DELETE
DROP CURSOR
DROP CURSORS
DROP SCHEMA
DROP TABLE
DROP VIEW
DROP VIEWS
FETCH
GRANT
INSERT
OPEN
PERMIT
PRAGMA
RESTORE
REVOKE
ROLLBACK WORK
SELECT
SET CATALOG
SET SCHEMA
SET SESSION
SET TRANSACTION
STORE
UPDATE

CALL
DECLARE FORM
DECLARE LIST
DISPLAY
DO
ENTER
FILL
LIST
SEND MESSAGE
SET
UNSAVE

i

U5642-J-Z125-3-7600 115

DRIVE statements EXECUTE

Example 1

The contents of a cursor table with the name "c1" are only determined at runtime and
can be structured as being variable.
The query-expression in the cursor declaration is located in the variable &S. Different
values can be assigned to this variable during runtime. By means of dynamic statement
execution (EXECUTE), the cursor declaration is generated, analyzed and executed
immediately at runtime. The same applies to opening the cursor and assigning values
to variables.

The statements following EXECUTE must be enclosed in single quotes.

...
/* Variable declaration */
DECLARE VARIABLE &s CHAR (250);
DECLARE VARIABLE &c CHAR (20) INIT 'CLOSE c1';
DECLARE VARIABLE 1 &e,
 2 e1 CHAR (20) INIT 'FETCH c1 INTO',
 2 e2 CHAR (20) INIT '&f1,&f2,&f3';

/* Execution section */
...
SET &s='SELECT * FROM t1 WHERE a=0';
EXECUTE 'DECLARE c1 CURSOR FOR ' || &s;
EXECUTE 'OPEN c1';
EXECUTE CHARACTER (&e);
EXECUTE &c;

Example 2

At runtime, two concatenated variables (CONCAT (&query-command,&query-text)) and
a simple variable (&error-message) are executed dynamically. Values were previously
assigned to the variables.

DECLARE VARIABLE
 &query-command CHAR(15) INIT 'DISPLAY FORM',
 &query-text CHAR(74) INIT
 'NL 15,TAB 5,"Enter the sequence number: "RETURN &number;',
 &error-message CHAR(74) INIT
 'SEND MESSAGE "Record does not exist. Press DUE";';
...
EXECUTE CONCAT (&query-command,&query-text);
...
EXECUTE &error-message;

116 U5642-J-Z125-3-7600

EXECUTE DRIVE statements

The following variable declarations form the basis for examples 3 through 6.

DECLARE VARIABLE
 1 &e,
 2 table-n CHAR (19) INIT 'T1',
 2 set-s CHAR (04) INIT 'SET',
 2 set-c CHAR (200),
 2 w,
 3 w1 CHAR (10) INIT 'WHERE',
 3 where-c CHAR (200);
DECLARE VARIABLE &opc CHAR (30) INIT 'DELETE FROM UPDATE';
DECLARE VARIABLE $v CHAR (17) INIT 'V1';
DISPLAY FORM LINE
 RETURN &table-n,
 RETURN &set-c INIT 'F1=100',
 RETURN &where-c INIT 'F2=2';

Example 3

Cursor "c1" is opened dynamically.

The statement must be enclosed in apostrophes.

...
EXECUTE 'OPEN c1';
...

Example 4

The statement "UPDATE T1 SET F1=100 WHERE F2=2;" is executed dynamically
using a concatenation (CONCAT) and a substring (SUBSTRING). The substring
(SUBSTRING) is defined at position 13 and having a length of 6.

...
EXECUTE CONCAT (SUBSTRING (&opc,13,6) CHAR(&e));
...

Example 5

The statement "DELETE FROM T1 WHERE F2=2;" is executed dynamically using the
concatenation symbol "||" and a substring (SUBSTRING).

...
EXECUTE SUBSTRING (&opc,1,12) || &table-n || CHARACTER (&w);
...

U5642-J-Z125-3-7600 117

DRIVE statements EXECUTE

Example 6

The statement "DECLARE c1 CURSOR FOR SELECT * FROM T1V1 WHERE F2=2;"
is executed dynamically.

...
EXECUTE 'DECLARE c1 CURSOR FOR SELECT * FROM' || UPDSTRING (&table-n,&v,3) ||
CHARACTER (&w);
...

118 U5642-J-Z125-3-7600

EXIT DRIVE statements

EXIT
Terminate DRIVE run

This application is valid

– in TIAM and UTM mode
– in interactive mode
– in program mode, only as screen input in a program

EXIT is used to terminate the DRIVE run. Any open transaction is rolled back without an
error message. The contents of EDT work file 0 are not saved.

EXIT has the same effect as a K/F key assigned ACTION=EXIT.

In TIAM mode, all the requested files are closed and all views and DRIVE-specific memory
areas are released.

In UTM mode, all the lists for the conversation are printed and then deleted from the central
print file unless they have been explicitly printed using LIST * ... DELETE. A transaction
code (TAC) or KDCOFF must then be entered.

EXIT

U5642-J-Z125-3-7600 119

DRIVE statements FILL form-name

FILL form-name
Create and fill DRIVE screen form

This application is valid

– in TIAM mode
– in UTM mode but not in asynchronous UTM mode and not in the receiving partner

environment in DTP
– in program mode

FILL form-name is used to define the contents and layout of screen forms. The statement
fills the memory area defined for the DRIVE form with DECLARE FORM.

If the statement causes a screen overflow, a DISPLAY is executed implicitly.

Entry fields may only be used on one screen page; otherwise, DRIVE/WINDOWS indicates
an error.

Entry fields are displayed at high intensity, output fields at low intensity.

When a group (= data group or repeating group) is to be output, the names of the simplest
components (= lowest level) are always output. This requires that the format specification
provides for the output of names (NAMES).
If LINE is specified for format, the structure names are also output.

Data values that extend beyond the end of a line are continued at the beginning of the
following line.

FILL form-name [format]

 { [RETURN] expression [INIT expression1 [NOCHECK]]
 [ATTRIBUTE (attribute, ...)] [mask] |
 NEWLINE n |
 NEWPAGE n |
 TABULATOR n |
 BLANK n }, ...

form-name Name of the DRIVE screen form (max. 31 characters). It must be
defined in the declaration section of the program with DECLARE
FORM.

120 U5642-J-Z125-3-7600

FILL form-name DRIVE statements

format Determines the screen format of the FILL area (see metavariable
format).

If format=TABLE:

– You may not specify NEWPAGE and NEWLINE.

– The program is aborted if data values extend beyond the end of
the line. If TABLE is not specified then these values are
continued at the start of the next line.

If format=NAMES:

– You may not specify RETURN.

– If literals are output, they are output as names.

If format=LINE:

– The specifications TABULATOR and BLANK are followed by a
line feed with a blank line.

RETURN Specifies that a variable becomes an entry field, which may be
preset. A variable for which RETURN has been specified may only
be used as an entry field once for each form.

If an input variable (with RETURN) does not fit on a screen page,
the procedure is aborted at execution time.

If an output variable (without RETURN) does not fit on a screen
page, it is truncated when output. The last three characters of the
output variable are represented by ">>>".

expression Defines output and/or entry fields for the screen form.

expression may be one or more variables (including system
variables) and/or one or more literals.

If RETURN, INIT or mask is specified, expression must be a variable
that may not be qualified with ".*".

INIT Assigns an initial value to expression. The INIT clause is permitted
only if expression is a variable.

If expression is a vector or a matrix, all components receive the corre-
sponding initial value literal or NULL.

expression1 expression1 may only be literal, NULL or a function whose arguments
are literals (not CURRENT DATE/TIME/TIMESTAMP). expression1
must be calculable at compilation time.

U5642-J-Z125-3-7600 121

DRIVE statements FILL form-name

NOCHECK A CHECK clause (see the metavariable check) specified when
declaring the expression variable is not evaluated for the assignment
of the initial value.

NOCHECK is not permitted for redefined variables or variables
which redefine other variables.

ATTRIBUTE Assigns field attributes to screen forms.

attribute Field attribute (see metavariable attribute)

mask Defines the representation options for masked input and output
(= output editing).
mask may only be specified if expression is a simple variable or a
simple component.

NEWLINE n NEWLINE causes an advance of n lines. The current line is
completed with NEWLINE 1. Any subsequent data is written in the
next line.
Even if the current line has already been filled, i.e. it already
contains as many characters as defined in the COLUMNS specifi-
cation of the corresponding DECLARE, NEWLINE 1 does not cause
a blank line to be output. Instead, it positions to the next line.

If n has the value "0", a conditional line feed is performed, i.e. if the
current line is blank, NEWLINE 0 is ignored, if the current line is not
blank, NEWLINE 0 has the same effect as NEWLINE 1.

NEWPAGE n NEWPAGE causes an advance of n pages. The current page is
completed with NEWPAGE 1. Any subsequent data is written on the
next page.
Even if the current page has already been filled, i.e. it already
contains as many lines as defined in the LINES specification of the
corresponding DECLARE, NEWPAGE 1 does not cause a blank
page to be output. Instead, it positions to the next page.
If n has the value "0", a conditional page feed is performed, i.e. if the
current page is blank, NEWPAGE 0 is ignored, if the current page is
not blank, NEWPAGE 0 has the same effect as NEWPAGE 1.

TABULATOR n The output is continued from column n.

If the value is less than the current column position, a line or page
feed is performed. The resulting gap is filled with blanks.

IF TABULATOR is specified without a value n, either this has no
effect or one line feed is performed. The following applies:
1 ≤ TABULATOR ≤ COLUMNS

122 U5642-J-Z125-3-7600

FILL form-name DRIVE statements

BLANK n BLANK causes n blanks to be inserted. This may result in a line feed
or page feed.

n is a whole number.

Example

For a definition of the screen form "output-staff" refer to page 63.

The FILL area of this screen form is filled as follows:
The names of the simplest components in the group item &staffrec are output first. The
data contents of the group item &staffrec then continue to be output until the end of the
cursor table "stcursor" is reached.

1995-12-20 15:28:32

 Staff

surname first name salary
Winterberg Abigail 3500.00
Martin George 2700.00
.
.
.

==

DECLARE stcursor CURSOR ...
DECLARE VARIABLE &staffrec,
 2 surname CHAR (20),
 2 first name CHAR (20),
 2 salary NUM (7,2);
...
FILL output-staff TABLE NAMES &staffrec;
CYCLE macursor INTO &staffrec.*;
 FILL output-staff TABLE VALUES &staffrec;
END CYCLE;

U5642-J-Z125-3-7600 123

DRIVE statements FILL list-name

FILL list-name
Create and fill in list form

This application is valid

– in TIAM mode
– in UTM mode but not in asynchronous UTM applications
– in program mode

FILL list-name is used to define the contents and layout of lists for data output. If the
statement results in a page overflow, a DISPLAY list-name is implicitly executed.

In UTM applications, the central print file must be generated. There are three options for
generation:

– the DRI.LIST.FILE file already exists
– the file is assigned via the file link name DRILIST
– the DRI.LIST.FILE is generated when the first DRIVE/WINDOWS DISPLAY statement is

executed

The actual output on the SPOOL printer occurs at the next STOP or LIST statement (see
the LIST and STOP statements).

FILL list-name [format]

 { expression [mask] |
 NEWLINE n |
 NEWPAGE n |
 TABULATOR n |
 BLANK n }, ...

list-name Name of the list form (max. 31 characters). It must be defined in the
declaration section of the program using DECLARE LIST.

format Specifies the format of the list form.

If TABLE is specified for format, NEWPAGE and NEWLINE must not
be specified.

If LINE is specified for format, TABULATOR and BLANK cause a line
feed with a blank line.

124 U5642-J-Z125-3-7600

FILL list-name DRIVE statements

expression Defines output fields for the list form.

expression may be one or more variables (including system
variables) and/or one or more literals.

If an output variable does not fit on a screen page, it is truncated
when output. The last three characters of the output variable are
represented by ">>>".

mask Defines the representation options for masked output (= output
editing).
mask may only be specified if expression is a simple variable or a
simple component.

NEWLINE n NEWLINE causes an advance of n lines. The current line is
completed with NEWLINE 1. Any subsequent data is written in the
next line.
Even if the current line has already been filled, i.e. it already
contains as many characters as defined in the COLUMNS specifi-
cation of the corresponding DECLARE, NEWLINE 1 does not cause
a blank line to be output. Instead, it positions to the next line.

If n has the value "0", a conditional line feed is performed, i.e. if the
current line is blank, NEWLINE 0 is ignored, if the current line is not
blank, NEWLINE 0 has the same effect as NEWLINE 1.

NEWPAGE n NEWPAGE causes an advance of n pages. The current page is
completed with NEWPAGE 1. Any subsequent data is written on the
next page.
Even if the current page has already been filled, i.e. it already
contains as many lines as defined in the LINES specification of the
corresponding DECLARE, NEWPAGE 1 does not cause a blank
page to be output. Instead, it positions to the next page.

If n has the value "0", a conditional page feed is performed, i.e. if the
current page is blank, NEWPAGE 0 is ignored, if the current page is
not blank, NEWPAGE 0 has the same effect as NEWPAGE 1.

TABULATOR n The output is continued from column n.

If the value is less than the current column position, a line feed is
performed. The resulting gap is filled with blanks.

The following applies: 1 < TABULATOR < COLUMNS

BLANK n BLANK causes n blanks to be inserted. This may result in a line feed
or page feed.

n is an integer.

U5642-J-Z125-3-7600 125

DRIVE statements GET FILE POSITION

GET FILE POSITION
Read file position

This application is valid

– in TIAM and UTM mode
– in program mode

GET FILE POSITION reads the current file position in an open file and transfers the value
to a variable.

In ISAM files you use the LOCATE FILE statement for positioning via the
ISAM key.

GET FILE POSITION file TO variable

file Logical name of the file from which the file position is to be read.

This must be the name under which the file has been declared in the
program using the DECLARE FILE statement.

variable Name of the variable to which the file position is passed (see the
variable metavariable).

The variable variable must be large enough to store the file position
(260 bytes).

i

126 U5642-J-Z125-3-7600

GET MODIFIED INDEX DRIVE statements

GET MODIFIED INDEX
Record modified list line

This statement is valid

– in UTM mode
– in program mode

GET MODIFIED INDEX records modified lines from list areas in the sequence in which they
are modified by the user.

GET { FIRST | NEXT } MODIFIED INDEX INTO variable FROM screenform

FIRST Records the first line to be modified in the list area.

NEXT Records the next line to be modified in the list area.

You may not specify NEXT unless you have already recorded a line
from the same list area using FIRST.

If a list area contains no further modified lines, NEXT returns the
NULL value.

variable Name of the variable in which DRIVE/WINDOWS stores the number
of the modified list line

variable must be a numeric variable.

screenform FHS-DE partial form with a list area. The partial form must be output
using DISPLAY SCREEN.

You cannot use GET MODIFIED INDEX to process two list areas in parallel. i

U5642-J-Z125-3-7600 127

DRIVE statements GET SCREEN CURSOR

GET SCREEN CURSOR
Read cursor position

This statement is valid

– in UTM mode
– in program mode

GET SCREEN CURSOR reads the position of the cursor in a screen form. The screen form
may be a partial form or a dialog box.

If the cursor is positioned in a named field, DRIVE/WINDOWS identifies the field name. If
the field is unnamed, DRIVE/WINDOWS ascertains the absolute position of the cursor in
the partial form or dialog box.

GET SCREEN CURSOR INTO variable1, variable2, variable3 FROM screenform

variable1 Name of the variable in which DRIVE/WINDOWS stores the name
of an FHS-DE partial form or an FHS-DE dialog box if the cursor is
positioned in a named field.

variable1 contains the NULL value if the cursor is positioned in an
unnamed field.

variable1 must be an alphanumeric variable. variable1 must be at
least 8 characters long.

variable2 Name of the variable in which DRIVE/WINDOWS stores the line
(absolute position) if the cursor is positioned in an unnamed field.

variable2 contains the NULL value if the cursor is positioned in a
named field.

variable2 must be a numeric variable.

variable3 Name of the variable in which DRIVE/WINDOWS stores the column
(absolute position) if the cursor is positioned in an unnamed field.

variable3 contains the NULL value if the cursor is positioned in a
named field.

variable3 must be a numeric variable.

128 U5642-J-Z125-3-7600

GET SCREEN CURSOR DRIVE statements

screenform FHS-DE form (partial form or dialog box) containing the cursor
whose position you want to read. screenform must be output on the
screen.

U5642-J-Z125-3-7600 129

DRIVE statements IF

IF
Program condition

This application is valid

– in TIAM and UTM mode
– in program mode

IF identifies the beginning of a condition. The end of a condition is defined by END IF.
Depending on the truth value of a condition, a branch is made to alternative statements
within an IF block. If the condition returns the TRUE value, the system executes the THEN
branch, otherwise the ELSE branch is executed.

If conditions appear within an internal subprogram, they must also be terminated with END
IF (see the SUBPROCEDURE statement).

Conditions may be nested to any depth. The nesting depth is restricted only by the amount
of memory space needed by DRIVE/WINDOWS for processing.

Conditions, loops (CYCLE), branches (CASE ... OF), and concurrent remote processing
(DISPATCH) must not overlap.

Conditions, loops (CYCLE) and branches (CASE ... OF) may not overlap.

In a program, the IF statement may not be followed by a semi-colon. The semi-
colon follows the statement in the THEN branch.

IF condition THEN { programming } ...
 [ELSE { programming } ...]

condition Condition(s) applied to data contents of attributes and/or variables.
condition must not contain a projection.

THEN The program branches to THEN if condition returns the truth value
TRUE.

ELSE The program branches to ELSE if condition returns the truth value
FALSE or UNKNOWN. If ELSE is not specified and condition returns
the truth value FALSE or UNKNOWN, the next statement following
END IF is executed.

programming Statements for the body of a program.

i

130 U5642-J-Z125-3-7600

IF DRIVE statements

Example

If the contents of the variable &response is "y", the row &article.* is inserted in the table
"v-article", otherwise the subprogram "terminate" is called.

IF &response = 'y'
 THEN INSERT INTO v-article VALUES (&article.*);
 ELSE CALL terminate;
END IF;

Defining error exits

Defining an error exit with WHENEVER is the only way to avoid program abortion due to
semantic errors identified during the evaluation of conditions. The error exit must be defined
in the declaration section. The program is continued after END IF as defined in the error
exit in WHENEVER (see the WHENEVER statement).

U5642-J-Z125-3-7600 131

DRIVE statements LIST

LIST
Output list

This application is valid

– in UTM mode
– in interactive and program mode

The LIST statement can be used to issue UTM print jobs both in interactive mode and in
asynchronous mode. Printing itself takes place asynchronously. In order to generate print
jobs, at least one asynchronous task, the transaction code DRILIST, and the list file must
be generated. LIST accesses the user-specific data in the list file and outputs it.

LIST accesses the print-edited contents of the list file and outputs it to a printer (DEVICE)
or a terminal (LTERM), or copies it into a file (FILE) or a P-member of the DRIVE library
(LIB).

You can use the DELETE operand to determine whether the contents of the central print file
should be deleted following printer output.

If DRIVE/WINDOWS is terminated by a STOP statement in interactive mode, the contents
of the central print file are automatically printed and deleted from the print file. Automatic
printing of error lists after STOP is suppressed if the parameter PARAMETER DIAGNOSIS
INTTRACE LIST ='NO_ERR_LIST' has been set.

If the conversation is aborted with errors the contents of the central print file are not deleted.
You must use the LIST statement to output these contents during the next UTM conver-
sation.

UTM also generates a start file, which is used to store the user-specific DRIVE start param-
eters. This file cannot be output with LIST *. It is deleted when a STOP statement is entered.
If errors occur, error messages are also stored in this file.

LIST * [WHERE STATUS { ENTER | DIALOG | conversation }]

 [INTO { FILE { filename | variable1 } |
 LTERM { ltermname | variable2 } |
 DEVICE { devname | variable3 } }]

LIB { library(member-name) | member-name }

 [spoolparameter] [DELETE]

132 U5642-J-Z125-3-7600

LIST DRIVE statements

* Outputs all lists.

WHERE STATUS All outstanding print jobs for the specified conversation (interactive,
asynchronous mode) are output.

If you do not specify WHERE STATUS then only the print jobs for
the current conversation are output.

ENTER All the print jobs for asynchronous mode are output.

DIALOG All the print jobs for interactive mode are output.

conversation Variable name for the current conversation.

conversation must be an alphanumeric variable and may be
assigned only one of the values ENTER or DIALOG.

conversation can only be specified in program mode.

INTO INTO specifies the output medium

If you do not specify INTO, then the spool parameters specified in
spoolparameter are evaluated. Output is performed at the central
printer.

FILE Output is sent to a file.

filename Name extension for the file to which the output is sent (max. 20
characters). filename must comply with BS2000 filename conven-
tions. DRIVE/WINDOWS adds the prefix DRI.LIST.utmname. The full
name is: DRI.LST.utmname.filename.

variable1 Variable name for the name extension described in filename.

variable1 must be an alphanumeric variable of type CHAR(L) where
1 ≤ L ≤ 21.

variable1 may only be specified in program mode.

LTERM Print output is sent to a UTM data display terminal entered in the
KDCFILE or to a UTM workstation printer or to the output medium
which is specified in LTERM in KDCDEF.

This specification is not possible in TIAM mode.

ltermname Name of a UTM data display terminal or a UTM workstation printer
(max. 8 characters).

ltermname must be specified as a literal.

variable2 Variable name for a UTM data display terminal. variable2 must be an
alphanumeric variable of type CHAR(L) where 1 ≤ L ≤ 8.

variable2 may only be specified in program mode.

U5642-J-Z125-3-7600 133

DRIVE statements LIST

DEVICE Print output is sent to a printer. All the print jobs relating to the
conversation are printed.

devname Name of a printer which must be generated in PDN (max. 8
characters).

devname must be specified as a literal.

variable3 Variable name for a printer. variable3 must be an alphanumeric
variable of type CHAR(L) where 1≤L≤8.

variable3 may only be specified in program mode.

LIB Output is sent to a P-member of the DRIVE library.

library Name of the DRIVE library (max. 54 characters) to which the file is
sent.

library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

If the DRIVE library has been predefined with the PARAMETER
DYNAMIC LIBRARY statement, library need not be specified.

member-name Name of the member (max. 31 characters) to which the list is to be
output.

If you do not specify library, the library specified in PARAMETER
DYNAMIC LIBRARY is used.

spoolparameter Designates printer management options.

These options must comply with the syntax of the BS2000 PRINT-
FILE command (see BS2000 Commands [35]).

The spoolparameter is passed unchecked to the printer
management.

spoolparameter is ignored if INTO FILE, INTO LTERM or INTO LIB is
specified.

The string may be a maximum of 256 characters in length and can
be specified as a literal or as the contents of a DRIVE variable of
type CHARACTER or VARCHAR.

134 U5642-J-Z125-3-7600

LIST DRIVE statements

If no print management options are specified, the SPOOLDOPT setting
in the user profile is evaluated. If no specifications are available, the
operand LAYOUT-CONTROL=PARAMETERS(CONTROL-CHARACTERS=PHYSICAL)
is used for the BS2000 PRINT-FILE command (see BS2000
Commands [35]).

If more than one character set is used within a report, you must
specify the character sets using the operand
LAYOUT-CONTROL=PARAMETERS(CONTROL-CHARACTERS=PHYSICAL,
CHARACTER-SETS=...) (see BS2000 Commands [35], PRINT-FILE
command).

DELETE When the print job has been terminated, the contents of the central
print file are deleted.

U5642-J-Z125-3-7600 135

DRIVE statements LOCATE FILE

LOCATE FILE
Locating a position in an ISAM file

This application is valid

– in TIAM and UTM mode
– in program mode

LOCATE FILE positions you at a data record in an open ISAM file.

Specify POSITION=KEY to move to a data record with the specified ISAM key.
DRIVE/WINDOWS issues an error message if it is unable to locate a record with the
specified key.

Specify POSITION >=KEY to move to a data record with the specified or next highest ISAM
key.

LOCATE FILE file TO char-expression

 [[WITH] POSITION { = | >= } KEY]

file Logical name of a file in which a position is to be located.

The file must be declared under this name in the program using the
DECLARE FILE statement.

char-expression Defines the key value (ISAM key) of the data record.

POSITION=KEY Moves the position to the record with the ISAM key char-expression.

POSITION>=KEY Default

Moves the position to the record with the ISAM key char-expression
or to the first record with an ISAM key greater than char-expression.

136 U5642-J-Z125-3-7600

OPEN FILE DRIVE statements

OPEN FILE
Open a file

This application is valid

– in TIAM and UTM mode
– in program mode

OPEN FILE opens a file and assigns it a logical name. The logical name must have been
defined with the DECLARE FILE statement. This name is used to access the file in DRIVE
programs.

DRIVE/WINDOWS allows you to open the same file under different logical names provided
that this is permitted by the BS2000 operating system.

In this statement, you specify the file type and the OPEN mode to be used when opening
the file.

When a file is opened with INPUT, OUTPUT, UPDATE, INOUT and OUTIN, the system
positions at the beginning of the file and when you open a file with EXTEND, the system
positions at the end of the file.

If a file is opened for read and write access with UPDATE, INOUT or OUTIN, read and write
accesses must not follow each other directly. The SET FILE POSITION statement must
occur between the READ FILE and WRITE FILE statements unless DRIVE/WINDOWS
reaches the end of the file during read access.

DRIVE/WINDOWS issues an error message if a file which is to be opened for read access
does not exist or does not correspond to the data type specifications.

The BS2000 operating system checks the file access permissions. If access is not
permitted, DRIVE/WINDOWS intercepts and outputs the operating system error message.

Do not overwrite the contents of text files. Since the actual stored length of variables
is unknown, new data may be longer or shorter than the data which is overwritten.
In both cases the structure of the text file is modified and the text file can no longer
be read via the DRIVE variable (which describes it).

i

U5642-J-Z125-3-7600 137

DRIVE statements OPEN FILE

OPEN FILE file IN bs-file
 [SAM | ISAM | BIN | CHARACTER character]
 [INPUT | OUTPUT | EXTEND | UPDATE | INOUT | OUTIN]

file Logical name of a file (max. 31 characters).

The file must have been defined with this name in the program using
the DECLARE FILE statement.

No file with this logical name may already be open.

IN Specifies the file to be accessed under this logical name.

bs-file Name of a file at operating system level (max. 54 characters) which
is to be opened.

bs-file may be the file link name of the file.
DRIVE/WINDOWS first interprets bs-file as a file link name and then
as a file name.

bs-file must be a file link name if an ISAM file is to be processed as
a SHARED-UPDATE file.

This name must comply with the BS2000 naming conventions.

bs-file must be of the type char-expression.

SAM Default

The file is a SAM file.

ISAM The file is an ISAM file.

BIN The file is a binary file (see the DRIVE Programming Language
manual [2]).

CHARACTER The file is a text file (see the DRIVE Programming Language
manual [2]).

138 U5642-J-Z125-3-7600

OPEN FILE DRIVE statements

character Specifies the field delimiter (one character).

Default: blank

Do not specify any of the following for character:
– the end-of-line character
– the end-of-file character
– the blank (Ë)
– the characters + - , or .
These could lead to unpredictable results.

The delimiter character must be specified as an alphanumeric literal
(char-literal, see the literal metavariable) or as a hexadecimal
character (hex-literal, see the literal metavariable).

INPUT Open for reading. The file must already exist.

OUTPUT Default

Open for writing.If a file with the name bs-name already exists, the
old contents are deleted. Otherwise the file is created.

EXTEND Open for writing. If a file with the name bs-name already exists, the
old contents are retained and the new data is appended at the end
of the file. If the file does not exist, it is created.

You may not specify EXTEND for ISAM files.

UPDATE Open for reading and writing. If a file with the name bs-name already
exists, the old contents are retained and can be overwritten.

INOUT Open for reading and writing. The file must already exist. The old
contents are retained and can be overwritten.

OUTIN Open for reading and writing. If a file with the name bs-name already
exists, the old contents are deleted. If the file does not exist, it is
created.

U5642-J-Z125-3-7600 139

DRIVE statements OPEN FILE

Special file characteristics

– You may process files with K and NK block format. (See the DMS Introductory Guide
[37])

– If you create a file without specifying the file type or opening mode, the file is assigned
the values SAM and OUTPUT. All other file attributes match the default settings for the
BS2000 operating system.

– When you create a file it is assigned the following attributes depending on the specified
data type:

SAM: record format: (V,N)

ISAM: record format: (V,N)
key position: 5
key length: 8

– If a file already exists, the specifications from the file catalog or file link entry apply. An
existing file retains its catalog attributes even after its contents have been deleted.

– In DRIVE/WINDOWS you can only process files which possess block control infor-
mation in the data block (block format DATA). Even if you access files without block
control information (block format NO), the file is assigned the block format DATA (see
the DMS Introductory Guide [37]).

– If you use the file link name to open a file, then you can specify the SET-FILE-LINK
command to modify the following attributes in the BS2000 system:
access method, record format, record length, block format and block length.

You must enter the SET-FILE-LINK command:

– in TIAM mode, either before the start of the DRIVE program or with the SYSTEM
statement in the DRIVE program. The SYSTEM statement must precede the
OPEN-FILE statement.

– in UTM mode, before the start of the DRIVE application.

– If ISAM files are to be processed by more than one program simultaneously (SHARED-
UPDATE=YES) then you must use file link names to address these. In BS2000, enter
the SET-FILE-LINK command with the operand LINK-NAME= and structure
SUPPORT=...(SHARED-UPDATE=YES).

You must enter the SET-FILE-LINK command:

– in TIAM mode, either before the start of the DRIVE program or with the SYSTEM
statement in the DRIVE program. The SYSTEM statement must precede the
OPEN-FILE statement.

– in UTM mode, before the start of the DRIVE application.

140 U5642-J-Z125-3-7600

OPEN FILE DRIVE statements

– The ISAM keys form part of the record data which is written by the DRIVE program or
supplied to the DRIVE program when read.
You must specify the position and length of the key using the corresponding
SET-FILE-LINK command
(SET-FILE-LINK ... KEY-LENGTH=..., KEY-POSITION=...).

You must enter the SET-FILE-LINK command:

– in TIAM mode, either before the start of the DRIVE program or with the SYSTEM
statement in the DRIVE program. The SYSTEM statement must precede the
OPEN-FILE statement.

– in UTM mode, before the start of the DRIVE application.

– The following applies to UTM mode:
Files which are opened using INPUT as well as ISAM files which are declared as
SHARED-UPDATE files in the SET-FILE-LINK statement are only opened once during
the UTM conversation (on the first OPEN FILE statement) and are then closed by
DRIVE/WINDOWS when the conversation terminates. After the first OPEN statement,
all further CLOSE FILE and OPEN-FILE statements are ignored. It is also not possible
to re-open an open file in a different OPEN mode.

You are not allowed to process ISAM files with key duplication (DUPKEY=YES).

Relationship to other statements

You may enter the file name or file link name bs-file in uppercase or lowercase characters.
The name is automatically converted to uppercase in BS2000. No specifications made in
the PARAMETER DYNAMIC LETTERS or OPTION LETTERS statements are valid for the
BS2000 operating system.

i

U5642-J-Z125-3-7600 141

DRIVE statements OPTION

OPTION
Control compilation of a program

This application is valid

– in TIAM and UTM mode
– in interactive and program mode

OPTION controls the compilation run for a DRIVE program. It is used to set compiler
options for compiling DRIVE programs to form intermediate code.

You may specify OPTION in a source (ahead of the PROCEDURE and DECLARE TYPE
statements) or in the COMPILE statement.

OPTION specifications in the source override DRIVE/WINDOWS defaults. However,
OPTION specifications in the source are overridden by OPTION specifications in the
COMPILE statement.

Some of the OPTION statement operands are not supported by certain operating systems
(BS2000, SINIX and MS-Windows) (see the DRIVE directories for SINIX [12] and
MS-Windows[9]). For reasons of compatibility, DRIVE/WINDOWS ignores such operands
and they remain without function.

OPTION { AUTHORIZATION=authorization |
 CATALOG=ses-db-name |
 CODE={ OFF | ON } |
 DBSYSTEM={ OFF | SESAM | SESAMSQL | UDS } |
 DCSYSTEM={ TIAM | UTM | BOTH } |
 DECIMALSIGN={ . | , } |
 DISTRIBUTION={ OFF | ON } |
 LETTERS={ CAPITAL | BOTH | UNCHANGED } |
 LISTING={ OFF | LIBRARY | LIST | BOTH } |
 LISTTYPE={ OFF | USER | EXPERT } |
 MONINFO={ OFF | ON } |
 NULLVALUE={ OFF | ON } |
 OBJECT={ OFF | ON } |
 PERMIT={ OFF | ON } |
 SCHEMA=schema-name |

SCREENCHECK { ON | OFF }
 TASKTYPE={ DIALOG | ENTER | BOTH } |
 VERSIONMIX={ OFF | ON } |
 XREF={ OFF | ON } } ...

142 U5642-J-Z125-3-7600

OPTION DRIVE statements

AUTHORIZATION Specifies the authorization key authorization for a SESAM database
(max. 18 characters) (see SQL directory for SESAM V2 [5]).

Default: the current setting from PARAMETER DYNAMIC
AUTHORIZATION

CATALOG Specifies the default for a SESAM V2.x database sesdbname (max.
18 characters) (see SQL directory for SESAM V2 [5]).

Default: the current setting from PARAMETER DYNAMIC
CATALOG or blanks

CODE Specifies whether the intermediate code which is generated is to be
stored.

=OFF Default

The intermediate code is not stored.

=ON The intermediate code is stored in the DRIVE library
(member type X).

The member with the intermediate code is given the same name as
the member which contains the source program.

DBSYSTEM Specifies the database system to be accessed by the SQL state-
ments in a DRIVE program.

Default: the loaded variant if the DRIVE program which is to be
compiled contains SQL statements (with the exception of COMMIT
WORK and ROLLBACK WORK).

=OFF The DRIVE program to be compiled contains no SQL statements
which access a database other than COMMIT WORK and
ROLLBACK WORK.

Default if the DRIVE program which is to be compiled contains no
SQL statements apart from COMMIT WORK and ROLLBACK
WORK.

If no database system has been specified for a program (OPTION
DBSYSTEM=OFF), the database defined for the calling program or,
(in the case of a return) the called program is determined at runtime
(see the DRIVE Programming Language manual [2]).

=SESAM SQL statements access a SESAM V1.x database.

=SESAMSQL SQL statements access a SESAM V2.x database.

=UDS SQL statements access a UDS database.

U5642-J-Z125-3-7600 143

DRIVE statements OPTION

DCSYSTEM Specifies the target communication system in which the program is
to be executed.

Default: the current value at compilation time

=TIAM For TIAM mode

=UTM For UTM mode

=BOTH For program use in either mode.

DECIMALSIGN Specifies the decimal sign in the source program.

Default: period (.)

This option is also used in the analysis of dynamic statements (see
the EXECUTE statement).

DISTRIBUTION Specifies whether the distribution information is to be evaluated
when programs are called with CALL or ENTER.

=OFF Default

The distribution information is not evaluated.

=ON The distribution information is evaluated at execution time.

LETTERS Specifies how letters are to be managed in the compiled program.
This specification affects names and literals.

This option is also used in the analysis of dynamic statements (see
the EXECUTE statement).

=CAPITAL Default

Only uppercase characters are processed by the compiled
program.

All lowercase characters in names and literals are converted to
uppercase characters. Umlauts are not converted.

=BOTH Both uppercase and lowercase characters are processed by the
compiled program.

Lowercase characters in names are converted to uppercase.
Lowercase characters in literals are not converted to uppercase.

Keywords and metavariables are always converted (this only
applies when creating an OLTP application for BS2000 and during
remote access).

144 U5642-J-Z125-3-7600

OPTION DRIVE statements

=UNCHANGED Lowercase characters are not converted to uppercase for names or
literals.

You should not change the specification LETTERS=UNCHANGED
since software products such as LMS, EDT, SESAM, UDS which
work with DRIVE/WINDOWS handle lowercase letters in different
ways.

LISTING Specifies whether an interpreter listing is to be created.

=OFF Default

No interpreter listing is generated.

=LIBRARY An interpreter listing is stored in the current DRIVE library (as a
member of type P).

The member with the interpreter listing and the member that
contains the source program have the same name.

=LIST In TIAM mode an interpreter listing is output to SYSLST. In UTM mode
the interpreter listing is written to the central print file.

=BOTH The interpreter listing is output to the DRIVE library.

In addition the interpreter listing is output to SYSLST in TIAM mode
and to the central print file in UTM mode.

LISTTYPE Specifies whether a compiler listing is to be generated.

LISTTYPE may only be specified if the DRIVE compiler DRIVE/
WINDOWS-Comp is being used (see the DRIVE Compiler manual
[16]).

=OFF Default

No compiler listing is generated.

=USER A compiler listing with the generated assembler code is output to
SYSLST.

=EXPERT A compiler listing with the generated assembler code and a cross-
reference list are output to SYSLST.

U5642-J-Z125-3-7600 145

DRIVE statements OPTION

MONINFO Specifies whether installation information (MONINFO) is to be
generated.

MONINFO may only be specified if the DRIVE compiler DRIVE/
WINDOWS-Comp is being used (see the DRIVE Compiler manual
[16]).

=OFF Default

No installation information is generated.

=ON Installation information is output to SYSLST.

NULLVALUE Specifies whether the null value is to be recognized for variables in
the program.

NULLVALUE may only be specified if the DRIVE compiler DRIVE/
WINDOWS-Comp is being used (see the DRIVE Compiler manual
[16]).

=OFF Default

The null value is not recognized. The program must not contain any
assignments with NULL.

=ON The null value is recognized.

OBJECT Specifies whether the compiler should be started and object code
(member type R) generated.

OBJECT may only be specified if the DRIVE compiler DRIVE/
WINDOWS-Comp is being used (see the DRIVE Compiler manual
[16]).

=OFF Default

No compiler run. No object code is generated.

=ON The DRIVE/WINDOWS-Comp compiler is started. Object code is
generated.

146 U5642-J-Z125-3-7600

OPTION DRIVE statements

PERMIT Specifies whether the generated object should be accompanied by
a screen for the input of a user ID (see the PERMIT statement in the
SQL directories [4] and [6]).

PERMIT may only be specified if the DRIVE compiler DRIVE/
WINDOWS-Comp is being used (see the DRIVE Compiler manual
[16]).

=OFF Default

A password screen is not to be displayed.

=ON A password screen is to be displayed.

SCHEMA schema-name
Name of a SESAM V1.x database (max. 18 characters), a SESAM
V2.x schema (max. 31 characters) or a UDS schema (max. 30
characters) if no name is specified in the SQL statements within a
program (see SQL directories [4], [5], [6]).

Default for SESAM V1.x and UDS: none; for SESAM V2.x: the
current setting from PARAMETER DYNAMIC SCHEMA or blanks.

SCREENCHECK Specifies whether DRIVE/WINDOWS evaluates the CHECK
clauses which are generated by IFG in the addressing aids (see IFG
[28]).

=OFF The CHECK clauses are not evaluated.

=ON Default

The CHECK clauses are evaluated.

TASKTYPE Specifies how a compiled program executes.

Default: the current value at compile time.

=DIALOG The compiled program can only run as an interactive program (see
DO statement).

=ENTER The compiled program can only be started as an asynchronous
UTM conversation (see ENTER statement).

=BOTH The compiled program can run both as an interactive program and
an asynchronous UTM conversation.

U5642-J-Z125-3-7600 147

DRIVE statements OPTION

VERSIONMIX Specifies whether the compiled program can run in mixed
operation.

VERSIONMIX may only be specified if the DRIVE compiler
DRIVE/WINDOWS-Comp is being used (see the DRIVE Compiler
manual [16]).

=OFF Default

The compiled program can only run in new style
DRIVE/WINDOWS operation.

=ON The compiled program can run in DRIVE/WINDOWS mixed
operation.

DO statements require that called programs receive a TAC
definition in UTM generation (see DRIVE Compiler [16]).

XREF Specifies whether cross references are to be output for the
compiled program. This is only done if the option LISTING=OFF
was not specified.

=OFF Default

No cross-references are output.

=ON Cross-references are output for the compiled program.

Rules

– If format entries are made at runtime, the OPTION specifications LETTERS and
DECIMALSIGN have no effect.

Exception: format entries converted in a dynamic SQL statement are subordinate to the
OPTION specifications.

Relationship to other statements

– If you do not specify a library member in DO or COMPILE then the following compiler
options are ignored in the source: LISTING=LIBRARY, CODE=ON and OBJECT=ON.

– If DO is entered, the following source options are ignored: CODE=ON and
OBJECT=ON.

– If you specify the option TASKTYPE=DIALOG in a program and start this program using
the ENTER statement, the asynchronous UTM conversation will of course continue to
run.

148 U5642-J-Z125-3-7600

OPTION DRIVE statements

Summary of default values

Option Default

AUTHORIZATION Current setting from PARAMETER DYNAMIC
AUTHORIZATION

CATALOG Current setting from PARAMETER DYNAMIC
CATALOG or blanks

CODE OFF

DBSYSTEM Loaded variant or UDS

DCSYSTEM Current value at compilation time

DECIMALSIGN . (point)

DISTRIBUTION OFF

LETTERS CAPITAL

LISTING OFF

LISTTYPE OFF

MONINFO OFF

NULLVALUE OFF

OBJECT OFF

PERMIT OFF

SCHEMA Current setting from PARAMETER DYNAMIC
SCHEMA or blanks

SCREENCHECK ON

TASKTYPE Current value at compilation time

VERSIONMIX OFF

XREF OFF

U5642-J-Z125-3-7600 149

DRIVE statements PARAMETER

Examples

The following options are to be entered in the source "JOBS":

– With SQL statements where no schema name has been specified explicitly, the
name "TEST" is to be used.

– Cross-references should be output to SYSLST.

The OPTION specifications must precede the PROCEDURE statement in the source
code:

OPTION SCHEMA=TEST XREF=ON LISTING=LIST;
PROCEDURE order;
...

COMPILE starts the compiler run for the source "JOBS". The following options are to
be respected:

– The generated intermediate code is to be stored in the DRIVE library under the
name "JOBC" (member type X).

– No cross-references are to be printed. Since an OPTION specification overrides a
corresponding specification in the source, here XREF=OFF

– An interpreter listing is to be generated and stored in the current DRIVE library
(member type P). The interpreter listing has the same name as the intermediate
code ("JOBC").

COMPILE JOBS INTO JOBC
 OPTION LISTING=LIBRARY CODE=ON XREF=OFF

PARAMETER
Select PARAMETER statement

This application is valid

– in TIAM and UTM mode
– in interactive mode

PARAMETER outputs a menu from which it is possible to branch to the menu of one of the
following PARAMETER statements:

– PARAMETER DIAGNOSIS
– PARAMETER DYNAMIC
– PARAMETER KFKEY

150 U5642-J-Z125-3-7600

PARAMETER DRIVE statements

– PARAMETER LOCK
– PARAMETER STATIC

It is also possible to branch directly into the menu screens of the individual statements. This
is done by entering PARAMETER with the appropriate operands.

PARAMETER [DIAGNOSIS |
 DYNAMIC |
 KFKEY |
 LOCK { DIALOG | PROCEDURE } |
 STATIC]

DIAGNOSIS The menu screen with the current parameter values (except for the
INTTRACE operand) is displayed. The parameter values can be
corrected by the user. Invalid entries are redisplayed at the terminal
and can also be corrected by the user.

DYNAMIC The menu screen with current parameter values that can be
corrected by the user is displayed. Invalid entries are redisplayed at
the terminal and can be likewise corrected by the user.

KFKEY The menu screen with the current key assignments is displayed.

In TIAM applications, key assignments can be corrected at any
time. Invalid entries are redisplayed at the terminal and can also be
corrected by the user.

Key assignments cannot be corrected in UTM applications.

LOCK The menu screen with the statements to be locked in interactive or
program mode is displayed.

The statements, which are arranged in alphabetical order, may be
locked by the user. Invalid entries are redisplayed at the terminal
and can be corrected by the user.

DIALOG The statements for interactive mode are displayed.

PROCEDURE The statements for program mode are displayed.

STATIC The menu screen with the current parameter values that can only
be corrected by the user in the first call is displayed. Subsequent
calls can only retrieve information on these parameter values.

U5642-J-Z125-3-7600 151

DRIVE statements PARAMETER DIAGNOSIS

PARAMETER DIAGNOSIS
Activate tracing

This application is valid

– in TIAM and UTM mode
– in interactive mode
– in program mode only in the body of an interactive program

PARAMETER DIAGNOSIS controls tracing and specifies special features for program
execution.

The trace is logged in the internal DRIVE diagnostic file DRI.INTTRACE.FILE. The file
DRI.INTTRACE.FILE is an ISAM file. (See DRIVE Programming System manual [1]).

This statement may be specified in menu-driven mode without the use of operands or with
the use of at least one operand.

Without operands, PARAMETER DIAGNOSIS can only be used in interactive mode.

If you specify multiple operands within a statement, these become effective simultaneously.
If an operand is specified in both interactive and program mode, the program mode speci-
fication applies.

If errors occur during execution, none of the statement is executed and the errored
statement is marked and output. An error message is also displayed in the message line.

A PARAMETER DIAGNOSIS statement within a DRIVE program (compilation unit) has no
effect on the compiler run for that program.

PARAMETER DIAGNOSIS [ACCOUNT { ON | OFF }
DBTRACE={ ON | OFF } |

 DMSTRACE={ ON | OFF } |
 INTTRACE={ ON | OFF } |
 MEMTRACE={ ON | OFF } | ...
 { 'FILEON' | 'FILEOFF' }]

152 U5642-J-Z125-3-7600

PARAMETER DIAGNOSIS DRIVE statements

ACCOUNT Specifies whether or not performance is measured.

The measured data is written to the file DRI.ACCOUNT.DAT. This file is
an ISAM file.

Default: OFF

DBTRACE Specifies whether contents of the database interface are to be
traced.

DBTRACE may be specified only if the current DRIVE environment
connects to SESAM or UDS.

Default: OFF

DMSTRACE Specifies whether the contents of the DMS interface are to be
traced.

DMSTRACE may be specified only if the current DRIVE
environment offers access to DMS.

Default: OFF

INTTRACE INTTRACE is used for internal test purposes.

You may only specify INTTRACE=ON when requested to do so by
the Siemens Nixdorf Informationssysteme AG service department.

Default: OFF

MEMTRACE The memory management tables are traced.

Default: OFF

'FILEON' If the statements are read from SYSDTA then, if an error occurs,
data continues to be read from SYSDTA and not – as is otherwise
the case when errors occur – from the screen.

'FILEOFF' The setting FILEON is deactivated.

U5642-J-Z125-3-7600 153

DRIVE statements PARAMETER DIAGNOSIS

Evaluation time

The following table contains an overview of the times at which the operands of the
PARAMETER DIAGNOSIS statement are evaluated.

Operand Compilation time Runtime

ACCOUNT yes yes

DBTRACE yes yes

DMSTRACE - -

INTTRACE - -

MEMTRACE yes yes

154 U5642-J-Z125-3-7600

PARAMETER DIAGNOSIS DRIVE statements

PARAMETER DISTRIBUTION
Define access in a distributed system

This application is valid

– in UTM mode, but in the case of distributed transactions only, when all receiving conver-
sations have been terminated

– in interactive and program mode

PARAMETER DISTRIBUTION can be used to define access for ENTER and CALL state-
ments in the remote system. The distribution information that is supplied with PARAMETER
DISTRIBUTION is evaluated at each ENTER statement in interactive mode. In all other
program calls, the distribution information is only evaluated if the statement OPTION
DISTRIBUTION=ON has been specified.

The statement must be specified with at least one operand (STATUS).

The PARAMETER DISTRIBUTION statement is evaluated at program execution time.

If PARAMETER DISTRIBUTION is specified in both interactive and program mode, the
program mode specification applies.

PARAMETER DISTRIBUTION

 [[LIBRARY=library] ELEMENT=member-name [TYPE={ CODE | OBJECT }] |
 TAC=tac-name]

 [APPLICATION=application]

 STATUS={ OFF | ADD | REMOVE }

library Specifies the name of the remote system DRIVE library (max. 54
characters) from which the member is read.

If the DRIVE library in the remote system has been set with the
PARAMETER DYNAMIC LIBRARY statement, the library specifi-
cation can be omitted.

You must specify library if a DRIVE library specification is entered in
the CALL or ENTER statement.

U5642-J-Z125-3-7600 155

DRIVE statements PARAMETER DIAGNOSIS

You may not specify library if no DRIVE library specification is
entered in a CALL or ENTER statement.

In a remote BS2000 system:

library can be the link name of the DRIVE library (in accordance with
the BS2000 conventions).

DRIVE/WINDOWS first attempts to interpret library as a link name
and then as a library name.

In a remote SINIX system:

Absolute or relative path name of a directory representing the
DRIVE library.

A relative path name refers to the directory in which DRIVE/
WINDOWS was started in the remote system.

The library and member-name specifications are combined with
class-name specified for the remote system in the PARAMETER
DYNAMIC CLASS statement or with the preset value for the remote
system to form the file path name library\class-name\member-name
(see the PARAMETER DYNAMIC statement).

member-name Name of the remote system library member (max. 31 characters) to
be read.

In a remote BS2000 system:

Name of the library member containing source code(= S member),
intermediate code (= X member) or object code (= R member).

If library is not specified, the library set for the remote system with
PARAMETER DYNAMIC LIBRARY is used.

In a remote SINIX system:

Name of the file containing source code, intermediate code or object
code.

If library is not specified, the directory set for the remote system
using PARAMETER DYNAMIC LIBRARY is used. If no directory
has been set with PARAMETER DYNAMIC LIBRARY, the directory
specified with the environment variable DRIVE_PROJECTLIB is
used.

The file must be located in the directory library/class-name (see the
PARAMETER DYNAMIC CLASS statement).

TYPE Specifies the member type.

156 U5642-J-Z125-3-7600

PARAMETER DIAGNOSIS DRIVE statements

CODE Default

The member member-name is source code or intermediate code.

DRIVE/WINDOWS searches for the most recently processed
member in a remote BS2000 system and for the most recently
processed file in a remote SINIX system. It is of no significance
whether the member file contains source code or intermediate
code.

OBJECT The member member-name contains object code.

TYPE=OBJECT may only be specified if the member member-name
was compiled with the DRIVE/WINDOWS-Comp compiler (see
DRIVE-Compiler for BS2000 [16] or SINIX [41]).

tacname Identifies the UTM program unit that is called in the remote system.
The UTM application to which the program unit belongs must have
already been started at execution time.

tacname must not be a DRIVE interpreter TAC or a DRIVE compiler
TAC.

application Name of the UTM application (max. 8 characters) in the remote
system.

If you do not specify application, the remote application specified
during the generation of the KDCDEF control application LPAP is
used.

STATUS Determines how distribution information is to be handled.

OFF Distribution information is deleted entirely. If STATUS=OFF, no other
operands are required.

ADD A new entry is included in the distribution information. If members or
UTM program units of the same name already exist, they are
overwritten.

REMOVE The specified member or UTM program unit is deleted from the
distribution information.

U5642-J-Z125-3-7600 157

DRIVE statements PARAMETER DYNAMIC

PARAMETER DYNAMIC
Specify dynamic parameter

This application is valid

– in TIAM and UTM mode
– in interactive mode
– in program mode only in the body of an interactive program

PARAMETER DYNAMIC defines parameter values that may be changed as often as
desired during a DRIVE session. The parameter values determine certain attributes of the
DRIVE session relating to both interactive mode and the environment in which DRIVE
programs run.

This statement may be specified in menu-driven mode without the use of operands or with
the use of at least one operand.

If you do not specify any operands you may only use PARAMETER DYNAMIC in interactive
mode.

If you specify multiple operands within a statement, these become effective simultaneously.
If an operand is specified in both interactive and program mode, the program mode speci-
fication applies.

If you enter PARAMETER DYNAMIC via the menu and errors occur during the execution
of PARAMETER DYNAMIC this may be because specifications which can no longer be
cancelled have already taken effect (e.g. LIBRARY). The statement to which the errors
relate is marked and output. An error message is also output in the message line.

A PARAMETER DYNAMIC statement within a DRIVE program (compilation unit) has no
effect on the compiler run for that program.

158 U5642-J-Z125-3-7600

PARAMETER DYNAMIC DRIVE statements

PARAMETER DYNAMIC [AUTORIZATION=authorization |
 CATALOG=ses-db-name |
 DBSYSTEM={ SESAM | SESAMSQL | UDS } |
 DECIMALSIGN={ , | . } |
 ERRORATTRIBUTE=(attribute, ...) |
 FORMAT={ LINE | TABLE | SEQUENCE } |
 LETTERS={ CAPITAL | BOTH | UNCHANGED } |
 LIBRARY=library |
 LOG={ OFF | IN | OUT | INOUT } |
 LOGFILE=filename |
 LOGPASSWORD=password |
 NORMSQL={ ON | OFF } |
 NULL { FORM | LIST } null-value |
 SCHEMA=schema-name |
 TEST={ STANDARD | ALL } |
 USERMSGFILE=name] ...

AUTHORIZATION defines the current authorization key authorization (max. 18
characters) for SESAM V2.x databases (see SQL directory for
SESAM V2 [5]).

AUTHORIZATION=authorization is valid only for SQL statements
which are entered in interactive mode and has no effect on SQL
statements in programs.

If you specify AUTHORIZATION=authorization then you must work
with PARAMETER DYNAMIC DBSYSTEM=SESAMSQL, i.e. you
must load the SESAM V2.x database version.

Default: none

You may not specify AUTHORIZATION=authorization if a trans-
action is open.

CATALOG Name of a SESAM database sesdb-name (max. 18 characters) which
is accessed if no name is specified in dynamic SQL statements (see
SQL directory for SESAM V2 [5]).

If you specify CATALOG=sesdb-name then you must work with
PARAMETER DYNAMIC DBSYSTEM=SESAMSQL, i.e. you must
load the SESAM V2.x database version.

U5642-J-Z125-3-7600 159

DRIVE statements PARAMETER DYNAMIC

CATALOG=sesdb-name is valid for SQL statements which are
entered in Expertenmodus interactive mode and may affect
dynamic SQL statements in programs (see OPTION statement and
the SQL directory for SESAM V2 [5]).

Default: none

DBSYSTEM Specifies the database system which is accessed by SQL state-
ments which are entered in interactive mode.

This specification also applies to SQL statements in programs
which are called with one of the statements CALL, DEBUG or DO
(see the statements CALL, DEBUG and DO).

You can only enter PARAMETER DBSYSTEM in interactive mode.

If the specified database system does not correspond to the loaded
variant, the PARAMETER DYNAMIC DBSYSTEM statement is
rejected.

The default is the loaded variant.

=SESAM SQL statements access a SESAM V1.x database.

=SESAMSQL SQL statements access a SESAM V2.x database.

You must specify DBSYSTEM=SESAMSQL if you have set
AUTHORIZATION=authorization or CATALOG=sesdb-name.

=UDS SQL statements access a UDS database.

DECIMALSIGN Defines the decimal sign for entries in interactive mode and for
numeric literals in DRIVE forms.
Commas (,) and periods (.) can be used as decimal signs.

Default: period (.)

ERRORATTRIBUTE Error attributes are assigned to identify incorrect screen fields

attribute You can assign the following global field attributes:

– UNPROTECTED
– HIGHINTENSITY, NORMALINTENSITY
– VISIBLE, SIGN, INVISIBLE
– UNDERLINE, NOUNDERLINE
– GREEN, RED, WHITE, YELLOW

Default: HIGHINTENSITY, UNDERLINE

If an incorrect entry is input in an FHS form then the specified field
attribute is only displayed if SCREENERROR REPEAT has been
specified in the DISPLAY screenform statement.

160 U5642-J-Z125-3-7600

PARAMETER DYNAMIC DRIVE statements

FORMAT Specifies the output format for field names and the associated
values.

=LINE Default

The output format contains the field names and associated values
in one line.

Example

CLIENTNUMBER : C03452
NAME: MILLER
TOWN: BALTIMORE
ROAD: MAIN 10

=TABLE Field names and values are output in the form of a table. The field
names are output in the first screen line, and the associated values
are output in the following lines. The width of a given column in the
table is determined by the maximum of the length of the field name
and its values. Thus, neither the field name nor any of the
associated values is truncated. The columns in the table are
separated from one another by a space.

Example

CLIENTNUMBER NAME TOWN ROAD
K03452 MILLER NEWARK MAIN 10
C05734 HOWARD BOSTON WESTERN 5
C18982 STEEL SEATTLE EASTERN 10

TABLE may only be used if the table will fit completely on the screen
(line length ≤ 80 characters). If the line length exceeds 80
characters, an error message is output.

=SEQUENCE Field names and values are output in sequential order.

Example

CLIENTNUMBER: C03452 NAME: MILLER TOWN: NEWARK ROAD:
MAIN 10 CLIENTNUMBER: C05734 ...

LETTERS Determines how lowercase letters which are input in interactive
mode are handled in both the EDT editor and in DRIVE forms. This
specification affects only names and literals.

=CAPITAL Default

All lowercase letters in names and literals are converted to
uppercase.

U5642-J-Z125-3-7600 161

DRIVE statements PARAMETER DYNAMIC

=BOTH Lowercase letters in names are converted to uppercase. Lowercase
letters in literals are not converted.

=UNCHANGED Lowercase letters in names and literals are not converted to
uppercase.

You should not change the specification LETTERS=UNCHANGED
since software products such as LMS, EDT, SESAM, UDS which
work with DRIVE/WINDOWS handle lowercase letters in different
ways.

LIBRARY=library library specifies the DRIVE library in which programs are managed.

The specified library is defined for a system and is not transferred
as a parameter to remote systems.

There is no default name.

library can also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

DRIVE/WINDOWS issues an error message if the specified library
is not present.

LOG Control dialog logging. If the dialog logging component
SYSPRG.DRIVE.011.DRILOG has not yet been loaded, DRIVE/
WINDOWS initiates the batch task SYSENT.DRIVE.011.DRILOG
(see the "DRIVE Programming System" [1] manual).

=OFF Default

The dialog is not logged.

=IN All input is logged.

=OUT All output is logged.

=INOUT All input and output is logged.

LOGFILE=filename Name extension for the dialog logfile (max. 20 characters). The full
filename is DRILOG.filename. The dialog logfile is a SAM file.

Default: DRILOG.yymmdd.

162 U5642-J-Z125-3-7600

PARAMETER DYNAMIC DRIVE statements

LOGPASSWORD=password
Defines the password for the dialog logfile (max. 4 characters).

Default: blanks

You cannot specify LOGPASSWORD if you do not also specify
LOGFILE.

NORMSQL Specifies whether the statements are interpreted according to new-
style or old-style conventions. NORMSQL may only be specified
outside a transaction in interactive mode and when the current
DRIVE environment permits mixed operation.

=ON Default

DRIVE statements that follow are interpreted in accordance with the
new style conventions.

=OFF DRIVE statements that follow are interpreted in accordance with
old-style conventions.

NULL A character to be used to represent the null value is specified. Users
can only enter null values if a character has been declared for repre-
senting the null value.

If you do not specify a null value representation in DECLARE FORM
or DECLARE LIST then the representation specified in
PARAMETER also applies to programs.

FORM Specifies the null value representation for screen input/output.

Default: the special character @

LIST Defines the null value representation for printer output.

Default: the period (.)

null-value null-value specifies how null values are represented for the alphanu-
meric data types CHARACTER and for the numeric data types
NUMERIC, DECIMAL, INTEGER and SMALLINT (see the metavar-
iable null-value).

The alphanumeric null value representation also applies to date-
time data types.

The numeric null value representation also applies to the data type
INTERVAL.

U5642-J-Z125-3-7600 163

DRIVE statements PARAMETER DYNAMIC

SCHEMA=schema-name
Name of a SESAM V1.x database (max. 18 characters), a
SESAM- V2.x schema (max. 31 characters) or a UDS schema
(max. 30 characters) which is accessed if no name is specified in
dynamic SQL statements (see SQL directories [4], [5], [6]).

