
Edition January 2015

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3
\1

40
3

60
1_

K
o

nf
u\

en
\k

on
fu

_e
.v

or

English

openUTM V6.3
Concepts and Functions

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Concepts and Functions

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

 2
01

5
 S

ta
n

d
14

:2
4

.3
6

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
01

_K
on

fu
\e

n\
ko

nf
u_

e.
iv

z

Contents

1 Preface . 11

1.1 Summary of contents and target group . 13

1.2 Summary of contents of the openUTM documentation 14
1.2.1 openUTM documentation . 14
1.2.2 Documentation for the openSEAS product environment 19
1.2.3 Readme files . 20

1.3 Innovations in openUTM V6.3 . 21
1.3.1 New server functions . 21
1.3.2 Load simulation with "Workload Capture & Replay" 24
1.3.3 New client function . 25
1.3.4 New and modified functions for openUTM WinAdmin 25
1.3.5 New functions for openUTM WebAdmin . 25

2 Overview of openUTM features . 27

2.1 openUTM – the “High-end Transaction Processing Platform” 27

2.2 Transaction concept and restart functions . 29

2.3 Coordinating with databases and resource managers 30

2.4 UTM cluster application . 33
2.4.1 UTM cluster files . 35
2.4.2 System requirements for the use of UTM cluster applications 37
2.4.3 Using SESAM/SQL and UDS/SQL databases in the cluster 38

2.5 Message queuing . 39

2.6 openUTM - open for different platforms and protocols 42

2.7 X/Open conformance of openUTM . 47

2.8 Performance, throughput, and response times 50

2.9 Workload Capture & Replay . 51

Contents

 Concepts and Functions

2.10 High availability . 52

2.11 Security functions . 53

2.12 Dynamic configuration . 54

2.13 Internationalization/adaptation of UTM messages 56

2.14 openUTM in the Unicode environment . 56

2.15 Accounting . 57

2.16 Performance monitoring with the openSM2 Software Monitor 58

2.17 Diagnostic capabilities in openUTM . 59

2.18 Simple, user-friendly application programming 60

2.19 Graphical administration with WinAdmin . 61

2.20 Graphical administration with WebAdmin . 62

2.21 SNMP subagent for openUTM . 63

3 Integration scenarios with openUTM . 65

3.1 Integrating different applications . 65

3.2 Integrating openUTM in the Java Enterprise environment 66
3.2.1 openUTM as a server for Java EE application servers 66
3.2.2 openUTM as a client for a Java EE application server 68
3.2.3 UTM cluster application as client or server . 69

3.3 Addressing openUTM via Web services . 70

3.4 Putting existing applications on the Web . 71

4 Distributed processing with openUTM . 73

4.1 Client/server architecture variants . 73

4.2 What is meant by the terms “client” and “server”? 77
4.2.1 Communication with openUTM-Client applications 78
4.2.1.1 Clients with the UPIC carrier system . 78
4.2.1.2 Clients with the OpenCPIC carrier system . 79
4.2.2 Java clients . 80

4.3 Server-to-server communication . 83
4.3.1 Global dialogs . 83

Contents

Concepts and Functions

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.iv

z

4.3.2 Transaction management in server-to-server communication 85
4.3.3 Example: Global dialog with a distributed transaction 86
4.3.4 Addressing remote services . 88
4.3.5 Communication with CICS, IMS and TXSeries applications 91

4.4 Communicating with transport system applications 93

4.5 Overview: partners, protocols, transaction management 96

5 Message queuing . 97

5.1 UTM-controlled queues . 98
5.1.1 Output jobs (output queuing) . 98
5.1.2 Background jobs . 98
5.1.2.1 Processing background jobs . 99
5.1.2.2 Sending background jobs to remote services (remote queuing) 100
5.1.3 Priority scheduling of background jobs . 102

5.2 Service-controlled queues . 103
5.2.1 USER queues . 104
5.2.2 TAC queues . 105
5.2.3 Temporary queues . 106

5.3 Control options for message queues . 109

5.4 Message queue calls of the KDCS interface . 112

6 Structure of a UTM application . 113

6.1 UTM application program . 114

6.2 The process concept . 115

6.3 The KDCFILE - the “application memory” . 117
6.3.1 KDCFILE for a standalone application . 117
6.3.2 KDCFILEs in UTM cluster applications . 119

6.4 UTM cache memory . 120

7 Program interfaces . 121

7.1 Overview of the program interfaces . 122

7.2 The KDCS universal program interface . 124
7.2.1 KDCS calls . 124

Contents

 Concepts and Functions

7.2.2 UTM storage areas . 128
7.2.3 Event functions . 132

7.3 The X/Open interface CPI-C . 134

7.4 The X/Open interface XATMI . 136

7.5 The X/Open interface TX . 138

7.6 The XML interface of openUTM . 139

8 Generating UTM applications . 143

8.1 Defining the configuration . 144
Overview: KDCDEF control statements . 145

8.2 Generating the application program . 147

8.3 Updating the configuration using the KDCUPD tool 149

9 Administering UTM applications . 153

9.1 Administration command interface . 155

9.2 Administration program interface . 158

9.3 WinAdmin graphical administration program 161

9.4 WebAdmin graphical administration program 163

9.5 Authorization concept . 165

9.6 Changing the generation dynamically . 166

9.7 Automatic administration . 168

9.8 Administering message queues and printers 169

10 Security functions . 171

10.1 System access control (identification and authentication) 172

10.2 Data access control (authorization) . 178
10.2.1 Lock/key code concept . 178
10.2.2 Access list concept . 180

10.3 System and data access control with distributed processing 183

Contents

Concepts and Functions

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.iv

z

10.4 Encryption . 187

10.5 Security functions of external resource managers 189

11 High availability with standalone UTM applications 191

11.1 High availability in BS2000 systems . 191

11.2 High availability in Unix systems . 193

11.3 High availability in Windows systems . 194

12 High availability and load distribution with UTM cluster applications 195

12.1 High availability with UTM cluster applications 195

12.2 Load distribution . 201
12.2.1 Load distribution for distributed processing . 201
12.2.2 Load distribution at UPIC clients . 202

12.2.3 Load distribution with Oracle® RAC . 202

13 Fault tolerance and the restart function . 203

13.1 Limiting program unit and formatting errors . 203

13.2 Automatic checks . 205

13.3 Faults or crashes in local resources . 206

13.4 Abnormal termination of a UTM application . 208

13.5 The openUTM restart functions . 209
13.5.1 The UTM-S and UTM-F variants . 209
13.5.2 Restart with UTM-S . 210
13.5.3 Restart with UTM-F . 212

13.6 Error handling for distributed processing . 213
13.6.1 Roll-back and restart functions with global transaction management 213
13.6.2 Roll-back and restart functions with independent transactions 215

14 openUTM in BS2000 systems . 217

14.1 System integration . 217

Contents

 Concepts and Functions

14.2 UTM processes . 221

14.3 Address space concept . 222

14.4 Formatting . 224

14.5 Code conversion . 226

14.6 BS2000-specific functions . 227

15 openUTM in Unix systems . 233

15.1 System integration . 233

15.2 UTM processes . 235

15.3 Address space concept . 238

15.4 Configuration of the network connection . 240

15.5 Code conversion . 240

15.6 Execution on 64-bit platforms . 240

16 openUTM in Windows systems . 241

16.1 System integration . 241

16.2 UTM processes . 242

16.3 Address space concept . 246

16.4 Configuration of the network connection . 248

16.5 Code conversion . 248

17 Appendix: Supported standards and norms . 249

Glossary . 251

Abbreviations . 287

Contents

Concepts and Functions

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.iv

z

Related publications . 293

Index . 303

Contents

 Concepts and Functions

Concepts and Functions 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

u
ar

y
20

15
 S

ta
nd

 1
4:

24
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

1

1 Preface

Modern enterprise-wide IT environments are subjected to many challenges of rapidly
increasing importance. This is the result of:

● heterogeneous system landscapes

● different hardware platforms

● different networks and different types of network access (TCP/IP, SNA, ...)

● the applications used by companies

Consequently, problems arise – whether as a result of mergers, joint ventures or labor-
saving measures. Companies are demanding flexible, scalable applications, as well as
transaction processing capability for processes and data, while business processes are
becoming more and more complex. The growth of globalization means, of course, that
applications are expected to run 24 hours a day, seven days a week, and must offer high
availability in order to enable Internet access to existing applications across time zones.

openUTM is a high-end platform for transaction processing that offers a runtime
environment that meets all these requirements of modern, business-critical applications,
because openUTM combines all the standards and advantages of transaction monitor
middleware platforms and message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

An UTM application can be run as a standalone UTM application or sumultanously on
several different computers as a UTM cluster application.

Preface

12 Concepts and Functions

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the
Oracle Fusion middleware, openSEAS delivers all the functions required for application
innovation and modern application development. Innovative products use the sophisticated
technology of openUTM in the context of the openSEAS product offering:

● BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA)
and supports standardized connection of UTM applications to Java EE application
servers. This makes it possible to integrate tried-and-tested legacy applications in new
business processes.

● The WebTransactions member of the openSEAS family is a product that allows tried-
and-tested host applications to be used flexibly in new business processes and modern
application scenarios. Existing UTM applications can be migrated to the Web without
modification.

 Brief overviews are given of the features of BeanConnect and WebTransactions.
There are separate manuals available for these products.

Preface Summary of contents and target group

Concepts and Functions 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

u
ar

y
20

15
 S

ta
nd

 1
4:

24
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

1

1.1 Summary of contents and target group

This manual, “Concepts and Functions” introduces you to the openUTM product family and
enables you to get started working with openUTM. It is aimed particularly at those who are
not yet familiar with openUTM. But even if you already know and work with openUTM, you
will find the manual useful for the overview it provides of the product’s range of functions
and capabilities.

Rather than being concerned with the syntactic subtleties of individual statements or with
the details of specific interfaces, the manual provides a general overview of the features
and possible applications of openUTM. Equipped with this information, you will have no
problem understanding the other manuals in the openUTM series.

Chapter 2 contains a brief description of the features of openUTM, some of which are dealt
with in further detail in chapters 3 through 13.

openUTM is available for all established Unix platforms and Windows platforms and for
BS2000 systems. Its functionality and interfaces are to a large extent non-platform-specific.
The information given in the first chapters therefore applies for all platforms.

The last three chapters contain some platform-specific information. Chapter 14 deals with
BS2000 systems, chapter 15 covers all Unix platforms and chapter 16 covers Windows
platforms. The detailed lists at the end of the manual - the glossary, the list of abbreviations,
the list of related publications, and the index - will help you to find your way around this
manual.

Obviously, the manual cannot answer all your questions, but it will point you in the right
direction for finding solutions to specific problems:

 This symbol is used to refer you to more detailed information on the relevant topic.

i Wherever the term Unix system or Unix platform is used in the following, then this
should be understood to mean both a Unix-based operating system such as Solaris
or HP-UX and a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is used below, this should
be understood to mean all the variants of Windows under which openUTM runs.

Summary of contents of the openUTM documentation Preface

14 Concepts and Functions

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various
related products.

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help systems for the
graphical administration workstation openUTM WinAdmin and the graphical administration
tool WebAdmin, and a release note for each platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000 systems,
Unix systems or Windows systems.

All the manuals are available as PDF files on the internet at

http://manuals.ts.fujitsu.com

On this site, enter the search term “openUTM V6.3“ in the Search by product field to
display all openUTM manuals of version 6.3.

The manuals are included on the Enterprise DVD with open platforms and are available on
the WinAdmin DVD for BS2000 systems.

The following sections provide a task-oriented overview of the openUTM V6.3 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related
publications at the back of the manual on .

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential
functions, features and areas of application of openUTM. It contains all the information
required to plan a UTM operation and to design an UTM application. The manual explains
what openUTM is, how it is used, and how it is integrated in the BS2000, Unix based and
Windows based platforms.

http://manuals.ts.fujitsu.com

Preface Summary of contents of the openUTM documentation

Concepts and Functions 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

u
ar

y
20

15
 S

ta
nd

 1
4:

24
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

1

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++
manual to create server applications via the KDCS interface. This manual describes the
KDCS interface as used for COBOL, C and C++. This interface provides the basic
functions of the universal transaction monitor, as well as the calls for distributed
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want
to use the X/Open interface. This manual contains descriptions of the UTM-specific
extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as notes on
configuring and operating UTM applications which use X/Open interfaces. In addition,
you will require the X/Open-CAE specification for the corresponding X/Open interface.

● If you want to interchange data on the basis of XML, you will need the document entitled
openUTM XML for openUTM. This describes the C and COBOL calls required to work
with XML documents.

● For BS2000 systems there is supplementary documentation on the programming
languages Assembler, Fortran, Pascal-XT and PL/1.

Configuration

The Generating Applications manual is available to you for defining configurations. This
describes for both standalone UTM applications and UTM cluster applications how to use
the UTM tool KDCDEF to

● define the configuration

● generate the KDCFILE

● and generate the UTM cluster files for UTM cluster applications

In addition, it also shows you how to transfer important administration and user data to a
new KDCFILE using the KDCUPD tool. You do this, for example, when moving to a new
openUTM version or after changes have been made to the configuration. In the case of
UTM cluster applications, it also indicates how you you can use the KDCUPD tool to
transfer this data to the new UTM cluster files.

Summary of contents of the openUTM documentation Preface

16 Concepts and Functions

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using openUTM Applica-
tions manual for the relevant operating system (BS2000 or Unix systems/Windows
systems). This describes how to link and start a UTM application program, how to sign on
and off to and from a UTM application and how to replace application programs dynamically
and in a structured manner. It also contains the UTM commands that are available to the
terminal user. Additionally, those issues are described in detail that need to be considered
when operating UTM cluster applications.

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for admin-
istration and the UTM administration commands. It provides information on how to
create your own administration programs for operating a standalone UTM application
or a UTM cluster application and on the facilities for administering several different
applications centrally. It also describes how to administer message queues and printers
using the KDCS calls DADM and PADM.

● If you are using the graphical administration workstation openUTM WinAdmin or the
Web application openUTM WebAdmin, which provides comparable functionality, then
the following documentation is available to you:

– A description of WinAdmin and description of WebAdmin, which provide a
comprehensive overview of the functional scope and handling of
WinAdmin/WebAdmin. These documents are shipped with the associated software
and are also available online as a PDF file.

– The respective online help systems, which provide context-sensitive help infor-
mation on all dialog boxes and associated parameters offered by the graphical user
interface. In addition, it also tells you how to configure WinAdmin or WebAdmin in
order to administer standalone UTM applications and UTM cluster applications.

i For detailed information on the integration of openUTM WebAdmin in SE Server's
SE Manager, see the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are
separate manuals for Unix systems / Windows systems and for BS2000 systems) to carry
out the tasks mentioned above. These manuals describe how to debug a UTM application,
the contents and evaluation of a UTM dump, the behavior in the event of an error, and the
openUTM message system, and also lists all messages and return codes output by
openUTM.

Preface Summary of contents of the openUTM documentation

Concepts and Functions 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

u
ar

y
20

15
 S

ta
nd

 1
4:

24
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

1

Creating openUTM clients

The following manuals are available to you if you want to create client applications for
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and
operation of client applications based on UPIC. In addition to the description of the
CPI-C and XATMI interfaces, you will find information on how you can use the C++
classes to create programs quickly and easily.

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to
install and configure OpenCPIC and configure an OpenCPIC application. It describes
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates
what needs to be taken into account when programming a CPI-C application and what
restrictions apply compared with the X/Open CPI-C interface.

● The documentation for the JUpic-Java classes shipped with BeanConnect is supplied
with the software. This documentation consists of Word and PDF files that describe its
introduction and installation and of Java documentation with a description of the Java
classes.

● The BizXML2Cobol manual describes how you can extend existing COBOL programs
of a UTM application in such a way that they can be used as an XML-based standard
Web service. How to work with the graphical user interface is described in the online
help system.

● If you want to provide UTM services on the Web quickly and easily then you need the
manual WebServices for openUTM. The manual describes how to use the software
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. The use of the graphical user interface is described in
the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the
manual Distributed Transaction Processing between openUTM and CICS, IMS and
LU6.2 Applications. This describes the CICS commands, IMS macros and UTM calls that
are required to link UTM applications to CICS and IMS applications. The link capabilities
are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and
administration.

Summary of contents of the openUTM documentation Preface

18 Concepts and Functions

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix and Windows
systems. The functions of PCMX are described in the following documents:

● CMX manual “Betrieb und Administration“ (Unix-Systeme) (only available in German)

● PCMX online help system for Windows systems

Preface Summary of contents of the openUTM documentation

Concepts and Functions 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

u
ar

y
20

15
 S

ta
nd

 1
4:

24
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

1

1.2.2 Documentation for the openSEAS product environment

The Concepts and Functions manual briefly describes how openUTM is connected to the
openSEAS product environment. The following sections indicate which openSEAS
documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect
adapter implements the connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications
in Java applications.

● The manual BeanConnect describes the product BeanConnect, that provides a JCA
1.5- and JCA 1.6-compliant adapter which connects UTM applications with applications
based on Java EE, e.g. the Oracle application server.
The manuals for the Oracle application server can be obtained from Oracle.

Connecting to the web and application integration

You require the WebTransactions manuals to connect new and existing UTM applications
to the Web using the product WebTransactions.

The manuals will also be supplemented by JavaDocs.

Summary of contents of the openUTM documentation Preface

20 Concepts and Functions

1.2.3 Readme files

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. For the BS2000 platform, you will also find
the Readme files on the Softbook DVD.

Information under BS2000 systems

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

Readme files under Unix systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under /docs/language.

Readme files under Windows systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under \Docs\language.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Innovations in openUTM V6.3

Concepts and Functions 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

u
ar

y
20

15
 S

ta
nd

 1
4:

24
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

1

1.3 Innovations in openUTM V6.3

The following sections provide more detail on the innovations in the individual areas.

1.3.1 New server functions

Additional UTM system processes for internal tasks

In addition to the processes specified by means of the start parameters, UTM starts up to
three additional processes that are reserved for internal openUTM tasks or privileged jobs
issued by the administrator.

To permit this, both generation and administration interfaces have been extended:

● Generation, KDCDEF statement MAX

– New operand PRIVILEGED-LTERM, used to identify a specific LTERM as privi-
leged. When a user signs on with administration authorizations, all the user's jobs
are considered to be privileged jobs.

– TASKS operand: The maximum value has been reduced to 240 due to the
additional system processes.

● KDCADMI administration interface

– Data structure kc_max_par_str: New field privileged_lterm for the generated privi-
leged LTERM.

– Data structure kc_tasks_par_str: New fields gen_system_tasks and curr_system_tasks
for the system processes.

– Data structure kc_curr_par_str: New field curr_system_tasks for the system
processes.

Higher resolution for output of used CPU time

The used CPU time is now output in microseconds for TACs and in milliseconds for USERs.
The following interfaces have been changed to support this:

● KDCADMI

– Data structure kc_tac_str: New field taccpu_micro_sec for the average used CPU time
in microseconds.

– Data structures kc_user_str and kc_user_dyn1_str: New field cputime_msec for the
used CPU time in milliseconds.

Innovations in openUTM V6.3 Preface

22 Concepts and Functions

● KDCADM command interface

– KDCINF type=TAC: TACCPU outputs the average used CPU time in microseconds.

– KDCINF type=USER: CPUTIME outputs the used CPU time in milliseconds.

● KDCEVAL lists

– Some times are now output in microseconds in the KDCEVAL lists.

New trace functions

Additional traces can be enabled and disabled during live operation.

– ADMI trace, i.e. trace of the administration program interface (KDCADMI)
– X/Open traces (CPI-C, TX, XATMI)

The following interfaces have been extended to support this:

● Start parameters:

New start parameters ADMI-TRACE, CPIC-TRACE, TX-TRACE and XATMI-TRACE
for enabling traces.

● KDCADMI

Data structure kc_diag_and_account_par_str: New fields admi_trace, cpic_trace, tx_trace
and xatmi_trace for enabling and disabling traces.

KDCDEF input/output via LMS library elements

In BS2000 systems, it is possible to read KDCDEF statements from LMS library elements
and, in the case of inverse KDCDEF, output them to LMS library elements. The following
interfaces have been extended to support this:

● Generation

– KDCDEF statement OPTION: New operand value LIBRARY-ELEMENT(...) in the
DATA operand.

– KDCDEF statement CREATE-CONTROL-STATEMENTS: New operand value
LIBRARY-ELEMENT(...) in the TO-FILE operand.

● KDCADMI

Data structure kc_create_statements_str: New fields lib_name, elem_name, vers, type,
stmt_type and file_error_code.

Preface Innovations in openUTM V6.3

Concepts and Functions 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

u
ar

y
20

15
 S

ta
nd

 1
4:

24
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

1

● Messages

New messages K234, K519 and K520 when reading KDCDEF statements from LMS
library elements and outputting KDCDEF statements to LMS library elements.

Performance enhancements

● UTM cache

The UTM cache has been optimized in order to improve performance during intensive
use of the UTM cache (e.g. in the case of extremely extensive service data).

● UTM lock algorithm

The Compare&Swap functionality offered by the operating system is used throughout
on open platforms for concurrent access to internal UTM administration data.

● UTM network access

The network access on open platforms has been improved so that delays no longer
occur when sending data to UTM partner applications, in particular in low-load situa-
tions.

Other changes

● Messages

– The message area for system messages has been increased and now comprises
the range from K001 to K399 (previously up to K249). As a result, the following
message areas have been moved:

– The message numbers for messages exclusively output by KDCUPD now
occupy the range K800 to K899 instead of K250 to K322.

Messages output by KDCUPD and by online import are considered to be
system messages and remain unchanged.

– The message numbers for KDCCSYSL and KDCPSYSL messages now
occupy the range K600 to K649 instead of K550 to K599.

– New message K235 if name resolution for a computer takes too long.

– The default message destinations for messages K162 and K163 have been
changed.

Innovations in openUTM V6.3 Preface

24 Concepts and Functions

● KDCADMI

– The fields auto_connect in kc_lpap_str and auto_connect_number in kc_osi_lpap_str
have the property GPD instead of PD, changes to these fields always have a global
effect throughout the application. Any administrative change to the properties
"automatic establishment of connection" in the case of LPAP and "number of
connections" for OSI-LPAP remains effective beyond the end of the application.

– New field max_btrace_lth in kc_diag_and_account_par_str for the maximum length of
the recorded data when the BCAM trace function is activated.

● In the case of platforms on which UTM can run in 64-bit mode, KDCUPD makes it
possible to migrate from a 32-bit application environment to a 64-bit application
environment. At present, UTM only supports 64-bit mode on Unix platforms.

● The Oracle User ID can also be entered in lowercase in the KDCDEF statements
DATABASE and RMXA.

● The InstallAware installation procedure is used on Windows systems. As a result,
openUTM is supplied in the form of MSI files for Windows systems.

● New sample program ADJTCLT (ADJust Tac-CLass Table)

Using the C program unit ADJTCLT, users can control how the processes are
distributed to the TAC classes in the light of the current total number of processes and
the current number of asynchronous processes. To do this, the user creates a table
containing the desired settings. The settings must be chosen in such a way that there
is always at least one process free to perform other tasks, such as end-of-transaction
processing for distributed transactions for example.

1.3.2 Load simulation with "Workload Capture & Replay"

Thanks to the new Workload Capture & Replay function, it is possible to record UTM appli-
cation communications with UPIC clients and then replay these in combination with
adjustable load profiles. In this way, it is possible to test the behavior of the UTM application
at high loads under real-life conditions.

Workload Capture & Replay consists of the following components:

● UPIC Capture: Records communication with the UPIC client.

The trace function BTRACE (BCAM trace), which is present on all the server platforms,
is used to record a UPIC session.

● UPIC Analyzer: Used to analyze the recorded communication.

● UPIC Replay: Used to replay the recorded UPIC session with different load parameters
(speed, number of clients).

Preface Innovations in openUTM V6.3

Concepts and Functions 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

u
ar

y
20

15
 S

ta
nd

 1
4:

24
.3

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

1

UPIC Analyzer and UPIC Replay are only available on 64-bit Linux systems and are supplied
with openUTM Client (UPIC).

openUTM for Unix and Windows systems also comes with the utility program kdcsort. You
can use kdcsort to sort the communication recorded by BTRACE over time if the UTM appli-
cation ran with more than one process during the recording period and multiple process-
specific files have therefore been generated.

1.3.3 New client function

On Windows systems, UPIC Client is available in both a 32-bit and a 64-bit variant.

1.3.4 New and modified functions for openUTM WinAdmin

● WinAdmin supports all the new features of UTM V6.3 relating to the administration
program interface. These include, for example, the new trace functions, the writing of
KDCDEF statements to library elements on Inverse KDCDEF runs in BS2000 or the
display of a user's used CPU time in milliseconds.

● Introduction of a lifetime for statistical values in order to limit the number of statistical
values stored in the configuration database.

1.3.5 New functions for openUTM WebAdmin

Additional functions

WebAdmin now provides additional functions that go beyond the functionality available in
the KDCADMI administration interface and which were previously available only in
WinAdmin:

● Display of message queues (DADM functionality)

● Administration of statistics collectors and tabular display of the associated values
(including the new "Lifetime for statistical values" function).

● Depiction of statistics in graphical form (graphs)

● Execution of threshold actions for statistics collectors

Innovations in openUTM V6.3 Preface

26 Concepts and Functions

Support for new features in openUTM V6.3

WebAdmin supports all the new features of UTM V6.3 relating to the administration
program interface. These include, for example, the new trace functions, the writing of
KDCDEF statements to library elements on Inverse KDCDEF runs in BS2000 or the display
of a user's used CPU time in milliseconds.

Integration in SE Server

WebAdmin can be installed as an add-on in the management unit (SE Manager) of an SE
Server. It then provides much the same range of functions as when operated outside of the
SE Manager.

Concepts and Functions 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2 Overview of openUTM features

This chapter provides an overview of the most important functions of the openUTM appli-
cation server and examines the IT environment in which openUTM is typically used.

2.1 openUTM – the “High-end Transaction Processing Platform”

As a high-end transaction processing platform, openUTM is used for OLTP (online trans-
action processing) applications. These may be banking applications or travel booking
systems, for example: bank customers transfer payments between accounts at different
banks in different locations – and not just by actually going to the bank. They may also do
it by phone or via the World Wide Web. Travel agents book international flights and hotel
rooms and have online access to the databases of airlines and hotel chains. openUTM is
also the basis for enterprise-wide, integrated IT solutions based on client/server concepts
or for stockkeeping and production control systems.

openUTM can handle dialog-controlled services or asynchronous services that are
detached from the dialog. Its message queuing features support workflow concepts, mobile
computing and similar applications.

As an application server, openUTM takes on the following tasks:

● openUTM forms the runtime environment for service routines.

● The service routines can be generated statically or added dynamically to the application
during live operation.

● The service routines use standardized interfaces to the openUTM application server
(X/Open: CPI-C, TX, XATMI; DIN: KDCS).

● The service routine can accesses databases directly (by means of SQL).

● The openUTM application server coordinates the transactions with the database
system.

● openUTM controls the exchange of information between clients, applications and
resources on the basis of transactions. openUTM thus ensures reliability, availability
and performance – even in the case of complex distributed structures.

openUTM – the “classical” application server Overview of openUTM features

28 Concepts and Functions

openUTM provides the KDCADMI programming interface which can be used to administer
UTM applications.

Figure 1: The openUTM application server as a high-end transaction processing platform

openUTM supports mult-tier architectures that permit distribution of business logic
(processing) to a number of servers. openUTM acts as a distributed, high-level operating
system.

When designing applications, there is a range of powerful functions on which you can build:
openUTM controls global transactions, optimizes the utilization of system resources
(working memory, CPU, etc.), manages concurrent access and takes care of access
control, the establishment of network connections and a great deal more.

The specifics of heterogeneous networks and different platforms do not find expression in
the application components, so the various components remain environment-independent
and offer great flexibility in that they can be replaced easily and used universally.

You will find detailed information on client/server computing and server-to-server
communication with openUTM in a separate chapter of the manual devoted to this
subject (chapter “Integration scenarios with openUTM” on page 65ff).

SQL

XA

UTM application server

Service routines

Program units

Terminals,
PC clients

Mobile
clients

Web
clients

Special
clients

OLTP
applications

DBMS

Overview of openUTM features Transaction concept and restart functions

Concepts and Functions 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2.2 Transaction concept and restart functions

One of the most important tasks of openUTM is to ensure the consistency and integrity of
application data, even in the event of problems such as power failures or system crashes.
All processes under openUTM are therefore based on the transaction concept.

A transaction is a collection of operational steps with certain properties, known as ACID
properties:

● Atomicity
The steps combined within a transaction form an atomic unit: either all the steps within
the transaction are performed, or none of them are performed (all-or-nothing rule). If a
transaction is not executed in full for some reason, it is rolled back, i.e. all data is reset
to its status before the transaction was started.

● Consistency
The individual steps are performed correctly. If the resources (databases, printers,
message queues, etc.) were in an inconsistent state before the transaction was started,
they will be restored to a consistent state after the transaction has ended.

● Isolation
If several transactions are to be executed in parallel, concurrent changes are carried
out as if the transactions were executed consecutively, i.e. with no overlap. Other trans-
actions are not aware of any intermediate states, as the transactions are isolated from
each other.

● Durability
Once a transaction has been concluded successfully, the changes made are
permanent, i.e. they are retained even after a system crash. All modifications are
logged at the end of the transaction. The end of a transaction therefore also represents
a synchronization point.

For example, a credit transfer consisting of the steps “debit amount” and “credit amount”
fulfills the atomicity condition provided each debit operation is followed by a credit
operation. It fulfills the consistency condition if the amount is debited and credited in the
prescribed format and at the right location. It fulfills the isolation condition if the account
balances are read-/write-protected during processing. Finally, it fulfills the durability
condition if the updates are not lost following a system error, e.g. due to a power failure.

openUTM fully integrates all resources into transaction management, and can thus offer
effective automatic restart functions.

In the event of an automatic restart, openUTM resynchronizes not only the data in the
databases with the data in the application, but also any interrupted services, local resources
(e.g. storage areas), queues, communication links, and front-ends such as terminals, PCs,
workstations, and printers.

Databases and resource managers Overview of openUTM features

30 Concepts and Functions

For instance, the restart functionality allows all client PCs to continue operating with the last
consistent PC screen, even after a system crash (PCs, network, server).

You will find additional information on the subject of “restarts” in this manual in
section “The openUTM restart functions” on page 209.

2.3 Coordinating with databases and resource managers

One of the most important functions of a transaction monitor is to coordinate with resource
managers (the term “resource manager” is explained in section 2.7 on page 47). Since
openUTM supports the XA interface standardized by X/Open, it can interact with all
resource managers that offer this interface, even if these are mixed within a transaction.
More than one resource manager can be connected to a given UTM application at the same
time.

Database systems play a central role among the resource managers. This section therefore
concentrates on coordination with database systems. The database systems with which a
UTM application is to interact are defined when generating the UTM application.

Supported database systems

openUTM (BS2000) supports coordination with the following database systems:

– UDS/SQL
– SESAM/SQL
– Oracle
– LEASY (from the point of view of openUTM, the LEASY file system behaves as a

database system)

openUTM for Unix systems and Windows systems supports coordination with the following
database systems:

– Oracle
– INFORMIX

Coordination between UTM transactions and database transactions

The data records stored in a database are subject to the locking and synchronization
mechanisms of the respective database system, and not those of openUTM. To ensure
global data consistency, UTM transactions must be synchronized with those of all database
systems involved. For this purpose, openUTM uses the two-phase commit protocol. As
soon as processing of a local transaction is complete, the transaction is initially switched to
the “preliminary end of transaction (PET)” state. The global end of transaction (commit) is

Overview of openUTM features Databases and resource managers

Concepts and Functions 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

not set until all the transactions involved have reached the PET state. Figure 2 illustrates
this procedure by means of a simple example.

The UTM transaction and the database transactions can therefore be regarded as subsets
of a global transaction. The global transaction cannot be terminated successfully until all of
its subsets have been completed. If one of the subsets- either a UTM transaction or a
database transaction - cannot be concluded, the global transaction is rolled back. This
means that all changes made in the databases and the UTM storage areas by the trans-
action are reversed, and the asynchronous and output services called are canceled.

As far as the programmer is concerned, there is no additional effort involved in coordinating
between openUTM and database systems.

Figure 2: Coordination between UTM and database transactions based on the two-phase commit protocol

Coordination with distributed and heterogeneous databases

All transaction systems support coordination with a resource manager, but only openUTM
offers the following additional options:

A UTM application can coordinate with several database systems, i.e. a single UTM
service program can contain calls to numerous database systems. In the context of
distributed processing, data from several different database systems can be processed on

UTM transaction

Database transaction

UTM program

End of global
transaction

Preliminary end of database
transaction

Start of the UTM
transaction

Start of database
processing

End of database
processing

End of the UTM
transaction

Databases and resource managers Overview of openUTM features

32 Concepts and Functions

a number of systems within the same transaction. openUTM thus supports secure inter-
action with distributed and heterogeneous databases on all conventional hardware and
operating system platforms - even within the same service program.
Thanks to these features, openUTM is much more flexible than other transaction monitors:
it allows you to integrate the existing data logistics into UTM applications without modifi-
cation, and offers greater scope when extending the IT environment.

Error handling and diagnostics when coordinating with database systems

If errors occur when coordinating with database systems, openUTM performs all error
handling procedures. There is no need for the programmer to take any special precautions.

The database system informs openUTM whether or not a call can be executed successfully.
If an error occurs, openUTM checks the error level and reacts accordingly: it rolls back the
transactions to the last synchronization point and outputs error messages containing infor-
mation on the cause of the error.
To simplify diagnostics, an entry is created in an area of the UTM dump for each database
call. A special tool is also provided for simple, precise analysis of the UTM dump.

Support for failover with Oracle Real Application Clusters

When working with Oracle Real Application Clusters, openUTM is able to resume the appli-
cation run normally in case of a failover. Transactions interrupted by the failover are termi-
nated correctly when possible. If this is not possible, then they are reset by openUTM or by
the database system so that the database is also consistent after the failover.

Internal interface between openUTM and database systems

openUTM controls interaction with database systems via a standard, uniform interface. It is
thus completely independent of any implementation-related specifications of the different
database systems.
The interface used is the XA interface standardized by X/Open, and in BS2000 systems the
functionally equivalent interface IUTMDB is supported.

Support for other resource managers

Database systems are only one type of resource manager. UTM transaction management
also covers transaction-oriented file systems (LEASY, ISAM/XA, ...), message queues,
local storage areas, log files, and network connections. Regardless of whether the resource
manager is a UTM resource manager (UTM message queues, local storage areas, log files)
or an external resource manager (non-Siemens message queueing system), openUTM
coordinates transaction management across all applications, operating systems, and
hardware platforms.

Overview of openUTM features UTM cluster application

Concepts and Functions 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2.4 UTM cluster application

Cluster support is a key function in openUTM.

A cluster is a number of computers (nodes) connected over a fast network and which share
common peripherals. A UTM application can run as a UTM cluster application on a cluster.

In the same way as for standalone applications, UTM cluster applications provide you with
the full functionality of openUTM.

UTM cluster application

Unlike a standalone UTM application, a UTM cluster application consists of a number of
identically configured UTM applications which run on a node of a cluster and can be under-
stood logically to be a single application. Each of these so-called node applications runs on
a separate node.

Figure 3: UTM cluster application

In BS2000 systems, UTM cluster applications can be distributed over up to 16 nodes and
in Unix or Windows systems, they can be distributed over up to 32 nodes.

UTM cluster application

Node application 1 Node application n

Global
cluster
administration

....

Standalone
UTM application

Client

UPIC
OSI TP or LU6.1

UTM cluster application Overview of openUTM features

34 Concepts and Functions

UTM cluster applications offer advantages in terms of load distribution and high availability:

● Essential high-availability functions such as application monitoring, the online import of
application data and online updating of application programs and UTM revision levels
guarantee the uninterrupted high availability of UTM cluster applications. If a node
application is terminated normally then users can continue open services at any other
node application.

● For communications between a UTM application and a UTM cluster application,
openUTM also provides automated load distribution via LPAP bundles in the case of
LU6.1 and OSI TP communication.

● For communications between clients and a UTM cluster application, it is possible to
distribute the load to the individual node applications by means of an external load
distributor. In the case of UPIC communications, openUTM provides a UPIC load
distributor for UPIC clients.

● Unlike standalone UTM applications, UTM cluster applications permit optimum load
distribution with Oracle® RAC.

 For more detailed information on the high-availability functions and load distribution
in UTM cluster applications, see chapter “High availability and load distribution with
UTM cluster applications” on page 195.

Administering a UTM cluster application

You can administer UTM cluster applications in the following ways:

● via separate administration programs that you create using the administration program
interface (KDCADMI),

● via the administration command interface,

● via the WinAdmin and WebAdmin graphical administration tools (see page 60 and
page 62) which also use the administration program interface.

Depending on the administration task, any changes made either only apply locally in the
individual node application to which you are logged on or globally in all node applications.

 For more detailed information on administering a UTM cluster application via the
program interface, see the openUTM manual “Administering Applications”.

Administering a UTM cluster application via WinAdmin and WebAdmin

WinAdmin and WebAdmin provide you with easy-to-use functions for the administration of
UTM cluster applications. Both tools provide both a view that is global to the cluster and a
view that is local to the node. WinAdmin permits administrative changes which apply
globally to the cluster to be made only within the global cluster context, while administrative
changes which apply locally to the node are possible only in the local node context.

Overview of openUTM features UTM cluster application

Concepts and Functions 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

WinAdmin and WebAdmin collect the data of all active node applications, collate it and
display it in the user interface.

Alongside administrative changes to the node applications, you can also display a node
application’s statistics data or, if you are using WinAdmin, display the statistics data for all
the node applications in the UTM cluster application.

It is also very easy to find out about the availability of the node applications.

 For more detailed information on administering a UTM cluster application using
WinAdmin and WebAdmin, see the associated online help system.

2.4.1 UTM cluster files

The configuration of a UTM cluster application comprises the following UTM cluster files
which are accessed jointly by all the node applications:

Figure 4: Shared synchronized access to the UTM cluster files from the node applications

The cluster configuration file, the cluster user file, the cluster page pool files and the cluster
GSSB file and cluster ULS file are generated in a basic generation run on the initial gener-
ation of a UTM cluster application. The cluster lock file and the files of the administration
journal are created by the application on initial start-up.

Cluster
configuration

Cluster

UTM cluster application

Node application 1 Node application n....

user file
file

Cluster
pagepool

files

Cluster
GSSB file

Cluster
ULS file

Cluster
lockfile

Administration
journal

UTM cluster application Overview of openUTM features

36 Concepts and Functions

All the node applications must be able to access the UTM cluster files. To make this shared
access possible, these files must be stored in Shared Public Volume Sets in BS2000
systems, the Network File System/Service (NFS) in Unix systems or on network drives in
Windows systems.

Locking mechanisms across the different participating machines synchronize the access to
these files.

The global cluster files are stored in a shared folder or with identical filename prefixes. They
comprise the following files:

● For (UTM internal) cluster administration, there is the central cluster configuration file
which contains the configuration of the UTM cluster application.

● The cluster user file is used to administer the users of a UTM cluster application. This
file can be modified while an application is running if the administrator defines new
users for the UTM cluster application or if a new KDCDEF run is performed for the appli-
cation.

● The application data of a UTM cluster application that is valid throughout the cluster is
stored in cluster page pool files. This includes, for example, the contents of the GSSB
and ULS or user service data and therefore enables users to continue open services at
another node

● The global memory areas GSSB and ULS are managed in a UTM cluster application
via the cluster GSSB file and the cluster ULS file.

● The cluster lock file is used to manage locks for user data.

● These actions are written to the administration journal in order to permit changes that
are global to the cluster to be implemented in all the node applications. All node appli-
cations reconstruct these changes on the basis of the administration journal.

Actions with a global effect apply to all the node applications in the UTM cluster
irrespective of whether they are currently active or not. Examples of such changes
include the dynamic generation of objects such as new users (USER) or the modifi-
cation of an object status. Administrators can initiate global actions from any node appli-
cation in the UTM cluster application.

Alongside the global cluster files which are used by all node applications, local files also
exist for each node, e.g. KDCFILEs (see page 117), log files and diagnostic files. The
KDCFILE is only generated once and is then copied once for each node application. At
runtime, each node application uses its own copy exclusively.

The KDCFILEs for the individual node applications have to be set up in such a way that they
can be accessed by all the node applications. This is necessary for application monitoring
as well as for the online import of application data.

Overview of openUTM features UTM cluster application

Concepts and Functions 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

 For more detailed information on the administration journal and on the file structure
of a UTM cluster application, see

– openUTM manual “Using openUTM Applications under BS2000 Systems” or

– openUTM manual “Messages, Debugging and Diagnostics in Unix Systems
and Windows Systems”.

2.4.2 System requirements for the use of UTM cluster applications

The following system requirements must be satisfied before UTM cluster applications can
be used:

● On BS2000 systems, the HIPLEX® MSCF software must be installed to permit cross-
machine file access operations as well as for the synchronization of accesses to shared
data (shared pubset mode).

● A Network File System/Service (NFS) must be available on Unix systems. This does
not require the installation of any additional software on the node computer.

● There are no additional software requirements in the case of Windows systems. Shared
files are accessed via the usual Windows network drives.

 Refer to the Release Notice for more information on the listed software require-
ments.

● A cluster’s nodes must all run on similar operating systems, i.e. mixed configurations,
such as BS2000 and Unix computers in combination, are not possible.

● The node computers of a cluster must all have the same "system platform class". The
following "system platform classes" are supported:

– BS2000 systems (/390 and x86, in which case mixed configurations are also
possible)

– Solaris (Sparc): It is only possible to create clusters in which all the node applica-
tions run either in 32-bit or 64-bit mode.

– Linux (x86): In the same way as for Solaris (Sparc), the same bit mode must be
used at all the nodes.

– Windows: No special requirements.

 For more detailed information, refer to the Release Notice.

It is, in principle, possible to use different operating system versions at the individual
nodes. In this case, please refer to the details regarding binary compatibility between
versions. In most cases, upwards compatibility is possible.

UTM cluster application Overview of openUTM features

38 Concepts and Functions

For technical reasons, mixed system platform classes (e.g. Linux and Solaris) are not
possible.

● If the application works with databases, software that permits cross-machine access to
the shared database must be installed on the system.

2.4.3 Using SESAM/SQL and UDS/SQL databases in the cluster

In BS2000 systems, SESAM/SQL and UDS-SQL databases are usually configured in such
a way that the Database Handler (DBH) runs on the same computer as the UTM appli-
cation. If the database is used in a cluster then this configuration must be modified since at
least one of the node applications has remote access to the database:

Figure 5: Using databases in a cluster under BS2000 systems

Database
(SESAM/SQL or UDS/SQL)

UTM cluster application in BS2000 system

....

Distribution
component

Node application n

Computer 1 Computer n

DBH

Node application 1

Distribution
component

*)

*) in the case of UDS/SQL, it is also necessary to configure an empty database here

Overview of openUTM features Message queuing

Concepts and Functions 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

The distribution component is database-specific (SESDCN for SESAM/SQL and UDS-D for
UDS/SQL). It is required in order to perform remote access operations that modify the
database wihin the scope of a and must therefore be installed on every computer from
which remote access to the DBH is performed.

2.5 Message queuing

Message queuing (MQ) is a form of communication in which messages are not exchanged
immediately, rather are buffered in intermediate queues before being dispatched. openUTM
offers sophisticated message queuing functions through the concept of asynchronous
processing.

The term “asynchronous” refers to a type of programming in which a program sends a
message but need not wait for a response from the receiver program (non-blocking conver-
sations). (non-blocking conversations). openUTM supports this programming style, of
course, but it also offers a wide and subtly differentiated range of control options.
Depending on who is responsible for processing the messages in a queue, a distinction is
drawn between UTM-controlled queues and service-controlled queues.

UTM-controlled queues

A UTM-controlled queue is a message queue in which the retrieval and further processing
of the messages is controlled entirely by openUTM. UTM-controlled queues are used for
background jobs and output jobs. All MQ functions are available to both the sender and the
recipient, which is why you do not have to generate or configure such queues and their
queue managers separately or create any special triggering or polling mechanisms.

Service-controlled queues

A service-controlled queue is a message queue in which the retrieval and further
processing of the messages is controlled by services. In other words, the recipient of the
message is responsible for reading and processing it. The following types of service-
controlled queue exist: USER queues, TAC queues and temporary queues:

● A USER queue is a user-specific message queue. A separate USER queue is automat-
ically available to every UTM user. You can use USER queues to implement mailbox
mechanisms for UTM users, for example.

● A TAC queue must be generated explicitly by means of KDCDEF (exception: dead letter
queue). TAC queues can be addressed using their generated names by any service.
TAC queues are used, for example, to forward UTM messages to the WinAdmin
graphical administration workstation or to the Web application WebAdmin and archive
them there.

Message queuing Overview of openUTM features

40 Concepts and Functions

● A temporary queue is created dynamically by a program and can also be deleted by a
program. With temporary queues it is possible, for example, to implement a dialog
between two independent services.

Deferred delivery mechanism with transaction management

openUTM works with the transaction-based deferred delivery mechanism in all message
queues: the sender and recipient can run at different times and in different places, and the
transmission of the message is guaranteed, regardless of whether or not there is a network
connection. Messages are entered in a queue and stored there until the line and the
recipient are ready. openUTM also offers additional flexibility in that time control and priority
scheduling can be used in message queuing, and maximum wait times can be defined for
service-controlled queues.

Dialog processing and message queuing can be combined as desired. MQ jobs can be
initiated within a dialog service, and a service program started asynchronously can engage
in a synchronous conversation with a remote dialog service. Long-running or non-time-
critical jobs (e.g. slow print jobs, lengthy statistical calculations, sort operations, etc.) can
be performed independently of the online dialog, without having to sacrifice the transaction
processing capability.

Implementing modern concepts

Thanks to its message queuing functionality, openUTM is ideally suited to modern
concepts, such as workflow strategies: operational procedures are divided into steps and
intermediate states are passed from one application to the next. The sender program does
not necessarily wait for a response from the receiver, and the next step may not be started
immediately. However, it must be ensured that the intermediate state is actually received by
the target program. This is the responsibility of the UTM transaction-oriented queuing
mechanism. Even if the network is currently unavailable or the receiver application is offline,
openUTM guarantees that no message will be lost or duplicated.

This independence from the quality and availability of connections means that openUTM
forms a reliable middleware base for mobile computing. Mobile clients (e.g. applications)
running on laptops can interact with servers without a permanent physical connection.
Blocked transmission is made possible through the local, transaction-oriented collection of
messages. Connection times are thus reduced and line costs kept to a minimum.

By using USER queues and TAC queues you can develop finely tuned concepts for
mailbox systems and alarm mechanisms that include the clients, as well. This makes
things much easier for the users of the application – both for customers and administrators
– and thus means that the application is better received by users and that the security of
the investment for the future is improved.

Overview of openUTM features Message queuing

Concepts and Functions 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

openUTM’s message queuing functions also offer effective support for the implementation
of data warehousing solutions and decision support systems. These applications
generally work with vast, heterogeneous information pools, and involve linking and
analyzing in-house and often external databases from the most varied IT systems. The
information must be accessible to a large number of users. Since message queuing allows
you to separate particularly long-running jobs from dialogs, openUTM ensures fast
response times. In the case of pure retrieval applications in which restarting does not play
such an important role, it is possible to use the UTM-F (Fast) variant (see section “Restart
with UTM-F” on page 212).

Further information on message queuing can be found in
chapter “Message queuing” on page 97ff.

Platforms and protocols Overview of openUTM features

42 Concepts and Functions

2.6 openUTM - open for different platforms and protocols

Openness is one of the core principles of openUTM. It is reflected in numerous properties
and functions, the most important of which are described below.

Cross-platform availability

These days, multivendor configurations are becoming the norm. openUTM is available

● for Linux distributions such as SUSE or Red HAT for example,

● for all conventional Unix platforms such as Solaris, HP-UX or AIX for example,

● for all conventional Windows platforms, such as Windows 7 for example,

● for BS2000 systems, for Business Server with /390 or X86 architecture.

Even the front-end openUTM-Client component is available for these platforms.

On other client platforms, such as MAC OS, client programs can communicate directly with
UTM applications via a transport interface.

Figure 6: openUTM - available on a wide range of platforms

Due to the high portability of openUTM, the product can also be supplied for other Unix
platforms (on request).

Windows

Unix systems

SOLARIS
AIX

HP-UX
...

BS2000

Systemplattform Systemplattform Windows UNIX BS2000/OSD SSystemplattformystemplattformystemplattformstemplattfstemplattfstemplattfstemplattfmplattmplattmplattmplattmplattmplattmplattSystem platform

openUTM-Client

BS2000/OSD UNIX Windows SSystemplattformystemplattforystemplattfortemplattfotemplattfotemplattfotemplattfomplattmplattmplattmplatmplattmplattmplatSystem platform

openUTM-Server

Linux

Windows
 BS2000

Unix systems

SOLARIS
AIX

HP-UX
...

Linux

Overview of openUTM features Platforms and protocols

Concepts and Functions 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

Because openUTM runs both on mainframes with the BS2000 operating system and under
Unix systems and Windows systems, existing mainframe applications can be linked easily
with new applications under Unix systems or Windows systems. Small departmental
servers can thus be integrated quickly and flexibly in a system of existing mainframe appli-
cations, for example.

Integration into IBM mainframe environments

openUTM supports the LU6.1 and LU6.2 communication protocols. UTM applications can
therefore interact with CICS-IMS/TM or IMS/DC applications while using transaction
management. See section “Communication with CICS, IMS and TXSeries applications” on
page 91 for more information.

APPC/CPI-C applications in IBM environments can also be connected to UTM applications.
CICS applications (without transaction management) can also be linked directly via TCP/IP.

openUTM is thus ideal for all downsizing, rightsizing or connectivity projects in IBM
mainframe environments - both from a technical and an economic point of view.

Connecting to other transaction monitors via OSI TP and LU6.2

Based on the standardized, open communication protocol OSI TP, it is possible to interact
directly with all transaction monitors that support OSI TP. Thus, for example, openUTM
supports direct, transaction-oriented interaction with Tuxedo applications or with applica-
tions in UNISYS environments.

Integration in the World Wide Web

openUTM can be integrated into the World Wide Web using the WebServices for openUTM
product, the WebTransactions product or the JUpic-Java classes in BeanConnect. UTM
applications can then be reached world-wide from millions of computers using Web
browsers such as Firefox or InternetExplorer through a uniform and modern graphical
interface.

You will find additional details on section “UTM cluster application as client or server” on
page 69 and section “Java clients” on page 80.

Platforms and protocols Overview of openUTM features

44 Concepts and Functions

Connecting terminals

In addition to offering interfaces for connecting client programs, openUTM also allows
terminals to be connected. These include, for example:

– older devices, such as alphanumeric terminals
– programs that emulate such terminals (e.g. 9750 emulations)
– network terminals controlled by PC software that does not permit all the functions of a

PC to be used

These terminals can be used in line mode. In BS2000 systems you can use screen formats
(masks) when openUTM is operating together with formatting systems such as FHS. By
means of products such as WebTransactions, screen forms can be converted dynamically
into graphical user interfaces and thus integrated into Microsoft Office environments or Web
applications, for example.

openUTM provides special user commands for direct communication with terminal users.

The user commands are described in the openUTM manual “Using openUTM
Applications”. Information on how to use the terminal interface for your service
routines can be found in the openUTM manual “Programming Applications with
KDCS for COBOL, C, and C++”. Formatting tools are described briefly in the
present manual, see section “Formatting” on page 224 for BS2000 systems.

Interaction with any applications

Almost any conceivable type of device can be connected as clients to openUTM: sensors,
control systems or industrial automatons, for example. The only requirement is that they
provide an interface at the level of the transport system. In particular, applications can be
connected to openUTM via the widely used socket interface.

As a result, UTM services can be requested by all kinds of devices: via the transport
interface, the client device simply passes the appropriate service name together with any
data that may be needed openUTM (see also section “Communicating with transport
system applications” on page 93).

Overview of openUTM features Platforms and protocols

Concepts and Functions 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

Support for the most varied communication and network protocols

openUTM’s support for the most varied communication and network protocols forms the
basis for the integration of heterogeneous environments.

openUTM supports different network protocols, e.g. TCP/IP via RFC1006 or TCP/IP native
via the socket interface. and in WANs (wide area networks, e.g. X.25). Users and
programmers need not concern themselves with the different networking technologies; your
UTM applications will run in any environment.

openUTM not only supports a wide range of network protocols, but also various high-level
communication protocols. These protocols govern types of interaction that go well beyond
the mere exchange of data. For example, they ensure that applications from different
manufacturers can interact with each other on the basis of global transaction management.

The table on the next page provides an overview of the high-level communication protocols
supported and the connection options offered by these protocols.

Overview: High-level communication protocols and connection options

LU6.1 (Logical Unit 6.1)
The LU6.1 protocol is an SNA protocol defined by IBM. Following ongoing devel-
opment, it has now become an industry standard. Communication takes place on the
basis of global transaction management.
LU6.1 is particularly suitable for the following connection options

OSI TP (Open Systems Interconnection Transaction Processing)
International standard for Distributed Transaction Processing defined by ISO. It is
possible to define whether or not communication is to take place on the basis of global
transaction management.
OSI TP is particularly suitable for the following connection options:

UTM applications

CICS and IMS applications

UTM applications

other OSI TP-capable applications
(e.g. Tuxedo applications)

UTM applications

openUTM-Clients - OpenCPIC
(all OpenCPIC platforms)

UTM applications

Java EE Applications Server

Platforms and protocols Overview of openUTM features

46 Concepts and Functions

LU6.2 (Logical Unit 6.2)
A protocol defined by IBM. This protocol is supported by openUTM via openUTM-
LU62. openUTM-LU62 is an OSI TP partner from openUTM’s point of view. In this
manner, you can work with and without global transaction management.
openUTM-LU62 is suitable for the following connection options:

UPIC (Universal Programming Interface for Communication)
UTM interface and protocol for connecting front-end clients

CICS applications

other LU6.2-capable applicationsUTM applications

IMS applications on z/OS, AIX and i5/

openUTM-Clients - UPIC

UTM applications

Java EE Applications Server

Overview of openUTM features X/Open conformance of openUTM

Concepts and Functions 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2.7 X/Open conformance of openUTM

The openness of openUTM is also reflected in its conformance with X/Open:
openUTM complies with the reference model for Distributed Transaction Processing (DTP)
defined by X/Open, and supports the interfaces standardized by X/Open.

Figure 7: Architecture of openUTM as defined in the X/Open model

KDCS KDCS
TX

KDCS
CPI-C
XATMI

UTM application programs

Message queues

Local storage areas

Log files

openUTM
resource manager:

openUTM
transaction
manager

UPIC LU6.1 OSI TP

openUTM
communication resource

manager:

e.g.
SQL

External resource managers
e.g. databases

L
U

6
.2

 S
N

A

O
S

I
T

P

L
U

6
.1

 S
N

A

T
C

P
/I

P

O
S

I
st

ac
k

CRM CRM CRM

XA

openUTM

openUTM
LU62

X/Open conformance of openUTM Overview of openUTM features

48 Concepts and Functions

X/Open differentiates between four component types in transaction-oriented systems:
application programs, transaction managers (TMs), resource managers (RMs), and
communication resource managers (CRMs).

● Application programs:
Application programs implement the processes to be performed, and access the
services of the other components via standardized program interfaces.

In addition to the CPI-C, XATMI, and TX program interfaces standardized by X/Open,
openUTM supports the universal KDCS interface (German standard).

● Transaction managers (TMs):
Transaction managers are responsible for controlling and monitoring transactions, and
provide recovery functions. They coordinate access to data and communication
resources. In the case of external resource managers, e.g. database systems, this
takes place via the XA interface.

● Resource managers (RMs):
Resource managers manage data resources. An example of an RM is a database
system. openUTM also provides its own resource managers, e.g. for accessing
message queues, local storage areas, and log files. Application programs access the
RMs via RM-specific interfaces, usually SQL for database systems and the KDCS
interface for openUTM RMs.

● Communication resource managers (CRMs):
Communication resource managers control communication between the application
programs in distributed systems.
openUTM provides CRMs for the international OSI TP standard, the LU6.1 and LU6.2
industry standards, and the openUTM-specific protocol UPIC (see also section
“openUTM - open for different platforms and protocols” on page 42 and sections
“Communication with openUTM-Client applications” on page 78 through “Overview:
partners, protocols, transaction management” on page 96). In openUTM, the OSI TP
connection is implemented via the XAP-TP System Programming Interface
standardized by X/Open.
The applications programmer can access the communication options of the CRMs via
the CPI-C, XATMI or KDCS program interfaces.

The appendix includes a list of all standards supported by openUTM.

Overview of openUTM features X/Open conformance of openUTM

Concepts and Functions 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

Advantages of X/Open conformance

The X/Open conformance of openUTM offers a range of advantages:

● option of porting application programs through standardized program interfaces (e.g.
CPIC)

● option of integrating heterogeneous distributed systems through standardized commu-
nication protocols (e.g. OSI TP)

● option of replacing components, e.g. RMs, through standardized integration interfaces
(e.g. XA)

Since openUTM can also be used on all conventional hardware platforms and has excellent
connectivity properties (see section “openUTM - open for different platforms and protocols”
on page 42), you can distribute your application in a heterogeneous environment in accor-
dance with the procedures used in your company. Existing application program units - even
those under other transaction monitors - can be integrated without any problems, thereby
protecting your investment.

The openUTM transaction monitor thus provides you with all the options required to define
an application architecture appropriate for your business procedures in a heterogeneous IT
environment, and to implement this architecture with the help of suitable interfaces.

Performance, throughput, and response times Overview of openUTM features

50 Concepts and Functions

2.8 Performance, throughput, and response times

One of the main strengths of openUTM is its high performance levels.
openUTM aims to provide the highest throughput rates and fastest response times of any
system currently available. This level of efficiency is achieved by means of a finely tuned
system resource management facility, e.g. through the use of multithreading techniques
and through automatic, dynamic load management. Ideally, you should use multiprocessor
hardware.

Time-consuming jobs can be run separately from online processing with the help of the
message queuing functionality.

In the case of online dialogs, openUTM optimizes wait times, such as those that give the
terminal user time to think, by allocating the resources to other jobs. This eliminates the
problem of blocked processes. openUTM can thus distribute a large number of simulta-
neous requests across a small number of processes.

openUTM also provides a sophisticated priority scheduling concept that can be used for
dialog processing as well as for background jobs (see page 102).

While in conventional solutions the system overhead and thus the response time at least
increase proportionally with the number of users, the response time of openUTM remains
well below these values. This has been verified by comparative measurements, even with
relatively low numbers of users.

openUTM is equally suitable for large configurations with thousands of clients working in
parallel and transaction rates of several million transactions per day.

Performance control with KDCMON

If performance bottlenecks arise, you can carry out an extensive analysis with the UTM
monitor KDCMON. KDCMON records numerous pieces of detailed information on the
operation of UTM applications and program units. KDCMON returns information on wait
times or on the resource utilization of individual services, for example.

You can activate KDCMON while the system is running and deactivate it after the desired
measurement period has passed. Data can be recorded from one or more UTM applica-
tions on a computer. The measurement data is evaluated using the KDCEVAL program and
can then be transferred to a PC and displayed there in the form of a chart.

The KDCMON monitor is described in detail in the respective openUTM manual
“Using openUTM Applications”.

Overview of openUTM features High availability

Concepts and Functions 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2.9 Workload Capture & Replay

The simulation of load situations under real conditions is an important capability that makes
it possible to test and optimize modules and improve performance.

"Workload Capture & Replay" provides functions which allow you, for example, to compare
identical UTM applications from different UTM versions or perform comparative
measurement on different computer hardware variants. The Replay capability even makes
it possible to compare different system platforms. Of particular importance is the ability to
control the simulation of predicted higher future loads by simply adjusting the scaling
parameters during replay.

Workload Capture & Replay is available for application loads that were generated by UPIC
clients without encryption.

Process steps during Workload Capture & Replay

Workload Capture & Replay is performed in the following steps:

1. UPIC Capture

Communication between the UTM application and the UPIC clients is recorded during
live application operation. To do this, UTM uses trace functions and the recording is
available in the form of trace files that are local to the process.

2. Trace merging

The recording of all the UTM processes is now sorted and entered in a file in the precise
chronological order.

3. UPIC Analyzer

The sorted recording is analyzed using the program UpicAnalyzer. This results in the
generation of a file in UPIC Replay Format.

4. UPIC Replay

The file in UPIC Replay Format is used as the input for the UPIC-based load driver
program UpicReplay. During the load test, the recorded UPIC conversations are
automatically repeated in the correct chronological order. To simulate different loads,
scaling parameters can be adjusted to vary the number of UPIC clients that are active
in parallel and the thinking time per client.

For the replay operation, the load, and therefore also the throughput, can be set to be
several times greater than during recording. This replay operation is reproducible and
can be repeated multiple times in order, for example, to examine the behavior of the
UTM application at different load factors.

The programs UpicAnalyzer and UpicReplay run on 64-bit Linux systems.

High availability Overview of openUTM features

52 Concepts and Functions

2.10 High availability

Downtimes are simply not acceptable for applications used in the mission-critical areas of
a company. openUTM ensures that your applications are available around the clock
(7*24-hour operation):

● UTM applications can be configured dynamically, i.e. maintenance activities such as
modifying and extending the configuration (e.g. when connecting additional clients) can
be carried out online.

● It is possible to replace all or parts of the application program “on-the-fly”, i.e. without
affecting the availability of the system at any point.

● All log files can be switched over during live operation so you can then evaluate and
save them or delete them.

● In the event of errors in a service program, the effect remains local. At worst, the
process is terminated (and then automatically replaced) without affecting other services
or the application as a whole. There is therefore no single point of failure. If desired, it
is possible to configure the event-driven initiation of an alternative service.

● Even hardware errors in peripherals, e.g. printers or terminals, do not jeopardize avail-
ability, since openUTM offers switchover functions which are activated automatically or
with the help of an administration command.

● If an application crash is inevitable, e.g. because the server has crashed following a
hardware error, the UTM application can be restarted immediately. The restart functions
ensure that the interrupted services and dialogs continue from where they left off using
consistent data.

● Because the “memory” of the UTM application, the KDCFILE, can be kept in duplicate
on different disks, the operability of the application is not threatened even if one of the
disks is physically destroyed.

● In conjunction with high-availability hardware and software, openUTM can be made to
cope with even the most extreme requirements (see also page 191 for BS2000 systems
and page 194 for Windows systems).

● openUTM offers greater availability thanks to its cluster support. A UTM application can
run as a UTM cluster application on a cluster. This high availability of UTM cluster appli-
cations is guaranteed, in particular, by the possibility of modifying the configuration or
application program or implementing a new UTM revision level while the UTM cluster
application is running. This functionality is also referred to as "online updating". This
functionality is complemented by other central functions for high availability such as
application monitoring and the online import of application data (see chapter “High
availability and load distribution with UTM cluster applications” on page 195).

Overview of openUTM features Security functions

Concepts and Functions 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

You will find more information on the subject of availability in the following manuals:
the openUTM manual “Generating Applications” (on keeping the KDCFILE in
duplicate), the openUTM manual “Using openUTM Applications” (on changing
programs) and the openUTM manual “Administering Applications” (on dynamic
configuration).

2.11 Security functions

openUTM offers comprehensive, distinct, clearly structured concepts for system and data
access control (authentication and authorization):

Definition of logical access points:
A UTM application can be configured in such a way that a client can only connect to it if a
logical access point (LTERM partner) is configured for it in this application. In this case, the
client must therefore be known to the UTM application.

● Definition of user IDs:
User IDs can be defined for a UTM application. This can take place during generation,
or dynamically while the application is running.

● Allocation of passwords to user IDs
Specific passwords can be assigned to the user IDs. You can also specify the
complexity and the period of validity of the passwords and keep a history of the
passwords used.

● Use of an ID card reader for system access control

● Silent alarm in the case of repeated failed attempts to log on by a user.

● Automatic timeout

● Event-driven routines for user-defined system access controls

● Subtly differentiated access authorizations:
openUTM offers two different concepts, which each take a different angle:

– The lock code/key code concept, which is user-oriented

– The access list concept, which is role-oriented

The two concepts can be used in parallel within an application.

● Password encryption and encryption of messages on the way between the client and
server. For this the component openUTM-Crypt is necessary.

● A cross-application user concept in cases where OSI TP is used.

● Support for Kerberos on BS2000 systems (for the terminal mode)

Dynamic configuration Overview of openUTM features

54 Concepts and Functions

You will find detailed information on the subject of security in chapter “Security functions”
on page 171.

The extensive system and data access control concepts offered by openUTM are also
available when connecting openUTM-Client programs and during distributed processing
with other partner applications.

When coordinating with databases, the protection mechanisms of the database systems
can also be used. These mechanisms are described in the documentation for the relevant
database systems.

Further information on the security functions can be found under the keywords
ACCESS-LIST, LTERM, KEYSET, KEYS, and LOCK in the openUTM manuals
“Generating Applications” and “Administering Applications”.

2.12 Dynamic configuration

Demands are being made of OLTP applications to the effect that it should be possible to
change configuration data dynamically in order, for example, to add new users or services
to an application, without interrupting the running of the application.

In a UTM application, configuration data such as information on user IDs, communication
partners, buffer sizes, etc. is initially specified statically when the application is generated.
openUTM offers powerful tools and interfaces that allow you to change the configuration
data while the application is running.

The graphical administration program WinAdmin offers a complete, Java-based solution for
dynamic configuration. WinAdmin allows you to change the generated application param-
eters or add or delete generation objects from any Java platform (e.g. user IDs or connec-
tions to partners). You will find more information on WinAdmin on page 60 and page 161.

The WebAdmin component provides a web-based user interface for the administration of
UTM applications on all platforms. The scope of functions provided by WebAdmin is similar
to that found in WinAdmin. For further information on WebAdmin, see page 62 and
page 163.

The KDCADMI program interface allows you to create programs for dynamic administration
that are designed to match your own requirements as closely as possible, in order, for
example, to schedule specific changes and have them run automatically. You will find more
information on this on page 158.

Overview of openUTM features Dynamic configuration

Concepts and Functions 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

The UTM tool KDCUPD allows you, after you have regenerated your (standalone or cluster)
UTM application, to transfer user data and administration information of the application to
the new configuration. KDCUPD is used when fundamental changes have to be made to
the generation or when changing to a different version of UTM. When KDCUPD is used the
following applies:

● The running of a standalone application is briefly interrupted. After this, all the users can
resume their work at the position at which they were previously interrupted.

● In the case of most changes, UTM cluster applications can continue to run without inter-
ruptions since the individual nodes only have to be interrupted one after the other.

You will find more information on page 149.

Internationalization/adaption of UTM messages Overview of openUTM features

56 Concepts and Functions

2.13 Internationalization/adaptation of UTM messages

openUTM provides a wide range of internationalization functions for creating multilingual
UTM applications, which are then made available to users in their own language. Dates,
times, units of measurement, and currency symbols are displayed in accordance with local
conventions.

There are a number of easy-to-use options for adapting the UTM system messages, which
are supplied in English and German as standard. These options allow you to incorporate
messages in other languages, replace or modify standard texts, and redefine other
message properties, such as the output lines.

A UTM application can work with several message files, which means that each user can
be supplied with individually tailored messages. This provides a great deal of flexibility
when designing applications.

openUTM for Unix systems complies with the internationalization guidelines defined in the
X/Open Portability Guides.

You will find more information on internationalization in BS2000 systems in section “Inter-
nationalization / XHCS support” on page 229.

Detailed information on message formats (e.g. the various message lines) and the
adaptation options available can be found in the openUTM manual “Messages,
Debugging and Diagnostics”.

2.14 openUTM in the Unicode environment

A UTM application can be converted without a problem to a Unicode environment and can
be operated in a Unicode environment. For example, openUTM can work with databases
whose records are available in the Unicode format and can exchange Unicode data with
other applications. openUTM operates transparently when using Unicode data.

If you want to convert application programs to process Unicode data, then the corre-
sponding compiler must be capable of handling Unicode.

The openUTM administrative data such as user IDs, transaction codes, etc., are also
defined in a Unicode environment in a 7-bit code.

Overview of openUTM features Accounting

Concepts and Functions 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2.15 Accounting

openUTM provides functions that allow computer centers to charge users of a UTM appli-
cation for the computing power used. Users are understood to be the UTM user IDs with
which a user signs on. In the case of distributed processing, the session (LU6.1) or the
association (OSI TP without cross-application user concept) is used instead of the user ID,
so that accounting is also possible under these circumstances.

Accounting can be based on actual usage (consumption) or using a fixed price.

Fixed price

When fixed-price accounting is used, openUTM charges the user account a specific
number of accounting units every time a specific service is called. In order to determine the
fixed price of a given service, openUTM can record the resource utilization of services, such
as the average CPU consumption. Using these records, the number of units to be charged
for the individual services can be determined via generation. Some services may be free,
such as informational services.

Consumption accounting

When consumption accounting is used, openUTM determines the current resource utili-
zation of a user (according to seconds of CPU time, for example) and charges the units
used to the user’s account at predefined intervals. Depending on the system, the
accounting process can distinguish various resources, such as the CPU, printer output or
input/output, and weight their usage differently.

Accounting can be activated or deactivated while the system is running or separately via
generation.

 Accounting with openUTM on the various platforms is described in detail in the
respective openUTM manual “Using openUTM Applications”.

Performance monitoring with SM2 / openSM2 Overview of openUTM features

58 Concepts and Functions

2.16 Performance monitoring with the openSM2 Software
Monitor

The SM2 software monitor supplies statistical data on the performance and capacity of
your system’s resources. openSM2 allows you to monitor the behavior of a UTM application
during live operation and to locate any performance bottlenecks. You can view the data
supplied by openUTM online on an openSM2 screen. In addition, openSM2 also stores the
data in a file for later evaluation. The evaluation of monitored data reveals the behavior of
the entire application, e.g. mean values for transaction rates, throughput and processing
times.

The openSM2 software monitor is described in a separate manual entitled
“openSM2 Software Monitor”. For details on the interaction between openSM2 and
openUTM, see the openUTM manual “Using openUTM Applications under BS2000
Systems” and openUTM manual “Using openUTM Applications under Unix
Systems and Windows Systems” respectively.

Overview of openUTM features Diagnostic capabilities

Concepts and Functions 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2.17 Diagnostic capabilities in openUTM

openUTM offers you comprehensive support when diagnosing and locating errors in the
application.

Errors in function calls are reported by openUTM using appropriate return codes and
messages. If you wish, you can request a dump in order to analyze the error situation more
closely. This request is issued either event-driven or using an administration command or
a call in the program. If an error causes an application process or the UTM application to
crash, a process-specific dump is automatically generated.

The dump file contains all KDCS and administration calls as well as database calls made
by openUTM. In BS2000 systems the dump file also contains calls to the formatting system
and database calls made by the program (when using IUTMDB). This makes it easier to
localize errors when working with databases, for example.

To analyze the dump file, openUTM provides a special tool (KDCDUMP) which converts the
dump file to a printable format. This tool also allows you to evaluate the dump file directly
from the terminal, e.g. to search for particular table entries and format these entries. Of
course, you can format the entire file, and then print it.

openUTM also offers trace functions for monitoring events. For instance, the trace
functions can be used to log all connection-related activities within a UTM application or all
activities relating to OSI TP connections in a trace file. To analyze the trace files, you can
use the special tools provided by openUTM. The trace functions can be enabled when the
application is started using an administration command or via the administration program
interface.

The application-specific systemlog file SYSLOG (SYStem LOGging) also contains
important diagnostic information, and is created by openUTM when an application is
started. The SYSLOG file contains messages, which may be useful for ongoing monitoring
or subsequent analyses. You yourself can determine the selection of messages to be
logged by assigning the SYSLOG message line to certain messages. UTM tools are
available for formatting and analyzing the SYSLOG file.

A detailed description of the diagnostic options available can be found in the corre-
sponding openUTM manual ”Messages, Debugging and Diagnostics”, which also
contains information on the KDCDUMP dump analysis tool and on the tools
provided for analyzing the SYSLOG system log file.

Application programming Overview of openUTM features

60 Concepts and Functions

2.18 Simple, user-friendly application programming

To program the service routines, you can use the usual programming languages: the UTM
calls can be integrated into normal C, C++ or COBOL programs. In BS2000 systems, the
KDCS interface is also available for Assembler, Fortran, PASCAL-XT and PL/I. Even if the
service routines are encoded in different programming languages, they can be combined
as desired.

When programming applications, you are not restricted to any particular communication
model, since openUTM supports a wide range of different models (conversations, pseudo-
conversations, request/reply, message queuing).

Programming is also simplified considerably due to the fact that many central tasks are
performed automatically by openUTM.

For instance, openUTM handles:

– control of global transactions
– management of parallel accesses
– establishment of network connections
– precautions for error situations.

You can therefore program your routines as if creating an application for a single user in a
standalone, homogeneous system.

Ideal development environments

When creating a UTM application, you can make full use of all the resources provided by
the operating system and the compilers.

NetCOBOL from Fujitsu and VisualCobol from Micro Focus are the development environ-
ments for COBOL users on open platforms.

C and C++ users are supported effectively by Oracle Solaris Studio from Oracle Corpo-
ration and the Microsoft Visual Studio.

BS2IDE - Eclipse-based integrated development environment for BS2000 systems

You can also use BS2IDE to create UTM applications on BS2000 systems. BS2IDE is
available as a plug-in to the Eclipse open development environment. This plug-in supports
developers during typical tasks and incorporates the advantages of modern Integrated
Development Environments (IDE).

BS2IDE combines the most important tools from the software development process in a
user interface and assists developers during troubleshooting.

Overview of openUTM features Graphical administration with WinAdmin

Concepts and Functions 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2.19 Graphical administration with WinAdmin

From Windows or Unix systems, you can administer UTM applications running on all
platforms using a comfortable graphical interface with the WinAdmin openUTM component:

● Since WinAdmin supports the complete scope of the KDCADMI administration program
interface, one or more UTM applications and one or more UTM cluster applications can
be administered and configured dynamically, i.e. by adding new objects or deleting old
objects.

● Alongside the administration program interface, WinAdmin also provides the classical
command interface for applications. You will find more information on page 161.

● In addition, WinAdmin is able to generate statistics and display these in the form of
charts.

● For the administration of UTM cluster applications, WinAdmin provides you with admin-
istration functions which only apply to node applications as well as administration
functions that are global to the cluster which apply to all the nodes in the UTM cluster
application. You will find more information on page 161.

The UTM applications may be distributed arbitrarily in the network on different platforms.
The UTM applications to be administered can be grouped together in collections so that
they can be administered together. For example, it is possible to modify objects in several
applications in one step.

openUTM WinAdmin communicates with the UTM application as a UPIC client and runs
under all conventional Unix, Linux and Windows systems.

Security in WinAdmin

Of course, you are provided with all UTM security functions for administration via
WinAdmin, from system access protection to UTM user IDs and passwords through the
encryption of passwords and data.

WinAdmin also offers its own user concept because extensive security demands are often
placed on administrators:

● You can define several users and assign them different authorizations, from users with
read access only right up to the “master” user, the WinAdmin administrator. The access
rights can also be restricted to specific applications or object types.

● Access to WinAdmin can be protected by a password for every user.

 The WinAdmin documentation (online help and WinAdmin description available
online in the form of a PDF file) tells you about the other features of openUTM
WinAdmin and how to use the product.

Graphical administration with WebAdmin Overview of openUTM features

62 Concepts and Functions

2.20 Graphical administration with WebAdmin

With the WebAdmin component, openUTM provides you with a web-based user interface
for the administration of UTM applications on all platforms. WebAdmin runs on a web server
and can be called via a browser running on any client.

● It permits the administration and dynamic configuration of UTM applications and UTM
cluster applications. This means that you can both add and delete objects because
WebAdmin supports the full function scope of the KDCADMI administration program
interface.

● In addition, WebAdmin is able to generate statistics and display them in table form.

● When administering UTM cluster applications, WebAdmin provides you both with
administration functions that apply only to a single node application as well as with
global, cluster-level administration functions that apply to all the node applications in the
UTM cluster application. For more detailed information, see page 163.

The UTM applications that are to be administered can distributed across different platforms
anywhere in the network. They can be grouped together to form collections.

openUTM WebAdmin is interfaced to the UTM application as a UPIC client and runs on all
commonly used Unix, Linux and Windows systems. It also runs as an add-on on the
management unit of an SE server.

Security in WebAdmin

When performing administration tasks in WebAdmin, you naturally benefit from all the UTM
security functions, from access control through UTM user IDs and passwords and on to
password and data encryption.

However, because administrators are faced with particularly exacting security demands,
WinAdmin also provides a separate user concept:

● You can define multiple users and assign them different rights, starting from users with
simple read-only rights through to the "master" or WebAdmin administrator.

● Access to WebAdmin can be password-protected for each user individually.

 You can find more information about the performance features of openUTM
WebAdmin and the ways of using this product in the WebAdmin documentation
(online help and WebAdmin description which is available online as a PDF file).

Overview of openUTM features SNMP subagent for openUTM

Concepts and Functions 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

2

2.21 SNMP subagent for openUTM

The SNMP (Simple Network Management Protocol) management protocol belongs to the
TCP/IP protocol family and is the de-facto standard for system and application
management in addition to being the standard for network management.

The SNMP subagent for openUTM binds the openUTM transaction monitor in a distributed
control center and

● allows you to obtain a complete overview of all objects belonging to a UTM application
such as system parameters, physical and logical terminals, TACs, users, etc., for
selected UTM applications,

● integrates UTM applications in the graphical network card of an SNMP manager and
allows you to display the states in color and

● provides administration functions such as the ability to change the properties of an
application, locking and unlocking clients, starting and terminating an application.

The subagent communicates with the UTM application being monitored via the UPIC
interface and can only be connected to one application at a time.

The SNMP Master Agent with its SNMP subagents can be connected in principle to all
management centers via SNMP, e.g. to the CA Unicenter. This product offers all capabilities
for the integration of any system with private MIBs (Management Informations Bases).

SNMP subagent for openUTM Overview of openUTM features

64 Concepts and Functions

Concepts and Functions 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

3

3 Integration scenarios with openUTM

openUTM is used more and more often with other applications, in particular with Java
Enterprise Edition technology. When used with other applications, the Service Oriented
Architecture (SOA) plays an important role. openUTM is easily integrated into these archi-
tectures, and in this case openUTM can act as a called service or take on the role of the
calling “client”.

openUTM as part of openSEAS

openSEAS is a coordinated suite of products that meets the particular demands currently
placed on IT systems (Web connection or integration into other systems, for example).
openUTM is fundamental to the openSEAS concept.