SCHEMA=schema-name is valid for SQL statements which are
entered in interactive mode and has no effect on SQL statements in
programs that relate to SESAM V1.x or UDS. In the case of SESAM
V2.x, SCHEMA=schema-name may affect dynamic SQL statements
in programs (see OPTION statement and SQL directory for
SESAM V2 [5]).

Exception: schema-name must be specified explicitly in the PERMIT
statement.

In the case of SESAM V1.x and UDS you may enter
SCHEMA=schema-name in interactive mode only.

There is no default name.

TEST Specifies how DRIVE/WINDOWS is to react when a program is
aborted.

=STANDARD Default

Processing branches to interactive mode if a program is aborted.

In TIAM mode it is possible to branch to the EDT editor for error
analysis if the program was located in the EDT work file 0.

=ALL When a program is aborted, DRIVE/WINDOWS terminates and
initiates a print output internally.

USERMSGFILE=name
First part of the message code (= identification). name can have a
maximum length of 3 characters.

There is no default name.

164 U5642-J-Z125-3-7600

PARAMETER DYNAMIC DRIVE statements

Scope of application for operands

Operand TIAM mode UTM mode UTM start
procedure

AUTHORIZATION yes yes yes

CATALOG yes yes yes

DBSYSTEM yes yes yes

DECIMALSIGN yes yes no

ERRORATTRIBUTE yes yes yes

FORMAT yes yes no

LETTERS yes yes no

LIBRARY yes yes yes

LOG yes yes no

LOGFILE yes yes no

LOGPASSWORD yes yes no

NORMSQL yes yes no

NULL yes yes no

SCHEMA yes yes no

TEST yes yes no

USERMSGFILE yes yes yes

U5642-J-Z125-3-7600 165

DRIVE statements PARAMETER DYNAMIC

Time of evaluation

The following table contains an overview of the times at which the operands of the
PARAMETER DYNAMIC statement are evaluated.

Operand Compilation time Runtime

AUTHORIZATION yes, if not otherwise
specified in OPTION

yes

CATALOG yes, if not otherwise
specified in OPTION

yes

DBSYSTEM - -

DECIMALSIGN no yes

ERRORATTRIBUTE no yes

FORMAT no yes

LETTERS no yes

LIBRARY yes yes

LOG no no

LOGFILE no no

LOGPASSWORD no no

NORMSQL - -

NULL no yes

SCHEMA yes, if not otherwise
specified in OPTION

yes

TEST yes no

USERMSGFILE yes yes

166 U5642-J-Z125-3-7600

PARAMETER KFKEY DRIVE statements

PARAMETER KFKEY
Assign K or F key

This application is valid

– in TIAM and UTM mode
– in interactive mode
– in program mode only in the body of an interactive program

PARAMETER KFKEY allocates K (short message) or F (function) keys.

This statement may be specified in menu-driven mode without the use of operands or with
the use of at least one operand.

Without operands, PARAMETER FKEY can only be used in interactive mode.

Multiple operands specified within one statement take effect simultaneously. If an operand
is specified in both interactive and program modes, the last specification applies.

If errors occur during execution, the entire statement is not executed and the invalid
statement is displayed marked. In addition, an error message is output in the message line.

In TIAM applications, the key assignments can be corrected at any time. Invalid specifica-
tions are redisplayed at the terminal and can be revised.

A PARAMETER FKEY statement within a DRIVE program (compilation unit) has no effect
on the compiler run for that program.

PARAMETER { KFKEY [=literal [ACTION={ BREAK | EXIT | DELETE }]

 [UTMRC=literal]] } ...

KFKEY=literal K or F keys are specified and this value is written to the system
variable &KFKEY.

literal may assume the values K1 and K3 through K14, or F1
through F20. literal may also be specified in hexadecimal form.

The assignment specified in the system variable &KFKEY is
available for processing in interactive programs until the next
screen output is acknowledged with the DUE key. Following this
acknowledgment, the system variable &KFKEY is again filled with
blanks.

U5642-J-Z125-3-7600 167

DRIVE statements PARAMETER KFKEY

ACTION The keys are assigned functions.

No function may be assigned to the K2 key in TIAM mode. This key
is used in TIAM applications to switch from DRIVE/WINDOWS to
BS2000 system mode.

In UTM mode, functions can only be assigned to the keys as part of
the UTM start procedure. This assignment must be unambiguous,
i.e. keys and UTM return codes may each only be input once.

It is the user’s responsibility to ensure that the key assignments are
handled correctly and that the KDCDEF key assignment corre-
sponds to the key assignment performed using PARAMETER in
UTM mode.

If, in program mode, a key is pressed for the runtime control of a
DRIVE program although no function has been assigned to this key,
the system variable &KFKEY is filled with blanks.

=BREAK The key assigned with KFKEY is loaded with the BREAK function
(see the BREAK statement).

The default assignment for BREAK is the K1 key. This assignment
can be changed by the user.

=EXIT The key assigned with KFKEY is loaded with the EXIT function.
When this key is pressed, the DRIVE run is aborted, and all active
transactions are rolled back (see the EXIT statement).

=DELETE The assignment for the key is deleted.

UTMRC=literal The keys are loaded with UTM return codes. literal may assume a
value from 20Z to 39Z.

UTMRC=literal can only be used in the UTM start procedure where,
in contrast, its psecification is obligatory.

Relationship to other statements

– In UTM mode, programs which were compiled with the compiler option OPTION
OBJECT=ON may not contain the PARAMETER KFKEY statement. Instead, you may
specify the KDCDEF control statement SFUNC together with a DRIVE parameter in the
UTM start procedure (see DRIVE Programming System manual [1]).

– In TIAM mode, programs which were compiled with the compiler option OPTION
OBJECT=ON may only contain the PARAMETER KFKEY statement if they are called
with DO.

168 U5642-J-Z125-3-7600

PARAMETER LOCK DRIVE statements

PARAMETER LOCK
Lock statement

This application is valid

– in TIAM and UTM mode
– in interactive mode
– in program mode only in the body of an interactive program

PARAMETER LOCK locks statements for the duration of a DRIVE run. The lock cannot be
removed during the same run.

This statement may be specified in menu-driven mode without the use of operands or with
the use of at least one operand.

Without operands, PARAMETER LOCK can only be used in interactive mode.

If you specify multiple operands within a statement, these become effective simultaneously.
If an operand is specified in both interactive and program mode, the program mode speci-
fication applies.

If errors occur during execution, none of the statement is executed and the errored
statement is marked and output. An error message also appears in the message line.

The statement PARAMETER LOCK PROCEDURE is evaluated when a program is run.

PARAMETER LOCK { DIALOG | PROCEDURE }

 { ALL | { statement={ ON | OFF } } ... }

DIALOG The statements are locked for interactive mode.

PROCEDURE The statements are locked for program mode.

ALL All statements are locked for both interactive and program mode
(except EXIT).

statement The following statements can be locked:

ACQUIRE

ALTER TABLE

BREAK [CYCLE | PROCEDURE | SUBPROCEDURE]

CALL

CASE

U5642-J-Z125-3-7600 169

DRIVE statements PARAMETER LOCK

CLEAR

CLOSE { CURSOR | REPORT}

COMMIT

CONTINUE

CREATE { SCHEMA | TABLE | TEMPORARY VIEW | VIEW }

CYCLE [CURSOR | FOR | WHILE]

DEBUG

DECLARE { CONSTANT | CURSOR | FILE | FORM | LIST |

REPORT | SCREEN | TYPE | VARIABLE}

DELETE

DETAIL

DISPATCH

DISPLAY [FORM | LIST]

DO

DROP { CURSOR(S) | SCHEMA | TABLE | TEMPORARY VIEW(S) | VIEW }

EDT

ENTER

EXECUTE

FETCH

FILL { FORM | LIST | REPORT }

GLOBAL

GRANT

GROUP

IF

INSERT

LIST

OPEN { CURSOR | REPORT }

PAGE

PARAMETER

PERMIT

PRINT

PROCEDURE

REPEAT

REPORT

RESTORE

REVOKE

ROLLBACK

SAVE

SELECT

SEND MESSAGE

SET [CATALOG | SCHEMA | SESSION | TRANSACTION]

SHOW

SOURCE

STANDARD

170 U5642-J-Z125-3-7600

PARAMETER LOCK DRIVE statements

STOP

STORE

SUBPROCEDURE

SYSTEM

UNSAVE

UPDATE

WHENEVER

=ON This statement is locked for the user.

=OFF Default

The statement is permitted for the user.

U5642-J-Z125-3-7600 171

DRIVE statements PARAMETER STATIC

PARAMETER STATIC
Specify static parameter

This application is valid

– n TIAM and UTM mode
– in interactive mode
– in program mode only in the body of an interactive program

PARAMETER STATIC is used to specify parameter values that remain in effect for the
entire DRIVE run. The parameter values determine certain attributes of the DRIVE session
relating to both interactive mode and to the environment in which the DRIVE programs run.

This statement may be specified in menu-driven mode without the use of operands or with
the use of at least one operand.

Without operands, PARAMETER STATIC can only be used in interactive mode.

If you specify multiple operands within a statement, these become effective simultaneously.
If you wish to specify operands in both interactive and program mode then you may only
define operands which have not yet been entered.

If errors occur during execution, specifications that can no longer be reset may already
have taken effect. Only operands that have not been previously supplied may be specified.

A PARAMETER STATIC statement within a DRIVE program (compilation unit) has no effect
on the compiler run for that program.

PARAMETER STATIC [FIRSTPAGE={ ON | OFF } |
 FORMLIB=flib-name |
 LASTPAGE={ ON | OFF } |
 OLDSTYLE={ SESAM | SESAMSQL | LEASY | DMS } |
 USER=username] ...

FIRSTPAGE When OFF is specified, output of the first page generated with LIST
*, containing the list header, is suppressed.

Default: ON

FIRSTPAGE may only be specified in the UTM start procedure.

FORMLIB=flib-name Name of the format library in which the FHS forms are stored.

Default: none

172 U5642-J-Z125-3-7600

PARAMETER STATIC DRIVE statements

LASTPAGE When OFF is specified, output of the last page generated with LIST
*, containing the list footer, is suppressed.

Default: ON

LASTPAGE may only be specified in the UTM start procedure.

OLDSTYLE Specifies the data management system which a DRIVE old style
application accesses

You can only specify OLDSTYLE in TIAM mode.

Default: the loaded (new style) variant.

=SESAM The DRIVE old style application accesses a SESAM V1.x database.

=SESAMSQL The DRIVE old style application accesses a SESAM V2.x database.

=LEASY The DRIVE old style application accesses LEASY files.

=DMS The DRIVE old style application accesses DMS files.

USER=user-name You may only specify USER in TIAM mode.

user-name (max. 8 characters) is used to specify a user name.

user-name may not contain the special characters / \ * ? [] or
blanks (Ë).

user-name must be specified as a literal.

You may assign user-name at any time provided that no SQL
statement has been entered. After this, the TSN is entered for
user-name.

Default: blanks

U5642-J-Z125-3-7600 173

DRIVE statements PARAMETER STATIC

Scope of application for operands

Time of evaluation

The following table contains an overview of the times at which the operands of the
PARAMETER STATIC statement are evaluated.

Operand TIAM mode UTM mode UTM start
procedure

FIRSTPAGE no yes yes

FORMLIB yes no no

LASTPAGE yes no yes

OLDSTYLE yes no no

USER yes no no

Operand Compilation time Runtime

FIRSTPAGE no no

FORMLIB yes yes

LASTPAGE no no

OLDSTYLE no yes

USER yes yes

174 U5642-J-Z125-3-7600

PROCEDURE DRIVE statements

PROCEDURE
Start program

This application is valid

– in TIAM and UTM mode
– in program mode

PROCEDURE is used to mark the start of a program. One program can receive parameters
from another by means of PROCEDURE. For this, a variable must be defined in the USING
clause for each parameter to be passed. If a program in which USING is followed by the
RETURN statement is called in interactive mode, RETURN is ignored.

The parameters of the calling program are transferred individually to the variables of the
successor program, after a variable has been defined in the successor program for each
parameter. The number and format of the variables in the calling program and in the called
program must be compatible. When parameters are passed, the length of all the param-
eters (definitions and values) must not exceed 31 Kbytes if the program was called with DO
or ENTER.

The USING clause is not permitted in programs which are to be compiled with the DRIVE
compiler DRIVE/WINDOWS-Comp if the program is intended as the main program in TIAM
mode or as first TAC in UTM mode.

The declarative statements must come first in a program. Next, all the subprocedures must
be defined. Only then does the program body follow.

If DRIVE/WINDOWS identifies syntax or semantic errors in a program, all elements defined
up to that point in the program are reset.

The end of a program is defined with END PROCEDURE.

PROCEDURE prog-name

 [USING { [RETURN] [level] var-name datatype }, ...]

prog-name Name of the program (max. 31 characters). This name need not be
identical with the member name under which the source program is
stored.

U5642-J-Z125-3-7600 175

DRIVE statements PROCEDURE

USING USING is used to pass parameters to a program.

USING must be specified if the USING clause is to be used when a
program is called (with DO, CALL, ENTER or DEBUG).

RETURN Marks the parameters that are to be returned by the called program
to the calling program. The called program must be called with
CALL or DEBUG.

The corresponding parameter must also be identified with RETURN
in the USING clause for CALL.

level Level number. The level number must be 1.

var-name The name of a simple variable.

var-name must start with "&" and can be up to 32 characters in
length.

Simple variables, vectors, matrices, data groups and repeating
groups can be defined.
The value area of a variable, excluding the indicator variable area,
must not exceed 32 Kb.

data-type Data type of the variable. data-type must not contain an INIT or
REDEFINES clause (see the DECLARE VARIABLE statement).

Example

The alphanumeric variable &cmp1, with 4 characters is passed to the program "staff1".

PROCEDURE staff1 USING &cmp1 CHAR(4);

176 U5642-J-Z125-3-7600

READ FILE DRIVE statements

READ FILE
Read a file

This application is valid

– in TIAM and UTM mode
– in program mode

READ FILE reads a data record at the current file position of a file which has been opened
for read access and transfers this record to a variable or list of variables.

If the data record is longer than the variable or list of variables, DRIVE/WINDOWS
truncates the record to the available length. The system variable &ERROR receives the
entry "TOO LONG".

If the data record is shorter than the variable or list of variables, then:

– Numeric fields which cannot be filled in their entirety are assigned the null value. The
system variable &ERROR contains the entry "TOO SHORT".

– Alphanumeric fields which cannot be filled are assigned the null value. The system
variable &ERROR contains the entry "TOO SHORT".

– Fixed-length alphanumeric fields (CHARACTER) which cannot be filled in their entirety
are assigned partial values and padded with blanks. The system variable &ERROR
contains the entry "TOO SHORT".

– Variable-length alphanumeric fields (VARCHAR) which cannot be filled in their entirety
are assigned partial values. The system variable &ERROR contains the entry "TOO
SHORT".

After the record has been read, the new file position points to the next record.

In addition, DRIVE/WINDOWS enters the physical record length in the system variable
&PHYS_REC_LENGTH and the DRIVE record length in the system variable
&DRIVE_REC_LENGTH.

If the READ FILE statement does not find any characters in the file during an attempt to
read the file, it has reached the end of the file. When the end of the file is reached, the
system variable &ERROR contains the entry "OK END".

If a program accesses files which have been opened with the open mode UPDATE, INOUT
or OUTIN, the READ FILE statement must not immediately follow the WRITE FILE
statement. At least one file positioning statement (SET FILE POSITION) must occur
between the READ FILE and WRITE FILE statements.

U5642-J-Z125-3-7600 177

DRIVE statements READ FILE

READ FILE file INTO variable, ...

file Logical name of the file from which data is to be read.

This must be the name used to declare the file in DECLARE FILE
statement in the program.

variable Name of the variable to which the read data record is transferred
(see metavariable variable).

178 U5642-J-Z125-3-7600

REMOVE DRIVE statements

REMOVE
Cancel testpoint and operation

This application is valid

– in TIAM mode
– in debugging mode

REMOVE is used to cancel testpoints and operations at the testpoints set with AT. Counters
declared with the AT ... COUNT statement are also removed.

If you do not specify an operation, then the specified testpoints are cancelled in their
entirety.

REMOVE

 { [library(member-name) | member-name] { line ... | line1 - line2 | ALL } |
 * }

 [COUNT | DISPLAY | SET]

library Name of the DRIVE library (max. 54 characters) from which the
program is read (applies only to external programs in DRIVE).

library can also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

If the DRIVE library has been preset with PARAMETER DYNAMIC
LIBRARY then you may omit the library specification.

member-name Name of the member (max. 31 characters) which contains the
program.

DRIVE/WINDOWS searches for the last member to have been
processed, irrespective of whether this contains a source
(S-member) or an intermediate code (X-member).

If you do not specify library then the library specified in
PARAMETER DYNAMIC LIBRARY is used.

* The last testpoint entered is deleted. (see also the AT statement).

U5642-J-Z125-3-7600 179

DRIVE statements REMOVE

line The specified line refers to a line number in the interpreter listing. All
testpoints in this line are deleted.

Several line numbers may be specified.

line1-line2 This specification refers to line numbers in the interpreter listing. All
testpoints in the defined range are deleted.

line1 must be smaller than line2.

ALL All testpoints set in the program are deleted.

COUNT Only operations of the COUNT type are deleted.

DISPLAY Only operations of the DISPLAY type are deleted.

SET Only operations of the SET type are deleted.

180 U5642-J-Z125-3-7600

REMOVE BOX DRIVE statements

REMOVE BOX
Remove dialog box

This specification is valid

– in UTM mode but not in asynchronous UTM mode and not in the receiving partner
environment in DTP

– in program mode

REMOVE BOX removes one, several or all the dialog boxes which have been output. You
cannot remove more dialog boxes than are output as otherwise DRIVE/WINDOWS aborts
the program.

REMOVE BOX takes effect on the next screen output. REMOVE BOX behaves in different
ways depending on the statement used to perform the next screen output:

DISPLAY screenform
All the dialog boxes which have been output are removed before the
FHS form is output.

ADD BOX The required number of output dialog boxes is removed before the
new dialog box is output.

REPLACE BOX The required number of output dialog boxes is removed before the
replacement dialog box is output. (= total from the REMOVE BOX
and REPLACE BOX statements).

SEND MESSAGE If the message is output in a message box then the required number
of output dialog boxes is removed before the message box is
output.
If the message is output in the message area of a partial form then
all of the output dialog boxes are removed before the partial form is
output.

DISPLAY form-name All the dialog boxes which have been output are removed before the
dynamic form is output.

DRIVE messages All the dialog boxes which have been output are removed before
DRIVE messages are output, for example when a program termi-
nates or aborts.

If a further REMOVE BOX statement occurs before the next screen output, then all the
dialog boxes specified in these statements are removed.

If you specify REMOVE BOX without operands then the last dialog box to have been output
is removed.

U5642-J-Z125-3-7600 181

DRIVE statements REMOVE BOX

REMOVE [n | ALL] BOX

n The n topmost dialog boxes are removed. n must be a positive
integer. n can be specified as a variable (see metavariable variable).

ALL All the dialog boxes which have been output are removed.

182 U5642-J-Z125-3-7600

REPEAT DRIVE statements

REPEAT
Repeat statement

This application is valid

– in TIAM and UTM mode
– in interactive mode

REPEAT is used to redisplay the last statement entered. The user can then decide whether
to execute or alter the statement.

In UTM mode, the statement buffer is reset to the last synchronization point after the
ROLLBACK statement.

REPEAT only affects the following SQL statements:

– CREATE
– DECLARE
– DELETE { POSITIONED | SEARCHED }
– FETCH
– INSERT INTO
– SELECT
– UPDATE { POSITIONED | SEARCHED }

REPEAT

U5642-J-Z125-3-7600 183

DRIVE statements REPLACE BOX

REPLACE BOX
Replace dialog box

This statement is valid

– in UTM mode but not in asynchronous UTM mode and not in the receiving partner
environment in DTP

– in program mode

REPLACE BOX replaces one, several or all output dialog boxes with a new dialog box
which you have already created in IFG (see IFG [28]). REPLACE BOX has the same effect
as specifying the ADD BOX and REMOVE BOX statements together.

You cannot replace more dialog boxes than are output as otherwise DRIVE/WINDOWS
aborts the program.

Any screen forms (partial forms or dialog boxes) which are not replaced continue to be
displayed but are overlaid by the new dialog box and are locked, i.e. the user cannot make
any input to these screen forms.

The last dialog box to be output is the current dialog box. Users can only input to the current
dialog box.

If you specify REPLACE BOX without an operand then the last dialog box to be output is
replaced.

REPLACE { n | ALL } BOX BY dialog-box
 [POSITION (line1 , column1)] [TO field1]
 [CURSOR { POSITION (line2 , column2) | TO field2 }
 [MESSAGE key [POSITION (line3 , column3) | TO field3]

n The n topmost dialog boxes are removed. n must be a positive
integer. n can be specified as a variable (see metavariable variable).

ALL All the dialog boxes which have been output are removed.

dialog-box Name of the FHS-DE form (max. 7 characters).

The form must have been created in IFG and have the property
"Display in a box".

The form must be defined in the declaration section of the program
using the DECLARE SCREEN statement.

184 U5642-J-Z125-3-7600

REPLACE BOX DRIVE statements

POSITION Specifies the position of the dialog box.

The position is specified using a starting or reference point
The starting point is the first character (top left) of the dialog box.
The reference point is the first character of field1 if field1 is specified
or, otherwise, the top left-hand corner of the dialog box/FHS-DE
partial form which is located below the current dialog box.

If you do not specify POSITION or if you enter the value (0,0),
DRIVE/WINDOWS attempts to position the dialog box with the
default offset (+2,+2) to the reference point. If this is not possible,
the dialog box is moved so that it fits on the screen.

If you specify the POSITION but there is not enough space for the
dialog box at the defined position, UTM aborts the operation with
PEND ER.

line1 Line spacing between the reference point and the starting point of
the dialog box. line1 must be a whole number.

column1 Column spacing between the reference point and the starting point
of the dialog box. column1 must be a whole number.

field1 Field in the last FHS-DE form to be output (partial form and dialog
box). field1 must be a simple component of the associated screen
variable.

If variable is not a component of the screen variable of the last
screen form to have been output, UTM aborts the conversation with
PEND ER.

The first 8 characters of the field names in the last screen form to
have been output must differ in order to make the unambiguous
assignment of screen variable components possible.

CURSOR The cursor is set to a specific position in the dialog box.

You may not specify CURSOR unless the global attribute “cursor
position” was set for dialogbox in IFG (see IFG [28]).

POSITION Specifies the absolute position (line/column) of the cursor.

line2 Line (1 ≤ line2 ≤ number of screen lines). line2 must be a whole
number.

column2 Column (1 ≤ column2 ≤ number of screen lines). column2 must be a
whole number.

TO The cursor is set to the first character of field field2. In the case of
lists, the cursor is set to the first column and first line of the list area.

U5642-J-Z125-3-7600 185

DRIVE statements REPLACE BOX

field2 Field in the dialog box which is to be output. field2 must be a
component of the screen variable for dialogbox.

The first 8 characters of the field names in the current dialog box
must differ to make the unambiguous assignment of screen variable
components possible.

MESSAGE This outputs the FHS-DE message with the message key key which
you created with IFG along with the dialog box. Depending on the
IFG specification, output either takes place in a message box or in
a message area in the dialog box.

You may not specify MESSAGE unless the global attribute
“Message Identifier” was set for dialogbox in IFG (see IFG [28]).

key Message key of the FHS-DE message. You can specify key either
as a variable (see the metavariable variable) or as an alphanumeric
literal (see char-literal in the metavariable literal).

key must be specified in the form AAAAnnn, where A is a letter
(A-Z) and n is a digit (0-9). AAAA may not have the value IDHS.

POSITION Specifies the absolute position of the message box. The message
box is positioned with an additional offset (+2,+2) to line3, column3.

POSITION is only evaluated if the IFG specification stipulates that
the message is to be output in a message box.

If a message is intended for output in a message box and you have
not specified either POSITION or TO then the message box is
output in the middle of the screen.

If a message box which has been positioned using MESSAGE
POSITION covers a cursor which has been set with CURSOR
POSITION then MESSAGE POSITION is ignored.

line3 Line (1 ≤ line3 ≤ screen lines). line3 must be a whole number.

column3 Column (1 ≤ line3 ≤ screen columns). column3 must be a whole
number.

TO Specifies that the message box is to positioned with the default
offset (+2,+2) to field3.

TO is only evaluated if the IFG specification stipulates that the
message is to be output in a message box.

If a message is intended for output in a message box and you have
not specified either TO or POSITION then the message box is
output in the middle of the screen.

186 U5642-J-Z125-3-7600

REPLACE BOX DRIVE statements

field3 Field in the dialog box which is to be output. field3 must be a
component of the screen variable for dialogbox.

The first 8 characters of the field names in the current dialog box
must differ to make the unambiguous assignment of SCREEN
variable components possible.

U5642-J-Z125-3-7600 187

DRIVE statements SAVE

SAVE
Save EDT work file 0

This application is valid

– in TIAM mode
– in interactive mode

SAVE is used to store the contents of EDT work file 0 as a member of type S in a DRIVE
library (e.g. source programs, copy members, user labels).

If a member of type S is already present in the DRIVE library under this name, the message
DRI0046 OVERWRITE 'member-name'? REPLY: (Y=YES, N=NO) is output.

SAVE { library(member-name) | member-name }

library Specifies the DRIVE library (max. 54 characters) in which the
contents of EDT work file 0 are to be saved.

library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

If the DRIVE library has been predefined with the PARAMETER
DYNAMIC LIBRARY statement, library need not be specified.

member-name Specifies the member (max. 31 characters) in which the contents of
EDT work file 0 are to be saved. This name need not be identical to
the program name specified with PROCEDURE.

The member is stored in the specified DRIVE library. If no library is
specified, the library that was specified in PARAMETER DYNAMIC
LIBRARY is used.

188 U5642-J-Z125-3-7600

SEND MESSAGE DRIVE statements

SEND MESSAGE
Display message

This application is valid

– in TIAM mode
– in UTM mode but not in asynchronous UTM applications and not in the receiving

environment of distributed transactions
– in program mode

The SEND MESSAGE statement can be used to display a message on the terminal.

The message is written to the message line (bottom line of screen). If the message is longer
than the message line it is truncated and output followed by ">>>". The other screen
contents are unchanged.

If a dialog box is displayed on screen when SEND MESSAGE is to be executed, the
message is output in a dialog box which is provided by DRIVE/WINDOWS.

SEND MESSAGE { expression [mask] | BLANK n | TABULATOR n }, ...

 [[WITHOUT] WAIT]

expression Message to be displayed.

mask Specifies editing of the message (see the metavariable mask).

BLANK n n blanks are output. n must be an unsigned integer.

The message may not exceed 79 characters including blanks.

If the message is longer, the following applies:

if only one expression is output, the message is truncated and ended
with the character string ">>>".
If more than one expression is output, the DRIVE program is
aborted with an error message.

TABULATOR n Specifies the column position where the cursor is to be set. A space
between the message and the cursor position is filled by blanks.
n must be an unsigned integer greater than zero.

An error message is output if the current column position is greater
than the specified TABULATOR position.

U5642-J-Z125-3-7600 189

DRIVE statements SEND MESSAGE

WAIT After outputting the message, DRIVE/WINDOWS waits for input
from the data display terminal (e.g. RETURN key). The next DRIVE
statement is not executed until this input has been received.

WITHOUT WAIT Valid in TIAM mode only.

WITHOUT WAIT is ignored when a SEND MESSAGE follows a
DISPLAY screen-form.

After the message has been output, the next DRIVE statement is
immediately executed.

WITHOUT WAIT is not useful if other output directly follows the
message.

Example

The message "List is being printed" is output in the message line.

SEND MESSAGE 'List is being printed';

190 U5642-J-Z125-3-7600

SET DRIVE statements

SET
Assign value and field attribute

This application is valid

– in TIAM and UTM mode
– in program and debugging mode

SET can be used to assign values to variables. Each variable may be assigned only one
value. If defined with DECLARE SCREEN, a variable (screen variable) may be assigned
field and global attributes. If it is simultaneously assigned a value and a field attribute, the
variable must be (part of) a screen variable.

There are 3 variants of the SET statement:

1. A value, the null value and/or field attributes are assigned to a variable.

SET variable { = { expression | NULL } [NOCHECK]
 [[WITH] ATTRIBUTE (attribute1, ...)] |
 [WITH] ATTRIBUTE (attribute1, ...) }

2. In the second SET variant, global attributes are assigned to all the fields of a screen
variable.

SET { screen-form [WITH] ATTRIBUTE (attribute2, ...) }, ...

3. In the third SET variant, field attributes are assigned to all the fields of a screen variable
whose field value EDIT_STATE≠"V" (field not error-free).

SET { screen-form [WITH] ERRORATTRIBUTE (attribute3, ...) }, ...

U5642-J-Z125-3-7600 191

DRIVE statements SET

variable Name of a variable to which a value or local field attribute is
assigned.
The data type of variable must be compatible with the data type of
expression.

If a structured variable is assigned a value that is also structured,
the assignment is made component by component. The individual
components must be of the same data type.

If there are redefinitions in a structured variable, only the compo-
nents that are not redefined receive the value.

If only a single value is assigned to a structured variable, all compo-
nents receive that value.

expression Value assigned to the variable.

The data type of expression must be compatible with the data type of
variable.

When values are assigned to numeric variables, commercial
rounding is applied to decimal places if the variable declarations do
not permit sufficient decimal places.

NULL The variable is assigned the null value.

NOCHECK When a value is assigned to variable, any CHECK clause applicable
to variable is ignored. If variable is structured, NOCHECK is valid for
all component assignments.

WITH ATTRIBUTE Assigns field attributes to a screen variable.

attribute1 Field attribute. You can assign the following values:

– MUST, NORMALINPUT, POTMUST
– UNPROTECTED, PROTECTED
– HIGHINTENSITY, NORMALINTENSITY
– VISIBLE, SIGN, INVISIBLE
– UNDERLINE, NOUNDERLINE
– INVERSE, NOINVERSE
– BLUE, CYAN, GREEN, MAGENTA, RED, WHITE, YELLOW,

NOCOLOUR
– CURSOR, NOCURSOR
– VALID, INVALID

SET ... ATTRIBUTE (attribute1,...) is not permitted in debugging
mode.

192 U5642-J-Z125-3-7600

SET DRIVE statements

screen-form Name of a form corresponding to the associated screen variable in
which the FHS form is displayed and to which global attributes are
assigned.

WITH ATTRIBUTE Assigns global attributes to all the fields of a screen variable.

attribute2 Global attribute. You can assign the following values:

– ALARM
– HARDCOPY
– INIT, NOINIT
– CURSOR, NOCURSOR

An additional possible value is DEFAULT. If it is specified, all field
attributes are reset to their predefined status (blanks). In a combi-
nation of global attributes, DEFAULT must appear first in the list.

In debugging mode, only DEFAULT may be specified for attribute2.

WITH ERRORATTRIBUTE

Assigns field attributes to the fields of a screen variable which have
the field value EDIT_STATE="F" or "M"

attribute3 Field attribute. You can assign the following values:

– MUST, NORMALINPUT, POTMUST
– UNPROTECTED
– HIGHINTENSITY, NORMALINTENSITY
– VISIBLE, SIGN, INVISIBLE
– UNDERLINE, NOUNDERLINE
– INVERSE, NOINVERSE
– BLUE, CYAN, GREEN, MAGENTA, RED, WHITE, YELLOW,

NOCOLOUR
– CURSOR, NOCURSOR

Examples

The variable &index is incremented.

SET &index = index + 1;

The current date in the format "day-month-year" is assigned to the variable &date.

SET &date = CURRENT DATE

Each of the three fields of the vector &language(3) is assigned the null value.

SET &language = NULL

U5642-J-Z125-3-7600 193

DRIVE statements SET

The global attribute CURSOR is assigned to all the fields of the FHS partial form
“mask”.

SET mask ATTRIBUTE (CURSOR)

An incorrect field in the FHS partial form “mask” is displayed in high intensity video.

SET mask ERR0RATTRIBUTE (HIGHINTENSITY)

194 U5642-J-Z125-3-7600

SET FILE POSITION DRIVE statements

SET FILE POSITION
Position within a file

This application is valid

– in TIAM and UTM mode
– in program mode

SET FILE POSITION positions to the start, to the end or to any position previously read with
the GET FILE POSITION statement in an open file.

In ISAM files, use the LOCATE FILE statement with the ISAM key to locate the file
position.

SET FILE POSITION file TO { variable | BEGIN | END }

file Logical name of the file in which the position is to be set.

This must be the name which was used in the DECLARE FILE
statement to declare the file in the program.

TO Specifies the required position.

variable Indicates the point to which the position is to be set (see the
metavariable variable).

variable must already have been assigned a value using the GET
FILE POSITION statement.

BEGIN Positions to the start of the file.

END Positions to the end of the file.

i

U5642-J-Z125-3-7600 195

DRIVE statements SET SCREEN ATTRIBUTE

SET SCREEN ATTRIBUTE
Assign form attribute

This statement is valid

– in UTM mode
– in program mode

SET SCREEN ATTRIBUTE assigns attributes to FHS-DE forms. You can make the
following specifications:

– the number of lines to be output in list areas
– which page or scroll command should be preset for the next form output
– which selection items in selection fields should be locked on output
– which selection items in selection fields should be preselected on output
– which lines in list areas should be preselected on output

SET SCREEN ATTRIBUTE

 { { { LOCK | PRESELECT } { ON | OFF } [ITEM (i, ...)] } |
 LINES n |
 SCROLL char-expression }

 FOR { screen-form | field }

LOCK Selection items are locked (ON) or unlocked (OFF).

field must contain the component of a screen variable.

PRESELECT Selection items or lines are identified as preselected (ON) or not
preselected (OFF).

ON Selection items/lines are identified as locked (in the case of LOCK)
or preselected (in the case of PRESELECT).

OFF Selection items/lines are identified as unlocked (in the case of
LOCK) or not preselected (in the case of PRESELECT).

196 U5642-J-Z125-3-7600

SET SCREEN ATTRIBUTE DRIVE statements

ITEM in the case of LOCK:
locks/unlocks the i-th selection item of a single selection field.

LOCK ... ITEM is not permitted in multiple selection fields or list
areas.

If ITEM is not specified for single selection fields then all the
selection items are either locked or unlocked.

in the case of PRESELECT:
identifies the i-th selection item of a single selection field or the
i-th line in a list area.

PRESELECT ... ITEM is not permitted in multiple selection fields.

ITEM must be specified for single selection fields. However, only
one selection item i may be specified.

If ITEM is not specified for list areas then all the lines are identified
as preselected.

i Selection item/line (i ≤ number of selection items or list lines).

i must be a positive integer. i can be specified as a numeric
expression (see metavariable value-expression).

LINES Lines in the screen-form list area are output.

n Number of lines to be output (n ≤ maximum number specified for
the list area with IFG).

n must be a positive whole number.

SCROLL Defines the scroll information characters

char-expression Characters for scroll information. The characters
+ – < > and the blank (Ë) are permitted for char-expression.

If char-expression consists of blanks only, no scroll information is
output.

screen-form FHS-DE form with a list area. The FHS-DE form must be declared
in the program using DECLARE SCREEN.

field Selection field for which an attribute is set. The field must be part of
an FHS-DE form (= component of a SCREEN variable). The
associated FHS-DE form must be declared in the program using
DECLARE SCREEN.

U5642-J-Z125-3-7600 197

DRIVE statements STOP

STOP
Terminate DRIVE run

This application is valid

– in TIAM mode
– in UTM mode, but only at the highest programming level in the receiving partner

environment in DTP
– in interactive and program mode

STOP is used to terminate the DRIVE run.

In TIAM mode all the requested files are closed and all views and DRIVE-specific memory
areas released.

If STOP or STOP WITH DISPLAY is entered in TIAM mode, and EDT work file 0 contains
a file that has not been saved, the message
 "EDT WORK FILE 0 NOT EMPTY. TERMINATE 'DRIVE'? (Y=YES;N=NO)" is displayed.

– If the response is "N", STOP is not executed. The SAVE statement is displayed so that
the file can be saved.

– If the response is "Y", STOP is executed. Changes made to the unsaved file are lost.

In UTM mode all conversation lists are printed and are deleted in the central print file unless
they are explicitly printed using LIST * ... DELETE. A transaction code (TAC) or KDCOFF
must then be entered (only in the submitting partner environment in the case of DTP).

STOP causes a DRIVE error message if transactions are still open. DRIVE execution is not
terminated. You must terminate open transactions with COMMIT, ROLLBACK or EXIT.
EXIT terminates DRIVE execution.

Restrictions

– In local operation, STOP is only permitted in interactive mode whereas in program
mode it is only permitted in an interactive program.

– STOP WITH DISPLAY is only permitted in an interactive program.
STOP WITH DISPLAY is not permitted in asynchronous UTM mode or in the receiving
partner environment in DTP.

– STOP WITH char-expression is not permitted in asynchronous UTM mode or in the
receiving partner environment in DTP.

198 U5642-J-Z125-3-7600

STOP DRIVE statements

STOP [WITH { DISPLAY form-name |
 DISPLAY screen-form, ... [SCREENERROR { REPEAT | CONTINUE }] |
 DISPLAY form |
 char-expression }]

DISPLAY form-name form-name is displayed at the terminal (see the DISPLAY form-name
statement).

DISPLAY screen-form
screen-form is displayed at the terminal (see the DISPLAY
screen-form statement).

SCREENERROR SCREENERROR determines the behavior of DRIVE/WINDOWS
when valid field input is made.

REPEAT Default

The screen mask is redisplayed until the input is correct or an inten-
tional abort with BREAK occurs. Execution of the STOP statement
is then continued.

CONTINUE Execution of the STOP statement continues following DISPLAY
even if input is invalid.

DISPLAY form Defines and outputs a compact screen form (see the DISPLAY
FORM statement).

char-expression Name of the UTM follow-up TAC (max. 8 characters).

char-expression can only be specified in UTM mode and program
mode.

char-expression is not permitted in asynchronous UTM mode or in the
receiving partner environment in DTP.

If the UTM follow-up TAC does not exist, the program is aborted but
the conversation is not terminated.

Rules for distributed transaction processing

– When STOP is issued, all receiving partner activities must be terminated in the
receiving partner environment.

– In the receiving environment, STOP returns control to the submitting activity along with
the appropriate RETURN parameters.

U5642-J-Z125-3-7600 199

DRIVE statements SUBPROCEDURE

SUBPROCEDURE
Start internal subprogram

This application is valid

– in TIAM and UTM mode
– in program mode

SUBPROCEDURE is used to mark the start of an internal subprogram. An internal
subprogram is a statement sequence defined within a program in the declaration section,
following the DECLARE statements. Nested definitions of internal subprograms are not
permitted. An internal subprogram may not itself contain any DECLARE statements.

Internal subprograms may be called as often as desired within a program. The call is made
with CALL subprog-name.

Internal subprograms may only be called if they have previously been defined.
All structuring statements (CASE, CYCLE, DISPATCH, IF) must be terminated in an internal
subprogram, i.e. the corresponding END must be included in the same internal
subprogram. An END for a structuring statement may not be specified outside that internal
subprogram.

A BREAK CYCLE cannot terminate a loop begun outside that internal subprogram. A
BREAK PROCEDURE terminates both the internal subprogram and the main program.
When a BREAK SUBPROCEDURE is encountered, the program is continued with the
statement following the CALL for that internal subprogram.

The end of an internal subprogram is defined by END SUBPROCEDURE.

SUBPROCEDURE subprog-name

subprog-name Name of the internal subprogram (max. 31 characters).

200 U5642-J-Z125-3-7600

SYSTEM DRIVE statements

SYSTEM
Enter BS2000 command

This application is valid

– in TIAM mode
– in interactive and program mode

You use the SYSTEM statement to enter BS2000 commands during DRIVE operation.

SYSTEM char-expression

char-expression Name of the BS2000 command which you want to execute.

char-expression must be an alphanumeric string (max. 254
characters). See the metavariable char-expression.

The result of char-expression must be a syntactically correct BS2000
command.

Examples

SYSTEM 'PRINT-FILE *SYSLST'

SYSTEM 'SHOW-USER-STATUS'

SET &FS='SHOW-FILE-ATTRIBUTES'
SYSTEM &FS

U5642-J-Z125-3-7600 201

DRIVE statements TRACE

TRACE
Activate trace

This application is valid

– in TIAM mode
– in debugging mode

The TRACE statement is used in debugging mode to activate a program trace. This means
that the program is executed and controlled in single steps, and the associated lines of the
interpreter listing are output.

The TRACE statement defines the number of program statements to be traced. The
program stops when the tracepoint is reached, i.e. after the declared number of statements,
assuming that the statements were executed without an error. The trace function is then
automatically deactivated, and the tracepoint is deleted.

The parameters specified for a TRACE statement serve as default values for the next
TRACE statement if that statement is entered without operands.

DRIVE/WINDOWS always inserts user-defined tracepoints after a statement of the DRIVE
program.

TRACE [n | ALL] [OUT | LIST | BOTH]

n n is a positive whole number. The next n statements are executed
and monitored in single-step mode and the corresponding lines
from the interpreter listing(s) are output (trace output).

If a breakpoint is reached before n statements have been executed
then tracing is deactivated and the tracepoint is deleted.

Default on first TRACE call: n=1. If you do not specify n in subse-
quent TRACE calls then the value of n is taken over from the last
TRACE statement.

ALL All the statements up to the next breakpoint are executed and
monitored in single-step mode and the corresponding lines from the
interpreter listing(s) are output (trace output).

202 U5642-J-Z125-3-7600

TRACE DRIVE statements

OUT Default

Specifying OUT displays trace output on screen.

Default on first TRACE call: OUT. If you do not specify the operand
in subsequent TRACE calls then the value of the operand is taken
over from the last TRACE statement.

LIST Specifying LIST sends trace output to SYSLST.

BOTH Specifying BOTH has the same effect as specifying LIST and OUT
together.

Relationship to other statements

If the DEBUG statement accesses a program that is in EDT work file 0, tracing cannot be
activated.

U5642-J-Z125-3-7600 203

DRIVE statements UNSAVE

UNSAVE
Delete program, COPY member or user label

This application is valid

– in TIAM and UTM mode
– in interactive and program mode

UNSAVE deletes objects from the DRIVE library.

– Sources, COPY members, user labels (S-members)
– Intermediate codes (X-members)
– Object codes (R-members)
– Interpreter listings (P-members)

The specified objects are deleted in the following sequence:

1. Usage references

2. Intermediate codes

3. Object codes

4. Interpreter listings

5. Sources

6. COPY members

If an error occurs when several objects are being deleted, an error message is issued
indicating the object concerned. The preceding objects will have been properly deleted, but
not the following ones.

If one of the individual objects specified does not exist, this is considered to be an error.

If you specify UNSAVE without any optional operands, then the sources, intermediate
codes, object codes, interpreter listings and usage references which are stored under the
name member-name are deleted. DRIVE/WINDOWS does not issue an error message if any
individual object does not exist (except in the case of an S-member).

Each of the operands SOURCE, OBJECT, CODE, LIST, COPYSOURCE and USERLABEL
may be specified once only in each statement. You may combine different operands.

The UNSAVE statement is not permitted in programs which are to be compiled with the
DRIVE compiler DRIVE/WINDOWS-Comp.

204 U5642-J-Z125-3-7600

UNSAVE DRIVE statements

UNSAVE { library(member-name) | member-name }

 [{ SOURCE | CODE | OBJECT | LIST | COPYSOURCE | USERLABEL }, ...]

library Specifies the DRIVE library (max. 54 characters) from which a
member or usage reference is deleted.

library may also be the file link name of the DRIVE library (in accor-
dance with BS2000 conventions).

DRIVE/WINDOWS interprets library first as a file link name, then as
a library name.

If the DRIVE library has been preset with PARAMETER DYNAMIC
LIBRARY then you may omit the library specification.

member-name Specifies the member (max. 31 characters) that is deleted.

If you do not specify library, the library specified in PARAMETER
DYNAMIC LIBRARY is used.

SOURCE The DRIVE program (S-member) in the DRIVE library is deleted.

CODE The intermediate code (X-member) in the DRIVE library is deleted.

OBJECT The object code (R-member) in the DRIVE library is deleted.

LIST The interpreter listing (P-member) in the DRIVE library is deleted.

COPYSOURCE The COPY member (S-member) in the DRIVE library is deleted.

USERLABEL The user label (S-member) in the DRIVE library is deleted.

U5642-J-Z125-3-7600 205

DRIVE statements WHENEVER

WHENEVER
Define error exit

This application is valid

– in TIAM and UTM mode
– in program mode

WHENEVER is used to define an error exit in case a semantic error occurs in a program.
WHENEVER must be defined in the declaration section of the program after the definitions
of internal subprograms. If more than one WHENEVER is included for a given event, the
most recent specification is used.

The WHENEVER statement polls the entries in the system variables &KFKEY, &ERROR
(= &ERROR_STATE.ERROR) and &DML_STATE (= &ERROR_STATE.DML_STATE) and
defines error exits. For a description of the system variables and their entries, refer to the
DRIVE Programming Language manual [2], section System variables.

If entries for &ERROR and for &DML_STATE are queried, and if both events occur simul-
taneously, the error exit defined for &ERROR is executed if &SQL_CODE > 0, otherwise
the error exit for &DML_STATE is executed.

If an error occurs, the corresponding counter is incremented (see the DRIVE Programming
Language [2] and the section on system variables).

If no error exit is defined, DRIVE/WINDOWS aborts the program. (Exception: the program
is continued with the &ERROR entries "OK END", "TOO LONG" and "TOO SHORT" and
with the &DML_STATE entries "TABLE END" and "DIRTY READ".)

WHENEVER { &KFKEY [IN (literal, ...)] |
 &ERROR [IN (error, ...)] |
 &DML_STATE [IN (status, ...)] }

 { CONTINUE | CALL subprog-name | BREAK }

206 U5642-J-Z125-3-7600

WHENEVER DRIVE statements

&KFKEY IN The condition takes effect when the literal key is pressed. This is
only evaluated in programs without a graphic user interface. DRIVE/
WINDOWS then sets the CONTINUE operation.

The condition is only executed if no other error condition occurs.

If an overflow occurs on the execution of a DISPLAY statement then
pressing the literal key aborts output. CONTINUE, CALL or BREAK
is executed as the next statement.

literal Key designation (K1, K3 - K14 or F1 - F20)

&ERROR IN The entry in &ERROR can be queried after the following state-
ments:

CALL (not CALL subprog-name)
CASE
CYCLE FOR / WHILE
DISPLAY [FORM / LIST / SCREEN]
DO
ENTER
END CYCLE of a CYCLE WHILE or CYCLE FOR loop
END CYCLE of a CYCLE cursor-name loop with remote access
END DISPATCH (&ERROR cannot be polled following

CALL statements which call programs in the remote
system.)

END IF
EXECUTE (after EXECUTE and after EXECUTE with one of the

executed statements)
FILL {FORM / LIST}
IF
PROCEDURE
SEND MESSAGE
SET
SYSTEM
SQL statements with an INTO clause
File processing statements
Remote access to a SESAM or UDS database

If IN (error, ...) is not specified, this has the same effect as specifying
all possible entries for error.

U5642-J-Z125-3-7600 207

DRIVE statements WHENEVER

error error specified the entry defined for an error exit.

Refer to the DRIVE Programming Language manual [2] and the
section on system variables for details on the entries in &ERROR
which can be queried.

A literal must be specified for error.

&DML_STATE IN The entry in &DML_STATE can be queried for all SQL statements
and after any EXECUTE statement that executes an SQL
statement. It can also be queried after END CYCLE within a
"CYCLE cursor-name INTO" loop if the value of SQLCODE is less
than 0.

If IN (status, ...) is not specified, this has the same effect as speci-
fying all possible entries for status.

status status defines the entry for which an error exit is defined.

Refer to the DRIVE Programming Language manual [2] and the
section on system variables for details on the entries in
&DML_STATE which can be queried.

A literal must be specified for status.

CONTINUE If a defined error event occurs, the program is continued. The
system variable &ERROR_STATE is then supplied with the error
information described above.

CALL subprog-name The internal subprogram subprog-name is called when the defined
error event occurs. The &ERROR_STATE system variable is then
supplied with the error information described above.

The program is aborted if, during processing of the internal
subprogram, another error occurs for which an error exit has been
defined with WHENEVER. The &ERROR_STATE system variable
is then not updated in the internal subprogram.

BREAK The program is aborted if a defined error event occurs.

Example

Statement Event &ERROR= &DML_STATE=

SET &v=&a(&i) INDEX ERROR 'INDEX ERROR' unchanged

OPEN cursor-name SQL ERROR unchanged 'SQL ERROR'

FETCH cursor-name INTO ... DIRTY READ 'OK' 'DIRTY READ'

208 U5642-J-Z125-3-7600

WRITE FILE DRIVE statements

WRITE FILE
Write to a file

This application is valid

– in TIAM and UTM mode
– in program mode

WRITE FILE writes a data record to a file which has been opened for write access. The
structure and content of this record are defined in the WITH clause.

In SAM files, the record is written at the current file position. If an existing record is to be
overwritten, the new record must be of the same length as the record which is to be
overwritten.

In ISAM files, the record is written at the position given by the ISAM key. The ISAM key
forms part of the record data.

If the record which is to be written is longer than the permitted BS2000 record length, then
the system variable &ERROR receives the entry "TOO LONG".

After the write operation, the current file position points to the next record.

If a program accesses files which have been opened with the open mode UPDATE, INOUT
or OUTIN, the WRITE FILE statement must not immediately follow the READ FILE
statement. At least one file positioning statement (SET FILE POSITION) must occur
between the WRITE FILE and READ FILE statements.

WRITE FILE file WITH { expression | NULL }, ...

file Logical name of the file to which data is to be written.

This must be the name used to declare the file in DECLARE FILE
statement in the program.

expression Designates the expression which is written to the file (see metavar-
iable expression). expression describes the data record.

NULL The character defined for representing null values is written to the
file (see the DECLARE FILE statement).

U5642-J-Z125-3-7600 209

DRIVE statements WRITE FILE

Special file attributes

– The file attributes match the default settings in the BS2000 operating system. If you are
working with file attributes which do not correspond to these defaults (e.g. longer
records), you must use the corresponding ADD-FILE-LINK command to define the file
attributes. You must then use the file link name to address the file in question
(SET-FILE-LINK... LINK-NAME=)

You must enter the ADD-FILE-LINK and SET-FILE-LINK commands:

– in TIAM mode, before the start of the DRIVE program or in the SYSTEM statement
in the DRIVE program itself. The SYSTEM statement must precede the
OPEN-FILE statement.

– in UTM mode, before the start of the DRIVE statement.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U5642-J-Z125-3-7600 211

4 Report statements
The beginning of this chapter contains an overview of all report statements. This is followed
by a list of the DRIVE statements permitted in report generation. A description of the restric-
tions applicable to report parameters and of the report set functions then follows.

In addition, all report statements are described in detail in alphabetical order in this chapter.

For information on using the report generator, refer to the DRIVE Programming Language
manual [2].

Report statements are valid

– in TIAM mode

– in UTM mode; however, no screen input or output may occur between OPEN REPORT
and CLOSE REPORT

– in programming mode and debugging mode. In debugging mode, no breakpoints may
be set between DECLARE REPORT and END REPORT

Summary of report statements

Two steps are required for the generation of a report:

1. Defining the report

2. Executing and creating the report

All statements regarding report definition are in the declaration section of a DRIVE program.
The statements for report execution are placed in the body of a DRIVE program.

212 U5642-J-Z125-3-7600

Report statements DRIVE statements

The start and end of a report definition are identified by the following statements:

DECLARE REPORT Start report definition, see page 218

END REPORT End report definition, see page 226

The statements between DECLARE REPORT and END REPORT are used for describing
the data and the layout. The following report statements can be used for this purpose:

DECLARE VARIABLE Define report variable, see page 223

STANDARD LAYOUT Describe layout of a standard report, see page 266

GLOBAL LAYOUT Describe layout of an individual report, see page 229

GLOBAL LINE BASE Define line background, see page 233

GLOBAL PAGE BASE Start definition of page background, see page 235

PAGE PRINT Describe page background, see page 245

OVERLAY PAGE BASE Activate page background, see page 244

REPORT Define list control block, see page 244

PAGE Define page control block, see page 245

GROUP Define group control block, see page 236

DETAIL Define detail control block, see page 224

PRINT Define report output, see page 252

SOURCE Insert text files, see page 265

To execute a report, the following report statements are available:

OPEN REPORT Start report execution, see page 239

FILL REPORT Supply data to report, see page 227

CLOSE REPORT End report execution, see page 217

U5642-J-Z125-3-7600 213

DRIVE statements Report statements

Permitted DRIVE statements

The following DRIVE statements are permitted in report generation:

BREAK Break a cycle. This statement is only allowed in the following form:
BREAK CYCLE

CALL Call C-modules. The CALL statement is only allowed in the
following form:
CALL C MODULE ... RETURN
 No null value indicators are transferred. INDICATOR must not be
specified.

CYCLE Program a cycle. The statement CYCLE cursor-name is meaningless
in report generation because there is no cursor in the report.
The statement CYCLE FOR is not permitted.

IF Program conditions. Only the following comparisons are allowed for
condition in an IF statement:

– expressions with comparison operators
– columns with the null value.

(see the metavariable condition).

SET Assign values. In a SET statement only the following entry is
permitted:
SET variable ...
Attributes must not be assigned. Assignments are only permitted
for start parameters and local variables.

214 U5642-J-Z125-3-7600

Report statements DRIVE statements

Restrictions applicable to report parameters

If variables, system variables, mask control characters, expressions and transfer param-
eters are used in report or DRIVE statements included in a report definition, the following
restrictions apply:

Literals Literals of type INTERVAL must be entered to an accuracy of one
second.

Variables The variables declared within a report definition only apply locally.
The variables must be simple.

The following must not be used:

– the types TIME(3) and TIMESTAMP(3)
– INIT, CHECK or REDEFINES clauses
– LIKE clauses
– variables declared outside the report definition.

System variables Only &LINES and &PAGES can be used as system variables. They
apply locally within the report definition.

Mask control characters
The following mask control characters must not be used:

ZZZY, ZI, ZS, ZW, BWZ, YYY, ZZY, JJJ, ZZJ.

Also not permitted are CHAR masks.

Names are abbreviated if Q(3), QQQ or R(3), RRR is entered. Any
other input of Q or R causes the names to be output in full (see the
metavariable mask).

Expressions Only the following functions are allowed in expressions:

– CURRENT DATE,
– CURRENT TIME

(see the metavariables char-prim and format).

The exponential operator (**) is not permitted.

It is recommended that you specify masks for the output of arith-
metic operations and report set functions.

Transfer parameters Parameters passed in the USING clause must not be modified.
They must not precede the equals sign in the SET statement, for
example.

U5642-J-Z125-3-7600 215

DRIVE statements Report statements

Report set functions in expressions

Expressions can contain the following report set functions:

{ COUNT | MIN | MAX | AVG | SUM }
([REPORT | PAGE | GROUP] [GROUPNUM n] [TOTAL] [ALL] [DISTINCT] expression)

where the parameters have the following meanings:

COUNT determine the number of expression

MIN determine the minimum number of expression

MAX determine the maximum number of expression

AVG determine the average of expression

SUM determine the sum of expression.

The scope of application of the above-mentioned functions can be specified with:

REPORT For the entire report.

The derived values are updated each time the fields expression occur
and are not reset until the end of the list.

PAGE For one page.

The calculation of the values derived from expression starts anew
with each new page. The current values of the report set function
are provided

– in all control blocks of the current page, with the exception of the
page header

– on the following page in the page header for transfer of the
values.

The derived values are reset after the page header and before the
first group or detail control block.

GROUP For one group.

The calculation of the values derived from expression begins with the
first report data of a group level. The current values of a group-
specific report set function are available from the group header to
the group trailer of the current group level. The derived values are
reset after the assigned group trailer.

216 U5642-J-Z125-3-7600

Report statements DRIVE statements

If REPORT, PAGE or GROUP is omitted, a report set function refers to the control block in
which the function is specified.

The scope of application of a report set function can be specified in even greater detail with:

GROUPNUM n For a specific group.

The report set function only refers to the group with the number n.
The group number n is defined in the statement GROUP (see the
GROUP statement). n must not be greater than 32767.

TOTAL Specified in advance for all field contents of the control block for
which the set function has been defined.

This advance calculation makes it possible to use the calculated
value within the control block itself, for example in expressions.

ALL For all field contents.

Regardless of whether the field contents of expression are output or
not, the report set functions are applied to all field contents of
expression. By default, only the values to be output are used for
calculation.

DISTINCT For certain field contents.

Only the field contents of expression which differ from the contents of
the field in the previous record are used for calculation.

U5642-J-Z125-3-7600 217

Report statements CLOSE REPORT

CLOSE REPORT
End report execution

CLOSE REPORT ends report execution. It causes the report generator to close the report
buffer which was opened by the associated OPEN REPORT statement together with the
employed report definition (see OPEN REPORT statement).

After closing the report definition and the report buffer, the report is generated on the output
device specified by OPEN REPORT.

A CLOSE REPORT statement is only permitted in the body of a program.

CLOSE REPORT report-name [variable]

report-name Specifies the name of the report definition used. The name must be
declared with a DECLARE REPORT statement (see the DECLARE
REPORT statement).
The corresponding report must be open (see OPEN REPORT
statement).

variable Designates the variable or variable component which was used to
identify the report buffer in the OPEN REPORT statement (see
OPEN REPORT statement).

218 U5642-J-Z125-3-7600

DECLARE REPORT Report statements

DECLARE REPORT
Define report

DECLARE REPORT identifies the beginning and END REPORT the end of a report
definition.

A report definition is assigned its name with the DECLARE REPORT statement. The report
definition is referred to under this name when the report is executed.

The parameters to be used in a report definition must be defined with the DECLARE
REPORT statement. These parameters are supplied with values during execution of the
report (see the FILL REPORT statement). When defining these parameters, it is possible
to take different record types into consideration.

Moreover, start parameters can be specified to which the report generator assigns values
once only at the start of report execution (see the OPEN REPORT statement).

Variables which are defined in the DECLARE REPORT statement do not appear in the
cross-reference list.

DECLARE REPORT is only allowed in the declaration section of a program. More than one
report can be defined in a program.

DECLARE REPORT report-name
 [FOR START USING { var-name1 basic-data-type [mask] }, ...]

 { USING { [level] var-name2 { data-def |
 LIKE { CURSOR cursor | TABLE table } } }, ... |

 { RECORD TYPE char-literal USING { [level] var-name2 { data-def |
 LIKE { CURSOR cursor | TABLE table } } }, ... }, ... }

report-name Specifies the name of a report definition. The name must be
unambiguous and consist of a maximum of seven characters. Since
the report definition name is used at compilation or runtime to create
filenames, it must comply with the BS2000 conventions for
filenames.

FOR START USING Defines start parameters to which the current values are passed
once at the start of report execution using the OPEN REPORT
statement. These values may, for example, be output or be used for
layout control in expressions which contain the results of report set
functions.

U5642-J-Z125-3-7600 219

Report statements DECLARE REPORT

The number of start parameters used must correspond to the
number of parameters specified in the USING clause of the OPEN
REPORT statement (see OPEN REPORT statement).

If the matching parameters in the statements DECLARE REPORT
and OPEN REPORT have different basic-data-types, their values
must be convertible to the appropriate type.

The total length of the data values including null value displays may
not exceed 31 KB.

var-name1 Specifies a simple variable of type basic-data-type.

If more than one report is defined in a program, the names of the
report parameters must be unique for all reports.

The names of report parameters may be identical to the names of
DRIVE variables. They are nonetheless handled differently.

basic-data-type Specifies the type of the variable var-name1. basic-data-type can be
a type defined by the user, i.e. user-type, or one of the following
types:

CHARACTER, DECIMAL, NUMERIC, INTEGER, SMALLINT,
DATE, TIME, INTERVAL, CHARACTER VARYING, VARCHAR,
REAL, DOUBLE PRECISION, FLOAT

You may not use the types TIME(3) and TIMESTAMP(3) or INIT,
CHECK and REDEFINES clauses and you may also not use LIKE
clauses in report parameters.

mask Designates a display option (mask control character) for the output
of a start parameter var-name1. The mask specification is subject to
the restrictions described elsewhere (see section “Restrictions
applicable to report parameters” on page 214).