3.1 Integrating different applications

The design of integrated business processes consisting of several applications is becoming
increasingly central to the work of IT departments. There are two different scenarios to
examine here:

– The UTM application represents the logic of the business process (or of a sub-process)
and another application is to be called from the UTM application as a service. In this
case, the UTM application can access a Java Enterprise Edition application via
BeanConnect.

– The program units of the UTM application provide services for the business process
applications.

These two scenarios are described in more detail in the following sections.

Integrating openUTM in the Java Enterprise environment Integration scenarios with openUTM

66 Concepts and Functions

3.2 Integrating openUTM in the Java Enterprise environment

The Java Enterprise Edition technology (Java EE), defined by Oracle Microsystems, is
becoming increasingly important when it comes to the creation of server applications. One
reason for this is the universality of Java as a programming language, and the other is the
component technology itself. This allows program segments to be put together like building
blocks, regardless of whether they are components developed in-house or standard
components widely available on the market. One example of this are e-commerce
solutions, which consist partly of services developed in-house and partly of general
services (shopping basket management system, for example).

openUTM is particularly suitable for use in environments with Java EE application servers
because the BeanConnect product enables Java EE solutions to be optimally integrated
into openUTM-based solutions.

BeanConnect is an adapter that is based on the Java Connector Architecture (JCA) of
Oracle and that supports standardized connection of openUTM applications to Java EE
application servers, in particular to Oracle’s application server. Other application servers
such as IBM's WebSphere can also be used as well, but in this case a separate service
package needs to be purchased due to differences between the application servers.

3.2.1 openUTM as a server for Java EE application servers

When linked, openUTM can operate as a server. In this case, an application (EJB) on the
Java EE application server starts communication by sending a message to the UTM appli-
cation. This is outbound communication from the point of view of the Java EE server. The
link can be established in one of two ways:

● As a pure client connection via the UPIC protocol

● As a server-server link via OSI TP

Integration scenarios with openUTM Integrating openUTM in the Java Enterprise environment

Concepts and Functions 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

3

These two links are implemented using components of the BeanConnect product, see the
following figure:

Figure 8: openUTM as a server for a Java EE application server

Linked via UPIC

From openUTM’s point of view, this type of link corresponds to a classic client connection
via the UPIC protocol, see section “Clients with the UPIC carrier system” on page 78. In this
case the Java EE application can call every openUTM dialog TAC, but cannot call any
asynchronous TACs.

Due to the use of the UPIC protocol, the Java EE application is integrated in the restart
concept of openUTM, i.e. the Java EE side can request the status of the last transaction,
for example. However, the Java EE application must always initiate this; global transaction
management is not possible.

This type of link is suitable for simple integration scenario such as mere requests for infor-
mation or single-step transactions that do not require distributed transactions. This simple
“entry-level” adapter is an attractive solution for these kinds of scenarios.

Linking via OSI TP

From openUTM’s point of view, this type of link corresponds to a server-server link, see
page 83. In this case the BeanConnect Proxy component acts as an intermediary. In
contrast to connection via UPIC, linking via OSI TP offers you the additional capability of
implementing sophisticated integration scenarios as well:

– The applications can work with or without distributed transaction management

– The Java EE application server can call dialog and asynchronous TACs in the UTM
application

To establish a OSI TP link, you must modify the generation of the UTM application and
configure the BeanConnect Proxy accordingly.

openUTM server

Java

Java EE application

OSI TP

UPIC

clients
UTM

application
BeanConnect

Proxy

EJB

EJB

BeanConnect
Resource

Adapter

EJB: Enterprise JavaBeans

Integrating openUTM in the Java Enterprise environment Integration scenarios with openUTM

68 Concepts and Functions

3.2.2 openUTM as a client for a Java EE application server

openUTM can act as a client of a Java EE application server when the UTM application
initiates communication by sending a message to the J2EE application server. This is
inbound communication from the point of view of the J2EE server. The OSI TP protocol or
a transport system protocol can be used for communication, see the following figure:

Figure 9: openUTM as a client of a Java EE application server

The link between openUTM and the Java EE application operates via the BeanConnect
Proxy component. The messages sent by the UTM application are sent to message
endpoint applications (message-driven Beans) on the Java EE application server.

Communication can take place via OSI TP or the transport system protocol:

– When the OSI TP protocol is used, you can work with or without transaction
management. Asynchronous communication and communication in the dialog is
possible.

– If a transport system protocol such as Socket or RFC1006 is used, then communication
is always asynchronous and non-transactional.

To establish a link, you must modify the generation of the UTM application and configure
the BeanConnect Proxy accordingly.

 Use the BeanConnect Management Console to configure BeanConnect Proxy. For
further information, refer to the manual "BeanConnect".

UTM

openUTM

OSI TP

clients
UTM

application
BeanConnect

Proxy

MDB: Message-Driven Beans

Java EE Application

MDB

MDB Adapter
Resource

BeanConnect

Socket,
RFC1006

Integration scenarios with openUTM Integrating openUTM in the Java Enterprise environment

Concepts and Functions 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

3

3.2.3 UTM cluster application as client or server

A UTM cluster application in a connection can function as a server outbound communi-
cation and as a client for for inbound communication, with an application (Enterprise Java
Bean, EJB) in the Java EE application server starting communications by sending a
message to the UTM cluster application. From the perspective of the Java EE server, this
is outbound communication. In the case of outbound communication, it is possible to
address the individual nodes of the UTM cluster application using the round robin method.
The connection can be implemented either as a server-server link via OSI TP (see also
section “Linking via OSI TP” on page 67) or as a client link via the UPIC protocol.

This connection is implemented via the BeanConnect product, see the figure below:

Figure 10: UTM cluster application as server in a Java EE application server

In the case of a connection via OSI TP, load distribution (LD) is performed in the
BeanConnect proxy and the round robin method is used.

In the case of UPIC links, the load distributor in the BeanConnect Resource Adapter selects
the connections on a random basis.

EJB: Enterprise JavaBeans
LD: Load distribution

Java
clients

UTM cluster application

Java EE application

OSI TP

EJB

EJB

as server

Node
application 1

Node
application 3

Node
application 2

BeanConnect
proxy LD

BeanConnect
Resource

Adapter

LD

UPIC

Addressing openUTM via Web services Integration scenarios with openUTM

70 Concepts and Functions

3.3 Addressing openUTM via Web services

The WebServices consulting project package for openUTM (WS4UTM) makes it easy to
provide a UTM application as a Web service.

Web services are applications accessed via Web servers regardless of the platform and
that have a standardized interface (open). Through the use of Web service technology, a
simple, independent, XML-based, standardized interface is made available to the user by
openUTM to access other systems. With the aid of WS4UTM it is possible to make single-
step dialog programs in a UTM applications available as Web services (via HTTP/SOAP).

The Apache Axis server is used as the Web service server. Tomcat and Axis (Java) must
be installed in order to use WS4UTM.

WS4UTM must be installed on the same computer as the Tomcat/Axis instance used for
communication by the WS4UTM.

WS4UTM can be run on the conventional Unix platforms and Windows platforms and
consists of the WS4UTMDeploy and WS4UTMAxis components:

– WS4UTMDeploy is a graphical tool used to configure and deploy Web services.

– WS4UTMAxis is a package of classes loaded by Axis that fulfill the function of a
provider. WS4UTMAxis is used, among other things, to call the service of the corre-
sponding UTM application via the JConnect interface. JConnect uses the UPIC
protocol.

The following figure shows the architecture of WS4UTM at runtime:

Figure 11: Calling UTM services as Web services with WS4UTM

 You will find an overview of WS4UTM in the corresponding manual.

UTM-
Applications

UPIC

UTM
applications

Tomcat/
Axis WS4UTMAxis

Web
Service
Client

Integration scenarios with openUTM Putting existing applications on the Web

Concepts and Functions 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

3

3.4 Putting existing applications on the Web

You can connect existing openUTM applications to the World Wide Web unchanged by
using the product WebTransactions. The emphasis here is on the term “unchanged”. While
the entire server application remains as it is, the presentation on the Web can be designed
to suit requirements. Web hosting can take place within BS2000 systems itself or on an
independent Web server.

These solutions allow Internet/intranet users to access to the services of the openUTM
application server.

WebTransactions for openUTM implements the Web connection of openUTM applications
that were developed for FHS or FORMANT or that function via the UPIC client/server
interface. WebTransactions for openUTM is available on the BS2000 platforms, Unix
platforms and Windows platforms.

WebTransactions runs with any Web server under Unix platforms and Windows platforms.
Under BS2000 systems, WebTransactions requires the Web server of Apache.

The UTM host application can also run on each of these platforms. The host adapter for
communication with the host application is based on openUTM-Client (UPIC); in other
words, WebTransactions and the host application can run on different platforms.

WebTransactions for openUTM is shipped with the BS2000 program IFG2FLD. This
program converts the descriptions of the host formats from the IFG library into format
description sources. WebLab can then be used to automatically generate templates from
the sources. The generated templates form the basis for custom format design.

In addition, WebTransactions offers other opportunities for integration:

● Appearance of the interface (GUIfication)

● Design of the dialog sequences (interface reengineering)

● Application integration (business process reengineering)

In parallel to access via WebTransactions, it is still also possible to access host applications
or dynamic Web content via „ordinary“ terminals or clients. This allows you to connection a
host application to the Web step by step and to take into account the wishes and needs of
different user groups.

You will find an overview of WebTransactions in the manual “WebTransactions -
Concepts and Functions”.

Detailed information on connecting the different host applications is provided in
separate WebTransactions manuals. All WebTransactions manuals are available
online in PDF format.

Putting existing applications on the Web Integration scenarios with openUTM

72 Concepts and Functions

Concepts and Functions 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

4 Distributed processing with openUTM

This chapter looks at the different forms of distributed processing with openUTM. It also
deals with client/server communication, server-to-server communication (with and without
transaction management) and communication with transport system applications.

4.1 Client/server architecture variants

All client/server architectures can be divided into individual software components, known
as “layers” or “tiers”. We often speak of 1-tier, 2-tier, 3-tier, and multi-tier models. It is often
unclear whether these tiers exist on a physical or logical level:

● Logical software tiers exist when the software is divided into modular components with
clear interfaces - irrespective of how these components are distributed in the network.

● Physical software tiers exist when the (logical) software components are distributed
across various systems in the network.

In figure 12 on the next page, you will see the five basic client/server modules, each of
which has two physical software tiers.

Architecture variants Distrubuted processing with openUTM

74 Concepts and Functions

Figure 12: Basic model for client/server architectures

openUTM not only supports the basic model shown in figure 12, but also numerous other
adaptations and combinations. It allows for complex multi-tier scenarios on the level of both
physical and logical tiers.

As shown in figure 13 (on the next page), openUTM permits the distribution of data or
application logic, as well as any combinations thereof. Data can thus be stored at the
locations at which it is processed. Instead of transmitting large volumes of data via the
network, only jobs and results are transferred. This minimizes the network load. openUTM
also guarantees global data consistency at all times.

Data

Application Application Application

Presentation Presentation Presentation Presentation Presentation

Presentation

Application Application Application

Server

Client

Network

Distributed
presentation

Remote
presentation

Distributed
application

Remote
data management

Distributed
data management

management
Data

management
Data

management
Data

management
Data

management

Data
management

Distrubuted processing with openUTM Architecture variants

Concepts and Functions 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

Figure 13: Multi-tier architecture

Disadvantages of conventional 2-tier architectures / advantages of multi-tier
distribution

Many conventional client/server applications are based on a classic 2-tier architecture: the
server is responsible for data management, while the client performs all other tasks if
possible. However, this model has a number of disadvantages:

● Since clients and servers usually communicate on an SQL level, unnecessarily large
volumes of data frequently make round trips across the network. In configurations
containing many users and when communicating via slow WAN links, the response
times are simply unacceptable.

● In this type of architecture, system maintenance is both time-consuming and expensive,
since the application logic is implemented on the client systems. This inevitably results
in redundancies and maintenance problems, particularly with large applications in
heterogeneous environments. This is because each time the application logic is
changed, you must perform follow-up maintenance on possibly several source program
bases. Since the data model is at least partially visible on the clients, modifications to
data management will invariably result in the need for adaptation of the client software.

● Extensions to the application logic will increase the clients’ code and resource require-
ments. This can result in the fat client syndrome: the clients must be upgraded, and
you may even have to switch over to a more powerful platform.

Presentation

Application

Application

Application

Application

Network

Data
management

Data
management

Data
management

Architecture variants Distrubuted processing with openUTM

76 Concepts and Functions

● To avoid the problems outlined above, many database systems offer the option of
relocating at least parts of the application logic to the server by means of stored proce-
dures or trigger functions. This frequently involves the use of proprietary script
languages which must be interpreted at runtime, resulting in performance bottlenecks.
It is also possible to coordinate several database systems within a single transaction.

Multi-tier architectures based on openUTM allow you to overcome these restrictions and
bottlenecks. The logical tiers “Presentation”, “Application” and “Data management” have
clear physical boundaries and can be distributed arbitrarily. The network load is minimized,
the system resources are relieved, and heterogeneous database systems and platforms
can be coordinated. The system maintenance costs remain low. When extending the appli-
cation, the resource requirement increases at only one central location or at a small number
of central locations.

Distrubuted processing with openUTM Explanation of terms

Concepts and Functions 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

4.2 What is meant by the terms “client” and “server”?

Although the terms “client” and “server” are among the most frequently used in the IT world,
they are often applied in very different contexts:

In general, they refer to the role assumed by two partners during communication: the client
requests a service, while the server provides the service.

The clients of a UTM application can be:

– terminals or terminal emulations
– UPIC clients (see page 78)
– OpenCPIC clients (see page 79)
– transport system applications (see page 93)

UPIC clients and OpenCPIC clients are also referred to as openUTM clients. But the terms
“client” and “server” can also refer to entire applications:

UTM applications are known as server applications, since they normally act as servers
during communication, i.e. they provide services. However, when fulfilling certain service
requests, they in turn request other services, i.e. they act as clients. Unlike server applica-
tions which can assume either role, client applications can only function as clients during
communication. They are generally responsible for presentation tasks and form the front-
end to the users.

Communication between two server applications is known as server-to-server communi-
cation or peer-to-peer communication. This conveys that fact that the communication
process involves two partners of equal ranking, although this form of communication can of
course distinguish between the client and server roles. This type of interaction is also
known as distributed processing.

The terms “client” and “server” frequently refer to hardware. Client PCs or client worksta-
tions are systems on which client software has been installed. Powerful systems that are
particularly suitable for server applications are often called “servers”.

Communication with openUTM-Client applications Distrubuted processing with openUTM

78 Concepts and Functions

4.2.1 Communication with openUTM-Client applications

Client applications are typically used for presentation purposes, and allow for user-friendly
graphical user interfaces. openUTM-Client is a special product provided for developing
client applications that use the services of UTM applications. Within these client programs,
you can use the X/Open program interfaces CPI-C or XATMI.

For instance, these program interfaces enable you to connect a Visual C++ or Visual Basic
presentation program on a PC to a UTM application. With this client program, you can input
commands for administering a UTM application via a graphical interface on a PC. You can
use PC tools to perform statistical analyses by transferring the statistics supplied by
openUTM to other PC programs, formatting the statistics graphically, and thus integrating
them fully into your Office environment.

The security functions and the easy-to-use restart function in openUTM are also available
when you connect client applications.

The openUTM-Client builds on the carrier system. The carrier system’s task is to establish
the connection to other components such as the transport access system.

openUTM-Clients can be used as a platform for the UPIC carrier system or for the
OpenCPIC carrier system. The carrier system you select depends on the type of appli-
cation. The most important properties of the two carrier systems are described in the
following.

4.2.1.1 Clients with the UPIC carrier system

UPIC is a lean, highly efficient and easy-to-use carrier system that is customized for use
with openUTM as the server. In UPIC, the client program always initiates communication.
The UPIC protocol is used for communication.

A UPIC client can optimally use the UTM functions because

● UPIC supports the transfer of format names and function keys, for example.

● UPIC supports the encryption of system access and user data.

● UPIC can use the SIGNON event service (see page 177 for more information).

● A UPIC client can request the status of the last transaction after a malfunction and is
therefore included in the openUTM restart concept.

● A UPIC client can maintain several conversations simultaneously during a program run
(“multi-conversations”) as long as the corresponding system supports multi-threading.

● UPIC clients can use the “multi-signon” function. In other words, a number of UPIC
clients can sign on at the same time using the same UTM user ID if service restarting
is dispensed with for this user ID.

Distrubuted processing with openUTM Communication with openUTM-Client applications

Concepts and Functions 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

● A UPIC client can establish several parallel transport connections to a UTM application
under the same application name (multi-connect”).

● UPIC provides simple load distribution functionality for communication with UTM cluster
applications. The UPIC client communicates with one of the associated node applica-
tions. This application is selected at random. For more details, see page 195.

● Workload Capture & Replay can be used to simulate load situations for UPIC clients,
see section “Workload Capture & Replay” on page 51.

UPIC is available for all major Unix platforms, for Windows and for BS2000 systems.

4.2.1.2 Clients with the OpenCPIC carrier system

The OpenCPIC carrier system is more powerful and also more complex than UPIC.
OpenCPIC also allows the server program to initiate communication. The OSI TP protocol
is used for communication.

An OpenCPIC client can also communicate with OpenCPIC applications, CPI-C applica-
tions and other non-UTM applications as long as these applications also use OSI TP. An
OpenCPIC client can also work together with a resource manager via the XA interface.

In communication with OpenCPIC clients, you can select whether to work with or without
global transactions:

● In the case of global transaction management, the OpenCPIC client can decide when
a global transaction is to begin and end and is therefore included in the global trans-
action boundary. Transaction control is handled via the X/Open interface TX, while
communication is handled via the CPI-C interface.

● When you work without global transactions, the OpenCPIC client is included in the
openUTM restart concept.

OpenCPIC clients can use the “multi-signon” function. In other words, a number of
OpenCPIC clients can sign on under the same UTM user ID if service restarting is
dispensed with for this user ID or if you work with global transaction management.

There are clients that use the OpenCPIC carrier system on Unix platforms and Windows
platforms.

Further information on how to use the openUTM security functions when
connecting client applications can be found in chapter “Security functions” on
page 171. You will also find more information on the restart functionality in chapter
“Fault tolerance and the restart function” on page 203. The openUTM-Client
products UPIC and OpenCPIC carrier systems each have their own manual. There
you will find all the details required regarding programming and connecting client
applications.

Java clients Distrubuted processing with openUTM

80 Concepts and Functions

4.2.2 Java clients

With its JConnect component, the BeanConnect product provides Java classes that you
can use to create clients written in Java. You can connect these clients to UTM applications
as UPIC clients, see also section “Integrating openUTM in the Java Enterprise
environment” on page 66.

There are three ways to do this:

– by means of servlets running on the Web server
– in the browser environment by means of applets
– by means of a direct connection

The following diagrams illustrate these three methods:

Figure 14: Connecting via servlets running on the Web server

JVM

UTM
application

JUpic
classes

Java servlet

Web server computer

Browser

openUTM server

UPIC

Browser

ServicesHTTP Web server
(HTML, Servets, Applets)

protocol

Distrubuted processing with openUTM Java clients

Concepts and Functions 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

Figure 15: Connecting in a browser environment via applets

An applet is loaded from the Web server via the browser and started on the client computer.
This applet then communicates directly with the UTM application via the UPIC protocol. For
security reasons, the Web server in this case (figure 15) runs on the same computer as the
UTM application, i.e. applets may only communicate with the computer from which they
were downloaded.

Figure 16: Direct connection of Java clients

Client computer

UPIC protocol

HTTP

JVM

JUpic
classes

Java applet

Browser

UTM
application

openUTM server /

Services

Web server computer

Web server
(HTML,

Servets,
Applets)

JVM

JUpic
classes

Java

Java client

UPIC protocol

UTM
application

openUTM server

Services

progrm

Java clients Distrubuted processing with openUTM

82 Concepts and Functions

The JUpic classes offer the proven functionality of UPIC, such as:

● conversation with UTM applications

● multi-threading (i.e. a number of parallel conversations)

● support of restart functions

● support of UTM system and data access control

● passwords can be changed by users

● adaptation of the ASCII-EBCDIC conversion

Java programmers are thus offered powerful access to UTM applications with a high level
of security.

The JUpic classes are described in the Java docs of the JConnect component.

Distrubuted processing with openUTM Server-to-server communication

Concepts and Functions 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

4.3 Server-to-server communication

To fulfill a service request, a server application can in turn request the services of other
applications, i.e. it can send its own jobs to other applications. This is also known as
distributed processing. With server-to-server communication, therefore, services in two or
more applications work together to process a job issued by a client. A service that requests
a service from another application is known as a job-submitting service, and the service
that provides the service is called a job-receiving service.

Server-to-server communication also allows you to set up several parallel connections
between two applications and process several jobs simultaneously.

An application can not only engage in dialog with other applications, but can also use the
openUTM message queuing functionality during server-to-server communication (see
section “Sending background jobs to remote services (remote queuing)” on page 100).

Since server-to-server communication involves much more than the mere exchange of
messages, special high-level communication protocols are required. openUTM supports
the LU6.1 protocol and the internationally standardized OSI TP protocol. These protocols,
which are widely used worldwide, offer the advantage of enabling a UTM application to
interact not only with other UTM applications, but also with applications from third party
manufacturers, e.g. CICS, IMS or Tuxedo applications. This applies even if these applica-
tions are running on other platforms.

The product openUTM-LU62 permits a dialog with applications that use the LU6.2 protocol.
openUTM-LU62 converts the OSI TP protocol to the LU6.2 protocol because openUTM
communicates in this case by means of OSI TP (see also section “Communication with
CICS, IMS and TXSeries applications” on page 91).

Server-to-server communication is fully compatible with cluster operation, i.e. one or both
server applications can be implemented as a UTM cluster application, see also section
“Load distribution for distributed processing” on page 201.

4.3.1 Global dialogs

Within a global dialog, the job-submitting service and the job-receiving service run synchro-
nously, and not separately as with message queuing (see page 97ff). This applies
irrespective of whether the job-submitting service was itself started within a dialog or via the
message queuing system.

Server-to-server communication Distrubuted processing with openUTM

84 Concepts and Functions

Global dialogs allow for complex structures:

● A job-submitting service can communicate with several job-receiving services within a
transaction.

● A job-receiving service that processes part of a job for another job-submitting service
within a dialog can in turn request a third dialog service in another application.

Such parallel, nested structures result in multi-layered hierarchical relationships which can
be represented in tree diagrams. This is known as a service hierarchy.

The diagram on the next page shows how a service can function simultaneously as a job-
receiving service and a job-submitting service. From the point of view of service A, services
B, C and D are job-receiving services. From the point of view of services E, F and G on the
lowest level, services B and C are job-submitting services.

Figure 17: Service hierarchy in global dialogs

Each service hierarchy has a top service. The hierarchy exists only as long as the top
service is active. By addressing new job-receiving services and terminating existing job-
receiving services, a service hierarchy changes as the dialog job is processed.

Client

Top service Service A

Service B Service C Service D

Service E Service F Service G

Distrubuted processing with openUTM Server-to-server communication

Concepts and Functions 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

Programming global dialogs

In global dialogs, a task is performed by several program units in various applications. A
program unit can be addressed from a terminal, a client program, a program from the same
application, or a remote application. Depending on the partner, it must therefore decide on
the task it performs, where to send messages, and whether or not it is to terminate a global
transaction.

openUTM provides a simple, reliable means of creating such complex forms of program-to-
program communication through its user-friendly options for controlling global dialogs.

 Detailed information on programming global dialogs and on the control options
available see openUTM programming manuals “Programming Applications with
KDCS for COBOL, C and C++” and “Creating Applications with X/Open Interfaces”.

4.3.2 Transaction management in server-to-server communication

UTM services process jobs in transaction-oriented mode, i.e. an openUTM service consists
of one or more transactions. If an openUTM service communicates with another application
via OSI TP, it is possible to define whether processing in the remote application is to be
included in the transaction or takes place independently of the transaction. The former case
involves a distributed transaction, while the latter case involves independent transactions.
Distributed transactions are always used when working with the LU6.1 protocol.

Distributed transactions

During server-to-server communication, several local transactions in various applications
are involved in processing a job. In the case of global (= cross-application) transaction
management, openUTM guarantees global data consistency at all times. For this purpose,
openUTM synchronizes the end of the transaction: if the transaction is completed success-
fully, the synchronization points are set simultaneously in all applications involved. In the
event of an error, openUTM ensures that all transactions affected are rolled back. The
synchronized transactions thus form a unit, known as a “distributed transaction”. For
synchronization purposes, openUTM uses the two-phase commit protocol: as soon as
processing of a local transaction is complete, the transaction is initially switched to the
“Prepare-to-Commit” state. The global end of transaction (commit) is not set until all the
transactions involved have reached the “Prepare-to-Commit” state. An example of this can
be found in section “Example: Global dialog with a distributed transaction” on page 86.

Asynchronous jobs (MQ jobs) are transferred only once during server-to-server communi-
cation with global transaction management. This means that asynchronous jobs are neither
lost, nor duplicated even after a power failure or an application crash.

Global transaction management is required in cases whether data consistency and data
security requirements are high.

Server-to-server communication Distrubuted processing with openUTM

86 Concepts and Functions

Independent transactions

Unlike distributed transactions, each application is responsible for setting forward and
rolling back their own independent transactions. In the event of communication errors, this
may result in data inconsistencies in the various applications. With this form of communi-
cation, there is no guarantee that asynchronous jobs will not be duplicated.

This type of interaction between applications is useful for cases where the data of only one
application is modified during processing. For example, this applies if one of the applica-
tions is a pure retrieval application. Communication is thus more efficient, since the trans-
actions need not be synchronized in the applications involved.

4.3.3 Example: Global dialog with a distributed transaction

A customer wishes to withdraw a cash amount from a particular branch of his bank.
However, his account is held at another branch. Each branch uses their own UTM appli-
cation for data management.

When the customer makes his withdrawal, data in both UTM applications must be updated,
i.e. the cashier’s balance in one application and the customer account balance in another.
This is achieved by means of a single dialog transaction distributed across both applica-
tions (distributed transaction). The individual cash transactions (cashier and customer
account) are posted in local dialog services. The diagram on the next page shows how
these local dialog services communicate with each other.

Distrubuted processing with openUTM Server-to-server communication

Concepts and Functions 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

Figure 18: Dialog job with global transaction management

The “GIRO” service in the UTM application APP1 functions as the job-submitting service.
This service addresses the job-receiving service, i.e. the “POST” service in the UTM
application APP2, in the dialog program unit PU11.

The program unit PU11 completes its processing step but leaves its transaction open. The
program unit PU21 in the “POST” service receives data by means of a dialog message.
PU21 returns a dialog response to the job-submitting service and then requests an end of
transaction from openUTM.

Application APP1

Application APP2

Dialog service „GIRO“

PU11

Read data

Address dialog service in
APP2

Send job to APP2:
„Post to customer account“

Dialog service „POST“

PU21

Read data
.
Post to customer account
.
Send resp. to job-submit.
service „Entry posted“

Read response
.
Cashier entry
.
Send message to terminal

.

.

PU12

„Cash withdrawal posted“

„Post cash withdrawal“

Global end of transaction (commit)

Preliminary end of transaction

Server-to-server communication Distrubuted processing with openUTM

88 Concepts and Functions

This dialog response triggers the follow-up program unit PU12 in the “GIRO” service, which
terminates the posting job and then requests an end of transaction. openUTM synchronizes
the two local synchronization points (= end of transaction) and sets a common synchroni-
zation point. The two local transactions (in application APP1 and application APP2) thus
form a synchronization unit, in other words a distributed transaction.

If an error occurs before the common synchronization point is set, the entire synchroni-
zation unit, i.e. the two local transactions, is reset.

4.3.4 Addressing remote services

Before a remote service can be requested, it must be addressed. This is achieved by
means of an addressing call in the service routine of the job submitter. In the call, the job-
submitting service specifies the logical name of the remote service and assigns an identifier
to the remote service. This service identifier appears in the job-submitting service for all
jobs sent to the remote service, and when reading the results.

The remote service and the remote application are always addressed by means of their
logical names. The logical names for remote applications (LPAPs or OSI-LPAPs) and for
remote services (LTACs) are defined during generation, and are linked to the actual names
in the partner applications. The logical service name is similar in function to the service
transaction code. It can be linked to a partner application in one of two ways:

● By generation
This is known as single-step addressing, since the partner application need not be
specified in the addressing call.

● In the addressing call in the program
This is known as double-step addressing. This type of addressing is practical in cases
where the same service can be started in several applications.

The two procedures for addressing a remote service are illustrated in the following
diagrams. The precise format of addressing calls can be found in the openUTM
manuals “Programming Applications with KDCS for COBOL, C and C++” and
“Creating Applications with X/Open Interfaces”.

Distrubuted processing with openUTM Server-to-server communication

Concepts and Functions 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

Figure 19: Single-step addressing

The branch offices of a travel agency use the UTM application “TRAVEL”, which retrieves
the required information from the UTM application “INFO” in head office. The individual
services with the logical names “BUS”, “AIR”, “SHIP” and “TRAIN” were linked to the “INFO”
application during generation. It is therefore sufficient to specify the logical service name in
the program. The logical name of the partner application need not be specified in the
program.

Branch

Application „TRAVEL“

LTACs: BUS
AIR
SHIP
TRAIN

Application „FINAC-B“

. . .

Head office

Application „INFO“

TACs: BUS
AIR
SHIP
TRAIN

Application „FINAC-C“

. . .

Data-
base

Server-to-server communication Distrubuted processing with openUTM

90 Concepts and Functions

Figure 20: Double-step addressing

Each of the four branches of a bank use the “POST” application. The “CENTRAL” appli-
cation in head office can access various services, which are identical in all branches. The
job-submitting service in head office must therefore select both the service and the partner
application in the program.

Branch 1

„POST“

GIRO
CREDIT
SHARES

Branch 2

„POST“

GIRO
CREDIT
SHARES

Branch 3

„POST“

GIRO
CREDIT
SHARES

Branch 4

„POST“

GIRO
CREDIT
SHARES

Head office

Application „CENTRAL“

LPAPs LTACs

BR1
BR2
BR3
BR4

GIRO
CREDIT
SHARES

Distrubuted processing with openUTM Server-to-server communication

Concepts and Functions 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

4.3.5 Communication with CICS, IMS and TXSeries applications

openUTM can communicate with CICS, IMS and TXSeries partner applications via the SNA
protocols LU6.1 and LU6.2. The LU6.2 protocol should always be used for new links.

openUTM-LU62 is also required to communicate via LU6.2. openUTM-LU62 is an OSI TP
partner from UTM’s point of view and an LU6.2 partner from CICS or IMS point of view. With
this type of link the partners can work with or without global transaction management.

Refer to the following diagram for the most important types of links.

Figure 21: Connecting openUTM to IBM transaction monitors

No additional software is required in the IBM host, the SNA connection is created by the
openUTM-LU62 transport system together with the platform-specific components SNAP-IX
or IBM Communications Server. If openUTM runs on Unix system or a Window system
openUTM-LU62 and SNAP-IX or IBM Communications Server can also be installed on this
system, and the system can be connected directly to the SNA network.

Job submitter and job receiver

A UTM application can contain job-submitting services as well as job-receiving services
when connected to CICS or IMS.

These two roles do not have the same authorizations in openUTM, i.e. certain rules apply
to the job-submitting and job-receiving services when a global transaction is terminated.
These rules must be observed by the CICS and IMS application programs, even if the
programs allow a different procedure to be used when this occurs.

openUTM

Solaris

openUTM-LU62
+ SNAP-IX

IBM system

CICS / IMS / OSI TP LU6.2

BS2000 system,
Unix system / Windows system

TXSeries

openUTM

Linux, AIX, Windows

openUTM-LU62
+ IBM CS *)

IBM system

CICS / IMS / OSI TP LU6.2

BS2000system,
Unix system / Windows system

TXSeries

*) Communications Server

Server-to-server communication Distrubuted processing with openUTM

92 Concepts and Functions

openUTM as the job submitter

A UTM job-submitting service addresses a CICS or IMS job-receiving service exactly like it
does a UTM job-receiving service. openUTM can submit dialog jobs as well as
asynchronous jobs (message queuing).

CICS as the job submitter

CICS can start dialog services as well as asynchronous services in openUTM.

IMS as the job submitter

The possibilities depend on the type of connection in this case:

● For LU6.2 interconnection, IMS can start dialog services as well as asynchronous
services in openUTM.

● For LU6.1 interconnection, on the other hand, IMS can only start asynchronous
services in openUTM. In order to allow IMS to open dialogs in spite of this, LU6.1
provides the ability to create dummy dialogs between asynchronous services. A dummy
dialog returns additional information to the job submitter that can be used by the job
receiver to send the reply back to the correct partner. openUTM contains a special
extension of the program interface specifically for this purpose.

Dummy dialogs are not possible in conjunction with CICS partners.

You will find a detailed description of how to generate and program connections with
CICS and IMS in the manual “Distributed Transaction Processing between
openUTM and CICS, IMS and LU6.2 Applications”.

Distrubuted processing with openUTM Transport system applications

Concepts and Functions 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

4.4 Communicating with transport system applications

In addition to transaction-oriented distributed processing, which requires high-level commu-
nication protocols, a UTM application can also communicate with applications running
directly above the transport system interface without global transaction management.
Examples of such applications include the CMX applications in Unix systems or Windows
systems, DCAM applications in BS2000 systems or any TCP/IP socket applications.

Since high-level protocols are not used, support for global transactions cannot be provided
when communicating with transport system applications. In this case, openUTM can only
provide local transaction processing capability.

In the event of errors in the transport system or an abnormal termination of the UTM appli-
cation, there is no guarantee that a message sent to another application will be received or
processed by the target application. It is thus possible for messages to be lost or duplicated.

The following sections contain some useful information regarding interaction between a
UTM application and transport system applications.

Connection establishment

The initiative for establishing a connection may come either from the other application or
from the UTM application.

Establishing a connection to the UTM application

If the transport system application establishes the connection, then it is signed on to the
UTM application using a user ID permanently assigned to the partner, also called the
connection ID.

If the UTM application has a user-written sign-on dialog (SIGNON event service, see
page 177), then this dialog is also run when transport system applications sign on. This
sign-on dialog can be used, for example, to assign the transport system application a real
user ID for subsequent processing.

Transport system applications can use the “multi-signon” function, i.e. several transport
system applications can sign on under the same real UTM user ID at the same time.

A transport system application can establish several parallel transport connections to a
UTM application under the same application name (“multi-connect”).

Transport system applications Distrubuted processing with openUTM

94 Concepts and Functions

Processing jobs

A transport system application can send both asynchronous and dialog jobs to the UTM
application. However, the following conditions must be observed:

● The jobs must be submitted in the format expected by openUTM, i.e. the first eight
characters of the message must contain the transaction code under which the service
to be started was generated for openUTM. This transaction code enables openUTM to
determine whether the service is a dialog or asynchronous service.

● Socket applications send a byte stream, while openUTM works on a message-oriented
basis. To enable the UTM application to recognize the limits of messages, a socket
application must precede the message with a protocol field known as the USP (UTM
Socket Protocol). The USP allows messages to be sent in several parts, which means
that the entire message can be larger than the size of the input buffer.
The USP can also be used for output, as well, if you choose.

● In the case of dialog jobs, you must adhere strictly to the dialog format required by
openUTM, i.e. the partner application must wait to receive a response from the UTM
application before sending the next message.

● openUTM does not send any messages of length 0 to transport system applications.
Although such messages are not actually sent, they do switch send authorization from
one application to the other. openUTM then waits for a message from the transport
system application. With multi-step dialogs, it is therefore important to observe the logic
of the dialog sequence.

● In communication with non-socket partners, message lengths are limited by the size of
the input/output buffer.

● In communication with socket partners, the messages can be fragmented (see the note
above on the USP). Only the length of fragments is limited; there is no limit on the length
of the entire message.

● openUTM does not format messages intended for other applications, i.e. the target
application receives the message in the format in which it was supplied to the message
area by the program unit.

● Automatic code conversion (ASCII-EBCDIC) can be initiated at generation. In BS2000
systems this is only possible for socket partners, but on other platforms for all TS appli-
cations.

● Restart capability: if necessary, dialog services can be restarted. During a service
restart, the last output message is repeated.

Distrubuted processing with openUTM Transport system applications

Concepts and Functions 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

4

While running a UTM application, messages may occur which refer to the communication
partner of the UTM application. Only those UTM messages for which the destination
PARTNER was specified in the UTM message module are dispatched to the communi-
cation partner. By creating a local message module, this destination can be added to or
removed from other messages (see the corresponding openUTM manual ”Messages,
Debugging and Diagnostics”). These UTM messages can occur within or outside a dialog.
The communication partner must be able to respond to the messages accordingly.

If UTM user commands are issued by another application, these are not interpreted by
openUTM as commands.

Connection shutdown

The initiative for shutting down a connection may come from the transport system appli-
cation or from the UTM application. If the connection is to be shut down by the UTM appli-
cation, this can be achieved either by entering an administration command directly or by
using an administration call or a KDCS call (SIGN OFF) from a program unit run.

You will find more information on interconnection with socket applications in the
openUTM manual “Generating Applications”.

Partners, protocols, transaction management Distrubuted processing with openUTM

96 Concepts and Functions

4.5 Overview: partners, protocols, transaction management

The table below shows the partners with which a UTM application can interact. These are
just examples, and this table should not be taken as a complete listing.

Partner Protocol Without global
transactions

With global
transactions

UTM applications in the local system or on a remote
system

LU6.1,
OSI TP,
Transport system

–
x
x

x
x
–

openUTM-Client applications with the UPIC carrier system UPIC x –

Java-Client with JUpic-classes UPIC x –

openUTM-Client applications with the OpenCPIC carrier
system

OSI TP x x

Java EE applications UPIC
Transport system

x –

OSI TP x x

CICS/IMS/TXSeries applications on an IBM mainframe LU6.1 – x

openUTM: OSI TP
IBM: LU6.2

x x

CICS/IMS applications on other IBM systems,
e.g. AIX system

openUTM: OSI TP
IBM: LU6.2

x –

Tuxedo applications,
applications in UNISYS environments,
and all other applications that support the
OSI TP protocol

OSI TP
(LU6.2 is also
possible for
Tuxedo)

x x

DCAM applications in the local system or in a remote
BS2000 system

Transport system x –

PCMX applications in a remote Unix system or Windows
system

Transport system x –

Other transport system applications based
on OSI transport layers or on RFC1006 via TCP/IP

Transport system x –

Socket applications Transport system x –

Concepts and Functions 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

5

5 Message queuing

The merits and options of the message queuing functionality integrated in openUTM have
already been mentioned briefly in section “Message queuing” on page 39ff.

For convenience, the main advantages are again listed briefly below:
– temporal and geographical independence from the communicating components
– absolutely reliable message transmission guaranteed through the transaction-oriented

deferred delivery mechanism
– independence of the current connection

Message queuing (MQ) is a form of communication in which messages are not exchanged
immediately, rather are buffered in intermediate queues before being dispatched (store and
forward). These messages are known as asynchronous messages. The communication
is processed in the form of asynchronous jobs. An asynchronous job consists of the
asynchronous message, the recipient of the message and possibly also the desired time of
execution.

A distinction is drawn between UTM-controlled queues and service-controlled queues,
depending on who is responsible for processing the messages sent to the queue.

● In the case of UTM-controlled queues, the queuing mechanism is made available in
its entirety by openUTM. In other words, openUTM also offers triggering functions in
addition to pure queuing functionality.

● In the case of service-controlled queues, a service is responsible for the further
processing of the message. In other words, openUTM executes pure queuing function-
ality.

The control options described on page 109 are available for both output and background
jobs:

– time control
– messages returned via confirmation jobs
– queue administration

MQ calls of the KDCS interface are available for message queuing. These are introduced
in section “Message queue calls of the KDCS interface” on page 112.

UTM-controlled queues Message queuing

98 Concepts and Functions

5.1 UTM-controlled queues

In the case of UTM-controlled queues, openUTM carries out all the subsequent processing
once the message is placed in the queue. A distinction is drawn between output jobs
(output queuing) and background jobs, depending on the recipient.

5.1.1 Output jobs (output queuing)

Output jobs are asynchronous jobs that output a message (e.g. a document) on a printer or
terminal. Messages can also be output to another application connected via the transport
system interface (see section “Communicating with transport system applications” on
page 93).

Output jobs contain information on the output destination and the message to be output
asynchronously. They are automatically processed by the UTM system functions without
the intervention of the application program.

Output jobs can be triggered by MQ calls from a dialog service or asynchronous service of
the UTM application.

5.1.2 Background jobs

Background jobs are asynchronous jobs sent to an asynchronous service of the local appli-
cation or of a remote application. We therefore also refer to local queuing or remote
queuing.They are particularly suitable for long-running or non-time-critical processes, the
result of which has no direct influence on the current dialog.

They consist of the transaction code (TAC) of the program unit with which the background
job begins, and possibly an asynchronous message. The transaction code determines
whether the job is processed asynchronously or as a dialog job.

Background jobs can be initiated by means of:

– input at a terminal
– a call from an openUTM-Client program with the OpenCPIC carrier system
– a message from another application that communicates with the UTM application by

means of the LU6.1 or OSI TP protocol
– input from another application connected via the transport system interface
– an MQ call from a service of the local application or a remote UTM application
– UTM messages (i.e. event-driven)

Background jobs are redelivery-capable, i.e. they can be restarted after abnormal termi-
nation of an asynchronous service and the asynchronous messages can then be
redelivered.

Message queuing UTM-controlled queues

Concepts and Functions 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

5

Alternatively, or after the last redelivery attempt, openUTM can put the incorrectly
processed FGET message of an asynchronous service in a separate queue, the dead letter
queue.

5.1.2.1 Processing background jobs

To process a background job, the UTM application starts the asynchronous service at an
appropriate time. This service performs all the steps required to complete the job.

An asynchronous service can be divided into several processing steps and transactions.
When using the KDCS interface, it can also comprise several program units.

Figure 22: Structure of an asynchronous service initiated from a terminal

In the example in figure 22, a background job is sent from a terminal to an asynchronous
service of the local application. The transaction code of the service and possibly a message
are input at the terminal. openUTM automatically places the job in the corresponding
queue, and starts the asynchronous service independently of the job submitter as soon as
the required resources are available.

An asynchronous service can initiate its own asynchronous jobs. These can be output jobs
or further background jobs. In the case of distributed processing, dialog jobs can also be
sent to partner applications from an asynchronous service, i.e. the asynchronous service
can start its own remote dialog services.

Queue Transactions
Asynchronous

service
Program unit

runs

TAC

TAC

UTM application

TAC
(async.)

UTM-controlled queues Message queuing

100 Concepts and Functions

Figure 23: Asynchronous services that initiate their own jobs

In figure 23 - as in figure 22 - a background job is sent from the terminal to a local
asynchronous service. This service in turn initiates a further background job, and sends an
output job to a printer. Asynchronous service 2 starts its own remote dialog service in UTM
application B. This application can be located on the same system as UTM application A,
or on a remote system. Even in the case of more complex structures with numerous
queues, you need not concern yourself with the queuing mechanism, as this is provided
automatically by openUTM.

5.1.2.2 Sending background jobs to remote services (remote queuing)

It is possible to send background jobs not only to asynchronous services of the local appli-
cation, but also to asynchronous services of remote applications.

This is where one of the main strengths of the openUTM MQ functionality comes to the fore.
In the case of background jobs sent to remote applications, openUTM works with two local
queues: one in the sender application and the other in the receiver application. Thanks to
this deferred delivery principle, distributed message processing with openUTM will continue
to operate regardless of whether or not a connection is currently possible. If a connection
cannot be established, the job remains in the local sender queue until the connection has
been set up.

Queue
Asynchronous

service 1

UTM application A

Queue

Asynchronous
service 2

Queue

UTM

Dialog
service

application B

Message queuing UTM-controlled queues

Concepts and Functions 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

5

With remote queuing, you need not concern yourself with the queuing mechanism. You
simply specify the asynchronous service for which the MQ message is intended. Remote
asynchronous services are addressed in the same way as remote dialog services. This
simplifies the design of distributed applications.

Figure 24: Remote queuing with openUTM

In figure 24, you can see how openUTM handles a background job sent to a remote appli-
cation. This diagram also illustrates how remote queuing is often a practical alternative to
distributed dialog processing. Communication between the two services is divided into
three transaction-oriented steps. As soon as the job is entered in the local queue of appli-
cation A, the required resources can be released in application A, and any locks set in
resource 1 can be canceled - even if the network is currently unavailable or application B is
not running.

If this form of communication were to be implemented within a dialog transaction, you run
the risk of incessant locks and “hanging” transactions. By using remote queuing, however,
it is possible to avoid ongoing global blockades caused by local errors or crashes.

UTM application A

Service 1
Local queue

UTM application B

AsynchronousLocal queue

System 1

Network

System 2

1st transaction 2nd transaction 3rd transaction

Resource 1 Resource 2

service 2

UTM-controlled queues Message queuing

102 Concepts and Functions

5.1.3 Priority scheduling of background jobs

Background jobs are often used to off-load particularly time-consuming tasks. In this case,
you must ensure that the background jobs do not occupy too many application processes,
since this may affect the response times for dialog processing.

openUTM therefore offers a two-step priority scheduling concept:

● It is possible to define the number of processes of a UTM application which can simul-
taneously execute background jobs. This ensures that there is always a sufficient
number of processes available for dialog jobs.

● It is also possible to differentiate between different background jobs. The background
services are combined in TAC classes. There are two alternatives here:

– Limiting the number of processes:
The maximum number of processes that can be utilized at one time for a TAC class
can be specified for each TAC class.

– Priority control:
Jobs from a TAC class with higher priority are processed first. You can choose
between absolute, relative and equal priorities. “Absolute” means that all jobs with
a higher priority TAC class must be processed before the next TAC class is
processed. Relative priority means that TAC classes with higher priorities will be
processed more often than TAC classes with lower priorities.

You may only choose one of these two alternatives within an application.

 You can find out how to specify the maximum number of processes that are
available for background jobs or how to define and prioritize TAC classes in the
openUTM manual “Generating Applications” under the keywords ASYNTASKS,
TACCLASS and TAC-PRIORITIES.

Message queuing Service-controlled queues

Concepts and Functions 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

5

5.2 Service-controlled queues

The messages in a service-controlled queue must be retrieved by a service of the appli-
cation before they can be processed. In other words, the initiative must always come from
a service of the application, since openUTM does not take on any triggering functionality for
these queues.

openUTM provides three types of service-controlled queues:

● USER queues:
A USER queue is user-specific and available automatically to every UTM user.

● TAC queues:
These queues are available in principle to every service. They have a fixed name that
has to be generated explicitly. An exception is the dead letter queue, which is perma-
nently named KDCDLETQ and which does not have to be generated.

● Temporary queues:
A temporary queue is generated and deleted again dynamically by a service by means
of a program call.

openUTM supports both the browse and the processing function for all service-controlled
queues:

● Browse
The message can be read by several services in parallel and remains in the queue after
it has been read.

● Process
The message can be read only by one service at a time and is deleted after it has been
read.

Both service-controlled queues and UTM-controlled queues are subject to the openUTM
transaction concept.

● The messages are queued with transaction management and remain there, fault-
tolerant, until they are retrieved with transaction management by the services and
further processed.

● If a transaction is reset, the messages processed in the transaction are placed back in
the queue and can be read again (redelivery). Alternatively, or after the last redelivery
attempt, openUTM can put the incorrectly processed FGET message of a TAC queue
in the dead letter queue.

 You can set the maximum number of redeliveries after a transaction reset. Details
are available in the openUTM manual “Generating Applications”, keyword
REDELIVERY.

Service-controlled queues Message queuing

104 Concepts and Functions

5.2.1 USER queues

USER queues are permanent service-controlled message queues. A USER queue is
available to every generated UTM user at all times. Any service can access USER queues
by means of a program call provided it knows the name of the user. To prevent uncontrolled
access, USER queues are integrated in the openUTM authorization concept. This allows
you to assign the access rights role-specifically.

A USER queue exists for as long as the associated UTM user ID.

You can use USER queues to implement mailbox applications for UTM users, for example.
The example in the figure below shows a further application of USER queues, in which the
queues are used for the purpose of sending messages or warnings asynchronously to
UPIC clients.

Figure 25: Example: Use of a USER queue for asynchronous messages to a UPIC client

In this example, use is made of the fact that a UPIC client signs on with openUTM using a
UTM user ID. Asynchronous messages to the UPIC client go via the USER queue of this
user ID.

The poll service is started by the UPIC client at the beginning of the dialog. It reads the
message from the USER queue of the user ID and sends it immediately to the UPIC client
as a dialog message. If there is no message in the queue, the poll service waits until a
message is received. If the UPIC client program is programmed with multi-threading, the
poll service and the normal dialog can run concurrently. In this way, the user on the client
can automatically be kept informed of the arrival of asynchronous messages (e.g. by means
of an icon or a dialog box).

 To find out how to define USER queues and specify their properties, refer to the
openUTM manual “Generating Applications” (look for the keywords USER,
Q-READ-ACL, Q-WRITE-ACL and USER queue).

USER queueMessages

UTM application

UPIC client

Read from queue

Send queue
message to client

Poll service

Start poll service

 to UPIC-
client

Message

Message queuing Service-controlled queues

Concepts and Functions 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

5

5.2.2 TAC queues

TAC queues are permanent, service-controlled message queues. They have a fixed name
that is specified at generation. Any service can access TAC queues by means of a program
call, provided it knows the name of the queue. To prevent uncontrolled access, TAC queues
are integrated in the openUTM authorization concept. This allows you to assign the access
rights role-specifically.

A TAC queue exists for an unlimited period of time unless it is explicitly deleted during
administration.

The dead letter queue is a TAC queue that is always named KDCDLETQ. The dead letter
queue is always available to save asynchronous messages sent to transaction codes or
TAC queues that could not be processed. In order to process these messages after any
errors have been corrected, they can be moved into other message queues, i.e. assigned
either to their original destination or to a new destination. The number of messages in the
dead letter queue can be monitored with message K134.

The diagram below shows an example of how you can use TAC queues to forward
messages to the WinAdmin graphical administration workstation and archive them there.
This example can be carried out analogously using WebAdmin.

Figure 26: Example: Use of a TAC queue for WinAdmin message collectors

The message collector is defined in WinAdmin. It represents a polling mechanism that
retrieves the UTM messages from the TAC queue either cyclically or when explicitly
requested, depending on the setting in WinAdmin. On the UTM side, all that needs to be
done in this case is for the TAC queue to be generated and a message module to be created
in which it is specified which messages are to be sent to the TAC queue.

The poll service for WinAdmin and WebAdmin is shipped with openUTM (KDCWADM
program unit).

TAC queueUTM message

Message destination
“TAC queue”

UTM application

WinAdmin
Start poll service

Message for

Read from queue

Send queue
message to client

Poll service

message collector

Service-controlled queues Message queuing

106 Concepts and Functions

To find out how to define TAC queues and specify their properties, refer to the
openUTM manual “Generating Applications” (look for the keywords TAC,
Q-READ-ACL, Q-WRITE-ACL and TAC queue).

5.2.3 Temporary queues

Temporary queues are created by means of a program call and can also be deleted again
by means of a program. The name of the queue is assigned when the queue is created (i.e.
it does not have to be generated). The name can be created by the program or by
openUTM.

In the case of UTM-S, temporary queues remain after an application is terminated unless
they are deleted explicitly beforehand. In the case of UTM-F, all temporary queues are lost
when the application is terminated.

Temporary queues are particularly suitable for free communication between mutually
independent services (“free” dialog), and they embody the concept of synchronous
waiting for asynchronous events particularly well. They are thus considered to be at
some point between the concepts of the “strict dialog” and the “background jobs”.

The services can either reside within an application or be located on different systems. The
following are two important applications of this concept:

● the dialog between two services in a UTM application

● the dialog of a UTM application with a remote transport system application

These two applications are explained below and illustrated graphically.

In the first example, the “Customer” service of a call center application looks for additional
customer data by means of the asynchronous service “Search”. This writes the data to a
temporary queue, which is used in this case as a pure reply queue (i.e. data transfer goes
in one direction only).

Message queuing Service-controlled queues

Concepts and Functions 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

5

Figure 27: Communication between two services by means of a temporary queue

The “Customer” service creates the temporary queue and forwards the name of the queue
in the job to the “Search” service. The “Customer” service then engages in further dialog
queries with the client, while the “Search” service carries out a database query in the
background. If necessary, the “Customer” service waits for the reply from the “Search”
service (synchronous waiting). When it receives the required data, it writes it to the queue
and then terminates. As soon as the message is in the queue, “Customer” is activated,
takes over subsequent processing and then deletes the queue.

In the second example, a UTM application wants to access the data of a remote transport
system application. As a pure transport system application, this cannot use any higher-level
protocols such as OSI TP or LU6.1 for communication. In order to enable a dialog in spite
of this, temporary queues are used on the UTM side.

UTM call center application

Job from client
Create queue
Job to “Search” service

..
Intermediate dialog
...
Possibly wait for a reply...
Read queue

Process the reply

...

Reply to client

“Customer” service

Job from “Customer”

Search for data

...

...

Data found

“Search” service

Temp. queue

Temp. queue

Service-controlled queues Message queuing

108 Concepts and Functions

Figure 28: Communication with a transport system application by means of a temporary queue

The “Shares” service creates the temporary queue and forwards the name of the queue to
the transport system in the job. The “Shares” service then waits for the reply (synchronous
waiting). In the meantime, the transport system application obtains the required data and
sends it to the “Invest” application. The name of the queue must be at the beginning of the
message. The “Shares” service is activated as soon as the message is in the queue. The
queue is deleted on completion of processing.

 The openUTM manual „Programming Applications with KDCS” describes how to
create and delete temporary queues. To find out how to specify the maximum
number and properties of temporary queues, refer to the openUTM manual “Gener-
ating Applications” (look for the keywords QUEUE and temporary queue).

UTM application “Invest” on system 1

Job from client

Create queue

Job to TS application

...

...

Wait for a reply...

Read queue

Process reply

...

Reply to client

Delete queue

“Shares” service

Temp. queue

Job from “Invest”

Search for data

...

Data found

Message to “Invest”
application

Transport system application
on system 2

Temp. queue

Message queuing Control options for message queues

Concepts and Functions 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

5

5.3 Control options for message queues

openUTM offers various options for UTM-controlled queues and service-controlled queues.
These options are integrated in the MQ calls of the KDCS interface.

Confirmation jobs

In addition to the message to the queue (“basic job”), you can define up to two confir-
mation jobs which are linked to the success or failure of the basic job. Confirmation jobs
are possible for the following types of basic jobs:

– background jobs
– output jobs to terminals, printers or transport system applications
– jobs to TAC queues

Confirmation jobs are initiated as soon as processing of the basic job is complete. They
allow the job submitter to respond to a positive or negative job result. The confirmation job
that does not apply, e.g. the negative confirmation job in the case of a successful basic job,
is simply ignored. The basic job and the confirmation job are combined to form the job
complex. What happens depends on what type of queue is involved:

Local background job

The positive confirmation job is started once the asynchronous service was terminated
normally.

The negative confirmation job is started if the asynchronous service was terminated abnor-
mally and if redelivery is not activated (see page 111). Abnormal termination may be due to
a UTM call in the program (PEND ER/FR) or due to a major program error.

Background job to a remote service (remote queuing)

The positive confirmation job is started as soon as the job has been transferred successfully
to the remote service queue.

The negative confirmation job is executed if the transfer fails despite repeated attempts.

Control options for message queues Message queuing

110 Concepts and Functions

Output job

The positive confirmation job is started once the positive print acknowledgment has arrived
from the printer or printer administration.

The negative confirmation job is started:

● after errors during message editing by VTSU-B or errors during formatting,

● if the job is deleted during connection setup/shutdown by clients generated with
RESTART=NO,

● if a job was deleted by administration.

However, the negative confirmation job is not started for a negative print acknowledgment,
for a timeout when waiting for the acknowledgment, or if the print job is repeated.

Job to a TAC queue

The positive confirmation job is started once the message has been read successfully in
the TAC queue and the transaction has been terminated normally.

The negative confirmation job is started:

● if the message is deleted with DADM DL and it is explicitly stated that the negative
confirmation job is to be started (KCMOD=N),

● if the transaction was reset during message processing and the maximum number of
redeliveries has not been reached, see section „Redelivery“.

Time control

It is possible to delay execution of background jobs, output jobs to LTERM partners and
LPAP partners and jobs to TAC queues until a specified time. You can specify when the job
is to be executed at the earliest or when the message can be read at the earliest. This can
be defined relative to the time at which the job was submitted, or as an absolute value. This
type of job is known as a time-driven asynchronous job. After the specified point in time,
processing of the time-driven asynchronous job is started by openUTM as soon as the
resources required to execute the job are available.

Message queuing Control options for message queues

Concepts and Functions 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

5

Redelivery

Redelivery of messages can be controlled for background jobs and messages to service-
controlled queues. The following can be set by means of generation:

● whether a message to an asynchronous service is redelivered after abnormal service
end,

● whether a message to a service-controlled queue is redelivered after a transaction has
been reset,

● the maximum number of redeliveries. Different values are possible for background jobs
and service-controlled queues. Specifying an upper limit prevents, for example, endless
loops.

The redelivery function ensures that messages are preserved after service termi-
nation/transaction reset and are not immediately deleted. openUTM also makes available
a redelivery counter that can be read by the program unit. This allows the program to detect
“loop situations” and to respond appropriately.

If a message is redelivered, no negative confirmation jobs are activated.

Backing up incorrectly processed jobs in the dead letter queue

The dead letter queue is used to save asynchronous messages sent to transaction codes
or TAC queues that could not be processed. In this manner you can prevent the loss of
messages when lasting errors occur without endless loops.

The backing up of messages in the dead letter queue in the event of processing errors can
be enabled or disabled for asynchronous transaction codes with CALL=BOTH/FIRST and TAC
queues. This can be done as an alternative to redelivery or as a last fallback stage once the
maximum number of redelivery attempts has been reached.

Administration of message queues

The processing of messages and jobs in message queues can be influenced by means of
UTM administration. This applies both to UTM-controlled queues and to service-controlled
queues. An asynchronous job or a message in a USER queue, can, for example, be
brought forward in the processing order or canceled. Messages in the dead letter queue
can also be assigned to other message queues (TAC queues and asynchronous TACs).
The KDCS call DADM is available for the administration of message queues (see the next
section). Alternatively you can use the graphical administration workstation WinAdmin or
WebAdmin for this purpose.

Message queue calls of the KDCS interface Message queuing

112 Concepts and Functions

5.4 Message queue calls of the KDCS interface

openUTM offers convenient but powerful calls for message queuing functions at the
program interface.The prefix “free” in the call names is intended to convey the fact that
message queuing involves a form of communication which is independent of the sender
and of the availability of the receiver.

● FPUT (Free message PUT)

FPUT calls are used to send asynchronous messages to output devices (output jobs),
asynchronous services (background jobs) or TAQ queues. An asynchronous message
can consist of several message parts, each of which requires a separate FPUT call.

● DPUT (Delayed free message PUT)

DPUT calls are also used to send asynchronous messages or message parts to output
devices or to asynchronous services. Unlike FPUT calls, however, DPUT calls offer the
time control functionality and the option of using confirmation jobs. In addition, DPUT
calls can also be used to address USER queues, TAC queues or temporary queues.

● FGET (Free message GET)

FGET calls are used to read asynchronous messages or message parts within an
asynchronous service.

● DGET (Data GET)

DGET calls are used to read messages from USER queues, TAC queues or temporary
queues.

● QCRE (Queue CREate)

QCRE calls are used to create temporary message queues dynamically.

● QREL (Queue RELease)

QREL calls are used to delete temporary message queues dynamically.

● MCOM (Message COMplex)

MCOM calls are used to assign confirmation jobs to an asynchronous job.

● DADM (Delayed free message ADMinistration)

DADM calls are used to request general information on the contents of a queue or on
individual elements. They can also be used to control the queue sequence: jobs can be
brought forward or cancelled, or all the jobs in the entire queue can be deleted.

 The precise format of the FPUT, DPUT, FGET, DGET, MCOM, QCRE, QREL and
DADM calls and additional information on these calls can be found in the openUTM
manual „Programming Applications with KDCS”. The DADM call is described in the
openUTM manual “Administering Applications”.

Concepts and Functions 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

6

6 Structure of a UTM application

The purpose of a UTM application is to provide services: it processes the service requests
(jobs) received from terminal users, client programs, or other applications.

Several UTM applications can exist in parallel in a single system. These applications are
completely independent of each other, and can be generated and administered individually.
If desired, it is possible to implement suitably organized job complexes in separate applica-
tions.

A UTM application consists of a UTM application program which is started in a certain
number of processes defined by the user, the KDCFILE which is used by all processes as
the “system memory”, and a UTM cache memory which optimizes access to the KDCFILE.

From a technical point of view, a UTM application is a group of processes which forms a
logical server unit at runtime.

Figure 29: Structure of a UTM application

UTM
cache

KDCFILE

Process n UTM application program

Process 1 UTM application program

Process 2 UTM application program

Process 3 UTM application program

UTM application program Structure of a UTM application

114 Concepts and Functions

6.1 UTM application program

When designing an application program, you must define service routines (also known as
program units) in which you define the services to be provided by your application. These
service routines can be programmed in one of the common programming languages
(C/C++/COBOL).

Through the integration of UTM calls, the service routines access the UTM system
functions, e.g. for transaction management, sending and receiving messages etc. (see also
chapter “Program interfaces” on page 121ff).

The service routines are assigned transaction codes (TACs) either during generation
using the KDCDEF statement TAC, or during operation using the KC_CREATE_OBJECT
call for the object type KC_TAC. The transaction codes are freely selectable names used
by terminal users, clients, or other programs to start the service routines.

To ensure that the service routines can run under the management of openUTM, the
compiled service routines are linked to the UTM application program (see page 147)
together with other modules (allocation tables, messages, libraries used, etc.). As an alter-
native to the static linking of the service routines, these can be dynamically linked when an
application process is started or the first time a service is called.

One part of the application program is the main routine KDCROOT, which acts as the main
control program and is responsible for coordinating job sequences.

Figure 30: Structure of a UTM application program

Main routine KDCROOT

P
ro

g
ra

m
 u

n
it

1

P
ro

g
ra

m
 u

n
it

2

P
ro

g
ra

m
 u

n
it

n

P
ro

g
ra

m
 u

n
it

3

P
ro

g
ra

m
 u

n
it

4

P
ro

g
ra

m
 u

n
it

5

UTM application program

Structure of a UTM application The process concept

Concepts and Functions 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

6

6.2 The process concept

When the application is started, the application program is initiated in a certain number of
processes defined by the user.

Since a UTM application is generally accessed simultaneously by a number of clients, each
client does not have its own exclusive process. Instead, the large number of simultaneous
requests is distributed by openUTM across a small number of processes. As a result, the
system overhead and thus the response times do not increase proportionally with the
number of users.

If the number of jobs to be processed exceeds the number of free processes, openUTM
places the jobs in a queue. Similarly, if the number of free processes exceeds the number
of outstanding jobs, the free processes are placed in a process queue.

In addition to the number of processes defined by you, further processes are also started
for UTM applications. These are known as UTM system processes, see section "UTM
system processes" below.

This openUTM concept of several homogeneous peer processes has a number of further
advantages:

● Several jobs can be processed simultaneously.

● If several jobs request the same service, the service can be provided simultaneously in
different processes.

● A UTM application can react quickly to load fluctuations, since processes can be added
or removed during operation by administration.

● Throughput bottlenecks in particular services can be eliminated, since the processes
are of equal ranking (homogeneous) and can be used for any job.

● The worst possible outcome of a fatal error in an application program is a process
crash. The effect of the error thus remains local, i.e. only the job that was being
processed by the process at the time of the crash is affected. The application as a whole
and other applications running in the same system under the control of openUTM are
not affected. openUTM will automatically replace the aborted process by a new one.

UTM system processes

The purpose of the system processes is to ensure that applications continue to be
responsive even under high loads. UTM system processes only process selected jobs
which are characterized first and foremost by short runtimes. Selected jobs may be, for
example, the establishment or cleardown of connections, timeout displays, end-of-trans-
action requests in UTM-D and responses for programs waiting for a PGWT call.

The process concept Structure of a UTM application

116 Concepts and Functions

Selected jobs may also include program unit runs for an administrator. On generation, it is
also possible to specify a so-called privileged LTERM partner. The following applies to the
connection associated with this LTERM partner:

● If a sign-on service is started for this connection then this sign-on service is also
processed by the UTM system processes.

● If an administrator signs on via this connection then program unit runs for this
connection are also handled by the UTM system processes.

● If a normal user signs on via this connection then this connection is handled exclusively
using "normal" processes until the user signs off.

UTM starts the UTM system processes implicitly when an application is started. The
number of UTM system processes that are started depends on the value specified in the
start parameter TASKS, see the table below.

Optimum process utilization through pseudo-conversations

Service routines can be programmed such that a user does not occupy a process during
wait times, e.g. while he/she is thinking about what to do. The process then is released
immediately, and is available for other jobs. When the terminal user has finished inputting
information, another process may continue the dialog without the user noticing any
difference. openUTM thus guarantees the optimum utilization of processes, which has a
positive effect on performance.

This dialog concept, also known as pseudo-conversational, can be applied not only for
dialogs with terminal users but also for program-to-program communication.

Further information on the subject of pseudo-conversations can be found in the
openUTM manual “Programming Applications with KDCS for COBOL, C and C++”.

Some of the operating-system-specific aspects of the process concept are dealt
with in chapters “openUTM in BS2000 systems” on page 217, “openUTM in Unix
systems” on page 233 and “openUTM in Windows systems” on page 241.

Start parameter TASKS= Number of additionally started
UTM system processes

Total started processes

1 0 1

2 1 3

3 2 5

4 2 6

5 3 8

n > 5 3 n + 3

Structure of an UTM application KDCFILE

Concepts and Functions 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

6

6.3 The KDCFILE - the “application memory”

The content and role of a KDCFILE differ depending on whether the associated application
is a standalone application (see below) or a UTM cluster application (see page 119).

6.3.1 KDCFILE for a standalone application

The KDCFILE of a standalone application consists of one or more files and contains the
data required to run a UTM application. It is created using the KDCDEF generation tool (see
page 144). When operating a UTM application, the KDCFILE is shared by all processes
within the application.

The KDCFILE is logically divided into the following three areas:

– administrative data
– the page pool
– the restart area

For data protection, the KDCFILE can be mirrored on different disk drives.

To avoid disk bottlenecks and improve access times, the page pool and the restart area can
be distributed across several files.

A detailed description of the KDCFILE can be found in the openUTM manual
“Generating Applications”.

Administrative data

The administrative data area contains information on the configuration, e.g. parameters of
the UTM application, lists of the contents of all objects that can be addressed by name,
administrative information on the page pool and the restart area, as well as tables of
services, user IDs, clients, transaction codes, lock codes, and function keys.

When a UTM application is started, the administrative data used by the application
processes, and about which they communicate, is provided in a shared memory area. Any
changes to the administrative data are written back to the KDCFILE while the application is
running and after the application is terminated. This ensures that the data is retained for the
next application run, and allows for an automatic restart if the UTM application is terminated
abnormally.

Page pool

The page pool contains all user data that arises during a UTM application run. Examples
include:

KDCFILE Structure of an UTM application

118 Concepts and Functions

– various secondary storage areas
– information for a screen restart
– communication areas
– queues containing output jobs (including time-driven output jobs) and background jobs
– messages of service-controlled queues
– buffered records from the user log file

The active UTM application can access the page pool via the UTM cache. The size of the
page pool (number of UTM pages) is defined during generation.

Restart area

The UTM calls in a program unit result in changes to the administrative data and user data.
openUTM collects information on all modifications that occur within a transaction.

In the case of a UTM-S application (see page 210), openUTM uses this information to
generate a data record containing restart information at the end of the transaction. It then
writes this data record in the restart area of the KDCFILE. The data record describes the
changes that must be made to the administrative data as a result of the transaction. The
size of the restart area determines how often modifications to the administrative data should
be transferred to the administrative data area of the KDCFILE. You can use an adminis-
tration command to find out what this interval is.

In the case of a UTM-F application (see page 212), restart data records are written only for
transactions in which passwords were changed or administrative data was modified by
means of dynamic configuration.

Structure of an UTM application KDCFILE

Concepts and Functions 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

6

6.3.2 KDCFILEs in UTM cluster applications

Every node application in a UTM cluster application has its own KDCFILE. Because some
date applies locally at node level while other data is global to the cluster there are some
differences compared to standalone applications:

● Data that applies locally to the node is stored only in the KDCFILE of the relevant node
application. Data that applies locally at node level includes, for example, TLS,
asynchronous messages, background jobs and data relating to other node-bound
services. The KDCFILEs of the individual node applications are not identical at runtime.

● Data that applies globally to the cluster is stored in UTM cluster files, see section “UTM
cluster files” on page 35. This includes user data such as GSSB, ULS, users’ service
data and passwords.'

The "memory" of a UTM cluster application therefore consists of the sum of all the local
KDCFILEs and the UTM cluster files.

Please note that it is not possible to keep duplicate KDCFILEs in a UTM cluster application,
i.e. there is only ever one KDCFILE for a node application.

UTM cache memory Structure of a UTM application

120 Concepts and Functions

6.4 UTM cache memory

The local UTM cache memory is an area in virtual memory which is managed in 2KB, 4KB
or 8KB units, depending on the generation. openUTM uses this cache as a global buffer
area for access to the page pool, i.e. the processes of a UTM application handle all access
to page pool data via this storage area. If the cache memory is sufficiently large, UTM allows
you to optimize read/write access to the page pool. The main advantage of this is that read
operations can be reduced if page pool data from a previous transaction (possibly written
by another process) is still available in the cache memory.

The following values are defined during UTM generation:

● the size of the cache memory

● the percentage of cache memory pages to be written to the page pool if space is
required for new data; this can be modified during operation by administration

The administration functions allow you to find out whether the cache memory is being used
in a currently running application.

There is no universal formula for determining the ideal value for this parameter. You
will have to base your decision on comparisons and performance measurements.
However, you will find a few pointers and tips in the openUTM manual “Generating
Applications”.

Concepts and Functions 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

7 Program interfaces

The openUTM program interfaces allow for fast, simple programming of the most varied
forms of communication for a wide range of scenarios.

openUTM supports the KDCS interface (German standard), as well as the CPI-C, XATMI
and TX interfaces standardized by X/Open, and the UTM-XML interface:

– KDCS is a universal program interface for transaction-oriented applications and is
standardizes according to DIN 66 265

– CPI-C and XATMI are interfaces for program to program communication

– TX is a program interface used to define transactions

– UTM-XML is an interface used to edit XML documents

Overview of the program interfaces Program interfaces

122 Concepts and Functions

7.1 Overview of the program interfaces

This section describes which program interfaces are available in which programming
languages for servers and for clients and how they can be combined with each other.

Program interfaces for openUTM servers

The following table provides an overview of the language environments in which the four
program interfaces are available on the server platforms.

TX is a program interface used to define transactions. It is always used together with the
CPI-C (explicitely) or XATMI (implicitely) communication interface and cannot be used
alone.

It makes sense to use the following combinations in an application using UTM-XML:

– KDCS + UTM-XML

– CPI-C + TX + UTM-XML

– XATMI + UTM-XML

A combination with KDCS and TX is not allowed.

Server platform
Language environments available for the interfaces

KDCS CPI-C (X/
Open)

XATMI (X/
Open)

TX (X/
Open)

UTM-XML
(W3C)

BS2000 systems COBOL, C, C++,
Assembler, Fortran,
PL/I, Pascal-XT

C, C++ C, C++ C, C++ C, C++
COBOL

Unix systems,
Windows systems,

COBOL, C, C++ C, C++ C, C++ C, C++ C, C++
COBOL

Program interfaces Overview of the program interfaces

Concepts and Functions 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

Program interfaces for openUTM clients

The openUTM clients are available with the UPIC and OpenCPIC carrier systems. Both
carrier systems offer a range of program interfaces.

The following table provides an overview of whether and in which language environments
the various program interfaces are available on the carrier systems.

Interface combinations for communication

For communication between client and server or between two servers, the following rules
apply to the combination of interfaces:

● If none of the partners uses the XATMI interface, any combination of the interfaces in
the tables can be used except for XATMI.

● Communication via the XATMI interface is only possible if both partners use the XATMI
interface.

● Global transaction management is only possible when both partners use an interface
with transaction management. For example:

– KDCS with KDCS
– KDCS with CPI-C + TX
– XATMI with XATMI

Client interface Language environment for UPIC Language environment for
OpenCPIC

CPI-C (UPIC calls) C, C++, COBOL, MS Visual Basic,
Borland Delphi, etc. COBOL,

C, C++CPI-C (full scope of
X/Open)

--

TX (X/Open) -- COBOL,
C, C++

C++ class CUpic C++, MS Visual Basic,
Borland Delphi, etc.

--

XATMI (X/Open) C, C++
COBOL

C, C++
COBOL

UTM-XML (W3C) C, C++
COBOL

C, C++
COBOL

The KDCS universal program interface Program interfaces

124 Concepts and Functions

7.2 The KDCS universal program interface

The KDCS interface was defined and standardized (DIN 66 265) as a non-proprietary
interface for transaction-oriented applications.

It offers the following features:

● a comprehensive range of function calls which can be used universally
(e.g. for pseudo-conversations, message queuing, or direct communication with
terminals)

● KDCS-specific storage areas for simple, reliable programming

● event management functions

KDCS is available for C, C++ and COBOL, and in BS2000 systems for Assembler, Fortran,
PL/I and Pascal-XT.

Detailed information on the KDCS program interface can be found in the openUTM
manual “Programming Applications with KDCS for COBOL, C, and C++”. Separate
supplementary manuals are also provided online for the additional programming
languages supported in BS2000 systems.

7.2.1 KDCS calls

The UTM function calls can be divided into the following function groups:

– program and transaction management

– dialog communication

– communication via message queuing

– administration of message queues and printers

– storage area management

– information services

– logging

– signing on/off and changing passwords

Program interfaces The KDCS universal program interface

Concepts and Functions 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

Program and transaction management:

Dialog communication:

Communication via message queuing:

Administration of message queues and printers:

Call Function

INIT Sign on a program to openUTM

PEND End the program

PGWT Set a waiting point in a program unit run

RSET Reset requested changes and operations

Call Function

APRO Address a job-receiving service (for distributed processing)

CTRL Control an OSI TP dialog (for distributed processing)

MGET Get a dialog message

MPUT Send a dialog message

Call Function

APRO Address a job-receiving service (for distributed processing)

DGET Read a message from a service-controlled queue

DPUT Create time-controlled asynchronous jobs, messages in service-controlled
queues and confirmation jobs

FGET Get asynchronous messages

FPUT Create asynchronous jobs and messages in TAC queues

MCOM Define a job complex

QCRE Create a temporary queue

QREL Delete a temporary queue

Call Function

DADM Administer messages in UTM-controlled and service-controlled queues and
administer the dead letter queue

PADM Control printers and print jobs

The KDCS universal program interface Program interfaces

126 Concepts and Functions

Storage area management:

Information services:

Logging:

Signing on/off and changing passwords:

Call Function

GTDA Read from a TLS

PTDA Write to a TLS

SGET Read from a secondary storage area

SPUT Write to a secondary storage area

SREL Release a secondary storage area

UNLK Unlock a TLS, ULS, or GSSB

Call Function

INFO Request information

Call Function

LPUT Write to the log file

Call Function

SIGN Sign on/off, change passwords

Program interfaces The KDCS universal program interface

Concepts and Functions 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

Return codes of KDCS calls

After each KDCS call, openUTM returns a standard KDCS return code and, if necessary, a
UTM-specific return code.

Among other things, these return codes indicate whether or not the desired operation was
successful. The return codes are divided into the following categories:

● no errors

● minor errors that can be rectified by the program

● codes for function keys that were pressed while an input message was being trans-
mitted

● errors that still allow you to end the dialog step or the service

● serious errors that cause openUTM to roll back the transaction and terminate the
service with a dump. In this case the return code can be taken from the dump. If
possible, openUTM sends an error message to the communication partner.

An overview of all return codes can be found in the openUTM manual ”Messages,
Debugging and Diagnostics”.

The KDCS universal program interface Program interfaces

128 Concepts and Functions

7.2.2 UTM storage areas

openUTM offers program units for reading and writing user data in various storage areas.
These storage areas provide a clear distinction between program and data areas, as well
as guaranteeing the reentrant capability of programs. They also allow for high-performance,
transaction-oriented communication between programs, and ensure effective memory utili-
zation. Some storage areas are designed specifically for statistical or logging purposes.

i In this sense, service-controlled queues can also be considered as UTM storage
areas. Since service-controlled queues are designed specifically for message
queuing, they are described separately in the chapter “Message queuing” on
page 97.

Primary storage areas

These are storage areas which are available to the program units in the main memory:

● Communication area (KB)

openUTM creates the communication area when a new service is started. The contents
of the communication area are transferred to the program unit currently being executed.
In the communication area, openUTM provides the program units with up-to-date infor-
mation. This area is also used for communication between the program units of a
service. Its size can be adapted to the data to be transferred. The communication area
is subject to transaction security and continues to exist until the service is terminated.

● Standard primary working area (SPAB)

By default, openUTM assigns a standard primary working area to each program unit.
This area is then available to the program unit from the start of the program to the end
of the program (PEND call). The data in this area therefore cannot be stored or
forwarded once the program unit run is terminated. The SPAB can be used for the
parameter area in which the program unit supplies the parameters for KDCS calls. It
can also be used to buffer messages, for example. Since the standard primary working
area is reserved for a specific program unit, it is not integrated in transaction
management. One advantage the SPAB has over other forms of program memory (e.g.
stacks) is that the SPAB is output in the UTM dump.

● Other areas

A program unit can use other areas for storing data. These areas are defined during
generation using the KDCDEF statement AREA and must be managed by the users
themselves, they are not subject to transaction management. Their structure is not
prescribed by openUTM and can be defined freely.