USING Defines parameters which are supplied with data by means of the
FILL REPORT statement during report execution ("net data").

The number of parameters must correspond to the number of
expressions in the USING report clause of the FILL REPORT
statement (see the FILL REPORT statement).

If the corresponding parameters in the statements DECLARE
REPORT and FILL REPORT have different types, then their values
must be convertible to the appropriate type.

The total length of the data values including null value displays may
not exceed 31 KB.

level Level number. The level number must be 1.

220 U5642-J-Z125-3-7600

DECLARE REPORT Report statements

var-name2 Specifies a variable of type data-def or of a type defined in a LIKE
clause (see the DRIVE statement DECLARE VARIABLE).

So many variables may be specified that the length of the values of
all parameters including the null indicator does not exceed 31
Kbytes.

data-def Specifies the type of the variable var-name2. (see metavariable
data-def).

The following specifications are not permitted for data-def: INIT,
CHECK, REDEFINES clauses, and LIKE clauses for report param-
eters.

The data types TIME(3) and TIMESTAMP(3) are not permitted.

LIKE Copies the structure of a cursor or table component by component
to the variable var-name2 (see the DRIVE statement DECLARE
VARIABLE).

cursor Specifies a cursor which must be declared in the DRIVE program.

table Specifies a base table which must be declared in a connected
database.

RECORD TYPE Defines the record type char-literal. The structure of the record type
is described in the associated USING clause. More than one record
type can be defined (see the DETAIL statement).

U5642-J-Z125-3-7600 221

Report statements DECLARE REPORT

Example 1

In the report declaration the variable &s2, which corresponds to the variable &kd_name,
is defined as a start parameter. Before the report is opened, the name ‘AGENT' is
assigned to the variable &kd_name (customer name). This value is passed when the
report is opened.

PROCEDURE "t1.2007";

DECLARE VARIABLE &12 VARCHAR(256) INIT '9012-2';
DECLARE VARIABLE &v11 DEC (8,2);
DECLARE VARIABLE &repv CHAR (8);
DECLARE VARIABLE &kd_name CHAR (10);

DECLARE REPORT drirep FOR START
 USING &s2 CHAR (10)
 USING &repdat,
 2 key CHAR (6),
 2 artname CHAR (20),
 2 price NUM (8,2),
 2 stock NUM (5);
...
END REPORT;

SET &kd_name='AGENT';

OPEN REPORT drirep USING &kd_name RESULT list 'G207' DEVICETABLE &12;
...
CLOSE REPORT drirep;

222 U5642-J-Z125-3-7600

DECLARE REPORT Report statements

Example 2

The report definition is declared with the name "statist". The data of the &data
parameter, which was defined as the variable &cvar in the DRIVE program, are
processed in this report definition:

...
/* Variable which is subsequently passed to the report buffer */
/* during processing */

DECLARE VARIABLE 1 &cvar
 2 agent CHAR (20),
 2 article NUM (6),
 2 quantity NUM,
 2 unit-price NUM,
 2 amount NUM;

/* Declaration of report */

DECLARE REPORT statist USING &data LIKE &cvar;

 /* Description of data */
 /* Description of layout */

END REPORT;
...

U5642-J-Z125-3-7600 223

Report statements DECLARE VARIABLE

DECLARE VARIABLE
Define report variable

DECLARE VARIABLE is used to declare report variables. These variables only apply locally
within the report definition. A local variable can, for example, be used in expressions for
controlling the layout.
Report variables do not appear in the cross-reference list.

The system variables &PAGES and &LINES are available implicitly in the following form:

DECLARE VARIABLE &PAGES INTEGER,
 &LINES INTEGER;

These system variables are initialized with the null value and need not be explicitly declared
with the DECLARE VARIABLE statement. Values cannot be assigned. The system
variables &PAGES and &LINES are assumed to be local variables within the report
definition.

DECLARE VARIABLE var-name basic-data-type [mask]

var-name Specifies a simple variable of type basic-data-type which is initialized
with the null value.

basic-data-type Specifies the type of the variable var-name. basic-data-type can be
one of the following types:

CHARACTER, INTEGER, SMALLINT, DATE, TIME,INTERVAL,
CHARACTER VARYING or VARCHAR, REAL, DOUBLE
PRECISION, FLOAT, XDEC or EXTENDED DECIMAL, DECIMAL,
NUMERIC

You may not use the types TIME(3) and TIMESTAMP(3).

mask Designates a display option (mask control character) for the output
of a variable var-name (see metavariable mask). The mask specifi-
cation is subject to the restrictions described elsewhere (see
section “Restrictions applicable to report parameters” on page 214).

Unlike DRIVE variable declarations, report variable declarations may not contain any INIT,
CHECK, REDEFINES or LIKE clauses.

224 U5642-J-Z125-3-7600

DETAIL Report statements

DETAIL
Define detail control block

DETAIL is used to describe the detail lines. The statements which control the processing of
the data records to be output are included in this control block. For example, the positions
where constant text parts and variable data are to be inserted are defined relative to the
current output position in the detail control block.

The DETAIL statement is only allowed within a report definition. If different record types are
to be processed, a separate detail control block must be defined for each record type.

If more than one record type exists, the report generator identifies a record type with a
character string and the contents of an identifier field. If the identifier field adopts the value
of the character string, the program branches to the corresponding detail control block. The
identifier field of a record type must be in the same position in all record types. The first field
of a data record is preset as the identifier field.

If a record type other than the one defined for the control block is referenced in a detail
control block, the fields must be qualified with the character string specified.

If more than one detail control block is defined for different record types, the fields of all
record types are available in all detail control blocks. A record of a record type becomes no
longer available when the current record is processed and the next record has the same
record type.

A detail line can contain the following outputs:

– literals and texts inserted with SOURCE
– the system variables &PAGES and &LINES
– start parameters
– report set values,
– net data of the current record and other record types
– arithmetic expressions
– local variables.

DETAIL [RECORD TYPE literal [IN variable]] [line-pattern] { statement; } ...

U5642-J-Z125-3-7600 225

Report statements DETAIL

RECORD TYPE literal
Assigns the record type literal. The statements in this control block
are then only executed for this record type.

IN variable Specifies the name of an identifier field for the record type literal.
The default identifier field is the first field of a data record.

line-pattern Name of the line background pattern which must be defined with the
GLOBAL LINE BASE statement.
The corresponding line pattern is assigned to the detail lines as a
background pattern.

statement Designates one of the DRIVE statements BREAK, CALL, CYCLE,
IF, SET or one of the report statements PRINT or SOURCE. You
use these statements to describe the detail lines. The statements
are subject to the restrictions described elsewhere (see section
“Permitted DRIVE statements” on page 213 and section “Restric-
tions applicable to report parameters” on page 214).

Example

The Courier 12 font is to be used for the detail lines in a report. The variables
&data.name and &data.age are to be output in this font type at the tabulator positions 20
and 30. After a line feed of 2 lines, Rent: is to be output at the tab position 25 and finally,
the variable &data.rent in the’Z9 output format at position 34.

...
DETAIL
 PRINT SET (FONT 'COURIER', CHARACTER DENSITY 12),
 TAB 20, &data.name,
 TAB 30, &data.age,
 NL 2,

 TAB 25, 'Rent: ',
 TAB 34, &data.rent MASK 'Z9', '% ';
...

226 U5642-J-Z125-3-7600

END REPORT Report statements

END REPORT
End report definition

END REPORT terminates a report definition.

END REPORT

U5642-J-Z125-3-7600 227

Report statements FILL REPORT

FILL REPORT
Fill report with data

FILL REPORT transfers a data record to a report buffer. Here the report generator prepares
the data in accordance with the report definition for the output device which has been
selected in OPEN REPORT.

As many FILL REPORT statements as are required for the data transfer can be placed
between an OPEN REPORT and its associated CLOSE REPORT statement.

A record type specified in DECLARE REPORT can also be transferred with the FILL
REPORT statement.

A FILL REPORT statement is only allowed in the body of a program and only in program
mode.

FILL REPORT report-name [variable] [RECORD TYPE char-literal]
 USING { expression | NULL }, ...

report-name Specifies the name of the report definition used for generating the
report. The name must be declared with a DECLARE REPORT
statement (see the DECLARE REPORT statement).

variable Specifies a variable or variable component which was specified in
the OPEN REPORT statement for identification of the report buffer
(see the OPEN REPORT statement).

RECORD TYPE char-literal
Transfers the data of the record type char-literal to the report buffer.
The record type char-literal and its structure were defined in the
DECLARE REPORT statement (see the DECLARE REPORT
statement).

DRIVE/WINDOWS checks whether the expressions in the USING
clause are convertible to the data types which were specified for the
parameters in the DECLARE REPORT statement.

USING Transfers the parameters which were defined in the USING clause
of the DECLARE REPORT statement.

expression Specifies the parameters.

NULL Specifies the null value as parameter.

228 U5642-J-Z125-3-7600

FILL REPORT Report statements

Example

The report definition "stat" is to be used to create a report containing the data
"drive_data". The data are of the record type "record" which has been defined in the
DECLARE REPORT statement.

...
DECLARE REPORT stat RECORD TYPE 'record' USING &data LIKE &drive_data;
...
END REPORT;
...
FILL REPORT stat RECORD TYPE 'record' USING &drive_data;
...

U5642-J-Z125-3-7600 229

Report statements GLOBAL LAYOUT

GLOBAL LAYOUT
Set global defaults for a report

GLOBAL LAYOUT is used for individual design of a report and is only permitted within a
report definition.

You use the GLOBAL LAYOUT statement to declare global defaults which are valid for the
entire report. The following settings can be defined by default:

– defining the sorting criteria for the transfer parameters
– determining the width of the page margins
– determining the size of the area for the page header and trailer
– selecting layout attributes.

For the specification of the page margins and the width of the page header or page trailer
areas, the defaults defined in the profile of the selected output device are assumed (see the
section on "The report generator" in the "DRIVE Programming Language" [2] manual).

The default display attributes which you declare with the GLOBAL LAYOUT statement can
be changed or reset at any time using the PRINT statement (see PRINT statement).

GLOBAL LAYOUT
 { ORDER BY { {variable [ASCENDING | DESCENDING] }, ... } [EXTERNAL] |
 { TOP MARGIN n | BOTTOM MARGIN n | LEFT MARGIN n | RIGHT MARGIN n } |
 { HEADER LINES n | TRAILER LINES n | MINIMUM LINES n } |
 format-clause } ...

ORDER BY Defines the sorting order of the field contents of the parameter
variable.

If groups are defined, the field contents must be sorted in
compliance with the control break fields according to their hierarchy.

If a report definition contains no ORDER clause, implicit sorting is
performed if group control blocks are defined (see GROUP
statement) and a single field has been defined as the group break
field. In this case, sorting is performed in ascending order on the
group break fields.

230 U5642-J-Z125-3-7600

GLOBAL LAYOUT Report statements

variable Specifies a component of the parameter var-name-2, which was
defined in the USING clause of the DECLARE REPORT statement.
The component variable must be a simple type and must be
uniquely qualified. The records to be processed are sorted by the
field contents of these components.

ASCENDING Default. Sorting is performed in ascending order.

DESCENDING Sorting is performed in descending order.

EXTERNAL Specifies that the data which is passed to the report generator has
already been sorted. If you specify EXTERNAL, the report
generator does not check whether or not the data is present in
sorted form.

TOP MARGIN n Specifies the number n of lines which the report generator is to
reserve for the top margin of an output page. n must not be greater
than 32767.

BOTTOM MARGIN n Specifies the number n of lines which the report generator is to
reserve for the bottom margin of an output page. n must not be
greater than 32767.

LEFT MARGIN n Specifies the number n of columns which the report generator is to
reserve for the left margin of an output page. n must not be greater
than 32767.

RIGHT MARGIN n Specifies the number n of columns which the report generator is to
reserve for the right margin of an output page. n must not be greater
than 32767.

HEADER LINES n Specifies the number n of lines which the report generator is to
reserve for the header of an output page. n must not be greater than
32767.

TRAILER LINES n Specifies the number n of lines which the report generator is to
reserve for the trailer of an output page. n must not be greater than
32767.

MINIMUM LINES n Specifies the minimum number n of lines which must be available
for a report page. n must not be greater than 32767.

This input is useful if the size of an output page is not yet known
during the report definition. This prevents pages from being output,
for example, with just page headers and trailers.

U5642-J-Z125-3-7600 231

Report statements GLOBAL LAYOUT

format-clause The description of the layout attributes, which can be specified in
the format-clause can be found in the PRINT statement.

The layout attributes SUBSCRIPT and SUPERSCRIPT must not
be used in the GLOBAL LAYOUT statement.

Example

A report on the consumption behavior of people is to be produced. The structured
variable &person is declared in the DRIVE program for the data required for the report.

The report definition is given the name "behave". Here the DRIVE variable &person is
passed to the report definition via the parameter &data.

The local variable &i is declared and the sorting order defined in the report definition.
Sorting is to be in ascending order by the components &data.sex, &data.social and
&data.name. Moreover, the margins and the area for header and trailer lines are deter-
mined. The layout attributes selected afterwards, such as the font, character density
and character type, apply to the entire report. They can, however, be changed with the
PRINT statement for individual output fields or for the entire report.

...
/* Declare DRIVE variables to receive report data */

DECLARE VARIABLE 1 &person,
 2 name VARCHAR(30),
 2 age SMALLINT,
 2 sex CHAR,
 2 social CHAR,
 2 rent INTEGER,
 2 car INTEGER,
 2 consum INTEGER;

/* Declare report */

DECLARE REPORT behave USING &data LIKE &person;

 DECLARE VARIABLE &i INTEGER; /* Declare report variable */

 GLOBAL LAYOUT /* Set layout defaults */
 ORDER BY &data.sex ASCENDING, /* Sort criteria */
 &data.social ASCENDING,
 &data.name ASCENDING

232 U5642-J-Z125-3-7600

GLOBAL LAYOUT Report statements

 TOP MARGIN 2 /* Margins */
 BOTTOM MARGIN 3
 HEADER LINES 2
 TRAILER LINES 5

 FONT 'CENTURY CONDENSED' /* Display attributes */
 CHARACTER DENSITY 10
 ITALIC 1;
 ...
END REPORT;

U5642-J-Z125-3-7600 233

Report statements GLOBAL LINE BASE

GLOBAL LINE BASE
Define line background

You use the GLOBAL LINE BASE statement to define a named background pattern (base)
for a printed line. The background pattern may consist of tabs and positioned text elements.
You can either enter text directly or read it from a message file via MSGSTRING.

Any line background pattern can be assigned to a variety of control blocks. The text is
output as a background pattern which is overwritten by current input.
In the PRINT statement you can process the tabs defined in GLOBAL LINE BASE one by
one from left to right and use these tabs to determine positions within the line.

The GLOBAL LINE BASE statement is only permitted within a report definition and must
precede the first REPORT DIRECTIVE statement. If the report definition contains the
GLOBAL LAYOUT statement, then GLOBAL LINE BASE must occur between the GLOBAL
LAYOUT statement and the first REPORT DIRECTIVE statement.

GLOBAL LINE BASE line-pattern

 { tab_position |
 PATTERN position { char-literal |
 MSGSTRING (value-expression1 [[, value-expression2],
name]) }
 [format-clause] ... }, ...

line-pattern Name of the line background pattern (max 54 characters).

tab_position Defines a tab with the tab position tab_position. tab_position must be
an unsigned number of type INTEGER. The position is calculated in
the units (cm, inch, 1/300 inch) which have been defined in the
GLOBAL LAYOUT statement.

tab_position must lie within a line of print.

PATTERN Text which is input as a literal or read from a message file is used as
the background pattern.

position Specifies the text position as an unsigned number of type
INTEGER.
The position is calculated in the units (cm, inch, 1/300 inch) which
have been defined in the GLOBAL LAYOUT statement.

position must lie within a line of print.

234 U5642-J-Z125-3-7600

GLOBAL LINE BASE Report statements

char-literal Specifies a text which is to be displayed as a background pattern
(char-literal, see metavariable literal).

MSGSTRING (value-expression1 [[, value-expression2], name])
The text which is to be used as the background pattern is read from
a message file (MSGSTRING, see metavariable char-prim).

format-clause Specifies the display attributes of the text of the background pattern.
Different text components may have different display attributes.
You may specify the following display attributes in format-clause:
FONT, NATIONAL SET, SIZE, BOLD, INVERSE, ITALIC,
UNDERLINE, COLOUR FOREGROUND, COLOUR
BACKGROUND.
The meaning of these individual display attributes is explained
under format-clause in the description of the PRINT statement.

U5642-J-Z125-3-7600 235

Report statements GLOBAL PAGE BASE

GLOBAL PAGE BASE
Define page background pattern

You use the GLOBAL PAGE BASE statement to define a named background pattern (base)
for a printed page. Alongside positioned texts, lines and rectangles, the background pattern
may also contain rotated texts. Certain printers also allow you to use page background
patterns which are not created using DRIVE/report resources (see SOURCE statement).

You can use page background patterns to:

– output net data in a preprinted form,
– create preprinted forms using DRIVE/report resources,
– cover printed pages with a predefined pattern.

You use the OVERLAY PAGE BASE statement to activate and deactivate a page
background pattern. If the page background pattern is activated, it is overlaid by the net
data output.

The GLOBAL PAGE BASE statement is only permitted within a report definition and must
precede the first REPORT DIRECTIVE statement. If the report definition contains the
GLOBAL LAYOUT statement, then GLOBAL PAGE BASE must occur between the
GLOBAL LAYOUT statement and the first REPORT DIRECTIVE statement.

GLOBAL PAGE BASE page_pattern_name { statement; } ...

page_pattern_name Name of the page background pattern (max 54 characters).

statement Designates one of the DRIVE statements CYCLE, IF, SET or one of
the report statements PAGE PRINT or SOURCE. You use these
statements to describe the page background pattern. The state-
ments are subject to the restrictions described elsewhere (see
section “Permitted DRIVE statements” on page 213 and section
“Restrictions applicable to report parameters” on page 214).

If you specify SOURCE, then it can only be as the first and only
statement.

236 U5642-J-Z125-3-7600

GROUP Report statements

GROUP
Define group control block

GROUP is used to describe a group header or group trailer for a group. A control break field
identifying the group must be specified. A group header can include, for example, a title for
identification of a group. Group-specific intermediate results can be contained in a group
trailer for instance.

GROUP is only allowed within a report definition and may be specified more than once. The
order in which the declarations are made determines the hierarchy according to which
group processing is performed

group header a
 group header b
 group header c
 detail lines
 group trailer c
 group trailer b
group trailer a

If more than one group is defined and if there is a control break in the next data record to
be processed, the control blocks are processed in the following order:

– all group trailers from the lowest to the control hierarchy in which the control break
occurs

– all group headers from the current to the lowest control hierarchy
– all statements for the detail area, with the data of the next data record.

The data to be processed must be either transferred to the report generator already sorted
or sorted by including ORDER in the GLOBAL LAYOUT statement (see the GLOBAL
LAYOUT statement). In the example shown above, the sorting of a, b and c was assumed.
If the data is not sorted and if the GLOBAL LAYOUT statement does not include any
ORDER clause, sorting is implicitly performed if group control blocks are defined. In this
case, sorting is effected by control break fields in ascending order.

Group headers and trailers may have more than one line and include the following outputs:

– literals and texts inserted with SOURCE
– the system variables &PAGES and &LINES
– start parameters
– values derived from report set functions
– arithmetic expressions
– net data of the current data record
– local variables.

U5642-J-Z125-3-7600 237

Report statements GROUP

GROUP { HEADER | TRAILER } { variable }, ... [GROUPNUM n] [line-pattern]
 { statement; } ...

HEADER Defines the group header for the group variable. The group header
is described with the following statements.

TRAILER Defines the group trailer for the group variable. The group trailer is
described with the following statements.

variable Specifies a control break field used for identification of a group. A
control break is initiated if the contents of the control break field are
changed. variable must be a simple component in the set of data to
be processed.

More than one field (field combinations) can also be specified. A
control break then occurs if the contents of one of these fields
change.

GROUPNUM n Specifies a group number n for the group variable. This group
number can be entered for report set functions if a calculation is
intended to refer to this group only (see section “Report set
functions in expressions” on page 215). n must not be greater than
32767.

line-pattern Name of a line background pattern which must have been defined
using GLOBAL LINE BASE
The corresponding line pattern is assigned to the group header or
trailer as a background pattern.

statement Designates one of the DRIVE statements BREAK, CALL, CYCLE,
IF, SET or one of the report statements PRINT or SOURCE. You
use these statements to describe the group trailer or header. The
statements are subject to the restrictions described elsewhere (see
section “Permitted DRIVE statements” on page 213 and section
“Restrictions applicable to report parameters” on page 214).

238 U5642-J-Z125-3-7600

GROUP Report statements

Example

You want to use the header “Men: “ or “Women: “ for the group &data.sex

...
GROUP HEADER &data.sex

 PRINT NEWLINE 1, SET (NATIONAL SET 'UK-ENGLISH', BOLD 1,
 FONT 'COURIER', CHAR DENSITY 12),
 NEED LINES 5;

 IF (&data.sex = 'm') THEN
 PRINT TAB 10, 'Men: ',
 NEWLINE 1;
 ELSE
 PRINT TAB 10, 'Women: ',
 NEWLINE 1;
 END IF;
...

U5642-J-Z125-3-7600 239

Report statements OPEN REPORT

OPEN REPORT
Start report execution

OPEN REPORT is used to start the execution of a report. The report definition is specified
and a report buffer which accepts the report data is provided and initialized. At the same
time, the start parameters defined in DECLARE REPORT can be transferred.

The output device for a report is also specified with the statement OPEN REPORT; the
device can be a printer or a file.

The report buffer and the report definition are closed again and the execution is ended with
an associated CLOSE REPORT statement. After closing the report definition and the buffer
the report is generated at the selected output device.

Under UTM, no terminal entries or outputs are allowed between the execution of an OPEN
REPORT statement and the associated CLOSE REPORT statement.

More than one OPEN REPORT statement may be specified.

This statement is only permitted in the body of a program.

OPEN REPORT report-name [variable] [USING { expression | NULL }, ...]

 RESULT { LIST [device] [DEVICETABLE device-table [spoolparameter]] |
 FILE file [DEVICETABLE device-table] }

report-name Specifies the name of the report definition to be used. The name
must be declared with a DECLARE REPORT statement (see the
DECLARE REPORT statement).

variable Designates a variable or component of type CHAR(8) which is used
to identify the report buffer. You must specify variable if you want to
generate multiple reports simultaneously, all of which use the report
definition report-name. Different variables designate different reports.
DRIVE/WINDOWS stores an internal report ID in variable.

If variable is specified, it must be explicitly declared in the DRIVE
program and must not be changed with a SET statement or any
other statement at the time of execution, between OPEN and
CLOSE.

If variable is not specified, DRIVE uses a variable with the name
report-name which is automatically created for each report when
DECLARE REPORT is executed.

240 U5642-J-Z125-3-7600

OPEN REPORT Report statements

USING Transfers values for the start parameters which have been defined
in the DECLARE REPORT statement using the FOR START
USING clause.

expression Transfers the value of expression (see metavariable expression).

NULL Transfers the null value.

RESULT LIST Specifies that the report is to be output at a printer.
If you want to output the report at a Remote Spoolout (RSO) printer,
you must specify device and DEVICETABLE device-table.

device Symbolic name for a printer (max. 256 characters). You may specify
this name as a literal or as the contents of a DRIVE variable of type
CHARACTER or VARCHAR.

If output is performed at a system printer, the device specification is
not evaluated.

If output is performed at an RSO printer, device must be specified.

RESULT FILE Specifies that the report is to be output to a file.

Output to a file is performed in a device-independent format as
specified in device-table.

file Name of the file to which the report is to be output.

The name must comply with the BS2000 conventions for filenames.
You may specify this name as a literal or as the contents of a DRIVE
variable of type CHARACTER or VARCHAR.

DEVICETABLE Assigns a device table.

You must specify DEVICETABLE if output is performed at an RSO
printer.

device-table This is the logical name of the output file.
You may specify this name as a literal or as the contents of a DRIVE
variable of type CHARACTER or VARCHAR (max. 256 characters).

The device profile is stored in the file PROFILE.device-table. This
profile contains the description of an output page and the
assignment of device-independent to device-specific control codes
(see the DRIVE Programming Language manual [2], chapter The
report generator).

If output is sent to a system printer then you must specify the
device-table value “ND” for output at an NP laser printer or, alterna-
tively, the value “HP" for output at an HP laser printer. If you do not
specify device-table then "ND" is used.

U5642-J-Z125-3-7600 241

Report statements OPEN REPORT

spoolparameter Specifies options for print management.
You may specify spoolparameter as a literal or as the contents of a
DRIVE variable of type CHARACTER or VARCHAR (max. 256
characters).

DRIVE/WINDOWS automatically enters a PRINT-DOCUMENT
command which is structured as follows:

PRINT-DOCUMENT FROM-FILE=temp-file,-
TO-PRINTER=*PARAMETERS(PRINTER-TYPE=*HP-PRINTER),-
DELETE-AFTER-PRINT=*YES

or

PRINT-DOCUMENT FROM-FILE=temp-file,-
DELETE-AFTER-PRINT=*YES

The user can also determine further options for print output in the
PRINT-DOCUMENT command. These options must conform to the
syntax of the BS2000 command PRINT-DOCUMENT in SDF format
(see BS2000 Commands [35]).

The spoolparameter string is passed to the print management
function unchecked.

If you want to use multiple character sets when outputting a report
at the system printer, you must specify these character sets in the
PRINT DOCUMENT command (see below).

If you do not specify any print management options, then the
SPOOLDOPT setting in the user profile is evaluated. In such cases, the
user-specific user profile is evaluated before the system-specific
user profile.

If there is no user profile specification then the operand
LAYOUT-CONTROL=PARAMETERS(CONTROL-CHARACTERS=PHYSICAL)
is used for the BS-2000 PRINT-DOCUMENT command (see
BS2000 Commands [35]).

This default value corresponds to the minimum requirement.

No other user profile settings which relate to the spooler have any
effect.

242 U5642-J-Z125-3-7600

OPEN REPORT Report statements

Outputting reports with multiple character sets at system
printers:

The following criteria must be met if you want to use multiple
character sets when outputting a report:

– The same number of character sets must be defined in the
device profile (PROFILE.ND or PROFILE.HP). In the case of
ND laser printers; you can specify a maximum of 4 and for HP
laser printers a maximum of 64 character sets.

– In the report definition, the character sets must be used with the
names which are defined in the device profile. In the case of ND
laser printers, the character sets have the default names
SECTION1 to SECTION4,and in the case of HP laser printers
SECTION1 to SECTION64. For example, you may enter:
PRINT expression1 ATTRIBUTE(FONT SECTION1); and
PRINT SET(FONT SECTION2);

– You must specify the character sets which are to be loaded into
the printer in the PRINT-DOCUMENT command (see BS2000
Commands [35]). To do this, specify CHARACTER-SETS for
the operand LAYOUT-CONTROL:
LAYOUT-CONTROL=PARAMETERS(CONTROL-CHARACTERS=PHYSICAL,

CHARACTER-SETS=(font1,font2, ...))

The first character set named in CHARACTER-SETS is
assigned to the character set SECTION1, the second character set
named is assigned to SECTION2 etc. (valid for positional param-
eters).

If you use the SECTION1 and SECTION2 character sets in the
report then you might enter
LAYOUT-CONTROL=PARAMETERS(CONTROL-CHARACTERS=PHYSICAL,

CHARACTER-SETS=(105,203))
The character set "SECTION1" designated in the FONT clause
in the report is output using character set 105 while
"SECTION2" is output using character set 203.

U5642-J-Z125-3-7600 243

Report statements OPEN REPORT

Example

The execution of multiple reports with the report definition stat is started. The variables
&buf1 and &buf2 are used to identify the report buffer which is to be opened. The only
start parameter to be passed is the variable &start. The output device is to be an HP
laser printer.

...
OPEN REPORT stat &buf1 USING &start RESULT LIST DEVICETABLE 'HP';
OPEN REPORT stat &buf2 USING &start RESULT LIST DEVICETABLE 'HP';
...

244 U5642-J-Z125-3-7600

OVERLAY PAGE BASE Report statements

OVERLAY PAGE BASE
Activate page background pattern

You use the OVERLAY PAGE BASE statement to activate a page background pattern
which you have previously defined using GLOBAL PAGE BASE.

You may only use the OVERLAY PAGE BASE statement within a report definition.

OVERLAY PAGE BASE page-pattern-name { ON | OFF }

page-pattern-name Name of a page background pattern which has been defined using
GLOBAL PAGE BASE.

The OVERLAY PAGE BASE statement applies to the current printed page if it is specified
as the first statement for the output page (print position: first line, first column). For example,
it applies to the current page if it is specified as the first statement of a PAGE HEADER
control block.
Otherwise this statement does not take effect until the next printed page.

U5642-J-Z125-3-7600 245

Report statements PAGE

PAGE
Define page control block

PAGE is used to describe the header or trailer for all report output pages. A page header
can contain, for example, values derived from report set functions on the previous page as
carry. In a page trailer, an intermediate result or a page number can be output for example.

The PAGE statement is only allowed within a report definition and may only be specified
once for defining a page header and page trailer in each case. If a page header or trailer is
defined, a header or trailer area must also defined in the statement GLOBAL LAYOUT (see
the GLOBAL LAYOUT statement).

The page header is output at the start and the page trailer at the end of every page. An
exception to this exists if a list header or list trailer requires a whole page. In such cases,
neither a page header nor trailer appears on the first or last page respectively of a report.

A page header or page trailer is output if the report generator detects that the next free line
is identical to the following:

– the first line of the trailer area specified in the GLOBAL LAYOUT statement or
– the first line which exceeds the page height.

A page header or trailer can include the following outputs:

– literals and texts inserted with SOURCE
– the system variables &PAGES and &LINES
– start parameters
– values derived from report set functions
– arithmetic expressions
– net data of the current data record
– local variables.

PAGE { HEADER | TRAILER } [line-pattern] { statement; } ...

HEADER Defines the page header, which is described by the following state-
ments.

TRAILER Defines the page trailer, which is described by the following state-
ments.

246 U5642-J-Z125-3-7600

PAGE Report statements

line-pattern Name of a line background pattern which must have been defined
using GLOBAL LINE BASE.
The corresponding line pattern is assigned to the group header or
trailer as a background pattern.

statement Designates one of the DRIVE statements BREAK, CALL, CYCLE,
IF, SET or one of the report statements PRINT or SOURCE. You
use these statements to describe the page trailer or header. The
statements are subject to the restrictions described elsewhere (see
section “Permitted DRIVE statements” on page 213 and section
“Restrictions applicable to report parameters” on page 214).

U5642-J-Z125-3-7600 247

Report statements PAGE PRINT

PAGE PRINT
Describe page background pattern

You use the PAGE PRINT statement to define texts, lines or rectangles for a page
background pattern.

The PAGE PRINT statement is only permitted in the definition of a page background pattern
in the GLOBAL PAGE BASE statement.

PAGE PRINT { expression x y [CM | INCH | UNITS] [mask] [ANGLE n]
 [format-clause] ... |

 SET ({ format-clause }, ...) |

 RESET ({ FONT | NATIONAL SET | SIZE |
 CHARACTER DENSITY | CHARACTER DISTANCE |
 EXPANSION HORIZONTAL | EXPANSION VERTICAL |
 INVERSE | ITALIC | BOLD | UNDERLINE |
 COLOUR FOREGROUND | COLOUR BACKGROUND }, ...) |

 LINE x1 y1 x2 y2 [CM | INCH | UNITS]
 [LTYPE char-literal]
 [LWIDTH x [CM | INCH | UNITS]] |

 BOX x1 y1 x2 y2 [CM | INCH | UNITS]
 [BTYPE { char-literal | EMPTY }]
 BWIDTH x
 [LINE [LTYPE char-literal]
 [LWIDTH x [CM | INCH | UNITS]]] |

 IMAGE LENGTH n [WIDTH n] [RESOLUTION n]
 { [COMPRESS char-literal] DATA hex-literal } ... }, ...

248 U5642-J-Z125-3-7600

PAGE PRINT Report statements

expression x y [CM | INCH | UNITS]
Specifies the background pattern expression with the output position
x y. The coordinates of this position are relative to the origin in the
top left-hand corner of the maximum print area (the axes run along
the top and left-hand edges of this area). The output position is
calculated in the specified unit of measurement (centimeter, inch or
1/300 inch (UNITS)). If you do not specify a unit of measurement the
calculation is performed in UNITS.
x and y can be specified with decimal places. They must be positive
and may not be greater than 32767.
If expression designates variables, then the specified variables may
be simple variables only.

mask Designates a display option (mask control character) for the output
of expression (see metavariable mask). The restrictions described
elsewhere apply to the mask specification (see section “Restrictions
applicable to report parameters” on page 214).

ANGLE n Specifies an angle through which expression is to be rotated. The
angle is entered as a positive whole number. You may enter values
between 0° and 360°.
HP LaserJet printers respect the values 0, 90, 180 and 270. All
other values are ignored.

format-clause Specifies display attributes for the current expression.The following
display attributes are permitted:

FONT, NATIONAL SET, SIZE, CHARACTER DENSITY,
CHARACTER DISTANCE, EXPANSION HORIZONTAL,
EXPANSION VERTICAL, BOLD, INVERSE, ITALIC, UNDERLINE,
COLOUR FOREGROUND, COLOUR BACKGROUND.

For a description of the individual display attributes, refer to
format-clause in the PRINT statement.

U5642-J-Z125-3-7600 249

Report statements PAGE PRINT

SET ({ format-clause }, ...)
Sets or modifies default display attributes which have been
specified in the GLOBAL LAYOUT statement.

You can specify the following display attributes in SET:

FONT, NATIONAL SET, SIZE, CHARACTER DENSITY,
CHARACTER DISTANCE, EXPANSION HORIZONTAL,
EXPANSION VERTICAL, BOLD, INVERSE, ITALIC, UNDERLINE,
COLOUR FOREGROUND, COLOUR BACKGROUND.

Refer to format-clause for a description of the individual display
attributes. The display attributes described in format-clause are valid
from the current position as far as the position at which they are
reset.

RESET (...) Resets the display attributes which are specified in SET to the
default values assigned to them in the GLOBAL LAYOUT
statement. If no global defaults have been specified, RESET uses
the device-specific defaults.

Refer to format-clause for an explanation of the keywords.

LINE x1 y1 x2 y2 [CM | INCH | UNITS]
Draws a line as a vectored graphic in a background pattern. The line
is defined by the start coordinates x1 y1 and the end coordinates
x2 y2. The coordinates of this position are relative to the origin in the
top left-hand corner of the maximum print area (the axes run along
the top and left-hand edges of this area).

x and y can be specified with decimal places. They must be positive
and may not be greater than 32767.

The positions are calculated in the specified unit of measurement
(centimeter, inch or 1/300 inch (UNITS)). If you do not specify a unit
of measurement the calculation is performed in UNITS.

LTYPE char-literal Specifies whether a continuous, interrupted or dotted line is drawn.
The char-literal specifications which are permitted for any given
printer can be found in the device profile PROFILE.device-table.

If you do not specify LTYPE the default from the device profile is
used.

250 U5642-J-Z125-3-7600

PAGE PRINT Report statements

LWIDTH x [CM | INCH | UNITS]
Specifies the line width.

The line width is calculated in the specified unit of measurement
(centimeter, inch or 1/300 inch (UNITS)). If you do not specify a unit
of measurement the calculation is performed in UNITS.

x can be specified with decimal places. It must be positive and may
not be greater than 32767.

If you do not specify LWIDTH the default from the device profile
PROFILE.device-table is used.

BOX x1 y1 x2 y2 [CM | INCH | UNITS]
A rectangle is drawn as the background pattern. The rectangle is
defined by a perimeter and a size (BWIDTH). You can specify a gray
value as fill pattern (BTYPE). If you want to draw the rectangle with
a border you must use LINE to assign a line width to the rectangle
(see LWIDTH).

The perimeter of the rectangle is defined by the start coordinates
x1 y1 and the end coordinates x2 y2. The coordinates are relative to
an origin in the top left-hand corner of the maximum print area (the
axes run along the top and left-hand edges of this area).
x and y can be specified with decimal places. They must be positive
and may not be greater than 32767.

The positions are calculated in the specified unit of measurement
(centimeter, inch or 1/300 inch (UNITS)). If you do not specify a unit
of measurement the calculation is performed in UNITS.

BTYPE { charliteral | EMPTY }
Specifies the gray value of the fill pattern.

The char-literal specifications which are permitted for any given
printer can be found in the device profile PROFILE.device-table.

Specify EMPTY if you do not want to assign any fill pattern to the
rectangle.

If you do not specify BTYPE the default from the device profile is
used.

BWIDTH x Specifies the size of the rectangle (in clockwise direction).
This size is calculated in the units of measurement specified in
BOX.

x can be specified with decimal places. It must be positive and may
not be greater than 32767.
No rectangle is output unless x > 0.

U5642-J-Z125-3-7600 251

Report statements PAGE PRINT

BOX ... LINE You use the LINE specification to assign a border to a rectangle
which is drawn parallel to the edge of the sheet. You can specify the
line type (see LTYPE) and the line width (see LWIDTH).

No border line is drawn unless you also specify a line width.

If the rectangle is not drawn parallel to the edge of the sheet, the
LINE specification is ignored.

IMAGE Imports raster graphics into a background patter.

LENGTH n Specifies the number of lines occupied by the raster image.

n must be an unsigned integer and may not be greater than 32767.

WIDTH n Specifies the width of the raster image in pixels.

n must be an unsigned integer and may not be greater than 32767.

If you do not specify WIDTH then the width of the printed page is
used for this value.

RESOLUTION n Specifies the resolution of the raster image in dots-per-inch.

n must be an unsigned integer and may not be greater than 32767.
You may only enter the values 75, 100, 150 and 300 for HP LaserJet
printers.

If you do not specify RESOLUTION the default from the device
profile PROFILE.device-table is used.

COMPRESS char-literal
If the raster image is present in compressed form, this specification
defines the mode of compression. Possible values for char-literal
are:
UNENCODED: not compressed (default)
RLE: Run Length Encoding
TIFF: Tagged Imaged File Format rev. 4.0
DELTA ROW: Delta Row Compression

The individual lines of the raster image may be encoded in different
ways.

DATA hex-literal Specifies the data which describe the raster image as a
hexadecimal string (for hex-literal see metavariable literal).

If you do not specify the compression mode of a raster image, the
last value specified in COMPRESS is used for the current line.

252 U5642-J-Z125-3-7600

PRINT Report statements

PRINT
Define report output

PRINT specifies the following in all control blocks,

– which fields are to be output at which position
– how many lines must exist in order to continue the output on the current page
– how many empty lines are to be inserted as of the current line
– whether output is to be continued on a new page.

You can use the PRINT statement to modify the display attibutes which are preset in the
GLOBAL LAYOUT statement or to reset specifications to these preset values.

If the position is not specified in a PRINT statement, output is continued from the current
position. If an output position is specified by the number of columns, the defaults defined in
the profile of the selected output device are assumed (see the section on "The report
generator" in the "DRIVE Programming Language" [2] manual).

PRINT statements are only allowed within a report definition.

U5642-J-Z125-3-7600 253

Report statements PRINT

PRINT { NEED LINES n |
 NEED SPACE n { CM | INCH | UNITS } |
 NEWLINE n |
 NEWPAGE |
 TABULATOR [[+] n] |
 POSITION x { CM | INCH | UNITS } |
 expression [mask | CLIPPED] [ATTRIBUT ({ format-clause }, ...)]
 [MANDATORY | DISTINCT]
 [CENTER [x y [CM | INCH | UNITS]] |
 RIGHT x [CM | INCH | UNITS]] |

 SET ({ format-clause }, ...) |

 RESET ({ FONT | NATIONAL SET | SIZE |
 CHARACTER DENSITY | CHARACTER DISTANCE |
 LINE DISTANCE | EXPANSION HORIZONTAL |
 EXPANSION VERTICAL | SIGN | BOLD |
 NORMALINTENSITY | INVERSE | ITALIC |
 PROPORTIONAL | SUBSCRIPT | SUPERSCRIPT |
 UNDERLINE | COLOUR FOREGROUND | COLOUR BACKGROUND |
 PAPER SOURCE }, ...)

 PAGE POSITION x y [CM | INCH | UNITS] }, ...

NEED LINES n Number of lines n which must still be available for a detail area in
order to continue output. If n lines are available then output
continues on the current page. If fewer than n lines are available
then a new page is created. n may not be greater than 32767.

This entry prevents, for example, a title from being output on the last
line of a page and the associated list elements on a new page.

No page break may occur within the page header or page trailer.

NEED SPACE n { CM | INCH | UNITS }
NEED SPACE acts in the same way as NEED LINES except that
the size of the required area is not specified in lines but in CM, INCH
or 1/300 inch (UNITS) (this specification can therefore lead to
different results on different printers).

NEWLINE n Causes a line feed of n lines. If n has the value 0 then a carriage
return (CR) is performed. n may not be greater than 32767.

254 U5642-J-Z125-3-7600

PRINT Report statements

NEWPAGE Causes a page feed and is not permitted in the definition of page
headers or trailers.

TABULATOR Uses tabs which have been defined as a line background pattern in
GLOBAL LINE BASE.
Output is continued at the next tab position defined in the line
background pattern, working from left to right.

TABULATOR [+] n Specifies the character-dependent position at which output is to be
continued. You can specify this position in two ways:

– absolute: TABULATOR n
– relative: TABULATOR + n

For absolute positioning, the current line from column n onward is
output.

For relative positioning, the number n of columns counted from the
end of the previously output field (reference field) is specified so as
to determine the output position. n must not be greater than 32767.

If the reference field for the relative positioning is a character-string
field, two separate cases are distinguished:

– The output length of the reference field is independent of the
final blank. In this case the position of the current output is
calculated relative to the final position of the reference field,
even if this contains a blank.

– The output length of the reference field is dependent on the final
blank and extends only as far as the final character which is not
a blank. In this case the position of the current output is calcu-
lated relative to the last output position of the reference field
(see CLIPPED).

If you specify the output position using TABULATOR, then the
column widths are dependent on the units used for the character set
as specified in the GLOBAL LAYOUT statement (see GLOBAL
LAYOUT statement).

POSITION x { CM | INCH | UNITS }
Specifies the output position x in the selected unit of measurement
(centimeter, inch or 1/300 inch (UNITS)) measured from the left-
hand edge of the page. x can be specified with decimal places and
may not be greater than 32767.

It is a good idea to use POSITION to specify the output position if
different character sizes and character weights are used within an
output line.

U5642-J-Z125-3-7600 255

Report statements PRINT

expression Specifies the parameter to be output. A representation option, an
output position, certain attributes and the output type for control
break fields can be selected for this parameter.

If expression represents a variable, the variable must be a simple
variable.

mask Designates a display option (mask control character) for the output
of expression (see metavariable mask). The restrictions described
elsewhere apply to the mask specification.

CLIPPED Suppresses the output of terminating blanks for fields of type
CHARACTER and VARCHAR.

This specification is only valid if the next PRINT statement does not
specify POSITION but relative positioning (see TABULATOR).

ATTRIBUTE format-clause
Specifies the layout attributes for expression according to format-
clause (see the section on "format-clause" below). Since the
specified attributes only apply to expression, the entries LINE
DISTANCE and PROPORTIONAL are not permitted here.

MANDATORY If expression designates a group change field, then specifying
MANDATORY forces the contents of this field to be output each
time. The default is for the contents of a group break field to be
output only after the first group break and whenever a new page is
started.

DISTINCT For output, only the fields of expression which differ from the contents
of the field in the previous record are used.

CENTER [x y [CM | INCH | UNITS]]
Causes the field to be centered relative to the left-hand and right-
hand margins. You specify the margins in the values x (left-hand
margin) and y (right-hand margin). The position is calculated in the
specified unit of measurement (centimeter, inch or 1/300 inch
(UNITS)) and represents the distance from the left-hand and right-
hand page edges. x can be specified with decimal places and may
not be greater than 32767.
If you do not specify a unit of measurement, the position is calcu-
lated in columns.
The exact position is calculated for non-proportional fonts.

If you do not specify the margins, the field is centered relative to the
left-hand and right-hand page edges.

If you specify CENTER, the PRINT command may not contain any
other positioning specifications.

256 U5642-J-Z125-3-7600

PRINT Report statements

RIGHT [x [CM | INCH | UNITS]]
Causes the field to be output right-aligned at the right-hand margin.
You specify the margin in the value x.The position is calculated in
the specified unit of measurement (centimeter, inch or 1/300 inch
(UNITS)) and represents the distance from the right-hand page
edge. x can be specified with decimal places and may not be greater
than 32767.
If you do not specify a unit of measurement, the position is calcu-
lated in columns.
The exact position is calculated for non-proportional fonts.

If you do not specify the margin, the field is aligned with the right-
hand page edge.

If you specify RIGHT, the PRINT command may not contain any
other positioning specifications.

SET format-clause Sets or modifies default display attributes which have been
specified in the GLOBAL LAYOUT statement. Refer to
format-clause for a description of the individual display attributes.
You may not specify ROTATION. The display attributes specified in
format-clause are valid from the current output position

– to the end of the control block in which they are set or
– to the position at which they are reset.

RESET Resets the display attributes which are specified in SET to the
default values assigned to them in the GLOBAL LAYOUT
statement. If no global defaults have been specified, RESET uses
the device-specific defaults.

Refer to format-clause for an explanation of the keywords.

PAGE POSITION x y { CM | INCH | UNITS]
Causes absolute positioning at the coordinates x y. The coordinates
are relative to an origin in the top left-hand corner of the maximum
print area (the axes run along the top and left-hand edges of this
area). The position is calculated in the specified unit of
measurement (centimeter, inch or 1/300 inch (UNITS)). If you do not
specify a unit of measurement, the position is calculated in UNITS.
x and y can be specified with decimal places and may not be greater
than 32767.
y must be a positive value. If x is signed, the coordinates are calcu-
lated with reference to the relative output position rather than
relative to the origin.

U5642-J-Z125-3-7600 257

Report statements PRINT

You may only specify PAGE POSITION in a DETAIL control block.
In addition, if you specify PAGE POSITION then the report definition
may not contain any PAGE DIRECTIVEs or GROUP DIRECTIVEs.

PAGE POSITION is intended for use in conjunction with a page
background pattern (see the GLOBAL PAGE BASE statement) for
form printing.

format-clause

You can use the specifications in format-clause to set display attributes for the entire report
in the GLOBAL LAYOUT statement. If no global defaults are defined, the report generator
uses the device-specific defaults. The following presettings are specified in the PRINT
statement

expression ATTRIBUTE
Only expression is changed.

SET Defaults are changed from the current position up to the end of the
control block or up to the corresponding RESET.

RESET All the defaults or any default individually are/is reset to their/its
initial value(s).

When specifying display attributes, you should note that display attributes are not imple-
mented unless they are supported by the device selected with OPEN REPORT. You should
also bear in mind that certain attributes are interdependent (see FONT). Such attributes can
only be implented if the dependent attributes are also correspondingly modified. Display
attributes which are not supported are ignored.

258 U5642-J-Z125-3-7600

PRINT Report statements

{ ROTATION { PORTRAIT | LANDSCAPE } |
 FONT char-literal |
 NATIONAL SET char-literal |
 SIZE x |
 CHARACTER { DENSITY | DISTANCE } x |
 LINE DISTANCE x |
 EXPANSION { HORIZONTAL | VERTICAL } n |
 SIGN |
 BOLD n |
 NORMALINTENSITY n |
 INVERSE n |
 ITALIC n |
 PROPORTIONAL |
 SUBSCRIPT |
 SUPERSCRIPT |
 UNDERLINE n |
 COLOUR { FOREGROUND | BACKGROUND } char-literal
 PAPER SOURCE char-literal } ...

ROTATION Specifies the direction of output (portrait or landscape).

PORTRAIT Output is performed in portrait format.

LANDSCAPE Output is performed in landscape format.

FONT char-literal Specifies the font char-literal to be used for the printed output of the
report. Depending on the printer, possible entries for char-literal
could be COURIER, ROMAN and HELVETICA. The available fonts
are listed in the relevant printer manuals.

The character sets available in ND laser printers are named
SECTION1 to SECTION4 and in HP laser printers SECTION1 to SECTION64
(= default). (See OPEN REPORT statement, spoolparameter
operand).

If a new font is selected, the following entries must also be changed:

– CHARACTER DENSITY n
– PROPORTIONAL spacing (on/off).

For some printers, the type size SIZE n must also be newly
specified. The appropriate entries can likewise be obtained from the
printer manuals.

U5642-J-Z125-3-7600 259

Report statements PRINT

If you do not specify FONT char-literal or if the printer does not
support the specified font, the report is output in the printer’s default
font.

NATIONAL SET char-literal
Specifies the font to be used for output. The font has the name
char-literal. This entry is used to "correctly" output special national
characters, for example, the German umlauts:

If the specified character set is not available or if you do not specify
NATIONAL SET char-literal, the report generator uses either the
printer’s default font or the last character set used when performing
output.

SIZE x Specifies the character size n of the font selected with FONT
char-literal. n is specified in units of 1/300 inches (0.0085 cm) and
may not be greater than 32767.

If you specify an illegal size x then output is performed in the default
size for the printer. If you omit SIZE x the printer again switches to
its default size.

char-literal hexadecimal

23 24 40 5B 5C 5D 5E 5F 60 7B 7C 7D 7E

INT003 # ¤ @ [\] ^ _ ` { | } ¯

INT303 # $ @ [\] ^ _ ` { | } ˜

BELGIAN # $ à ¨ ç ° ^ _ ` é ù è ˜

DANISH # $ @ Æ Ø Å Ü _ ` æ ø å ü

DUTCH # $ @ [\] ^ _ ` { | } ˜

FRENCH # $ à ° ç § ^ _ ` é ù è ¨

GERMAN # $ § Ä Ö Ü ^ _ ` ä ö ü ß

ITALIAN £ $ § ° ç é ^ _ ù à ò è ì

NORWEGIAN # $ @ Æ Ø Å ^ _ ` æ ø å ¨

SPANISH # $ @ ¡ Ñ ¿ ^ _ ` ´ ñ ç ¨

SWEDISH # ¤ É Ä Ö Å Ü _ é ä ö å ü

SWISS ç $ § à é è ^ ¨ ` ä ö ü _

UK-ENGLISH £ $ @ [\] ^ _ ` { | } ¯

260 U5642-J-Z125-3-7600

PRINT Report statements

CHARACTER Specifies the character density or the spacing between the
characters to be output for the font selected with FONT char-literal.

If you do not specify the character density or the spacing between
characters or if the specified values are illegal, the default values for
the printer are used for output.

DENSITY x The print density is specified as x characters per inch (CPI). x may
not be greater than 32767.

In a non-proportional font, the character density for each size is the
same for all characters. If the selected font char-literal has propor-
tional spacing, this specification has no effect.

DISTANCE x The intercharacter spacing x is specified in units of 1/300 inch
(0.0085 cm). x may not be greater than 32767. You can, for
example, specify a large intercharacter spacing in order to create
letterspaced type.

LINE DISTANCE x Specifies the distance between two lines to be output which are
separated from each other by a line feed (LF). The distance x is
specified in units of 1/300 inches (0.0085 cm). x must not be greater
than 32767.

If the line distance is not specified or if it is illegal, the printer retains
its previous setting.

EXPANSION Specifies the factor n by which all characters are expanded in the
horizontal or vertical direction. The factor n can have a value from 0
up to and including 6, where the values have the following
meanings:

0: no expansion
6: expansion to doubled width or height.

The baseline remains in its original position, regardless of the type
and direction of expansion.

If the specification is omitted, or if the factor n is illegal, the printer
retains its previous setting.

HORIZONTAL n The characters are expanded in width by the factor n.

VERTICAL n The characters are expanded in height by the factor n.

SIGN Activates or deactivates "flashing" output on a terminal (SIGN has
no effect because screen outputs are not yet possible).

U5642-J-Z125-3-7600 261

Report statements PRINT

BOLD n Activates and deactivates bold type during printing.

n = 0: deactivates bold type
n = 1: activates normal bold type
n = 2: activates extra-bold type

If the printer does not support extra-bold type, ordinary bold is used
in its place.

If the printer does not support bold type, ordinary type is used.

NORMALINTENSITY n
Switches between normal and half intensity video when output is
sent to the screen.

n = 0: activates normal intensity video
n = 1: activates half intensity video

(Has currently no effect as screen output is not yet possible.)

INVERSE n Activates inverse mode for output.

n = 0: deactivates inverse mode
n = 1: activates inverse mode

If the printer does not support inverse mode, ordinary type is used.

ITALIC n Activates and deactivates italic type during printing.

n = 0: deactivates italic type
n = 1: activates normal italic type
n = 2: activates sharply inclined italic type

If a printer cannot print italics with strong inclination, the output is
made with normal italics. If the printer does not support italics, the
entry is ignored.

PROPORTIONAL Activates or deactivates proportional spacing.

If proportional spacing is activated, a character spacing specified
with CHARACTER DISTANCE n is ignored.

SUBSCRIPT Subscripts type by half a line or resets to normal type. This entry is
not supported in the GLOBAL LAYOUT statement.

If the printer does not support subscript, the entry is ignored.

SUPERSCRIPT Superscripts type by half a line or resets to normal type. This entry
is not supported in the GLOBAL LAYOUT statement.

If the printer does not support superscript, the entry is ignored.

262 U5642-J-Z125-3-7600

PRINT Report statements

UNDERLINE n Activates or deactivates underlined type during printing.

n = 0: deactivates underlined type
n = 1: activates underlined type.

If the underlining function is activated, all characters, including
blanks, are underlined. The position and thickness of the underline
depend on the font char-literal selected and cannot be changed.

If the printer does not support the underline function, the entry is
ignored.

COLOUR Switches to a foreground or background color. Foreground color is
taken to mean the color with which, for example, texts and lines are
output. Areas containing neither text nor lines can be filled in with a
background color.

FOREGROUND char-literal
Specifies the color with the name char-literal to be the foreground
color.

BACKGROUND char-literal
Specifies the color with the name char-literal to be the background
color.

If the printer supports a grid generator, a name for a grey shade or
a shading pattern can be specified with char-literal.

PAPER SOURCE char-literal
Specifies the printer’s paper tray.
During printing, paper is fed from the paper tray specified in
char-literal.
Refer to the corresponding device profile for the specifications
permitted for individual printers.

U5642-J-Z125-3-7600 263

Report statements REPORT

REPORT
Define list control block

REPORT is used to describe the list header and list trailer of a report. A list header appears
just once at the beginning of a report; it can, for example, contain a title for the whole report.
A list trailer is likewise output once only at the end of a report; report results, for example,
can be included in the trailer.

The REPORT statement is only allowed once within a report definition and may only be
specified once for each list header and list trailer.

A list header or trailer can include the following output:

– literals and texts inserted with SOURCE
– the system variables &PAGES and &LINES
– start parameters
– arithmetic expressions
– local variables.

Moreover, the data in the first data record can be contained in the list header, and the values
derived from report set functions as well as the data in the last data record can be contained
in the list trailer.

REPORT { HEADER | TRAILER } [line-pattern] { statement; } ...

HEADER Defines the list header which is described by the following state-
ments.

TRAILER Defines the list trailer which is described by the following state-
ments.

line-pattern Name of a line background pattern which must have been defined
using GLOBAL LINE BASE.
The corresponding line pattern is assigned to the list header or
trailer as a background pattern.

statement Designates one of the DRIVE statements BREAK, CALL, CYCLE,
IF, SET or one of the report statements PRINT or SOURCE. You
use these statements to describe the page trailer or header. The
statements are subject to the restrictions described elsewhere (see
section “Permitted DRIVE statements” on page 213 and
section “Restrictions applicable to report parameters” on page 214).

264 U5642-J-Z125-3-7600

REPORT Report statements

Example

A list header is to contain the name of a "Market Research PLC" at the top-left margin
and the current date at the top-right margin. The title of the report is to be output below
these and is to be centered on the page:

...
REPORT HEADER
 PRINT NEWLINE 1,
 SET (ITALIC 1, FONT 'CENTURY CONDENSED', CHAR DENSITY 10),

 TAB 5, 'Market Research PLC',
 TAB 55, 'Date: ', CURRENT DATE MASK 'DD''.''MO''.''YYYY',
 NEWLINE 1,
 TAB 5, 'Beaver Estate Unit 4',
 NEWLINE 1,
 TAB 5, 'Baltimore',
 NEWLINE 4,

 SET (ITALIC 1, FONT 'COURIER', NATIONAL SET 'GERMAN',
 EXPANSION HORIZONTAL 1, EXPANSION VERTICAL 1, BOLD 1),

 TAB 8, '*** ',
 'CONSUMER BEHAVIOUR' ATTRIBUTE (UNDERLINE 1),
 ' ***',
 NEWLINE 3;
...

OUTPUT:

Market Research PLC Date: 13.03.1992
Beaver Estate Unit 4
Baltimore

 *** CONSUMER BEHAVIOUR ***

U5642-J-Z125-3-7600 265

Report statements SOURCE

SOURCE
Insert text file

SOURCE is used to insert text files within a report. The report generator outputs the
contents of the specified file at the current output position without changing them. If the text
covers more than one page, no page headers or trailers are output.

SOURCE file [n [n]]

file Designates the file which contains the text for insertion.

PostScript files must be present in Encapsulated PostScript format
(EPS format). The file is inserted in such a way that the top left-hand
corner of the bounding box which is specified in the file is located at
the current output position.

n The first n gives the number of lines on the last page of the text in
file-name. The second n indicates the number of pages. If the
number of pages is not specified, the report generator interprets the
first n as the number of lines in the whole file.

Using n, the report generator can adapt internal page and line
counters to take into account the inserted source. As a result,
correct page breaks and page numbers can be generated after
output of the text.

Example

The data in the variables &key, &artname and &price are to be output in a row in a list.
The contents of the file "d.report.source" are to follow each of these output lines.

...
DETAIL
 PRINT NEWLINE 1,
 TAB 2, &key,
 TAB 10, &artname,
 TAB 40, &price;

 SOURCE "d.report.source";
...

The filename has to be enclosed in quotes because it contains special characters.

266 U5642-J-Z125-3-7600

STANDARD LAYOUT Report statements

STANDARD LAYOUT
Describe layout of standard report

STANDARD LAYOUT is used to generate a standard report. The statement must be
entered between the statements DECLARE REPORT and END REPORT. In the case of a
standard report, the report definition is derived from the record description of the param-
eters which are adopted by the report generator from the DRIVE program.

Three predefined formats are provided for the layout of a standard report:

TABLE output in tabular format

LINE output in line (vertical) format

SEQUENCE output in sequential (horizontal) format.

STANDARD LAYOUT { TABLE [FILL char-literal] |
 LINE |
 SEQUENCE }

TABLE Requests tabular format.
In tabular format, a title line is generated with the names of the
components of the lowest level. The field contents are listed under
each corresponding name.

The amount of space available in a line for the field contents of a
component depends either on the length of the name or on the
longest field contents. The column width is calculated according to
the longer of the two.

If the sum of all the column widths in a table line exceeds the width
that can be output at the selected device, the output line is cut off at
the right-hand edge and the DRIVE program is aborted with an error
following the CLOSE REPORT statement.

Matrices and repeating groups cannot be output in TABLE format.

FILL char-literal Defines the characters char-literal, which are used for separating
output fields adjacent to each other.

Default: a blank.

U5642-J-Z125-3-7600 267

Report statements STANDARD LAYOUT

LINE Requests vertical format. In this format, components of data groups
(see metavariable data-group) and repeating groups (see metavar-
iable repeating-group) are output underneath one another. Compo-
nents of basic data type with a repetition factor are output in the
form element-name: value1 value2 The components of repeating
groups may not contain any repetition factor, that is to say they must
be one-dimensional. Matrices are output in matrix form. The matrix
name appears at the start of every matrix line.

Adjacent output fields are separated by a blank (default).