Program interfaces The KDCS universal program interface

Concepts and Functions 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

Secondary storage areas

These storage areas are implemented by openUTM in background memory that is subject
to transaction management. They are read and written to using special KDCS calls:

● Local secondary storage area (LSSB)

The local secondary storage area is a service-specific background storage area used
to transfer data between program units within a particular service. While the communi-
cation area is automatically provided and logged for each program unit, the local
secondary storage area is accessed only when required. It is therefore particularly
suitable for read-only data, or for cases where several program units which do not
require the respective data are to be executed between the write operation and the read
operation. The local secondary storage area continues to exist until it is explicitly
released or the service is terminated.

● Global secondary storage area (GSSB)

The GSSB is a background storage area that allows for any data to be transferred
between the services in a UTM application. Unless it is explicitly released, it continues
to exist even after the application is terminated.

GSSBs are not supported by default in UTM cluster applications. If you wish to use
GSSBs locally in a node, you can permit support using the generation parameters.

● Terminal-specific long-term storage area (TLS)

The TLS is assigned an access point (LTERM, LPAP or OSI-LPAP partner) and is used
to store information that must be available irrespective of the duration of a service or
the runtime of the application. For instance, it can be used to produce statistics for an
LTERM partner.

In UTM cluster applications, TLSs are only supported locally in the node.

● User-specific long-term storage area (ULS)

A ULS can be assigned to each user ID during configuration. It is used to store infor-
mation that must be available irrespective of the lifetime of the services or the runtime
of the application. For instance, it can be used to produce statistics for each user ID.

A ULS is also assigned a session (LU6.1) and an association (OSI TP).

ULSs are not supported by default in UTM cluster applications. If you wish to use ULS
locally in a node, you can permit support using the generation parameters.

The KDCS universal program interface Program interfaces

130 Concepts and Functions

User log file (USLOG)

The user log file is a log file managed by openUTM in which user-specific information can
be written using the KDCS call LPUT. It is implemented in the form of a file generation group
(see the openUTM manual “Generating Applications”). The user log file can be used to
record attempts to violate the data access control mechanisms, for example.

Each node application has its own user log file in UTM cluster applications.

The user log file is subject to transaction management and is therefore not suitable for use
as a general log function. This is because the LPUT information is discarded when a trans-
action is rolled back.

Overview: UTM storage areas

Abbre-
viation

Type of Area Life Cycle Function Transaction
Backup

KB Communication
area

From the start of the
service until the end of
the service

Access to up-to-date infor-
mation provided by
openUTM;
communication between the
program units of a service

Yes

SPAB Standard primary
working area

From the start of the
program unit until the
end of the program unit

Transfer of parameters for
KDCS calls; message buffer

No

AREA Other storage
area defined
during generation

For the duration of the
application

Store global application
data, preferably for read-
only purposes;
In UTM cluster applications,
AREAs only apply locally to
the node.

No

LSSB Local secondary
storage area

From the first write call
until explicit release or
until the end of the
service

Data exchange between the
program units of a service

Yes

GSSB Global secondary
storage area

From the first write call
until explicit release or
until deletion of the
application information

Distributed data exchange Yes

ULS User-specific
long-term storage
area

From generation until
the generation is
modified

For example, statistics for
particular user IDs, sessions
or associations

Yes

Program interfaces The KDCS universal program interface

Concepts and Functions 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

TLS Terminal-specific
long-term storage
area

From generation until
the generation is
modified

Statistics for particular
access points (LTERMs,
LPAPs, OSI-LPAPs)

Yes

USLOG User log file Defined individually Logging Yes

Abbre-
viation

Type of Area Life Cycle Function Transaction
Backup

The KDCS universal program interface Program interfaces

132 Concepts and Functions

7.2.3 Event functions

To enable you to react systematically to certain standard situations, openUTM offers the
option of using event functions. Unlike “normal” program units, which are called by speci-
fying a transaction code, openUTM automatically starts these program units when certain
events occur.

There are two types of event function:

– event services, which must contain KDCS calls
– event exits, which must not contain any KDCS calls

The use of all the event functions is optional. You specify which event functions are to be
activated in a UTM application during generation.

Event services

BADTACS The BADTACS dialog service is started by openUTM when a terminal user
or a transport system client specifies an invalid transaction code.

For instance, BADTACS can be used to output help information or user
prompting to inform the user of the transaction codes available for starting
services.

MSGTAC The MSGTAC asynchronous service is started by openUTM when UTM
messages occur in the application, to which the MSGTAC message line has
been assigned in the message file.

The MSGTAC event service can be used to automate administration (see
also page 168). In the event of misuse, for example, the relevant terminal
or a transaction code that results in repeated errors can be automatically
locked.

SIGNON The SIGNON dialog service is started by openUTM when a terminal user, a
transport system application or a UPIC client signs on to the UTM appli-
cation.

A number of SIGNON services can be defined: one for each transport
system access point. This means that services can be designed differently
depending on the partner type.

If a SIGNON service is generated for a transport system access point, it will
always be executed for the terminals and transport system applications that
establish the connection to the application via this access point. However, it
is only activated for UPIC clients if it has been generated to do so explicitly.

Program interfaces The KDCS universal program interface

Concepts and Functions 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

The SIGNON dialog service allows you to customize the signon dialog for
your application. For instance, in addition to the openUTM sign-on checks,
you can carry out your own authorization checks (see also page 177) or you
can explicitly assign a UTM user ID to transport system applications in the
sign-on service.

Event exits

START The START exit is called by openUTM when starting or reloading the appli-
cation program in every process.

It can be used to open local files, for example.
Up to 8 different START exits can be defined.

SHUT The SHUT exit is called by openUTM when terminating the application
program in every process.

It can be used to close local files, for example.
Up to 8 different SHUT exits can be defined.

SERVICE You can assign one SERVICE exit to each individual service during config-
uration of a UTM application. It is then called by openUTM when starting
and terminating the service - this applies even for abnormal terminations
and service restarts. With this event exit, it is possible to access the KB
header and the standard primary working area.

The SERVICE exit permits service-specific actions, e.g. the opening and
closing of special resources for certain services.

INPUT The INPUT exit is called each time an entry is made at the terminal.
However, this does not apply for entries in the SIGNON event service.

The INPUT exit allows you to define which actions are to be initiated by
input at the terminal, e.g. startup of a service or execution of a user
command. It also offers a great deal of flexibility when designing the user
interface.

The FORMAT event exit is also available in BS2000 systems, and allows users to program
their own formatting.

The X/Open interface CPI-C Program interfaces

134 Concepts and Functions

7.3 The X/Open interface CPI-C

CPI-C (Common Programming Interface for Communication) is a program interface for
distributed program-to-program communication, which has been standardized by X/Open
and the CIW (CPI-C Implementor's Workshop).

openUTM provides the CPI-C program interface for the programming languages COBOL,
C, and C++. Under openUTM, CPI-C can communicate not only on the basis of the X/Open
OSI TP protocol, but also using the LU6.1 and UPIC protocols.

Since CPI-C only supports program-to-program communication, it does not offer any
functions for communicating with terminals. As a result, CPI-C services in openUTM cannot
be started directly from a terminal (by entering a transaction code). The CPI-C services of
a UTM application can only be started by means of service requests from other programs,
such as:

– openUTM-Client programs
– other UTM applications (server-to-server communication)
– remote applications (e.g. CICS applications in the case of server-to-server communi-

cation)

The following tables provide an overview of the CPI-C calls available in openUTM.
The individual calls are described in detail in the X/Open CAE Specification on
CPI-C (Version 2) of October 1994.

All UTM-specific details are described in the openUTM manual “Creating Applica-
tions with X/Open Interfaces”.

Program interfaces The X/Open interface CPI-C

Concepts and Functions 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

Overview: CPI-C calls in openUTM

(The call names are identical for C/C++ and COBOL.)

Calls from the starter set:

Calls for error and acknowledgment handling:

Calls for data conversion:

Function Call Description

Accept_Conversation CMACCP Accept an incoming conversation

Allocate CMALLC Set up an outgoing conversation

Deallocate CMDEAL Terminate the conversation (normally)

Initialize_Conversation CMINIT Establish an outgoing conversation,
initialize the conversation characteristics

Receive CMRCV Receive data

Send_Data CMSEND Send data

Function Call Description

Cancel_Conversation CMCANC Cancel a conversation

Confirmed CMCFMD Send a positive acknowledgment to the partner

Send_Error CMSERR Error message, send a negative acknowledgment

Function Call Description

Convert_Incoming CMCNVI Convert incoming data from EBCDIC into the
character set used on the local system

Convert_Outgoing CMCNVO Convert outgoing data from the character set used
on the local system into EBCDIC

The X/Open interface XATMI Program interfaces

136 Concepts and Functions

7.4 The X/Open interface XATMI

XATMI is a program interface for distributed program-to-program communication, which
has been standardized by X/Open.

openUTM provides the XATMI program interface for the programming languages COBOL,
C and C++. Under openUTM, XATMI can communicate not only on the basis of the X/Open
OSI TP protocol, but also using the LU6.1 and UPIC protocols.

XATMI services can only be started by partners that also use the XATMI interface.

XATMI differentiates between three communication models:

● Synchronous request/response model:
After sending the service request, the client is blocked until a response is received.

● Asynchronous request/response model:
The client is not blocked after sending the service request.

● Conversational model:
The client and server can exchange data as desired.

The following tables provide an overview of the XATMI calls available in openUTM.
The individual calls are described in detail in the X/Open CAE Specification on
XATMI of November 1995.

All UTM-specific details are described in the openUTM manual “Creating Applica-
tions with X/Open Interfaces”.

Overview: XATMI calls in openUTM

Calls for the request/response model:

C/C++ call COBOL call Description

tpcall TPCALL Service request in the synchronous request/response model

tpacall TPACALL Service request in the asynchronous request/response model

tpgetrply TPGETRPLY Request response in the asynchronous request/response
model

tpcancel TPCANCEL Cancel an asynchronous service request before a response
has been received

Program interfaces The X/Open interface XATMI

Concepts and Functions 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

Calls for the conversational model:

Call for the type-based buffers:

General calls for service routines:

C/C++ call COBOL call Description

tpconnect TPCONNECT Set up a communication link

tpsend TPSEND Send a message

tprecv TPRECV Receive a message

tpdiscon TPDISCON Shut down a communication link

C/C++ call COBOL call Description

tpalloc -- Reserve memory for a type-based buffer

tprealloc -- Change the size of a type-based buffer

tpfree -- Free a type-based buffer

tptypes -- Query the type of a type-based buffer

C/C++ call COBOL call Description

tpservice TPSVCSTART Provide a template for service routines

tpreturn TPRETURN Terminate a service routine

tpadvertise
tpunadvertise

TPADVERTISE
TPUNADVERTISE

Only supported syntactically in openUTM
(output the name of a service routine)

The X/Open interface TX Program interfaces

138 Concepts and Functions

7.5 The X/Open interface TX

TX (Transaction Demarcation) is a program interface for defining distributed transactions,
which has been standardized by X/Open.

openUTM provides the TX program interface for the programming languages COBOL, C
and C++.

With openUTM, TX calls should only be used in CPI-C services. XATMI services are
included implicitly in global transactions by means of the TPTRANS or TPNOTRANS flag.
The XATMI call tpreturn() determines whether a transaction is terminated successfully or
rolled back.

With TX, transactions can be executed in chained or unchained mode. In chained mode,
only the first transaction need be started explicitly: the end of this transaction implicitly
marks the beginning of the next transaction.
In unchained mode, the beginning of each transaction must be specifically marked.

However, openUTM always works in chained mode. When a service is started under
openUTM, a transaction is begun automatically. For this reason, the first transaction need
not be marked.

The OpenCPIC carrier system also enables openUTM clients to control transactions with
TX.

Overview: TX calls in openUTM

The individual calls are described in detail in the X/Open CAE Specification on
TX of April 1995.

All UTM-specific details are described in the openUTM manual “Creating Applica-
tions with X/Open Interfaces”.

C/C++ call COBOL call Description

tx_commit TXCOMMIT Terminate global transaction successfully

tx_rollback TXROLLBACK Roll back global transaction

tx_info TXINFORM Query global transaction information

tx_set_commit_return TXSETCOMMITRET Set commit_return characteristic

tx_set_transaction_control TXSETTRANCTL Set transaction_control characteristic

tx_set_transaction_timeout TXSETTIMEOUT Set transaction_timeout characteristic

tx_open TXOPEN Always returns TX_OK under openUTM
(open set of resource managers)

(The tx_begin() (TXBEGIN) and tx_close() (TXCLOSE) calls always return
TX_PROTOCOL_ERROR under openUTM).

Program interfaces The XML interface of openUTM

Concepts and Functions 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

7.6 The XML interface of openUTM

XML (Extensible Markup Language) is a logical description language that enables
documents to be structured into elements. XML is derived from SGML (Standard Gener-
alized Markup Language). XML allows users to define their own language syntax, e.g. by
means of a DTD (Document Type Definition) or an XML schema (XSD).

The XML interface of openUTM (short: UTM-XML) is a program interface with which XML
documents can be created, processed and read. In addition, XML documents can be
validated against XML schemas.

This interface is called inside of UTM program units and is available for the program
languages C, C++ and COBOL.

Each of the interfaces described in this section (KDCS, CPI-C or XATMI) can be used as a
communication interface. UTM-XML can also be used in openUTM clients.

A simple usage scenario such as processing an XML document in the KDCS program unit
might look like this.

1. Read data with MGET

The XML document is read into the message area of an XML schema (XSD).

2. Process the data via the UTM-XML interface

The XML document is converted into an object tree and the individual elements are
processed. Once processing is complete, the XML object is converted back into an XML
document.

A separate structure (t_value structure) is used for data type conversion.

3. Send the XML document with MPUT

The processed XML document is made available in the message area and is sent back
to the submitter.

If an XML document is processed interactively in several dialog steps (= program units), the
programmer must ensure that the context is preserved. There are two ways of doing this.

● The XML object is converted into an XML document and buffered in a suitable UTM
storage area, e.g. KB, LSSB or GSSB, see page 128.

● The program uses the KDCS call PGWT. PGWT prevents a process change and
preserves the entire program context.

The XML interface of openUTM Program interfaces

140 Concepts and Functions

Overview: C/C++ calls of the UTM-XML interface

C/C++ call Description

KXLInitEnv Initialize the UTM-XML environment

KXLFromdatatype Convert from datatype to the t_value structure
(datatype= Short, Int, Long, Float, Double, Char, String, Struct, Array)

KXLTodatatype Convert from the t_value structure to datatype
(datatype= Short, Int, Long, Float, Double, Char)

KXLCreateNewObj
KXLWrite

Create an XML object

KXLSetSubObject
KXLSetRootNode
KXLSetParentNode

Navigate in the XML object

KXLRead
KXLReadNode
KXLReadNextSib
KXLReadChild
KXLReadNextSingleNode
KXLReadAttr

Read an XML object

KXLConvDocToObj
KXLConvObjToDoc
KXLFreeObj

Convert between XML object and XML document, release (free) an
object

KXLGetHomeEnc
KXLGetDocEnc
KXLSetDocEnc
KXLStringFromUTF8
KXLStringToUTF8

Determine/set character set and convert from/to UTF8

KXLWriteNS
KXLDelNS
KXLReadNSList
KXLSearchNS

Manage namespaces

KXLGetSizeOfNodeList Query size of a node list

KXLTSENV
KXLGetLastParserError

Diagnostic functions

KXLConvDocToObjAndValid
KXLParseSchema
KXLParseSchemaFile
KXLValidDoc
KXLValidDocBuf
KXLFreeSchema

Support for schema functionality
(converting, parsing, validating, freeing)

Program interfaces The XML interface of openUTM

Concepts and Functions 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

7

COBOL interface

The COBOL interface is called via an adapter module. When it is called, the desired
function is passed in the form of parameters and a COPY element is used to describe the
parameter area. This area must be supplied prior to the call. The parameters correspond to
the parameters of the associated C function.

The COBOL interface, in contrast to the C/C++ interface, contains the additional function
KXLSchemaGetRoot with which the root node of the schema object can be requested. In C/
C++ this can be implemented directly using language resources.

 You will find more information on the UTM-XML interface in the manual
„XML for openUTM“.

The XML interface of openUTM Program interfaces

142 Concepts and Functions

Concepts and Functions 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

8

8 Generating UTM applications

To use a UTM application, you must define the configuration and generate the application
program. This entire procedure is known as “generation”.

In figure 31 on page 148, you will see an overview of the steps involved in gener-
ation. The generation procedure is described in detail in the openUTM manual
“Generating Applications”.

It is necessary to take certain specific characteristics into account when generating
a UTM cluster application. For further information on UTM cluster applications, see
section “UTM cluster application” on page 33ff and chapter “High availability and
load distribution with UTM cluster applications” on page 195ff.

For a detailed description of the steps involved during generation, refer to the
openUTM manual “Generating Applications”.

Defining the configuration Generating UTM applications

144 Concepts and Functions

8.1 Defining the configuration

To run the application program, you must provide information on the following:

– application properties (maximum values, timers etc.)
– name and properties of user IDs
– system and data access control
– name and properties of clients and partner servers
– name and properties of transaction codes and program units
– reservations for dynamic configuration
– properties of UTM cluster applications

This information is known collectively as configuration information, and is stored in the
KDCFILE. The KDCFILE can consist of more than one file (see page 117), and is created
using the KDCDEF generation tool.

In addition to the KDCFILE, KDCDEF creates the source text for the ROOT tables. These
ROOT tables contain allocation information required internally when using the application.

You have the choice of producing the KDCFILE and the ROOT table sources during a single
KDCDEF run, or separately in different KDCDEF runs. If two KDCDEF runs are used, then
both runs must receive the same input data.

You must provide KDCDEF with an input file containing KDCDEF control statements that
describe the desired configuration.

Generating UTM applications Defining the configuration

Concepts and Functions 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

8

Overview: KDCDEF control statements

Statement Function

ABSTRACT-SYNTAX Define the abstract syntax (OSI TP)

ACCESS-POINT Create an OSI TP access point for a local UTM application

ACCOUNT Define accounting parameters

APPLICATION-CONTEXT Define the application context (OSI TP)

AREA Define names for additional data areas

BCAMAPPL Define additional application names

CLUSTER Define global properties of a UTM cluster application

CLUSTER-NODE Define node application of a cluster

CON Define a logical connection (LU6.1) to UTM partner applications

CREATE-CONTROL
STATEMENTS

Create control statements for a new KDCDEF run from configuration
information in the existing KDCFILE

EXIT Define event exits

KSET Define a key set

LPAP Assign an LPAP name as a logical access point for partner applica-
tions (LU6.1)

LSES Define a session name for distributed processing via LU6.1

LTAC Assign local names for TACs in UTM partner applications

LTERM Define an LTERM partner as the logical access point for clients and
printers

MASTER-LU61-LPAP Define master LPAP of an LU6.1 LPAP bundle

MASTER-OSI-LPAP Define the master LPAP of an OSI LPAP bundle

MAX Define the name of the UTM application and runtime parameters

MESSAGE Describe the message module

MSG-DEST Define user-specific message destinations

OSI-CON Define the logical connection to the partner application (OSI TP)

OSI-LPAP Define an OSI LPAP name as the logical access point for partner
applications (OSI TP)

PROGRAM Define the names and properties of program units

PTERM Define clients and printers

QUEUE Define table entries for temporary queues

RESERVE Reserve locations for dynamic configuration

ROOT Assign names for ROOT table sources

SESCHA Define session characteristics (LU6.1)

Defining the configuration Generating UTM applications

146 Concepts and Functions

There are also statements in addition to those listed above that are used to control the
KDCDEF run or insert comments.

SFUNC Define special functions for the function keys

SIGNON Control the sign-on procedure

TAC Define the names and properties of transaction codes or TAC queues

TACCLASS Define the number of processes available to TAC classes

TAC-PRIORITIES Define the priorities for TAC classes

TLS Define the names of TLS blocks

TPOOL Define terminal pools

TRANSFER-SYNTAX Define the transfer syntax

ULS Define the names of ULS blocks

USER Insert a user in the configuration

UTMD Define global application values for distributed processing

The following statements only apply to BS2000 systems:

DATABASE Describe the database system and the resource manager

DEFAULT Define default values

EDIT Define edit options

FORMSYS Describe the formatting system

LOAD-MODULE Describe the load module for exchanging programs with BLS

MPOOL Describe the common memory pool

MUX Define a multiplex connection

SATSEL Define the SAT logging mode and the events to be logged

TCBENTRY Define a group of TCB entries

The following statements only apply to Unix systems and Windows systems:

RMXA Specify a name for a resource manager
(database connection via the X/Open XA interface)

SHARED-OBJECT Define shared objects for a program exchange

Statement Function

Generating UTM applications Generating the application program

Concepts and Functions 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

8

8.2 Generating the application program

Before generating the application program, you must write and compile program units.
These program units define the application logic.

The application program is generated to ensure that the program units can run under the
management of openUTM. This involves the following steps:

● compiling the source text for the ROOT tables, which is generated by KDCDEF

● linking the compiled ROOT tables, program units, and any other modules (e.g. format
libraries, local message modules, or language-specific runtime systems) to the appli-
cation program together with UTM modules. This can be done statically (i.e. before the
application is started) or dynamically (i.e. when the application is started).

The modules required for your application depends on your application architecture
and the operating system platform. Detailed information can be found in the corre-
sponding openUTM manual “Using openUTM Applications”.

Main routine KDCROOT

One part of the application program is the main routine KDCROOT. When the application
is running, KDCROOT acts as the main control program, and performs the following tasks
among others:

– establishes the connection between program units and the UTM system functions
– coordinates the sequence of program units in different programming languages
– interacts with formatting systems (only BS2000 systems)
– sets up links with databases and resource managers

Generating the application program Generating UTM applications

148 Concepts and Functions

*In a UTM cluster application, further files that are global to the cluster are generated in addition to KDCFILE (see
page 35).

Figure 31: Generating a UTM application

KDCDEF generation tool

Link

Compile

File with KDCDEF
control statements

KDCDEF log

Sources for
ROOT tables

ROOT tables

Program units/
user libraries/

runtime systems UTM modules

KDCFILE*
UTM

application program

Generating UTM applications Updating the configuration using the KDCUPD tool

Concepts and Functions 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

8

8.3 Updating the configuration using the KDCUPD tool

With the KDCUPD tool (KDCFILE UPDate) you can migrate important user data and admin-
istration information after regenerating your UTM application:

● In standalone UTM applications, KDCUPD transfers the data from the old to the new
KDCFILE.

● In UTM cluster applications, there is a distinction between node updates (updating the
KDCFILE of a single node application) and cluster updates (updating of UTM cluster
files).

Furthermore, you can switch with the help of KDCUPD from an older openUTM version to
the current openUTM version without the data in the KDCFILE of the previous production
application.

KDCUPD in standalone applications

In a standalone UTM application, KDCUPD can be used for both UTM-S and UTM-F.

In the case of UTM-S, KDCUPD enables the user data to be transferred from the previous
KDCFILE to the new KDCFILE on completion of the application run. KDCUPD can transfer
all user data or only specific user data, as required.

Once all the user data has been transferred by KDCUPD and the application has been
restarted, the users can resume their work:

● Interrupted services are continued.

● Processing of UTM-controlled message queues continues:

– all asynchronous messages are output
– all background jobs are executed
– all time-driven jobs are processed by openUTM at the specified time

● All messages in service-controlled queues are available for further processing.

KDCUPD in UTM cluster applications

In UTM cluster applications, KDCUPD can be used with both UTM-S and UTM-F. KDCUPD
enables you to perform both node updates and cluster updates.

Node updates

In the case of a node update, KDCUPD transfers administration and user data from a node
application’s old KDCFILE to a node application's new KDCFILE. Data that applies locally
at node level such as TLS, asynchronous messages or background jobs is transferred.

Updating the configuration using the KDCUPD tool Generating UTM applications

150 Concepts and Functions

If there are a large number of changes to the generation (for example, new connections to
partner applications), it is possible to perform a node update while the UTM cluster appli-
cation is running (online update). In this case, the node update is performed for each
individual node in sequence, i.e. the node application is terminated, the data is transferred
using KDCUPD and the node application is then started again. The remaining node appli-
cations continue to run during this process

For some changes, it is necessary to terminate the UTM cluster application.

Cluster updates

In the case of cluster updates, KDCUPD transfers administration and user data from the old
UTM cluster files to the new UTM cluster files. To do this, it is necessary to terminate the
UTM cluster application.

It is only necessary to perform a cluster update if fundamental changes are made to the
cluster configuration, e.g. if the number of generated node applications or the number of
cluster page pool files is increased.

During a cluster update, data that is valid globally in the cluster (ULS, GSSB, service data,
passwords, locales) is transferred

After a cluster update, it is generally necessary to perform a node update for each node
application.

 For further information on using KDCUPD in a UTM cluster application, see "Update
generation in a cluster" in the platform specific openUTM manual “Using openUTM
Applications”.

Checking the KDCFILE for consistency

KDCUPD also provides the CHECK option, with which you can check the files of a
KDCFILE for consistency without transferring user data to a new KDCFILE.

Migrating with KDCUPD

The UTM tool KDCUPD can also be used to migrate to another version of openUTM. You
can transfer user data from the KDCFILE of the preceding versions into the newly created
KDCFILE of openUTM V6.3. You start the application under openUTM V6.3 using this
KDCFILE, and afterwords the users can continue with their current work. For instance, after
upgrading to a follow-up version, a time-driven print job initiated with openUTM < V6.3 can
be automatically activated by openUTM V6.3 - exactly at the desired time.

Generating UTM applications Updating the configuration using the KDCUPD tool

Concepts and Functions 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

8

Migrating to a 64-bit environment with KDCUPD

KDCUPD can be used to transfer information from a 32-bit application environment to a 64-
bit application environment. This means that you are able to switch over to a 64-bit
environment quickly and without loss of data.

 You will find more information on KDCUPD in the openUTM manual “Generating
Applications”.

Updating the configuration using the KDCUPD tool Generating UTM applications

152 Concepts and Functions

Concepts and Functions 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

9 Administering UTM applications

openUTM offers comprehensive, easy-to-use administration concepts, which allow for
effective, flexible utilization of the UTM applications and provide maximum availability.

The term “administration” covers all activities required to control and monitor active UTM
applications, such as:

– defining and modifying the number of parallel processes, timers, scheduling, etc.
(tuning the application)

– locking and releasing transaction codes
– integrating new services
– replacing parts of the application program or the entire application program during

operation
– adding or removing clients, printers, or user IDs in the configuration (dynamic configu-

ration)
– defining the number of clients permitted or locked for an LTERM pool
– establishing or shutting down logical connections to clients, printers or remote server

applications
– switching logging files
– setting diagnostic tools
– displaying the operational data of the UTM application
– determining the IP address and making it available to the UTM application
– generating, reading or deleting RSA keys
– terminating the UTM application
– modifying cache properties

In a UTM cluster application, each of these activities applies only locally to the individual
node application or globally to all node applications.

KDCADMI program interface

For administration purposes, openUTM provides the KDCADMI program interface. This
interface can be used to create your own administration programs tailored to the respective
application. All administration functions can be accessed via the KDCADMI program
interface (see page 158).

Administering UTM applications

154 Concepts and Functions

KDCADM command interface

Alternatively, openUTM also provides the standard KDCADM administration program,
which already contains predefined basic administration functions (see page 155).

WinAdmin graphical administration program

The openUTM component WinAdmin allows you to administer one or more UTM applica-
tions on a PC with the comfort of a graphical user interface - even if the UTM applications
in question are running on different platforms distributed across the network (see also
page 161).

WinAdmin covers the entire range of functionality available through KDCADMI and also
offers additional functions as well. WebAdmin is also available as an add-on on a
management unit of an SE Server.

WebAdmin graphical administration program

Like WinAdmin, WebAdmin is a program which is used to administer UTM applications and
possess a graphical user interface. Unlike WinAdmin, however, WebAdmin permits
Internet-based administration. A single WebAdmin instance is installed centrally and
provides a web application that users can sign on at from any web browser, see also
page 163.

WebAdmin covers the entire function scope available with KDCADMI.

Administration with CALLUTM in BS2000 systems

CALLUTM is an openUTM client program in BS2000 that can be used in many applications
and with which you can administer one or more local or remote UTM applications via an
SDF interface. These applications can be located on different platforms. You will find more
information on the possible areas of application for CALLUTM on page 232.

 The KDCADMI administration program interface, the standard KDCADM adminis-
tration program and the CALLUTM program are described in detail in the openUTM
manual “Administering Applications”. The following sections merely provide a brief
overview. Further information on openUTM WinAdmin or openUTM WebAdmin can
be found in the respective extensive online help systems and in a Readme file. Both
are delivered with WinAdmin and WebAdmin.

Administering UTM applications Administration command interface

Concepts and Functions 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

9.1 Administration command interface

The basic administration functions are called by means of predefined transaction codes,
which are allocated to the standard administration program (KDCADM) during generation.
These predefined transaction codes are known as administration commands.

Each basic function has a dialog transaction code and an asynchronous transaction code.
The basic functions can thus be executed in a dialog, or asynchronously via message
queueing.

Administration in a dialog

Within the dialog, the basic administration functions are initiated synchronously either by
the administrator at the terminal or by a client program. In both cases, the desired admin-
istration command is specified in the form of a dialog transaction code. openUTM immedi-
ately executes the requested administration function, and returns a corresponding
response.

Several administrators or administration clients can access the administration functions
simultaneously.

Administration via message queueing

Like administration in a dialog, this type of administration allows the basic administration
functions to be initiated by the administrator at the terminal. In this case, however, the
desired command is entered in the form of an asynchronous transaction code.

It is also possible to access the basic administration functions from UTM program units. For
this purpose, the program unit issues an MQ call (FPUT or DPUT) for the corresponding
asynchronous transaction code.

In both cases, openUTM places the administration job in the appropriate queue, executes
it independently of the administrator or program unit, and outputs the result in the form of
an asynchronous message to a defined destination. Possible destinations include the
administrator’s terminal, another terminal, a printer, or an asynchronous program.

With administration via message queuing, several administrators or UTM program units can
access the administration functions simultaneously.

If administration is initiated by means of MQ calls from UTM program units, the time control
facility can be used.

Administration command interface Administering UTM applications

156 Concepts and Functions

Overview: Transaction codes of the standard administration program

Dialog TAC Asynchron-
ous TAC

Administration function

KDCAPPL KDCAPPLA Change the number of processes, timer settings, and maximum
values; replace the application program; switch logging files,
enable/disable accounting functions in openUTM under BS2000
systems

KDCBNDL KDCBNDLA Exchange the master LTERMs of two LTERM bundles.

KDCDIAG KDCDIAGA Call diagnostic tools: enable/disable test mode, trace, and KDCMON
functions, request dumps Enable and disable the debug mode for the
XA database interface.
In openUTM on BS2000 systems, STXIT logging can be enabled and
disabled as well.

KDCHELP KDCHELPA Request information on the syntax of TACs from KDCADM

KDCINF KDCINFA Query the current settings of system parameters, load statistics for the
application, and object properties

KDCLOG KDCLOGA Switch the user log file to the next file generation

KDCLPAP KDCLPAPA For administration of UTM applications for distributed processing:
establish / shut down logical connections to partner applications,
switch alternate connections to OSI TP partners, lock/unlock partners,
change the timer for monitoring sessions/associations

KDCLSES KDCLSESA For administration of UTM applications for distributed processing:
establish / shut down logical connections for a session

KDCLTAC KDCLTACA For administration of UTM applications for distributed processing:
lock/unlock a remote service (LTAC) for the local application, set the
timer for monitoring the session/association setup and the response
times of the partner service

KDCLTERM KDCLTRMA Lock/unlock an LTERM partner, establish / shut down connections,
assign an LTERM to an LTERM group.

KDCPOOL KDCPOOLA Change the number of clients permitted for a terminal pool

KDCPROG KDCPROGA Replace the load modules of the application program

KDCPTERM KDCPTRMA Lock/unlock clients/printers, establish / shut down connections

KDCSHUT KDCSHUTA Terminate the application
In the case of a UTM cluster application: May apply to a node appli-
cation or the entire UTM cluster application as required.

KDCSLOG KDCSLOGA Switch the system log file (SYSLOG) of the application, enable/disable
size monitoring, define a threshold value for size monitoring, query
information on the SYSLOG

KDCSWTCH KDCSWCHA Change the allocations between the client/printer and the LTERM
partner

Administering UTM applications Administration command interface

Concepts and Functions 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

KDCTAC KDCTACA Lock/unlock transaction codes (local services)

KDCTCL KDCTCLA Change the number of processes available to a TAC class

KDCUSER KDCUSERA Lock/unlock user IDs, change passwords

The following TACs are only available in openUTM on BS2000 systems:

KDCMUX KDCMUXA Lock/unlock multiplex connections, establish / shut down connections

KDCSEND KDCSENDA Send messages to terminal users

Dialog TAC Asynchron-
ous TAC

Administration function

Administration program interface Administering UTM applications

158 Concepts and Functions

9.2 Administration program interface

You can use the KDCADMI program interface provided by openUTM to create your own
administration programs specially tailored to your application. Since the administration
program interface provides powerful functions which can be used individually to program
your own administration programs, user-defined administration programs offer more
options than the basic administration functions:

● Practically all generation information is available.

● On this basis, you can query, analyze and further process the information that is of
practical interest to you.

● Dynamic configuration calls can be used in user-defined administration programs (see
below).

● Formats can be used for administration dialogs.

The program interface calls are independent of the platform on which the administration
program is running. It is thus possible, for example, to administer one or more UTM appli-
cations running under Unix systems or BS2000 systems from a UTM application on a
Windows system, and vice versa. Since compatibility with future openUTM versions is also
guaranteed, user-defined administration programs need not be adapted if you decide to
switch to another platform or upgrade to new openUTM versions.

The effort involved in creating your own administration programs is minimal:
the program interface calls can be integrated into C ,C++ or COBOL program units. Both
dialog and asynchronous programs are supported, and a program can contain an unlimited
number of administration calls. The data structures required are already predefined and are
provided in the form of header files/COPY elements.

Dynamic configuration

The KDCADMI program interface offers calls for modifying the application configuration
“on-the-fly”. Clients, printers, user IDs, services, et cetera, can be added to or removed from
the configuration during operation, without affecting system availability.

Corresponding KDCDEF statements can be created - online or offline - for all dynamically
configurable objects (inverse KDCDEF). These statements are then provided as input for
the KDCDEF generation tool, which means that all dynamic changes to the configuration
can be incorporated without any problems during regeneration.

Administering UTM applications Administration program interface

Concepts and Functions 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

Overview: Administration functions of the KDCADMI program interface

Operation code Function

KC_CHANGE_APPLICATION Replace the entire application program during operation

KC_CREATE_DUMP Create a UTM dump

KC_CREATE_OBJECT Add new objects (program units, terminals, users, etc.) to the
configuration dynamically

KC_CREATE_STATEMENTS Create a KDCDEF control statement for dynamically configurable
objects during operation (online)

KC_DELETE_OBJECT Delete application objects, i.e. remove them from the application
configuration

KC_ENCRYPT Create, delete or read an RSA key pair

KC_GET_OBJECT Request information on the objects and parameters of the appli-
cation

KC_LOCK_MGMT Remove cluster user file lock

KC_MODIFY_OBJECT Modify the properties of objects or application parameters

KC_ONLINE_IMPORT Import application data online

KC_PTC_TA Roll back transaction in state PTC

KC_SHUTDOWN Terminate the application

KC_SPOOLOUT Automatically establish a connection to printers for which
messages are available

KC_SYSLOG Administer the SYSLOG system log file

KC_UPDATE_IPADDR Update the IP address

KC_USLOG Switch the user log file(s) to the next file generation during
operation

The following operation code is available only in openUTM(BS2000):

KC_SEND_MESSAGE Send a system line message to one or more dialog terminals

Administration program interface Administering UTM applications

160 Concepts and Functions

Sample programs

openUTM supplies the following C sample programs which demonstrate how to use the
KDCADMI interface:

– HNDLUSR (handle user data, in BS2000 systems only)
– SUSRMAX (show Users and MAX parameter)
– ENCRADM (encryption administration)
– ADJTCLT (adjust tacclass tasks)

For COBOL openUTM supplies the sample program COBUSER. Since these sample
programs are provided also in the form of source code, they can be individually adapted or
used as templates for your own administration programs. Alternatively, they can be used
without modification, e.g. to query information on user IDs and maximum values, to change
current settings, or to dynamically configure user IDs.

For Unix and Windows systems the sample programs ENCRADM, SUSRMAX and
ADJTCLT are integrated in the sample application or the Quick Start Kit, the sample
program COBUSER is supplied in the utmpath under sample/src or sample\scr. For
BS2000 systems all sample programs are included in the library
SYSLIB.UTM.063.EXAMPLE.

You will find further information regarding the sample programs at the beginning of
the respective source code.

Administering UTM applications WinAdmin graphical administration program

Concepts and Functions 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

9.3 WinAdmin graphical administration program

WinAdmin is a graphical administration terminal from which you can administer several
UTM applications at the same time.

WinAdmin is based on Java technology and can therefore run on Windows systems as well
as on Unix platforms and Linux platforms.

The UTM applications can run on all platforms released, and the programs can be of
different versions. The administration functions available for the individual UTM applica-
tions depends on the openUTM version:

● For UTM applications the full range of functions of the KDCADMI program interface
offered by the relevant UTM version can be used (see section “Administration program
interface” on page 158). You can therefore, for example, add objects dynamically to a
configuration or delete objects. The functions are listed on page 158ff.

In addition, you can start UTM applications with WinAdmin. This requires that openFT
is used on the participating computers.

● Furthermore, WinAdmin offers the following functions that are not accessible via
KDCADMI:

– definition of message collectors. This makes it possible for WinAdmin to query,
display and archive UTM messages of UTM applications that are currently running.

– administration of message queues
– printer administration and control
– display of GSSB contents and deletion of GSSBs
– creation and deletion of temporary queues
– grouping of several administration steps into a single transaction
– far-reaching support for the UTM security concept by means of roles and access

lists (see page 180)
– definition of actions, e.g. time-controlled storage of object properties in files or

responding to threshold violations.
– collection and archiving of statistical data on the UTM applications.

Graphical interface

The ease of use of a Windows interface introduces significant administration advantages,
especially for complex applications. Examples of such advantages are:

● Simple navigation:
You can quickly find the desired object or a certain application with a click of the mouse.

● Clarity:
The parameters of an object, such as a client or a user, are displayed in an easy-to-read
list in a window, and the parameters can be changed there.

WinAdmin graphical administration program Administering UTM applications

162 Concepts and Functions

● Tables
Objects of the same type, such as printers or Lterms, are displayed in easy-to-read
tables and can be sorted with a click of the mouse.

● Diagrams:
Statistics can be presented graphically, e.g. the number of transactions per second
within a specific interval. The statistical values can be easily saved to a file and used
later in an analysis.

● Plausibility checks:
Relationships between different objects, e.g. between user IDs and key sets, are
considered in their respective context.

Administering several applications

WinAdmin allows a single point of view for several applications by combining these appli-
cations in collections. You can, for example, create a collection of all branch applications
and administer these applications together. These applications are viewed separately in the
central office.

Administering UTM cluster applications

WinAdmin provides administration functions which you can apply globally to all of the node
applications in the UTM cluster application. Furthermore, WinAdmin allows you, for
example, to display statistical summaries which include all the running node applications.

 For more detailed information on administering a UTM cluster application, see
section “UTM cluster application” on page 33 and „WinAdmin Online-Hilfe“.

Application view

In this classical view you see a certain application on a certain computer with its settings
and objects. You can then work from the “top down” and view or change specific param-
eters, or you can delete or recreate objects such as users and clients.

Object view

In this view, you select objects from several different applications in any order you want, e.g.
all users in a collection. You can then separate them according to their server or application
and output all locked users for several applications. You can then unlock these users in a
single action.

Administering UTM applications WebAdmin graphical administration program

Concepts and Functions 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

9.4 WebAdmin graphical administration program

The WebAdmin component is a web-based application for the administration of UTM appli-
cations on all platforms.

The Apache Tomcat web server, in which the web application is automatically deployed on
initial start-up, is supplied together with WebAdmin. WebAdmin can be installed either as a
stand-alone tool or as an add-on on a management unit of an SE Server. Broadly speaking,
the two variants provide the same function scope.

Once you have performed central installation of WebAdmin, it provides a web application
which you can access from any client computer. A web browser simply needs to be present
on the client computer.

The UTM applications can be running on any released platform and be of different versions.
The administration functions that are possible for the individual UTM applications depends
on the openUTM version.

● When administering UTM applications, you are able to use the full function scope of the
KDCADMI program interface provided by the UTM version in question, see section
“Administration program interface” on page 158. Thus, for example, you can dynami-
cally add objects to a configuration or delete objects, see also page 166. The functions
are listed on page 159.

If you are using WebAdmin as a stand-alone tool then you can also use it to start UTM
applications. For this to possible, openFT must be used at the participating computers.

● WebAdmin additionally offers the following functions that are not available via
KDCADMI:

– Definition of message collectors. This enables WebAdmin to poll UTM messages
from the running UTM applications and to display and archive these.

– Administration of message queues
– Printer administration and printer control
– Creation and deletion of temporary queues
– Display of GSSB contents and deletion of GSSBs
– Very broad-based support for the UTM security concept by means of roles and

access lists, see page 180
– Definition of actions, e.g. time-controlled storage of object properties in files or

responses when values rise above or fall below certain thresholds.
– Collection and archiving of statistical data for UTM applications.

Unlike WinAdmin, WebAdmin offers "round the clock" monitoring of UTM applications
by means of statistics collectors and, in some cases, threshold actions. For this to be
possible, it is not necessary for a client to be connected to the Web application.
WebAdmin periodically checks the availability of the monitored UTM applications.

WebAdmin graphical administration program Administering UTM applications

164 Concepts and Functions

Graphical user interface

In particular when dealing with complex applications, the convenience of a web-based
graphical user interface offers considerable advantages during administration tasks, such
as:

● Ease of navigation:
Required objects or specific application parameters can be located rapidly at the click
of a mouse button.

● Clear overview:
The parameters relating to an object such as a client or user are clearly listed on a tab
where they can also be modified.

● Tables:
Objects of the same type such as printers or Lterms are listed in clearly presented
tables where they can be sorted at the click of a mouse button.

Administering UTM cluster applications

WebAdmin provides administration functions which you can use with all of the node appli-
cations in the UTM cluster application.

 For detailed information on administering a UTM cluster application, see section
“UTM cluster application” on page 33 and the „WebAdmin Online-Hilfe“.

Administering UTM applications Authorization concept

Concepts and Functions 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

9.5 Authorization concept

In addition to the general security functions, openUTM provides a two-level authorization
concept specifically for administration.

● Level 1: Read access to all administrative data

If ADMIN=READ is assigned to a transaction code of an administration program during
configuration, the corresponding program is granted read access to all administrative
data. The user does not require administration authorization to call this transaction
code. The information is thus accessible to all users.

● Level 2: Full administration authorization

To gain unrestricted access to all administration functions (commands and user-defined
administration programs), the following requirements must be met:

– ADMIN=Y must be set during configuration for a transaction code that calls an
administration program.

– The user calling this transaction code must have administration authorization, i.e.
PERMIT=ADMIN must be set for the user ID and the partner application during
configuration.

It is also possible to define more subtle differentiations using the data access control
mechanism of the lock/key code concept (see page 178).

Changing the generation dynamically Administering UTM applications

166 Concepts and Functions

9.6 Changing the generation dynamically

You can change the static UTM generation (created using KDCDEF) dynamically without
interrupting the application run. The WinAdmin and WebAdmin graphical administration
programs are available to you for this purpose. These allow you to modify objects in the
generation, add new objects to it or delete objects from it. However, you can also write your
own administration programs on the basis of the KDCADMI program interface.

The following table provides an overview of which object types of a UTM generation can be
created, modified and deleted in the current version of UTM:

* It does not make sense to create or delete the application parameters. The openUTM manual “Administering Applications” and
the WinAdmin and WebAdmin online help systems describe which parameters can be changed.

KDCDEF statement and operand
for object type

Meaning of the object type Create Modify Delete

CLUSTER Parameters for a UTM cluster application No Yes No

CLUSTER-NODE Address components and base names of a
node application

No Yes No

CON LU6.1 connections Yes No Yes

KSET (+ LOCK operand) Access authorizations (key sets)
(+ access protection)

Yes Yes Yes

MAX Application parameters and maximum values --* Yes* --*

LOAD-MODULE (BS2000 systems) Load modules No Yes No

LPAP LPAP partners for LU6.1 No Yes No

LSES Sessions for LU6.1 Yes Yes Yes

LTAC TACs for LU6.1 partners and OSI TP partners Yes Yes Yes

LTERM LTERM partners of clients and printers Yes Yes Yes

MUX (BS2000 systems) Multiplex connection No Yes No

OSI-CON Connection for OSI TP partners No Yes No

OSI-LPAP OSI LPAP partners for OSI TP No Yes No

PROGRAM Program units Yes No Yes

PTERM Clients and printers Yes Yes Yes

SHARED-OBJECT
(Unix/Windows systems)

Shared objects No Yes No

TAC Transaction code and TAC queues Yes Yes Yes

TACCLASS TAC classes No Yes No

TPOOL LTERM pools No Yes No

USER User IDs Yes Yes Yes

Administering UTM applications Changing the generation dynamically

Concepts and Functions 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

It is also possible to delete RSA keys and create new keys. By default, RSA keys are
created in the KDCDEF run in accordance with the entries for PTERM, TAC and TPOOL.

All dynamic changes to the UTM generation are subject to transaction management. In
other words, the change is carried out either in its entirety or not at all. If you use WinAdmin,
you can also group a number of steps together in a transaction (change the properties of
multiple users at once, for example).

When objects are to be created dynamically, sufficient storage space must be reserved at
generation with KDCDEF.

The openUTM manual “Administering Applications” tells you which objects and
parameters can be changed dynamically and how this is done (look for information
on the KDCADMI program interface and transaction management).

Automatic administration Administering UTM applications

168 Concepts and Functions

9.7 Automatic administration

If you wish to use the event management options provided by openUTM, you can automate
administration activities as described below.

There are two ways of doing this.

● openUTM signals a certain event (e.g. the loss of a connection) by sending a UTM
message to the destination MSGTAC. This message automatically activates the
MSGTAC event service. The MSGTAC routine reads in the message, evaluates it, and
initiates the appropriate administration function.

The following preparations are required here:

– Assign the destination MSGTAC to all UTM messages relevant for administration.
The UTM tool KDCMMOD (KDC Message MODify) is provided for this purpose.

– Define the MSGTAC routine as a KDCS program unit into which messages are read
using the KDCS call FGET. Evaluation of the messages is easy to program, since
openUTM provides data structures that correspond to the structure of the
messages (in the COPY element KCMSGC for COBOL, and in the header file
kcmsg.h for C/C++). Use FPUT or DPUT calls to initiate the corresponding adminis-
tration functions.

– During generation, add the modified message module to the configuration using the
KDCDEF statement MESSAGE, and assign the transaction code KDCMSGTC to
the MSGTAC routine using the KDCDEF statement TAC.

Link the compiled message module and MSGTAC routine into the application
program.

The openUTM manual „Programming Applications with KDCS” contains further
information on the MSGTAC event service, as well as sample MSGTAC routines in
C and COBOL.

● Automatic administration is possible using the message destinations USER-DEST-n
(n=1,2,3,4) in exactly the same way as using MSGTAC.

– Assign an asynchronous TAC to a message destination USER-DEST-n using the
KDCDEF statement MSG-DEST and then assign the message destination
USER_DEST-n to the relevant UTM messages using the KDCMMOD utility
program.

– You can then read the messages and issue administration calls in the program
assigned to the asynchronous TAC – in the same way as in the MSGTAC routine.

Administering UTM applications Administering message queues and printers

Concepts and Functions 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k0

9

9.8 Administering message queues and printers

openUTM provides the KDCS call DADM (Delayed free message ADMinistration) for
administering UTM-controlled and service-controlled message queues. This call allows you
to:

– request an overview of the contents of a queue
– request specific information on individual jobs in the queue
– bring individual jobs forward
– delete individual jobs
– delete all the jobs in a queue
– move messages from the dead letter queue.

The KDCS call PADM (Printer ADMinistration) is provided for administering printers, and
offers the following options:

– confirm or repeat print jobs
– switch between acknowledgment mode and automatic mode
– request information on a printer or print job
– change a printer assignment
– lock and unlock printers, establish and shut down connections to printers

These calls are implemented via the KDCS program interface, and not via the adminis-
tration interface. Full administration authorization is therefore not essential for day-to-day
activities such as the cancellation of print jobs or the confirmation of important printouts
such as checks: during generation, you can define print control LTERMs to allow users to
administer the printers and print queues they normally use without requiring administration
authorization. Administration authorization will, however, still be required for the adminis-
tration of “exotic” printers and queues.

openUTM supplies the sample programs KDCDADM and KDCPADM, which provide direct
access to all features of the DADM and PADM calls.

Message queues and printers can also be administered using WinAdmin (page 161) or
WebAdmin (page 163).

Further information on administering message queues and printers, and on the
sample programs, can be found in the openUTM manual “Administering Applica-
tions”.

Administering message queues and printers Administering UTM applications

170 Concepts and Functions

Concepts and Functions 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

10 Security functions

Enterprise-wide, integrated IT solutions would be inconceivable without appropriate
security functions. openUTM offers comprehensive, distinct, clearly structured security
concepts, which allow for open solutions in situations where these were previously not
possible for security reasons.

The openUTM security functions include:

● system access control functions (identification, authentication), even with client/server
communication and distributed processing via OSI TP

● data access control functions (authorization)

● system and data access control, even with distributed processing

● encryption of passwords and user data for client/server communication

● an additional two-level authorization concept specially designed for administration
(see section “Authorization concept” on page 165)

● the option of using the security mechanisms of external resource managers

System access control Security functions

172 Concepts and Functions

10.1 System access control (identification and authentication)

openUTM offers the following system access control options:

– definition of logical access points for clients and partner servers
– user IDs and passwords when using terminals
– user IDs and passwords when using client programs
– user IDs and passwords when using OSI TP partner applications (cross-application

user concept)
– system access control by means of ID cards when using terminals
– use of Kerberos in BS2000 systems when using terminals
– silent alarm in the case of repeated failed attempts to gain access
– automatic connection shutdown in the event of repeated failed attempts
– user-defined sign-on checks - SIGNON event service

These options are explained briefly in the following sections. The precise format of
the corresponding generation statements can be found in the openUTM manual
“Generating Applications”. The KDCADMI calls are described in detail in the
openUTM manual “Administering Applications”.

Definition of logical access points for clients and partner servers

All clients and partner servers who wish to use a UTM application must be known to the
application. This is achieved by assigning a logical access point to the client or partner
server, which has been defined in the UTM application configuration.

LTERM partners - access points for clients

The logical access points for clients are known as LTERM partners (Logical TERMinal), and
are generated using the KDCDEF statement LTERM. The KDCDEF statement PTERM
(Physical TERMinal) is used to assign a “real” client to the LTERM access point. LTERM
partners and PTERM assignments can also be defined dynamically while the application is
running (KCADMI call KC_CREATE_OBJECT).

Security functions System access control

Concepts and Functions 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

Figure 32: Connecting clients via LTERM partners

In the sample configuration in figure 32, clients A, B, and C can work with the UTM appli-
cation. Although client D has a line to the server system, it cannot access the UTM appli-
cations, since it has not been assigned an LTERM partner in the application configuration.

If you wish, you can make this strict assignment system more flexible through the use of
LTERM pools. LTERM pools allow you to provide a defined number of clients with access
to the UTM application without explicitly assigning an LTERM partner to each client. If you
use an LTERM pool, each client that wishes to connect to the UTM application and that has
not been generated explicitly is automatically assigned an LTERM partner from the pool.

(OSI) LPAP partners - access points for partner servers

The logical access points for partner servers are known as LPAP partners (Logical Partner
APplication) or, when using the OSI TP protocol, OSI LPAP partners. They are defined
accordingly using the KDCDEF statements LPAP or OSI-LPAP. The KDCDEF statements
CON (CONnection) and OSI-CON can be used to assign the “real” partner application.

UTM application

LTERM for
client A

Server system

Client A

LTERM for
client B

LTERM for
client C

Client B Client C Client D

System access control Security functions

174 Concepts and Functions

Definition of user IDs and passwords

It is possible to define user IDs for UTM applications either during generation using the
KDCDEF statement USER, or dynamically using the KDCADMI call
KC_CREATE_OBJECT.

If a UTM application is generated with UTM user IDs, then it is possible to define user-
specific passwords.

When defining passwords, it is possible to impose conditions, such as a minimum length
and a certain level of complexity. You can also set the minimum and maximum validity
period for the password of a user.

The passwords and user IDs are stored in an encrypted form by openUTM, i.e. they cannot
be recognized in a dump. Passwords are transmitted in an encrypted form when communi-
cating with clients and terminal emulations if they support encryption.

Users can change their own password while the system is running if a corresponding
service has been created for the UTM application.

User IDs and passwords when using terminals

All terminal users who wish to work with a UTM application must identify themselves to the
application by specifying their user ID. This sign-on check is also known as KDCSIGN. If a
password has also been generated, then the password must also be specified.

Terminal users can change their password themselves when signing on (only possible for
hidden passwords in UTM (BS2000)).

User IDs and passwords when using client programs

The openUTM identification and authentication concept is also available when using
terminals and openUTM client programs.

UPIC clients and OpenCPIC clients

UPIC clients and OpenCPIC clients transfer user IDs and passwords to the UTM application
by means of special calls:

– With CPI-C, the calls Set_Conversation_Security_User_ID and
Set_Conversation_Security_Password are used.

– With XATMI, the usrname and passwd parameters of the tpinit call are used.

When using openUTM client with the UPIC carrier system, you can also change the
password (Set_Conversation_Security_New_Password call).The client can determine whether
the validity period of a password has expired by means of a return code.

Security functions System access control

Concepts and Functions 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

Before starting a service, openUTM validates the authorization data transferred by the
client, and assigns the respective user ID and the corresponding authorization profile (see
page 178). This is similar to the KDCSIGN of a terminal user.

A single client program can thus run under several different user IDs with their own
individual authorization profiles.

TS applications

The identification and authentication concept of openUTM is only available to you when
using transport system applications if you have defined a sign-on service for this transport
system access point (see page 177).

The sign-on is valid for TS applications as long as the connection is available. When the
connection is cleared, openUTM starts the sign-on service, validates the authorization data
passed by the sign-on service, and assigns the corresponding user ID and the corre-
sponding authorization profile for the duration of the connection.

If a client program does not transfer any authorization data, then a connection user ID
permanently assigned to the LTERM partner is signed on. Clients with no protocols or inter-
faces for transferring authorization data (e.g. transport system applications) can thus
access UTM applications - but only with a authorization profile of the connection user ID.

 Detailed information on the security concept when connecting client programs can
be found in the openUTM-Client manuals.

User concept for server-server communication via OSI TP

openUTM’s user concept is available globally in the context of server-server communi-
cation via OSI TP. When addressing the partner, you can select a security type in the APRO
call:

N (none)
No authorization data will be passed to the job receiver.

S (same)
The user ID under which the local service is running will be passed to the job receiver.

P (program)
Values specified explicitly in the program as the user ID and password will be passed
to the job receiver.

System access control Security functions

176 Concepts and Functions

System access control by means of ID cards

The user IDs for a UTM application can be configured, such that a special ID card is
required to access the application. For this purpose, a corresponding reading device must
be available at the terminal. If the ID card is removed from the reader while the UTM appli-
cation is running, openUTM shuts down the connection to the terminal. In the case of
terminals with appropriate reading devices, access to the UTM application can thus be
controlled by means of a user ID, a password, and a valid ID card.

Using Kerberos with openUTM in BS2000 systems

For terminals, openUTM in BS2000 systems together with SECOS permits the use of
Kerberos (RFC1510). Kerberos is network authentication protocol developed at the Massa-
chusetts Institute of Technology (MIT). It is a security system based on a cryptographic
encryption schemes. When using Kerberos for authentication, passwords are not passed
as plain text over the network. This prevents passwords from being intercepted in the
network. Furthermore, there is no need to administer the passwords for a user for different
applications, i.e. Kerberos permits a single sign-on for different applications.

Kerberos works with symmetric encryption, which means all keys are available at two
locations; one with the owner of a key (principal) one at the KDC (key distribution center).

Silent alarm in the case of repeated failed attempts to gain access

Following several consecutive failed attempts on the part of a client or OSI TP partner to
sign on to a UTM application, openUTM sends a message internally to the default desti-
nation SYSLOG (system log file) or to MSGTAC (optional) to signal the possibility of illegal
access attempts. The sign-on attempts do not need to be performed on the same client.
Unsuccessful user sign-on attempts can therefore also be monitored when access is
performed via a terminal pool.

You are thus given the opportunity to take appropriate measures, e.g. by means of
automatic administration (see page 168). In the configuration, you can the define the
number of permitted failed access attempts, after which this message is to be generated.

Automatic timeout

During generation, you can define the maximum time that the UTM application should wait
for terminal input after the end of a transaction - or after dialog output during a transaction.
If no data is entered within this period, then the connection to the client is cleared down. If
the client is a terminal, then a message is also output. If terminal users forget to sign off
from the UTM application after completing their work, for instance, the automatic timeout
mechanism reduces the possibility of unauthorized access to the UTM application.

Security functions System access control

Concepts and Functions 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

User-defined sign-on checks - SIGNON event service

When signing on to a UTM application, predefined UTM messages are output by default
requesting the terminal user to enter a user ID and password, and if necessary, to insert an
ID card.

However, you can use the SIGNON event service to customize the sign-on dialog for your
application, and to introduce your own authorization checks to supplement those of
openUTM. You can define multiple SIGNON services and thus design sign-on services
specifically for particular types (terminals, clients with the UPIC carrier system, transport
system applications, etc.).

openUTM supplies sample programs for a SIGNON service - both the compiled objects and
the COBOL sources. This SIGNON service, which implements a sign-on dialog with
formats, can be used without modification or adapted for your own dialogs.

Information on how to program and operate SIGNON services can be found in the
openUTM manual „Programming Applications with KDCS”.

Data access control Security functions

178 Concepts and Functions

10.2 Data access control (authorization)

UTM applications generally comprise a large number of services. Some of these must be
available to all users, while others must only be accessible to certain users. In the case of
services that have access to sensitive data, it makes sense to restrict access to a few
selected users. In addition, access can be further restricted by permitting security-relevant
accesses only via specific LTERM partners (access points). openUTM therefore offers you
the opportunity of specifying subtly differentiated, multi-level access rights in the configu-
ration of a UTM application.

openUTM offers you two access control methods for this. These offer the same options for
differentiation but use different concepts for viewing the UTM objects:

● the user-oriented lock/key code concept

● the role-oriented access list concept

The two methods can be combined in a single application, but you must opt for one of the
two methods for a specific object.

10.2.1 Lock/key code concept

The lock/key code concept allows you to determine, for example, that only users or client
programs with a particular type of authorization can use particular services of the UTM
application UTM. You can also specify that signing on under a user ID is only possible via
certain LTERM partners (access points) or that certain services can only be started via
specific LTERM partners. It is thus possible to restrict the authorization of a user to start a
particular service to the use of a specific, particularly secure terminal or client system.

The objects to be protected (e.g. LTERM partners, transaction codes assigned to services)
are provided with a lock code, which takes the form of a logical number lock. Key codes are
defined for user IDs and LTERM partners. If a key code matches the lock code of a
protected object, access is granted to this object.
A user ID or an LTERM partner generally has access to a number of services, and therefore
has several key codes. The individual key codes are combined to form key sets.

The lock/key code concept results in the following effects:

– A terminal user or a client program can sign on only if the specified user ID is assigned
a key code that matches the lock code of the relevant LTERM partner.

– A terminal user or a client program can call a particular service only if the key sets of
both the respective user ID and the LTERM partner contain a key code that matches
the lock code of the transaction code.

The diagram on the next page shows an example of how to use the lock/key code concept.

Security functions Data access control

Concepts and Functions 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

Example of how to use the lock/key code concept

Figure 33: Data access control using the lock/key code concept

A user with the user ID “ABC” wishes to work with the UTM application “Customer”. He must
first identify himself to the UTM application by specifying his user ID and, if necessary, a
password.

The key set of user ID “ABC” contains the key codes 1, 2, 4, 7, 11 and 12. The user can
thus sign on via the client assigned to LTERM partner A (lock code 1), or via the client
assigned to LTERM partner B (lock code 4). LTERM partner C is secured with lock code 9.
However, since user ID “ABC” does not have the corresponding key code, any attempt to
sign on via the client assigned to LTERM partner C will be rejected by the UTM application.

The user can only start a service if both his user ID and the LTERM partner have the key
code that matches the lock code of the corresponding transaction code (service TAC).

LTERM partner A has the key codes 1, 2 and 3. However, since user ID “ABC” is missing
key code 3, the user can only start the “ENTER” (lock code 1) and “MODIFY” (lock code 2)
services via this LTERM partner.

LTERM A 1,2,3

Lock code Key set

USER
‘ABC’

1,2,4
7,11,12

Key set 1

ENTER1

USER
‘XYZ’

4,5
7,12

Key set
LTERM B 4,5

Lock code Key set

7

LTERM C 5,6

Lock code Key set

9

MODIFY2

DELETE3

ORDER4

CANCEL5

LIST6

Lock codes

User IDs LTERM partners Service TACs

UTM application ‘Customer’

Data access control Security functions

180 Concepts and Functions

10.2.2 Access list concept

When the access list concept is used, users are grouped together by their roles or
functions within the company (porter, clerical worker, personnel worker, head of
department, administrator, controller, chief executive officer, etc.). A user can, of course,
have more than one role. Each role is mapped to a key code.

● The administrator assigns each user of a UTM application one or more roles (e.g.
clerical worker, head of department, etc.).

● The access list is then used to specify which user groups (clerical worker, controller,
etc.) have access to the objects (services and TAQ queues) to be protected.

● If you have defined “personnel worker” as role 2, for example, and “chief executive
officer” as role 1, you can specify that only these user groups are to have access to the
“Personnel” service by assigning the service an access list containing the codes
1 and 2.

● You assign the user a key set that contains all the user’s roles (key codes).

If you use the WinAdmin or WebAdmin administration tool to define access lists and key
sets, you can also use meaningful role names instead of numeric codes (UTM converts
these symbolic names internally into numeric codes).

LTERM partners can only be protected by means of a lock code. When you use access lists,
you should, however, do without the additional data access control of the LTERM partners
by means of lock codes (i.e. you should not specify the LOCK operand of the LTERM or
TPOOL statement). By assigning a suitable key set to the LTERM partner, you can still
ensure that it is only possible to access security-relevant data via particular LTERM
partners.

This variant also has the advantage that the key codes in the key set of the LTERM partner
do not have to be in the key set of the user. A number of key codes can thus be reserved
in an application for access via LTERM partners, for example, because, when a service is
accessed, it is enough if only one of the roles of the accessing user is in the corresponding
access list, and one of the key codes of the LTERM partner.

If you want to protect a service or a queue by means of an access list, you have to:

– define the access list by means of the KSET statement
– assign the access list to the service or queue by means of the ACCESS-LIST operand

of the TAC statement
– define the user-specific key sets by means of the KSET statement
– assign the desired key set to the user by means of the KSET parameter of the USER

statement

Security functions Data access control

Concepts and Functions 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

If you also want to specify that access to security-relevant data is only possible via certain
LTERM partners, assign these LTERM partners the appropriate key sets by means of the
KSET parameter of the LTERM or TPOOL statement.

A service or TAC queue cannot be accessed unless both the user and the LTERM partner
via which the user signed on have at least one role in the access list of the service or queue.

Personnel administration example

In this example, the following roles exist for users and LTERMs:

1: Chief executive officer

2: Clerical worker

3: Telephone operator

10: LTERM with high security level

11: LTERM with normal security level

The application has the services PAYROLL (payroll accounting), PERSDATA (for editing
personnel data) and PHONE (for obtaining telephone lists).

Data access control Security functions

182 Concepts and Functions

This can be illustrated as follows:

Figure 34: Data access control with the access list concept

A user can only start a service when the key set of the user ID and the key set of the LTERM
partner via which the user signs on contain a key contained in the access list of the service:

● The user SMITH is the chief executive officer and the only one permitted to call all the
services. To access the PAYROLL service, for security reasons he must sign on via the
client that is assigned to the LTERM partner LTERM1.

● The users JONES and HARRIS are personnel clerical workers and can call the
PERSDATA and PHONE services (via any LTERM).

● The user KELLY is a telephone operator and can only access the PHONE service.

USER
“SMITH“ 1

Key set

USER
“JONES“ 2

Key set

USER
“HARRIS“ 2

Key set

USER
“KELLY“ 3

Key set

10

Key set

PERSDATA service

Access list

1,2,10,11

PHONE service

Access list

1,2,3,10,11

PAYROLL service

Access list

1,10

User IDs LTERM partners Service TACs

UTM application “Personnel management”

LTERM1

11

Key set

LTERM2

11

Key set

LTERM3

11

Key set

LTERM4

Security functions System and data access control with distributed processing

Concepts and Functions 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

10.3 System and data access control with distributed processing

The powerful security functions offered by openUTM are also available in cases where
several UTM applications interact via server-to-server communication with distributed
processing.

System access control through logical access points

UTM applications can only interact with each other if logical access points have been
defined in each application for the remote partner applications (from the point of view of the
application). These access points are known as (OSI) LPAP partners (see also page 173).

If you are involved in distributed processing via OSI TP, you can also use the UTM user
concept globally (see page 175).

Data access control with distributed processing

The openUTM lock/key code concept and the access list concept are also available for
distributed processing. The security measures are defined when generating the applica-
tions.

● Security measures in the job-submitting application:

When generating an application, you define which services of a remote partner appli-
cation are to be accessible. This is achieved by defining a local transaction code (LTAC)
for each remote service to be used. As a rule, the application cannot access services
for which LTACs have not been defined.

If you wish to impose additional data access control, you can provide the individual
LTACs with lock codes and access lists. A service of the local application can only
request a remote service if the user who started the local service has the appropriate
key codes.

● Security measures in the partner server application:

In the partner server application, the job-submitting application is assigned a key set.
The service requested by the job-submitting application is started only if this key set
contains a key code that matches the lock code or the access list of the requested
service.

To access a remote service, therefore, the local application must match the lock code or the
access list of the LTAC. The key set assigned by the partner server application to all
requests from the job-submitting application must also contain a key code that matches the
lock code or the access list defined in the partner server application.

System and data access control with distributed processing Security functions

184 Concepts and Functions

Example: Lock/key code concept for distributed processing

Figure 35: Data access control with the lock/key code concept for distributed processing

In the example shown in figure 35, server-to-server communication between application A
and application B is possible, since an LPAP partner has been generated in each appli-
cation for the respective remote application. In application A, LTACs have been generated
only for the remote services SB2 and SB3. Service SB1 is therefore not available to appli-
cation A. A user that signs on to application A under the user ID “UA1” has the key code 1,
and can therefore access service SA1 in application A.

USER
‘UA1’ 1,5,8 1

4,6

LPAP for
app. B

Service SA1

4 Service SA2

6 Service SA3

Key set

Key set

Application A

USER
‘UB1’ 2,7 2 2

LTAC for
SA2

8
LTAC for

SA3

2,6,9

LPAP for
app. A

Service SB1

6 Service SB2

9 Service SB3

Key set

Key set

Application B

5
LTAC for

SB2

8
LTAC for

SB3

Security functions System and data access control with distributed processing

Concepts and Functions 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

Since the user also has the appropriate key codes for the two LTACs, service SA1 can
request services SB2 and SB3 via these LTACs. The key set assigned by application B to
all requests from application A contains appropriate key codes for services SB2 and SB3.
All requirements are thus fulfilled in the configuration of both application A and application
B: service SA1 started under user ID UA1 in application A can access services SB2 and
SB3 of application B.

Example: Access list concept for distributed processing

Figure 36: Data access control with the access list concept for distributed processing

USER
“UA1” 1

Key set

Application A

USER
“UB” 2

6

LPAP for
appl. A

Key set

Key set

Application B

Service SA1

Access list

1,3 LTAC for SB2

Access list

1,4

LTAC for SB3

Access list

1,5 Service SA2

Access list

4,6

4

LPAP for
appl B

Key set

Service SA3

Access list

4,6

Service SB1

Access list

2,3

Service SB2

Access list

6,9

Service SB3

Access list

6,7,9

LTAC for SA3

Access list

3,5

LTAC for SA2

Access list

2,5

System and data access control with distributed processing Security functions

186 Concepts and Functions

In the example shown in figure 36, server-to-server communication between application A
and application B is possible because in both of the applications there is an LPAP partner
generated for the remote application. In application A, LTACs are generated only for the
remote services SB2 and SB3. The service SB1 thus cannot be used from application A.

A user who signs on to application A under the user ID “UA1” has the role “1”. This allows
the user to use the service SA1 in application A. Because the role “1” also permits access
to the two LTACs, the service SA1 can request the remote services SB2 and SB3 via these
LTACs. In application B, the LPAP has the key “6” for application A, which permits the
services SB2 and SB3 to be called.

All the prerequisites are thus fulfilled to allow the service SA1 started under the user ID UA1
in application A to access the services SB2 and SB3 of application B. The same applies by
analogy when the user UB1 wants to access the service SA2 in application A via the service
SB1.

Security functions Encryption

Concepts and Functions 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

10.4 Encryption

Clients often access UTM services via open networks. This can allow unauthorized persons
to read data transmitted on the line and pick out passwords for UTM users or read sensitive
user data. openUTM supports the encryption of passwords and user data in connections to
UPIC clients to prevent this from happening.

openUTM uses a combination of the AES method (Advanced Encryption Standard) and the
RSA method, named after its authors Rivest, Shamir and Adleman, for encryption. The AES
key is generated by the UPIC client for each session.

The RSA key pair is generated by openUTM and consists of a public key and a private key.
Several key pairs with different key lengths can be generated in an application. This
enables several encryption levels to be implemented.

For legal reasons, the encryption functions for openUTM are delivered as a separate
product, openUTM Crypt, and must be installed separately.

Use of the encryption method

Data is encrypted and decrypted in the following steps.

● When the connection is established, the public RSA key associated with the generated
encryption level is passed to the UPIC client. If no encryption level has been generated
(NONE), then the longest currently available RSA key is passed.

● The UPIC client generates a connection-specific AES key. This is encrypted using the
public key and sent to the UTM application.

● Once the UTM application has decrypted the AES key correctly using the RSA key, the
client sends the encrypted data.

● openUTM decrypts the data using the AES key.

● All other data exchanged between client and openUTM on this connection is also
encrypted with the AES key.

It is also possible to read out the public RSA key and to have it securely stored locally on
the UPIC clients. In this case the client can check when a connection is established whether
the public key received matches the locally stored key („man-in-the-middle“ problem).

For security reasons, the RSA key pair of a UTM application should be replaced with a new
pair at regular intervals (by means of programmed administration or using
WinAdmin/WebAdmin). Administration facilities can be used to activate, deactivate and
delete RSA keys. It is therefore possible to distribute a newly generated RSA key to all
UPIC clients, to activate it and then to deactivate or delete the old key pair.

Encryption Security functions

188 Concepts and Functions

Encryption can be used in openUTM to control the access to the system by clients as well
as the access to certain services.

System access control

You can specify in the UTM configuration for each client and each group of clients if and to
what extent the messages and passwords are to be encrypted. There are three cases in
this regard:

1. The client must always perform encryption, otherwise it will not gain access to the UTM
application. Several encryption levels can be defined. The client must perform
encryption to at least the requisite encryption level.

2. The client is allowed access without encryption, but it must encrypt when a service
explicitly demands it to encrypt (see below under “Access protection”).

3. The client is a trusted client and does not need to encrypt.

Access protection

openUTM can protect individual services. A client may only access such services when it
is a trusted client or when it can perform encryption to at least the requisite encryption level.

If a client that is not a trusted client wants to access a service with this kind of protection,
then it may be required to send an encrypted input message. openUTM sends the output
message back in encrypted form even if the client has started the service without an input
message or the service was started through service chaining.

Information on encryption for clients and service can be found in the openUTM
manual “Generating Applications” under the keyword ENCRYPTION-LEVEL and in
the openUTM manual “Administering Applications” under the keyword
KC_ENCRYPT.

Security functions Security functions of external resource managers

Concepts and Functions 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

0

10.5 Security functions of external resource managers

If your UTM applications interact with external resource managers, e.g. database systems,
you can also use the security mechanisms of these resource managers. The openUTM
security mechanisms are kept completely separate from those of the database system, and
there is no delegation, i.e. the security functions do not “pass through” individual users.
From the point of view of the database, the UTM application functions as a user.

This has a number of advantages:

● clear differentiation between the “Application” and “Data storage” tiers

● data access control on the service level rather than the data level

● no unnecessary redundancies in the authorization profiles, thereby reducing the effort
involved in administration and eliminating inconsistencies (e.g. anomalies in modifica-
tions)

● faster access times and more efficient utilization of resources in the database system
(administration tables, caches)

You can specify the access data for Oracle databases interfaced to openUTM as an XA
Resource Manager in clear text in the start parameters or define this data when generating
the UTM application.

Security functions of external resource managers Security functions

190 Concepts and Functions

Concepts and Functions 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
an

ua
ry

 2
01

5
 S

ta
n

d
14

:2
4.

44
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

60
1

_K
on

fu
\e

n\
ko

nf
u

_e
.k

11

11 High availability with standalone UTM
applications

One of the most important demands made of business-critical applications is that they
should be available 24 hours a day, 365 days a year. System failures, and thus application
failures, can be very costly, not to mention the damage to the image of the company running
the application.

In addition to the computer configuration, the operating system is central to ensuring high
availability. No operating system can provide 100% availability, but the BS2000 opering
system, the Unix systems and the Windows systems do offer a large number of functions
that go a long way toward achieving this.

openUTM supports the high availability offered by these operating systems by means of
global transaction management and restart capability. openUTM and the operating system
thus complement each other ideally and together ensure practically fault-tolerant operation
of the application.

11.1 High availability in BS2000 systems

The high-availability functions offered by BS2000 systems include the dynamic reconfigu-
ration of the hardware and software, dynamic network reconfiguration, time switching with
no interruptions, and the minimization of downtimes.

Unplanned downtimes can be minimized with the aid of HIPLEX AF. HIPLEX stands for
highly integrated systems complex; it is a concept designed to support a high-availability
/high-load network involving a number of BS2000 servers.

HIPLEX AF enables the high availability of applications by means of a multiserver concept.
If one computer fails, the applications monitored by HIPLEX AF and the resources they
require are automatically switched to an intact computer. Automatic failure detection and
the avoidance of the need to restart the system thus keep downtime to an absolute
minimum.

High availability in BS2000 systems High availability with standalone UTM applications

192 Concepts and Functions

Together with openUTM, HIPLEX can utilize its complete potential because openUTM
offers global transaction management and comprehensive restart capabilities, amongst
other things, right up to clients. This means that processing can continue after a restart on
a different computer without losing data or allowing inconsistencies to arise.

In addition to the way it masters the problem of system failures, HIPLEX AF can also
increase availability after an application has failed, as well as facilitating a load-sharing
network where applications are deliberately swapped out to another computer.

Using HIPLEX AF will offer you the following benefits:

● Error/fault detection and handling is automated.

● The network address of the application is retained if the application is swapped out to
another computer. This means that the communication partners merely need to re-
establish the connection (provided that MAX HOSTNAME was specified during
KDCDEF generation).

● If end users are accessing the openUTM application via OMNIS and if an application is
swapped out, the connection to the end users will still be retained despite termination
of the application.

● HIPLEX AF is based on standard products and can be implemented with no need for
customized programming or for interference with applications.

For further information, please refer to the manual
“HIPLEX AF Automatic Switching of Applications between BS2000 Systems”.

High availability with standalone UTM applications High availability in Unix systems

Concepts and Functions 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
an

ua
ry

 2
01

5
 S

ta
n

d
14

:2
4.

44
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

60
1

_K
on

fu
\e

n\
ko

nf
u

_e
.k

11

11.2 High availability in Unix systems

Failure of computer systems, hardware or software can result in high costs in some appli-
cations. Preventive measures are therefore required as a prerequisite for smooth operation:

– the use of cluster configurations
– special disk peripherals such as RAID systems
– software that identifies faults and enables you to switch quickly from defective hardware

to backup systems
– distribution of a failover cluster on remote computing centers

These measures, together with openUTM, can be utilized to their full potential because
openUTM offers global transaction management and comprehensive restart capabilities
right up through the client. This makes openUTM especially suited for use in clusters
because processing can be continued on a different system after a restart without losing
any data or allowing inconsistencies to arise.

Solaris and Linux systems can, for example, be used as clusters with PRIMECLUSTER
RMS. This software detects failures, performs auto recovery and/or automatically switches
from defective systems to intact systems (auto-switchover). UTM applications that have
been prepared accordingly can continue operation on the intact system immediately or after
a system restart.

More information on this topic can be found in the manuals for PRIMECLUSTER on
Solaris or PRIMECLUSTER on Linux.

High availability in Windows systems High availability with standalone UTM applications

194 Concepts and Functions

11.3 High availability in Windows systems

Windows systems support high availability by means of:

– the use of cluster configurations
– special disk peripherals such as RAID systems
– software that identifies faults and enables you to switch quickly from defective hardware

to backup systems

These measures, together with openUTM, can be utilized to their full potential because
openUTM offers global transaction management and comprehensive restart capabilities
right up to the client. This makes openUTM especially suited for use in clusters because
processing can be continued on a different system after a restart without losing any data or
allowing inconsistencies to arise.

Windows systems using PRIMERGY hardware can be used as follows as a cluster:

● Symmetric cluster with the Microsoft Cluster Server:
A Microsoft Cluster Server configuration currently consists of two independent
Windows-based servers that are connected via a high-speed connection and that
presents itself to the user as a single server system. The clients in the network can
access all resources of the cluster transparently. If a server crashes, then the other
servers automatically take over its function. Both servers can be run in mission-critical
mode, i.e. they work productively on their own applications and also monitor each other.

● Asymmetric cluster with the PRIMERGY ServerShield and SCSI switch:
The cluster consists of primary and secondary servers. The primary server processes
the business critical tasks by default while the secondary server assumes less critical
tasks. The secondary server monitors the primary server. If it detects an error in the
primary server, then it properly terminates its own applications and assumes the data
of the primary server. The new start of the secondary server with the data and applica-
tions of the primary server quickly restores the availability of the overall system.