In the case of a line overflow the output line is cut off at the right-
hand edge and the DRIVE program is aborted with an error
following the CLOSE REPORT statement.

SEQUENCE Requests horizontal format. The output data is written sequentially
in the form name: value or component-name[(n)]: value in a single line.

The output of matrices and repeating groups is not supported.

Adjacent output fields are separated by a blank (default).

In the case of a line overflow, the output line is cut off at the right-
hand edge and the DRIVE program is aborted with an error
following the CLOSE REPORT statement.

268 U5642-J-Z125-3-7600

STANDARD LAYOUT Report statements

Example

The following variable definition demonstrates the three formats which you can request
in the STANDARD LAYOUT statement:

/* The variables which are to be processed are declared in the DRIVE program */

DECLARE VARIABLE
 1 &address(2),
 2 town(2) CHAR(8),
 2 tel CHAR(7);
.
.
/* The description of the DRIVE data is */
/* passed to the report definition. The repetition factor is not passed */

DECLARE REPORT location USING &data LIKE &address;

STANDARD LAYOUT TABLE FILL '|'; /* for output in tabular format */

or

STANDARD LAYOUT LINE; /* for output in vertical format */

or

STANDARD LAYOUT SEQUENCE; /* for output in horizontal format */

END REPORT;

/* The report is opened in the DRIVE program, filled with data */
/* and closed. */

OPEN REPORT location RESULT LIST 'print' DEVICETABLE '9002';
 FILL REPORT location USING &address(1);
 FILL REPORT location USING &address(2);
CLOSE REPORT location;

Output with STANDARD LAYOUT TABLE

1994 Sep 12 16 : 08 - Standard Report TABLE - Page: 1

TOWN(1) TOWN(2) TEL

BOSTON | NEWARK | 1234567
NEWARK | SEATTLE | 1234567

U5642-J-Z125-3-7600 269

Report statements STANDARD LAYOUT

Output with STANDARD LAYOUT LINE

1994 Sep 12 16 : 15 - Standard Report LINE - Page: 1

1 DATA
2 TOWN: BOSTON NEWARK
2 TEL: 1234567
1 DATA
2 TOWN: NEWARK SEATTLE
2 TEL: 1234567

Output with STANDARD LAYOUT SEQUENCE

1994 Sep 12 16 : 23 - Standard Report SEQUENCE - Page: 1

TOWN(1): BOSTON TOWN(2): NEWARK TEL: 1234567
TOWN(1): NEWARK TOWN(2): SEATTLE TEL: 1234567

If you choose the format STANDARD LAYOUT LINE you can also output repeating
groups. However, the components of these repeating groups may not contain any
repetition factors (i.e. the components must be one-dimensional).

DECLARE VARIABLE
 1 &address(2),
 2 town CHAR(20),
 2 tel CHAR(7);
.
.

DECLARE REPORT location USING 1 &data(2),
 2 town CHAR(20),
 2 tel CHAR(7);
 STANDARD LAYOUT LINE;
END REPORT;

OPEN REPORT location RESULT LIST 'print' DEVICETABLE '9002';
 FILL REPORT location USING &address;
CLOSE REPORT location;

270 U5642-J-Z125-3-7600

STANDARD LAYOUT Report statements

Output

1994 Sep 12 17 : 19 - Standard Report LINE - Page: 1

1 DATA (1)
2 TOWN: BOSTON NEWARK
2 TEL: 1234567
1 DATA (2)
2 TOWN: NEWARK SEATTLE
2 TEL: 1234567

U5642-J-Z125-3-7600 271

5 DRIVE metavariables
This chapter describes complex parts of DRIVE statements in alphabetical order. These
parts possess the following hierarchical relationship:

attribute

expression
char-expression

char-prim
date-time-expression

date-time-term
interval-expression

interval-term
value-expression

num-term
set-function
value-function

base-type
INIT clause*
REDEFINES clause *
check
mask

condition

data-type
basic-data-type
structure-type

vector
data-group
repeating-group
user-type *
LIKE clause *

matrix *

date-time-unit
date-time-field

format

272 U5642-J-Z125-3-7600

STANDARD LAYOUT Metavariables

null-value

programming

value
char-prim
variable
literal
aggregate *

The statement parts which are marked with a * are not described as independent metavar-
iables but can be found in the description of the next higher ranking metavariable.

U5642-J-Z125-3-7600 273

Metavariables attribute

attribute
Describe field attribute

attribute describes the field properties of forms. (For detailed information see IFG for FHS
[28], FHS [29] as well as FORMANT [39] and UTM Formatting System [32].)

attribute::=[UNPROTECTED | PROTECTED] |
 [HIGHINTENSITY | NORMALINTENSITY] |
 [VISIBLE | SIGN | INVISIBLE] |
 [INIT | NOINIT] |
 [VALID | INVALID] |
 [HARDCOPY | ALARM | DEFAULT] |
 [MUST | POTMUST | NORMALINPUT] |
 [INVERSE | NOINVERSE] |
 [UNDERLINE | NOUNDERLINE] |
 [CURSOR | NOCURSOR] |
 [BLUE | CYAN | GREEN | MAGENTA | RED | WHITE | YELLOW | NOCOLOUR]

Field properties can be subdivided into two groups, namely field attributes which relate to
a particular screen field and global attributes which relate to the entire screen. Field
attributes are combined to form field attribute groups.

Field attributes

A field attribute may relate to one screen field or one variable since screen fields can only
be addressed via variables.

Field attribute group affecting input

MUST Mandatory input: An entry must be made in the field.

POTMUST One-time mandatory input, i.e. in the case of repeated input the
entry need not be made once again.

NORMALINPUT Input not mandatory.

UNPROTECTED Unprotected field: The field contents can be changed via the
keyboard. Any character can be entered.

PROTECTED Protected field: The field contents must not be changed via the key.

274 U5642-J-Z125-3-7600

attribute Metavariables

Field attribute group affecting display

HIGHINTENSITY High intensity: This value results in high intensity display on the
screen, or bold type in the case of printer terminals (provided the
device supports this function).
Default value for identifying errors in screen fields.

NORMALINTENSITY Normal intensity.

VISIBLE The field contents are completely visible.

SIGN The field contents are displayed flashing; in the case of output to
printers this value causes shadow printing (provided the device
supports this function).

INVISIBLE The field contents are not visible and not printable on hardcopy.

UNDERLINE The field contents are displayed underlined.

Default value for identifying screen fields containing errors.

NOUNDERLINE The field contents are not displayed underlined.

INVERSE The field contents are displayed in inverse video.

NOINVERSE The field contents are not displayed in inverse video.

Field attribute group affecting cursor

CURSOR The cursor is positioned to the first input position in the field.
CURSOR may also be specified as a global attribute.

FHS only evaluates the CURSOR field attribute if the CURSOR
global attribute is specified at the same time.

NOCURSOR The cursor is not positioned to the field. NOCURSOR can also be
specified as a global attribute.

U5642-J-Z125-3-7600 275

Metavariables attribute

Field attribute group affecting color

BLUE through NOCOLOUR

A color may be specified for data output on multicolor terminals:

BLUE - blue
CYAN - cyan (blue-green)
GREEN - green
MAGENTA - magenta (violet)
RED - red
WHITE - white
YELLOW - yellow
NOCOLOUR - no color, i.e. normal screen display

Further field attributes

VALID The field contents are checked and without error, i.e. no edit routine
is required.

INVALID The field contents are checked and contain errors.

Global attributes

Global attributes each refer to a screen form, i.e. they affect the complete screen.

INIT Data transfer areas that already contain data are reset to their initial
states; thus, all field attributes in the form are set to their default
values.

NOINIT Output without initialization.

HARDCOPY Automatic hardcopy: Following output of the message, the contents
of the entire screen are output automatically on the hardcopy device
(provided the terminal has been generated with hardcopy).

ALARM Output with alarm. This global attribute functions only on devices
that support an alarm function (optical and/or acoustical).

DEFAULT Reset all attributes to their default values.

DEFAULT affects all addressing aid field attributes. All field attribute
groups (with the exception of the field attributes VALID and
INVALID) are reset to their default values (for information on the
default values of the individual field attributes, refer to the manual
"XXX UTM (SINIX): Formatting System" [XXX]).
Global attributes are not reset to their default values.

276 U5642-J-Z125-3-7600

attribute Metavariables

CURSOR The field attribute CURSOR is evaluated.

NOCURSOR The field attribute CURSOR is not evaluated.

Possible combinations of field attributes (for dynamic attributes)

UNPROTECTED may be combined with all other field attributes in any way desired. For the
other field attributes, the following combinations are possible:

On a color screen, the specifications for intensity, visibility and underlining (group 1) are
represented in the colors from the table (group 2). Specifying HIGHINTENSITY, VISIBLE,
UNDERLINE therefore has the same effect as specifying RED.
Likewise, if RED is specified on a monochrome screen, this is converted to the combination
HIGHINTENSITY, VISIBLE, UNDERLINE.

Only field attributes from group 1 or group 2 may be specified. In cases of duplicate speci-
fication, field attributes from group 1 take precedence over field attributes from group 2.

Field attribute Permitted combinations Group

HIGHINTENSITY * * * 1

NORMALINTENSITY * * *

VISIBLE * * * *

SIGN * *

INVISIBLE *

UNDERLINE * *

NOUNDERLINE * *

GREEN * 2

RED *

WHITE *

YELLOW *

U5642-J-Z125-3-7600 277

Metavariables base-type

base-type
Define clause

base-type defines the following clauses:

INIT clause Assigns an initial value to a variable.

REDEFINES clause A number of different descriptions are specified for the memory area
of a variable.

CHECK clause A condition is declared for a variable and checked during execution
of the program (see metavariable check).

MASK clause The way in which data values are represented is defined for input
and output fields (see metavariable mask).

For additional data definitions, see the metavariable data-type.

base-type::={ INIT expression [NOCHECK] |
 REDEFINES { variable | character [suffix] } }
 [check] [mask]

INIT INIT assigns an initial value to a variable.

expression expression can only contain literals, NULL or functions whose
arguments are literals.

expression must not contain CURRENT DATE / TIME / TIMESTAMP.

expression must be able to be calculated at compilation time.

NOCHECK NOCHECK causes the CHECK clause to be ignored for the initial
value assigned with INIT expression (see metavariable check).

NOCHECK is not permitted for redefined variables or variables
which define another variable.

REDEFINES Identifies the variable being redefined (base variable).

The variable being redefined must not be longer than the base
variable. If the variable being redefined is a component of a
structure, the base variable must be a component of the same base
structure (structure with the level number 1).

The redefined variable may not have the data type VARCHAR.

278 U5642-J-Z125-3-7600

base-type Metavariables

variable Name of the base variable being redefined. It must already have
been defined and must not itself be a redefining variable. If the base
variable is a structure, the redefining variable must not be a
component of that structure.

There must be no repeating groups between the beginning of the
smallest substructure containing both the base variable and the
redefining variable and the base variable or redefining variable
itself.

character Character string for the name of a component.

0 < number(character) < 32;

suffix See the metavariable variable.

check See the metavariable check.

mask See the metavariable mask.

Examples

REDEFINES for another variable:

DECLARE VARIABLE &a CHAR (8),
 &b CHAR (2) REDEFINES &a;

&b reassigns the first 2 bytes of the area assigned to &a.

REDEFINES and INIT:

DECLARE VARIABLE &a CHAR (8),
 &b CHAR (2) INIT 'INVALID' REDEFINES &a; Æ Error:
 * not permitted with INIT

U5642-J-Z125-3-7600 279

Metavariables basic-data-type

basic-data-type
Data types

The basic data type can be subdivided into four groups:

– Character-string (CHARACTER, CHARACTER VARYING, VARCHAR)
– Numeric (DECIMAL, EXTENDED DECIMAL, XDEC, NUMERIC, INTEGER,

SMALLINT, REAL, FLOAT, DOUBLE PRECISION)
– Date-time data types (DATE, TIME, TIME(3), TIMESTAMP(3))
– Data type INTERVAL
– User-defined data type

These basic data types are also referred to as "atomic types".

For additional data definitions, see the metavariable data-type.

basic-data type::={ CHARACTER [(length)] |

 { DECIMAL | NUMERIC | EXTENDED DECIMAL | XDEC }
 [(number-of-digits [, decimal-places])] |

 INTEGER |
 SMALLINT |
 DATE |
 TIME [(3)] |
 TIMESTAMP(3) |
 INTERVAL date-time-unit |
 CHARACTER VARYING (length) |
 VARCHAR (length) |
 REAL |
 DOUBLE PRECISION |
 FLOAT |
 user type }

CHARACTER Specifies the data type character-string for a string.

length Specifies the length for the data type CHARACTER

(0 < length ≤ 32000).

Default value: 1

DECIMAL Specifies the numeric packed data type for a string.

280 U5642-J-Z125-3-7600

basic-data-type Metavariables

NUMERIC Specifies the numeric unpacked data type for a string.

EXTENDED DECIMAL, XDEC
Specifies the data type extended decimal for a string.

number-of-digits Specifies the number of digits (ï precision) for the data types
DECIMAL, NUMERIC, EXTENDED DECIMAL and XDEC.

DECIMAL and NUMERIC (0 < number-of-digits ≤ 15)
Default value for DECIMAL: 15
Default value for NUMERIC: 8

EXTENDED DECIMAL and XDEC (0 < number-of-digits ≤ 32)
Default value for EXTENDED DECIMAL and XDEC: 32

decimal-places Specifies the number of decimal places for the data types
DECIMAL, NUMERIC, EXTENDED DECIMAL and XDEC.

The following applies for DECIMAL and NUMERIC:
0 ≤ decimal-places ≤ number-of-digits.
If number-of-digits = 15, decimal-places must be less than
number-of-digits.

The following applies for EXTENDED DECIMAL and XDEC gilt:
0 ≤ decimal-places ≤ number-of-digits.
If number-of-digits = 32, decimal-places must be less than
number-of-digits.

Default: 0

INTEGER, SMALLINT Specifies the data type integer for a string.

The value range of INTEGER lies between -23 1 and 231 - 1, i.e.
between -2147483648 and 2147483647.
 The value range of SMALLINT lies between -21 5 and 215 - 1, i.e.
between -32768 and 32767.

DATE The data type "DATE" is specified for a string. The string may only
contain valid date specifications in the format
year-month-day (0001-01-01 through 9999-12-31, see
date-time-literal under the metavariable literal).

Negative year specifications are not valid.

TIME The data type "TIME" is specified for a string. The string may only
contain valid time specifications in the format hour:minute:second
(00:00:00 through 23:59:59, see date-time-literal under the metavar-
iable literal).

U5642-J-Z125-3-7600 281

Metavariables basic-data-type

TIME(3) The data type "TIME(3)" is specified for a string. The string may only
contain valid time specifications in the format
hour:minute:second.fraction (00:00:00.000 through 23:59:59.999,
see date-time-literal under the metavariable literal).

TIMESTAMP(3) The data type "TIMESTAMP(3)" is specified for a string. The string
may only contain valid timestamp specifications in the format
year-month-day hour:minute:second.fraction
(0001-01-01 00:00:00.000 through 9999-12-31 23:59:59.999, see
date-time-literal under the metavariable literal).

Negative year specifications are not valid.

INTERVAL The data type "INTERVAL" is specified for a sequence of data (up
to 32 characters).

mask cannot be used to represent the entry or output fields.

date-time-unit Specifies the unit for the interval (see the metavariable
date-time-unit).

You may only specify one component of a date or time
(date-time-field2 must be identical with date-time-field1, see metavar-
iable date-time-unit).

CHARACTER VARYING, VARCHAR
Specifies an alphanumeric data type with a variable number of
characters for a string.

length Specifies the length of a data type (0 < length ≤ 32000).

REAL Specifies the floating point numeric data type with a precision of
seven decimal places for a string.
The range of values for REAL is subject to the hardware used.

If the accuracy of an arithmetic operation is of prime importance,
you should not select the data type REAL. Inaccuracies may occur
when assigning and outputting a data value.

DOUBLE PRECISION, FLOAT
Specifies the floating point numeric data type with a precision of 15
decimal places for a string.
The range of values for DOUBLE PRECISION is subject to the
hardware used.

user-type User-defined data type which must have been declared with
DECLARE TYPE in the DRIVE program. user-type does not
automatically create a structure.

user-type is not permitted in SQL statements.

282 U5642-J-Z125-3-7600

char-expression Metavariables

char-expression
Define a character expression

char-expression defines character expressions. The data type of char-expression must be
alphanumeric.

char-expression can also be an empty string. The maximum length is 32000 characters.

See the metavariable expression for other expressions.

char-expression::={ char-prim | char-expression || char-prim }

char-prim See the metavariable char-prim.

char-expression char-expression can also be a literal or a variable.

If char-expression has the value null, char-prim also has the value
null.

|| The concatenation operator (||) is used to join character strings
together. The second string is appended to the first. The maximum
length of a concatenated string is 32000 bytes. The expressions
used must contain neither structured variables nor aggregates.

U5642-J-Z125-3-7600 283

Metavariables char-prim

char-prim
String functions

char-prim is used to perform the following functions:

– Concatenating strings
– Selecting substrings
– Replacing and modifying substrings
– Deleting substrings
– Left-justified output of substrings
– Converting characters to character strings
– Outputting messages from a message file
– Concatenating all the atomic fields of structured variables

char-prim::={ value1 |
 column |
 (char-expression) |
 CONCAT (char-expression1, char-expression2) |
 SUBSTRING (char-expression3, start-pos1 [, length1]) |
 UPDSTRING (char-expression4, char-expression5, upd-pos) |
 DELSTRING (char-expression6, start-pos2 [, length2]) |
 SHIFTLEFTSTRING (char-expression7) |
 UPPERSTRING (char-expression8) |
 LOWERSTRING (char-expression9) |
 TRSTRING (char-expression10, char-expression11, char-expression12) |
 MSGSTRING (value-expression1 [[, value-expression2], name]) |
 CHARACTER ({ date-time-expression [, char-literal1] |
 value2 |
 value-expression3 [, char-literal2] }) }

value1 The data type of value1 must be CHARACTER (see the metavar-
iable value). An aggregate must not be specified for value1.

column Name of a column of type CHARACTER or VARCHAR

char-expression If char-expression has the null value, char-prim also has value null
(see the metavariable char-expression).

284 U5642-J-Z125-3-7600

char-prim Metavariables

CONCAT Can be used to concatenate strings. The maximum length of a
concatenated string is 32000 bytes.

The expressions used must contain neither structured variables nor
aggregates.

If one of the arguments contains NULL, CONCAT returns NULL.

char-expression1, char-expression2
The string char-expression2 is appended directly to the string
char-expression1.

If one of the two expressions (char-expression1 or char-expression2)
contains NULL, the entire expression contains NULL.

SUBSTRING Can be used to select a substring from a string. The substring
begins with the character which is at the start-pos1 position and ends
at the end of the entire string or after the specified length.
(start-pos1 + length1 - 1) must not be longer than the length of the
entire string.

The expressions used must contain neither structured variables nor
aggregates.

If one of the arguments contains NULL, SUBSTRING returns NULL.

char-expression3 See the metavariable char-expression.

start-pos1 Start of the substring. start-pos1 must be a numeric expression with
no decimal places.

start-pos1 must be greater than 0.

length1 Length of the substring. If length1 is not specified, it is calculated
from (total length of string - start-pos1 + 1). length1 must be a numeric
expression with no decimal places.

length1 must be greater than 0 and the following must be true:
0 < start-pos1 ≤ length (char-expression3)

UPDSTRING A substring of a string is substituted by another string, where the
length of char-expression4 ≥ the length of
char-expression5 + upd-pos -1.

The expressions used must contain neither structured variables nor
aggregates.

If one of the arguments contains NULL, UPDSTRING returns NULL.

char-expression4, char-expression5
See the metavariable char-expression.

U5642-J-Z125-3-7600 285

Metavariables char-prim

upd-pos Update position. upd-pos must be a numeric expression without
decimal places.
(0 < upd-pos ≤ length (char-expression4) - length
 (char-expression5) + 1.

DELSTRING Can be used to delete substrings. The parameters used must
contain neither structured variables nor aggregates.
If one of the parameters has the null value, the entire expression
has the null value.

char-expression6 See the metavariable char-expression.

start-pos2 Start of the substring. start-pos2 must be a numeric expression
without decimal places. The value of start-pos2 must be greater than
zero, but may not exceed expression in length.

length2 Must be a numeric expression without decimal places.

Specification of length2 causes the characters from the start-pos2 to
the value of length2 to be deleted.
DELSTRING (char-expression6, start-pos2, length2) is equivalent to
SUBSTRING (char-expression3, 1, start-pos1 -1) || SUBSTRING
(char-expression3, start-pos1 + length1,
length of char-expression3 - length1 -start-pos1 + 1).

If length2 is not specified, the result is a character string which
extends only as far as start-pos2, i.e. all characters from start-pos2
onwards are deleted.

DELSTRING (char-expression6, start-pos2) is equivalent to
SUBSTRING (char-expression3, 1, start-pos1 - 1).

SHIFTLEFTSTRING All left-justified characters are deleted whose hexadecimal repre-
sentation is less than or equal to a blank.

If char-expression7 contains NULL, SHIFTLEFTSTRING returns
NULL.

char-expression7 If char-expression7 is of data type CHARACTER, it is padded from
the right with blanks.
If char-expression7 is of data type VARCHAR or CHARACTER
VARYING, its length is reduced to comply with the length specifi-
cation of these data types.

286 U5642-J-Z125-3-7600

char-prim Metavariables

UPPERSTRING All lowercase characters in char-expression8 are replaced by
uppercase characters. All other characters remain unchanged.
Conversion is carried out in accordance with the country-specific
settings in the current system environment.

The expressions used must not contain structured variables or
aggregates.

If char-expression8 contains NULL, UPPERSTRING returns NULL.

char-expression8 See metavariable char-expression

LOWERSTRING All uppercase characters in char-expression9 are replaced by
lowercase characters. All other characters remain unchanged.
Conversion is carried out in accordance with the country-specific
settings in the current system environment.

The expressions used must not contain structured variables or
aggregates.

If char-expression9 contains NULL, LOWERSTRING returns NULL.

char-expression9 See metavariable char-expression

TRSTRING The characters in char-expression10 are converted as follows:
a character c from char-expression10 is only converted if it also
occurs in char-expression11. The position n of the character in
char-expression11 defines the character with which it is to be
replaced. The replacement character is located at position n in
char-expression12.

A character is not converted if its position in char-expression10 is
greater than the length of char-expression11.

The expressions used must not contain structured variables or
aggregates.

If one of the arguments contains NULL, TRSTRING returns NULL.

char-expression10 Characters in char-expression10 are converted one-by-one.
Characters are converted if they occur in char-expression11 and if
they are located at a position n in char-expression11 which is less than
the number of characters in char-expression12.

Characters remain unchanged if they do not occur in
char-expression11 or if they are located at a position n in
char-expression11 which is greater than the number of characters in
char-expression12.

U5642-J-Z125-3-7600 287

Metavariables char-prim

char-expression11 char-expression11 defines the characters to be replaced in
char-expression10. The position of the character in char-expression11
defines the replacement character.

Characters in char-expression11 must not be repeated.

char-expression11 containing the characters to be replaced and
char-expression12 containing the replacement characters should be
of the same length. If char-expression11 is longer than
char-expression12, characters whose position in char-expression11 is
greater than the length of char-expression12 are not converted.

char-expression11 must not be longer than 256 characters.

char-expression12 char-expression12 defines the replacement characters. The position
of the character to be replaced in char-expression11 determines the
position of the replacement character in char-expression12.

char-expression12 containing the replacement characters and
char-expression11 containing the characters to be replaced should be
the same length. If char-expression12 is shorter than
char-expression11, characters whose position in char-expression11 is
greater than the length of char-expression12 are not converted.

char-expression12 must not be longer than 256 characters.

MSGSTRING Accesses a message in the message file (= current MIP file). The
message is determined by the parameters.

If you specify three parameters (value-expr1, value-expr2, name) then
value-expr2 is ignored.
If you specify two parameters then the second parameter must be
name (value-expr1, name).

If no unique message can be found, DRIVE/WINDOWS returns the
message: MESSAGE UNDEFINED.

The expressions used must not contain structured variables or
aggregates.

If one of the arguments contains NULL, MSGSTRING returns
NULL.

With DECLARE statements (e.g. DCL VAR, DCL CONST etc.),
messages are accessed at compile time, in executable statements
(e.g. SET) at execution time. In completely language-independent
programs, access must take place at execution time.

288 U5642-J-Z125-3-7600

char-prim Metavariables

value-expression1 Message number (= second part of message key).

You do not need to specify leading zeroes in the message number.

value-expression1 must be a numeric expression without decimal
places.

value-expression2 value-expression2 is ignored if a value is specified.

value-expression2 is supported simply to ensure DRIVE/WINDOWS
(BS2000) and DRIVE/WINDOWS (SINIX) compatibility.

name Message class (= first part of message key). name may be a
maximum of three characters in length.

If you do not specify name then DRIVE/WINDOWS uses the name
DRI.

CHARACTER The argument (date-time-expression,value2,value-expression3) is
converted to a result of the type CHARACTER. The data type of the
expression is alphanumeric, i.e. digits and separators are shown as
characters.

The length of a string for a date is ten characters
(e.g. '1911-11-11'),
for a time without fractions of a second it is eight characters
(e.g. '17:35:12'),
for a time with fractions of a second it is twelve characters
(e.g. '17:35:12.361') and
for a timestamp it is 23 characters (e.g. '1911-11-11Ë17:35:12.361').

If one of the arguments contains NULL, CHARACTER returns
NULL.

date-time-expression See metavariable date-time-expression

char-literal1, char-literal2
char-literalx must meet the mask conditions. If the first component of
the expression is a date-time-expression then mask-literal must
contain control characters for the time data types. If you do not
specify char-literalx a standard mask is used (see also metavariable
literal).

value2 value must be a data group or an aggregate. The data group must
not be part of a repeating group, nor may it contain a repeating
group. The data type of all base fields must be alphanumeric. If a
variable is specified for value, char-prim is a concatenation of all the
base fields (see CONCAT above).

value-expression3 See metavariable value-expression

U5642-J-Z125-3-7600 289

Metavariables char-prim

Example 1

DECLARE VARIABLE &a CHAR (7) INIT 'LONDONË',
 &b CHAR (11) INIT 'POLICEWOMAN';

CONCAT (&a,&b) → 'LONDONËPOLICEWOMAN'

SUBSTRING (&b,7) → 'WOMAN'

UPDSTRING (&b,'MANËË',7) → 'POLICEMANËË'

Example 2

DECLARE VARIABLE &a CHAR (250),
 &b CHAR (250);
...
SET &a = SUBSTRING(CONCAT(&a,&b), 180, 200);

Example 3

The value of "MSGSTR (17)" is assigned at compile time.

DECLARE CONSTANT &c MSGSTR (17);
SET &v = &c;

Example 4

The value of "MSGSTR (17)" is assigned at runtime.

...
SET &v = MSGSTR (17);
...

Example 5

The data type of the result of an arithmetic operation is alphanumeric.

DECLARE VARIABLE &e CHAR (8);
...
SET &e = CHARACTER (5967 / 17);

290 U5642-J-Z125-3-7600

char-prim Metavariables

Example 6

The characters from the variable &text are to be converted. The variable with the
characters to be replaced is &char-old and the variable with the replacement characters
is &char-new.

DECLARE VARIABLE &text CHAR (6) INIT 'PEKING';
DECLARE VARIABLE &char-old CHAR (5) INIT 'JKPTU',
 &char-new CHAR (5) INIT 'IJBDO';
...
SET &text = TRSTRING(&text,&zeichenalt,&zeichenneu);

The original contents of the variable &text ("PEKING") have been converted to
"BEJING".

U5642-J-Z125-3-7600 291

Metavariables check

check
Define a check clause

A CHECK clause specifies a check condition. If, at runtime, the check condition for a
variable is not assigned when a value is assigned (SET, CYCLE ... INTO, SELECT ... INTO,
FETCH ... INTO, CALL ... RETURN, FILL ... RETURN etc.), an entry is made in &ERROR
(see the WHENEVER statement).

If the check condition for the input in a DISPLAY statement is not fulfilled, the screen is
output again.

check applied to a component of a structured variable

If the component is part of a repeating group, the CHECK clause applies to all occurrences
of the component.
Individual vector or matrix components must not be specified in the CHECK clause.

check::=CHECK [(] condition [)] [MESSAGE char-expression]

CHECK The CHECK clause must be compatible with the INIT clause or the
standard initialization, or NOCHECK must be specified for base-type.

() The parentheses must be specified in SQL statements for
SESAM V2.x

condition Check condition.

 condition must contain only the variable to which the CHECK clause
belongs. The variable must not contain any index specifications.
The variable need not be qualified, even if ambiguous. No struc-
tured comparison is possible for this variable.

The condition may contain the keyword VALUE instead of the
variable.

For use in a DECLARE TYPE statement, refer to the description of
the DECLARE TYPE statement.

292 U5642-J-Z125-3-7600

check Metavariables

MESSAGE The MESSAGE clause is used in form input to specify a message
that is output in place of the standard message when condition is not
satisfied during dynamic form generation or in the MOVE DATA
statement.

With SET statements and parameter passing, a standard message
is output. Any MESSAGE specification is ignored.

The MESSAGE clause must not be specified in SQL statements for
SESAM V2.x.

char-expression char-expression defines the message for output (maximum 79
characters).

The message is only output if the condition is not satisfied.
In the char-expression of MESSAGE, value may only contain the
keyword VALUE or a literal.

U5642-J-Z125-3-7600 293

Metavariables condition

condition
Define condition

A condition consists of one or more logical expressions and the logical operators AND, OR
or NOT.

The following conditions can be formulated:

– Compare expressions by means of comparison operators (see page 296)
– Compare an expression with a value range (see page 297)
– Compare an expression with a list of values (see page 298)
– Check whether a value contains the null value (see page 300)
– Check whether a string is numeric. (see page 301)

Notes on evaluating conditions

– null values in conditions

If null values occur in conditions, the result of the condition can be satisfied, not satisfied
or unknown. The circumstances under which these possible results apply is given in the
description of each condition.

– Comparison of alphanumeric values

Two strings are compared from left to right. If the strings are of different lengths, the
shorter string is padded with blanks. Two character strings are equal if they contain the
same characters at every position. Otherwise, the first character which differs between
the two strings defines which of the strings is greater.

– Comparison of numeric values

Two numeric values are equal if they have the same sign and the same quantity.

294 U5642-J-Z125-3-7600

condition Metavariables

condition has the following syntax:

condition::=[NOT] { (condition1 [{ AND | OR } condition2)] ...) |
 (expression1 { = | < | > | <> | <= | >= } expression2) |
 (expression3 [NOT] BETWEEN expression4 AND expression5) |
 (expression6 [NOT] IN (value, ...)) |
 (value IS [NOT] NULL) |
 (char-expression IS [NOT] NUMERIC) }

The following results are possible for condition if AND, OR or NOT are applied:

AND

Both conditions combined by AND must be satisfied for the entire
condition to be satisfied.

OR

At least one of the two conditions combined by OR must be satisfied
for the entire condition to be satisfied.

condition2

condition1 satisfied not satisfied unknown

satisfied satisfied not satisfied unknown

not satisfied not satisfied not satisfied not satisfied

unknown unknown not satisfied unknown

condition2

condition1 satisfied not satisfied unknown

satisfied satisfied satisfied satisfied

not satisfied satisfied not satisfied unknown

unknown satisfied unknown unknown

U5642-J-Z125-3-7600 295

Metavariables condition

NOT

Negation: a condition preceded by NOT must not be satisfied if the
entire condition is to be satisfied. If the result of the condition
preceded by NOT is unknown, the result of the entire condition is
also unknown.

condition As long as condition is satisfied, the required function is executed.

Rules

– The data types of expression1 and expression2 must be comparable (both must be of the
type, alphanumeric, date-time or INTERVAL).

– When date-time data types are compared, both must be of the same type, i.e. a date,
a time or a timestamp.

– If expression is a structured value, there may be only one comparison using '=' or '<>'.

– The NULL constant must not be specified.

– When you combine the logical operators AND, OR and NOT, the usual precedence
rules apply for evaluation:

NOT before AND before OR

If you want to change this order, you must use parentheses. Operators within paren-
theses take precedence.
Operators with the same priority are processed from left to right.

If the condition of an IF statement generates the truth value UNKNOWN or FALSE, a
branch is made to the ELSE path.

If the condition of a CYCLE statement generates the truth value UNKNOWN or FALSE,
execution of the statement is terminated.

condition NOT condition

satisfied not satisfied

not satisfied satisfied

unknown unknown

296 U5642-J-Z125-3-7600

condition Metavariables

Comparing expressions using comparison operators

You can use comparison operators to compare the values of two expressions.

The condition is satisfied if the comparison is true.

The result of the condition is unknown if at least one of the expressions has the value NULL,
Otherwise the condition is not satisfied.

Rules

– The data types of expression1 and expression2 must be comparable (both must be of the
type, alphanumeric, date-time or INTERVAL).

– When date-time data types are compared, both must be of the same type, i.e. a date,
a time or a timestamp.

– Vectors must not occur in a comparison using '<', '>', '<=' or '>='.

– The NULL constant must not be specified.

Example

SELECT designation
 FROM project
 WHERE budget >= &minbudget

IF &budget < &var ... THEN

Comparison operator Meaning

= equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

<> not equal to

U5642-J-Z125-3-7600 297

Metavariables condition

Comparing an expression with a value range

You can check whether the value of the expression is within or outside a value range.

expression1 [NOT] BETWEEN expression2 AND expression3

BETWEEN ... AND The result of the condition is the same as for the condition
expression2 ≤ expression1 AND expression1 ≤ expression3.

The condition is satisfied if the value of expression1 is within the
value range.

NOT BETWEEN ... AND
The result of the condition is the same as for the condition
expression1 < expression2 OR expression1 > expression3.

The condition is satisfied if the value of expression1 is outside the
value range.

Rules

– The data types of expression1 and expression2 must be comparable (both must be of the
type, alphanumeric, date-time or INTERVAL).

– When date-time data types are compared, both must be of the same type, i.e. a date,
a time or a timestamp.

– The NULL constant must not be specified.

– Vectors are not permitted in a comparison with BETWEEN... AND.

Example

SELECT last-name, salary
 FROM staff-member
 WHERE salary BETWEEN &lower-limit AND 6000

IF &salary BETWEEN 1000 AND &upper-limit THEN ...

298 U5642-J-Z125-3-7600

condition Metavariables

Comparing an expression with a list of values

The expression is compared with a value or a list of values.

expression [NOT] IN (value, ...)

IN The condition is satisfied if the comparison is true for at least one
value.

The condition is not satisfied if the comparison is not true for any
value.

Otherwise, the result of the condition is unknown.

NOT IN The condition is satisfied if the comparison is true for all values of
expression.

The condition is not satisfied if the comparison is true for at least
one value.

Otherwise, the result of the condition is unknown.

value Value with a numeric or alphanumeric data type or the data type
INTERVAL specified by a constant or variable (see metavariable
value).

Rules

– The data type of expression must be compatible with the data type of the values specified
in IN (numeric, alphanumeric or INTERVAL data type).

– When time data types are compared, all the values specified for IN must be either a
date, a time or a timestamp.

– Vectors are not permitted in a comparison with IN.

U5642-J-Z125-3-7600 299

Metavariables condition

Examples

SELECT dept-staff-no, seq-no, last-name
 FROM staff-member
 WHERE city IN ('Manchester','London', &varcity)

SELECT dept-staff-no, seq-no, last-name
 FROM staff-member INTO &var
 WHERE city NOT IN ('Birmingham','Liverpool','Bristol', &varcity)

SELECT staff-no, last-name
 FROM staff-member INTO &var
 WHERE salary IN (SELECT salary
 FROM staff-member
 WHERE salary > 600000 AND salary < &max)

IF &city IN ('Birmingham','Liverpool','Bristol') ... THEN

300 U5642-J-Z125-3-7600

condition Metavariables

Comparing a value with the null value

value IS [NOT] NULL

value Value that is to be tested for NULL.

IS NULL The condition is satisfied if value contains the null value.
Otherwise, the condition is not satisfied.

IS NOT NULL The condition is satisfied if value does not contain the null value.
Otherwise, the condition is not satisfied.

Example

SELECT dept-staff-no, seq-no, last-name
 FROM staff-member
 WHERE proj-team IS NULL

IF &var IS NULL THEN ...

U5642-J-Z125-3-7600 301

Metavariables condition

Check whether a character string is numeric

A character string is checked as to whether it represents a numeric value.

numeric-predicate may be specified only for CYCLE, IF and CASE, but not for SQL state-
ments.

char-expression IS [NOT] NUMERIC

char-expression Character string to be checked.

IS NUMERIC The condition is satisfied if the value-function NUMERIC is applied to
the character string without specifying [, char-literal] (i.e. using the
standard mask) and does not result in a conversion error.

IS NOT NUMERIC The condition is satisfied if the value-function NUMERIC is applied to
the character string without specifying [, char-literal] (i.e. using the
standard mask) and results in a conversion error.

Examples

SET &c = 'ABCDEF';

 IF &c IS NOT NUMERIC
 THEN DISPLAY FORM 'Non-numeric';
 END IF;

SET &c = '1000';

 IF &c IS NUMERIC
 THEN SET &n = NUM(&c)
 ELSE SET &n = 0;
 END IF;

302 U5642-J-Z125-3-7600

data-group Metavariables

data-group
Define data group

data-group specifies the data type "data group" for a variable. data-group consists of compo-
nents that may have any data types. The structure of data-group is determined by the
sequence of the components. The components themselves are also data groups if they in
turn consist of different components.

For the specification of data groups, level can be used to assign level numbers, whose
values determine the structure levels. A data group is indicated when a specification of one
level is followed by a specification whose level number is higher. Conversely, a component
of a data group is indicated when a specification of one level is preceded by a specification
whose level number is lower. The specification with the highest level number is a simple
component.

The nesting depth of data groups is 49; no more than three repeating groups can be nested
in each other.

In SQL statements, data-group can only be specified with UDS databases.

For additional structure types, see the metavariable structure-type.

data-group::=[REDEFINES { variable | character1 [suffix] }]
 {, level { character2 | FILLER }
 { basic-data-type [base-type] | structure-type } }

REDEFINES REDEFINES identifies the variable being redefined (base variable).

The variable being redefined must not be longer than the base
variable. If the variable being redefined is a component of a
structure, the base variable must be a component of the same base
structure (structure with the level number 1).

variable Name of the base variable being redefined. It must already have
been defined and must not itself been defined by LIKE or
REDEFINES. If the base variable is a structure, the redefining
variable must not be a component of that structure.

There must be no repeating groups between the beginning of the
smallest substructure containing both the base variable and the
redefining variable and the base variable or the redefining variable
itself.

U5642-J-Z125-3-7600 303

Metavariables data-group

character1 Alphanumeric characters for the name of a component.

0 < number(character) < 32

suffix See the metavariable variable.

level level specifies the level numbers. The first level number must always
be "1".

character2 Alphanumeric characters for the name of a component.

0 < number(character) < 32

FILLER Can be specified in place of character for levels > 1. A field identified
with FILLER cannot be separately accessed, but instead can be
used only within aggregate (see the metavariable value).

basic-data-type See the metavariable basic-data-type.

base-type See the metavariable base-type.

structure-type See the metavariable structure-type.

Example

Variable "a" is a data group. The components are "b", "b1" through "b31" and "c". "b1",
"b2", "b31" and "c" are simple components.

DECLARE 1 &a,
 2 b,
 3 b1 INTEGER,
 3 b2 NUM (7,2),
 3 b3,
 4 b31 CHAR (10),
 2 c CHAR (8);

304 U5642-J-Z125-3-7600

data-type Metavariables

data-type
Define data type

data-type specifies the data type for variables and user-defined data types.

data-type::={ basic-data-type [base-type] |
 structure-type |
 (rows, columns) basic-data-type [base-type] }

basic-data-type See metavariable basic-data-type

base-type See metavariable base-type

structure-type See metavariable structure-type

rows rows defines the number of vertical components in a variable with
two coordinates (matrix)
(0 < rows < 256).

columns columns defines the number of horizontal components in a variable
with two coordinates (matrix)
(0 < columns < 256).

U5642-J-Z125-3-7600 305

Metavariables date-time-expression

date-time-expression
Calculate date or time

date-time-expression defines a valid date or time. The data type of date-time-expression one of
the date-time data types (DATE, TIME, TIME(3) or TIMESTAMP(3)).

date-time-expression must not be used in SQL statements for SESAM V1.x and UDS.
date-time-expression can only be used in SQL statements for SESAM V2.x if it contains
CURRENT DATE / TIME / TIMESTAMP.

For additional expressions, see the metavariable expression.

date-time-expression::={ date-time-term1 |
 date-time-expression1 { + | - } interval-term |
 date-time-expression2 || date-time-term2 }

date-time-term1 See metavariable date-time-term

date-time-expression1
The data type of date-time-expression1 must be a date-time data type.
date-time-expression1 must not contain structured variables or aggre-
gates.

+ Sum operator

– Difference operator

interval-term See metavariable interval-term.

interval-term must have the interval unit YEARS, MONTHS or DAYS
if a date (data type DATE) is specified for date-time-expression.

interval-term must have the interval unit HOURS, MINUTES,
SECONDS or FRACTIONS if a time (data type TIME or TIME(3)) is
specified for date-time-expression.

date-time-expression2
date-time-expression2 must have the data type DATE, TIME or
TIME(3).

If date-time-expression2 has the data type DATE, date-time-term2 must
have the data type TIME or TIME(3).

If date-time-expression2 has the data type TIME or TIME(3),
date-time-term2 must have the data type DATE.

306 U5642-J-Z125-3-7600

date-time-expression Metavariables

If date-time-expression2 has the data type TIME, fractions of seconds
are filled with zeros (HH:MI:SS.000).

|| The concatenation operator || is used to concatenate the strings
date-time-expression2 and date-time-term2. The second string is
appended directly to the first. The result has the data type
TIMESTAMP(3).

date-time-term2 date-time-term2 must have the data type DATE, TIME or TIME(3).

If date-time-term2 has the data type TIME or TIME(3),
date-time-expression2 must have the data type DATE.

If date-time-term2 has the data type DATE, date-time-expression2 must
have the data type TIME or TIME(3).

If date-time-term2 has the data type TIME, fractions of seconds are
filled with zeros (HH:MI:SS.000).

Examples

The date which results when 30 days are added to the current date is to be assigned to
the variable &plus30.

DECLARE VARIABLE &date DATE;
DECLARE VARIABLE &plus30 DATE;
...
SET &date=CURRENT DATE;
SET &plus30=&date + 30 DAYS;

The date which results when the number of days elapsed since the first moon landing
(20.07.69) are added to the current date is to be assigned to the variable &plus.

DECLARE VARIABLE &date DATE;
DECLARE VARIABLE &landing DATE INIT DATE(1969-07-20);
DECLARE VARIABLE &plus DATE;
...
SET &date=CURRENT DATE;
SET &plus=&date + (&date - &landing) DAYS;

U5642-J-Z125-3-7600 307

Metavariables date-time-field

date-time-field
Define components of a date or time

date-time-field is used to specify the components of a date (day, month, year) or a time (hour,
minute, second, fraction).

date-time-field::={ YEAR | MONTH | DAY | HOUR | MINUTE | SECOND | FRACTION }

YEAR The unit year is specified.

MONTH The unit month is specified.

DAY The unit day is specified.

HOUR The unit hour is specified.

MINUTE The unit minute is specified.

SECOND The unit second is specified.

FRACTION The unit fraction is specified.

308 U5642-J-Z125-3-7600

date-time-term Metavariables

date-time-term
Define date or time

date-time-term specifies a time (date, time or timestamp) or converts a character expression
into a result of the type DATE, TIME(3) or TIMESTAMP(3).

The data type of date-time-term is a date-time data type (see metavariable basic-data-type).

date-time-term::=
 { value |
 (date-time-expression) |
 { DATE | TIME | TIMESTAMP } { (char-expression) | (date-time-expression1) } |
 CURRENT { DATE | TIME | TIMESTAMP } |
 CONCAT { date-time-expression2, date-time-expression3 } }

value The data type of value must be DATE or TIME. If value contains the
null value, date/time-term also contains the null value. value must not
be a structured variable or an aggregate.

date-time-expression
The data type of date-time-expression must be DATE or TIME.
If date-time-expression contains the null value, date-time-term also
contains the null value.

DATE char-expression or date-time-expression1 is converted to a value of the
type DATE.

TIME expression is converted to a value of the type TIME(3).

TIMESTAMP expression is converted to a value of the type TIMESTAMP(3).

char-expression char-expression must evaluate to the printable form of a valid time
value (see date-time-literal under the metavariable literal). If
char-expression contains NULL, date-time-term also contains NULL.

char-expression must not be a structured variable or an aggregate
and must contain the appropriate separators (see date-time-literal
under the metavariable literal).

U5642-J-Z125-3-7600 309

Metavariables date-time-term

date-time-expression1
The data type of date-time-expression1 must be a date-time data type.

– In the case of DATE, date-time-expression1 must have the data
type DATE or TIMESTAMP(3).

– In the case of TIME, date-time-expression1 must have the data
type TIME, TIME(3) or TIMESTAMP(3).

If date-time-expression1 has the data type TIME, fractions of
sections are filled with zeroes on conversion (HH:MI:SS.000).

If date-time-expression1 has the data type TIMESTAMP(3),
year-month-day are removed on conversion (YYYY-MO-DD).

– In the case of TIMESTAMP(3), date-time-expression1 may be of
the data type DATE, TIME, TIME(3) or TIMESTAMP(3).

If date-time-expression1 is of type DATE, the time
hour:minute:seconde.fraction is filled with zeroes on conversion
(00:00:00.000).

If date-time-expression1 has the data type TIME, the current date
year-month-day (YYYY-MO-DD) is extended on conversion and
the fractions of seconds are filled with zeroes (HH:MI:SS.000).

If date-time-expression1 has the data type TIME(3), the current
date year-month-day (YYYY-MO-DD) is extended on conversion.

If date-time-expression1 contains NULL, date-time-term also contains
NULL.

CURRENT DATE Evaluates to the current date in the format year-month-day (see
date-time-literal under the metavariable literal for details on the
format).

CURRENT TIME Evaluates to the current time in the format
hour:minute:second.fraction (see date-time-literal under the metavar-
iable literal for details on the format). If CURRENT TIME is specified
for a field with the data type TIME, DRIVE/WINDOWS truncates the
fractions of a second.

CURRENT TIMESTAMP
Evaluates to the current time in the format
year-month-dayËhour:minute:second.fraction (see date-time-literal
under the metavariable literal for details on the format).

CONCAT The strings date-time-expression1 and date-time-expression2 are
concatenated (see metavariable date-time-expression). The result
has the data type TIMESTAMP(3).

310 U5642-J-Z125-3-7600

date-time-term Metavariables

date-time-expression2
date-time-expression2 must have the data type DATE, TIME or
TIME(3).

If date-time-expression2 has the data type DATE, date-time-expression3
must have the data type TIME or TIME(3).

If date-time-expression2 has the data type TIME or TIME(3),
date-time-expression3 must have the data type DATE.

If date-time-expression2 has the data type TIME, fractions of seconds
are filled with zeros (HH:MI:SS.000).

date-time-expression3
date-time-expression3 must have the data type DATE, TIME or
TIME(3).

If date-time-expression3 has the data type TIME or TIME(3),
date-time-expression2 must have the data type DATE.

If date-time-expression3 has the data type DATE, date-time-expression2
must have the data type TIME or TIME(3).

If date-time-expression3 has the data type TIME, fractions of seconds
are filled with zeros (HH:MI:SS.000).

Examples

The variable &date is assigned the current date, the variable &time is assigned the
current time.

DECLARE VARIABLE &date DATE;
DECLARE VARIABLE &time TIME;
...
SET &date=CURRENT DATE;
SET &time=CURRENT TIME;

The variable &end-of-century is assigned the string "1999-12-31".

DECLARE VARIABLE &end-of-century DATE;
...
SET &end-of-century=DATE(1999-12-31) or
SET &end-of-century=DATE('1999-12-31')

U5642-J-Z125-3-7600 311

Metavariables date-time-unit

date-time-unit
Define unit for a time period

date-time-unit defines the unit for time periods (intervals) e.g. years, days or minutes.

date-time-unit::={ date-time-field1 TO date-time-field2 |
 UNITS date-time-field3 |
 YEARS |
 MONTHS |
 DAYS |
 HOURS |
 MINUTES |
 SECONDS |
 FRACTIONS }

date-time-field1, date-time-field2
date-time-field1 must always be identical with date-time-field2.

You can only specify interval units with a single component, e.g.
MONTH TO MONTH.

UNITS Specifies the units for date and time. Abbreviations are possible,
e.g. YEARS for UNITS YEAR (see also the date-time-field metavar-
iable).

date-time-field3 See metavariable date-time-field

YEARS Specifies the unit "years".

MONTHS Specifies the unit "months".

DAYS Specifies the unit "days".

HOURS Specifies the unit "hours".

MINUTES Specifies the unit "minutes".

SECONDS Specifies the unit "seconds".

FRACTIONS Specifies the unit "fractions".

312 U5642-J-Z125-3-7600

date-time-unit Metavariables

Example

The period of time up to the end of the millennium in days is assigned to the variable
&period.

DECLARE VARIABLE &date DATE;
DECLARE VARIABLE &mill-end DATE INIT DATE(2000-01-01);
DECLARE VARIABLE &period INTERVAL DAYS;
...
SET &date=CURRENT DATE;
SET &period=&mill-end - &date;

U5642-J-Z125-3-7600 313

Metavariables expression

expression
Expressions

expression describes numeric, character, date-time and interval expressions.

expression::={ char-expression | date-time-expression |
 interval-expression | value-expression }

char-expression See metavariable char-expression:

char-expression::={ char-prim | char-expression || char-prim }

date-time-expression See metavariable date-time-expression:

date-time-expression::=
 { date-time-term | date-time-expression { + | - } interval-term }

interval-expression See metavariable interval-expression:

interval-expression::=
 { interval-term | (date-time-expression - date-time-term) }

314 U5642-J-Z125-3-7600

expression Metavariables

value-expression See metavariable value-expression:

value-expression::=
 value-term1 [[* | / | % | **] [+ | -] value-term2]

U5642-J-Z125-3-7600 315

Metavariables format

format
Define format for screen or list

format specifies the format for screens and lists.

format::={ FREE |
 { TABLE | LINE | SEQUENCE } [NAMES [VALUES] | VALUES] } }

FREE Default

FREE, or no format specification, results in unformatted output:
The data contents of the elements to be output are output in a
continuous stream, without regard for the end of a line. The names
of the data contents are not output.

Example

STEEL MAX MAIN RD 80469BALTI
MORE

– Output occurs sequentially, without spaces between the
individual fields. However, it may be controlled as desired with
the aid of NEWLINE, NEWPAGE, TABULATOR or BLANK.

– Exceeding the end of a line automatically causes a line break.

TABLE The elements to be output are output in table form.

The width of the columns in the table is determined by the longest
element name or the longest data value. Neither the element name
nor the data contents are truncated. The columns in the table are
separated from each other by a space.

TABLE is only permitted if the complete output format fits in a line.
Otherwise the procedure is aborted with the error message
DRI0049 MAXIMUM LINE LENGTH ((&00)) EXCEEDED.

In program mode, TABLE means that a title and data line will always
be printed. This does not apply to matrices.

In interactive mode, the lines which follow the title contain the data
values of the elements only.

If you specify TABLE for format, you may not subsequently specify
NEWLINE and NEWPAGE.

316 U5642-J-Z125-3-7600

format Metavariables

NAMES VALUES NAMES VALUES is the default setting for the TABLE operand.

The names are output in the first line. The following lines contain the
data contents of the elements which are to be output.

Example

NAME FIRST-NAME STREET
STEEL MAX MAIN RD

– Only the names of the control elements are output. Matrices are
output in matrix format and the name appears once only.

– Literals are repeated in each line.

NAMES The TABLE NAMES specification results in a tabular format with the
names being output without the data contents.

VALUES The TABLE VALUES specification results in a tabular format with
the data contents being output without the names.

LINE The elements are output line by line.

If you specify LINE for format, the TABULATOR and BLANK specifi-
cations result in a line feed with a blank line.

NAMES VALUES NAMES VALUES is the default setting for the LINE operand.

Each line contains the level number and name followed by the
associated data contents.

Example

1 NAME: STEEL
1 FIRST-NAME: MAX
1 STREET: MAIN RD.

– Repeating groups are output underneath one another.
– Line overflows (depending on the value of COLUMNS) create

an automatic line wrap.
– Vector elements are output side by side.
– Matrices are output in matrix format and the name appears at

the start of each matrix line.
– A blank is output between any two fields.

NAMES If you do not specify VALUES then the output format is vertical and
names are output without the data contents.

VALUES LINE VALUES creates a vertical format and the data contents are
output without the names.

SEQUENCE The elements are output sequentially.

U5642-J-Z125-3-7600 317

Metavariables format

NAMES VALUES NAMES VALUES is the default setting for the SEQUENCE operand.

The elements for output each consist of a name and the associated
data contents. The elements for output are separated from one
another by a blank.

Example

NAME: STEEL ËFIRST-NAME: MAX ËSTREET: MAI
N RD. Ë

– Repeating groups are output side by side
– Line overflows (depending on the value of COLUMNS) create

an automatic line wrap.
– Vector elements are output side by side.
– Matrix elements are output side by side and the name appears

at the start of each matrix line.
– Only the names of the control elements are output.
– A blank is output between any two fields.

NAMES If you do not specify VALUES then the output format is horizontal
and the names are displayed without the data contents.

VALUES SEQUENCE VALUES creates a horizontal format and the data
contents are output without the names.

318 U5642-J-Z125-3-7600

interval-expression Metavariables

interval-expression
Calculate a time period

interval-expression specifies a valid date or time interval.

The data type of interval-expression is INTERVAL (see the metavariable basic-data-type).

interval-expression must not be specified in SQL statements for SESAM and UDS.

interval-expression::={ interval-term |
 (date-time-expression - date-time-term) |
 interval-expression { + | - } interval-term }

interval-term See the metavariable interval-term.

date/time-expression, date/time-term
date/time-expression and date/time-term must both contain date or
time specifications.

date/time-expression and date/time-term must contain neither struc-
tured variables nor aggregates.

The result has the following data type:

Data type for difference between:

INTERVAL DAYS DATE - DATE
DATE - TIMESTAMP(3)
TIMESTAMP(3) - DATE

INTERVAL SECONDS TIME - TIME

INTERVAL FRACTIONS TIME - TIME(3)
TIME - TIMESTAMP(3)
TIME(3) - TIME
TIME(3) - TIME(3)
TIME(3) - TIMESTAMP(3)
TIMESTAMP(3) - TIME
TIMESTAMP(3) - TIME(3)
TIMESTAMP(3) - TIMESTAMP(3)

U5642-J-Z125-3-7600 319

Metavariables interval-expression

interval-expression If interval-expression is of the data type INTERVAL with either
YEARS or MONTHS as units, then interval-term must be of the data
type INTERVAL with either YEARS or MONTHS as units.
The result always has MONTHS as units.

If interval-expression is of the data type INTERVAL with DAYS,
HOURS, MINUTES, SECONDS or FRACTIONS as units, then
interval-term must be of the data type INTERVAL with DAYS,
HOURS, MINUTES, SECONDS or FRACTIONS as units.
The result has SECONDS as units if neither interval-expression nor
interval-term has FRACTIONS as units. In all other cases, the result
has FRACTIONS as units.

interval-term If interval-term is of the data type INTERVAL with either YEARS or
MONTHS as units, then interval-expression must be of the data type
INTERVAL with either YEARS or MONTHS as units.

If interval-term is of the data type INTERVAL with DAYS, HOURS,
MINUTES, SECONDS or FRACTIONS as units, then
interval-expression must be of the data type INTERVAL with DAYS,
HOURS, MINUTES, SECONDS or FRACTIONS as units.

The result is of the data type INTERVAL with the units described in
interval-expression.

+ Sum operator

- Difference operator

When calculating intervals as the difference between two times, DRIVE/WINDOWS
does not calculate beyond midnight but instead outputs a negative result (see
example).

Examples

The number of days until the end of the millennium is assigned to the variable
&time-period.

DECLARE VARIABLE &date DATE;
DECLARE VARIABLE &mill-end DATE INIT DATE(2000-01-01);
DECLARE VARIABLE &time-period INTERVAL DAYS;
...
SET &date=CURRENT DATE;
SET &time-period=&mill-end - &date;

i

320 U5642-J-Z125-3-7600

interval-expression Metavariables

The number of seconds elapsed in the current day is assigned to the variable &period.

DECLARE VARIABLE &time TIME;
DECLARE VARIABLE &start TIME INIT TIME(00:00:00);
DECLARE VARIABLE &period INTERVAL SECONDS;
...
SET &time=CURRENT TIME;
SET &period=&time - &start;

The variable &period is assigned the value -3 (hours). Calculations do not extend
beyond midnight (09:00:00 - 12:00:00 = 21:00:00).

DECLARE VARIABLE &period INTERVAL HOURS;
...
SET &period=TIME(09:00:00) - TIME(12:00:00);

U5642-J-Z125-3-7600 321

Metavariables interval-term

interval-term
Define a time period

interval-term defines a valid time period (interval). The data type is INTERVAL and uses the
interval unit defined by UNITS or by the variables used.

interval-term must not be specified in SQL statements for SESAM or UDS.

interval-term::={ value-term { UNITS date-time-field | YEARS | MONTHS | DAYS |
 HOURS | MINUTES | SECONDS | FRACTIONS } |

 (interval-expression) |
 interval-term { * | / } value-term }

value-term See the metavariable value-term.

date/time-field See the metavariable date/time-field.

interval-expression interval-expression is treated as being numeric with a precision of 15
and a scale factor of 0 (see the metavariable interval-expression).

interval-term Interval as a factor or dividend

The result will be of the following data type depending on the unit
used in the INTERVAL data type:

* Multiplication operator

/ Division operator

Data type of interval-term Data type of result

INTERVAL YEARS INTERVAL MONTHS

INTERVAL MONTHS INTERVAL MONTHS

INTERVAL HOURS INTERVAL SECONDS

INTERVAL MINUTES INTERVAL SECONDS

INTERVAL SECONDS INTERVAL SECONDS

INTERVAL FRACTIONS INTERVAL FRACTIONS

322 U5642-J-Z125-3-7600

interval-term Metavariables

Example

The value of 30 days is assigned to the variable &month for the calculation of interest.

DECLARE VARIABLE &month INTERVAL DAYS;
...
SET &month=30 DAYS;

The keyword "DAYS" can be omitted from the SET statement, since the interval unit for
the variable &month has been defined in the DECLARE statement:

...
SET &month=30;

U5642-J-Z125-3-7600 323

Metavariables literal

literal
Define a literal

literal contains a string with a constant value. Empty literals may also be assigned
(e.g. SET &vc = '';).

literal::={ char-literal | numeric-literal | date-time-literal | interval-literal |
 hex-literal }

char-literal char-literal::='string' [(n)]

string::=[character] ...

string
String with alphanumeric data type.
string must be enclosed in single quotes ('). If a single quote is
used in string, it must be doubled. The doubled single quotes
are treated as a single character.
string may be void and may consist of a maximum of 256
characters.

n
Repetition factor (1 ≤ n ≤ 256).

character
EBCDIC character

numeric-literal numeric-literal::=
{ [+ | -] integer [{ . | , } integer] |
 [+ | -] integer [{ . | , } integer] E [+ | -] integer }

 numeric-literal contains a fixed-point value, whose data type is
numeric (max. 32 digits). The precision of a fixed-point value
refers to the number of digits. The scale factor of a fixed-point
value refers to the number of decimal places (max. 31).

integer
Only digits may be used for integer.

E exponential representation to base 10
Any characters preceding or following E must be specified
without blanks (Ë).

324 U5642-J-Z125-3-7600

literal Metavariables

date-time-literal date-time-literal::=
{ DATE (year-month-day) |
 TIME (hour:minute:second [.fraction]) |
 TIMESTAMP (year-month-day hour:minute:second.fraction) }

date-time-literal contains a valid date (data type: DATE), a valid
time (data type: TIME or TIME(3)) or a valid timestamp (data
type: TIMESTAMP(3)) .

year
Four-digit integer 0000 through 9999, specifying the year

month
Two-digit integer 1 through 12, specifying the month

day
Two-digit integer 1 through 31 (depending on the month), speci-
fying the day

hour
Two-digit integer 00 through 23, specifying the hour

minute
Two-digit integer 00 through 59, specifying the minute

second
Two-digit integer 00 through 59, specifying the second

fraction
Three-digit integer 000 through 999, specifying the fractions of
a second (1/1000 second)

The separators between the components must be strictly
observed:
Hyphen (-) between year, month and day
Blank (Ë) between day and hour
Colon (:) between hour, minute and second
Period (.) between second and fraction of a second

interval-literal interval-literal::=INTERVAL ({ + | - } integer) date-time-unit

integer
Only digits (max. 32) are permitted for integer.

date-time-unit
See metavariable date-time-unit

U5642-J-Z125-3-7600 325

Metavariables literal

hex-literal hex-literal::=X'string' [(n)]

string
Hexadecimal string (max 512 characters). string may only
contain the digits "0" to "9" and the characters "A" to "F".

n Repetition factor (1 ≤ n ≤ 256)

326 U5642-J-Z125-3-7600

mask Metavariables

mask
Define a MASK clause

Definition of the representation options for entry and output fields.

mask::=MASK char-literal

MASK MASK defines how data values are represented in entry and output
fields.

char-literal See the metavariable literal.

A mask has two principal parts, that can be specified in char-literal:
mask control characters and user text.

Mask control characters control how the data value to be output is
represented in an output field. There are control characters for
numeric, character-string and date/time variables.

User texts are text parts that may be freely defined by you. They
may be specified at any desired positions within a mask.
They must be enclosed in doubled single quotes (' '), which,
however, do not appear in the output.
The user texts are ignored when data is entered.

Mask control characters and user text may be defined in any order
within a mask (except, the order of some mask control characters
for numeric data is fixed). There are, however, fixed sequences of
control characters that must not be interrupted by user text.

The contents of a mask must be specified such that the result edited
for input or output does not exceed 256 characters. The mask itself
may be up to 256 characters in length.

U5642-J-Z125-3-7600 327

Metavariables mask

Mask control characters for numeric data types:

The value to be entered or output must match the mask. Otherwise,
spaces on the right are removed or added.

A value entered must be able to be stored in the data field.

Mask control characters for numeric data types:

Mask
control
character

Output

X Any character from the EBCDIC character set. The
position is always output.

X(n) Method for specifying the mask control character X n
times in a row (0 < n).

Mask
control
character

Output

9 Character position for a digit; is always output.

Z Leading numeric digit position. If this position
contains a leading zero, a blank is output.

* Check security symbol: leading numeric digit
position. If this position contains a leading zero, "*" is
output.

P Character position for a decimal point. A "." or a "," is
output, depending on the global setting. "P" may only
occur once as a control character.

+ Character position for the plus sign "+" or minus sign
"-". The sign is always output, depending on the data
value in the field.

– Character position for a negative sign. If the data
value is negative, a minis sign is output and if the data
value is positive, a blank is output.

328 U5642-J-Z125-3-7600

mask Metavariables

S Leading numeric digit position. This position can
contain the sign of a data value if the first control
character of a mask is a "+" or "-" and if this position
contains a leading zero. If "S" is specified, it must
always occur before the control characters "Z" or "*".
If the control character of the mask is not "+" or "-", "S"
has the same effect as "Z" or "*"

E Control character for floating point representation. It
is followed by the length specification, which controls
the number of decimal places to be output. The
following applies to a float mask: En (8 < n < 23)
I.e. the number of decimal places to be output must
be between 1 and 14.
"E" may only occur once as a control character.

BWZ Control character for an entire field.
If the data value is 0 or an empty string, the entire
field is filled with blanks when output to screen.
A field filled with blanks during input combined with
the control character "BWZ" leads to a data value of
0.

 "BWZ" must be specified at the end of the mask and
 be separated from the rest of the mask by at least one
 blank.

Mask
control
character

Output

U5642-J-Z125-3-7600 329

Metavariables mask

The value to be input must fit the mask in accordance with the
conversion rules. Otherwise, decimal places can be truncated or
empty positions filled.

Mask control characters for date-time data types:

, (comma)
. (period)
B

(=
insertion
control
character)

Insertion control characters are character positions at
which a comma (,), a period (.) or a blank (B) are
inserted.
Insertion control characters embedded in the
sequence of "Z", "*" or "S" control characters or
following immediately to the right of this sequence
are a part of this sequence.
If this sequence of control characters results in the
output of blanks or "*" characters through
suppression of leading zeros, blanks or "*" characters
are likewise output at the positions of the embedded
insertion control characters or at the positions of
those appearing immediately to the right.
By analogy, in insertion control characters appearing
within or to the right of sequences of "S" control
characters, the sign floats. Insertion control
characters may only be specified to the left of "P".

9(n)
Z(n)
*(n)
S(n)

Alternative method of specifying the various control
characters n times in succession (0 < n).

Mask
control
character

Output

YYYY 4-digit year specification

ZZZY 4-digit year specification; leading zeros are output as
blanks

MO 2-digit month value

ZO 2-digit month value; a leading zero is output as a
blank

DD 2-digit day value

Mask
control
character

Output

330 U5642-J-Z125-3-7600

mask Metavariables

The input value must be able to be assigned clearly to a date-time
data type (DATE, TIME, TIME(3) or TIMESTAMP(3)). Otherwise the
control characters can be mixed with user text as required.

ZD 2-digit day value; a leading zero is output as a blank

HH 2-digit hour value

ZH 2-digit hour value; a leading zero is output as a blank

MI 2-digit minute value

ZI 2-digit minute value; a leading zero is output as a
blank

SS 2-digit second value

ZS 2-digit second value; a leading zero is output as a
blank

FFF 3-digit fraction value

ZZF 3-digit fraction value; leading zeros are output as
blanks

WW 2-digit week value

ZW 2-digit week value; a leading zero is output as a blank

JJJ 3-digit, Julian day specification (= day in year)

ZZJ 3-digit, Julian day specification; leading zeros are
output as blanks

Q...Q Printable name of day

Q(n) Printable name of day with n positions (0 < n)

R...R Printable name of month

R(n) Printable name of month with n positions (0 < n)

AP Specification for a.m. (ante meridiem = morning) or
for p.m. (post meridiem = afternoon)

Mask
control
character

Output

U5642-J-Z125-3-7600 331

Metavariables mask

Mask control characters for the data type INTERVAL:

Mask
control
character

Output

9 Character position for a digit; is always output.

Z Leading numeric digit position. If this position
contains a leading zero, a blank is output.

+ Character position for the plus sign "+" or minus sign
"-". The sign is always output, depending on the data
value in the field.

– Character position for a negative sign. If the data
value is negative, a minis sign is output and if the data
value is positive, a blank is output.

S Leading numeric digit position. This position can
contain the sign of a data value if the first control
character of a mask is a "+" or "-" and if this position
contains a leading zero. If "S" is specified, it must
always occur before the control characters "Z" or "*".
If the control character of the mask is not "+" or "-", "S"
has the same effect as "Z" or "*".

BWZ Control character for an entire field.
If the data value is 0 or an empty string, the entire
field is filled with blanks when output to screen.
A field filled with blanks during input combined with
the control character "BWZ" leads to a data value of
0.
"BWZ" must be specified at the end of the mask and
be separated from the rest of the mask by at least one
blank.

9(n)
Z(n)
*(n)
S(n)

Alternative method of specifying the various control
characters n times in succession (0 < n).

332 U5642-J-Z125-3-7600

mask Metavariables

The value which is to be input or output must be appropriate for the
mask in accordance with the conversion rules as unoccupied
positions may otherwise be filled.

No blanks may appear between the mask control characters and a
single quote.

Rules for numeric data fields

– "+" and "-" are mutually exclusive. Thus, only one of these characters may occur within
a mask, and it must then be the first character in the mask. If neither of these characters
is specified, no sign is output. The sign is not replaced by a blank.

– "Z" and "*" may not occur together within a mask. No "Z" or "*" may occur to the right of
the decimal point control character "P".
Exception: All character positions in the mask except for "P" and insertion control
characters are "Z" or "*".

– A mask for exponential representation may contain only "E" with a length specification.

 Rules for DATE/TIME

– The various control characters may occur no more than once within a mask, and must
stand immediately next to each other. Thus, in the case of YYYY, control characters, the
four "Y"s may not be separated by user text.

– Simultaneous specification of the control characters for numeric and textual output of
the day or month value is permitted.

– If too few Q (or R) control characters are specified for data input and output, the internal
assignment of the day or month value to the textual input is ambiguous. In such cases
the following rules apply:

If DD/ZD (or M0/Z0) control characters are simultaneously present in the mask, the day
(or month) value is given by the input at these positions.

If no DD/ZD (or M0/Z0) control characters are specified, the program is aborted. A
message is output indicating that the data input is ambiguous.

– The control characters specified in the mask must correspond to the date and time
specifications for the relevant variables. When entering data, you must ensure that data
entered in a mask can be unambiguously assigned to the relevant DATE, TIME or
TIMESTAMP variable.

i

U5642-J-Z125-3-7600 333

Metavariables mask

Examples

Data value Definition for repre sentation Output

12.60 NUM(6,2) MASK 'ZZZZP99' ËË12.60

12.60 NUM(6,2) MASK '+SZZZP99' Ë+Ë12.60

12.60 NUM(6,2) MASK '****P99' **12.60

12.60 NUM(6,2) MASK 'ZZZZP99''ËDM''' ËË12.60ËDM

-12.60 NUM(6,2) MASK '-ZZZZP99' -ËË12.60

12.60 NUM(6,2) MASK '-ZZZZP99' ËËË12.60

12.60 NUM(6,2) MASK '99' 12

12.60 NUM(6,2) MASK '9999' 0012

1260 NUM(6,2) MASK 'ZZ,ZZZPZZ' Ë1,260.00

-1260 NUM(6,2) MASK 'ZZ,ZZZPZZ' Ë1,260.00

1260 NUM(6,2) MASK '-ZZ,ZZZPZZ' ËË1,260.00

126000 NUM(8,2) MASK 'ZZZBZZZPZZ' 126Ë000.00

12.60 NUM(8,2) MASK 'ZZZBZZZPZZ' ËËËËË12.60

12.60 NUM(6,2) MASK 'ZZZZP99 BWZ' ËË12.60

0 NUM(6,2) MASK 'ZZZZP99 BWZ' ËËËËËËË

12.60 NUM(6,2) MASK 'E9' Ë1.2E+001

12.60 NUM(6,2) MASK 'E10' Ë1.26E+001

12.60 NUM(6,2) MASK 'E16' Ë1.26000000E+001

1260 INT MASK 'E9' Ë1.2E+003

12 INT MASK 'ZZP99' 12.00

1260 INT MASK 'ZZP99' Error message

1260 REAL MASK 'ZZ99' 1260

12.60 REAL MASK 'ZZ99' ËË13

1260 REAL MASK 'E9' Ë1.2E+003

1.2601260126 FLOAT MASK 'E16' Ë1.26012601E+000

DERËPATE CHAR (8) MASK '''THEËBOOK:Ë''XXXXXXXX' THEËBOOK:ËTHEËGODFATHER

DERËPATE CHAR (8) MASK '''THEËBOOK:Ë''X(8)' THEËBOOK:ËTHEËGODFATHER

1789-07-14 DATE MASK 'DD''.''MO''.''YYYY' 14.07.1789

0622-06-15 DATE MASK 'ZD''.''ZO''.''ZZZY' 15.Ë6.Ë622

1982-08-13 DATE MASK 'Q(10)'',ËTHEË''ZD''TH''' FRIDAYËËËË,ËTHEË13TH

20:15:26 TIME MASK 'HH'':''MI'ËHOURS 20:15ËHOURS

16:09:56.127 TIME(3) MASK 'HH'':''ZI'ËHOURS 16:Ë9ËHOURS

334 U5642-J-Z125-3-7600

null-value Metavariables

null-value
Define the representation of the null value

null-value specifies the representation of the null value.

null-value::=[CHARTYPE=char-literal1] [NUMTYPE=char-literal2]

CHARTYPE=char-literal1
Specifies the representation of the null value for the data types
CHARACTER, DATE, TIME, TIME(3) and TIMESTAMP(3) (see
metavariable basic-data-type) (max. 1 character).

CHARTYPE may be specified only once.

NUMTYPE=char-literal2
Specifies the representation of the null value for the data types
NUMERIC, DECIMAL, INTEGER, SMALLINT and INTERVAL
(max. 1 character).

The following characters are permitted:
Digits 0 through 9, comma (,), period (.) and the special
characters * + –

NUMTYPE may be specified only once.

The default setting for null value representation for printer output is the period (.).
The default setting for null value representation for screen input/output is the character
X'00'.

U5642-J-Z125-3-7600 335

Metavariables programming

programming
Define statements for the body of a program

programming specifies a DRIVE statement for the body of a program.

programming::={ statement; |
 CASE; END CASE; |
 CYCLE; END CYCLE; |
 DISPATCH; END DISPATCH; |
 IF; END IF; } ...

statement Linear program statement for the body of a program (see DRIVE
Programming Language manual [2]).

CASE Programs a conditional branch (see the CASE statement).

CYCLE Programs a loop (see the CYCLE statement).

DISPATCH Programs a dispatch block (see the DISPATCH statement).

IF Programs a condition (see the IF-statement).

336 U5642-J-Z125-3-7600

repeating-group Metavariables

repeating-group
Define repeating group

repeating-group specifies the data type "repeating group" for a variable. repeating-group
consists of a fixed number of components, all having the same data type. The number of
components is specified by the repetition factor n.

repeating-group may only be specified in SQL statements for UDS databases.

For additional structure types, see the metavariable structure-type.

repeating-group::=(n) data-group

n Repetition factor (0 < n < 31000).

data-group See the metavariable data-group.

U5642-J-Z125-3-7600 337

Metavariables set-function

set-function
Specify set functions

A set function calculates a value from a set of values.

set-function::={ SUM | AVG | MAX | MIN } ([ALL] expression)

SUM Calculates the sum of the values in a set

AVG Calculates the average value in a set of values

MAX Determines the maximum value in a set

MIN Determines the minimum value in a set

ALL All values are considered including duplicated values.

In the case of MAX and MIN, ALL is syntactically permissible, but
has no meaning.

expression Argument to which the set function is applied.

expression must be a non-structured column. In the case of AVG and
SUM, expression must be numeric. (See the metavariable
expression)

The result of the set function has the following data type:

Set function Data type of the result

MIN and MAX The same data type as expression

SUM DECIMAL with a precision of 15. The number of decimal places
corresponds to the number of decimal places in the expression
specified.

AVG DECIMAL with a precision of 15. The number of decimal places
corresponds to the number of decimal places in the expression
specified.

338 U5642-J-Z125-3-7600

set-function Metavariables

SUM - Calculate sum

SUM calculates the sum of the values in a set.

SUM ([ALL] expression)

ALL Default

All values are considered including duplicated values.

expression Expression which evaluates to a numeric value.

AVG - Arithmetic mean

AVG calculates the arithmetic mean of a set of values.

AVG ([ALL] expression)

ALL Default

All values are used, including duplicates.

expression Expression which evaluates to a numeric value.

U5642-J-Z125-3-7600 339

Metavariables set-function

MAX - Determine maximum

MAX determines the maximum value in a set.

MAX ([ALL] expression)

ALL ALL is syntactically permissible, but has no meaning.

expression Expression which evaluates to a numeric or character value.

MIN - Determine minimum

MIN determines the minimum value in a set.

MIN ([ALL] expression)

ALL ALL is syntactically permissible, but has no meaning.

expression Expression which evaluates to a numeric or character value.

340 U5642-J-Z125-3-7600

structure-type Metavariables

structure-type
Define a structured variable

There are four kinds of structured data types:

– vectors (multiple fields)
– data groups
– repeating groups
– redefined variables

Two structured data types are considered to be equal

– if their component compositions are equal, and
– if the corresponding simple components in each are of the same data type.

For additional data definitions, see the metavariable data-type.

Do not use the REDEFINES clause in programs which you wish to use on different
computers, as it is machine-dependent. This could lead to different results on
different machines.

structure-type::={ vector |
 data-group |
 repeating-group |
 user-type |
 [(n)] [REDEFINES { variable1 | character [suffix] }]
 LIKE variable2 }

vector See the metavariable vector.

data-group see the metavariable data-group.

repeating-group see the metavariable repeating-group.

user-type This data type must have been defined in the DRIVE program with
DECLARE TYPE.

n Repetition factor (0 < n < 256).

i

U5642-J-Z125-3-7600 341

Metavariables structure-type

REDEFINES REDEFINES identifies the variable to be redefined (base variable).
The redefining variable must not be longer than the base variable.
If the redefining variable is a component of a structure, the base
variable must be a component of the same main structure (structure
with the level number 1).

REDEFINES must not be specified in INIT and USING clauses.

variable1 Name of the base variable to be redefined. It must already have
been defined and must not itself be a variable defined with LIKE or
REDEFINES. If the base variable is a structure, the redefining
variable must not be a component of this structure.

There must be no repeating groups between the beginning of the
smallest structure element containing the base variable and the
redefining variable and the base variable or the redefining variable
itself.

character Alphanumeric character string for the name of a component.

0 < number(character) < 32000

suffix See the metavariable variable.

LIKE LIKE is used to copy the structure of an already defined data group
or repeating group to a variable, component by component. The
level numbers are adjusted during copying. The specifications for n
and the REDEFINES clause are not taken over.

These variables may only be used in the program body.

If the structure of a variable is determined with the LIKE clause, only
components of the same or a lower level number are permitted as
additional components for that variable.

LIKE specifications must not be nested.

variable2 Name of the variable whose structure is to be copied. variable2 must
already have been defined as a data group or repeating group.
variable2 may be qualified, but not indexed. It must not be a higher-
level structure with regard to the variable to be defined.

342 U5642-J-Z125-3-7600

structure-type Metavariables

Examples

REDEFINES within a structure

DECLARE VARIABLE 1 &alpha,
 2 a1,
 3 a11 CHAR (10),
 3 a12 CHAR (10),
 2 a2 INT REDEFINES &a1,
 2 a3 CHAR (2);

&a2 reassigns the area assigned to &a1, i.e. the area assigned to &a11 and &a12. &a2
can, however, only redefine an area insofar as its size allows. In this case, It redefines
the area up to the first four characters of &a11.

LIKE applied to another group (= data group or repeating group)

The structure of the data group &v1 is transferred to the variable &v2. &v2 is identical
to &v1.

DECLARE VARIABLE 1 &v1,
 2 v11 CHAR,
 2 v12 INT,
 &v2 LIKE &v1; → 1 &v2,
 2 v11 CHAR,
 2 v12 INT;

LIKE within a group

The component "v32" is defined exactly as "v31".

DECLARE VARIABLE 1 &v3, 1 &v3,
 2 v31, 2 v31,
 3 v311 CHAR, 3 v311 CHAR,
 3 v312 NUM (4,2), 3 v312 NUM (4,2),
 2 v32 LIKE &v31; → 2 v32,
 3 v311 CHAR,
 3 v312 NUM (4,2);

U5642-J-Z125-3-7600 343

Metavariables value

value
Define a data value

value specifies the value of a variable or a component of a variable.

Since the NULL value is not permitted in every situation in which value is permitted
it does not form part of the description of the metavariable value.

value::={ char-prim | variable | literal | aggregate | VALUE | $PI }

char-prim See the metavariable char-prim.

variable variable must not contain the null value if it is referenced by SQL
statements accessing UDS databases (see the metavariable
variable).

literal See the metavariable literal.

aggregate aggregate::= < { value | NULL } >, ...

aggregate specifies an aggregate, a structured value whose
components are specified by value. aggregate must not contain
more than 255 values. Structured variables must not be
specified for value.

value
Literals, variables and $PI can be specified for value. In the case
of structured variables, it is only possible to reference the lowest
structure and not the entire structure.

NULL
The component of aggregate is assigned the null value. The null
value can be assigned to any variable and any column of a table
(without a non-NULL condition) (see the SET statement in the
DRIVE Directory [3] and INSERT and UPDATE in the SQL
directories [4-6].

Example

address=<'Waldweg 4',80462,&city>

i

344 U5642-J-Z125-3-7600

value Metavariables

VALUE VALUE may be specified only for check. When check is used, the
variable which the check condition refers to can be referenced, i.e.
the name of the variable need not be repeated.

$PI $PI stands for the number 3.141592653...

U5642-J-Z125-3-7600 345

Metavariables value-expression

value-expression
Define a numeric expression

value-expression defines numeric expressions.

The basic arithmetic operations are performed with a precision of up to 32 places (data type
XDEC).

In old style operation, basic arithmetic operations are performed to an accuracy of
up to 15 places (NUMERIC data type).

In programs which have been compiled using the DRIVE compiler
DRIVE/WINDOWS-COMP, the basic arithmetic operations are performed using fixed point
or decimal arithmetic. Provided that addition, subtraction and multiplication operations only
involve values of type INTEGER or SMALLINT, fixed point arithmetic is used. In other
cases, decimal arithmetic is used. (See DRIVE Compiler [16])

For additional expressions, see the metavariable expression.

value-expression::=value-term1 [[* | / | % | **] [+ | -] value-term2]

value-term1, value-term2
The first character of value-term (see metavariable value-term) must
not be "+" or "–".

The data type of value-term must be numeric, otherwise DRIVE/
WINDOWS issues an error message.

In the case of addition, subtraction, multiplication, division and the
calculation of percentages, value-expression is assigned the data
type DECIMAL. In the case of the exponential operator, the data
type is FLOAT.

The precision P and the scale factor S of value-expression depend on
the precision of P1 and P2, the scale factors S1 and S2 and on the
way in which the value-terms are related to each other.

Arithmetic operation P and S for value-expression

value-term1 * value-term2 P=MIN(15,P1+P2)
S=MIN(15,S1+S2)

i

346 U5642-J-Z125-3-7600

value-expression Metavariables

The following precedence rules apply when the operators are
evaluated:

Parentheses
– before sign operators
– before exponentiation
– before multiplication, division, percentage calculation
– before addition, subtraction.

Equivalent operators are processed from left to right.

If value-term has the null value, value-expression also has the null
value.

* Multiplication operator.

/ Division operator.

% Percentage operator.

The scale factor of value-expression is equal to the sum of the scale
factors of value-term1 and value-term2.

"%" must not be used in SQL statements.

** Exponential operator.

The scale factor of value-expression is 6.

The exponent (value-term2) must be an integer. This is checked at
program execution.
If value-term1 = 0, then value-term2 > 0.

"**" must not be used in SQL statements.

+ Sign operator or sum operator.

- Sign operator or difference operator.

Used as a sign operator, "-" reverses the sign of value-term.

value-term1 / value-term2 P=15
S=MAX(15-P1+S1-S2,0)

value-term1 { + | - } value-term2 P=MIN(15,MAX(P1-S1,P2-S2)
 + MAX(S1,S2) + 1)
S=MAX(S1,S2)

Arithmetic operation P and S for value-expression

U5642-J-Z125-3-7600 347

Metavariables value-function

value-function
Value function

value-function calculates a value by applying a value function to exactly one argument.

value-function must not be specified in SQL statements for a database.

value-function::=
 { { SIN | COS | TAN | LN | LG | ABS | EXP | SQR | SQRT } (value-expression) |
 CHARLENGTH (char-expression1) |
 ROUND (value-expression1 [, s1]) |
 TRUNC (value-expression2 [, s2]) |
 NUMERIC (char-expression2 [, char-literal]) |
 POSITION (char-expression3 IN char-expression4 [, n2]) |
 LENGTH (char-expression5) |
 MODULO (value-expression3, value-expression4) }

SIN The sine function is applied.

COS The cosine function is applied.

TAN The tangent function is applied.

LN The natural logarithm is applied.

LG The base 10 logarithm is applied.

ABS The absolute value is applied.

EXP The exponential function is applied.

SQR The square function is applied.

SQRT The square root function is applied.

value-expression Argument to which the value function is to be applied.

The trigonometric functions apply to arguments in radians.

value-expression must not be an aggregate or a structured variable.

CHARLENGTH CHARLENGTH returns the length of the string char-expression1.

The position of the last alphanumeric character of char-expression1
is returned. This character can also be a blank.

If char-expression1 contains the null value, CHARLENGTH returns
the null value.

348 U5642-J-Z125-3-7600

value-function Metavariables

char-expression1 The data type of char-expression must be CHARACTER.

ROUND ROUND rounds numeric values up/down to the specified number of
decimal places.
The rounding factor is: 5 * 10-s1-1

If one of the arguments contains the null value, ROUND returns the
null value.

value-expression1 See value-expression.

s1 s1 specifies the number of decimal places to which value-expression1
is to be rounded. s1 must be an integer.

If s1 is not specified, the first decimal place is rounded. value-
expression1 becomes an integer.

If s1 is positive, the decimal place s1+1 is rounded. value-expression1
receives s1 decimal places.

If s1 is negative, the integer digit -(s1) is rounded.

The following limits apply: -126 ≤ s1 ≤ 128

If value-function consists of literal or variable, the following applies:
s1 ≤ decimal places of value-expression1 or -(s1) ≤ integer digits of
value-expression1

Example

 ROUND (3469.87126, 0) = 3470
 ROUND (3469.87126, 4) = 3469,8713
 ROUND (3469.87126, -3) = 3000

TRUNC Truncates numeric values at a specified place.

In the case of a decimal place, all values following the position are
truncated.

In the case of an integer digit, this position and all integer digits
which follow it are assigned the value 0.

If one of the arguments contains the null value, TRUNC returns the
null value.

value-expression2 See value-expression.

s2 s2 specifies the position after which value-expression2 is truncated. s2
must be an integer.

If s2 is not specified, the integral part of value-expression2 is returned.

U5642-J-Z125-3-7600 349

Metavariables value-function

If s2 is positive, value-expression2 is truncated after decimal position
s2.

If s2 is negative, all positions after the integer digit -(s2) in
 value-expression2 are assigned the value 0.

The following limits apply: -126 ≤ s2 ≤ 128

If value-function consists of literal or variable, the following applies:
s2 ≤ decimal places of value-expression1 or -(s2) ≤ integer digits of
value-expression1

Example

 TRUNC (3469.87126, 0) = 3469
 TRUNC (3469.87126, 4) = 3469,8712
 TRUNC (3469.87126, -3) = 3000

NUMERIC The argument char-expression2 is converted into a result of type
NUMERIC.

If one of the arguments contains the null value, NUMERIC returns
the null value.

char-expression2 char-expression2 must be able to be described by char-literal (see
metavariable literal).

If char-expression2 represents a numerical value, char-literal1 must
contain numeric control characters. This can be determined at
runtime using the predicate IS NUMERIC (see metavariable
condition).

char-literal char-literal must satisfy the conditions of mask (see metavariable
mask). The contents comprise mask control characters which must
be compatible with the data type.

If char-literal is not specified, a standard mask is used (see metavar-
iable mask).

POSITION Returns the position of strings within strings.

If one of the parameters has the null value, the result is the null
value.

If the repetition factor n2 is specified, POSITION determines the
position at which char-expression3 occurs for the n2-th time in
char-expression4. (char-expression3 * n2) must be ≤ char-expression4.

If n2 is not specified, POSITION returns the value of the first position
at which char-expression3 occurs in char-expression4. char-expression3
must be ≤ char-expression4.

350 U5642-J-Z125-3-7600

value-function Metavariables

If char-expression3 is not contained in char-expression4 or is without
the specified repetition factor, POSITION returns the value "0".

char-expression3, char-expression4
The data type of char-expression must be CHARACTER.

n2 n2 specifies the repetition factor. n2 must be a positive integer.

LENGTH LENGTH returns the position in a string char-expression5 which is
followed by blanks only. There is no blank at the position returned.

If char-expression5 only contains blanks, LENGTH returns the value
0.

If char-expression5 contains the null value, LENGTH returns the null
value.

char-expression5 The data type of char-expression5 must be alphanumeric.

MODULO MODULO returns the remainder value from the division of
value-expression3 by value-expression4.

If value-expression3 and/or value-expression4 are decimal numbers,
the following applies:
The number of decimal places in the remainder value is equal to the
number of decimal places in value-expression3 or value-expression4,
whichever is the larger.

The relationship between MODULO and TRUNC is shown in the
following equation:
MODULO(a,b) = a - (TRUNC(a/b) * b)

If one of the arguments contains the null value, MODULO returns
the null value.

value-expression3, value-expression4
See value-expression.

Rules

– The value functions SIN, COS, TAN, LN, LOG, EXP, SQR and SQRT are calculated
with a precision of 15 digits, with 6 decimal places.

– The value function ABS is calculated with a precision of 15 digits, but with an
unchanged number of decimal places.

U5642-J-Z125-3-7600 351

Metavariables value-term

value-term
Define a numeric term

value-term::=[+ | -] { value |
 column |
 set-function |
 value-function |
 (value-expression) |
 interval-term }

+ Sign operator or sum operator.

- Sign operator or difference operator.

Used as a sign operator, "-" reverses the sign of value-term.
The first character before or after the monadic operators "+" and
"-" must not also be "+" or "-".
The data type of value-term must be numeric without decimal places.

value See the metavariable value.

column The columns which are specified in value-term must come from the
same base table.

For column see the SQL directories [4-6]

set-function See the metavariable set-function.

value-expression See the metavariable value-expression.

value-expression See metavariable value-expression.,

interval-term See the metavariable interval-term.

interval-term is treated as numeric with a precision of 32 and a scale
factor of 0 (see also the metavariable interval-expression).

interval-term may not be specified in SQL statements for SESAM
and UDS.

352 U5642-J-Z125-3-7600

variable Metavariables

variable
Define a simple variable or reference a component

variable references a simple variable or a component of a structured variable. All compo-
nents which occur on the next level can be specified with partially qualified names (".*"). The
variable name can have a maximum of 32 characters.

variable::={ [char-literal:] var-name1 [suffix] |

 [char-literal:]
 { var-name2 [({ index1 | range1 }, { index2 | range2 })] } }

char-literal char-literal can only be specified in a report definition. It identifies
the type of record to which the value is to refer.

var-name1 Name of a simple variable or the first qualifier for a component.

var-name1 must start with "&" and must not exceed 32 characters in
length.

suffix suffix::={ group-component | index-component }

A group-component or an index-component can be specified as the
suffix.

group-component::= . { * | component [suffix] }

. Qualification operator

* abbreviation for a list of all variable components that are on the
next lower level.
In SQL statements "*" must not be specified for columns.

component
Part of a column of a database (see statement DECLARE
VARIABLE ... LIKE CURSOR/TABLE) or of a structured variable
(= data group or repeating group).
The components of the highest structure level are known as
simple components.
component is specified without the character "&" and may consist
of a maximum 31 characters.
component [suffix] may not be part of a repeating group.

U5642-J-Z125-3-7600 353

Metavariables variable

index-component::={
 { ({ index | var-name [.component] ... }
 [.component [suffix]) |
 (range) }

index-component
Must be specified if a value is to be specified for a field
component of a structured field with occurrences or of a multiple
field. index or range must be supplied with a value when speci-
fying a field component of a multiple field, i.e. you may not
specify an index variable.

index
Designates a vector or repeating group occurrence
The values which you may specify for index are as follows:
0 < index ≤ repetitions, where repetitions is the specification in the
type definition of the component (see metavariables vector and
repeating-group).

range:=index1 - index2

range
Designates an occurrence range. The range limits must not be
index variables and the following rule must be observed:
0 < index1 < index2 ≤ repetitions, where repetitions is the specifi-
cation in the type definition of the component.

var-name2 Name of a matrix.

var-name2 must start with the character "&" and may consist of a
maximum of 32 characters.

index1, index2 Designates a matrix occurrence, i.e. a matrix element.

range1, range2 Designates an occurrence range. The range limits must not be
index variables and the following rule must be observed:
lower limit < upper limit ≤ designates a matrix occurrence, i.e. a
matrix element.

Example

"language(1)" specifies a field component with an occurrence of 1.
"language(2-5)" specifies a field component with an occurrence of
2 through 5.

In suffix you may not specify more than three index components since a maximum
of three repeating groups can be nested in data groups. Only the last index
component to be specified may be a range.

i

354 U5642-J-Z125-3-7600

variable Metavariables

Example

DECLARE VARIABLE 1 &address
 2 city CHAR (10),
 2 street CHAR (20);

&address.* is an abbreviation for &address.city, &address.street.

The component "city" can be addressed as follows:

SET &address.city='Munich';

or as an "independent" variable:

SET &city='Munich';

U5642-J-Z125-3-7600 355

Metavariables vector

vector
Define a vector

vector is used to specify the data type "vector" or "multiple field" for a variable. vector
consists of a fixed number of components, all having the same basic data type. The number
of components is specified by the repetition factor n.

For additional structure types, see the metavariable structure-type.

vector::=(n) basic-data-type base-type

n Repetition factor (0 < n < 256).

basic-data-type See the metavariable basic-data-type.

base-type See the metavariable base-type.

Example

The variable &sales (12) is a vector comprising 12 fields. Each field has 7 digits before
the decimal point and 2 decimal places and is initialized with 0.

DECLARE VARIABLE &sales (12) NUMERIC (9,2) INIT 0;

The value "12345.67" is assigned to the seventh field.

SET &sales (7)=12345.67;

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U5642-J-Z125-3-7600 357

6 Messages
This chapter lists all the DRIVE messages which DRIVE/WINDOWS outputs on the various
platforms (BS2000, SINIX and MS-WINDOWS). They are identified by a unique key.

DRI0008 PLEASE ENTER STATEMENT

Meaning
DRIVE is in interactive mode and is expecting a statement.

DRI0009 STATEMENT EXECUTED

Response
Enter next statement.

DRI0010 MEMORY BOTTLENECK

Response
Release memory space, for example by
- deleting EDT work files
- calling smaller programs
- releasing all views in interactive mode
- using an extended system (XS)

DRI0011 SYNTAX ERROR

Meaning
The statement entered does not comply with the syntax rules.You can obtain an explanation
of the syntax using the HELP statement. Possible causes of error:
- The name used is a DRIVE keyword.
- The syntax element is not permitted at the position indicated.
- A literal is too long or incorrectly specified.

Response
Correct the syntax using the HELP statement. Repeat statement.

DRI0012 VARIABLE MUST NOT BE INDEXED

DRI0013 MEMORY REQUIREMENT FOR VARIABLE / EXPRESSION TOO LARGE

Meaning
The memory requirement for the variable or expression is greater than the maximum
permissible size of approx. 31 Kbytes.

358 U5642-J-Z125-3-7600

Messages

DRI0014 OBJECT NOT DEFINED

Meaning
The object specified has not been made known to DRIVE in a declaration or a database
object has been defined for a different environment.

Response
Declare the object or check the name specified.

DRI0015 ILLEGAL DATA TYPE

Meaning
This data type is not permitted here. The length of a variable of the CHARACTER data type
may be illegal.

DRI0016 ILLEGAL VALUE

Meaning
The value specified is not within the permitted range of values.

DRI0017 OBJECT ALREADY EXISTS

Meaning
The name of the object has already been used.

Response
Use a different name.

DRI0018 ENTRY ONLY PERMITTED AT HIGHEST LEVEL

DRI0019 NO MEMORY SPACE AVAILABLE FOR '(&00)'

Meaning
(&00): Name of the system in which the memory bottleneck has occurred. Name of file for

which the memory bottleneck has occurred.

DRI0020 ILLEGAL MATHEMATICAL OPERATION OR FUNCTION

Meaning
The function or mathematical operation specified is not permitted in the current statement
(e.g. numeric predicates and the value $PI are not permitted in DB statements).

DRI0021 ONLY SIMPLE FIELDS PERMITTED

Meaning
Structured fields can only be used together with the comparison operator '='. Other
comparison operators are only permitted together with simple fields.

Response
Compare individual components.

U5642-J-Z125-3-7600 359

Messages

DRI0022 '(&00)' MESSAGE: (&01) ((&02))

Meaning
(&00): BS2000/DMS/EDT/FHS/LMS/TIAM/TOM-REF/UTM
(&01),(&02): Message numbers:

 LMS: (&01): LMS return code; (&02): PLAM and DMS return codes.
 EDT: (&02): EDT return code.
 UTM: (&01): KDCS error code; (&02): internal UTM error code.
 BS2000: (&01): INTTRACE; (&02): DMS return code.
 FHS: (&01): Main return code; (&02): category, reason.
 TIAM: (&02): TIAM return code.
 TOM-REF: (&02): Input/output status (see COB-1 manual).

Response
Information on return codes can be found in the respective system manuals or can be
obtained via the BS2000 command /HELP-MESS at system level.

DRI0023 STATEMENT LOCKED

Meaning
This statement has been locked for the user.

Response
Do not use this statement or have the administrator remove the lock.

DRI0024 ILLEGAL ORDER OF STATEMENTS

Meaning
Permitted order of statements:
- OPTION statement(s)
- PROCEDURE statement(s)

declarative statements
executable statements

- END PROCEDURE statement
For reports: OPEN REPORT must precede FILL REPORT or CLOSE REPORT.

Response
Enter statements in the correct order.
For reports: Include OPEN REPORT statement.

DRI0025 OBJECT MISSING

Meaning
The object (e.g. library, member) is missing or not available in the format requested (e.g.
library is not a PLAM library).

Response
Create the object or select an existing object. If the object is a library, it is possible that a
file of this name that is not a PLAM library exists.

360 U5642-J-Z125-3-7600

Messages

DRI0026 OBJECT LOCKED

Meaning
The object (e.g. a member of a PLAM library) is locked.

Response
Wait until the object is released or select a different object.

DRI0027 STATEMENT NOT PERMITTED IN '(&00)' MODE

Meaning
This statement may not be used in the specified mode.
(&00): UTM

TIAM
PROGRAM
INTERACTIVE
IDP
ENTER
DISPATCH
SERVER
BATCH

DRI0028 NO MORE THAN THREE INDEX LEVELS PERMITTED

DRI0029 AMBIGUOUS NAME

Meaning
The specified name must be identified unambiguously.

DRI0030 '(&00)' EXPECTED

Meaning
The DRIVE syntax element specified is missing at the position marked.
(&00): DRIVE syntax element.

DRI0031 NAME TOO LONG

DRI0032 '(&00)' CONTAINS (&01) ERRORS

Meaning
(&00): program name
(&01): number of errors

Response
Correct and analyze source program again.

DRI0033 DYNAMIC STATEMENT NOT PERMITTED

Meaning
This statement is not permitted in the EXEC statement.

U5642-J-Z125-3-7600 361

Messages

DRI0034 ILLEGAL GROUP DEFINITION

Meaning
A variable group may not be defined.

DRI0035 COMPONENTS NOT IN SAME GROUP

DRI0036 VARIABLE IN HIGHER-LEVEL GROUP

Meaning
In a REDEFINES or LIKE specification, the variable itself may not be in a higher-level
group.

DRI0037 ONLY A GROUP MAY BE SPECIFIED

Meaning
- A LIKE specification must refer to a group.
- A .* specification is only permitted for a variable of the group type.

DRI0038 ILLEGAL INDEX SPECIFICATION(S)

Meaning
- CHECK condition: No index may be specified since the check condition is valid for all

occurrences of a vector or repeating group.
- An index may contain only constant entries.
- The indexed variable is not a vector or repeating group.
- An index must be numeric with a scale factor 0.

DRI0039 CHECK CONDITION NOT SATISFIED

Meaning
The condition specified in the CHECK clause is not satisfied.

Response
Modify the value in accordance with the check condition specified in the definition of the
variable.

DRI0040 ILLEGAL VARIABLE SPECIFICATION

Meaning
- Only the defined variable itself is permitted in the check condition.
- Variables may not be specified as the index in DB statements.

DRI0041 VARIABLE ALREADY REDEFINED

Meaning
A variable that has already been redefined was addressed when redefining a variable.

DRI0042 NO FURTHER COMPONENTS PERMITTED IN GROUP CREATED WITH 'LIKE'

Meaning
A variable or component created with LIKE may not contain any additional components.

362 U5642-J-Z125-3-7600

Messages

DRI0043 '(&00)' IS EMPTY

Meaning
(&00): - EDT work file 0: no statement held

- Form name: a dynamic form requires neither a TTITLE nor a BTITLE definition;
no FILL statement was specified for the form before the DISPLAY statement.

- List file name: the list file is empty.
- DATA DICTIONARY.

Response
- Fill the EDT work file.
- Fill the form using a FILL statement.
- Fill the list file.
- Create or fill the data dictionary.

DRI0044 STATEMENT '(&00)' IN PROGRAM BLOCK (&01) ILLEGAL

Meaning
The indicated statement is not permitted in the program block of the current procedure.
(&00): ADD WINDOW/NEW WINDOW/NEXT WINDOW
(&01): BODY/SCRIPT-INIT/SCRIPT-ON

Response
Remove/modify statement/part of statement.

DRI0045 '(&00)' NOT COMPATIBLE WITH CURRENT DRIVE VERSION

Meaning
The program specified cannot be compiled or executed with the DRIVE version in use.
(&00): program name
(&00): program name with suffix CODE: intermediate code

Response
Convert the program in accordance with the DRIVE version in use or create new interme-
diate code

DRI0046 OVERWRITE '(&00)'? REPLY: (Y=YES; N=NO)

Meaning
(&00): program name.

Response
Y: The EDT work file 0 respectively source program is overwritten.
N: The EDT work file 0 respectively source program is not overwritten.

DRI0047 *** ERROR IN LINE (&00) OF THE EXPANDED MEMBER

Meaning
An error has occurred in the specified line of the expanded copy member. The precise error
position is stored in EDT work file 9.

U5642-J-Z125-3-7600 363

Messages

DRI0048 MAXIMUM NUMBER OF LINES PERMITTED ((&00)) EXCEEDED

DRI0049 MAXIMUM LINE LENGTH ((&00)) EXCEEDED

Meaning
(&00): maximum number of characters permitted per line, e.g.

- 256 in EDT work files
- 80 on the terminal
- according to the specification in the DECLARE FORM statement.

Response
- Shorten line.
- Define a form with longer lines.

DRI0050 '(&00)' NAMING CONVENTIONS VIOLATED

Meaning
The naming conventions of the subsystem or of DRIVE have not been observed.
(&00): DRIVE

EDT
PLAM.

Response
Check the naming conventions in the respective manuals.

DRI0051 '(&00)' PARAMETER ALREADY SUPPLIED

Meaning
Values that have already been supplied may not be changed.

DRI0052 '(&00)' PARAMETER NOT SUPPLIED

Meaning
(&00): parameter that has not been supplied.

Response
Supply the parameter using a PARAMETER statement.

DRI0053 '(&00)' CANNOT BE ACCESSED

Meaning
An attempt has been made to access a library (LIBRARY, FORMLIB) that is under a
different user ID and is not available for foreign access.

Response
Make library available for foreign access or use a different library.

364 U5642-J-Z125-3-7600

Messages

DRI0054 '(&00)' LOCKED

Meaning
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code
program name with suffix LIST: compiler listing
filename: file
The specified object cannot be accessed from DRIVE because it is locked by
another user.

(&00): DATA DICTIONARY
Access is currently not possible due to parallel updating accesses of more than one
task.

Response
Initiate object release.

DRI0055 '(&00)' NOT FOUND

Meaning
(&00): module name: the module could not be dynamically loaded.

library name: the library does not exist, is not shareable or cannot be initialized
under a foreign ID.

member name with no suffix: source program
The intermediate code, compiler listing and usage reference are deleted in the
DATA DICTIONARY even if the message follows an 'UNSAVE member-name'
for a member that does not exist.

object name: object code
 Loading of object code with version suitable to the run time system's version

failed.
member name with suffix CODE: intermediate code
member name with suffix LIST: compiler listing
DATA DICTIONARY: the data dictionary does not exist or PARAMETER DD has not

been initiated.
The following also applies to the SINIX operating system:

Directory: part of the pathname does not exist.
File: file of the specified name does not exist.

Response
- FHS modules must be held in the library with the link name FORMOML.
- Initialize library or library member.
- Generate object code with a compiler's version matching the run time system's version

and insert object code into the object library.
- Create data dictionary.
The following also applies to the SINIX operating system:
- Check and correct pathname.
- Check and correct pathname.

U5642-J-Z125-3-7600 365

Messages

DRI0056 POSITION OF '(&00)' IN XS SPACE NOT CONSISTENT WITH OTHER MODULES

Meaning
Different address space was addressed during dynamic loading of a module in an XS
system.

Response
Inform administrator.

DRI0057 STATEMENT TRUNCATED TO PERMITTED LENGTH

Meaning
- The first statement in the copy member does not fit on the screen and has therefore

been truncated to the maximum length permitted.
- The statement repeated in REPEAT was too long and has been truncated.

Response
Shorten the statement (e.g. by removing blanks).

DRI0058 VIEW DECLARATION OF A VIEW NOT PERMITTED

Meaning
A view may not be specified in a FROM clause when defining a view.

DRI0059 ONLY ONE VIEW OR BASE TABLES PERMITTED

Meaning
Only one view or one or more base tables may be specified in the FROM clause.

DRI0060 SPECIFIED STATEMENT INCOMPLETE

DRI0061 '(&00)' '(&01)' INVALID OR NOT GENERATED

Meaning
(&00): TAC:

The generation error depends on the transaction code specified (&01):
DRISQL: only permitted as FIRST-TAC
DRISQLF/SQLNEXT: only permitted as NEXT-TACs
SQLENTER/SQLLIST: only permitted as asynchronous TACs
SQLRMT/SQLRMTA/SQLRET: TACs for distributed transaction processing
Additional transaction codes may mean:
- the transaction code has not been generated
- no dialog TAC in the case of a dialog call
- no ATAC in the case of an asynchronous call

(&00): LTERM:
(&01): LTERM name

Response
Regenerate the application with KDCDEF, specifying the correct TAC or LTERM name.

366 U5642-J-Z125-3-7600

Messages

DRI0062 INVALID K OR F-KEY

Meaning
Input was made via a K or F key that was not defined with PARAMETER KFKEY or declared
via the UTM SFUNC macro.

Response
Repeat entry using another key.

DRI0063 DOLINE=(&00); RESUME PROGRAM? REPLY: (Y=YES; N=NO)

Meaning
The number of program statements set in PARAMETER DIAGNOSIS DOLINE has been
reached.
(&00): current value of the DOLINE parameter

Response
Y: execution of the program is resumed with the next statement.
N: execution of the program is aborted.

DRI0064 '(&00)' ABORTED WITH '(&01)'

Meaning
Execution of the program has been aborted due to
- EXIT,
- a BREAK statement,
- the DOLINE value being reached and the prompt response 'No',
- BREAK being entered at the terminal, K1 key etc.
- calculation overflow or divide error.
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code
(&01): EXIT/BREAK/PROGRAM ERROR

DRI0065 MEMORY BOTTLENECK WHEN STORING INTERMEDIATE CODE

Meaning
Program analysis successfully completed; the objects to be generated as specified in the
OPTION clause (e.g. compiler listing, where-used information) have been generated.
However, a memory bottleneck occurred when accessing the PLAM-X member for the
intermediate code.

Response
Release memory and repeat COMPILE statement with OPTION CODE=ON.

U5642-J-Z125-3-7600 367

Messages

DRI0066 OBJECT LOCKED DURING INTERMEDIATE CODE STORAGE

Meaning
Program analysis successfully completed; the objects to be generated as specified in the
OPTION clause (e.g. compiler listing, where-used information) have been generated.
However, the PLAM-X member for storage of the intermediate code is locked.

Response
Wait until the object is no longer locked or select a different object. Repeat the COMPILE
statement with OPTION CODE=ON.

DRI0067 '(&00)' MESSAGE: (&01) ((&02)) DURING INTERMEDIATE CODE STORAGE

Meaning
Program analysis successfully completed; the objects to be generated as specified in the
OPTION clause (e.g. compiler listing, where-used information) have been generated.
However, a status error occurred when accessing the PLAM-X member for the intermediate
code.
(&00): PLAM
(&01): PLAM return code
(&02): DMS return code

Response
The information on return codes can be found in the respective system manuals or can be
obtained via the BS2000 command /HELP-MESS at system level. Repeat COMPILE
statement with OPTION CODE=ON.

DRI0068 INVALID '(&00)' ENTRY

Meaning
(&00): Invalid entry, e.g.
 - STATUS, FILE, LTERM, DEVICE in LIST statement
 - LIST in DRIVE formatting
 - SCHEMA, PASSWORD, USERGROUP, USERNAME in PERMIT statement
 - ITEM entry

Response
Make numeric specification for selection identifier in PRESELECT ITEM statement.

DRI0069 'SYSTEM' COMMAND INVALID OR ILLEGAL

DRI0070 PARAMETER TRANSFER AREA LARGER THAN (&00) BYTES

Meaning
The sum (value range, description) of the parameter values specified in the USING clause
exceeds the maximum area permitted.
(&00): maximum size of the transfer area.

Response
Transfer fewer or shorter parameters.

368 U5642-J-Z125-3-7600

Messages

DRI0071 ERROR IN THE IMPLICIT 'COPY' MEMBER

Meaning
DECLARE SCREEN statement:

EUA addressing aid incorrect or missing.
USE VIEWS statement:

The read-in view declaration contains errors.

Response
Generate a new addressing aid or store view declaration again.

DRI0072 RECURSIVE '(&00)' CALL NOT PERMITTED

Meaning
DRIVE does not permit any recursive program or subprogram calls.
(&00): SUBPROCEDURE

program name with no suffix: source program
program name with suffix CODE: intermediate code

DRI0073 '(&00)' CONTAINS INPUT/OUTPUT STATEMENTS

Meaning
The program cannot be used as an ENTER program as this must not contain any input/
output statements.
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code

DRI0074 SYSTEM PROGRAM '(&00)' NOT FOUND/INCORRECT

Meaning
(&00): name of the system program

Response
Inform administrator.

DRI0075 SYSTEM LIBRARY '(&00)' NOT FOUND

Meaning
(&00): name of the system library

Response
Inform administrator.

DRI0076 NO METAINFORMATION FOUND

Meaning
No information on the specified view or cursor etc. was found by a SHOW statement.

U5642-J-Z125-3-7600 369

Messages

DRI0077 NO 'DRIVE' STATEMENT FOUND

Meaning
- An analysis cannot be carried out because either the EDT work file 0 or the PLAM

member does not contain any DRIVE statements.
- The REPEAT statement found no previously stored statements.

DRI0078 INTERNAL 'DRIVE' ERROR '(&00)' IN '(&01)' PROCEDURE

Meaning
DRIVE has been aborted due to internal inconsistencies. At the same time, diagnostic infor-
mation has been generated in the form of a dump.
(&00): internal error number
(&01): name of an internal procedure

Response
Forward diagnostic information to the administrator.

DRI0079 SPECIFICATION ONLY PERMITTED WITH SIMPLE VARIABLES

Meaning
The indicated clause is only permitted if no expression is involved or if the variable referred
to in the clause is not a group.

Response
Remove the clause concerned or do not use a structured variable.

DRI0080 INDICATED CLAUSE ALREADY SPECIFIED IN THE STATEMENT

Response
Enter the clause only once.

DRI0081 SPECIFICATION ONLY PERMITTED FOR FORMS

Meaning
The IMAGE or INIT clause is only permitted for forms, and not for lists or in the SEND
MESSAGE statement.

Response
Delete IMAGE or INIT clause.

DRI0082 ONLY 'FHS' FORMS PERMITTED

Meaning
Only FHS forms are permitted in a DISPLAY statement containing more than one form
name.

Response
Change or delete form name in the DISPLAY statement.

370 U5642-J-Z125-3-7600

Messages

DRI0083 ILLEGAL '(&00)' SPECIFICATION

Meaning
- NEWLINE and NEWPAGE are not permitted in a SEND MESSAGE statement.
- TABLE may not be specified in conjunction with NEWLINE or NEWPAGE.
- A DISPLAY statement within a COMMIT or STOP statement may not have the effect of

writing to a list form.
- RETURN may only be specified in conjunction with forms, not lists.
- RETURN may not be specified immediately after a NAMES specification.
- NEWPAGE is not permitted in a DECLARE FORM statement.
- A DISPLAY statement may only contain a SCREENERROR clause if the statement

refers to an FHS form.
- USING may not be specified if no USING clause is defined in the program called.
- INVISIBLE may not be specified immediately after a RETURN specification.
- TRACE is not permitted in DEBUG if no interpreter listing is currently available or the

interpreter listing and the source program do not match.
(&00): TRACE

Response
Remove the illegal specification.
Generate valid interpreter listing.

DRI0084 ENTRY ONLY PERMITTED WITH NO TRANSACTION OPEN

Meaning
- In interactive mode, no program may be called while a transaction is open.
- The PARAMETER DYNAMIC NORMSQL statement is only permitted when no

transaction is open.
- The STOP statement is not executed.

Response
End transaction and repeat entry.

DRI0085 '(&00)' VARIABLE CONTAINS NULL VALUE

Meaning
- At execution time, a DRIVE variable that is to be transferred to the DB system may not

contain the NULL value.
- The NULL value may not be assigned to the variable.
(&00): variable name

Response
Supply the variable with a permitted value.

U5642-J-Z125-3-7600 371

Messages

DRI0086 TRANSACTION TERMINATED; PRESS SEND KEY

DRI0087 ERROR: '(&00)' ABORTED

Meaning
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code
- Runtime errors occurred during execution of the program initiated with DO or

ENTER. For ENTER, the associated detailed error list has been written to
SYSLST.

(&00): name of the DRIVE variant loaded
- DRIVE has been aborted due to an error. A corresponding message is output or

diagnostic information generated.

Response
- Correct the ENTER procedure involved and restart.
- Forward diagnostic information to the administrator if necessary.

DRI0088 '(&00)' TERMINATED NORMALLY

Meaning
- normal termination of DRIVE

(&00): program name of the DRIVE variant loaded
- normal termination of the application program (&00).

(&00): program name with no suffix : source program
program name with suffix CODE: intermediate code

DRI0089 *** SERIOUS ERROR. PROGRAM ANALYSIS ABORTED

Meaning
A serious error occurred during program analysis. The rest of the program could not be
analyzed.

DRI0090 BOTTLENECK IN CLASS 5 MEMORY DURING DMS MACRO EXECUTION

Response
- Inform administrator.
- Enlarge class 5 memory.

DRI0091 UTM MESSAGE IN '(&00)'. KCRC (&01) ((&02))

Meaning
(&00): UTM function (e.g. INIT, MGET, ...)
(&01): KCRCCC = UTM error code
(&02): KCRCDC = internal UTM error code
For further information, see the UTM manual.

Response
Remove the error, e.g. by changing the entries in KDCDEF, and restart DRIVE.

372 U5642-J-Z125-3-7600

Messages

DRI0092 STATEMENT NOT PERMITTED IN THIS OPERATING SYSTEM

Meaning
A statement was entered in the SINIX or BS2000 operating system which is only permitted
in the BS2000 or SINIX operating system respectively.

DRI0093 CONTROL VARIABLE MUST NOT BE CHANGED

Meaning
The attempt was made to change the control variable of a CYCLE FOR statement during
cycle execution. For report generation: An attemp was made to change a variable defining
a report between OPEN REPORT and CLOSE REPORT.

Response
Replace the control variable by a different variable (e.g. by SET) in the indicated statement.

DRI0094 DD LOCKED; IDDS STATUS: (&00), (&01)

Meaning
A data dictionary, an entity or relationship cannot be accessed.
Possible reasons:
- Record locked due to parallel transactions
- Dictionary was deactivated
Any active transactions are normally rolled back; refer the DRIVE manual for more infor-
mation.
(&00): error number
(&01): error text

Response
The IDDS code gives the exact reason for the lock. Repeat DD request after releasing
locked object.

DRI0095 DD RESOURCE BOTTLENECK; IDDS STATUS: (&00), (&01)

Meaning
A bottleneck occurred in resources for ERMS. Possible reasons:
- no cursor ID available
- no memory space available
The current transaction was rolled back.
(&00): error number
(&01): error text

Response
Refer to ERMS manual for the meaning of the IDDS code. The ERMS administrator may
have to take action.

U5642-J-Z125-3-7600 373

Messages

DRI0096 ERROR IN '(&00)' IN LINE (&01):

Meaning
Header for a list of errors.
Another error occurred in line (&01) of program (&00) during processing of a WHENEVER
event (see compiler listing).
Under MS-Windows in RTS mode, an invalid statement in the start file may be the cause of
this error message.
(&00): program name with no suffix : source program

program name with suffix CODE: intermediate code
Name of the start file under MS-Windows

(&01): line number in the compiler listing
line number in the start file

Response
Diagnose the error using the specified program name and line number in the compiler
listing.
In the case MS-Windows, correct invalid statement in start file.

DRI0097 DISPLAY ERROR? REPLY: (EDT=DISPLAY; BREAK=ABORT)

Meaning
Following program analysis in the EDT work file 0, the EDT statement is used to branch to
the editor. The analyzed source program is stored in work file 0 together with the inserted
error messages, the complete compiler listing is stored in work file 9.

DRI0098 '(&00)' FORM NOT YET DISPLAYED

Meaning
- Parallel processing of more than one list form is not possible.

A list form filled with FILL must be output using a DISPLAY statement before the next
form can be filled.

- All screen outputs must be completed before a program called with DO can be
terminated.

- All temporary forms declared in a program called with CALL must be completed before
that program can be terminated.

(&00): form name

Response
- Display the list form previously processed using a DISPLAY statement, or
- Change the form name specified in the FILL statement to the current form name.

374 U5642-J-Z125-3-7600

Messages

DRI0099 '(&00)' CONTAINS LOCKED STATEMENTS

Meaning
The called program includes statements that are locked for the user by a PARAMETER
statement.
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code

Response
The locked statement can only be changed in a new DRIVE session.

DRI0100 '(&00)' ONLY EXECUTABLE WITH 'CALL'

Meaning
A program can only be executed with CALL if it contains output parameters, for instance.
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code

DRI0101 OPEN TRANSACTION IN '(&00)' ROLLED BACK

Meaning
All transactions must be closed before terminating a program called with DO, i.e. a
COMMIT WORK or ROLLBACK WORK statement must be executed dynamically before
any of the statements END PROCEDURE, BREAK PROCEDURE, STOP or another DO
statement.
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code

DRI0102 ILLEGAL PERIOD OF VALIDITY ('TEMPORARY', 'PERMANENT')

Meaning
The redefined variable and the variable to be redefined have different TEMPORARY and
PERMANENT specifications.

Response
Declare both variables with either TEMPORARY or PERMANENT.

DRI0103 RANGE SPECIFICATION ONLY PERMITTED IN LAST COMPONENT

DRI0104 'LIKE' COMPONENT CANNOT BE REDEFINED

Meaning
The group contains components that redefine other components.

Response
Declare the variable without LIKE and remove the REDEFINES specification from LIKE
group.

DRI0105 INDEX SPECIFICATION REQUIRED

Meaning
An index must be specified as the variable is a vector.

U5642-J-Z125-3-7600 375

Messages

DRI0106 '(&00)' OPTION ONLY PERMITTED WITH MEMBER-NAME

Meaning
As no member name has been declared, the specified option in the COMPILE statement
cannot be fulfilled.
(&00): LISTING

CODE

Response
Specify a member name or omit option.

DRI0107 '(&00)' ALREADY USED AS INPUT FIELD

Meaning
An input field has been specified more than once in FILL statements that refer to the same
DRIVE form.
(&00): variable name

DRI0108 INCORRECT STRUCTURE IN DRIVE-MESSAGE '(&00)'

Meaning
The message held in the messagefile does not comply with the conventions for messages
with responses.
(&00): message number

Response
Change DRIVE message according to the conventions.

DRI0109 TOTAL LENGTH OF INPUT DATA TOO SHORT

Meaning
During reading in of values to a DRIVE form,
- the end marker was entered in an input field, or
- a record that is too short was read during processing with the SYSDTA file.

Response
- Remove end marker, or
- enlarge the record in the SYSDTA file to the expected input length.