Concepts and Functions 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

2

12 High availability and load distribution with
UTM cluster applications

Downtimes are unacceptable wherever applications are deployed in mission-critical
corporate areas. High availability and the ability to distribute load automatically at peak load
times are the highest priorities.

openUTM supports high availability through the UTM cluster functionality. In addition,
openUTM also permits load distribution by means of LPAP bundles for LU6.1 and OSI TP
connections as well as the UPIC load distributor for UPIC clients.

 For basic information on the openUTM cluster functions, refer to section “UTM
cluster application” on page 33.

12.1 High availability with UTM cluster applications

The figure below provides an overview of the central high availability functions provided by
a UTM cluster application::

Figure 37: Central high availability functions of a UTM cluster application

UTM cluster

Application monitoring

Online import of application data

Modification of application program
and use of UTM revision levels

application

Global cluster administration of
user data

High availability UTM cluster application

196 Concepts and Functions

Application monitoring and measures on failure detection

It is possible to monitor UTM cluster applications without the need for additional software.
The node applications monitor each other. If a node application fails, it is possible to trigger
follow-up actions.

Figure 38: Circular monitoring between three node applications

When a node application is started, it is decided dynamically what other node application is
to be monitored by this note application and what other node application monitors this node
application. These monitoring relationships are entered in the cluster configuration file.
When the application is terminated, the relationships are canceled. After a monitoring
relationship has been set up, the existence of the monitored node application is checked at
a specified interval that can be generated.

The availability of a node application is monitored within a multistage process in which, at
any time, the next stage is initiated if the stage that precedes it cannot exclude the possi-
bility that the monitored application has failed.

● The first stage in this monitoring process is performed through the exchange of
messages.

● In BS2000 systems, the second stage consists of an attempt to determine the status of
the node application by accessing the corresponding job variable (with the base name
of the KDCFILE).

● The final stage consists of an attempt to access the KDCFILE of the monitored appli-
cation in order to check whether the monitored application is still active.

UTM cluster application

Node
application 1

monitors

monitors

monitors

Node
application 2

Node
application 3

UTM cluster application High availability

Concepts and Functions 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

2

In the event that failure of a node application is detected, you can use a procedure or script
to initiate follow-up actions. The content of the procedure or script depends on the actions
and the platform on which the node applications are running and is defined by the user.

 For more detailed information on application monitoring in the cluster, see the
following manuals:

– openUTM manual “Using openUTM Applications under BS2000 Systems”

– openUTM manual “Using openUTM Applications under Unix Systems and
Windows Systems”

Global administration of application data in the cluster

Some application data such as the global memory areas GSSB and ULS and the service-
specific data relating to users is administered at global cluster level. This means:

● GSSB and ULS can be used globally in the cluster. As a result, the current contents of
GSSB and ULS are always available in every node application. Changes made to these
areas by a node application are immediately visible in all the other node applications.

● Service restarts are node-independent. Following the normal termination of a node
application, users can continue an open dialog service at another node application
provided that the service in question is not a node bound service. Such users can
continue working without delay and do not have to wait until the terminated node appli-
cation becomes available again.

The application data is administered in UTM cluster files which can be accessed by all the
node applications. A brief description of these files can be found in the section “UTM cluster
files” on page 35.

 For more detailed information on UTM cluster files in UTM cluster applications, see
openUTM manual “Using openUTM Applications under BS2000 Systems” or
openUTM manual “Using openUTM Applications under Unix Systems and
Windows Systems”.

Special characteristics of the LU.6.1 link

The LU6.1 protocol uses so-called sessions to perform communication. The sessions have
two-part names that must be known at both partners. The session name is therefore node-
specific. Since all node applications are generated in exactly the same way in UTM cluster
applications, all the session names are present in a node application, including the session
names used for the other node applications. To permit the UTM application to select an
appropriate session when establishing a connection to a partner application, the logical
name of the node application must also be assigned to each of the sessions on generation.

High availability UTM cluster application

198 Concepts and Functions

 For more detailed information on generating an LU6.1 link for a UTM cluster appli-
cation, see openUTM manual “Generating Applications” under "KDCDEF control
statements - sections CLUSTER-NODE and LSES" as well as under "Distributed
processing via the LU6.1 protocol".

Online import of application data

Following the normal termination of a node application, another running node application
can import messages to (OSI) LPAPs, LTERMs, asynchronous TACs or TAC queues and
open asynchronous conversations from the terminated node application. The imported data
is deleted in the terminated node application.

Online imports must be initiated at administration level.

 For more detailed information on the online import of application data in the cluster,
refer to the openUTM manual “Using openUTM Applications under BS2000
Systems” or openUTM manual “Using openUTM Applications under Unix Systems
and Windows Systems”.

Online application update

The use of UTM cluster applications permits genuine 7x24 operation. The ability to modify
the (static) configuration is an important aspect of high availability.

It is possible, while a UTM cluster application is running, to start up a new version of the
application program, make changes to the configuration or deploy a new UTM revision
level.

The operations necessary to do this are described below.

New application program

If you want to add new application programs to a UTM cluster application or modify existing
programs, you do not have to shut down the entire UTM cluster application to do so.

In addition to the possibilities for changing programs during operation – for example, by
adding programs at the administration level, rebinding the load module, exchanging the
load module – it is also possible to make changes to the application program during
operation. When you do this, you must briefly shut down the corresponding node applica-
tions in sequence. For example, in this way you can add a new load module to the appli-
cation or add programs in excess of the reserved space available (see openUTM manual
“Generating Applications”, RESERVE statement).

After you have added the application program, you can restart the relevant node application
with the new application program.

UTM cluster application Load distribution

Concepts and Functions 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

2

New configuration

If you want to make changes to the configuration of a UTM cluster application that are not
possible using the dynamic administration capabilities, it is not always necessary to shut
down the entire UTM cluster application.

To do this, you must regenerate your UTM cluster application. After generation, you must
take over the KDCFILE for each node application.

 For a detailed description of the procedure and the actions required for the
individual node applications, refer to the openUTM manual “Using openUTM Appli-
cations under BS2000 Systems” or openUTM manual “Using openUTM Applica-
tions under Unix Systems and Windows Systems”.

UTM revision levels

You can deploy UTM revision levels during system operation, i.e. some of the node appli-
cations can continue to run while the revision level is being implemented in the other node
applications.

To do this, you must shut down the node applications one after the other and then restart
them with the new revision level.

 For more detailed information on the online updating of UTM cluster applications,
refer to the following manuals:

– openUTM manual “Using openUTM Applications under BS2000 Systems”

– openUTM manual “Using openUTM Applications under Unix Systems and
Windows Systems”

Node recovery on another node computer

If a node application terminates abnormally due to a computer failure and cannot be
restarted rapidly on the failed computer then node recovery can be performed for this node
application on any other node computer in the UTM cluster.

This makes it possible to eliminate the consequences of the abnormal termination of a node
application, for example by releasing the ULS and GSSB memory areas that are global to
the cluster and are locked on the abnormal termination of the node application or by signing
off users who were signed on exclusively at the node application at the time of termination.

Following node recovery, node or cluster updates and online import operations are possible
again.

openUTM supports node recoveries even when interacting with databases. For this to be
possible, the associated database must provide the required functions. For details, see the
openUTM Release Notice.

Load distribution UTM cluster application

200 Concepts and Functions

 For more detailed information on the prerequisites for and configuration of node
recovery operations, see the following manuals:

– openUTM manual “Using openUTM Applications under BS2000 Systems”

– openUTM manual “Using openUTM Applications under Unix Systems and
Windows Systems”

UTM cluster application Load distribution

Concepts and Functions 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

2

12.2 Load distribution

In the case of distributed processing in a cluster, automatic load distribution is possible
using the LU6.1 and OSI TP protocols. It is also possible to distribute the load at UPIC
clients in order to balance the incoming load.

12.2.1 Load distribution for distributed processing

For communications between a standalone UTM application and a UTM cluster application
via the OSI TP or LU6.1 protocol, openUTM offers LPAP bundle functionality.

Figure 39: Communication between a standalone UTM application and UTM cluster application with load
distribution

Thanks to this functionality, jobs sent by the standalone application to the UTM cluster appli-
cation are distributed to the available node applications.

The LPAP bundles must be generated in the standalone UTM application.

 For more detailed information on automatic load distribution via (OSI) LPAP
bundles, refer to openUTM manual “Generating Applications”.

Node application 2

Node application 1

Node application 3

Load
distribution

UTM cluster application

Standalone
UTM application

Load distribution UTM cluster application

202 Concepts and Functions

Load distribution between two UTM cluster applications

The LPAP bundle concept is also applicable in situations in which UTM cluster applications
are present on both sides. If only one of the two UTM cluster applications sends requests
to the other party then it is only necessary to generate LPAP bundles in this UTM cluster
application. If both parties send requests to one another then LPAP bundles are required
on both sides.

12.2.2 Load distribution at UPIC clients

Jobs submitted by UPIC clients to the UTM cluster application are distributed across the
individual node applications of the UTM cluster application. One node application with
which the next UPIC communication is performed is randomly selected from a list of node
applications.

 For more detailed information on load distribution in UPIC clients, refer to the
manual „openUTM-Client for the UPIC Carrier System”.

12.2.3 Load distribution with Oracle® RAC

Optimum load distribution to the Oracle® RAC nodes can be achieved in a UTM cluster
application.

 For more detailed information on load distribution with Oracle® RAC, refer to the
openUTM manual “Using openUTM Applications under BS2000 Systems” or
openUTM manual “Using openUTM Applications under Unix Systems and
Windows Systems”.

Concepts and Functions 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

3

13 Fault tolerance and the restart function

openUTM not only protects your data and applications through the sophisticated mecha-
nisms for system and data access control described in the chapter “Security functions”, but
also guarantees security and consistency, even in the event of errors or faults. The effect
of errors in the application program remains local, and user errors are intercepted. Internal
validation routines detect system errors or inconsistencies and respond automatically.

Even if the server or operating system crashes, openUTM guarantees that no data will be
lost. If a fatal error is detected, the UTM application automatically terminates before any
damage can be done. Universal restart functions also ensure that you can continue working
immediately with consistent data as soon as all users have been restarted. See section
“The openUTM restart functions” on page 209 for more information.

This makes openUTM completely cluster-capable, i.e. processing can be continued on a
different system after the restart (see also chapter “High availability with standalone UTM
applications” on page 191ff).

13.1 Limiting program unit and formatting errors

openUTM limits the effect of errors in program units or formatting errors. Other transactions
and the application as a whole are not affected.

openUTM provides the following functions:

● In the case of minor errors or faults, openUTM outputs return codes which describe the
error. This gives the relevant program unit the opportunity to react accordingly to the
error or fault.

● Since UTM applications work with several processes in parallel, a serious error in an
application program results at worst in termination of the relevant process. UTM appli-
cations therefore do not have a single point of failure. A terminated process is automat-
ically restarted. Since the operation for rolling back all open transactions - including
those of external resource managers - is fully coordinated, data consistency is
maintained across all applications.

Limiting program unit and formatting errors Fault tolerance and the restart function

204 Concepts and Functions

● A local storage area is automatically assigned to each process of a UTM application
and contains current system data for a job or program run. The data area can only be
accessed by the local process, and access is controlled by means of a UTM system
code, i.e. the processes of a UTM application are isolated from each other.

● If dialog services are aborted due to a serious error, openUTM informs the client of the
error. The client can then start further services. If an asynchronous service is aborted,
the job is removed from the queue so that subsequent jobs can be started. Using
acknowledgment jobs, it is also possible to inform the job submitter of errors.

● If errors occur when formatting messages, openUTM detects these and reacts accord-
ingly:

– Dialog services are aborted. The relevant client is informed by means of a message
and can then start other services.

– After aborting an asynchronous service, openUTM removes the job from the queue.
Subsequent jobs can then be started unhindered.

● Each UTM program unit must end with a special UTM call. If you are working with the
KDCS program interface, this is the PEND call. This ensures, amongst other things, that
local storage areas are released. If an error has not been intercepted in the program
unit (with PEND ER in KDCS), openUTM issues a PEND ER call internally: in any case,
the process is shut down gracefully and a dump is automatically created.

● The KDCS storage areas KBPROG and SPAB can be defined at the end of a dialog
step using any character defined during generation. openUTM also checks whether a
program unit requires a larger storage area (KBPROG / SPAB) than requested during
generation.

Fault tolerance and the restart function Automatic checks

Concepts and Functions 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

3

13.2 Automatic checks

Detecting user errors

If a terminal user enters an illegal user command, openUTM responds with an appropriate
message.

If a terminal user presses illegal keys when filling out an input format, openUTM detects this
and outputs the relevant input format again. The terminal user is thus given the opportunity
to correct the erroneous input.

Consistency checks when starting the application

When starting the application, openUTM performs automatic consistency checks. For
instance, if an attempt is made to start an application using components from different UTM
versions, or if the configuration files (KDCFILE and possibly also UTM cluster files) do not
match or are inconsistent, openUTM aborts the startup process and outputs a message
describing the nature of the error.

Internal validation routines

The UTM code contains a series of internal validation routines. If errors or inconsistencies
are detected which may corrupt the application data, openUTM immediately terminates the
UTM application, closes all open files, and creates a specific UTM dump for each appli-
cation process. The UTM application can then be restarted with logically consistent data.
During an automatic restart, each client is informed of the processing state of its own
particular jobs.

Faults or crashes in local resources Fault tolerance and the restart function

206 Concepts and Functions

13.3 Faults or crashes in local resources

openUTM guarantees that no data will be lost, even if the local resources fail. For instance,
it offers protection against the problems described below.

Operating system error

If an operating system function informs openUTM that an error has occurred, then this error
is handled as an internal openUTM error, i.e. before any damage can be done, openUTM
immediately terminates the application with an appropriate error code.

Disk failure

To enhance data protection, it is possible to mirror the KDCFILE on different drives (hot
standby). This may result in a very slight increase in input/output times (by no means
doubled), but the effect on performance is negligible.

Hardware errors in terminals

If a terminal fails, the user can simply move to another terminal, sign on there under his/her
user ID, and resume the service started.

Even if the application operates without user IDs, the terminal user can immediately
continue working on another terminal if his/her terminal breaks down. In this case, however,
administration must assign the user another terminal.

If a defective terminal cannot receive asynchronous messages, it is possible to assign an
intact terminal to the relevant logical access point (LTERM partner) by administration. The
asynchronous messages are then output on this terminal.

Network failures or serious network faults

In the event of a network failure, the relevant network connections to openUTM are shut
down.

Loss of terminal connections

When the (sub)network has been restored, terminal users can sign back on to the UTM
application and continue working.

Fault tolerance and the restart function Faults or crashes in local resources

Concepts and Functions 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

3

Loss of printer connections

A network failure or a serious network fault can result in the loss of printer connections. This
also occurs if a logical print acknowledgment is not returned. openUTM uses logical print
acknowledgments to monitor the printing of messages. If a requested print acknowl-
edgment is not returned within a defined period, openUTM shuts down the connection to
this printer.

In all of these cases, openUTM automatically attempts to reestablish the connection. These
attempts are repeated at defined intervals. If the connection still cannot be reestablished,
the administrator can assign another printer. If you have a printer pool, the messages are
automatically output to another printer.

After the connection has been reestablished, the entire print process is repeated in the
following situations:

● The message to be printed was sent in full, but a print acknowledgment was not
returned within the defined period.

● Several parts of a message were sent, but the entire message was not printed in full.

To indicate the possibility of duplicate messages, openUTM sends an appropriate message
with each output attempt.

Errors that do not result in a loss of connection

Errors can occur when inputting or outputting messages. These may be due to hardware
errors in terminals or printers, or network faults. During input, such errors are detected by
the formatting system. In this case, openUTM outputs the last output message again, so
that the terminal user can repeat his/her input. If the terminal user identifies faulty output
messages (e.g. smudge characters), he/she can output the last message again (KDCDISP
user command).

If a printer is found to be faulty before openUTM has finished printing the entire print
message, then openUTM will clear down the connection. The message is output again as
soon as the connection has been reestablished.

Abnormal termination of a UTM application Fault tolerance and the restart function

208 Concepts and Functions

13.4 Abnormal termination of a UTM application

As described in the preceding sections, openUTM must abort a UTM application to protect
programs and data (abnormal termination) in certain exceptional situations. The application
is then automatically restarted by openUTM during the next start (see section “The
openUTM restart functions” on page 209).

When terminating the UTM application, openUTM performs the following tasks if possible:

● it shuts down connections to external resource managers (e.g. database systems)

● it closes all files

● it creates a UTM dump for each process of the UTM application for error analysis

● it terminates all processes

Following an abnormal termination of a UTM application, no attempt is made to restore the
consistency of the KDCFILE, which contains all data required to run a UTM application. For
security reasons, this should be postponed until the application is restarted.

Fault tolerance and the restart function The openUTM restart functions

Concepts and Functions 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

3

13.5 The openUTM restart functions

The openUTM restart functions ensure that services and jobs interrupted by errors, faults
or crashes can be resumed or repeated immediately with consistent data. It does not matter
if individual services (e.g. due to the loss of a connection) or entire UTM applications (e.g.
due to a server crash) have been aborted.

A requirement for this to function is that openUTM enters records containing restart infor-
mation in the KDCFILE while the application is running (transaction logging). openUTM
offers two function variants with different restart behavior.

13.5.1 The UTM-S and UTM-F variants

openUTM offers the two variants UTM-S and UTM-F for the operation of an application.
These two variants can be characterized as follows.

● UTM-S (UTM-Secure): a high level of security through universal restart functions

● UTM-F (UTM-Fast): high performance with limited restart functions

UTM-S works with comprehensive transaction logging of all user and administration data.
UTM-F, on the other hand, only executes transaction logging for administration data and
therefore requires fewer I/Os. For this reason, UTM-F has better performance, but does not
have complete restart capability. The two variants barely differ with respect to the adminis-
tration data. Details can be found in the openUTM manual “Administering Applications” in
the sections describing the corresponding administration calls.

You specify which variant a UTM application will use during generation of the UTM appli-
cation.

The two variants function in the same manner during operation. UTM-F also executes
transaction processing according to the “all or nothing” principle and guarantees the consis-
tency of the data when used in conjunction with one database system.

Differences between the two variants only become apparent after the end of the application
run (normal termination or an application crash):

In the case of standalone applications, for example, UTM-F does not save any user data
for the following restart (application warm start). In UTM cluster applications, UTM-F does
not save the user data until the user signs off.

The following sections describe in more detail how the two variants behave during a restart.

The openUTM restart functions Fault tolerance and the restart function

210 Concepts and Functions

13.5.2 Restart with UTM-S

Following abnormal termination of a UTM-S application (UTM-Secure), openUTM offers
enhanced, high-speed restart (= warm start) functions. All open transactions are reset to a
consistent state, interrupted services are restarted, and users can continue working with the
screen belonging to this consistent state (screen restart).

For this purpose, openUTM enters a record containing restart information in the KDCFILE
for each transaction during operation of the UTM-S application.

Consistency for interrupted transactions

However, openUTM does not simply roll back all open transactions. Instead it proceeds as
follows:

● Transactions that were undergoing end-of-transaction processing at the time of the
failure are handled differently by openUTM, depending on whether or not the transac-
tions of external resource managers were complete when the error occurred.

– If the transactions of the resource managers were not complete and were rolled
back when the resource manager was restarted, openUTM also rolls back the UTM
transaction.

– If the transactions of the resource managers were complete, openUTM also
completes all UTM transactions open at the time of the failure (commit).

This also applies to the case of distributed transactions.

● All transactions that had not yet undergone end-of-transaction processing at the time of
the failure are rolled back.

Restarting dialog services

Interrupted dialog services may be resumed under certain circumstances after an appli-
cation restart (service restart).

● If a user has an open service and has signed on via a sign-on service, then the sign-on
service decides if a service restart is to be performed or the service is to be terminated
abnormally.

● If a user has an open service and has signed on via a client program, then a service
restart must be explicitly requested by the client program, otherwise openUTM termi-
nates the service abnormally.

● If a user has an open service and has signed on via a terminal, then openUTM always
performs a service restart.

Fault tolerance and the restart function The openUTM restart functions

Concepts and Functions 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

3

The response of openUTM depends on whether or not the last action was closed with a
synchronization point. When a service is restarted, it is always reset to the last synchroni-
zation point.

 Detailed information on the restart procedure when connecting client programs can
be found in the openUTM-Client manuals.

Restarting background and output jobs

The openUTM transaction-oriented queuing mechanism ensures that all queues containing
background or output jobs are retained following a failure that openUTM has accepted for
processing and which have not yet been completely processed.

openUTM operates as follows during a restart:

● Background jobs whose processing has not yet been started or that have not yet
reached a synchronization point are restarted after the restart.

● Background jobs that have already reached a synchronization point will be processed
starting at this synchronization point.

● All output jobs whose processing has not yet been started or that have not yet been
completely processed at the time of the crash are available for output after the restart.

● All messages from service-controlled queues that have not yet been read in completed
transactions are available for reading again after restart.

The openUTM restart functions Fault tolerance and the restart function

212 Concepts and Functions

13.5.3 Restart with UTM-F

When a UTM-F application is running, openUTM saves a large portion of the administrative
changes in the administration file for the restart. This includes the changed passwords, new
users and the locking of TACs, for example. See also the openUTM manual “Administering
Applications”. These changes are also made available after a new start of the UTM-F appli-
cation.

In contrast, in UTM-F

● No user data from standalone applications is stored in the KDCFILE. Correspondingly,
all user data is “forgotten” in UTM-F during a normal as well as during an abnormal
termination of the application. This includes, for example, secondary storage areas
such as the GSSBs, information on open dialogs or background jobs.

● In UTM cluster applications, the user’s service data is not saved until the user signs off
in the cluster page pool. If, for example, a user is signed on at a node application that
terminates abnormally then his or her user data is “forgotten”. In contrast, in the case of
UTM-F cluster applications, GSSB and ULS are saved in UTM cluster files when the
transaction is terminated - unlike in the case of standalone applications.

For this reason, the consistency of the data in a UTM-F application after a restart can only
be guaranteed when only local transactions are used and when all user data is maintained
in a single database.

Fault tolerance and the restart function Error handling for distributed processing

Concepts and Functions 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

3

13.6 Error handling for distributed processing

The following error situations can occur with distributed processing:

– errors in one of the applications
– loss of connections between applications
– termination of one of the applications involved in open transactions

openUTM reacts to these errors with messages indicating the cause of the error. In the case
of errors within an application, errors codes and usually a dump are created. The partner
application is informed of the errors as soon as possible.

The roll-back and restart functions behave differently, depending on whether you are
working with global transaction management or with independent local transactions.

13.6.1 Roll-back and restart functions with global transaction management

Distributed processing with global transaction management can be done via the LU6.1 or
OSI TP protocols. openUTM always works with global transaction management for LU6.1
while global transaction management is only valid for OSI TP if the “Commit” function unit
is selected.

Rolling back distributed transactions

There are a number of reasons why openUTM will roll back a distributed transaction, e.g.
violation of programming rules, loss of connection, timeout when monitoring response
times, termination of an application, or in certain situations after the failover of a database
with open transactions, see page 32 as well.

Depending on the reason for the roll-back, either the job-submitting and/or the job-receiving
services are terminated because resumption was not possible or practical, or the job-
submitting and the job-receiving service are rolled back to the last synchronization point
and communication is restarted (service restart).

Detailed information on this can be found in the openUTM manual „Programming
Applications with KDCS”.

Error handling for distributed processing Fault tolerance and the restart function

214 Concepts and Functions

Loss of connection

The connection between two applications may be lost if errors occur on the communication
link, or if one of the two applications is terminated. Loss of the connection between the
partners causes the transaction to be rolled back.

When communicating via the OSI TP protocol, the job-receiving service is terminated when
the connection is lost. When using the LU6.1 protocol, the job-receiving service is termi-
nated only if it has not yet reach a synchronization point.

If the job-receiving service is terminated, the job-submitting service receives an error
message.

If the job-submitting service has not yet reached a synchronization point, it too is termi-
nated. If this occurs, it obviously does not receive any further error messages. However,
openUTM sends a message to the terminal or the client program that started the job-
submitting service.

Restarting interrupted services

If the global transaction is rolled back (e.g. due to a loss of connection, timeout, or termi-
nation of the application) without terminating the job-submitting service, a service restart is
performed. In this case, communication between the client and the job-submitting service
and (when using LU6.1) between the job-submitting service and the job-receiving service
is resumed from the last synchronization point.

The restart takes place immediately if the client is still connected to the job-submitting appli-
cation. If the client is no longer connected to the job-submitting application after the roll-
back procedure, e.g. because the connection to the client was shut down, the restart takes
place as soon as the client signs back on to the application.

Restarting a session (only for communication via LU6.1)

A “session” is the communication relationship between applications based on the LU6.1
protocol. Each transport connection between the applications is assigned to a session. If
communication is interrupted, the session concept allows you to save information on the
last message sent and logged. Communication can thus be resumed at this point.

After a connection is lost, openUTM automatically attempts to restart communication at a
synchronization point. A transport connection must be available for this purpose.

Fault tolerance and the restart function Error handling for distributed processing

Concepts and Functions 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.0

9
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

3

A session can be restarted by:

● the automatic resumption of communication when the job-submitting and the job-
receiving services are restarted

● the restart of an application, if automatic connection setup is generated for the remote
application

● an administration command

● resending a message via the session

A session restart may be rejected by the remote partner if the partner is not in a position to
process the restart at that time. In this case, the partner can reinitiate the session restart at
a later point in time.

13.6.2 Roll-back and restart functions with independent transactions

openUTM uses local, independent transactions if communication takes place directly above
the transport interface, or if the “Commit” functional unit is not used when communicating
via OSI TP.

The roll-back and restart functions distinguish between the following scenarios:

● Error in the job-receiving application or loss of connection

openUTM rolls back the transaction in the job-receiving service and terminates the
service. The transaction in the job-submitting service is not automatically rolled back.
However, the job-submitting service does receive an error message if it is waiting for a
result from the job-receiving service, and can thus respond with a roll-back.

● Error in the job-submitting application

openUTM rolls back the transactions in the job-submitting and job-receiving services,
and terminates the job-receiving service. If the job-submitting service has already
reached a synchronization point, the service is restarted after the transaction is rolled
back.

Error handling for distributed processing Fault tolerance and the restart function

216 Concepts and Functions

Concepts and Functions 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

4

14 openUTM in BS2000 systems

This chapter provides platform-specific details that relate specifically to the implementation
of openUTM in BS2000 systems:

– system integration
– UTM processes
– address space concept
– formatting
– BS2000-specific functions

14.1 System integration

The architecture of openUTM in BS2000 systems is suited to the architecture of BS2000
systems and the openNetworking communication system.

UTM system code

The system code of a UTM application (the monitor) runs as part of the operating system
primarily in privileged status (TPR) and uses central BS2000 and openNetworking
functions.

The system code is protected by the operating system and is therefore secured against
overwriting by program units.

The UTM system code is implemented as a separate subsystem (UTM) of the operating
system. The system administrator can use DSSM to load this subsystem in the system
memory.

The UTM system code calls the operating system functions via an adaptation module. Each
version of openUTM includes adaptation modules for several BS2000 operating system
versions: the correct module is loaded when the subsystem is started. This solution enables
any version of openUTM to run on several operating system versions of BS2000. This also
allows you to migrate your UTM applications to a later version of BS2000 operating system.

System integration openUTM in BS2000/OSD

218 Concepts and Functions

If a number of UTM applications exist in a BS2000 system, then the UTM system code is
only loaded once in the BS2000 system. The entire UTM system code, including the UTM-
D modules, is loaded as a subsystem of the BS2000 operating system. The system admin-
istrator uses statements for the UTM subsystem to define the time at which the UTM system
code is to be loaded. If further UTM applications are started in the BS2000 system, these
also use the system code already loaded. However, each UTM application is managed by
openUTM using separate application tables, so that the UTM applications run fully indepen-
dently of each other.

Subsystems and system functions used by the UTM system code

The UTM system code uses a range of internal system interfaces and subsystems:

● functions for requesting and releasing internal system storage areas (memory
management)

● functions for job management and serialization (bourses)

● functions for managing the resources of an application (name manager)

● timer functions for monitoring resource utilization and time-driven messages

● functions of BS2000 subsystem management (DSSM) for loading and unloading the
UTM system code and to start the UTM-SM2 subsystem when necessary

● data management system with the access methods UPAM and SAM

● BCAM for communicating with applications and communication partners

● VTSU for editing the messages to and from terminals

● SOC-TP when openUTM is to communicate with socket partners

● RSO (remote SPOOL output) for supporting RSO printers (see page 227)

● OSS and CMX for distributed processing via OSI TP

● SAT for logging security-related UTM events

● MSCF for synchronized, cross-machine access to files that are global to the cluster (for
UTM cluster applications)

Capability for deployment on x86 hardware platforms

openUTM V6.3 can run without restrictions on the x86-based business servers with the SQ
system line and the server units x86 of the SE server. For details of installing openUTM on
this hardware platform, see the appendix of the openUTM manual “Using openUTM Appli-
cations under BS2000 Systems”.

openUTM in BS2000/OSD System integration

Concepts and Functions 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

4

Running several versions of openUTM in parallel

It is possible to load several versions of openUTM in parallel and use them concurrently on
the same BS2000 system.

This function offers considerable advantages, particularly when you are migrating to a new
openUTM version. While an existing version is still being used, you can try out individual
UTM applications on the successor version of openUTM. This means that you can perform
step-by-step testing and migration of a number of UTM applications from one openUTM
version to another on the same system.

Interfaces and components used by the main routine

In addition to the internal system interfaces, a UTM application in non-privileged processor
state (TU) has interfaces to the format handling system FHS, to external resource
managers such as data storage or database systems, and to the runtime systems of the
programming languages used. The connections to these products are likewise technically
separate and are implemented via neutral interfaces:

IUTMDB Interface for coordination with external resource managers such as data
storage or database systems. All resource managers that have an IUTMDB
connection module are served in a uniform way via this interface (e.g.
LEASY, SESAM, PRISMA or UDS).

XA Interface to connect external resource managers such as Oracle. The XA
interface is an X/Open standard.

IUTMFORM As an interface to the FHS formatting system.

IUTMHLL Uniform interface to the runtime systems of the individual programming
languages.

ILCS (Inter Language Communication Services)
Interface to the language-independent runtime system CRTE (common
runtime environment).

The program units access the functions via the program interfaces of openUTM, i.e. via the
X/Open interfaces CPI-C and XATMI or via the KDCS interface (German standard).

System integration openUTM in BS2000/OSD

220 Concepts and Functions

UTM modules and utility programs as LLMs

The following components of openUTM are shipped as LLMs:

– UTM system modules
– UTM-ROOT code
– administration program
– all utility programs
– KDCUPD modules

This means that source corrections can be supplied if there is an error in a module. The
module itself can then simply be replaced.

UTM utilities are loaded from a library when they are called.

 You can find more information on UTM modules and utility programs in the
openUTM manual “Generating Applications” and in the openUTM manual “Using
openUTM Applications under BS2000 Systems”.

Overview: Interfaces of openUTM

Figure 40: openUTM interfaces to other system components

Program units

Main routine KDCROOT

UTM system code

CPI-C XATMI TX

ILCS

HLL
High-level language

File management
system

VTSU
Terminal presentation

Processor state TU

Processor state TPR

FHS
Format handling

Basic BS2000
system

RSO
Remote SPOOL

BCAM / CMX / OSS / SOCKET
communication components

KDCS

Resource Manager
via IUTMDB and XA

openUTM in BS2000/OSD UTM processes

Concepts and Functions 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

4

14.2 UTM processes

Every UTM application running in the BS2000 system includes a homogeneous process
family. In other words, all the application’s processes are identically equipped, and any
process can take on any job. The processes are implemented as BS2000 tasks.

The linked application program is started as a batch job by a BS2000 procedure. The
process started in this way is the first process of the UTM application and first of all
configures the application. This process then activates the number of follow-up processes
specified in the application generation or in the start procedure. The follow-up processes
attach themselves to the existing application.

After the application start, all processes of the UTM application wait for jobs in a shared
process queue. If a job arrives, it is assigned to a process waiting in the process queue.
This process handles the job and then rejoins the process queue.

If there are more jobs than work processes at any one time, a job queue is established. Both
the job queue and the process queue are application-specific, i.e. each application has its
own process queue and job queue.

Address space concept openUTM in BS2000/OSD

222 Concepts and Functions

14.3 Address space concept

The storage areas used by a UTM application are stored in different BS2000 storage
classes depending on the type of data.

● The UTM system code is generally located in the class 4 storage area and is therefore
used jointly by all processes of all UTM applications of a BS2000 system.

● Local application system storage areas with configuration data, administrative data,
and a buffer area for reducing file accesses (cache) are stored in common memory
pools in the class 5 storage area. The system storage areas of a UTM application can
only be accessed by the processes of the local application and not by processes of
other UTM applications.

● Each process of a UTM application is assigned a separate process-specific class 5
storage area which contains the current system data for a job or program run. This data
area can only be accessed by one process and only by the UTM system functions. This
data is inaccessible even to other processes within the same application, i.e. processes
within the same application are isolated from each other. User programs cannot write
to the area and hence cannot interfere with the execution of UTM system functions.

● The operating system assigns a user address space in the class 6 storage area to each
process of a UTM application. Depending on the utilization, this user address space can
be process-specific or can be shared as a common memory pool by all processes of an
application (local) or by the processes of several applications (global). In general, the
user address space contains:

– The main routine KDCROOT, which establishes contact between program units and
UTM system functions, as well as data and buffer areas that are shared by the UTM
system functions and the main routine.
When generating the application, parameterization of the main routine is appli-
cation-specific.

– The program units and their data areas. If program units can be used repeatedly
(i.e. are shareable), then they can be stored in shared user storage areas that are
local or global to the application in common memory pools or in non-privileged
subsystems. This reduces the size of the external memory (paging area) occupied
by the processes of the application and reduces the amount of paging, thereby
enhancing performance.

– The formatting routines for editing screen forms and printer forms and the format
definitions belonging to the application. If the format handling system FHS is used,
these can also be stored as sharable units in common memory pools.

– File systems (e.g. LEASY) with associated connection module(s) for database
systems such as UDS/SQL and SESAM/SQL.

openUTM in BS2000/OSD Address space concept

Concepts and Functions 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

4

– Runtime systems of the programming languages in which the program units are
encoded.

– Administration program units for the UTM application.

The following diagram provides an overview of the storage structure of a UTM application
in a BS2000 system.

Figure 41: Storage structure of UTM applications in BS2000 systems

Application-specific
user storage area

Local user
storage area

Task-oriented
user storage

area

Local system
storage area

UTM system code

BS2000 system code and tables

Task-oriented
user storage

area

Task-oriented
system

storage area

Task-oriented
system

storage area

Task 1 ... Task n

Local user
storage area

Task-oriented
user storage

area

Local system
storage area

Task-oriented
user storage

area

Task-oriented
system

storage area

Task-oriented
system

storage area

Task 1 ... Task m

Application 1 Application 2

Class 6
memory

Class 5
memory

Class 4
memory

Class 1-3
memory

Formatting openUTM in BS2000/OSD

224 Concepts and Functions

14.4 Formatting

If you want to operate terminals in format mode for your UTM application, you can either
use the BS2000 software products IFG (interactive format generator) and FHS (format
handling system), or you can create your own formatting routine (FORMAT event exit).

openUTM on BS2000 systems distinguishes between *formats, +formats, #formats, and
-formats, each with different functions and implementation options. When messages are
sent and received, their format is specified by means of a format identifier. This identifier
consists of the format type (first character) and the format name. To format *formats,
+formats and #formats, openUTM uses the FHS format handling system, and to format
-formats it uses the FORMAT event exit.

IFG format generator

The interactive format generator IFG enables formats to be created quickly and easily in
dialog mode. IFG automatically generates appropriate data structures (= addressing tools),
which you can integrate in your program units. The data structures can also be created for
data in the Unicode format. IFG also provides support for managing and maintaining your
format libraries.

The interactive format generator IFG is described in a separate manual entitled
“IFG”.

FHS format handling system

The FHS format handling system supports the implementation of formats created with IFG.
It offers a wide range of functions, including:

– filling of message areas with freely selectable characters
– identification of the fields selected by the terminal user
– transfer of unprotected fields
– transfer of fields modified by the terminal user
– positioning of the cursor
– automatic hardcopy
– modification of display attributes
– logging of messages to restore a corrupted format
– processing of data in 7-bit code, 8-bit code, or Unicode

For communication with the FHS formatting system, openUTM uses the standard interface
IUTMFORM.

openUTM in BS2000/OSD Formatting

Concepts and Functions 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

4

IUTMFORM offers the following advantages:

● This interface separates the products openUTM and FHS, which means for example
that you can use the functions of a new FHS version while retaining the same UTM
version, or vice versa.

● No FHS macros need be compiled during generation.

● UTM program units can also communicate directly with FHS. The CALL KDCFHS call
is used for this purpose.

● The IUTMFORM interface is designed so that in principle it permits the connection of
any formatting system and is thereby open to future developments. At present, only the
FHS format handling system is supported in BS2000 systems.

Products such as WIN-DOORS and FHS-DOORS allow screen forms to be converted
dynamically into graphical user interfaces and thereby, for example, to be integrated in
Microsoft Office environments. You can use WebTransactions to convert FHS formats to
HTML and thus integrate them in Web interfaces.

The FHS format handling system is described in a separate manual entitled “FHS -
Format Handling System for UTM, TIAM, DCAM”. The products WIN-DOORS and
FHS-DOORS are also described in detail in their own manuals.

FORMAT event exit

The FORMAT event exit is a formatting routine created by programmers themselves. Like
the FHS formatting system standardly used by openUTM, this routine must be able to
process physical input messages as well as create physical output messages - even after
a screen restart. A local formatting routine is useful in the following cases:

● if you require functions above and beyond the FHS functionality supported by openUTM

● if you are using a formatting system other than FHS

● if you want to operate terminals on the physical level

The FORMAT event exit is described in the openUTM manual „Programming Appli-
cations with KDCS”.

Code conversion openUTM in BS2000/OSD

226 Concepts and Functions

14.5 Code conversion

Socket applications usually send their messages in ASCII or in the ISO 8859-1 code, while
the EBCDIC code is used in BS2000 systems. openUTM therefore offers an automatic
code conversion in BS2000 systems for socket partners.

A standard table with 7-bit ASCII-EBCDIC conversion as well as three tables for 8-bit
conversion can be selected for the conversion. The standard table is delivered with default
values, the other tables must be created by the user.

You will find more information on code conversion in the openUTM manual “Gener-
ating Applications” under the PTERM and TPOOL statements and in the appendix.

openUTM in BS2000/OSD BS2000/OSD-specific functions

Concepts and Functions 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

4

14.6 BS2000-specific functions

Local and central connection of printers

Printers can be connected in two different ways:

– “locally” to a terminal (whereby the terminal assumes the print control functionality)
– “centrally” to printer control or via a controller integrated in the printer

The desired mode of connection must be considered both in the UTM and PDN generation,
but does not affect the program interface. Regardless of the connection type, openUTM
supports the following operating modes:

– hardcopy mode
– spool mode

If a printer is connected locally, spool mode is referred to as bypass mode. In bypass mode,
the terminal can manage a dialog independently of the print output. Bypass mode can only
be implemented:

– for particular terminal types (e.g. 9763 terminals) and
– if the terminal in question is not connected to an LCC (local cluster controller).