DRI0110 TOTAL LENGTH OF INPUT DATA TOO GREAT

Meaning
A record that is too long was read during reading in of values to a DRIVE form via the
SYSDTA file.

Response
Shorten the record in the SYSDTA file to the expected input length.

376 U5642-J-Z125-3-7600

Messages

DRI0111 '(&00)' HAS ILLEGAL FILE CHARACTERISTICS

Meaning
(&00): link name (DRILIST, INTTRACE)
The following file characteristics are required:

Characteristic DRILIST INTTRACE
--
FCBTYBE ISAM ISAM
RECFORM V V
BLKSIZE (STD,b) b<=16 (STD,16)
KEYPOS 5 5
KEYLEN 24 32
OPEN INOUT INOUT
SHAREUPD YES YES
SPACE (b*2+1,b) (33,16)

Response
Delete errored file. If necessary, DRIVE automatically recreates the INTTRACE file.

DRI0112 EXIT ROUTINE CANNOT BE EXECUTED

Meaning
The exit routine could not be found in the F.EXITLIB library.

DRI0113 ILLEGAL 'FHS' FORM SPECIFICATION

Meaning
The FILL statement is not permitted for FHS forms.

DRI0114 '(&00)' NOT OPEN OR GENERATED

Meaning
A parent window specified for ADD WINDOW must have been generated and opened.
(&00): window name

DRI0115 WINDOW '(&00)' NOT DEFINED

Meaning
The window to be opened via ADD/NEW/NEXT WINDOW does not exist.

DRI0116 '(&00)' CANNOT BE EXECUTED/COMPILED IN '(&01)' MODE

Meaning
The program cannot be executed/compiled in the specified terminal mode.
(&00): program name
(&01): 'WINDOW' or 'ALPHA'

U5642-J-Z125-3-7600 377

Messages

DRI0117 WINDOW '(&00)' ALREADY OPEN

Meaning
The window to be opened via ADD/NEW/NEXT WINDOW is already open.
(&00): window name

DRI0118 '(&00)' NOT PERMITTED ON SCREEN IN ASYNCHCRONOUS UTM OPERATION

Meaning
PTRACE outputs to the screen and DOLINE-PROMPTING when the DOLINE value is
reached are not permitted in asynchronous UTM operation.
(&00): PTRACE

DOLINE-PROMPTING

DRI0119 NO ACCESS RIGHT FOR SPECIFIED TABLE

Meaning
In interactive UTM applications the access rights for the tables used must be held in the
data dictionary if PARAMETER PERMISSION=ON has been set. If the access right for the
statement issued (e.g INSERT) has not been granted, the statement is rejected.

Response
Grant new access rights, if necessary.

DRI0120 'OF' TYPE NOT COMPATIBLE WITH 'CASE' TYPE

Meaning
'value-expr' was specified for 'OF', whereas 'search-cond' was specified for 'CASE', or vice
versa.

DRI0121 SPECIFIED OBJECT NOT DYNAMIC

Meaning
A DROP statement may only refer to objects (view, cursor) generated dynamically
(EXECUTE statement).

DRI0122 NESTED 'COPY' CALLS NOT PERMITTED

Meaning
A COPY statement is not permitted in a copy member.
Exception: Internally, DRIVE executes the DECLARE SCREEN and USE VIEWS state-
ments with the aid of COPY statements. These statements are also permitted in copy
members.

Response
Enter call without nesting.

378 U5642-J-Z125-3-7600

Messages

DRI0123 COMPILER LISTING / SOURCE PROGRAM VERSIONS DO NOT MATCH

Meaning
PTRACE cannot be executed because the date in the compiler listing does not match the
date in the current program.

Response
Generate a new compiler listing.

DRI0124 STATEMENT MISSING FROM COMPILER LISTING

Meaning
The statement was not transferred to the compile list, perhaps because the statement did
not begin in the source program until column 256. For this reason, the statement can also
not be output using PTRACE.

Response
Correct the source program accordingly.

DRI0125 CURRENT 'SPWA' (=(&00)) TOO SMALL

Meaning
The SPWA was generated too small, meaning the ENTER statement could not be
executed.

Response
Increase SPWA size.

DRI0126 'DRILOG' ABORTED, 'LOG' FUNCTION RESET

Meaning
The DRILOG request could not be executed due to an ITC error.

Response
Ask the administrator which problem occurred in the ENTER procedure DRI.ENT.DRILOG.
Remove the error and repeat the PARAMETER statement to start DRILOG (PARAMETER
DYNAMIC LOG).

DRI0127 'DRILOG' NOT LOADED, 'LOG' FUNCTION NOT EXECUTABLE

Meaning
The ENTER procedure DRI.ENT.DRILOG could not be started.

Response
- Check whether the ENTER procedure DRI.ENT.DRILOG and the program

PRO.DRILOG are under the same user ID.
- Check whether BS2000 system overload caused the batch task not to be started.

Repeat the PARAMETER statement to start DRILOG.

U5642-J-Z125-3-7600 379

Messages

DRI0128 EDT WORK FILE 0 NOT EMPTY. TERMINATE 'DRIVE'? (Y=YES; N=NO)

Meaning
The EDT work file 0 still had unsaved contents when STOP was entered.

Response
Y: DRIVE is terminated; the unsaved contents are lost.
N: DRIVE is not terminated.

Enter a SAVE statement; repeat STOP statement.

DRI0129 UP TO (&00) 'FHS' FORMS PERMITTED

Meaning
No more than one FHS form may be specified in the DISPLAY statement per screen line.
(&00): maximum number of forms permitted in a DISPLAY statement

Response
Reduce the number of forms used.

DRI0130 THE FOLLOWING ERROR MESSAGES COULD NOT BE ASSIGNED:

Meaning
The listed error messages could not be correctly assigned to the errored DRIVE statements
(EDT work file 0) because the compiler listing has not been fully read in to EDT work file 9.

Response
Shorten the program.

DRI0131 SPECIFIED LIBRARY AND 'OLD-STYLE' PLAM LIBRARY DO NOT MATCH

Meaning
An attempt to start an 'old-style' program was made in mixed operation. However, the library
from which this program was to be started does not match the PLAM library previously
defined for 'old-style' operation. The program could not be started as only one PLAM library
can be defined in 'old-style' operation.

Response
Change library specification and restart program.

DRI0132 VARIABLE NOT PART OF AN 'ADDRESSING AID'

Meaning
The variable must be implicitly defined in a DECLARE SCREEN statement before an
ATTRIBUTE clause is permitted.

Response
Generate a new addressing aid with IFG or correct entry.

380 U5642-J-Z125-3-7600

Messages

DRI0133 ONLY ONE ATTRIBUTE PERMITTED PER ATTRIBUTE CLASS

Meaning
A maximum of one attribute from an attribute class may be specified in an ATTRIBUTE
clause (e.g. two colors may not be specified at the same time).

DRI0134 'DEFAULT' MUST BE THE FIRST ATTRIBUTE

Meaning
If more than one global attribute is specified, DEFAULT must be first.

DRI0135 NAME OF 'LIST' FILE CHANGED BEFORE RESTART

Meaning
Before DRIVE crashed, a list file with a different name from the one entered for the file at
restart was being processed.

Response
Assign the old list file.

DRI0136 INCORRECT 'TOM-REF' MODULE VERSION

Meaning
The version of TOM-REF used for dynamic loading was incorrect (an attempt to generate
a data dictionary connection was made).

Response
Inform administrator.

DRI0137 'INDEX ERROR': '(&00)' NOT IN INDEX RANGE OF '(&01)'

Meaning
The value of the index variable is not within the index range of variable(&01).
(&00): index variable name
(&01): variable name

Response
Correct index variable value (e.g. using SET statement).

DRI0138 '(&00)' IN REDEFINED VARIABLE '(&01)'

Meaning
The value of the redefined variable (&01) is only correct in conjunction with the redefinition
of (&01).
(&00): CONVERSION ERROR:

The value is not consistent with the data type of (&01).
CHECK ERROR:

The value of (&01) is consistent, but violates the CHECK clause for (&01).

Response
Before incorrectly referencing (&01), correct the value using a SET statement or use a
redefined variable instead of (&01).

U5642-J-Z125-3-7600 381

Messages

DRI0139 DIMENSIONS NOT COMPATIBLE

Meaning
The following applies to vektor arithmetics: For +,-, the dimensions must be identical; for
*, one factor must be a scalar; for /,%, the divisor or the percentage factor must be a scalar.

DRI0140 (&00)TH PARAMETER CONTAINS NULL VALUE

Meaning
(&00): position of the errored current parameter in the parameter list. In mixed operation a
parameter of an 'old-style' program may not contain the NULL value.

DRI0141 SCHEMA UNKNOWN

Response
Specify the schema name or declare it using a PARAMETER statement.

DRI0142 INTEGER EXPECTED

Meaning
The expression may not contain any variables of the type DECIMAL, NUMERIC or numeric
literal with a decimal point, for instance.

DRI0143 PARAMETER MUST CONSIST OF ONLY ONE VARIABLE

Meaning
Only one variable or variable component is permitted as a parameter here (no literals,
expressions etc.).

DRI0144 (&00). PARAMETER NOT TRANSFERRABLE

Meaning
The data type of the specified current parameter cannot be transferred to the formal
parameter.
(&00): position of the errored current parameter in the parameter list

Response
Adapt current parameter to the formal interface definition.

DRI0145 'RETURN' ENTRY IN (&00)TH PARAMETER INVALID

Meaning
The current parameter indicated may not be specified with RETURN since the corre-
sponding formal parameter does not have a RETURN clause.
(&00): position of the errored current parameter in the parameter list

Response
Adapt the specification of the current parameter to the formal interface definition.

382 U5642-J-Z125-3-7600

Messages

DRI0146 '(&00)' ENTRY IN '(&01)'TH PARAMETER MISSING

Meaning
- The parameter must be specified with RETURN if the corresponding formal parameter

has a RETURN clause.
- The parameter must be specified with INDICATOR if a NULL value is to be transferred.
(&00): INDICATOR

RETURN
(&01): position of the errored current parameter in the parameter list

Response
- Adapt the specification of the current parameter to the formal interface definition.
- Insert an INDICATOR clause or do not transfer a NULL value.

DRI0147 NUMBER OF CURRENT AND FORMAL PARAMETERS DOES NOT MATCH

Response
Adapt the specification of the current parameter to the formal interface definition.

DRI0148 '(&00)' SPECIFIED WITH 'RETURN' MORE THAN ONCE

Meaning
A parameter or parameter component specified with RETURN is permitted no more than
once in a USING clause.
(&00): name of the current parameter

Response
Check the parameter specification.

DRI0149 STATEMENT ABORTED; (BREAK=CLEAR SCREEN)

Meaning
The program analysis or run contained errors.

Response
Acknowledge the prompted BREAK statement with the SEND key. The screen is cleared
and new statements can be entered.

DRI0150 NOT ALL THE DB OBJECTS DECLARED COULD BE RELEASED

Meaning
The objects declared by the program analysis in the DB system could not all be released.
The declarations are still valid. If an intermediate code was generated, it is retained.

DRI0151 STATEMENT EXECUTED; (BREAK=CLEAR SCREEN)

Response
Acknowledge the prompted BREAK statement with the SEND key. The screen is cleared
and new statements can be entered.

U5642-J-Z125-3-7600 383

Messages

DRI0152 PLEASE ENTER TRANSACTION CODE (&00)

Meaning
The DRIVE conversation has been terminated. The user can enter the next transaction
code in the input field provided with blanks (&00).

DRI0153 LOAD ERROR IN 'OLD-STYLE' MODULE

Meaning
Possible causes:
1. 'Old-style' operation is not installed, i.e. mixed operation is not possible.
2. The 'old-style' module library has not been assigned.

Response
2. Assign the module library correctly and start mixed operation again.

DRI0154 'DRIVE' SYSTEM LIMITS REACHED ((&00);'(&01)')

Meaning
Possible causes:
- Internal table too large, e.g. in

- the declaration of a very large variable,
- the declaration of an FHS form with more than input/output fields.

- A statement too deeply nested or too complex.
- A DB statement too long for the interface to the DB system.
(&00): internal error number, returned by an internal procedure (&01)

Response
- Shorten or simplify statement.
- Define less input/output fields.
- Inform administrator.

DRI0155 MIXED OPERATION ONLY PERMITTED IN 'SESAM' DB SYSTEMS

Meaning
Mixed operation is only possible if DRIVE is running in conjunction with a SESAM data base
system.

DRI0156 MAXIMUM NUMBER OF PARAMETERS PERMITTED (128) EXCEEDED

Meaning
A maximum of 128 parameters can be transfered when calling an OLD-STYLE program in
mixed mode.

384 U5642-J-Z125-3-7600

Messages

DRI0157 ERMS SESSION OPEN FAILED; IDDS STATUS: (&00), (&01)

Meaning
The ERMS session could not be opened due to one of the following reasons:
- invalid entry in security partition
- subschema for DRIVE not installed
- dictionary specified by environment variable $DRIVE_DD or default setting not

available or locked
- ERMS resource bottleneck or error
(&00): error number
(&01): error text

Response
Refer to ERMS manual for the meaning of the indicated IDDS code. Verify the dictionary
definition in the environment variable $DRIVE_DD. In the case of installation errors, notify
the ERMS administrator.

DRI0158 INCONSISTENCY IN DD; IDDS STATUS: (&00), (&01)

Meaning
The indicated IDDS code was returned on attempting to access the data dictionary because
it was found to be inconsistent. The active transaction was rolled back. Further DD
processing is not recommended.
(&00): error number
(&01): error text

Response
Refer to ERMS manual for the exact meaning of the IDDS code. It may be necessary to
have the ERMS administrator remove any inconsistencies.

DRI0159 ERMS INSTALLATION ERROR; IDDS STATUS: (&00), (&01)

Meaning
The indicated error occurred during an open session. Possible reasons:
- schema not installed correctly
- subschema not installed correctly
The active transaction was rolled back.
(&00): error number
(&01): error text

Response
Notify ERMS administrator. Check if the error is due to fault installation or invalid command
files supplied.

U5642-J-Z125-3-7600 385

Messages

DRI0160 NUMERIC OR 'X' CONTROL CHARACTERS DO NOT MATCH TO FIELD DEFINITION

Meaning
An incorrect number or order of control characters for numeric data types ('Z','*','S','9'), 'P'
control characters (for numeric types with point) or an 'X' control character (for the
CHARACTER data type) was assigned in a mask. The number of these control characters
must correspond to the length of the variable for which the mask was specified.

Response
Check the number or order of the mask control characters using the definition of the
variable.

DRI0161 (&00) AND (&01) NOT PERMITTED IN A MASK AT THE SAME TIME

Meaning
(&00),(&01): control characters

DRI0162 (&00) ONLY PERMITTED AS FIRST CONTROL CHARACTER IN THE MASK

Meaning
(&00): control character

Response
Check mask for incorrect '+' or '-'.

DRI0163 CONTROL CHARACTER USED MORE THAN ONCE

Meaning
Each of the control characters 'P', '+', '-' and DATE/TIME may only be used once per mask.

Response
Check the control characters in the mask.

DRI0164 INVALID CONTROL CHARACTER (&00)

Meaning
An invalid character or control character has been entered in a mask.
(&00): control character

Response
Check the mask for invalid characters and control characters.

DRI0165 MAXIMUM LENGTH ((&00)) FOR EDITED MASK EXCEEDED

Meaning
(&00): maximum length permitted for an edited mask

386 U5642-J-Z125-3-7600

Messages

DRI0166 (&00) NOT PERMITTED AFTER (&01)

Meaning
1. The control character 'Z' or '*' is only permitted to the left of '9' in a mask.
2. The control character 'Z' or '*' is only permitted to the right of 'P' in a mask if all the

control characters up to 'P' and the insertion control character are 'Z' or '*'.
3. Insertion control characters ('.' or 'B') are not permitted to the right of decimal point

character 'P' in a mask.
(&00), (&01): control characters

Response
1 and 2: Replace 'Z' or'*' with a numeric control character.
3: Delete the insertion control characters to the right of 'P'.

DRI0167 REPETITION FACTOR INVALID OR INCORRECT

Meaning
In a MASK clause, either a repetition factor was illegally assigned as a control character
(e.g. +(4)), or the entry is incorrect (e.g. 9(0)).

Response
Correct or delete repetition factor.

DRI0168 ENTRY OF NULL VALUE USING NULL CHARACTER NOT PERMITTED

Response
Change the NULL value character using a PARAMETER statement and enter the new
NULL character accordingly.

DRI0169 MONINFO TEXT FILE INCORRECT

Meaning
The first of the two field symbols ('@') enclosing the identifier is missing in a line of the
MONINFO list layout.

Response
Add missing field symbol ('@') to the list layout.

DRI0170 '(&00)' CHARACTER INVALID; CORRECT ENTRY

Meaning
An invalid character was entered during data entry (e.g. incorrect decimal point character).
(&00): invalid character

DRI0171 INPUT VALUE NOT COMPATIBLE WITH VERBAL INPUT

Meaning
The input value in a DATE or TIME input (e.g. '01' for month) is not compatible with verbal
input (e.g. 'FEBRUARY').

Response
Match input value and verbal input.

U5642-J-Z125-3-7600 387

Messages

DRI0172 AMBIGUOUS DATA ENTRY; CORRECT INPUT

Meaning
Too few Q or R control characters have been defined in the mask, meaning the entry cannot
be interpreted unambiguously, e.g R(2) and entry 'JU' ('JU' can be interpreted as both
'JUNE' and 'JULY').

DRI0173 MASK CLAUSE NOT PERMITTED

Meaning
The MASK clause was specified for a variable for which it is not permitted.
Possible reason:
- Variable not simple
- Variable of illegal data type

Response
Verify the variable and remove the MASK clause if required.

DRI0174 OBJECT '(&00)' ALREADY EXISTS

Meaning
(&00): The name of the object.

DRI0175 '(&00)' STORED

Meaning
The program has successfully been stored as a member of the library.
(&00): program name

DRI0176 '(&00)' NOT STORED

Meaning
The program has not been stored as a member of the library.
(&00): program name

DRI0177 '(&00)' INCONSISTENT

Meaning
The intermediate code of the program has been changed (e.g. shortened) outside DRIVE.
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code

Response
Generate new intermediate code using a COMPILE statement.

388 U5642-J-Z125-3-7600

Messages

DRI0178 '(&00)' CONTAINS STATEMENTS NOT PERMITTED IN '(&01)' MODE

Meaning
The program contains statements or clauses that are not permitted in UTM mode (e.g.
SYSTEM statement).
(&00): program name with no suffix: source program

program name with suffix CODE: intermediate code
(&01): UTM
(&01): UTM asynchronous operation
Remote access to BS2000 databases is not permitted in UTM asynchronous operation.

DRI0179 COMPILER (&00) NOT AVAILABLE

Meaning
The specified compiler is not linked to DRIVE-phase. COMPILE OPTION OBJECT=ON
cannot be executed.
(&00): version of compiler

DRI0180 CONVERSION ERROR IN (&00)TH OPERAND OF THE '(&01)' OPERATION

Meaning
Before the operation (&01) could be executed in an expression, a runtime error occurred
during conversion of the (&00)th operand of (&01).

Response
Supply the (&01)th operand correctly or remove (&01) operation from the expression
together with its operands.

DRI0181 CALC OVERFLOW ((&00)) IN '(&01)' OPERATION

Meaning
A calculation overflow occurred during execution of the operation (&01) as part of the calcu-
lation of an expression.
(&00): (MACHINE ERROR): error in machine calculation

DRI0182 DIVISION ERROR IN '(&00)' OPERATION

Meaning
An attempt was made to divide by 0 (not the NULL value) in the (&00) operation of an
expression, meaning the expression could not be calculated.

DRI0183 EXPRESSION VALUE TOO LONG FOR ASSIGNMENT TO '(&00)'

Meaning
The result of the expression is too long for the variable.
(&00): variable name

U5642-J-Z125-3-7600 389

Messages

DRI0184 '(&00)' DURING ASSIGNMENT TO '(&01)'

Meaning
Error (&00) occurred during assignment of variables.
(&00): CONVERSION ERROR

CHECK ERROR
(&01): variable name

DRI0185 ILLEGAL FLOAT POINT MASK/REPRESENTATION

Meaning
- An assigned mask contains the control character 'E', but cannot be recognized as a

valid float point mask
- 'e' in the data value of a screen input or NUMERIC function cannot be interpreted as

float point value.

Response
Verify and correct mask/input/NUMERIC.

DRI0186 SELECT FINDS MORE THAN ONE RECORD

Meaning
The SELECT resulted in more than one record whereas DRIVE supports single SELECT
only.

Response
Modify the SELECT so as to obtain a single record; e.g. by using the WHERE clause.

DRI0187 NO FURTHER CURSOR DECLARATIONS POSSIBLE

Meaning
The user cannot declare more than 63 cursors for informix.

Response
Close and release cursors which are no longer required.

DRI0188 '(&00)' AND '(&01)' NOT COMPATIBLE IN ONE PROGRAM SYSTEM

Meaning
Two programs that have been compiled for the indicated database systems must not refer
to each other within the same program system.
(&00), (&01): database systems

390 U5642-J-Z125-3-7600

Messages

DRI0189 INFORMIX DATABASE MUST NOT BE CHANGED DURING UTM OPERATION

DRI0190 TOO FEW LINES AVAILABLE FOR '(&00)' OUTPUT

Meaning
The number of output lines for TTITLE and BTITLE defined in the DECLARE FORM
statement is greater than the number of implicitly or explicitly defined lines for the output
area (screen or list).
(&00): TTITLE

BTITLE

Response
Increase the LINES entry, if present, or modify the TTITLE or BTITLE entry.

DRI0191 MANDATORY FIELD NOT SUPPLIED

Meaning
The indicated field (EDIT STATE = MUST ERROR) must be supplied.

DRI0192 EXPRESSION VALUE TOO LARGE

Meaning
- Maximum length of the expression in the SYSTEM statement: 254
- Maximum length of the follow-up TAC in the STOP statement: 8.

DRI0193 '(&00)' NOT POSSIBLE WITH PROGRAM IN EDT WORK FILE 0

Meaning
Possible causes:
- PTRACE requires the compiler listing. When a program in the EDT work file 0 is started,

the name of the program and thus of the compiler listing is unknown.
- UREF requires a program name in order to store the where-used information in the data

dictionary.
(&00): PTRACE

UREF

DRI0194 EXPRESSION VALUE TOO LARGE

Meaning
The value of the expression cannot be displayed as it is too large.

U5642-J-Z125-3-7600 391

Messages

DRI0195 '(&00)' CANNOT BE PROCESSED WITH SQL

Meaning
The following characteristics are not permitted:
- scale < 0
- scale > precision
- precision > 15
(&00): name of the column

Response
Update the data base accordingly.

DRI0196 NO TAC OR INCORRECT TAC SPECIFIED IN UPIC FILE

Meaning
The UPIC file is invalid; the TAC name in the UPIC file is not referenced by the BS2000
application.

Response
Verify UPIC file and add TAC if necessary

DRI0197 UPIC FILE OR TNS ENTRY MISSING OR INVALID

Meaning
1. Upic file (side-info file) does not exist in the current directory or is not correct.
2. There is no TNS entry matching the specified USER.

Response
1. Check upic file or include in the current directory.
2. Provide appropriate TNS entry.

DRI0198 NETWORK CONNECTION ABORTED

Meaning
The network connection to the server is down.
Possible causes are:
- invalid TAC
- PEND ER in UTM conversation
- end of UTM application
- connection cleared down by UTM administration
- connection cleared down by transport system

Response
As appropriate,
- check specified TAC
- end and restart UTM application
- notify network administrator

392 U5642-J-Z125-3-7600

Messages

DRI0199 NOT ALL SELECTED OBJECTS PRESENT

Meaning
This error can occur with the 'Lookup' function of DRIVE-SPU. The list displayed in the
object class window is not the current list as the corresponding objects were selected in the
object class window.

Response
Update list in object class window if desired.

DRI0200 NAME IN '(&00)' TOO LONG

Meaning
Only names with a maximum length of 32 characters can be stored in the data dictionary.
(&00): DATA DICTIONARY
For SINIX: The resource file names in the usage information contained in Window
programs must not exceed 54 characters.

Response
Use shorter library names.
For SINIX: Shorten resource file names, where appropriate.

DRI0201 AMBIGUOUS LIBRARY NAME FOR THIS PROGRAM IN '(&00)'

Meaning
According to the data dictionary, the current DRIVE program is held in a different library to
the one currently specified.
(&00): DATA DICTIONARY

Response
Make the source program unique with regard to the library.

DRI0202 DATA DICTIONARY PARAMETER FILE INVALID OR NOT FOUND

Meaning
The parameter file assigned with the link name TOMPAR is either empty, not found or
contains incorrect entries, or the required entries are missing.

DRI0203 AMBIGUOUS NAME ASSIGNED TO '(&00)' ENTITY IN '(&01)'

Meaning
The where-used information cannot be stored in the data dictionary as there are ambiguous
names.
(&00): entity type
(&01): DATA DICTIONARY

Response
Check names in the data dictionary; delete any entities not required.

U5642-J-Z125-3-7600 393

Messages

DRI0204 ELEMENT TOO LONG

Meaning
- The logical screen of the specified form is not large enough to fully receive a data

element used in the FILL statement.
- Data element used in SEND MESSAGE statement is too long

Response
- Adapt LINES or COLUMNS entries, if present.
- Shorten the data element concerned.

DRI0205 '(&00)' ERROR IN '(&01)' MODULE/ENTRY

Meaning
An error occurred in the linking loader system during DRIVE initialisation.
(&00): macro (TABLE/ITABL/LINK)
(&01): module or entry name

Response
If the error is in the LINK macro, check whether the DRIVE library was assigned correctly
before DRIVE intialisation. If not, inform administrator.

DRI0206 '(&00)' INPUT FIELD NOT PERMITTED IN OVERFLOW SCREEN

Meaning
No input fields are allowed in an overflow screen for a DRIVE form.
(&00): variable name

DRI0207 STATUS OF DB TRANSACTION UNKNOWN AFTER 'COMMIT WORK'

Meaning
Network connection terminated.

Response
For initial call : Verify TAC
For follow-up call : Check status of UTM application (terminated ?)
Notify network administrator.

DRI0208 'UPIC' CONNECTION ENDED ABNORMALLY

Meaning
The connection to the UPIC process or to UPIC was terminated abnormally.
Possible reason are:
- end of UTM application
- connection cleared down by UTM administration
- connection cleared down by transport system

Response
As appropriate,
- terminate UTM application
- notify network administrator

394 U5642-J-Z125-3-7600

Messages

DRI0209 LICENCE/KEY INFORMATION MISSING

Meaning
Signon to UPIC failed

Response
Check UTM installation

DRI0210 TRANSACTION ROLLED BACK BY DATA STORAGE SYSTEM

Response
- INTERACTIVE mode: Repeat SQL statements entered since last COMMIT WORK.
- PROGRAM mode: Restart program (necessary because the first transaction in the

DRIVE program was rolled back).

DRI0211 RESTART NOT POSSIBLE IN FIRST TRANSACTION

DRI0212 CONTINUE PROGRAM ? RESPONSE: (Y=YES; N=NO)

Meaning
The transaction was rolled back by the data storage system.
Remote access: The status of the transaction is unknown due to network problems.

Response
Y: The program is rolled back to the status of the last COMMIT WORK and processing is

resumed with the first statement after COMMIT WORK.
In the case of remote access:
the program is aborted if the network connection cannot be recovered;
the status of the transaction in the database is unknown.

N: The program is aborted.
In the case of remote access:
the status of the transaction in the database is unknown.

DRI0213 RESTART NOT POSSIBLE; CONVERSATION ABORTED

Meaning
The transaction and thus the conversation were rolled back before the first COMMIT WORK
in the UTM conversation.

Response
Start a new conversation.

DRI0214 ABORTED 'UTM' CONVERSATION CANNOT BE RESTARTED

Meaning
Another error occurred in an external restart (e.g. after a system crash). The conversation
has been terminated.

Response
Start a new conversation.

U5642-J-Z125-3-7600 395

Messages

DRI0215 TRANSACTION ROLLED BACK DUE TO SQL CODE '(&00)'

Meaning
The transaction was rolled back by the data storage system. SQL objects have the same
status as at the last synchronization point.
(&00): SQL code returned by the DB system

DRI0216 REDEFINED OR REDEFINING VARIABLE NOT ALLOWED

Response
Use variable without these properties.

DRI0217 EVENT NOT PERMITTED FOR WINDOW OBJECT

Meaning
The combination of this type of event and this type of window object is illegal.

Response
Modify event or change object.

DRI0218 ORIGINAL LENGTH OF 'TITLE' DATA CHANGED

Meaning
Before displaying a DRIVE form following an explicit or implicit DISPLAY, DRIVE updates
the TITLE data . The new length of the TITLE data differs from the original length (e.g. if
assignments have been made to TITLE variables using string functions).

Response
Check assignments after the first FILL statement.

DRI0219 CONNECTION TO BS2000 UTM APPLICATION FAILED; UTMRCS=(&00),(&01)

Meaning
The APRO call could not be successfully completed. Refer to UTM manual 'Applications
Programming', chapter on KDCS calls, 'APRO' for reason.
(&00): UTM return code
(&01): internal UTM error code

Response
Notify system administrator and check UTM generation.

DRI0220 DRIVE CACHE: RETURN CODE '(&00)' FOR MACRO '(&01)'

Meaning
(&00): return code
(&01): BS2000 macro name

Response
Inform administrator.

396 U5642-J-Z125-3-7600

Messages

DRI0221 DRIVE CACHE CANNOT BE CLOSED

Response
If the error occurs more than once, check whether the HALT TSN (enter procedure
DRI.ENT.DRICACHE) is still running at DRIVE termination. If not, determine the cause. If
so, inform administrator.

DRI0222 DRIVE CACHE ALREADY EXISTS IN ID WITH DIFFERENT PARAMETERS

Meaning
The DRIVE cache specified exists with a different length to the one given. The length must
always be the same when accessing the same cache.

Response
Possible responses:
- Start another DRIVE UTM application under a different ID.
- Change cache length using an ACQUIRE MEMORY statement.

DRI0223 'HALT TSN' FOR DRIVE CACHE CANNOT BE ACTIVATED

Meaning
The ENTER procedure DRI.ENT.DRICACHE for the DRIVE cache was not initiated within
75 seconds.

Response
- Check ENTER procedure and PRO.DRICACHE program.
- Check whether the BS2000 batch queue is overloaded, preventing the ENTER

procedure from being started.

DRI0224 NAME SPECIFICATION IN USER LABEL SYNTACTICALLY INCORRECT

Meaning
The library or member name in the user label has been specified incorrectly.

Response
Consult DRIVE manuals.

DRI0225 ERROR DURING USER LABEL PROCESSING

Meaning
The DRIVE program started during processing of the user label contains analysis or
runtime errors. The corresponding error list is written to SYSLST.

Response
Correct DRIVE program and start a new UTM application.

DRI0226 PROGRAM ERROR; DRIVE TERMINATED DUE TO 'TEST=ALL'

Meaning
The most recently started program contains analysis or runtime errors. As the parameter
TEST=ALL has been set, DRIVE was terminated immediately. The corresponding error list
is written to SYSLST.

U5642-J-Z125-3-7600 397

Messages

DRI0227 CONSTANT NOT PERMITTED

Meaning
The object name refers to a constant, which is not useful in this context.

Response
Specify variable.

DRI0228 NO ACCESS TO '(&00)'

Meaning
No access permission has been granted for the indicated element (read/write/ execute or
search depending on the file/directory or attempted operation). The permission can also
refer to pathname components. An installation error may be the reason why access to a
DRIVE system resource file failed.
(&00) : path name.

Response
Change access permissions.
In the failure to access a DRIVE system resource file is due to an installation error, repeat
installation

DRI0229 ENTRY INVALID FOR THE DB SYSTEM '(&00)'

Meaning
The statement or part of it must not be used when processing SESAM/UDS databases.
(&00): DB system (SESAM/UDS)

Response
Correct or remove incorrect statement part, or select INFORMIX db system.

DRI0230 VIEW DEFINED WITH 'QUERY' CANNOT BE USED (SQL CODE=(&00))

Meaning
The view defined with QUERY does not comply with the UDS or SESAM conventions (e.g.
upper/lowercase, naming conventions).
(&00): SQL CODE returned by the DB system
SQL CODE = 0: DRIVE has already determined the error.
SQL CODE < 0: the DB system has determined the error.

Response
Redefine the view using QUERY, observing the syntactic and semantic rules of the DB
system concerned.

398 U5642-J-Z125-3-7600

Messages

DRI0231 ASSOCIATED WINDOW NOT YET GENERATED

Meaning
This window 4GL statement is not valid until the window to which the object referred to
belongs has been generated, i.e. following the first ADD/NEW/NEXT statement for the
window.

Response
Generate window before running this statement.

DRI0232 SPECIFIED ATTRIBUTE VALUE NOT PERMITTED

Meaning
The value specified in the SET ATTRIBUTE statement is
- outside the permitted value range.
- the NULL value
- too long

Response
Correct data source for attribute value.

DRI0233 SPECIFIED ITEM NAME IS NOT PERMITTED

Meaning
The specified item name is
- the NULL value
- too long (>255)
- in the item list more than once

Response
Specify non-null value for item name, shorten it, or remove duplicates from item list.

DRI0234 ITEM NAME ALREADY EXISTS

Meaning
All item names must be unique within a choice list.

Response
Correct data source for item name.

DRI0235 'POSITION' ENTRY IN 'ADD ITEM' CLAUSE INVALID

Meaning
The position entry must either refer to an existing list item or must be '0'.

Response
Verify whether the POSITION value is between 0 and the number of list items.

U5642-J-Z125-3-7600 399

Messages

DRI0236 SPECIFIED ITEM NAME DOES NOT EXIST

Meaning
Only names of items existing in the list may be specified in DELETE ITEM statements.

Response
Correct data source for the item name.

DRI0237 PATHNAME OF THE REFERENCED WINDOW OBJECT TOO LONG

Meaning
This object cannot be referenced directly in a window 4GL statement.

Response
The individual object names or the complete pathname must be shortened to the maximum
length (32768) in the dialog builder.

DRI0238 TOO MANY ENTRIES IN THE CURRENT CHOICE LIST

Meaning
The maximum number of list entries (32767) would be exceeded by making the intended
additional entries.

Response
Delete superfluous entries from choice list before making new entries.

DRI0239 STATEMENT REQUIRES "WITH DUPLICATES" CLAUSE

Meaning
An ALTER CHOICE LIST/ALTER COMBO BOX statement containing a "WITH DUPLI-
CATES" clause has already been executed for the current choice list/combo box. Execution
without duplicates requires new generation of the window (by ADD/NEW/NEXT WINDOW).

Response
Add "WITH DUPLICATES" clause to statement.

DRI0240 INVALID LIST DEFINITION IN RESOURCE FILE

Meaning
At least one of the entries which are predefined for the choice list/combo box in the resource
file exceeds the maximum length (255).

Response
Shorten list entries ("ITEMS" attribute in the attribute editor of the DialogBuilder).

400 U5642-J-Z125-3-7600

Messages

DRI0241 SEVERAL ENTRIES SELECTED FOR SINGLE-CHOICE LIST

Meaning
The list for a single-choice list may only contain one entry. In order to select more than one
entry at the same time, use a checklist.

Response
Specify one entry in the "select item clause" in the invalid "ALTER CHOICE LIST"
statement, or change the selection mode for the choice list using the attribute editor of the
DialogBuilder from single-choice list to checklist ("SELECTION_MODE = MULTIPLE").

DRI0249 RECIPIENT OF USER EVENT '(&00)' NOT AVAILABLE

Meaning
The target window is not on the screen. Possible reason:
- the window has not yet been output,
- the window was closed by means of the CLOSE WINDOW statement or explicitly via

the window menu button.
(&00): event.

Response
Check program sources; Intercept user event error by means of WHENEVER if appro-
priate.

DRI0250 OUTPUT TOO LONG; TOO MANY INTERNAL CONTROL CHARACTERS REQUIRED

Meaning
The output contains too many fields with different display attributes (bright/normal/flashing/
overwritable/protected). These attributes are handled internally with control characters
(depending on the individual terminal) that make the overall output too long.

Response
Shorten output or use less fields with different display attributes.

DRI0251 '(&00)' CANNOT BE GENERATED

Meaning
(&00): dictionary: The file directory cannot be generated due to lack of memory space;
(&00): window/dialog box: Inconsistency in resource file; window/dialog box does not exist

in the resource file.

Response
In the case of memory shortage, delete superfluous files and repeat statement. In the case
of inconsistency, check resource file if the window/dialog box to be output exists in the
specified resource file.

U5642-J-Z125-3-7600 401

Messages

DRI0252 NO ROOT OBJECT IN '(&00)'

Meaning
The resource file was illegally modified. It cannot be opened.
(&00): resource file

Response
Generate resource file using the dialog builder only.

DRI0253 ERROR IN LINKING CALLBACKS TO RESOURCE FILE

Meaning
The resource file was illegally modified. It cannot be opened.

Response
Remove callback entries from resource file and recompile DRIVE program.

DRI0254 NO TOP LEVEL OBJECT IN RESOURCE FILE '(&00)'

Meaning
There is no top level object (window/dialog box) in the specified resource file.
(&00): resource file

Response
Check name of top level object and resource file.

DRI0255 ERROR ON OPENING RESOURCE FILE '(&00)'

Meaning
The resource file cannot be opened. Possible reason:
- resource file does not exist
- no access permission
(&00): resource file

Response
Verify existence and access permission of the resource file.

DRI0256 XLIB ERROR IN WINDOW SYSTEM

Meaning
'xlib' reports an error if a system call failed; e.g. because the connection to the server has
broken down.

DRI0257 ERROR ON WINDOW SYSTEM 'MOTIF'

Response
The message of the window system is stored in the 'inttrace.idx' or 'inttrace.dat' file.

402 U5642-J-Z125-3-7600

Messages

DRI0258 OBJECT '(&00)' CONTAINS TOO MANY CHILD OBJECTS

Meaning
The specified top level object refers to too many child objects. This results in an internal
table overflow.
(&00): top level object.

Response
Shorten resource file.

DRI0259 OBJECT '(&00)' INKONSISTENT

Meaning
Possible reasons:
a) Incorrect object class type for window object
b) Invalid data type for window object
c) Top level object no window or dialog box or message box
(&00): object name

Response
For reasons, refer to the resource file.

DRI0260 ERROR ON WRITING 'DRIVE' DATA TO '(&00)'

Meaning
Write access to the resource file is not permitted.
(&00): resource file

Response
Change access permission.

DRI0261 INCONSISTENCY IN RESOURCE FILE '(&00)'

Meaning
User manipulation on the resource file between the compilation and execution of the DRIVE
program resulted in an inconsistency.
(&00): error code :
1,2,3: Window object not found in SET ATTRIBUTE
4,5,6,7: input field not found
8,9,10,11,12,13: choice list not found
14: Window object not found in GET ATTRIBUTE

Response
The resource file must not contain inconsistencies after updates between compilation and
execution.

DRI0262 MAXIMUM NUMBER OF 'FORMANT' SESSIONS EXCEEDED

Response
Notify system administrator.

U5642-J-Z125-3-7600 403

Messages

DRI0263 'FORMANT' RETURN CODE (&00) FOR FORM '(&01)'

Meaning
The form cannot be loaded because the Formant form file is inconsistent, not available, or
cannot be accessed.
(&00): Formant return code (see Formant manual)
(&01): form name

Response
Check Formant form file and Formant addressing aid.

DRI0264 'FORMANT' RETURN CODE (&00) FOR FIELD '(&01)' OF FORM '(&02)'

Meaning
The specified field name of the specified form was not found, i.e. the specified field name
of the Formant addressing aid is not in the Formant form file.
(&00): Formant return code (see Formant manual)
(&01): field name in form
(&02): form name

Response
Check Formant form file and Formant addressing aid.

DRI0265 INCORRECT 'FORMANT' VERSION INSTALLED

Meaning
An incorrect Formant version has been installed.

Response
Notify system administrator.

DRI0266 OBJECT (&00) NOT IN '(&01)'

Meaning
The specified resource file does not contain the specified top level object.
(&00): top level object
(&01): resource file

Response
Check names of the resource file and top level object.

DRI0267 CONNECTION TO X SERVER FAILED

Meaning
The environment variable DISPLAY is illegal or not defined.

Response
Enter correct DISPLAY environment variable.

404 U5642-J-Z125-3-7600

Messages

DRI0280 PROGRAM '(&00)'

Meaning
Information in SPE indicating that the described program is still executing.
(&00): program name

DRI0281 '(&00)' BEING COMPILED

Meaning
Information in SPE that the described program is still being compiled.
(&00): program name

DRI0282 '(&00)' '(&01)' BEING DELETED

Meaning
Information in SPE indicating that the described program is still being deleted, including all
associated objects.
(&00): program name
(&01): symbol for activity that cannot be cancelled

DRI0283 EDITOR LOADED WITH '(&00)'

Meaning
Information in SPE indicating that an editor was called together with the described file. This
file may not have been saved yet.
(&00): file name

DRI0284 JOB '(&00)' ENTERED IN QUEUE

Meaning
No DRIVE kernel process is currently available for the described job

DRI0285 '(&00)' BEING PRINTED

Meaning
Information in SPE indicating that a print job has been started for the described file.
(&00): file name

DRI0300 MAXIMUM OBJECT SIZE FOR COMPILED 'DRIVE' PROCEDURE EXCEEDED

Meaning
The statement part of the generated object code exceeds 400 slices, each of 4KB.

Response
Check if the option NULLVALUE = OFF or CHECK = OFF is applicable, otherwise split the
DRIVE procedure into several parts.

U5642-J-Z125-3-7600 405

Messages

DRI0301 NULL SPECIFICATION NOT PERMITTED

Meaning
The procedure contains a NULL value although NULL processing has been prohibited in
the compiler options.

Response
Modify source or compiler options.

DRI0302 NO CALL POSSIBLE

Meaning
The procedure can neither be called as start procedure nor using DO/ENTER/CALL due to
conflicting entries in the compiler options. This is the case if a PERMIT screen is requested
although the procedure contains parameters for example.

Response
Modify source or compiler options.

DRI0303 TOO MUCH SPACE REQUIRED FOR INTERNAL PERMANENT VARIABLES

Meaning
Internal permanent variables are generated
- for SUBPROCEDURE,
- for CYCLE FOR with a not constant STEP or END value.
The space required exceeds 32 KB.

Response
Decrease the number of the statements above.

DRI0304 TOO MANY TEMPORARIES REQUIRED (&00)

Meaning
For the compilation of a statement within a DRIVE procedure too many temporaries are
required.
The insert text contains the name of the procedure and the linenumber of the statement in
the expanded source listing.

Response
Split the statement into several parts.

DRI0305 ERROR DURING GENERATION OR OPEN OF TEMPORARY FILE FOR OBJECT CODE

Meaning
The generated object code is written first into a temporary file which is generated internally.
During generation or open of this temporary file an error has occurred. The DMS return
code is displayed upon the terminal.

Response
depending on the DMS return code

406 U5642-J-Z125-3-7600

Messages

DRI0306 ERROR DURING CLOSE OF TEMPORARY FILE FOR OBJECT CODE

Meaning
The generated object code is written first into a temporary file which is generated internally.
During close of this temporary file an error has occurred. The DMS return code is displayed
upon the terminal.

Response
depending on the DMS return code

DRI0307 ERROR DURING WRITE INTO TEMPORARY FILE FOR OBJECT CODE

Meaning
The generated object code is written first into a temporary file which is generated internally.
During write into this temporary file an error has occurred. The DMS return code is
displayed upon the terminal.

Response
depending on the DMS return code

DRI0308 ACCESS ERROR ON LMS (&00)

Meaning
While moving the generated object code out of the temporary file into the destination library
an error has occurred.
The insert text contains the LMS return codes.

Response
depending on the LMS return code

DRI0309 INTERNAL ERROR DURING COMPILATION (&00)

Meaning
During the compilation of a DRIVE procedure an internal error has occurred. The insert text
contains the name of the procedure, the linenumber of the statement in the expanded
source listing and an internal error number.

Response
Inform your system administration and provide the expanded source listing together with
the information in the insert text.
Occasionally further diagnostic information is required.

DRI0310 CONVERSATION '(&00)' TERMINATED. PLEASE ENTER TRANSACTION CODE

Meaning
The indicated conversation in DRIVE/WINDOWS object mode has been terminated.
(&00): Conversation name

Response
Enter transaction code

U5642-J-Z125-3-7600 407

Messages

DRI0311 INTERNAL ERROR IN 'DRIVE' OBJECT '(&00)','(&01)'

Meaning
The running of the DRIVE-object has been aborted due to internal inconsistences
(&00): eventtype
(&01): systemcode

Response
Inform administrator

DRI0312 ILLEGAL NULL VALUE IN 'DRIVE' OBJECT

Meaning
NULL value occurred in an object defined with NULLVALUE=OFF. This may happen in case
of data base queries, screen input or parameter transfer in case of CALL, DO, ENTER.

Response
Compile procedure with OPTION NULLVALUE=ON.

DRI0390 FILE (&00) CAN'T BE ERASED.

Meaning
No access rights to modify the directory or file doesn't exist.
(&00): file name

DRI0391 ERROR OCCURED WHEN FILE (&00) WAS WRITTEN.

Meaning
Not enough space on file system.
(&00): file name

DRI0392 FILE (&00) CAN'T BE OPENED OR CREATED.

Meaning
No access rights to modify the directory or existing file can't be opened.
(&00): file name

DRI0393 C-COMPILATION TERMINATED WITH ERRORS.

Meaning
Compilation was aborted by interrupt or system limits (number of processes, memory
space) reached or generated C source with errors.

408 U5642-J-Z125-3-7600

Messages

DRI0394 OPENING ERROR ON LIBRARY '(&00)'

Meaning
There is no library according with the stated name, the access right to the library is missing
or the library is locked.
The following also applies to SINIX operating system:
Shell-variable LD_LIBRARY_PATH does not contain the pathname of the library.

Response
Generate a correct library, gain the access right and make shure, that the library is not
locked at access time (e.g. by a compilation process).
In addition the following applies to the SINIX operating system:
Add the library's pathname to the shell-variable LD_LIBRARY_PATH.

DRI0399 (&00).

Meaning
There is no shared object (shared library) at the stated place.
(&00): library name

DRI0401 INVALID NAME

Meaning
An invalid entry has been made in an input field of the DRIVE SPE.

Response
In the DRIVE SPE, the help button of the window may be used to obtain information on
permitted entries and valid names.

DRI0402 OBJECT DELETION ERROR

Meaning
An error occurred when objects (sources, intermediate codes, list elements, resource files,
user labels) were being deleted.

DRI0403 SELECT EXACTLY ONE OBJECT

Meaning
The reqired function can only be executed if exectly one object has been selected.

DRI0404 SELECT AT LEAST ONE OBJECT

Meaning
The required function can only be executed if at least one object has been selected.

DRI0405 CLICK AT LEAST ONE TOGGLE BUTTON

U5642-J-Z125-3-7600 409

Messages

DRI0410 AT STATEMENT TOO LONG

Meaning
The AT statement built from the selections in the dialog box is too long.

Response
Shorten entries in the entry fields.

DRI0411 INVALID LIB-SPEC

Meaning
A path name was specified instead of the 'lib-spec'. The member (file) was not enclosed in
'(' and ')'.

Response
Either specify the member name (file name), or 'lib-spec' with the member enclosed in '('
and ')'. A path name is not permitted.

DRI0450 TRANSFER AREA INVALID FOR DISTRIBUTED PROCESSING

Meaning
The transfer area submitted to DRIVE as input from a C/COBOL partner for distributed
processing is inconsistent or invalid.

Response
The transfer area to be submitted to DRIVE from a C/COBOL partner for processing must
be checked for inconsistencies.

DRI0451 MESSAGE LENGTH (&00) TOO SMALL

Meaning
The storage length of the message submitted by the partner conversation is long enough.
The header of the transfer information could not be read.
(&00): length of message received

Response
Check message length on sending.

DRI0452 FIELD '(&00)' IN THE TRANSFER INFORMATION HEADER INVALID

Meaning
The indicated field in the header has been supplied with an invalid value by the partner
conversation.
(&00): invalid field

Response
Check entry in header field.

410 U5642-J-Z125-3-7600

Messages

DRI0453 NO 'RETURN' PARAMETER VALUES RECEIVED FROM (&00)

Meaning
The receiving partner called with CALL has not returned any RETURN parameter values
although the USING clause does contain RETURN parameters.
A switch was made to old-style operation using new-style CALL. The last old-style program
executed has no USING list but RETURN parameters are specified in the USING list in the
new-style CALL.

Response
Check interface to receiving program (unit).
Match USING list of new-style CALL and old-style program.

DRI0454 ILLEGAL RETURN PARAMETER VALUES FROM RECEIVING PARTNER

Meaning
The receiving partner called with CALL returns RETURN parameter values although the
USING clause does not contain any RETURN parameters.

Response
Check interface to receiving program (unit).

DRI0455 CALLED USER TAC '(&00)' TERMINATED WITH PARAMETER ERROR

Meaning
The called user program unit reports errors on reading the header information in the
transfer area.
(&00): UTM transaction code

Response
Check distribution information for the concerned user program unit.

DRI0456 CALLED USER TAC '(&00)' TERMINATED WITH ERROR

Meaning
The called user program unit reports errors on program execution.
(&00): UTM transaction code

Response
Check execution of called user program unit and, if required, submitted USING data.

DRI0457 CALLED RECEIVING DRIVE CONVERSATION TERMINATED WITH PARAMETER ERROR

Meaning
The called receiving DRIVE conversation reports errors on reading the header information
in the transfer area.

Response
Check distribution information for the receiving DRIVE program concerned.

U5642-J-Z125-3-7600 411

Messages

DRI0458 CALLED RECEIVING DRIVE CONVERSATION TERMINATED WITH ERROR

Meaning
The called receiving DRIVE program reports errors on program execution.

Response
Check execution of called DRIVE program and, if required, submitted USING data.

DRI0459 LIBRARY NAME '(&00)'

Meaning
Library of an executed DRIVE program. Information in addition to parameter error or
execution error message, or status information in the case of distributed processing.
(&00): library name

DRI0460 MEMBER NAME '(&00)'

Meaning
Member name of an executed DRIVE program. Information in addition to parameter error
or execution error message, or status information in the case of distributed processing.
(&00): member name

DRI0461 APPLICATION NAME '(&00)'

Meaning
Name of a receiving application in which a DRIVE program or user program unit was
executed. Information in addition to parameter error or execution error message, or status
information in the case of distributed processing.
(&00): application name

DRI0462 ERRORS ON DISTRIBUTED PROCESSING

Meaning
Distributed execution of one or more receiving DRIVE programs or user program units was
terminated with errors.

Response
Check distribution information, USING data or program execution.

DRI0463 CONVERSATION RULE FOR DISTRIBUTED PROCESSING VIOLATED

Meaning
Open receiving conversations still exist in the case of:
- a 'DO PROCEDURE' statement
- a 'STOP' or 'COMMIT WORK WITH STOP' statement
- an 'END PROCEDURE' statement on the highest DRIVE program level of the highest

submitting conversation in a distributed submitter/receiver hierarchy.

Response
Check flow of the DRIVE program. If one of the above statements exists, the receiving
partners must have been terminated.

412 U5642-J-Z125-3-7600

Messages

DRI0464 TRANSACTION RULE FOR DISTRIBUTED PROCESSING VIOLATED

Meaning
One or more DRIVE programs or user program units have not yet executed 'COMMIT
WORK' or requested transaction end.

Response
Check flow of DRIVE program. In the case 'COMMIT WORK', the receiving partners must
have terminated the transaction.

DRI0465 BOTTOM-UP STRATEGY FOR DISTRIBUTED PROCESSING VIOLATED

Meaning
A receiving DRIVE program was called with transaction end request.

Response
Terminate processing step in program unit using 'PEND KP'.

DRI0466 RECEIVING PARTNERS WITH TRANSACTION STATUS 'P' STILL OPEN

Meaning
Receiving partners which have requested transaction end are still open when a submitting
DRIVE program terminates with errors.

Response
Include the 'COMMIT WORK' statement after CALL or END DISPATCH in order to
terminate the transactions in the receiving environments.

DRI0467 CALLED USER-RECEIVER CONVERSATION FOR 'PEND' REQUEST INVALID

Meaning
An error occurred in the program unit on calling the user-receiver conversation containing
a request for termination, or the values supplied to the header of the transfer area by the
user program unit contained errors.

Response
Check interfaces to, or execution of, the user program units.

DRI0468 USER-RECEIVER CONVERSATION NOT TERMINATED DESPITE 'PEND' REQUEST

Meaning
When calling the user-receiver conversation, the request to terminate was ignored.

Response
Check interfaces to, or execution of, the user program units.

U5642-J-Z125-3-7600 413

Messages

DRI0469 RECEIVING TRANSACTION NOT ROLLED BACK DESPITE 'ROLLBACK' REQUEST

Meaning
When calling the user-receiver conversation, the rollback request for the local transaction
was ignored.

Response
Check interfaces to, or execution of, the user program units.

DRI0470 CONVERSATION STATUS '(&00)', TRANSACTION STATUS '(&01)' FOR DRIVE CONVERSATION

Meaning
Receiving DRIVE partner submits status information following distributed conversation
restart.
(&00): conversation status of receiving partner
(&01): transaction status of receiving partner

Response
Check execution of receiving DRIVE program.

DRI0471 CONVERSATION STATUS '(&00)', TRANSACTION STATUS '(&01)' FOR USER TAC '(&02)'

Meaning
User-receiver conversation submits status information following distributed conversation
restart.
(&00): conversation status of receiving partner
(&01): transaction status of receiving partner
(&02): UTM transaction code

Response
Check execution of user-receiver program unit.

DRI0472 CONVERSATION '(&00)' AND TRANSACTION STATUS '(&01)' FOR RECEIVING CONVERSATION

Meaning
Receiving conversation submits status information following distributed conversation
restart. The receiving conversation has been referenced for the first time in the restarted
distributed transaction. No further information is available from the receiving partner.
(&00): conversation status of receiving partner
(&01): transaction status of receiving partner

Response
Check receiving conversations in distributed application.

414 U5642-J-Z125-3-7600

Messages

DRI0473 STATUS INFO RECEIVED FROM RECEIVING PARTNER AFTER CONVERSATION RESTART

Meaning
Receiving conversation submits status information following distributed conversation
restart.

Response
Refer to DRIVE messages containing additional information.

DRI0474 STATEMENT ONLY PERMITTED ON DISPATCH BLOCK PROGRAM LEVEL

Meaning
A DRIVE program called within a DISPATCH block using a local CALL PROCEDURE must
not itself contain a REMOTE CALL.

Response
Transfer REMOTE CALL to DISPATCH block compilation unit.

DRI0475 DATATYPE ILLEGAL FOR REMOTE PROCESSING

Meaning
Only the following datatypes can be transferred in USING parameters to DRIVE programs
called with CALL that are to be executed remotely:
- literals
- simple variables
- DRIVE expressions
- vectors, matrixes

Response
Check interface to, or execution of, user program units.

DRI0476 OTHER SERVER ALREADY ADDRESSED

Meaning
A server has already been addressed when a UTM server was accessed remotely. It is only
possible to address one server at this point.

Response
Check program flow. Tterminate current UTM server conversation before remote access.
Remote accesses to SESAM or UDS databases under BS2000 and remote CALLs within
a DRIVE/WINDOWS session are not possible at the same time.

U5642-J-Z125-3-7600 415

Messages

DRI0477 SERVER STATUS DOES NOT MATCH AT MOST RECENT SYNC POINT

Meaning
When a ROLLBACK WORK WITH RESET is performed in the client, a different server has
been addressed as when the most recent COMMIT WORK was performed. It is not
possible to recover the server status of the COMMIT WORK. Reset is therefore not
possible.

Response
Check program flow. Avoid ROLLBACK WORK WITH RESET in client if possible.

DRI0478 RESTART NOT POSSIBLE IN SERVER SESSION

Meaning
In a server session (without distributed transaction processing), a ROLLBACK WORK
WITH RESET was performed or a "ta_cancelled" was reported by the database existing
locally in the server. DRIVE/WINDOWS cannot reset the server program in this situation as
UTM does not support conversation restart for client server connections without distributed
transaction processing.

Response
Check flow of server program, as well as its accesses to local data resources.

DRI0479 RESTART NOT SUPPORTED

Meaning
The current DRIVE version does not support restart.

Response
Check program source; the ROLLBACK WORK WITH RESET statement is not permitted.

DRI0480 ERROR OCCURRED IN OLD-STYLE PROGRAM

Meaning
A new-style CALL started an old-style program; an error occurred during its execution.

Response
Switch explicitly to old-style operation, analyse and test the program.

DRI0481 ILLEGAL (&00) IN A CALLED OLD-STYLE PROGRAM

Meaning
A new-style CALL started an old-style program containing the specified illegal statement.
(&00): DO, STOP

416 U5642-J-Z125-3-7600

Messages

DRI0488 EXISTING DYNAMIC TEMPORARY VIEWS RELEASED

Meaning
Before it is possible to exit from a program called with DO, there must be no more temporary
views which have been defined in program mode. In other words a dynamic DROP
TEMPORARY VIEWS statement must have been processed before the END
PROCEDURE, STOP or a follow-up DO statement are encountered.
However, if temporary program views still exist, DRIVE deletes them from the database
system and outputs this message.

Response
Enter DROP TEMPORARY VIEWS in interactive mode and then enter suitable DROP
TEMPORARY VIEWS statements in the programs containing temporary views which are
affected.

DRI0489 ITEM-SPECIFITION REQUIRED WITH PRECISELY ONE ITEM

Meaning
It is necessary to specify ‘ITEM’ when the SET SCREEN ATTRIBUTE PRESELECT
statement is used for single selection fields. However, only one item may be specified.

Response
If there is no item specification, enter one.
If more than one item is specified, remove items.

DRI0490 SESAMSQL COMPILATION NOT POSSIBLE WITH TRANSACTION OPEN

Meaning
IT has been attempted to compile a program containing SQL statements other than
COMMIT/ROLLBACK even though a transaction is open.

Response
Compile the program separately and execute the CALL and CODE member or close the
transaction before CALL is encountered.

DRI0491 MAXIMUM NUMBER OF PERMITTED DECLARATIONS EXCEEDED

Meaning
The DRIVE program contains too many declarations of the same object type, e.g. more
than 20 DECLARE FILE statements.

Response
Watch limit for number of declarations.

DRI0492 FORM NO 'FHS-DE' FORM

Meaning
This statement requires FHS-DE forms.

Response
Change form or modify form attributes using IFG.

U5642-J-Z125-3-7600 417

Messages

DRI0493 CHANGE OF FORM TYPE NOT PERMITTED

Meaning
All partial forms must be of the same type. It is not permitted to mix FHS-DE forms and non-
DE forms.

Response
Change form or modify form attributes using IFG.

DRI0494 ONLY POSITIVE VALUES PERMITTED FOR (&00)

Meaning
A negative value or 0 was specified for ITEM or LINES.
(&00): ITEM or LINES entry

Response
Specify positive value for ITEM or LINES.

DRI0495 (&00) EXCEEDS '(&01)'

Meaning
(&00): LINES: The LINES value in the SET SCREEN ATTRIBUTE LINES statement

exceeds the number of lines defined for the list.
ITEM: - The ITEM value in the SET SCREEN ATTRIBUTE PRESELECT ON/OFF

ITEM statement exceeds the number of lines defined for the list.
- The ITEM value in the SET SCREEN ATTRIBUTE LOCK/PRESELECT

ON/OFF ITEM exceeds the number of selection fields defined for the
single selection field.

(&01): List elements in the case of LINES
List elements or selection fields in the case of ITEM

Response
Check LINES or ITEM specification.

DRI0496 NEXT WITHOUT PRECEDING FIRST

Meaning
A GET NEXT MODIFIED INDEX was entered for a form for which not previous GET FIRST
MODIFIED INDEX has been entered.

Response
- Check if form is correct.
- Execute GET FIRST MODIFIED INDEX first.

DRI0497 ENTER NOT MORE THAN 4 CHARACTERS FOR SCROLL

418 U5642-J-Z125-3-7600

Messages

DRI0498 INVALID CHARACTER IN SCROLL ENTRY

Meaning
The SCROLL specification contains characters other than '<', '>', '+', '-' or blank.

Response
Enter no characters other than '<', '>', '+', '-' or blank for SCROLL.

DRI0499 ACCESS TO FILE NOT POSSIBLE

Meaning
Incompatible OPEN mode prohibits access to file.

Response
Open file in appropriate mode.

DRI0500 PLEASE EXIT DRIVE BEFORE YOU EXIT WINDOWS

Meaning
A DRIVE application is still active. You must close this application before you can exit
Windows.

DRI0501 (&00)(&01)

Meaning
An error occurred when defining a report according to the message text.
(&00): report error number, see corresponding DRIVE error number
(&01): message text

Response
Correct definition.

DRI0502 RESOURCE NOT DEFINED

Response
Specify the name of the resource file either using the OPTION or the DECLARE WINDOW
statement.

DRI0503 'DRI#.' MUST NOT BE USED AS PREFIX IN FILE NAMES

Meaning
The 'dri#.' prefix is reserved for names internally assigned by DRIVE.

Response
Change file name.

DRI0504 NUMBER OF ATTRIBUTES NOT EQUAL TO NUMBER OF VARIABLES

Meaning
Number of DRIVE-variables not equal to number of WINDOW-/INFORMIX-attributes

Response
Match list of specified attributes to list of specified variables.

U5642-J-Z125-3-7600 419

Messages

DRI0505 OBJECT MUST BE OF TYPE '(&00)'

Meaning
The statement cannot be executed with the specified object.
(&00): - choice list

- input field
- input field/group with input field(s)

DRI0506 ATTRIBUTE NOT PERMITTED HERE

Meaning
For DECLARE WINDOW: the REVERSE ON specification is invalid together with
BACKGROUND or FOREGROUND COLOUR.

DRI0507 (&00) ALREADY EXISTS

Meaning
(&00): user label;

A user label already exists for the specified transaction code and USER name.
(&00): USER;

The USER name specified in the PARAMETER statement has already been
assigned.

Response
Change name of transaction code or user. Change USER name.
Delete file DRIUSERNAME under /tmp after abnormal termination of DRIVE.

DRI0508 CONSTRAINT IN DD VIOLATED, IDDS-STATUS: (&00), (&01)

Meaning
A cardinality constraint was violated. Possible reason:
- data inconsistent
- installation error
- internal execution error
(&00): error number
(&01): error text

Response
Determine exact cause of the error using the IDDS error number. Check data constellation
in the data dictionary. Have ERMS administrator check whether an invalid constraint was
defined in the supplied command files.

420 U5642-J-Z125-3-7600

Messages

DRI0509 ENTITY '(&00)' '(&01)' CANNOT BE CREATED

Meaning
The entity already exists in the DD in a partition to which DRIVE has no access.
For entity type CAL, RLS : only name of the called program.
For entity type RES : name shortened to 32 characters.
(&00): entity type
(&01): entity name

Response
Determine the exact error location using the entity type and name. Correct data in data
dictionary.

DRI0510 END OF THE RESULT TABLE REACHED OR RESULT TABLE EMPTY

Meaning
INFORMIX query returns no or no further hits.

DRI0511 CHANGE OF DB SYSTEM NOT POSSIBLE WITH TRANSACTION OPEN

Meaning
A change of DB system cannot be effected unless the transaction has been completed.

DRI0512 CALLING 'DRIVE-SPU' NOT PERMITTED

Meaning
It is not permitted to invoke DRIVE-SPU from within DRIVE-SPU.

DRI0513 DRIVE PROCESSES INCOMPATIBLE : '(&00)', '(&01)'

Meaning
Different DRIVE processes were installed which are not compatible.
(&00): version of the sending process
(&01): version of the receiving process

Response
Have system administrator check DRIVE installation and repeat run if required.

DRI0514 ERROR WITH '(&00)' (&01) (&02)

Meaning
An error occurred on running a system macro.
(&00): name of system macro
(&01): error number
(&02): error text

Response
Notify system administrator

U5642-J-Z125-3-7600 421

Messages

DRI0515 START OF PROCESS NOT POSSIBLE : (&00) (&01)

Meaning
Either the number of processes permitted for the system or for the user was exceeded or a
memory bottleneck occurred.
(&00): error number
(&01): error text

Response
Consult system administrator or start fewer processes when running DRIVE-SPU.

DRI0516 PROCESS '(&00)' CANNOT BE STARTED DUE TO : (&01)

Meaning
No DRIVE process has been installed for the indicated DRIVE function.
(&00): process name
(&01): cause of error

Response
If the process is required, have system administrator check the DRIVE installation.

DRI0517 INCREMENT VALUE IS 0 OR NULL

Meaning
The increment value of a CYCLE FOR loop must not be 0 or NULL at execution time.

Response
Make valid assignment to increment value.

DRI0518 '(&00)' IS NOT A (&01)

Meaning
(&00): name of file or directory
(&01): file or directory

Response
Delete existing file or change directory and repeat statement; change names.

DRI0519 INPUT FOR (&00) INVALID

Meaning
(&00): directory: No valid directory was specified in the PARAMETER statement.

file: The specified file name does not comply with the SINIX conventions.

Response
Specify valid directory and repeat statement.
Specify valid file name and repeat statement.

422 U5642-J-Z125-3-7600

Messages

DRI0520 DD STATUS MUST NOT BE CHANGED

Meaning
An attempt was made to set the parameter value for the DD to OFF while the object class
window for user labels was open.

Response
Close object class window for user labels.

DRI0521 CONTROL VARIABLE USED ON MORE THAN ONE 'CYCLE FOR' LEVEL

Meaning
The control variable for a CYCLE FOR loop must not be used on any other CYCLE FOR
level and must not be modified.

Response
Define separate control variable for each CYCLE FOR level.

DRI0522 NUMBER OF PARAMETERS IN SENDING AND RECEIVING SCRIPT NOT EQUAL

Meaning
The number of parameters in the sending script and receiving script must match.

DRI0523 (&00). INCOMPATIBLE PARAMETER IN SENDING AND RECEIVING SCRIPT

Meaning
The data type of the sending script is not compatible with the receiving script.
(&00): Position of incompatible parameter.

DRI0524 RETURN SPECIFICATION IN (&00). PARAMETER DOES NOT MATCH

Meaning
Adapt RETURN specification, i.e. the RETURN specifications for the indicated parameters
in the sending script must match those in the receiving script.
(&00): Position of mismatching parameter

DRI0525 OPTION '(&00)' WITH '(&01)' NOT COMPATIBLE

Meaning
A statement or statement part is not compatible with the assigned DB system.

DRI0526 CURRENT OR FORMAL PARAMETERS ARE NOT COMPATIBLE

Meaning
The data type of the formal parameter cannot be assigned to the current parameter.

Response
Adapt the formal parameter to the current interface definition.

U5642-J-Z125-3-7600 423

Messages

DRI0527 REMOTE ACCESS NOT POSSIBLE IN FIRST DIALOG STEP; ENTER 'DUE'

Meaning
Remote access is not possible before first screen output.

Response
Restart program.

DRI0528 PATHNAME OF PROGRAM TOO LONG

Meaning
The pathname assigned at installation is too long.

Response
At DRIVE installation, make sure that pathname is shorter than 254 characters.

DRI0529 INSUFFICIENT BUFFER LENGTH

Meaning
if the dialog builder fills the DRIVE buffer, the buffer must not be dynamically extensible.

Response
Extend buffer and restart DRIVE.

DRI0530 EVENT-OBJECT COMBINATION NOT UNIQUE

Meaning
A script contains duplicate ON conditions.

Response
Use unique ON conditions only.

DRI0531 NAME OF DIRECTORY TOO LONG

Meaning
The name specified using the $DRIVE_DD environment variable exceeds 10 characters.

Response
Use names of up to 10 characters.

DRI0532 INVALID EXPONENTIAL MASK

Meaning
The exponential mask for a numeric data type has been incorrectly defined. The following
applies:
en, where n > 8 and n < 25

Response
Define mask accordingly.

DRI0533 ERROR ON INTERNAL CHANGE/CLOSE OF INFORMIX DATABASE

Meaning
The current database is still active. See further message output for details.

424 U5642-J-Z125-3-7600

Messages

DRI0534 RUNTIME ERROR '(&00)' WHEN CALLING '(&01)'

Meaning
A PASCAL runtime error occurred which was caused by an interface or coding error in the
subroutine or subprogram of another programming language.
(&00): runtime error
(&01): module name

Response
- refer to describtion of PASCAL runtime errors in the PASCAL User Guide under

"Runtime errors and error handling".
- Remove runtime error by remedying error in external subprogram or subroutine.

DRI0535 SCRIPT DECLARATION FOR '(&00)' MISSING

Meaning
The PROC statement contains a SCRIPT clause which has not been declared.
(&00): window name.

Response
Remove SCRIPT clause from PROC statement or include SCRIPT declaration.

DRI0536 (&00)(&01)(&02)

Meaning
An error occurred when issuing an SQL statement to the INFORMIX database system The
message text has the following format:
<INFORMIX error message number>[<(C-ISAM error code)>]
<INFORMIX error message text, including up to one insert>.

Response
Refer to the "INFORMIX Error Messages" manual for an explanation and "Corrective
action" for each INFORMIX error message.

DRI0537 '(&00)' ENVIRONMENT VARIABLE INVALID OR NOT SUPPLIED

Meaning
The environment variables "$SQLEXEC" and "$INFORMIXDIR" for INFORMIX are invalid
or have not been supplied.
(&00): INFORMIX

Response
Correct environment variable

DRI0538 (&00) NOT PERMITTED IN (&01) PROGRAM BLOCK

Meaning
The described specification is not permitted in the described program block.

Response
Correct or omit statement.

U5642-J-Z125-3-7600 425

Messages

DRI0539 PROCESS '(&00)' NO LONGER EXISTS

Meaning
The described process has already been terminated. The current statement was not
executed. This applies to one of the following process types:
(&00): dri_mo: monitor process

dri_op: interface process
dri_dd: DD process
dri_dz: DD process for user labels

The SPE is terminated if the monitor process has been terminated. If the dri_dz process
has been terminated, the class window for user labels is closed.

Response
Do not try to repeat your last statement. You can continue to work with DRIVE however.
Determine the reason for process failure.

DRI0540 PLEASE ACKNOWLEDGE

Response
Acknowledge message box with OK.

DRI0541 '(&00)' COMPILED WITHOUT ERROR

Meaning
The described program has been compiled without error.
(&00): program name

DRI0542 '(&00)' DELETED WITHOUT ERROR

Meaning
The described program has been deleted.
(&00): program name with associated objects, i.e. list, intermediate codes, etc., if any

DRI0543 'DATABASE' STATEMENT MISSING FROM UTM START FILE

Meaning
Informix programs can only run as UTM applications if the same database is specified in
the start file.

Response
Change UTM start file.

DRI0544 '(&00)' PRECOMPILED WITHOUT ERROR

Meaning
The indicated program has been successfully precompiled using OPTION
PRECOMPILE=ONLY.
(&00): program name.
The result file with the suffix '.i' has been created.

426 U5642-J-Z125-3-7600

Messages

DRI0545 START FILE DOES NOT EXIST

Meaning
A start file is mandatory
- when DRIVE is running in batch mode
- when DRIVE is running as RTS version

Response
Generate start file

DRI0546 ERROR IN START FILE

Meaning
The start file contains error(s).

Response
Correct start file

DRI0547 'DRIVE' TERMINATES WITH 'EXIT'

Meaning
The program to be run under DRIVE RTS contains an EXIT statement.

Response
If exit not required, eliminate EXIT statement.

DRI0548 'DRIVE' TERMINATES WITH 'BREAK'

Meaning
The program to be run under DRIVE RTS contains a BREAK statement.

Response
If break not required, eliminate BREAK statement.

DRI0549 STATEMENT ABORTED (EXIT=DRIVE TERMINATES)

Meaning
Error(s) in program analysis or execution.

Response
Acknowledge EXIT prompt with <ENTER> to allow DRIVE to terminate normally.

DRI0550 STATEMENT ILLEGAL UNDER DRIVE RTS

Meaning
If the program is to run under DRIVE RTS, the start file may only contain the DO statement.
The only response permitted to the prompt is EXIT.

Response
Eliminate invalid statement; acknowledge EXIT prompt.

U5642-J-Z125-3-7600 427

Messages

DRI0551 DRIVE FORM FILE COPY ERROR

Meaning
Copying the DRIVE form file 'D@<usern>' to the save file or copying the save file
'D@<usern>.sav' to the corresponding DRIVE form file failed. Possible reasons: memory
bottleneck, insufficient access authorization

Response
Check access permission for DRIVE form files as well as their save copies ('read + write'
required), or make available sufficient memory.

DRI0552 SAME EXECUTION ERROR OCCURS TWICE

Meaning
An error occurred during execution of a DISPLAY LIST statement. An error list is to be
written in response to the error, during which the same error occurs again.

Response
Remove cause of first error and start program again.

DRI0553 PLEASE ENTER DEBUG STATEMENT

Meaning
DRIVE is in debugging mode and expects you to enter a debug statement.

Response
Enter debug statement.

DRI0554 DEBUG STATEMENT EXECUTED

Meaning
DRIVE has executed the last debug statement without error and expects the next debug
statement to be entered.

Response
Enter next debug statement.

DRI0555 LINE NUMBER (&00) INVALID

Meaning
An invalid line number was specified in an AT statement.
(&00): line number

Response
Determine valid line number and correct AT statement.

428 U5642-J-Z125-3-7600

Messages

DRI0556 LINE NUMBER RANGE '(&00)-(&01)' INVALID

Meaning
An invalid line number range was specified in an AT statement.
(&00): start of range
(&01): end of range

Response
Determine valid line number range and correct AT statement.

DRI0557 ALPHA OUTPUTS NOT POSSIBLE WITHOUT FORMANT

Meaning
DRIVE was started with the '-w' option. This implies graphics output, but no alpha outputs.
Note: The alpha output to be effected may be due to an error in the start file.

Response
Do not execute DRIVE programs with alpha outputs when starting DRIVE with '-w'.

DRI0558 FILE: '(&00)' ERROR: (&01)

Meaning
An error occured when processing the indicated file.
(&00): file name
(&01): error message of the operating system.

Response
Analyze indicated error.

DRI0559 '(&00)' NOT FOUND: (&01)

Meaning
The indicated file does not exist.
(&00): file name
(&01): error message of the operating system

Response
Make specified file avialable.

DRI0560 '(&00)' LOCKED: (&01)

Meaning
The indicated file cannot be accessed.
(&00): file name
(&01): error message of the operating system.

Response
Provide access to indicated file.

U5642-J-Z125-3-7600 429

Messages

DRI0561 PLEASE SUPPLY USING PARAMETERS

Meaning
The initial breakpoint has been reached and not all USING parameters have been supplied.

Response
Supply USING parameters using SET or abort debugging session using BREAK DEBUG.

DRI0562 (&00) USING PARAMETERS NOT YET SUPPLIED

Meaning
At the initial breakpoint, the indicated number of USING parameters are missing.
(&00): number

Response
Supply missing USING parameters using SET statements or abort debugging session
using BREAK DEBUG.

DRI0563 USING PARAMETERS COMPLETE

Meaning
At the initial breakpoint, all USING parameters have been supplied.

Response
Enter desired debug statement.

DRI0564 STATEMENT INVALID FOR PARAMETER PROMPTING

Meaning
A statement other than SET or BREAK DEBUG has been entered in response to parameter
prompting.

Response
Terminate parameter prompting.

DRI0565 'SET' STATEMENT ONLY PERMITTED FOR USING PARAMETERS OF 'DO/CALL'

Meaning
At the initial breakpoint, not all USING parameters have been supplied, a SET statement
was entered for another variable however.

Response
Supply USING parameters or enter BREAK DEBUG.

DRI0566 'SET' STATEMENT NOT PERMITTED FOR VARIABLE VALUE ASSIGNMENT

Meaning
At the initial breakpoint, not all USING parameters have been supplied, a SET statement
with variable value assignment was entered however.

Response
Supply USING parameters or enter BREAK DEBUG.

430 U5642-J-Z125-3-7600

Messages

DRI0567 APPLICATION LINKED TO ILLEGAL FILE

Meaning
When starting the DRIVE kernel process from the file manager, the DRIVE kernel process
may only be linked to a start file (suffix '.dri') or a code element (suffix '.drx').

Response
Correct illegal linkage.

DRI0568 DEBUGGING OUTPUT TOO LARGE

Meaning
In a trace, a statement is to be output which has too many lines (in the listing element). The
excessive lines at the end are suppressed.

Response
Press <ENTER> key

DRI0569 TOO MANY ERROR MESSAGES

Meaning
More errors have occurred than can be output. Output of the excessive last errors is
therefore suppressed.

Response
Enter next debug statement.

DRI0570 NO DEBUG STATEMENT FOUND

Meaning
At a breakpoint, only the <ENTER> key was pressed. No debug statement was entered.

Response
Enter valid debug statement.

DRI0571 NUMBER OF ERROR EXCEEDS LIMIT

Meaning
The number of errors found during analysis of a DRIVE program exceeds the entries
possible in the error table. Additional errors are not listed.

Response
Correct reported errors and recompile program.

DRI0572 EXTENSION '(&00)' NOT PERMITTED

Meaning
The only permitted extensions for DRIVE programs are DRP and DRX.
(&00): extension

Response
Change name of DRIVE program.

U5642-J-Z125-3-7600 431

Messages

DRI0573 BRANCH TO FINAL BREAKPOINT

Meaning
The system has branched to the final breakpoint after the BREAK statement has been
entered, or the BREAK key activated, in debugging mode.

Response
Enter BREAK DEBUG, DISPLAY FORM or DISPLAY LIST.

DRI0574 FINAL BREAKPOINT ALREADY REACHED

Meaning
An illegal statement was entered at the final breakpoint. Permitted are: BREAK DEBUG,
DISPLAY FORM and DISPLAY LIST.

Response
Enter valid debug statement.

DRI0575 FINAL BREAKPOINT REACHED

Meaning
Processing has stopped after the END PROCEDURE statement on the highest program
level (program called with DEBUG) has been executed.

Response
Enter debug statement.

DRI0576 INITIAL BREAKPOINT REACHED

Meaning
After entering the DEBUG statement in interactive mode, the system branches to the initial
breakpoint. Execution has processed the PROCEDURE statement in the program called
with DEBUG and stopped after this statement.

Response
Enter debug statement.

DRI0577 INITIAL BREAKPOINT: EXECUTION OF DEBUG STATEMENTS STARTS

Meaning
The debugger was started from the SPE. The debug statements entered were executed.
This is followed by a debug run with or without trace, depending on whether a TRACE
statement was entered or not in the SPE.

432 U5642-J-Z125-3-7600

Messages

DRI0578 CURRENT BREAKPOINT: LINE (&00) IN PROCEDURE '(&01)'

Meaning
The indicated breakpoint has been reached, i. e. program execution has reached a point
just before the statement in the specified line of the specified procedure. Any debug opera-
tions of the type DISPLAY or SET which have been included at this statement have already
been executed.
(&00): line number
(&01): procedure name (incl. library specification)

Response
Enter debug statement.

DRI0579 ERROR ON EXECUTING STATEMENT '(&00)'

Meaning
An execution error occurred when executing a program statement or a debug operation
included at this point. The associated line number and program name are output in
message number DRI0578. Also other relevant error messages are output prior to
message DRI0579 (as in the error list in program mode).
(&00): DRIVE statement

Response
Try to remedy the error using a SET statement. If this fails, the debug run has to be aborted
with BREAK DEBUG.

DRI0580 ENTRIES TOO LONG

Meaning
The record exceeds the input list. The excessive characters are ignored.

Response
Extend input list.

DRI0581 FILE OUTPUT TOO LONG

Meaning
Length of 32000 exceeded when outputting to a file.

Response
Distribute output across several output statements.

DRI0582 NULL VALUE NOT DEFINED

Meaning
A null value is to be written to a file whereas no null value has been declared.

Response
Specify a character for the representation of the null value when defining a file.

U5642-J-Z125-3-7600 433

Messages

DRI0583 FILE '(&00)' NOT YET OPEN

Meaning
The indicated file has not yet been opened by the program.
(&00): file name

Response
Open file before calling the program.

DRI0584 FILE '(&00)' ALREADY OPEN

Meaning
The indicated file has already been opened by the program.
(&00): file name.

Response
Close indicated file before calling the program.

DRI0585 TOO MANY FILES OPEN

Meaning
More than 20 'isam-shareupd/input' files open in BS2000 UTM mode.

Response
Reduce number of open files.

DRI0586 END OF FILE

Meaning
The end of file has been reached

DRI0587 INPUTS TO SHORT

Meaning
The record is shorter than the input list.

DRI0588 NAME '(&00)' TOO LONG

Meaning
The name of the library, classs list, or element is too long.
(&00): too long element

DRI0589 TOO MANY BOXES TO BE REMOVED

Meaning
More boxes than are currently on the screen are to be REPLACEd or REMOVEd.

Response
Decrease the value of 'number' in the REPLACE or REMOVE statement.

434 U5642-J-Z125-3-7600

Messages

DRI0590 OPERATION '(&00)' ALREADY INCLUDED AT STATEMENT IN LINE (&01)

Meaning
The specified debug operation has already been included at the specified line number. It
cannot be included more than once.
(&00): debug operation
(&01): line number

Response
Enter next debug statement.

DRI0591 NO OPERATION FOUND

Meaning
Following a REMOVE statement, no debug operation was found.

Response
Enter next debug statement.

DRI0592 ASSIGNMENT TO INDIVIDUAL COMPONENT NOT PERMITTED

Meaning
During parameter prompting in debugging mode, making assignments to individual compo-
nents of a USING parameter is not permitted.

Response
Assignments to structured variables in debugging mode using parameter prompting have
to be made via aggregates.

DRI0593 TRACE RUN COMPLETED: LINE (&00) OF PROCEDURE '(&01)'

Meaning
The specified number of steps was executed in a trace operation on the screen. Following
execution of the last statement, the system passes to a breakpoint, i. e. program execution
has reached a point just after the statement in the specified line of the specified procedure.
A debug operation of the type COUNT that has been included at this statement has already
been executed.
(&00): line number
(&01): procedure name (incl. library specification)

Response
Enter debug statement

U5642-J-Z125-3-7600 435

Messages

DRI0594 STATEMENT ONLY PERMITTED FOR VARIABLE CURSOR

Meaning
The statement (e.g. DROP) is only permitted if the cursor has been declared as variable
cursor (i.e. without FOR SELECT ... clause).

Response
- Correct cursor declaration
- Remove DROP or execute with EXEC.

DRI0595 CHANGE OF DIALOG STEP DURING 'REPORT' PROCESSING UNDER UTM

Meaning
A screen output is to be performed under UTM and at least one REPORT is vet to be filled.

Response
Check program execution. Terminate REPORT processing prior to screen output using
CLOSE REPORT.

DRI0596 '(&00)' CAN ONLY BE EXECUTED ON THE HIGHEST PROGRAM LEVEL

Meaning
A program can only be executed either
- with the DO statement, or
- in the receiving environment, on the program level directly called by the submitting

partner.
A program can only be executed with DO if it contains e. g. a STOP statement
(&00): program name without suffix: source program

program name with suffix CODE: intermediate code

DRI0597 STATEMENT NOT PERMITTED FOR PREFETCH CURSOR

Meaning
The statement (e.g. FETCH PRIOR) is not permitted if the cursor has been declared as
PREFETCH cursor.

Response
Correct cursor declaration.

DRI0598 RUNNING PROGRAM ABORTED

Meaning
The user terminated the running program by activating the 'Cancel' menu item in the SPU
for example.

436 U5642-J-Z125-3-7600

Messages

DRI7001 No memory space is available.

DRI7002 System error!

DRI7003 Internal error!

DRI7004 Report Services is not available.

DRI7005 No access to message file.

DRI7006 The given node Id does not reference a suitable report object.

DRI7007 The given pointer does not reference an opened report object.

DRI7008 Actual input parameters are missing.

DRI7009 Incorrect length of actual parameter record.

DRI7010 No memory space is available.

DRI7011 System error (function: (&00) errno: (&01)).

DRI7012 Internal error in line (&00).

DRI7013 An LMS error has occurred (LMS: (&00) DMS: (&01)).

DRI7014 An internal PMC error has occurred.

DRI7015 An error with NLS constants has occurred.

DRI7016 The version of the report object is not supported.

DRI7017 One of the given arguments has an inappropriate value.

DRI7018 The delimiters in the users profile are not unique.

DRI7019 The user function is not defined.

DRI7020 NOT YET IMPLEMENTED!

DRI7021 The function is not allowed in the current open mode.

DRI7022 The report object to be created already exists.

DRI7023 The report object to be opened is locked.

DRI7024 No access to report object or data file.

DRI7025 The meta type (&00) is not allowed in this context.

DRI7026 The meta type (&00) is already defined.

DRI7027 The property (&00) is not allowed in this context.

DRI7028 The property (&00) is already set.

DRI7029 (&00) is invalid for property (&01).

DRI7030 Property sequence error for (&00).

DRI7031 No name is defined for a superior structure.

U5642-J-Z125-3-7600 437

Messages

DRI7032 The group field cannot be found in the order clause.

DRI7033 The to be searched node or property cannot be found.

DRI7034 The report object does not contain a valid record part.

DRI7035 The report object already contains a layout part.

DRI7036 The provided buffer is too short to take up the property value.

DRI7037 The symbol (&00) is not valid.

DRI7038 The symbol (&00) is ambiguous.

DRI7039 An array index must be a constant value or a local variable.

DRI7040 An array index is out of range.

DRI7041 A mandatory node as son of (&00) is missing.

DRI7042 Property (&00) for node (&01) is missing.

DRI7043 The node (&00) has no properties defined.

DRI7044 The number of detail parts and record descriptions is different.

DRI7045 The referenced report object contains no layout part.

DRI7046 A mandatory node representing a record part is missing.

DRI7047 Double (&00) with same hierarchy is defined.

DRI7048 The redefinition exceeds the length of the redefined field.

DRI7049 An error has occurred while validating an expression.

DRI7050 Type conflict in expression.

DRI7051 Wrong group number (&00) in group header and/or group trailer.

DRI7052 A Parameter for the user function is not defined.

DRI7053 Type of an array index not allowed.

DRI7054 Control block (&00) only allowed once.

DRI7055 This feature is not allowed in the page base.

DRI7056 Input data exceeds the maximum record length.

DRI7057 The format description string is incorrect.

DRI7058 For this field NULL_ALLOWED is not defined.

DRI7059 The given length of the data record is wrong.

DRI7060 The record kind is undefined.

DRI7061 The length of the given field is not correct.

DRI7062 The data type of the given field is incorrect.

438 U5642-J-Z125-3-7600

Messages

DRI7063 Error while calling an INFORMIX conversion function.

DRI7064 Error while calling an INFORMIX arithmetic function.

DRI7065 Not enough space for printing in detail area.

DRI7066 The result of the condition is NULL.

DRI7067 Not enough header lines for page header are defined.

DRI7068 Not enough trailer lines for page trailer are defined.

DRI7069 No tabulators are defined for this control block.

DRI7070 Type incompatibility in assign statement.

DRI7071 The data type of an user function argument is wrong.

DRI7072 The parameter of the user function is not declared.

DRI7073 Division by zero is not allowed.

DRI7074 The numeric string constant represents no number.

DRI7075 The value is out of range in ASSIGN statement.

DRI7076 Error in user function: (&00).

DRI7077 Length of image data is wrong.

DRI7078 Image data is not in hexadecimal form.

DRI7079 No device profile is available.

DRI7080 An RDI file with the given path name cannot be opened.

DRI7081 The spool cannot be activated.

DRI7082 The device profile is not defined completely.

DRI7083 The name for the RDI converter is missing in the device profile.

DRI7084 Conversion error in the device profile (line (&00)).

DRI7085 Invalid character in the device profile (line (&00)).

DRI7086 Incomplete line in the device profile (line (&00)).

DRI7087 Incorrect line in the device profile (line (&00)).

DRI7088 Incorrect value in the device profile (line (&00)).

DRI7089 Value to long in the device profile (line (&00)).

DRI7090 Wrong initial string in the device profile (line (&00)).

DRI7091 Incorrect meta word class in the device profile (line (&00)).

DRI7092 Missing command line in the device profile (line (&00)).

DRI7093 Missing command line in the device profile (line (&00)).

U5642-J-Z125-3-7600 439

Messages

DRI7094 Missing command line in the device profile (line (&00)).

DRI7095 Wrong control word sequence in the device profile (line (&00)).

DRI7096 Missing "valid value"-line in the device profile (line (&00)).

DRI7097 Wrong "valid value"-list in the device profile (line (&00)).

DRI7098 Missing define-connected-line in the device profile (line (&00)).

DRI7099 Wrong connected-value-line in the device profile (line (&00)).

DRI7100 Wrong connected-value-line in the device profile (line (&00)).

DRI7101 Wrong increment value in the device profile (line (&00)).

DRI7102 Metaword in device profile is not defined (line (&00)).

DRI7103 Only "CHARTYPE" in device profile allowed (line (&00)).

DRI7104 Wrong parametertype in the device profile (line (&00)).

DRI7105 Defaultvalue in the device profile is not defined (line (&00)).

DRI7106 Substitutevalue in the device profile is not allow (line (&00)).

DRI7107 An error has been returned by the spool system.

DRI7108 Source and target are equal.

DRI7109 Incorrect parameter indicators in the device profile (line (&00)).

DRI7110 Too many parameter indicators in the device profile (line (&00)).

DRI7111 Only "NUMTYPE" in device profile allowed (line (&00)).

DRI7112 Using false device profile or RDI-Converter.

DRI7113 The RDI input file (&00) cannot be opened.

DRI7114 Bad magic number in RDI input stream.

DRI7115 Usage: (&00) ... (see manual)!

DRI7116 No prolog file is available.

DRI7117 Source file has no bounding box.

DRI7118 No user specific and no system specific user profile can be found.

DRI7119 Syntax error in user profile (command "(&00)).

DRI7120 Functionality not available in this release ((&00)).

DRI7121 Data structure skipped in standard layout.

DRI7122 Too many actual parameters are given.

DRI7123 Wrong data type for repeat value of a constant string.

DRI7124 The file defined with a source statement does not exist.

440 U5642-J-Z125-3-7600

Messages

DRI7125 Format description on page (&00) line (&01) is too short.

DRI7126 Printing position page (&00) line (&01) not allowed.

DRI7127 No tabulator on page (&00) line (&01) left.

DRI7128 Rotation not supported by device.

DRI7129 An implicit sort order has been introduced.

DRI7130 No text - never used.

DRI8000 MONDAY/TUESDAY/WEDNESDAY/THURSDAY/FRIDAY/SATURDAY/SUNDAY/

Meaning
Day names that can be used as day strings in masks. Maximum string length: 40 bytes

DRI8001 JANUARY/FEBRUARY/MARCH/APRIL/MAY/JUNE/JULY/AUGUST/SEPTEMBER/OCTOBER/NOVEMBER/
DECEMBER/

Meaning
Month names used as month strings in masks. Maximum length per string: 40 bytes

DRI8002 CURRENT CONVERSATION LIST FOR USER '(&00)' WITH CONVERSATION STATUS '(&01)'

Meaning
List header for UTM print outputs.

DRI8003 LIST OF ALL CONVERSATIONS FOR USER '(&00)' WITH CONVERSATION STATUS '(&01)'

Meaning
List header for UTM print outputs.

DRI8004 CONVERSATION DATE: (&00) CONVERSATION TIME: (&01)

DRI8005 LIST PRINTOUT TERMINATED AT: (&00)/(&01)

Meaning
(&00): date
(&01): time

U5642-J-Z125-3-7600 441

Messages

DRI8010 (NEXT/PRIOR/FIRST/LAST/BREAK=SCROLL;+/-/+-/++/--=PAGING IN RECORD)

Meaning
SCROLL = positioning within the cursor table

NEXT: read the next cursor record
PRIOR: read the preceding cursor record
FIRST: read the first cursor record
LAST: read the last cursor record
BREAK: read no more cursor records

Paging in the record:
+ : display next screen
- : display preceding screen
+- : redisplay current screen
++ : display end of record
-- : display beginning of record

DRI8011 (NEXT/BREAK=SCROLL;+/-/+-/++/--=PAGING IN RECORD)

Meaning
SCROLL = positioning with the cursor table

NEXT: read the next cursor record
BREAK: read no more cursor records

Paging in the record:
+ : display next screen
- : display preceding screen
+- : redisplay current screen
++ : display end of record
-- : display beginning of record

DRI8012 (BREAK=ABORT;+/-/+-/++/--=PAGING IN RECORD)

Meaning
Paging in the record:

+ : display next screen
- : display preceding screen
+- : redisplay current screen
++ : display end of record
-- : display beginning of record

442 U5642-J-Z125-3-7600

Messages

DRI8013 (NEXT/PRIOR/FIRST/LAST/CURRENT/ABSOLUTE/RELATIVE/BREAK=SCROLL)

Meaning
SCROLL = Navigate within cursor set.

NEXT: Read next cursor row.
PRIOR: Read prior cursor row.
FIRST: Read first cursor row.
LAST: Read last cursor row.
CURRENT: Read current cursor row again.
RELATIVE: Relative positioning with row number which is subsequently requested.
ABSOLUTE: Absolute positioning with row number which is subsequently requested.
BREAK: Stop reading cursor rows.

DRI8014 (ROWNO)

Meaning
Continuation of number 8013 giving the input for the RELATIVE or ABSOLUTE entry

Response
Enter row number for FETCH RELATIVE/ABSOLUTE.

DRI8020 PAGE/LINE/SOURCE/NEST/BY COMMAND/BY DEFAULT/IN SOURCE CODE/COMPILATION OPTIONS/
NUMBER OF ERRORS/REFERENCE LIST/PROGRAM NAME/MEMBER/IDP/STARTUP/PROGRAM/

Meaning
Entries for the compiler listing. Maximum string length: 40 bytes

DRI8021 LITERAL/ATTRIBUTE SPECIFICATION/PREDICATE/USER TEXT/

Meaning
Maximum string length: 40 bytes

DRI8022 NO/DATE/TIME/USER/FROM/ERROR LIST/ERROR INFORMATION/CALLED BY/DYNAMIC CHAINED
PROGRAM CALL/END OF ERROR LIST/DISTANCE/LIBRARY TABLE/

Meaning
Maximum string length: 40 bytes

DRI8023 END OF REFERENCE LIST/OF/OF TYPE/AT/PREDEFINED IN DD/BASE TABLE/BASE TABLES/
COLUMN/FILE/VARIABLE/FORM/CALL MOD/LIBRARY/PROGRAM/

Meaning
Entries for UREF/XREF Maximum string length: 40 bytes

DRI8024 EDT FILE 0/PROGRAM IN EDT FILE 0/SYSTEM LIBRARY/TASK LIBRARY/DATA DICTIONARY/
VECTOR/MATRIX/PROGRAM ERROR/

Meaning
Maximum string length: 40 bytes

U5642-J-Z125-3-7600 443

Messages

DRI8025 FORM INPUT/FORM OUTPUT/STATEMENTS/CONSTANTS/VALUES/INTERMEDIATE CODE/NUMBER/
NAME/SIZE/TOTAL/

Meaning
Entries for size of tables. Maximum string length: 40 bytes

DRI8026 DIRECTORY/OBJECT/USERLABEL/COPY-ELEMENT/CONSTANT/WINDOW-OBJECT/IN/DEBUG-LIST/

DRI8027 DIALOG/ALPHA/GRAPHIC/UTM-ENTER/MASK/CHECK/WINDOW-ATTRIBUTE/

DRI8028 PROCESS CANNOT BE STARTED/EDITOR CANNOT BE STARTED/CHANGE OF DIRECTORY NOT
POSSIBLE/DIRECTORY CANNOT BE GENERATED/PATHNAME TOO LONG/PATHNAME INCORRECT/
TILDE CANNOT BE INTERPRETED/

Meaning
Inserts included in the message issued by the editors.

Response
if inserts are to be modified, the maximum string length per insert is 40 bytes.

DRI8029 COMPUTING ERROR/IN ARGUMENT/BATCH/SERVER/CLIENT/BEGIN/END/

Meaning
Inserts included in the message issued by the component processing expressions.

Response
If inserts are to be modified, the maximum string length is 40 characters.

DRI8030 VERSION/DIRECTIVE/CALL KEY/TOTAL LENGTH/LENGTH/LIBRARY NAME LENGTH/MEMBER NAME
LENGTH/LEVEL/COUNTER/

Meaning
Inserts for messages.

DRI8100 FORWARD

Meaning
Output made by DRIVE system program.

DRI8101 BACKWARD

Meaning
Output made by DRIVE system program.

DRI8102 CANCEL

Meaning
Output made by DRIVE system program.

DRI8103 SELECT PARAMETER STATEMENT

Meaning
Output made by DRIVE system program.

444 U5642-J-Z125-3-7600

Messages

DRI8104 TRACE OPTION

Meaning
Output made by DRIVE system program.

DRI8105 DEFINE DYNAMIC PARAMETERS

Meaning
Output made by DRIVE system program.

DRI8106 ASSIGN K- OR F-KEYS

Meaning
Output made by DRIVE system program.

DRI8107 DEFINE STATIC PARAMETERS

Meaning
Output made by DRIVE system program.

DRI8108 LOCK STATEMENTS

Meaning
Output made by DRIVE system program.

DRI8109 PROCESSING

Meaning
Output made by DRIVE system program.

DRI8110 NO ACTION

Meaning
Output made by DRIVE system program.

DRI8111 C

Meaning
Output made by DRIVE system program.

DRI8112 P

Meaning
Output made by DRIVE system program.

DRI8200 /********* DECLARATION OF WINDOWS PROCESSED *********/

DRI8201 /************** EVENT-DRIVEN PROCESSING **************/

DRI8202 /**************** INITIALIZATION BLOCK *****************/

DRI8203 /********************* PROGRAM BODY *********************/

DRI8204 /*********** ERROR ROUTINE FOR WINDOW ERROR ************/

U5642-J-Z125-3-7600 445

Messages

DRI8205 <Nothing found>

Meaning
No object matching the choice list in a class window was found. The list is currently locked.
The functions of the 'Object' menu are also locked, except the 'New' and 'Close' functions.

Response
Continue processing with one of the available functions, i.e. close the window, change the
directory, create a new user label or source.

DRI8206 Abort running processes? (Yes/No)

Meaning
Closing the class window would at the same time abort any processes that are still running.

DRI8207 Yes

Meaning
Entry option in response to previous message

DRI8208 No

Meaning
Entry option in response to previous message.

DRI8209 <No child directory>

Meaning
The current directory does not contain a child directory. A change of directory is only
possible to a parent directory.

DRI8210 <No active activities>

Meaning
No background activities are currently running, e.g. compilations, program executions, etc.

DRI8211 Path name/Library specification

Meaning
Label for dialog box.

DRI8212 New object name:

Meaning
Label for dialog box.

DRI8213 Old object name:

Meaning
Label for dialog box.

446 U5642-J-Z125-3-7600

Messages

DRI8214 Select at least two objects

Meaning
When linking a load module, at least two objects must be selected from the object list.

DRI9000 STATEMENT EXECUTED SUCCESSFULLY

DRI9010 RECORD LOCKED BY FOREIGN TRANSACTION

DRI9021 INVALID USER ID

DRI9022 ACCESS RIGHTS VIOLATED

DRI9100 END OF RESULT TABLE REACHED OR RESULT TABLE EMPTY

DRI9116 SCHEMA NAME '(&00)' INCORRECT

DRI9118 SCHEMA NAME '(&00)' AMBIGUOUS

DRI9119 SCHEMA NAME '(&00)' TOO LONG

DRI9121 '(&00)' TABLE NOT SIMPLE

DRI9123 '(&00)' TABLE NOT A BASE TABLE

DRI9126 TABLE NAME '(&00)' INCORRECT

DRI9127 '(&00)' TABLE NOT DEFINED

DRI9128 TABLE NAME '(&00)' AMBIGUOUS

DRI9129 TABLE NAME '(&00)' TOO LONG

DRI9131 COLUMN SPECIFIED INCORRECTLY

DRI9135 ERROR IN COLUMN SPECIFICATION

DRI9136 COLUMN NAME '(&00)' INCORRECT

DRI9137 COLUMN NOT DEFINED

DRI9138 COLUMN NAME AMBIGUOUS

DRI9139 COLUMN NAME TOO LONG

DRI9141 CURSOR IS CLOSED

DRI9142 CURSOR IS OPEN

DRI9143 CURSOR NOT POSITIONED

DRI9144 CURSOR CANNOT BE POSITIONED

DRI9146 CURSOR NAME '(&00)' INCORRECT

DRI9147 CURSOR NOT DEFINED

DRI9148 CURSOR NAME '(&00)' AMBIGUOUS

DRI9149 CURSOR NAME '(&00)' TOO LONG

U5642-J-Z125-3-7600 447

Messages

DRI9156 CORRELATION NAME '(&00)' INCORRECT

DRI9158 CORRELATION NAME '(&00)' AMBIGUOUS

DRI9159 CORRELATION NAME '(&00)' TOO LONG

DRI9210 NULL VALUE CONSTRAINT VIOLATED

DRI9220 UNIQUENESS CONSTRAINT VIOLATED

DRI9230 REFERENTIAL CONSTRAINT VIOLATED

DRI9300 INDICATOR VARIABLE NOT PERMITTED

DRI9310 INDICATOR VARIABLE NOT SPECIFIED

DRI9320 QUERY RETURNS MORE THAN ONE HIT

DRI9330 VALUE LIST INCOMPLETE OR INCORRECT

DRI9335 VALUE INCORRECT

DRI9336 PRIMARY KEY SPECIFIED IN 'SET' CLAUSE

DRI9337 PRIMARY KEY NOT FULLY SPECIFIED

DRI9338 SET FUNCTION NOT PERMITTED

DRI9339 TOO MANY ELEMENTS IN AGGREGATE

DRI9340 VALUE OVERFLOW / UNDERFLOW

DRI9345 INCORRECT DATA TYPE

DRI9350 INCOMPATIBLE DATA TYPE

DRI9360 INCOMPATIBILITY DURING CONVERSION

DRI9365 INCORRECT COLUMN IN SET FUNCTION

DRI9370 INCORRECT PATTERN IN 'LIKE' CLAUSE

DRI9371 ONLY ONE ELEMENT IN 'IN' CLAUSE

DRI9372 DEFAULT VALUE NOT PERMITTED

DRI9380 ERROR IN THE CONDITION

DRI9384 MORE THAN 2 TABLES ADDRESSED

DRI9385 MORE THAN 6 SORT CRITERIA

DRI9390 NO SYNONYMS SPECIFIED FOR COLUMNS IN THE VIEW

DRI9400 ERROR IN 'ORDER BY' CLAUSE

DRI9420 ERROR IN 'GROUP BY' CLAUSE

DRI9440 ERROR IN 'INTO' CLAUSE

DRI9450 RECORD ALREADY DELETED BY THIS TRANSACTION

448 U5642-J-Z125-3-7600

Messages

DRI9500 INCORRECT OBJECT SPECIFICATION IN 'SHOW' STATEMENT

DRI9600 SEQUENCE OF STATEMENTS INCORRECT

DRI9630 POSITIONING SPECIFICATION NOT PERMITTED

DRI9700 SHORT-TERM ACCESS LOCK

DRI9701 ABORTION DUE TO 'CANCEL' OR 'INTR' CALL

DRI9702 ABORTION DUE TO SORT ERROR

DRI9710 SHORT-TERM DB SYSTEM OVERLOAD

DRI9720 DB SYSTEM I/O ERROR

DRI9730 TASK DEADLOCK

DRI9740 CONVERSATION UNKNOWN DUE TO ADMINISTR. INTERVENTION OR BOTTLENECK

DRI9745 CONVERSATION UNKNOWN DUE TO DBMS STARTUP

DRI9750 INSERT STATEMENT NOT PERMITTED FOR SPECIFIED BASE TABLE

DRI9760 UPDATE STATEMENT NOT PERMITTED FOR SPECIFIED BASE TABLE

DRI9770 BASE TABLE ACCESS NOT PERMITTED

DRI9775 DB OPEN ERROR

DRI9780 SCHEMA ACCESS NOT PERMITTED

DRI9785 COLUMN ACCESS NOT PERMITTED

DRI9790 TWO SCHEMAS FROM A DATA BASE ADDRESSED IN A SINGLE TA

DRI9800 ACCESS BRIEFLY NOT PERMITTED

DRI9810 UPDATE ACCESS NOT PERMITTED

DRI9820 DATA BASE SYSTEM TERMINATED NORMALLY BY ADMINISTRATOR

DRI9830 DBH NOT YET OR NO LONGER AVAILABLE

DRI9840 SYSTEM COMPONENT FOR DATA BASE SYSTEM NOT AVAILABLE

DRI9850 NEW TA NOT CURRENTLY PERMITTED DUE TO ADMINISTRATOR INTERVENTION

DRI9860 ERROR IN CONFIGURATION FILE

DRI9900 PROGRAMMING ERROR IN DATA BASE SYSTEM

DRI9910 DATA BASE INTEGRITY VIOLATED OR PROGRAMMING ERROR

DRI9920 DATA BASE SYSTEM LIMITS REACHED

DRI9930 ERROR IN STATEMENT REPRESENTATION

DRI9940 STATEMENT/STATEMENT CLAUSE NOT IMPLEMENTED

DRI9990 OPERATION INCORRECT

U5642-J-Z125-3-7600 449

Messages

6.1 SQL return codes

SQL codes are taken over from the database systems SESAM V1 and UDS and are output
by DRIVE/WINDOWS as error messages in the form DRI9xxx. Consequently, SQL code
121 results in the DRIVE message DRI9121.

If an error with SQL code SQL 920 (error in statement representation) or 990 (error in
operation) occurs, DRIVE/WINDOWS is aborted.

For the SQL return codes, refer to the SQL language description for the relevant database
system.

SESAM V2

For the SQL codes of the SESAM V2 database system, please refer to the User Guide
SESAM/SQL-Server: Messages [24]

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U5642-J-Z125-3-7600 451

7 Appendix

Naming conventions

Letters, digits and the underscore character (_) may be entered in names. Uppercase and
lowercase letters are not distinguished.

Each name must begin with a letter and may only end in an underscore if it occurs in a UDS
database.

Names must conform to the system where they are used:

– INFORMIX names must conform to INFORMIX conventions,

– SESAM names must conform to SESAM conventions,

– UDS names must conform to UDS conventions,

– IFG form names must conform to IFG conventions,

– FHS form names must conform to FHS conventions,

– BS2000 file names must conform to BS2000 conventions,

– SINIX file names must conform to SINIX conventions,

– Microsoft Windows filenames must conform to Microsoft Windows conventions,

– Module names must conform to the conventions of the library system.

Within a DRIVE session, the names of namable objects of the same type must be unique.
For example, two procedures with the same name must not be active at the same time.

column

column is used to identify columns of a table (max. 31 characters). It must be unique within
a table. Identical names may be used in different tables, in which case the table name must
also be specified for unique identification: table.column

452 U5642-J-Z125-3-7600

Naming conventions Appendix

correlation

correlation is used together with a query-expression to define a name for a base table or a
view. This correlation is valid only for the duration of the SELECT. The name must not
exceed 18 characters in length.

Correlations can especially be used to define shorter or more meaningful names for a table.

cursor

cursor is used to identify a cursor. It must not exceed 18 characters in length.

If cursor is assigned by DRIVE/WINDOWS, it may receive the values DRIVE0000000001
through DRIVE999999999999. All cursor names must be unique within a compilation unit.

file-name

In a BS2000 system:

In the PARAMETER DYNAMIC LOGFILE statement this is the filename extension for
the dialog log file (max. 20 characters).

In the LIST ... [INTO FILE] statement this is the filename extension for the central print
file (max. 20 characters).

In a SINIX system:

Relative or absolute pathname of a file (max. 54 characters).

A relative path name refers to the directory from which DRIVE/WINDOWS was started.

In a Microsoft Windows system:

Relative or absolute pathname of a file (max. 54 characters).

A relative path name refers to the directory from which DRIVE/WINDOWS was started

flib-name

Name of the format library. The name must not exceed 54 characters in length.

form-name

Name of the DRIVE form. It must not exceed 31 characters in length.

U5642-J-Z125-3-7600 453

Appendix Naming conventions

library

In a BS2000 system:

Name of a DRIVE library (max. 54 characters). If the name contains special characters,
it must be enclosed in double quotes ("). library can also be the link name of a DRIVE
library (in accordance with BS2000 conventions). DRIVE/WINDOWS interprets library
first as a link name then as a library name.

The DRIVE library library can be preset using the PARAMETER DYNAMIC LIBRARY
statement.

In a SINIX system:

Relative or absolute path name (max. 54 characters) of a directory acting as the DRIVE
library.

A relative path name refers to the directory from which DRIVE/WINDOWS was started.

library and member-name specifications are combined with the class-name specification
from the PARAMETER DYNAMIC CLASS statement or with the default setting to form
the file name library/class-name/member-name .

The DRIVE library library can be preset using the PARAMETER DYNAMIC LIBRARY
statement.

In a Microsoft Windows system:

Relative or absolute path name (max. 54 characters) of a directory acting as the DRIVE
library.

A relative path name refers to the directory from which DRIVE/WINDOWS was started.

A drive can be specified with absolute path names.

library and member-name specifications are combined with the class-name specification
from the PARAMETER DYNAMIC CLASS statement or with the default setting to form
the file name library/class-name/member-name .

The DRIVE library library can be preset using the PARAMETER DYNAMIC LIBRARY
statement.

The DRIVE library library can be preset using the PARAMETER DYNAMIC LIBRARY
statement

list-name

Name of the list form. It must not exceed 31 characters in length.

454 U5642-J-Z125-3-7600

Naming conventions Appendix

member-name

In a BS2000 system:

Name of a member of a DRIVE library (max. 31 characters).

In a SINIX system:

Name of a file which identifies a member of a DRIVE library (max. 8 characters). In a
Microsoft Windows system:

Name of a file which identifies a member of a DRIVE library (max. 8 characters). The
filename extension can be up to 4 characters where the first character is a period.

password

The password for the dialog logfile in the PARAMETER DYNAMIC LOGPASSWORD
statement (max. 4 characters).

The user ID for a schema of a UDS or SESAM database in the PERMIT ... PASSWORD
statement (UDS: max. 48 characters, SESAM max. 3 characters).

path-name

In a SINIX system:

Relative or absolute path name of a file (max. 254 characters).

A relative path name refers to the directory from which DRIVE/WINDOWS was started.

In a Microsoft Windows system:

Relative or absolute path name of a file (max. 254 characters).

A relative path name refers to the directory from which DRIVE/WINDOWS was started.

A drive can be specified with absolute path names.

prog-name

prog-name is used to identify the name of a program. The name must not exceed 31
characters in length. It must not be identical to the member name under which the source
program is stored.

Names for external subprograms must comply with the rules of the language in which the
program is written. The name must not contain any reserved words from the language in
which the subprogram is written nor any DRIVE keywords.

U5642-J-Z125-3-7600 455

Appendix Naming conventions

In a SINIX system, the name of the subprogram must correspond exactly to its call name
in the skeleton program, e.g. uppercase and lowercase must be taken into account.

The names of programs which access UDS databases must be in uppercase, because
DRIVE/WINDOWS assigns a prefix for the program to cursor and view names, and UDS
only permits names in uppercase.

schema-name

Name of a schema for a UDS or SESAM database (UDS: max. 30 characters,
SESAM: max. 18 characters).

screen-form

Name of an FHS partial form (max. length: 7 characters).

string

String (max. 256 characters), of an alphanumeric data type. string must be enclosed in
single quotes (').

subprog-name

subprog-name is used to identify an internal subprogram (max. Iength 31 characters).

table

table is used to identify a base table or view. The name of a base table must not exceed 18
characters in length in a SESAM database, or 30 characters in a UDS database. The name
of a view must not exceed 18 characters in length.

table must be specified to uniquely identify columns with identical names from different
tables that appear in the same statement.

table identifies a base table or view. If table is qualified with [schema-name.], it is defining a
base table. In UDS, this base table is defined in the SQLU schema name. In SESAM, the
schema-name and the table name of the base table must be identical.

If table identifies a base table in UDS, it must be specified in the form
[schema-name.] base-table. If table identifies a view, schema-name must not be specified.

user-group

Name of a user group. It must comply with UDS conventions and may not exceed 8
characters in length.

456 U5642-J-Z125-3-7600

Naming conventions Appendix

user-label

A leader program can be started for a DRIVE user with a user label. The user label is
composed of the transaction code (TAC) and the UTM user ID (USER). The user label has
a maximum of 31 characters.

user-name

Name stored in the system variable &USER. It must not exceed 8 characters in length.

In TIAM applications, user-name may be assigned only so long as no SQL statement has
been entered. Thereafter, the TSN is entered for user-name. USER may be explicitly
specified in TIAM applications only.

In UTM applications, &USER is initialized with the name specified in KDCSIGN.

var-name

Name of a simple variable. The variable must be prefixed by"&" and can have up to 32
characters (including the "&").

variable

variable is used to identify a simple variable or a component of a structured variable. The
components can be specified with qualified names ("." or "*"). variable must be prefixed by
"&" and can have up to 32 characters (including the "&").

view

Name of a view (max. 18 characters). All view names must be unique within a compilation
unit and distinct from any base table names.

U5642-J-Z125-3-7600 457

Appendix Keywords

Keywords

The following table lists the reserved keywords and, where applicable, their abbreviations.
The words must not be used as names in statements.

Keyword Abbreviation

$PI

ABS

ABSOLUTE

ACCELERATOR

ACQUIRE

ACTION

ACTIVATE ACT

ADD

ALARM

ALIGNMENT

ALL

ALTER

AND

ANGLE

ANSI

ANY

APPLICATION APPL

AS

ASCENDING ASC

AT

ATTRIBUTE ATTR

AUTHORIZATION

AVG

BACKGROUND

BASE

BEFORE

BEGIN

BETWEEN

458 U5642-J-Z125-3-7600

Keywords Appendix

BIN

BLANK

BOLD

BLUE

BORDER

BOTH

BOTTOM

BOX

BREAK

BSSYSTEM

BS2000

BTITLE

BTYPE

BUFFERED

BUTTON

BWIDTH

BY

C

CANCEL

CAPITAL

CASE

CATALOG

CENTER

CHARACTER CHAR

CHARLENGTH CHARLN

CHARTYPE

CHECK

CHOICE

CLASS

CLEAR

CLICK

Keyword Abbreviation

U5642-J-Z125-3-7600 459

Appendix Keywords

CLIPPED

CLOSE

CLUSTER

CM

COBOL

CODE

COLOUR COLOR

COLUMN

COLUMNS

COMBO

COMMIT

COMMITTED

COMPILE

COMPRESS

COMTRACE

CONCAT

CONNECT

CONSISTENCY CONSIS

CONSTANT

CONSTRAINT

CONTINUE CON

COPY

COPYSOURCE

COS

COUNT

CREATE CRE

CROSS

CURRENT

CURSOR

CURSORS

CYAN

Keyword Abbreviation

460 U5642-J-Z125-3-7600

Keywords Appendix

CYCLE

DATA

DATABASE

DATE

DATETIME

DAY

DAYS

DBA

DBSERVER

DBSYSTEM

DBTRACE

DBUTRACE

DCSYSTEM

DEACTIVATE

DEBUG

DECFLOAT

DECIMAL DEC

DECIMALSIGN DECSIGN

DECLARE DCL

DEFAULT DEF

DELETE DEL

DELSTRING DELSTR

DENSITY

DESCENDING DESC

DESELECT

DETAIL

DEVICE

DEVICETABLE DEVTAB

DIAGNOSIS DIAG

DIALOG

DICTIONARY DD

Keyword Abbreviation

U5642-J-Z125-3-7600 461

Appendix Keywords

DIRTY

DISPATCH

DISPLAY

DISTANCE

DISTINCT DIST

DISTRIBUTION DIS

DMSTRACE

DO

DOUBLE

DROP

DUPLICATES

DYNAMIC DYN

EDITABLE

EDITOR

EDT

ELEMENT

ELSE

EMPTY

END

ENTER

ERROR

ERRORATTRIBUTE ERRATTR

ESCAPE

EXCLUSIVE

EXECUTE EXEC

EXISTS

EXIT

EXP

EXPANSION

EXPERT

EXPLAIN

Keyword Abbreviation

462 U5642-J-Z125-3-7600

Keywords Appendix

EXTEND

EXTENDED

EXTENT

EXTERNAL

FETCH F

FILE

FILL

FILLER

FILTER

FIRST

FIRSTPAGE

FLOAT

FLUSH

FOCUS

FONT

FOR

FOREGROUND

FOREIGN

FORM

FORMAT

FORMLIB

FRACTION

FRACTIONS

FREE

FROM

FULL

FUNCTION

GET

GLOBAL

GRANT

GRAPHICEDITOR

Keyword Abbreviation

U5642-J-Z125-3-7600 463

Appendix Keywords

GREEN

GROUP

GROUPNUM

HARDCOPY HC

HAVING

HEADER

HEIGHT

HELP

HIGHINTENSITY HINT

HOLD

HORIZONTAL

HOUR

HOURS

ICON

IF

IMAGE

IN

INCH

INDEX

INDICATOR IND

INFORMIX

INIT

INNER

INOUT

INPUT

INSERT INS

INTEGER INT

INTERVAL IV

INTO

INTTRACE

INVALID

Keyword Abbreviation

464 U5642-J-Z125-3-7600

Keywords Appendix

INVERSE

INVISIBLE INVIS

IOTRACE

IS

ISAM

ISOLATION

ITALIC

ITEM

ITEMS

JOIN

KEY

KFKEY

LANDSCAPE

LAST

LASTPAGE

LAYOUT

LEASY

LEFT

LENGTH

LETTERS

LEVEL

LG

LIBRARY LIB

LIKE

LINE

LINES

LIST

LISTING

LISTTYPE

LN

LOCATE

Keyword Abbreviation

U5642-J-Z125-3-7600 465

Appendix Keywords

LOCK

LOG

LOGFILE

LOGPASSWORD LOGPSW

LOWERSTRING

LTERM

LTYPE

LWIDTH

MAGENTA

MANAGE

MANDATORY

MARGIN

MASK

MATCHES

MAX

MEMORY MEM

MEMTRACE

MESSAGE MSG

MIN

MINIMUM

MINUTE

MINUTES

MNEMONIC

MODE

MODIFY

MODULE

MODULO

MONEY

MONINFO

MONTH

MONTHS

Keyword Abbreviation

466 U5642-J-Z125-3-7600

Keywords Appendix

MOVE

MSGSTRING MSGSTR

MUST

NAMES

NATIONAL

NEED

NEW

NEWLINE NL

NEWPAGE NP

NEXT

NOCHECK

NOCOLOUR NOCOLOR

NOCURSOR NOCURS

NOINIT

NOINVERS

NORMALINPUT NORMIN

NORMALINTENSITY

NORMSQL

NOT

NOUNDERLINE NOUL

NULL

NULLVALUE

NUMBER

NUMERIC NUM

NUMFLOAT

NUMTYPE

OBJECT

OBJECTNAME

OF

OFF

OK

Keyword Abbreviation

U5642-J-Z125-3-7600 467

Appendix Keywords

OLDSTYLE

ON

ONLY

OPEN

OPTION

OR

ORDER

OUT

OUTER

OUTIN

OUTPUT

OVERLAY

PAGE

PAPER

PARAMETER PAR

PARENT

PASSWORD PSW

PATTERN

PERMANENT PERM

PERMISSION

PERMIT

PIXMAP

PORTRAIT

POSITION

POSITIONED

POTMUST

PRAGMA

PRECISION

PRECOMOPT

PRECOMPILE

PREFETCH

Keyword Abbreviation

468 U5642-J-Z125-3-7600

Keywords Appendix

PRESELECT

PRESSED

PRIMARY

PRINT

PRIOR

PRIVILEGES

PROCEDURE PROC

PROMPT

PROPORTIONAL

PUBLIC

PROTECTED PROT

PUBLIC

PUT

READ

REAL

RECORD

RED

REDEFINES REDEF

REFERENCES

RELATIVE

REMOTE

REMOVE

RENAME

REPEAT R

REPEATABLE

REPLACE

REPORT

RESET

RESOLUTION

RESOURCE

RESOURCELIB

Keyword Abbreviation

U5642-J-Z125-3-7600 469

Appendix Keywords

REST

RESTART

RESTORE

RESULT

RETURN RET

REVERSE

REVOKE

RIGHT

ROLLBACK

ROLLFORWARD

ROTATION

ROUND

ROW

ROWCOL

ROWID

ROWS

SAM

SAVE

SCHEMA

SCREEN

SCREENERROR SCREENERR

SCRIPT

SCROLL

SEARCHED

SECOND

SECONDS

SELECT S

SELECTABLE

SELECTED

SEND

SEQUENCE SEQ

Keyword Abbreviation

470 U5642-J-Z125-3-7600

Keywords Appendix

SERIAL

SERIALIZABLE

SESAM

SESAMSQL

SESSION

SET

SETVALUE

SHARE

SHIFTLEFTSTRING SLSTR

SHOW

SIDEINFO

SIGN

SIN

SINIX

SITENAME

SIZE

SMALLINT SMINT

SOME

SORT

SOURCE

SPACE

SPACING

SPECIAL

SQLCODE

SQR

SQRT

STABILITY

STANDARD STD

START

STATIC

STATISTICS

Keyword Abbreviation

U5642-J-Z125-3-7600 471

Appendix Keywords

STATUS

STOP

STORE

SUBPROCEDURE SUBPROC

SUBSCRIPT

SUBSTRING SUBSTR

SUM

SUPERSCRIPT

SYNONYM

SYSTEM

TABLE

TABLES

TABULATOR TAB

TAC

TAN

TASKTYPE

TEMPORARY TEMP

TERMINAL

TERMINATE TERM

TEST

TEXT

THEN

TIAM

TIME

TIMESTAMP

TITLE

TO

TODAY

TOGGLE

TOP

TRACE T

Keyword Abbreviation

472 U5642-J-Z125-3-7600

Keywords Appendix

TRAILER

TRANSACTION TA

TRSTRING

TRUNC

TTITLE

TYPE

UDS

UNCHANGED

UMCOMMITTED

UNDERLINE UL

UNION

UNIQUE

UNITS

UNPROTECTED UNPR

UNSAVE

UPARROW

UPDATE UPD

UPDSTRING UPDSTR

UPPERSTRING

UREF

USE

USER

USEREVENT USEV

USERGROUP

USERLABEL

USERMSGFILE

USERNAME

USING

UTM

UTMRC

VALID

Keyword Abbreviation

U5642-J-Z125-3-7600 473

Appendix Keywords

VALUE

VALUES

VARCHAR

VARIABLE VAR

VARYING

VERSIONMIX

VERTICAL

VIEW

VIEWS

VISIBLE VIS

WAIT

WEEKDAY

WHENEVER

WHERE

WHILE

WHITE

WIDTH

WINDOW

WITH

WITHOUT

WORK

WRITE

XDEC

XREF

YEAR

YEARS

YELLOW

Keyword Abbreviation

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U5642-J-Z125-3-7600 475

Related publications
[1] DRIVE/WINDOWS V1.1 (BS2000)

Programming System
User Guide

Target group
Application programmers
Contents
– Introduction to the programming system DRIVE/WINDOWS
– Explanation of the functions available in interactive mode
– Installation
– DRIVE/WINDOWS generation and administration

[2] DRIVE/WINDOWS (BS2000)
Programming Language
Reference Guide

Target group
Application programmers
Contents
Description of program creation including alpha screen forms, as well as the use fo DRIVE
list forms and the report generator.

[3] DRIVE/WINDOWS (BS2000)
System Directory of DRIVE Statements
Reference Manual

Target group
Applications programmers
Contents
Syntax and range of functions of all DRIVE statements. DRIVE messages and keywords.

476 U5642-J-Z125-3-7600

Related publications Appendix

[4] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for SESAM V1.x
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL statements
for SESAM V1.x.

[5] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for SESAM V2.x
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL statements
for SESAM V2.x.

[6] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for UDS
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL statements
for UDS.

[7] DRIVE/WINDOWS V2.0 (MS-Windows)
Software Production Environment (SPE)
User Guide

Target group
Application programmers.
Contents
The manual describes the functions of the software production environment (desktop), how
to prepare DRIVE/WINDOWS for use, remote access to BS2000 and SINIX databases and
client/server applications.

U5642-J-Z125-3-7600 477

Appendix Related publications

[8] DRIVE/WINDOWS V2.0 (MS-Windows)
Programming Language
Reference Manual

Target group
Application programmers.
Contents
The manual describes the creation of programs, including window and client/server appli-
cations.

[9] DRIVE/WINDOWS V2.0 (MS-Windows)
System Directory
Reference Manual

Target group
Application programmers.
Contents
The manual describes the syntax and functions of all statements, messages and keywords
of DRIVE/WINDOWS.

[10] DRIVE/WINDOWS (SINIX)
Software Production Environment (SPE)
User Guide

Target group
Application programmers
Contents
The functions available in the software production environment (desktop) and in expert
mode. Setting up DRIVE/WINDOWS, including remote access to BS2000 databases and
generating applications for BS2000.

[11] DRIVE/WINDOWS (SINIX)
Programming Language
Reference Manual

Target group
Application programmers
Contents
The creation of programs, including graphical and alpha screen forms, as well as list forms
using DRIVE and the report generator.

478 U5642-J-Z125-3-7600

Related publications Appendix

[12] DRIVE/WINDOWS (SINIX)
System Directory
Reference Manual

Target group
Application programmers
Contents
The syntax and scope of functions of all DRIVE statements, as well as all DRIVE messages
and keywords.

[13] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for INFORMIX
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL statements
for INFORMIX.

[14] DRIVE V5.1 (BS2000)
Part 1: User’s Guide

Target group
– Users in non-dp departments
– Applications programmers
Contents
– General overview of the DRIVE system in old style
– Description of the DRICE components
– Introduction to DRIVE application using worked examples
– DRIVE generation and administration in UTM operation

[15] DRIVE V5.1 (BS2000)
Part 2: System Directory

Target group
– Users in non-dp departments
– Applications programmers
Contents
– Syntax and scope of functions of all DRIVE statements in old style
– DRIVE messages and keywords

U5642-J-Z125-3-7600 479

Appendix Related publications

[16] DRIVE/WINDOWS-COMP (BS2000)
User Guide

Contents
The differences concerning the DRIVE V6.0 language, and the compilation process. Gener-
ating and starting TIAM and UTM applications with compiled DRIVE objects, with special
consideration of mixed version operation.

[17] SQL for SESAM/SQL
Language Reference Manual

Target group
Programmers who want to access SESAM databases using SQL statements.
Contents
SQL statements available for accessing SESAM databases.

[18] SESAM/SQL-Server (BS2000/OSD)
SQL Reference Manual Part 1: SQL Statements
User Guide

Target group
The manual is intended for all users who wish to process an SESAM/SQL database by
means of SESAM/SQL statements.
Contents
The manual describes how to embed SQL statements in COBOL, and the SQL language
constructs. The entire set of SQL statements is listed in an alphabetical directory.

[19] SESAM/SQL-Server (BS2000/OSD)
SQL Reference Manual Part 2: Utilities
User Guide

Target group
The manual is intended for all users responsible for SESAM/SQL database administration.
Contents
An alphabetical directory of all utility statements, i.e. statements in SQL syntax imple-
menting the SESAM/SQL utility functions.

[20] SESAM/SQL-Server (BS2000/OSD)
Core Manual
User Guide

Target group
The manual is intended for all users and to anyone seeking information on SESAM/SQL.
Contents
The manual gives an overview of the database system. It describes the basic concepts. It
is the foundation for understanding the other SESAM/SQL manuals.

480 U5642-J-Z125-3-7600

Related publications Appendix

[21] SESAM/SQL-Server (BS2000/OSD)
Utility Monitor
User Guide

Target group
The manual is intended for SESAM/SQL-Server database and system administrators.
Contents
The manual describes the utility monitor. The utility monitor can be used to administer the
database and the system. One aspect covered is its interactive menu interface.

[22] SESAM/SQL-Server (BS2000/OSD)
Migrating SESAM Databases and Applications to SESAM/SQL-Server
User Guide

Target group
Users of SESAM/SQL-Server.
Contents
This manual gives an overview of the new concepts and functions. Its primary subject is,
however, the difference between the previous and the new SESAM/SQL version(s). It
contains all the information a user may require to migrate to SESAM/SQL-Server V2.0.

[23] SESAM/SQL-Server (BS2000/OSD)
CALL DML Applications
User Guide

Target group
SESAM application programmers
Contents
– CALL DML statements for processing SESAM databases using application programs
– Transaction mode with UTM and DCAM
– Utility routines SEDI61 and SEDI63 for data retrieval and direct updating
– Notes on using both CALL DML and SQL modes

[24] SESAM/SQL-Server (BS2000/OSD)
Messages
User Guide

Target group
All users of SESAM/SQL.
Contents
All SESAM/SQL messages, sorted by message number.

U5642-J-Z125-3-7600 481

Appendix Related publications

[25] SQL for UDS/SQL
Language Reference Manual

Target group
Programmers who want to access UDS databases using SQL statements.
Contents
SQL statements available for accessing UDS databases.

[26] UDS/SQL (BS2000)
Administration and Operation
User Guide

Target group
Database administrators
Contents
All features comprising the management and operation of the database, such as database
saving, processing, restructuring, as well as outputting database information and checking
the consistency of the database.
Applications
Database operation by the database administrator

[27] UDS/SQL (BS2000)
Creation and Restructuring
User Guide

Target group
Database administrators
Contents
– Overview of the files required by UDS
– UDS utility routines required for database creation
– Utility routines required for restructuring
Applications
Database creation by the database administrator

[28] IFG for FHS (TRANSDATA)
User Guide

Target group
Terminal users, application engineers and programmers
Contents
The Interactive Format Generator (IFG) is a system that permits simple, user-friendly
generation and management of formats at a terminal. In conjunction with FHS, these
formats can be used on the host computer. This user guide describes how formats are
generated, modified and managed, plus also the new functions of IFG V8.1.

482 U5642-J-Z125-3-7600

Related publications Appendix

[29] FHS (TRANSDATA)
User Guide

Target group
Programmers
Contents
Program interfaces of FHS for TIAM, DCAM and UTM applications. Generation, application
and management of formats.

[30] UTM (TRANSDATA, BS2000)
Generating and Administering Applications
User Guide

Target group
– System administrators
– UTM administrators
Contents
– Creation, generation and operation of UTM applications
– Working with UTM messages and error codes
Applications
BS2000 transaction processing

[31] UTM (TRANSDATA)
Programming Applications
User’s Guide

Target group
Programmers of UTM applications
Contents
– Language-independent description of the KDCS program interface
– Structure of UTM programs
– KDCS calls
– Testing UTM applications
– All the information required by programmers of UTM applications
Applications
BS2000 transaction processing

[32] UTM(SINIX)
Formatting System

Target group
UTM(SINIX) users who wish to use formats, C programmers and COBOL programmers
Contents
How to use the FORMANT format handler in UTM(SINIX) program units, create formats,
convert formats from BS2000 to/from SINIX.

U5642-J-Z125-3-7600 483

Appendix Related publications

[33] EDT V16.5A (BS2000/OSD)
Statements
User Guide

Target group
EDT newcomers and EDT users
Contents
Processing of SAM and ISAM files and elements from program libraries and POSIX files.

[34] LMS (BS2000)
ISP Format
Reference Manual

Target group
BS2000 users
Contents
Description of the LMS statements in ISP format for creating and managing PLAM libraries
and the members these contain.
Frequent applications are illustrated by means of examples.

[35] BS2000/OSD-BC
Commands, Volume1 - 3

Target group
The manual addresses both nonprivileged BS2000/OSD users and system support.
Contents
This manual contains BS2000/OSD commands (basic configuration and selected products)
with the functionality for all privileges. The introduction provides information on command
input.

[36] BS2000/OSD-BC V2.0
System Installation
User Guide

Target group
BS2000/OSD system administration
Contents
This manual describes
– the generation of the hardware and software configuration with UGEN
– the following installation services:

– disk organization with MPVS
– program system SIR
– volume installation with SIR
– configuration update (CONFUPD)
– utility routine IOCFCOPY

484 U5642-J-Z125-3-7600

Related publications Appendix

[37] BS2000/OSD-BC V2.0A
DMS Introductory Guide
User Guide

Target group
The manual addresses both nonprivileged users and systems support.
Contents
The manual describes file processing in BS2000, focussing on:
– file and catalog management
– files and data media
– file and data protection
– OPEN, CLOSE and EOV processing
– DMS access methods (SAM, ISAM ...).

[38] BS2000
Introductory Guide for System Users
User’s Guide

Target group
BS2000 users
Contents
– Introduction to BS2000
– Description of the most frequent user commands
– Introduction to using the utility routines and software products EDT, SORT, ARCHIVE,

TSOSLNK, LMS and PERCON
– Notes for the programmer
Applications
BS2000 interactive mode and batch mode

[39] FORMANT (SINIX)
Reference Manual

Target group
– C programmers
– COBOL programmers
– Application designers
Contents
Formant is a mask control program for all SINIX systems. The manual contains:
– Introduction to FORMANT
– Description of FORMANTGEN
– Description of user interface
– Program interfaces in C and COBOL
– Programming examples

U5642-J-Z125-3-7600 485

Appendix Related publications

[40] OMNIS (TRANSDATA, BS2000)
Administration and Programming
User Guide

Target group
– OMNIS administrators
– Programmers
Contents
Introduction to OMNIS administration, the OMNIS utility routines and the application
interface for extending the OMNIS functionality
Applications
– Software development
– Application scheduling

[41] DRIVE/WINDOWS-COMP (SINIX)
Compiler
User Guide

Target group
Applications programmers and system administrators
Contents
Description of the compilation process using the DRIVE Compiler.

[42] INFORMIX-NET V4.0 (SINIX)
INFORMIX-STAR V4.0 (SINIX)
User Guide

Target group
– INFORMIX users
– System administrators
Contents
This manual describes how to use the INFORMIX-NET and INFORMIX-STAR products.
Using these products, INFORMIX applications can generate and process databases on
foreign computers from local computers.

[43] DRIVE/WINDOWS V1.1
(SINIX)
Supplement
User Guide

Target group
Application programmers
Contents
The manual contains the functional changes included in DRIVE/WINDOWS (SINIX) V1.1.
If this supplement is to be used, the manuals of version 1.0 are also required.

486 U5642-J-Z125-3-7600

Related publications Appendix

Ordering manuals

The manuals listed above and the corresponding order numbers can be found in the
Siemens Nixdorf List of Publications. New publications are described in the Druck-
schriften-Neuerscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name placed on
the appropriate mailing list. Please apply to your local office, where you can also order the
manuals.

U5642-J-Z125-3-7600 487

Index

&DML_STATE 205
&ERROR 205
&PAGES 64
&SQL_CODE 205
&USER 172
.* 352

4-3 rule 40

A
abbreviation ".*" 352
abort

debugging mode 23
loop 22
program 22
program unit 22
subprogram 23

absolute value 347
access

in distributed system 154
remote 154

accuracy (old style) 345
ACQUIRE 13
ACT, see ACTIVATE
ACTIVATE 457
activate

page background pattern 244
trace 151

ADD BOX 15
addition 345
addressing aid 68, 92

CHECK clause 146
aggregate 343
allocate

488 U5642-J-Z125-3-7600

Index

K/F key 166
alphanumeric expression 282
alphanumeric literal 8, 323
angle brackets 10
announce

authorization key for SESAM database 158
APPL, see APPLICATION
APPLICATION 457
APPLICATION (parameterization) 156
arithmetic mean (AVG) 338
arithmetic operator 8
ASC, see ASCENDING
ASCENDING 457
assign

attribute 190
attribute (FHS form) 195
value 190

asynchronous print job 131
asynchronous UTM conversation 108, 146

start 108
AT 18
atomic type 279
atomic types 279
ATTR, see ATTRIBUTE
ATTRIBUTE 457
attribute 273

assign 190
define for data field 273
for FHS form 195

attributes
screen fields 62

AUTHORIZATION (parameterization) 158
authorization key

for SESAM database 158
SESAM database 142

automated error dialog 69, 93
average value

AVG 338
AVG

arithmetic mean 338
set function 338

B
background pattern 235

U5642-J-Z125-3-7600 489

 Index

base 10 logarithm 347
base structure 277, 302
base table 455
base type 277, 279
base variable 278, 302, 341
basic-data-type 279
binary file 137
blank 8
braces 10
brackets

angle 10
square 10

branch
conditional 32
end 105

BREAK 22
load key with 167

BREAK CYCLE 22, 45
BREAK DEBUG 22
BREAK PROCEDURE 22, 199
BREAK SUBPROCEDURE 22, 199
breakpoint (debugging mode) 18, 51
BS2000 command

enter 200

C
cache

request 13
cache size

determine 14
calculate

result from set of values 337
calculate sum

SUM 338
CALL

in distributed system 79
remote 79

call
external subprogram 108
internal subprogram 199
old style program 27, 97
subprogram (asynchronous) 108
subprogram (concurrent) 79
subprogram (in distributed system) 79

490 U5642-J-Z125-3-7600

Index

UTM subprogram (asynchronous) 108
cancel

operation (debugging mode) 178
testpoint (debugging mode) 178

CASE 32
CATALOG (parameterization) 158
CENTER 255
central print file 87, 91, 123

delete 131
effect of EXIT statement on 118
on process abort 131
print 131

CHAR, see CHARACTER
CHARACTER 288, 458
character

canceling in literals 8
comment 9
deleting left-justified 285
for page/scroll command 196

character expression 282
character string literal 8
CHARACTER VARYING 281
characters

converting 283
replacing 286

CHARLENGTH 347, 458
CHARLN, see CHARLENGTH
char-prim 283
check 291

for formal error 96
CHECK clause 73, 277, 291
CHECK clause (IFG) 146
check condition

declaring 291
clause

CHECK 73, 277, 291
CHECK (IFG) 146
INIT 277
MASK 73, 277
REDEFINES 74, 277

clear
screen 22

CLOSE 217
close 183

U5642-J-Z125-3-7600 491

 Index

dialog box 180
file 37

CLOSE FILE 37
CLOSE REPORT 217
close window 38
column 451
comma 8
comment 9
compact list form

define 87
output 87

compact screen form
define 81
output 81

compare
with NULL value 300

comparison
with list of values 298

comparison operator 296
comparison using comparison operators 296
comparison with value range 297
compilation

controlling 141
compilation run

controlling 141
compiler option 141
component 302, 352, 456

simple 73
CON, see CONTINUE
CONCAT 284
concatenate

atomic fields 283
string 283

concatenation operator 8
condition 293

comparison using comparison operators 296
comparison with list of values 298
comparison with NULL value 300
comparison with value range 297
define 293
nest 129
nested 129
program 129
test for null value 300

492 U5642-J-Z125-3-7600

Index

conditional branch 32
CONSIS, see CONSISTENCY
CONSISTENCY 459
constant 8, 56

declare 56
define 56

CONTINUE 42, 459
continue program execution in debugging mode 42
effect on TRACE and [STOP] 18

continue
debugging run 18
loop processing with CYCLE 42
program run with DEBUG 42

CONTINUE CYCLE
continue loop processing 42

control
compilation run 141

control operations
overriding effect 18

convert
characters 283, 286
lowercase to uppercase 286
uppercase to lowercase 286

COPY 43
copy

structure of cursor 74
structure of table 74

copy member
delete 203
insert 43
save 187

correlation 452
cosine function 347
COUNT 20
counter 20, 22
CRE, see CREATE
CREATE 459
create

interpreter listing 144
list form 123
object code 145

cross reference 147
CURRENT DATE 309
current date 309

U5642-J-Z125-3-7600 493

 Index

CURRENT TIME 309
current time 309
CURRENT TIMESTAMP 309
current timestamp 309
cursor 45, 452

dynamic declaration 115
read position 127
set 184
setting 16

cursor processing 47
CYCLE 45

D
data

representation 277
data group 72, 73, 302, 340

defining 76
output 119

data transfer
form/screen variable 93

data type
CHARACTER 288
date-time 279
declare 70
defining for variable 302
formatting output 73
INTERVAL 279
user-defined 279
user-specific 70

data types 73
data-group 302
data-type 304
DATE 279, 280, 308, 324
date 324

current 309
defining 305

date and time literals 8
date interval

specify 318
date/time literal 8
date-time data type 279, 308
date-time literal 324
date-time-expression 305
date-time-field 307

494 U5642-J-Z125-3-7600

Index

date-time-term 308
date-time-unit 311
DBSYSTEM (compiler option) 142
DBSYSTEM (parameterization) 159
DCL, see DECLARE
DD, see DICTIONARY
DEBUG 51
debugging mode

abort 23
AT statement 18
BREAK statement 22
cancel operation 178
cancel testpoint 178
check program 201
CONTINUE statement 42
counter 20
DEBUG statement 51
declare operation 18
declare testpoint 18
exit 23
prompt 51
REMOVE statement 178
SET statement 190
start 51
TRACE statement 201

debugging run
continue 18
start 51
terminate 23

DEC, see DECIMAL
DECIMAL 279, 460
decimal sign

define 159
DECIMALSIGN 460
DECIMALSIGN (parameterization) 159
DECLARE 460
declare

check condition 291
constant 56
data type 70
logical file name 58

DECLARE CONSTANT 56
DECLARE FILE 58
DECLARE FORM 59

U5642-J-Z125-3-7600 495

 Index

DECLARE LIST 64
DECLARE REPORT 218
DECLARE SCREEN 68, 190
DECLARE TYPE 70
DECLARE VARIABLE 72, 223
DECSIGN, see DECIMALSIGN
DEF, see DEFAULT
DEFAULT 275, 460
defaults

compiler option 148
define

compact list form 87
compact screen form 81
condition 293
constant 56
data type 70
data type for variable 302
date 305
decimal sign 159
detail area of report 230
DRIVE form 59
DRIVE screen form 59
entry and output fields 326
file 58
list form 64
null value representation 334
numeric expression 345
page background pattern 247
page margin of report 229
printer list 64
report header 230
report trailer 230
screen form 59
testpoint 18
time 305
user-specific data type 70
variable 72, 302, 352

define page margin
report 230

DEL, see DELETE
DELETE 460
delete

copy member 203
DRIVE form 35

496 U5642-J-Z125-3-7600

Index

left-justified character 285
library member 203
program 203
record in ISAM file 78
substring 283, 285

DELETE FILE RECORD 78
delimiter 8
DELSTR, see DELSTRING
DELSTRING 285, 460
DESC, see DESCENDING
DESCENDING 460
DETAIL 224
detail line 224
determine

cache size 14
MAX 339
MIN 339

DEVICETABLE 239, 460
DEVTAB, see DEVICETABLE
DIAG, see DIAGNOSIS
DIAGNOSIS 151, 460
dialog box

output 15
remove 180
replace 183

dialog logfile 161
dialog logging

activate 161
DICTIONARY 460
DIS, see DISTRIBUTION
DISPATCH 79
DISPLAY

implicit 35
display

DRIVE form 86
form 86
screen form 86

display attribute 257
modify 256
reset 249, 256

DISPLAY FORM 81
DISPLAY form-name 86
DISPLAY LIST 87
DISPLAY list-name 91

U5642-J-Z125-3-7600 497

 Index

DISPLAY screenform 92
DIST, see DISTINCT
DISTINCT 461
distributed system

access in 154
distributed transaction processing 79
DISTRIBUTION 154, 461
DISTRIBUTION (compiler option) 143
distribution information

delete 156
delete entry 156
evaluate 143
include entry 156

DO 96
effect on compiler options 147
search sequence when accessing programs 96

DOUBLE PRECISION 281
DRI.INTTRACE.FILE 151
DRI.LIST.FILE 87, 91, 123
DRI.LIST.FILE (list file) 64
DRIVE dialog

log 161
DRIVE form

define 59
delete 35
display 86
reset 35

DRIVE library
defining a local 161
delete members 203

DRIVE run
terminate 118

DRIVE screen form
define 59

DRIVE statements
report generation 213

DYN, see DYNAMIC
DYNAMIC 158, 461
dynamic SQL 113
dynamically executable statement 114

E
editor

branch 101

498 U5642-J-Z125-3-7600

Index

call 101
EDT 101
EDT line

length 103
EDT mark

delete 104
retain 104
use 103

EDT statement
prohibited 103

EDT user file 101
use 103

EDT work file 38
indicate errors in the program 103
save 104, 187

END 105
incorrect 106

end
branch 105
DISPATCH block 105
internal subprogram 105, 199
loop 105
program 105
program unit 105
report definition 226
report execution 217
report generation 105

END CASE 32
END CYCLE 45
END IF 129
end of file

positioning 194
end of program 105
END PROCEDURE 174
END REPORT 226
END SUBPROCEDURE 199
ENTER 108
entry

lock in selection field 195
preselect in selection field 195

entry and output field
attributes 62

entry field
assign initial value 120

U5642-J-Z125-3-7600 499

 Index

define 61, 120
display 119
initialize 120

entry/output field 82
environment

when calling DRIVE programs 108
ERRATTR, see ERRORATTRIBUTE
error

during input 93
in copy member 104

error analysis
program 96

error attribute
for incorrect field value 159

error dialog
automated 69, 93
user-controlled 92, 93

error display
in DO 98

error exit 48, 130
error handling 69, 79
error message

on deletion 203
ERRORATTRIBUTE 461
ERRORATTRIBUTE (parameterization) 159
errors 174
evaluate

operators 346
EXEC, see EXECUTE
EXECUTE 113, 461
execute

statement (dynamically) 113
EXIT 118

load key with 167
exponential function 347
expression

alphanumeric 282
report set function 215
restrictions 214

EXTEND (OPEN mode) 138
EXTENDED DECIMAL 280

F
F key

500 U5642-J-Z125-3-7600

Index

allocate 166
F, see FETCH
FETCH 462
FHS form

define 68
dialog box 15
library 171
output 92
pass data in screen variable 93
pass data to screen variable 93
prepare 68
special characteristics in UTM mode 69

FHS message 17, 94, 185
FHS partial form 92

name 68
field

concatenating atomic 283
field attribute 190, 273

form 273
field value

incorrect 159
file

closing 37
defining 58
diagnostic 151
dialog log 161
EDT work 101
list 131
modify 208
opening 136
positioning 194
read 176
representing null values 58
write 208

file position
reading 125

file position (ISAM file) 135
file-name 452
filename

declaring 58
fill

compact list form 87
compact screen form 81
list form 123

U5642-J-Z125-3-7600 501

 Index

screen form 119
FILL form-name 81, 119
FILL list-name 123
FILL REPORT 227
flib-name 452
flibname 451
FLOAT 281
font 258
footer

screen form 61
form

compact list 87
compact screen 81
define (screen) 59
display 86
DRIVE 86
FHS 68
FHS partial 92
layout (screen) 119
list 91
screen 86

form input/output
create 119

form limits
define printer list 64

form memory 91
formal error

check 96
format 315

layout (list) 123
print file 123
printed list 123
specify 315
statement 7

FORMAT clause 257
format library 69, 171
form-name 452
function

AVG 338
MAX 339
MIN 339
string 283
SUM 338

502 U5642-J-Z125-3-7600

Index

G
get

modified list line 126
GET FILE POSITON 125
GET MODIFIED INDEX 126
GET SCREEN CURSOR 127
global attribute 190, 273
group 73
group component 73
GROUP DIRECTIVE 236
group header 236
group trailer 236

H
HARDCOPY 463
HC, see HARDCOPY
hexadecimal literal 8, 325
HIGHINTENSITY 463
HINT, see HIGHINTENSITY

I
identify

modified list line 126
program start 174
report buffer 227, 239
start of internal subprogram 199

IF 129
incorrect END 106
IND, see INDICATOR
INDICATOR 463
indicator variable 30
INIT clause 73, 277
initialize variable 75
input

BS2000 command 200
INPUT (OPEN mode) 138
input/output field

reset 35
input/output form

define 59
input/output format

define 59
INS, see INSERT
INSERT 463

U5642-J-Z125-3-7600 503

 Index

insert
copy member 43

INT, see INTEGER
INTEGER 463
interactive mode

lock statement 168
interactive program 146

start 96
intermediate code 38, 39
intermediate storage 14
internal diagnostic file 151
internal subprogram 199, 455

call 199
end 199
terminate 105

interpreter listing 38, 103
create 144

INTERVAL 279, 281, 318, 463
interval literal 8, 324
interval unit 281
interval-expression 318
interval-term 321
invalid field input (screen) 93
invalid input 93
INVIS, see INVISIBLE
INVISIBLE 464
ISAM file 137

delete record 78
modify 78
position 135

IV, see INTERVAL

K
K/F key

allocate 166
invalid use 93

K1 key 22
key assignment

delete 167
keyword 7, 457

L
layout 266

printed list 123

504 U5642-J-Z125-3-7600

Index

printer list 64
screen form 119

layout attribute
font 258

LENGTH 350
length

of a string 347
letter

processing mode for lowercase 160
letters

handling lowercase 143
LETTERS (compiler option) 143
LETTERS (parameterization) 160
level number 70, 72
LIB, see LIBRARY
LIBRARY 464
library 453

local DRIVE 161
USEROML 27
with DRIVE programs 161
with FHS forms 171
with user-specific programs 27

LIBRARY (parameterization) 161
library member

delete 203
save 187

lifetime
dynamically declared cursor 113
dynamically declared view 113

LIKE clause 73, 220
line

in list area 126
number for list area 195
preselected 195

line feed 62, 66, 83, 88, 121, 124
line length

of program 103
LIST 131
list

layout 123
output 91, 131

list area
modified line 126
number of lines 195

U5642-J-Z125-3-7600 505

 Index

preselect line 195
list contents

define 123
output 123

LIST file 118
on process abort 131
print 131

list file 64, 131
effect of EXIT 118

list footer 66, 89
list form

create 123
define 64
fill 123
output 91

list header 89
list layout

define 123
output 123

list line
modified 126

list of values
comparison with 298

list page
define length 66

LISTING (compiler option) 144
list-name 453
literal 8, 323

alphanumeric 8, 323
canceling characters in 8
date and time 8
date-time 324
hexadecimal 8, 325
interval 8, 324
numeric 8, 323

local DRIVE library 161
setting default 161

LOCATE FILE 135
lock

selection item in selection field 195
statement 168

LOGFILE (parameterization) 161
LOGPASSWORD 465
LOGPASSWORD (parameterization) 162

506 U5642-J-Z125-3-7600

Index

LOGPSW, see LOGPASSWORD
loop

abort 22
end 105
processing 48
programming 45

loop processing
CONTINUE CYCLE 42

lowercase
conversion to uppercase 286

lowercase letter
set processing mode 143, 160

LOWERSTRING 286

M
main structure 341
mask 326

compact screen form 84
input and output 326
screen field 62

MASK clause 73, 277
mask control character

for data type INTERVAL 329
for date-time data types 329
for numeric data types 327

mask control characters
restrictions 214

mask representation 326
matrix 73, 304

defining 76
MAX

determine 339
set function 339

maximum (MAX) 339
measure

performance 152
MEM, see MEMORY
member-name 454
MEMORY 465
memory

form 91
memory area 59

request 13
MESSAGE 188, 465

U5642-J-Z125-3-7600 507

 Index

message 56
not found 56
output 17, 94, 185, 188, 283
send 188

message (FHS) 17, 94, 185
message class 288
message code 57, 163
message file 56, 287
message line 60, 92, 188
message number 288
metacharacter 10
metavariable 8
MIN

determine 339
set function 339

minimum (MIN) 339
MIP file 56, 287
mixed operation 147
modified list line 126
modify

file 208
ISAM file 78

MSG, see MESSAGE
MSGSTR, see MSGSTRING
MSGSTRING 287, 466

N
name 7

conventions 451
partially-qualified (variable) 352
with special characters 8

naming conventions 8
natural logarithm 347
nest

condition 129
nested condition

program 129
nesting depth 32, 45
new style 162
new style operation 147
NEWLINE 466
NEWPAGE 466
NL, see NEWLINE
NOCURS, see NOCURSOR

508 U5642-J-Z125-3-7600

Index

NOCURSOR 466
NORMALINPUT 466
NORMIN, see NORMALINPUT
NOUL, see NOUNDERLINE
NOUNDERLINE 466
NP, see NEWPAGE
NULL 334
NULL (parameterization) 162
NULL value 334

compare with 300
set 334

null value
representation 162
representing 162
representing in a file 58
specify 334
test for 300

null value representation
on screen 60
printed list 65

null-value 334
NUM, see NUMERIC
NUMERIC 280, 349, 466
numeric expression 345
numeric literal 8, 323

O
OBJECT (compiler option) 145
object code

create 145
OF 32
OF branch 32
old style 162

accuracy 345
old style program

call 27, 97
open

file 136
OPEN FILE 136
OPEN mode 136
OPEN REPORT 239
operation

cancel (debugging mode) 178
declare (debugging mode) 18

U5642-J-Z125-3-7600 509

 Index

OPTION 141
output

compact list form 87
compact screen form 81
dialog box (FHS) 15
DRIVE list form 91
form (FHS) 92
list 131
list form 91
message 17, 94, 185, 188, 283
on printer 91
print file 123
report 240
string (left-justified) 283

OUTPUT (OPEN mode) 138
output device

report 240
output editing 62, 66, 83, 124
output field

display 119
output format

define 160
output formatting

data type 73

P
page background pattern

activate 244
define 247

page command
preset 195

page feed 121, 124
page footer

on screen 61, 84
page header

on screen 61, 84
paging information 196
PAR, see PARAMETER
PARAMETER 149, 467
PARAMETER DIAGNOSIS 151
PARAMETER DISTRIBUTION 154
PARAMETER DYNAMIC 157
PARAMETER KFKEY 166
PARAMETER LOCK 168

510 U5642-J-Z125-3-7600

Index

parameter prompting 53
PARAMETER statement

select 149
PARAMETER STATIC 171
parameters

pass 28, 100
pass (debugging mode) 53
pass to called program 174
pass to calling program 175
specify (dynamic) 157
specify (static) 171
supply 53

parentheses 10
partial form (FHS) 92

name 68
partially qualified name (variable) 352
pass

parameter 110
parameters 28, 53, 97

passing parameters 100
PASSWORD 467
password 454

for dialog logfile 162
path name 454
path-name 454
performance

measure 152
PERM, see PERMANENT
PERMANENT 72, 467
PERMIT (compiler option) 146
position

in file 194
in ISAM file 135
read of cursor 127

preselect
line in list area 195
selection item in selection field 195

preset
page command 195
scroll command 195

PRINT 252
print file

format 123
output 123

U5642-J-Z125-3-7600 511

 Index

output on DRIPRINT 123
print job

asynchronous 131
control 131

print management 241
printed list

format 123
output 123

printer list
define 64

printer management 133
printer output 64, 87, 123
PROC, see PROCEDURE
PROCEDURE 174, 468
produce

report 239
prog-name 454
program

abort 22, 26
analyze 96
call (old style) 27, 97
condition 129
delete 203
error analysis 96
formal error 96
indicate errors (EDT) 103
loop 45
save 187
stop (effect on CONTINUE and TRACE) 18
transaction-driven 98

program (asynchronous)
runtime 112

program abort
define behavior 163

program abortion
prevent 48

program analysis 96
program compilation

control 141
program error 38, 51

in asynchronous UTM processes 108
program execution

specify special features 151
trace 201

512 U5642-J-Z125-3-7600

Index

program mode
lock statement 168

program name 454
program run

in debugging mode 42
program start 174
program unit

abort 22
call 108
terminate 105

programming 335
prompt (debugging mode) 51
property

define for data field 273
PROT, see PROTECTED
PROTECTED 468
PSW, see PASSWORD

Q
query-expression 452

R
R, see REPEAT
read

file 176
file position 125
position of cursor 127
record 176

READ FILE 176
REAL 281
record

delete in ISAM file 78
read 176
write 208

record type 224
define 220
identifier field for 225
transfer description 227

record types
different 218, 225

recursive program call 26
REDEF, see REDEFINES
redefine

variable 302

U5642-J-Z125-3-7600 513

 Index

redefined variable 340
REDEFINES 468
REDEFINES clause 74, 277, 302, 341
remote access 154
remote CALL statement 25
remote ENTER statements 108
REMOVE 178
remove

dialog box 180
REMOVE BOX 180
REPEAT 182, 468
repeat

program call with DEBUG 42
statement 182

repeating group 72, 73, 340
defining 76
output 119

repetition factor 73
replace

characters 286
dialog box 183
lowercase with uppercase 286
substring 283
uppercase with lowercase 286

REPLACE BOX 183
report 211

define detail area 230
define header area 230
define page margin 229, 230
define trailer area 230
insert text file 265
output 240
output device 240
produce 239
sort data 229
standard format 266
transfer data 227

report buffer 239
identify 217, 227, 239
transfer parameters 227

report definition 218
end 226
LIKE clause 220
name 218

514 U5642-J-Z125-3-7600

Index

single start parameters 218
terminate 226
USING clause 219
variable 223

report execution
end 217
start 239
terminate 217

report format
specify 315

report generation
DRIVE statements 213
end 105

report output 252
absolute positioning 254
at printer 240
character-dependent positioning 254
force group break field 255
layout attributes for values 255
line feed 253
modify display attributes 256
page feed 254
relative positioning 254
remaining lines 253
reset display attributes 249, 256
to file 240
unit-dependent positioning 254

report parameters 214
restrictions 214

report set function 215
report statement 211

CLOSE REPORT 217
DECLARE REPORT 218
DECLARE VARIABLE 223
DETAIL 224
END REPORT 226
FILL REPORT 227
GROUP 236
OPEN REPORT 239
OVERLAY PAGE BASE 244
PAGE PRINT 247
PRINT 252
SOURCE 265
STANDARD LAYOUT 266

U5642-J-Z125-3-7600 515

 Index

representation
data values 277

request
memory area 13

reset
DRIVE form 35
transaction 23
variable 35

restart 23
result

from set of values 337
result list 23
RET, see RETURN
RETURN 469
RETURN parameters 79

specify 29
RIGHT 256
ROUND 348
round (values) 348
rules

for constant names 56
for editor 102
for variable names 72

S
S, see SELECT
SAM file 137
SAVE 187
save

copy member 187
EDT work file 187
library member 187
program 187
user label 187

schema 455
SESAM 146, 163
UDS 146, 163

SCHEMA (compiler option) 146
schema definition 146
schema-name 455
scope

system variables 77
screen

clear 22

516 U5642-J-Z125-3-7600

Index

define input/output 59
screen field 82

attributes 82
define position 62
identify incorrect 159
mask 62

screen form
data input/output 119
define 59
display 86
field attribute 121
fill 119
layout 119

screen format
specify 315

screen input/output
define 59

screen output
compact form 81
restrictions for distributed transaction processing 86
restrictions for UTM applications 86

screen overflow 35, 119
screen variable 68, 92, 93
SCREENCHECK 146
SCREENERR, see SCREENERROR
SCREENERROR 469
screen-form 455
scroll command

preset 195
search

for NULL value 300
for null value 300

search sequence
access to forms 69

SELECT 469
select

PARAMETER statement 149
substring 283, 284

selection condition 293
selection field

lock selection item 195
preselect selection item 195

selection item
lock 195

U5642-J-Z125-3-7600 517

 Index

preselect 195
semantic error 38
semantic errors 174
send

message 188
SEND MESSAGE 188
SEND-MESSAGE (BS2000 command) 22
SEQ, see SEQUENCE
SEQUENCE 469
sequence

access to interactive programs 96
for processing of asynchronous UTM conversations 112
of internal subprograms 199
of operations at a testpoint 18
of statements in a program 174
when accessing subprograms 25, 26
when calling programs in a distributed system 79
when deleting library members 203

SESAM database 146, 163
SESAM schema 146, 163
SET 190
set

attribute for data field 273
cursor in dialog box 16, 184
lines for list area 195
NULL value 334
processing mode for lowercase letter 160
processing mode for lowercase letters 143
property for data field 273

SET FILE POSITON 194
set function

AVG 338
MAX 339
MIN 339

SET SCREEN ATTRIBUTE 195
set-function 337

specify 337
SHIFTLEFTSTRING 285, 470
simple component 73, 352
simple variable 73, 352
SLSTR, see SHIFTLEFTSTRING
SMALLINT 470
SMINT, see SMALLINT
sort

518 U5642-J-Z125-3-7600

Index

data in report 229
SOURCE 265
special characters

in names 8
in variable names 76

specify
access (distributed system) 154
date interval 318
null value representation 334
parameters (dynamic) 157
report format 315
screen format 315
set-function 337
time interval 318
variable 355

specify (static) parameters 171
specify format 315
SQL

dynamic 113
square brackets 10
square function 347
square root function 347
STANDARD 470
STANDARD LAYOUT 266
standard report 266

horizontal format 267
separator 266

start
asynchronous UTM conversation 108
debugging mode 51
interactive program 96
report execution 239

start of file
positioning 194

start parameter
null value 240
report generation 218
transfer 240

starting value 35
statement

dynamically executable 114
execute (dynamically) 113
format 7
lock 168

U5642-J-Z125-3-7600 519

 Index

repeat 182
statement syntax 10
STD, see STANDARD
string 455

concatenating 283
length 347
outputting left-justified 283
substitute 284
with constant value (literal) 323

string function 283
structure

copy 74
structured data type 73, 340
structured variable 456
structure-type 340
SUBPROC, see SUBPROCEDURE
SUBPROCEDURE 199, 471
subprog-name 455
subprogram

abort 23
call (concurrent) 79
call (in distributed system) 79
external (restrictions) 27
internal 455
pass parameters 28
restrictions in remote system 25
terminate 23

substitute
string 284

SUBSTR, see SUBSTRING
SUBSTRING 284, 471
substring

delete 285
deleting 283
replacing 283
select 283, 284

subtraction 345
SUM

calculate sum 338
function 338

syntax
of statements 10

syntax error 38
syntax errors 103, 174

520 U5642-J-Z125-3-7600

Index

SYSPRG.DRIVE.011.DRILOG 161
SYSTEM 200
system variable 77

&LINES 223
&PAGES 64, 223
restrictions 214

T
T, see TRACE
TA , see TRANSACTION
TAB, see TABULATOR
table 455
TABULATOR 471
tabulator 62, 66, 83, 89, 121, 124
TAC 110, 156
tangent function 347
TASKTYPE (compiler option) 146
TEMP, see TEMPORARY
TEMPORARY 73, 471
TERM, see TERMINATE
TERMINATE 38, 471
terminate

branch 105
DRIVE run 118
internal program 105
loop 105
program unit 105
report definition 226
report execution 217
subprogram 23

test for null value 300
testpoint 18

cancel (debugging mode) 178
declare (debugging mode) 18

text file 137, 265
TIME 279, 280, 324
time 324

current 309
defining 305

time interval
specify 318

TIME(3) 279
TIMESTAMP 324
timestamp

U5642-J-Z125-3-7600 521

 Index

current 309
TIMESTAMP(3) 279, 308
TRACE 201, 471

effect on CONTINUE and [STOP] 18
trace 201

activate 151
TRANSACTION 472
transaction

define condition 108
transaction processing

distributed 79
transaction-driven program 98
transfer

data to report 227
start parameter 240

transfer data
to report 227

transfer description
record types 227

transfer parameters 214
TSN (=Task Serial Number) 172

U
UDS schema 146, 163
UL, see UNDERLINE
UNDERLINE 472
UNPR, see UNPROTECTED
UNPROTECTED 472
UPD, see UPDATE
UPDATE 472
UPDATE (OPEN mode) 138
UPDSTR, see UPDSTRING
UPDSTRING 472
uppercase

convert to lowercase 286
UPPERSTRING 286
UPSTRING 284
user 172
USER (parameterization) 172
user group 455
user ID 146

access database 108
user label

save 187

522 U5642-J-Z125-3-7600

Index

user-controlled error dialog 92, 93
user-defined data type 279
USEREVENT 472
user-group 455
user-label 456
user-name 456
USEROML 27
user-specific data type 70
USEV, see USEREVENT
USING clause 214, 219
USING report clause 227, 240
UTM application

in remote system 156
UTM asynchronous process

runtime 112
UTM print job 131
UTM program unit 156

call (asynchronous) 108
UTM return code

load key with 167
UTM start parameter 173
UTM start parameters 164
UTM start procedure 164, 173

V
VALUE 344
value 343

assign 190
specifying for variable 343
variable 7

value list
comparison with 298

value range
comparison with 297
of a variable 72

value-expression 345
value-term 351
VAR, see VARIABLE
VARCHAR 281
VARIABLE 72, 473
variable 352, 456

assign value 190
assigning initial value 72
data type 73

U5642-J-Z125-3-7600 523

 Index

define 223, 352
defining 72, 302
indicator 30
initialize with data type 75
redefining 302, 341
report definition 223
reset 35
restrictions 214
simple 73, 352
structured 73, 456

variable name 72
with special characters 76

variable value 7
var-name 456
vector 73, 340, 355

defining 75
VERSIONMIX (compiler option) 147
view 455, 456
VIS, see VISIBLE
VISIBLE 473

W
window attribute

on incorrect input 159
write

file 208
record 208

WRITE FILE 208

X
XREF (compiler option) 147

524 U5642-J-Z125-3-7600

Index

U5642-J-Z125-3-7600 525

Contents
1 Preface . 1
1.1 Brief product description . 1
1.2 Target group . 2
1.3 Organization of manual suite . 2
1.4 Readme file . 3
1.5 Changes compared to the version of December 1993

(DRIVE/WINDOWS V1.1) 4
1.6 Notational conventions . 6

2 Statement format and syntax . 7
2.1 Format . 7
2.2 Syntax . 10

3 DRIVE statements . 13
ACQUIRE
Request memory area . 13
ADD BOX
Output dialog box . 15
AT
Declare testpoint and operation . 18
BREAK
Clear screen or abort logical program unit . 22
Rules for database access . 24
CALL
Call subprograms . 25
Relationship to other statements . 30
Access rules for databases . 31
CASE
Program conditional branches . 32
Defining error exits . 34
CLEAR
Reset variable or DRIVE form . 35
CLOSE FILE
Close file . 37
Special characteristics in UTM mode . 37

526 U5642-J-Z125-3-7600

Contents

COMPILE
Compile program . 38
CONTINUE
Continue loop cycle or debugging run . 42
COPY
Insert copy member . 43
CYCLE
Program loop . 45
Defining error exits . 48
DEBUG
Start program and switch to debugging mode . 51
Error handling . 53
Relationship to other statements . 54
Access rules for databases . 54
DECLARE CONSTANT
Define constant . 56
DECLARE FILE
Define file . 58
DECLARE FORM
Define DRIVE screen form . 59
DECLARE LIST
Define list form . 64
DECLARE SCREEN
Start editing FHS form . 68
Allocating resources . 69
Special characteristics in UTM mode . 69
DECLARE TYPE
Define data type . 70
DECLARE VARIABLE
Define variable . 72
Initializing variables with a data type . 75
DRIVE system variables . 77
DELETE FILE RECORD
Delete record in ISAM file . 78
DISPATCH
Call subprograms concurrently in distributed system . 79
Rules for distributed transaction processing . 80
DISPLAY FORM
Define and display compact screen form . 81
Relations to other statements . 85
DISPLAY form-name
Display DRIVE form . 86
DISPLAY LIST
Define and output compact list form . 87

U5642-J-Z125-3-7600 527

 Contents

DISPLAY list-name
Output list form . 91
DISPLAY screenform
Output FHS form . 92
Relationships to other statements . 95
DO
Start interactive program . 96
Displaying syntax and runtime errors . 98
Relationship to other statements . 98
Access rules for databases . 98
Rules for distributed transaction processing . 99
EDT
Call editor . 101
BS2000 standard editor EDT: . 102
Relationship to other DRIVE statements . 104
END
Mark end of logical program unit . 105
Relationship to other DRIVE statements (applies only to main programs) 106
Relationship to other DRIVE statements (applies only to subprograms called with CALL) .
106
Rules for distributed transaction processing . 107
Access rules for databases . 107
ENTER
Start program as asynchronous UTM conversation . 108
Runtime . 112
Relationship to other statements . 112
EXECUTE
Generate and execute statement dynamically . 113
EXIT
Terminate DRIVE run . 118
FILL form-name
Create and fill DRIVE screen form . 119
FILL list-name
Create and fill in list form . 123
GET FILE POSITION
Read file position . 125
GET MODIFIED INDEX
Record modified list line . 126
GET SCREEN CURSOR
Read cursor position . 127
IF
Program condition . 129
Defining error exits . 130

528 U5642-J-Z125-3-7600

Contents

LIST
Output list . 131
LOCATE FILE
Locating a position in an ISAM file . 135
OPEN FILE
Open a file . 136
Special file characteristics . 139
Relationship to other statements . 140
OPTION
Control compilation of a program . 141
Rules . 147
Relationship to other statements . 147
Summary of default values . 148
PARAMETER
Select PARAMETER statement . 149
PARAMETER DIAGNOSIS
Activate tracing . 151
Evaluation time . 153
PARAMETER DISTRIBUTION
Define access in a distributed system . 154
PARAMETER DYNAMIC
Specify dynamic parameter . 157
Scope of application for operands . 164
Time of evaluation . 165
PARAMETER KFKEY
Assign K or F key . 166
Relationship to other statements . 167
PARAMETER LOCK
Lock statement . 168
PARAMETER STATIC
Specify static parameter . 171
Scope of application for operands . 173
Time of evaluation . 173
PROCEDURE
Start program . 174
READ FILE
Read a file . 176
REMOVE
Cancel testpoint and operation . 178
REMOVE BOX
Remove dialog box . 180
REPEAT
Repeat statement . 182

U5642-J-Z125-3-7600 529

 Contents

REPLACE BOX
Replace dialog box . 183
SAVE
Save EDT work file 0 . 187
SEND MESSAGE
Display message . 188
SET
Assign value and field attribute . 190
SET FILE POSITION
Position within a file . 194
SET SCREEN ATTRIBUTE
Assign form attribute . 195
STOP
Terminate DRIVE run . 197
Rules for distributed transaction processing . 198
SUBPROCEDURE
Start internal subprogram . 199
SYSTEM
Enter BS2000 command . 200
TRACE
Activate trace . 201
Relationship to other statements . 202
UNSAVE
Delete program, COPY member or user label . 203
WHENEVER
Define error exit . 205
WRITE FILE
Write to a file . 208
Special file attributes . 209

4 Report statements . 211
Summary of report statements . 211
Permitted DRIVE statements . 213
Restrictions applicable to report parameters . 214
Report set functions in expressions . 215
CLOSE REPORT
End report execution . 217
DECLARE REPORT
Define report . 218
DECLARE VARIABLE
Define report variable . 223
DETAIL
Define detail control block . 224

530 U5642-J-Z125-3-7600

Contents

END REPORT
End report definition . 226
FILL REPORT
Fill report with data . 227
GLOBAL LAYOUT
Set global defaults for a report . 229
GLOBAL LINE BASE
Define line background . 233
GLOBAL PAGE BASE
Define page background pattern . 235
GROUP
Define group control block . 236
OPEN REPORT
Start report execution . 239
OVERLAY PAGE BASE
Activate page background pattern . 244
PAGE
Define page control block . 245
PAGE PRINT
Describe page background pattern . 247
PRINT
Define report output . 252
format-clause . 257
REPORT
Define list control block . 263
SOURCE
Insert text file . 265
STANDARD LAYOUT
Describe layout of standard report . 266

5 DRIVE metavariables . 271
attribute
Describe field attribute . 273
Field attributes . 273
Global attributes . 275
Possible combinations of field attributes (for dynamic attributes) 276
base-type
Define clause . 277
basic-data-type
Data types . 279
char-expression
Define a character expression . 282
char-prim
String functions . 283

U5642-J-Z125-3-7600 531

 Contents

check
Define a check clause . 291
condition
Define condition . 293
Comparing expressions using comparison operators . 296
Comparing an expression with a value range . 297
Comparing an expression with a list of values . 298
Comparing a value with the null value . 300
Check whether a character string is numeric . 301
data-group
Define data group . 302
data-type
Define data type . 304
date-time-expression
Calculate date or time . 305
date-time-field
Define components of a date or time . 307
date-time-term
Define date or time . 308
date-time-unit
Define unit for a time period . 311
expression
Expressions . 313
format
Define format for screen or list . 315
interval-expression
Calculate a time period . 318
interval-term
Define a time period . 321
literal
Define a literal . 323
mask
Define a MASK clause . 326
null-value
Define the representation of the null value . 334
programming
Define statements for the body of a program . 335
repeating-group
Define repeating group . 336
set-function
Specify set functions . 337
SUM - Calculate sum . 338
AVG - Arithmetic mean . 338
MAX - Determine maximum . 339

532 U5642-J-Z125-3-7600

Contents

MIN - Determine minimum . 339
structure-type
Define a structured variable . 340
value
Define a data value . 343
value-expression
Define a numeric expression . 345
value-function
Value function . 347
value-term
Define a numeric term . 351
variable
Define a simple variable or reference a component . 352
vector
Define a vector . 355

6 Messages . 357
6.1 SQL return codes . 449

7 Appendix . 451
Naming conventions . 451
Keywords . 457

Related publications . 475

Index . 487

U5642-J-Z125-3-7600 533

DRIVE/WINDOWS V2.1
(BS2000/OSD)

Direc tory of DRIVE Statements

Reference Manual

Target Group

The manual is aimed at programmers who develop DRIVE applications or components of
client-server applications using DRIVE/WINDOWS on BS2000 computers.

Contents

The manual describes all DRIVE statements in alphabetical order together with their syntax
and a description of their functional scope.

Edit ion: February 1996

File: DRV_LEX.PDF

BS2000 and DRIVE are registered trademarks of Siemens Nixdorf Informationssysteme
AG

Copyright © Siemens Nixdorf Informationssysteme AG, 1996.

All rights are reserverd
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufactures.

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Brief product description
	Target group
	Organization of manual suite
	Readme file
	Changes compared to the version of December 19...
	Notational conventions

	Statement format and syntax
	Format
	Syntax

	DRIVE statements
	ACQUIRE Request memory area
	ADD BOX Output dialog box
	AT Declare testpoint and operation
	BREAK Clear screen or abort logical program unit
	Rules for database access

	CALL Call subprograms
	Relationship to other statements
	Access rules for databases

	CASE Program conditional branches
	Defining error exits

	CLEAR Reset variable or DRIVE form
	CLOSE FILE Close file
	Special characteristics in UTM mode

	COMPILE Compile program
	CONTINUE Continue loop cycle or debugging run
	COPY Insert copy member
	CYCLE Program loop
	Defining error exits

	DEBUG Start program and switch to debugging mode
	Error handling
	Relationship to other statements
	Access rules for databases

	DECLARE CONSTANT Define constant
	DECLARE FILE Define file
	DECLARE FORM Define DRIVE screen form
	DECLARE LIST Define list form
	DECLARE SCREEN Start editing FHS form
	Allocating resources
	Special characteristics in UTM mode

	DECLARE TYPE Define data type
	DECLARE VARIABLE Define variable
	Initializing variables with a data type
	DRIVE system variables

	DELETE FILE RECORD Delete record in ISAM file
	DISPATCH Call subprograms concurrently in distribu...
	Rules for distributed transaction processing

	DISPLAY FORM Define and display compact screen for...
	Relations to other statements

	DISPLAY form-name Display DRIVE form
	DISPLAY LIST Define and output compact list form
	DISPLAY list-name Output list form
	DISPLAY screenform Output FHS form
	Relationships to other statements

	DO Start interactive program
	Displaying syntax and runtime errors
	Relationship to other statements
	Access rules for databases
	Rules for distributed transaction processing

	EDT Call editor
	BS2000 standard editor EDT:
	Relationship to other DRIVE statements

	END Mark end of logical program unit
	Relationship to other DRIVE statements (applies on...
	Rules for distributed transaction processing
	Access rules for databases
	ENTER Start program as asynchronous UTM conversati...
	Runtime
	Relationship to other statements

	EXECUTE Generate and execute statement dynamically...
	EXIT Terminate DRIVE run
	FILL form-name Create and fill DRIVE screen form
	FILL list-name Create and fill in list form
	GET FILE POSITION Read file position
	GET MODIFIED INDEX Record modified list line
	GET SCREEN CURSOR Read cursor position
	IF Program condition
	Defining error exits

	LIST Output list
	LOCATE FILE Locating a position in an ISAM file
	OPEN FILE Open a file
	Special file characteristics
	Relationship to other statements

	OPTION Control compilation of a program
	Rules
	Relationship to other statements
	Summary of default values

	PARAMETER Select PARAMETER statement
	PARAMETER DIAGNOSIS Activate tracing
	Evaluation time

	PARAMETER DISTRIBUTION Define access in a distribu...
	PARAMETER DYNAMIC Specify dynamic parameter
	Scope of application for operands
	Time of evaluation

	PARAMETER KFKEY Assign K or F key
	Relationship to other statements

	PARAMETER LOCK Lock statement
	PARAMETER STATIC Specify static parameter
	Scope of application for operands
	Time of evaluation

	PROCEDURE Start program
	READ FILE Read a file
	REMOVE Cancel testpoint and operation
	REMOVE BOX Remove dialog box
	REPEAT Repeat statement
	REPLACE BOX Replace dialog box
	SAVE Save EDT work file 0
	SEND MESSAGE Display message
	SET Assign value and field attribute
	SET FILE POSITION Position within a file
	SET SCREEN ATTRIBUTE Assign form attribute
	STOP Terminate DRIVE run
	Rules for distributed transaction processing

	SUBPROCEDURE Start internal subprogram
	SYSTEM Enter BS2000 command
	TRACE Activate trace
	Relationship to other statements

	UNSAVE Delete program, COPY member or user label
	WHENEVER Define error exit
	WRITE FILE Write to a file
	Special file attributes

	Report statements
	Summary of report statements
	Permitted DRIVE statements
	Restrictions applicable to report parameters
	Report set functions in expressions
	CLOSE REPORT End report execution
	DECLARE REPORT Define report
	DECLARE VARIABLE Define report variable
	DETAIL Define detail control block
	END REPORT End report definition
	FILL REPORT Fill report with data
	GLOBAL LAYOUT Set global defaults for a report
	GLOBAL LINE BASE Define line background
	GLOBAL PAGE BASE Define page background pattern
	GROUP Define group control block
	OPEN REPORT Start report execution
	OVERLAY PAGE BASE Activate page background pattern...
	PAGE Define page control block
	PAGE PRINT Describe page background pattern
	PRINT Define report output
	format-clause

	REPORT Define list control block
	SOURCE Insert text file
	STANDARD LAYOUT Describe layout of standard report...

	DRIVE metavariables
	attribute Describe field attribute
	Field attributes
	Global attributes
	Possible combinations of field attributes (for dyn...

	base-type Define clause
	basic-data-type Data types
	char-expression Define a character expression
	char-prim String functions
	check Define a check clause
	condition Define condition
	Comparing expressions using comparison operators
	Comparing an expression with a value range
	Comparing an expression with a list of values
	Comparing a value with the null value
	Check whether a character string is numeric

	data-group Define data group
	data-type Define data type
	date-time-expression Calculate date or time
	date-time-field Define components of a date or tim...
	date-time-term Define date or time
	date-time-unit Define unit for a time period
	expression Expressions
	format Define format for screen or list
	interval-expression Calculate a time period
	interval-term Define a time period
	literal Define a literal
	mask Define a MASK clause
	null-value Define the representation of the null v...
	programming Define statements for the body of a pr...
	repeating-group Define repeating group
	set-function Specify set functions
	SUM - Calculate sum
	AVG - Arithmetic mean
	MAX - Determine maximum
	MIN - Determine minimum

	structure-type Define a structured variable
	value Define a data value
	value-expression Define a numeric expression
	value-function Value function
	value-term Define a numeric term
	variable Define a simple variable or reference a c...
	vector Define a vector

	Messages
	SQL return codes

	Appendix
	Naming conventions
	Keywords

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G-I
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X