Using RSO printers

UTM applications in BS2000 systems can also use RSO printers. The OLTP interface made
available by RSO (Remote Spool Output) gives openUTM access to all printers supported
by RSO, i.e. even to printers connected via LAN or to PCs. openUTM does not establish a
transport connection to these printers; instead, it accesses them via the OLTP interface, i.e.
openUTM reserves the printer in the RSO and then passes the print job to the RSO.

At the program interfaces, RSO printers are handled in exactly the same way as printers
that are connected in a different manner. Print options can also be passed to the printer in
the form of a parameter list.

There is a separate series of manuals for the RSO software product provided by
BS2000 systems. Further information specific to UTM generation can be found in
the openUTM manual “Generating Applications” under the heading “RSO”.

BS2000/OSD-specific functions openUTM in BS2000/OSD

228 Concepts and Functions

Sharing printers

You can use a generation parameter (PLEV parameter of the KDCDEF statement LTERM)
to allow a printer to be used by a number of UTM applications. This is achieved by
maintaining the connection between a UTM application and the printer for short periods
only, thereby giving other UTM applications the option of setting up a connection. If this
parameter is used, openUTM only sets up a connection to a printer when the number of
messages waiting to be printed exceeds the threshold value generated for a specific printer.
The connection is shut down again when no more messages are waiting to be printed.

Run priorities

During generation you can assign each transaction code an individual run priority within
BS2000 systems. This run priority is assigned to the UTM process in which the program
unit is running. As a result, you can use BS2000 system’s scheduling mechanisms to
control the execution of UTM program units.

Specific security functions

SAT logging

You can log security-related UTM events with the BS2000 function SAT (security audit trail).
This log provides the verification required in accordance with the F2/Q3 criteria of the ITS
catalog.

Additional system access control through connection passwords

Each UTM application in a BS2000 system can be protected against unauthorized use by
a connection password that can be defined when the application is started. Each terminal
user who wants to work with this UTM application must specify this password.

Support for Kerberos and system access control using Kerberos

In BS2000 systems, when establishing a connection from terminals, a Kerberos dialog can
be executed, the results of which can be read in the program unit. This functionality can be
generated using the LTERM and TPOOL statements.

System access control using the Kerberos distributed authorization service can be
generated using the USER statement.

openUTM in BS2000/OSD BS2000/OSD-specific functions

Concepts and Functions 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

4

System access control through certificate checking

For UTM applications in BS2000 systems, user IDs can be generated such that a certificate
is required to access a UTM application. A certificate is assigned by an authorized certifi-
cation point. It consists of the certificate number and the number of the certificate point and
is stored on a chip card. The user uses this chip card to sign on to the UTM application via
a client. For this purpose, the client must be connected to the application by means of the
product TranSON.

At sign-on to the UTM application, the certificate information is transferred to the application
and compared with the generated data. The user can only sign on successfully if the data
transferred matches the generated data.

Database keys

For UTM applications in BS2000 systems, a database key can be assigned to a transaction
code in the generation if they use the IUTMDB interface, see page 219. This means that
certain access rights to the database can be assigned to the TAC. openUTM transfers the
key to the database system, where it is analyzed by certain database systems in order to
check the access rights to database records.

Encryption for terminal connection

Encryption can also be used for terminal emulations in UTM applications in BS2000
systems. The encryption is executed on the host side by the BS2000 product VTSU-B. In
this fashion, every emulation can be operated with encryption as long as it supports the
corresponding functions.

Further details on the BS2000-specific security functions outlined above can be
found in the openUTM manual “Generating Applications”.

Internationalization / XHCS support

openUTM supports internationalization:

A UTM application can be generated such that communication partners using different
languages can be served in their particular language. Even regional differences within a
language can be taken into account. Dates, times, units of measurement, and currency
symbols can be displayed in accordance with local conventions.

In BS2000 systems you can assign a particular language environment – also known as the
“locale” – to the individual user IDs, access points (LTERM partners), or the entire appli-
cation when configuring a UTM application. This locale is specified as follows:

LOCALE=(language-code, territorial-code, character-set-name)

BS2000/OSD-specific functions openUTM in BS2000/OSD

230 Concepts and Functions

The program units of the UTM application can access the locale information and interpret
the input of the communication partner or create messages to the communication partner
as appropriate.

In addition, in BS2000 systems you can generate a number of message modules for a UTM
application and thereby also have multilingual UTM messages.

openUTM in BS2000 systems thus provides a full range of internationalization options. A
similar function is available in Unix systems by using NLS (native language support).

To display the fonts and special characters of the individual languages on terminals or
printers, various character sets (8-bit codes or unicode character sets such as UTFE) may
be required. A number of character sets can be used simultaneously in a BS2000 system
with the aid of the BS2000 software product XHCS (eXtended Host Code Support).
openUTM supports the functions of XHCS. This means that a specific extended character
set, which is then used for formatting messages, can be assigned to individual user IDs,
individual access points (LTERM partners), and the entire application. In particular, Unicode
data can be processed in the application program, and FHS formats with Unicode data can
be read in and output.

Further information on XHCS can be found in the User Guide “XHCS V2.0 - 8-Bit
Code and Unicode Support in BS2000/OSD”. The UTM-specific aspects of interna-
tionalization are described in the openUTM manual “Generating Applications”. For
details on implementing a number of message modules, see the openUTM manual
“Messages, Debugging and Diagnostics in BS2000 Systems”.

openUTM in BS2000/OSD BS2000/OSD-specific functions

Concepts and Functions 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

4

Using the OMNIS session manager

The services of the BS2000 software product OMNIS can be used for UTM applications in
BS2000 systems. OMNIS is a session manager that enables a terminal user to call the
services of various UTM applications directly, even if the UTM applications are distributed
throughout the network. In this case, the terminal user does not have to know the computer
or UTM application in which the service is running: OMNIS automatically establishes a
connection to the “correct” UTM application and regulates the assignment of messages
(message distribution).

If you are using OMNIS, you can also use the multiplex function provided by openUTM in
BS2000 systems: a large number of terminals can link up with a UTM application via a small
number of transport connections.

The add-on product OMNIS-MENU is available if you want to use OMNIS via menus.

Figure 42: Message distribution and multiplexing with OMNIS

Separate manuals are available on the OMNIS session manager and OMNIS menu
control: “OMNIS/OMNIS-MENU Functions and Commands” and “OMNIS/OMNIS-
MENU Administration and Programming”.

For information on defining multiplex connections when generating UTM (see the
openUTM manual “Generating Applications”).

OMNIS

UTM
application 2

UTM
application 3

UTM
application 4

UTM
application 1

. . .

. . .

System 1 System 2 System 3

BS2000/OSD-specific functions openUTM in BS2000/OSD

232 Concepts and Functions

Calling UTM services with CALLUTM

The program CALLUTM is supplied with openUTM on BS2000 systems. CALLUTM allows
UTM services to be called from within any BS2000 batch task or dialog task. The program
has an SDF interface and can itself be called from within procedures. One of the uses to
which the program can be put is to call UTM administration commands, e.g. to terminate all
UTM applications with KDCSHUT subject to procedure control. In this way, you can admin-
ister one or more UTM applications irrespective of the computer or operating system on
which they are running.

CALLUTM is based on the UPIC client in the BS2000 system and communicates with the
UTM applications via the UPIC interface. CALLUTM can therefore utilize the UTM user
concept, i.e. it can sign on using a UTM user ID that can also be a password-protected.

For more information on CALLUTM, see the openUTM manual “Administering
Applications”.

SDF interface for UTM tools

UTM tools such as KDCDEF can be started using separate SDF commands. The
commands are located in the SDF UTM application area.

 For a description of these SDF commands, see openUTM manual “Using openUTM
Applications under BS2000 Systems”.

Concepts and Functions 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

5

15 openUTM in Unix systems

This chapter provides platform-specific details that relate specifically to the implementation
of openUTM in Unix systems:

● system integration

● UTM processes

● address space concept

● simplified configuration of the network connection

● execution on 64-bit systems

Wherever the term Unix system or Unix platform is used in the following, then this should
be understood to mean both a Unix-based operating system such as Solaris, HP-UX or AIX
and a Linux distribution such as SUSE or Red Hat.

15.1 System integration

To achieve the greatest possible level of portability, the UTM system code only uses the
system calls and library functions provided by Unix systems within the framework of the
X/Open universe (system V):

● functions for requesting and releasing internal system storage areas
(local process storage area and shared memories)

● functions for serialization (semaphores)

● functions for creating and terminating processes

● functions for timing resources and time-driven messages

● functions for editing files and databases

System integration openUTM in Unix systems

234 Concepts and Functions

In addition to the interfaces to the Unix operating system, a UTM application has a range of
other internal interfaces:

● XA interface (X/Open standard) for connecting external resource managers
(such as Oracle, INFORMIX)

● UPIC-L interface which enables openUTM client programs to be connected locally to
the UPIC carrier system (i.e. the client programs can run in the same Unix system as
the UTM application)

● interfaces to the runtime systems of the programming languages used

● interfaces to the communication components PCMX

The program units access the functions via the program interfaces of openUTM, i.e. via the
X/Open interfaces CPI-C and XATMI + TX or via the KDCS interface (German standard).

Figure 43: openUTM interfaces to other system components

Program units

Main routine KDCROOT

UTM system code

CPI-C XATMI TX

UPIC-L

Communication component CMX
Unix system

(kernel functions)

Resource manager

HLL
High-level language

File management
system

KDCS

XA

openUTM in Unix systems UTM processes

Concepts and Functions 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

5

15.2 UTM processes

Different processes work together when a UTM application program running under a Unix
system is executed, whereby each process performs specific tasks. These process types
are described below. An overview is provided in figure 44 on page 237.

Main process and work processes

A UTM application is started by the utmmain program. This program is generally started as
a background process known as the main process. The main process then creates as
many work processes as are specified in the start parameters. The application program
created by the user is loaded and started in all of these work processes.

The work processes perform the actual work, i.e. they handle the service requests sent to
the UTM application. The main process monitors these productive processes. During the
application run, the main process automatically creates further work processes if a work
process is terminated due to an error or if additional work processes are explicitly allocated
to the application by administration.

After the application start, all the work processes of the UTM application wait for jobs in a
shared process queue. If a job arrives, it is assigned to a work process waiting in the queue.
This process handles the job and then rejoins the process queue.

If more jobs exist than work processes, a job queue is established. Both the job queue and
process queue are application-related, i.e. each application has its own process queue and
job queue. The queues for processes are implemented by semaphores, while the queues
for jobs are implemented by shared memory.

Timer process

In addition to the work processes, the main process sets up a timer process which is
assigned to the application. The timer process accepts jobs from the work processes in
order to time the wait states, and arranges these jobs in a job queue. After one of the times
recorded in the job queue expires, this is indicated to the work processes for processing.

Network processes

With distributed processing, UTM applications are connected to the network via network
processes. The task of these processes is to process connection requests and manage
the data transfer on this connection.

The network connection can run via PCMX or directly through the socket interface. The
number of network processes depends on the generation.

UTM processes openUTM in Unix systems

236 Concepts and Functions

For further information on network processes and for details on generation, see the
openUTM manual “Generating Applications”.

Dialog terminal processes (DTPs)

Each terminal which works with the UTM application has its own dialog process, known as
the dialog terminal process. This is created neither by the main process nor a work
process, rather is established from the shell by starting the utmdtp program or is started
automatically when the user successfully logs on to the Unix system.

The terminal user selects the UTM application, thereby establishing a connection between
the dialog terminal process and the UTM application. The dialog terminal process can then
send jobs to the UTM application and receive messages from the UTM application.

Local client processes

A separate local client process exists for each openUTM client that is based on the UPIC
carrier system and works with the UTM application. These processes are created neither
by the main process nor by the work process but from the shell.

The local client process establishes a connection to the UTM application. The local client
process can then send jobs to the UTM application and receive messages from the UTM
application.

Printer processes

Asynchronous messages to printers are output by the UTM application using local
processes known as printer processes. The main process of the UTM application sets up
a printer process for each connected printer. The printer process for a printer exists for as
long as this printer is connected to the UTM application.

Logging process

openUTM can record certain data such as accounting records or event data while the appli-
cation is running. The recording of data is controlled by the logging process (utmlog).

● When generated, openUTM provides accounting information during the application run.
This information is recorded in "accounting records" by openUTM and forwarded to the
logging process. The logging process writes these records in a file in the ACCNT subdi-
rectory.

openUTM in Unix systems UTM processes

Concepts and Functions 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

5

● The UTM event monitor KDCMON functionality integrated into openUTM is available to
monitor the performance of an openUTM application. After starting the KDCMON
monitor, the work processes record the event data and pass it to the logging process,
which then writes the data records in a file in the KDCMON subdirectory. The task of
administering this data is then moved from the work processes to a single instance, the
logging process.

Overview: Processes of a UTM application in Unix systems

Figure 44: Process interaction in a UTM application on Unix systems

fork/exec
communication link through shared memory

Work processes

Network
process

Main process

Timer process Printer processes

Dialog terminal
processes

fork/exec (f/e)

f/e

c c

c

f/e:
c:

Local client
processes

shell

shell/login

f/e

c
c

Logging process

Address space concept openUTM in Unix systems

238 Concepts and Functions

15.3 Address space concept

In a UTM application, each work process has a process-specific storage area containing:

● the data area ROOTDATA for communication between KDCROOT and the system
functions

● the KB and SPAB areas

● buffer areas for MPUT messages

● a trace area for KDCS calls for diagnostic purposes

● tables for activating the program units

● the data area KTA (KDCS task area), which is only used by the UTM system functions.
This contains further buffer areas, an internal UTM trace area, and various processor-
specific check data

All work processes of a UTM application use a shared memory which contains the config-
uration and global administrative data (KAA = KDCS application area), as well as a shared
memory for a transaction-oriented cache area for optimizing file access.

Work processes and external processes (dialog terminal, printer, network processes and
timer process as well as local client processes) use the same shared memory area for inter-
process communication (IPC) and job processing.

Because the Unix system does not have any special security mechanisms for application
programs, it must be remembered that errors in the program units created by the user can
also destroy UTM system areas.

The following diagram illustrates the relationships between shared memories and the
processes of a UTM application.

openUTM in Unix systems Address space concept

Concepts and Functions 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

5

Figure 45: Shared memories and processes in UTM applications on Unix systems

Main process

Printer processes Timer process Network processes
Dialog terminal
processes / Local
client processes

Shared memory

Configuration and global administrative
data (KAA)

Shared memory

Shared memory

Cache for optimizing
file access

Area for
interprocess communication (IPC)

Work processes

Shared memory

XAPTP

Shared memory

OSS

Network connection openUTM in Unix systems

240 Concepts and Functions

15.4 Configuration of the network connection

When connecting via TCP/IP-RFC1006 and via Socket, the user needs to enter the
required parameters in the UTM generation. The parameters are then taken from the UTM
generation at run time; the IP addresses are determined when the application is started
from the corresponding host file or host database. In addition, whenever a connection is
established, the currently valid addresses are determined and are used from that point
onwards.

In order for a UTM application to be operated without interruption when an address is
changed in the network, openUTM provides a corresponding administration function. With
this function IP addresses can be read from the host database and can be transmitted to
the UTM application at run time.

 The openUTM manual “Generating Applications” contains detailed descriptions of
how to configure network connections.

15.5 Code conversion

When messages of a UTM application are exchanged with a partner application, openUTM
can carry out ASCII-EBCDIC code conversion automatically. openUTM uses a standard
table for the conversion. You can modify this standard table.

 You will find more information on code conversion in the openUTM manual “Gener-
ating Applications” under the statements PTERM and TPOOL and in the appendix.

15.6 Execution on 64-bit platforms

openUTM is also shipped in 64-bit variants for all platforms so that 64-bit UTM applications
can also be created. Note that in this case all components that are linked into the application
must also be 64-bit capable. These include, for example, application programs, the main
routine KDCROOT, database modules, PCMX, openUTM encryption libraries, openUTM
system libraries.

Hybrid 32-bit/64-bit operation is not possible in a UTM application.

When an application or utility is started, a check is performed to see if the components used
are compatible with the platform and bit mode used.

Concepts and Functions 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

6

16 openUTM in Windows systems

This chapter provides platform-specific details that relate specifically to the implementation
of openUTM in Windows systems:

– system integration
– UTM processes
– address space concept
– configuration of the network connection

Restrictions

Formatting and transaction-oriented printer output is not supported in Windows systems.

16.1 System integration

In addition to the interfaces to the Windows operating system, a UTM application has a
range of other internal interfaces:

– XA interface (X/Open standard) for connecting external resource managers
(such as Oracle,...)

– UPIC-L interface which enables openUTM client programs to be connected locally to
the UPIC carrier system (i.e. the client programs can run in the same Windows system
as the UTM application)

– interfaces to the runtime systems of the programming languages used

– interfaces to the communication component PCMX32

Furthermore, Windows Event Logging is supported during operation with openUTM. This
means that the installation, deinstallation and operation of openUTM services are logged
as events in the Event Viewer. openUTM events can be seen in the Application section of
the Event Viewer. The source is openUTM.

The program units access the functions via the program interfaces of openUTM, i.e. via the
X/Open interfaces CPI-C and XATMI + TX or via the KDCS interface (German standard).

UTM processes openUTM in Windows systems

242 Concepts and Functions

Figure 46: openUTM interfaces to other system components

16.2 UTM processes

A UTM application is created in Windows systems as a Win32 console application. Different
processes work together when a UTM application program is executed, whereby each
process performs specific tasks. Some of these processes are started in a DOS window
(prompt) by calling the program. Shortcuts can be created for these program calls so that
the processes can be started using the mouse or by entering commands through the
keyboard.

The various process types are described in the following paragraphs. figure 47 on page 245
shows an overview of these process types.

Main process and service process

A UTM application is started by setting up the main process. The main process can run in
the background or in the foreground.

The main process is started in the foreground by calling the utmmain program. utmmain is
called from a CMD window. This type of application start can especially be used during the
development of the application.

Program units

Main routine KDCROOT

UTM system code

CPI-C XATMI TX

UPIC-L

Communication component PCMX32
Windows system
(kernel functions)

Resource manager

HLL
High-level language

File management
system

KDCS

XA

openUTM in Windows systems UTM processes

Concepts and Functions 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

6

A UTM application can be started using the utmmains program as a service for production
operation.This process is therefore called the service process. It starts the main process,
which then runs in the background. All output is redirected to a file in this case. If the
application is set up as a service, then it can also be started automatically after the Windows
system is started.

Work processes

The main process starts as many work processes as are specified in the start parameters.
The application program created by the user is loaded into all of these work processes and
then started.

The work processes perform the actual work, i.e. they handle the service requests sent to
the UTM application. The main process monitors these productive processes. During the
application run, the main process automatically creates further work processes if a work
process is terminated due to an error or if additional work processes are explicitly allocated
to the application by administration.

After the application start, all the work processes of the UTM application wait for jobs in a
shared process queue. If a job arrives, it is assigned to a work process waiting in the queue.
This process handles the job and then rejoins the process queue.

If more jobs exist than work processes, a job queue is established. Both the job queue and
process queue are application-related, i.e. each application has its own process queue and
job queue. The queues for processes are implemented by semaphores, while the queues
for jobs are implemented by shared memory.

Timer process

In addition to the work processes, the main process sets up a timer process which is
assigned to the application. The timer process accepts jobs from the work processes in
order to time the wait states, and arranges these jobs in a job queue. After one of the times
recorded in the job queue expires, this is indicated to the work processes for processing.

Network processes

With distributed processing, UTM applications are connected to the network via network
processes. These processes are set up by the main process, and the task of these
processes is to process connection requests and manage the data transfer on this
connection.

The network connection can run via CMX or directly through the socket interface. The
number of network processes depends on the generation. The speed of the network access
can be controlled by an environment variable.

UTM processes openUTM in Windows systems

244 Concepts and Functions

For further information network processes and for details on generation, see the
openUTM manual “Generating Applications”.

You will find a description of how to control net processes using environment
variables in the openUTM manual “Using openUTM Applications under Unix
Systems and Windows Systems”.

Dialog terminal processes (DTPs)

Each console window which works with the UTM application has its own dialog process,
known as the dialog terminal process. This is established from the DOS shell by starting
the utmdtp program, or it is started automatically when the user successfully logs on to the
Windows system by making the appropriate entry in the Startup group.

The user selects the UTM application, thereby establishing a connection between the
dialog terminal process and the UTM application. The dialog terminal process can then
send jobs to the UTM application and receive messages from the UTM application.

A dialog terminal process can only be started on the computer on which the UTM appli-
cation is running.

Shutdown process

The shutdown process utmshut is set up when the application is started. This process
ensures that the UTM application is properly terminated when the system shuts down.

Local client processes

A separate local client process exists for each openUTM client that is based on the UPIC
carrier system and works with the UTM application. This process is started for example from
the Windows command prompt.

The local client process establishes a connection to the UTM application. The local client
process can then send jobs to the UTM application and receive messages from the UTM
application.

Logging process

openUTM can record certain data such as accounting records or event data while the appli-
cation is running. The recording of data is controlled by the logging process (utmlog).

● When generated, openUTM provides accounting information during the application run.
This information is recorded in "accounting records" by openUTM and forwarded to the
logging process. The logging process writes these records in a file in the ACCNT subdi-
rectory.

openUTM in Windows systems UTM processes

Concepts and Functions 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

6

● The UTM event monitor KDCMON functionality integrated into openUTM is available to
monitor the performance of an openUTM application. After starting the KDCMON
monitor, the work processes record the event data and pass it to the logging process,
which then writes the data records in a file in the KDCMON subdirectory. The task of
administering this data is then moved from the work processes to a single instance, the
logging process.

Overview: Processes of a UTM application in Windows systems

Figure 47: Process interaction in a UTM application on Windows systems

1) The service process is optional. It exists only if the UTM application is started as service.

communication connection through memory mapped file

Work processes

Main process

Timer process Network process

Dialog terminal
process

c c

c

c:

Local client
processes

cmd

cmd

c

Shutdown process

Service process 1)

Logging process

Address space concept openUTM in Windows systems

246 Concepts and Functions

16.3 Address space concept

In a UTM application, each work process has a process-specific storage area containing:

● the data area ROOTDATA for communication between KDCROOT and the system
functions

● the KB and SPAB areas

● buffer areas for MPUT messages

● a trace area for KDCS calls for diagnostic purposes

● tables for activating the program units

● the data area KTA (KDCS task area), which is only used by the UTM system functions.
This contains further buffer areas, an internal UTM trace area, and various processor-
specific check data.

All work processes of a UTM application share a common memory mapped file that contains
the configuration data and global application administration data (KAA = KDCS Application
Area) as well as a memory mapped file for a cache area for optimizing file accesses.

Work processes and external processes (dialog terminal processes, network processes,
the timer process and the local client process) share a memory mapped file area for IPC
(Inter-Process Communication) and for job processing.

Note that errors in the program units created by the user can also destroy UTM system
areas because the Windows system does not provide a special protection mechanism for
user programs.

The following figure shows the relationship mentioned between the memory mapped files and
the processes of a UTM application.

openUTM in Windows systems Address space concept

Concepts and Functions 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8

. J
an

u
ar

y
20

15
 S

ta
nd

 1
3:

01
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
k1

6

Figure 48: Memory mapped files and processes in UTM applications on Windows systems

Timer process Network processes
Dialog terminal
processes / local
client processes

Memory mapped file

Global configuration and application
administration data (KAA)

Memory mapped file

Memory mapped file

Cache for optimized
data access

Area for
interprocess communication (IPC)

Main process

Work processes

Memory mapped file

XAPTP

Memory mapped file

OSS

Network connection / Code conversion openUTM in Windows systems

248 Concepts and Functions

16.4 Configuration of the network connection

When connecting via TCP/IP-RFC1006 and via socket, the user needs to enter the required
parameters in the UTM generation. The parameters are then taken from the UTM gener-
ation at run time; the IP addresses are determined when the application is started from the
corresponding host file or host database. In addition, whenever a connection is established,
the currently valid addresses are determined and are used from that point onwards.

In order for a UTM application to be operated without interruption when an address is
changed in the network, openUTM provides a corresponding administration function. With
this function IP addresses can be read from the host database and can be transmitted to
the UTM application at run time.

The openUTM manual “Generating Applications” contains detailed descriptions of
how to configure various network connections.

16.5 Code conversion

When messages of a UTM application are exchanged with a partner application, openUTM
can carry out ASCII-EBCDIC code conversion automatically. openUTM uses a standard
table for the conversion. You can modify this standard table.

 You will find more information on code conversion in the openUTM manual “Gener-
ating Applications” under the statements PTERM and TPOOL and in the appendix.

Concepts and Functions 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

ua
ry

 2
01

5
 S

ta
n

d
14

:2
4.

47
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
14

03
60

1
_K

on
fu

\e
n\

ko
nf

u
_e

.a
n

h

17 Appendix: Supported standards and norms

Program interfaces

ISO/IEC 9805-1:1994 (CCR Protocol)

ISO/IEC 10026-3:1996 (OSI TP Protocol, Second Edition)

ISO/IEC ISP 12061-1:1995 (OSI TP Taxonomy)

ISO/IEC ISP 12061-2:1995 (OSI TP Support of OSI TP APDUs)

ISO/IEC ISP 12061-3:1995 (OSI TP Support of CCR APDUs)

ISO/IEC ISP 12061-4:1995 (OSI TP Support of Session, Presentation and ACSE PDUs)

ISO/IEC ISP 12061-5:1995 (OSI TP Profile ATP11)

ISO/IEC ISP 12061-7:1995 (OSI TP Profile ATP21)

ISO/IEC ISP 12061-9:1995 (OSI TP Profile ATP31)

X/Open Distributed TP: Reference Model, Version 3, G504 2/96 (X/Open Guide)

X/Open Distributed TP: The XA Specification, C193 2/92

X/Open Distributed TP: The TX (Transaction Demarcation) Specification, C504 4/95

X/Open Distributed TP: The XATMI Specification, C506 11/95

X/Open Distributed TP: The XCPI-C Specification, Version 2, C419 12/95

X/Open ACSE/Presentation: Transaction Processing API (XAP-TP), C409 4/95

DIN standard 66 265: Interfaces of a kernel for transaction-oriented application systems
(KDCS-TAS kernel)

Supported standards and norms Appendix

250 Concepts and Functions

XAP-TP interfaces

ISO/IEC 9805-1:1994 (CCR Protocol)

ISO/IEC 10026-3:1996 (OSI TP Protocol, Second Edition)

ISO/IEC ISP 12061-1:1995 (OSI TP Taxonomy)

ISO/IEC ISP 12061-2:1995 (OSI TP Support of OSI TP APDUs)

ISO/IEC ISP 12061-3:1995 (OSI TP Support of CCR APDUs)

ISO/IEC ISP 12061-4:1995 (OSI TP Support of Session, Presentation and ACSE PDUs)

ISO/IEC ISP 12061-5:1995 (OSI TP Profile ATP11)

ISO/IEC ISP 12061-6:1995 (OSI TP Profile ATP12)

ISO/IEC ISP 12061-7:1995 (OSI TP Profile ATP21)

ISO/IEC ISP 12061-8:1995 (OSI TP Profile ATP22)

ISO/IEC ISP 12061-9:1995 (OSI TP Profile ATP31)

ISO/IEC ISP 12061-10:1995 (OSI TP Profile ATP32)

X/Open ACSE/Presentation: Transaction Processing API (XAP-TP), C409 4/95

Concepts and Functions 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

abnormal termination of a UTM application
Termination of a UTM application, where the KDCFILE is not updated. Abnormal
termination is caused by a serious error, such as a crashed computer or an error
in the system software. If you then restart the application, openUTM carries out
a warm start.

abstract syntax (OSI)
Abstract syntax is defined as the set of formally described data types which can
be exchanged between applications via OSI TP. Abstract syntax is independent
of the hardware and programming language used.

acceptor (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The acceptor accepts the conversation initiated by the initiator
with Accept_Conversation.

access list
An access list defines the authorization for access to a particular service, TAC
queue or USER queue. An access list is defined as a key set and contains one or
more key codes, each of which represent a role in the application. Users or
LTERMs or (OSI) LPAPs can only access the service or TAC queue/USER queue
when the corresponding roles have been assigned to them (i.e. when their key
set and the access list contain at least one common key code).

access point (OSI)
See service access point.

ACID properties
Acronym for the fundamental properties of transactions: atomicity, consistency,
isolation and durability.

administration
Administration and control of a UTM application by an administrator or an
administration program.

Glossary

252 Concepts and Functions

administration command
Commands used by the administrator of a UTM application to carry out adminis-
tration functions for this application. The administration commands are imple-
mented in the form of transaction codes.

administration journal
See cluster administration journal.

administration program
Program unit containing calls to the program interface for administration. This can
be either the standard administration program KDCADM that is supplied with
openUTM or a program written by the user.

administrator
User who possesses administration authorization.

AES
AES (Advanced Encryption Standard) is the current symmetric encryption stan-
dard defined by the National Institute of Standards and Technology (NIST) and
based on the Rijndael algorithm developed at the University of Leuven (Bel-
gium). If the AES method is used, the UPIC client generates an AES key for
each session.

Apache Axis
Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the
design of Web services and client applications. There are implementations in
C++ and Java.

Apache Tomcat
Apache Tomcat provides an environment for the execution of Java code on Web
servers. It was developed as part of the Apache Software Foundation's Jakarta
project. It consists of a servlet container written in Java which can use the JSP
Jasper compiler to convert JavaServer pages into servlets and run them. It also
provides a fully featured HTTP server.

application cold start
See cold start.

application context (OSI)
The application context is the set of rules designed to govern communication
between two applications. This includes, for instance, abstract syntaxes and
any assigned transfer syntaxes.

Glossary

Concepts and Functions 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

application entity (OSI)
An application entity (AE) represents all the aspects of a real application which
are relevant to communications. An application entity is identified by a globally
unique name (“globally” is used here in its literal sense, i.e. worldwide), the
application entity title (AET). Every application entity represents precisely one
application process. One application process can encompass several application
entities.

application entity qualifier (OSI)
Component of the application entity title. The application entity qualifier identifies
a service access point within an application. The structure of an application entity
qualifier can vary. openUTM supports the type “number”.

application entity title (OSI)
An application entity title is a globally unique name for an application entity
(“globally” is used here in its literal sense, i.e. worldwide). It is made up of the
application process title of the relevant application process and the application entity
qualifier.

application information
This is the entire set of data used by the UTM application. The information com-
prises memory areas and messages of the UTM application including the data
currently shown on the screen. If operation of the UTM application is coordi-
nated with a database system, the data stored in the database also forms part
of the application information.

application process (OSI)
The application process represents an application in the OSI reference model. It
is uniquely identified globally by the application process title.

application process title (OSI)
According to the OSI standard, the application process title (APT) is used for
the unique identification of applications on a global (i.e. worldwide) basis. The
structure of an application process title can vary. openUTM supports the type
Object Identifier.

application program
An application program is the core component of a UTM application. It com-
prises the main routine KDCROOT and any program units and processes all jobs
sent to a UTM application.

application restart
see warm start

Glossary

254 Concepts and Functions

application service element (OSI)
An application service element (ASE) represents a functional group of the appli-
cation layer (layer 7) of the OSI reference model.

application warm start
see warm start.

association (OSI)
An association is a communication relationship between two application enti-
ties. The term “association” corresponds to the term session in LU6.1.

asynchronous conversation
CPI-C conversation where only the initiator is permitted to send. An asynchro-
nous transaction code for the acceptor must have been generated in the UTM
application.

asynchronous job
Job carried out by the job submitter at a later time. openUTM includes message
queuing functions for processing asynchronous jobs (see UTM-controlled queue
and service-controlled queue). An asynchronous job is described by the asynchro-
nous message, the recipient and, where applicable, the required execution time.
If the recipient is a terminal, a printer or a transport system application, the asyn-
chronous job is a queued output job. If the recipient is an asynchronous service of
the same application or a remote application, the job is a background job.
Asynchronous jobs can be time-driven jobs or can be integrated in a job complex.

asynchronous message
Asynchronous messages are messages directed to a message queue. They are
stored temporarily by the local UTM application and then further processed
regardless of the job submitter. Distinctions are drawn between the following
types of asynchronous messages, depending on the recipient:
– In the case of asynchronous messages to a UTM-controlled queue, all further

processing is controlled by openUTM. This type includes messages that
start a local or remote asynchronous service (see also background job) and
messages sent for output on a terminal, a printer or a transport system
application (see also queued output job).

– In the case of asynchronous messages to a service-controlled queue, further
processing is controlled by a service of the application. This type includes
messages to a TAC queue, messages to a USER queue and messages to a
temporary queue. The USER queue and the temporary queue must belong
to the local application, whereas the TAC queue can be in both the local
application and the remote application.

Glossary

Concepts and Functions 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

asynchronous program
Program unit started by a background job.

asynchronous service (KDCS)
Service which processes a background job. Processing is carried out indepen-
dently of the job submitter. An asynchronous service can comprise one or more
program units/transactions. It is started via an asynchronous transaction code.

audit (BS2000 systems)
During execution of a UTM application, UTM events which are of relevance in
terms of security can be logged by SAT for auditing purposes.

authentication
See system access control.

authorization
See data access control.

Axis
See Apache Axis.

background job
Background jobs are asynchronous jobs destined for an asynchronous service of
the current application or of a remote application. Background jobs are particu-
larly suitable for time-intensive processing or processing which is not time-crit-
ical and where the results do not directly influence the current dialog.

basic format
Format in which terminal users can make all entries required to start a service.

basic job
Asynchronous job in a job complex.

browsing asynchronous messages
A service sequentially reads the asynchronous messages in a service-controlled
queue. The messages are not locked while they are being read and they remain
in the queue after they have been read. This means that they can be read simul-
taneously by different services.

bypass mode (BS2000 systems)
Operating mode of a printer connected locally to a terminal. In bypass mode,
any asynchronous message sent to the printer is sent to the terminal and then redi-
rected to the printer by the terminal without being displayed on screen.

Glossary

256 Concepts and Functions

cache
Used for buffering application data for all the processes of a UTM application.
The cache is used to optimize access to the page pool and, in the case of UTM
cluster applications, the cluster page pool.

CCS name (BS2000 systems)
See coded character set name.

client
Clients of a UTM application can be:
– terminals
– UPIC client programs
– transport system applications (e.g. DCAM, PDN, CMX, socket applications

or UTM applications which have been generated as transport system applica-
tions).

Clients are connected to the UTM application via LTERM partners.
openUTM clients which use the OpenCPIC carrier system are treated just like
OSI TP partners.

client side of a conversation
This term has been superseded by initiator.

cluster
A number of computers connected over a fast network and which in many cases
can be seen as a single computer externally. The objective of clustering is gen-
erally to increase the computing capacity or availability in comparison with a sin-
gle computer.

cluster administration journal
The cluster administration journal consists of:
– two log files with the extensions JRN1 and JRN2 for global administration

actions,
– the JKAA file which contains a copy of the KDCS Application Area (KAA).

Administrative changes that are no longer present in the two log files are
taken over from this copy.

The administration journal files serve to pass on to the other node applications
those administrative actions that are to apply throughout the cluster to all node
applications in a UTM cluster application.

cluster configuration file
File containing the central configuration data of a UTM cluster application. The
cluster configuration file is created using the UTM generation tool KDCDEF.

Glossary

Concepts and Functions 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

cluster filebase
Filename prefix or directory name for the UTM cluster files.

cluster GSSB file
File used to administer GSSBs in a UTM cluster application. The cluster GSSB
file is created using the UTM generation tool KDCDEF.

cluster lock file
File in a UTM cluster application used to manage cross-node locks of user data
areas.

cluster page pool
The cluster page pool consists of an administration file and up to 10 files con-
taining a UTM cluster application’s user data that is available globally in the clus-
ter (service data including LSSB, GSSB and ULS). The cluster page pool is cre-
ated using the UTM generation tool KDCDEF.

cluster start serialization file
Lock file used to serialize the start-up of individual node applications (only in
Unix systems and Windows systems).

cluster ULS file
File used to administer the ULS areas of a UTM cluster application. The cluster
ULS file is created using the UTM generation tool KDCDEF.

cluster user file
File containing the user management data of a UTM cluster application. The
cluster user file is created using the UTM generation tool KDCDEF.

coded character set name (BS2000 systems)
If the product XHCS (eXtended Host Code Support) is used, each character set
used is uniquely identified by a coded character set name (abbreviation: “CCS
name” or “CCSN”).

cold start
Start of a UTM application after the application terminates normally (normal ter-
mination) or after a new generation (see also warm start).

communication area (KDCS)
KDCS primary storage area, secured by transaction logging and which contains
service-specific data. The communication area comprises 3 parts:
– the KB header with general service data
– the KB return area for returning values to KDCS calls

Glossary

258 Concepts and Functions

– the KB program area for exchanging data between UTM program units
within a single service.

communication resource manager
In distributed systems, communication resource managers (CRMs) control
communication between the application programs. openUTM provides CRMs
for the international OSI TP standard, for the LU6.1 industry standard and for
the proprietary openUTM protocol UPIC.

configuration
Sum of all the properties of a UTM application. The configuration describes:
– application parameters and operating parameters
– the objects of an application and the properties of these objects. Objects

can be program units and transaction codes, communication partners,
printers, user IDs, etc.

– defined measures for controlling data and system access.
The configuration of a UTM application is defined at generation time (static con-
figuration) and can be changed dynamically by the administrator (while the
application is running, dynamic configuration). The configuration is stored in the
KDCFILE.

confirmation job
Component of a job complex where the confirmation job is assigned to the basic
job. There are positive and negative confirmation jobs. If the basic job returns a
positive result, the positive confirmation job is activated, otherwise, the negative
confirmation job is activated.

connection bundle
see LTERM bundle.

connection user ID
User ID under which a TS application or a UPIC client is signed on at the UTM
application directly after the connection has been established. The following
applies, depending on the client (= LTERM partner) generation:
– The connection user ID is the same as the USER in the LTERM statement

(explicit connection user ID). An explicit connection user ID must be
generated with a USER statement and cannot be used as a “genuine” user
ID.

Glossary

Concepts and Functions 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

– The connection user ID is the same as the LTERM partner (implicit
connection user ID) if no USER was specified in the LTERM statement or if
an LTERM pool has been generated.

In a UTM cluster application, the service belonging to a connection user ID
(RESTART=YES in LTERM or USER) is bound to the connection and is there-
fore local to the node.
A connection user ID generated with RESTART=YES can have a separate ser-
vice in each node application.

contention loser
Every connection between two partners is managed by one of the partners. The
partner that manages the connection is known as the contention winner. The
other partner is the contention loser.

contention winner
A connection's contention winner is responsible for managing the connection.
Jobs can be started by the contention winner or by the
contention loser. If a conflict occurs, i.e. if both partners in the communication
want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation
In CPI-C, communication between two CPI-C application programs is referred
to as a conversation. The communication partners in a conversation are
referred to as the initiator and the acceptor.

conversation ID
CPI-C assigns a local conversation ID to each conversation, i.e. the initiator and
acceptor each have their own conversation ID. The conversation ID uniquely
assigns each CPI-C call in a program to a conversation.

CPI-C
CPI-C (Common Programming Interface for Communication) is a program
interface for program-to-program communication in open networks standard-
ized by X/Open and CIW (CPI-C Implementor's Workshop).
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE
Specification. The interface is available in COBOL and C. In openUTM, CPI-C
can communicate via the OSI TP, LU6.1 and UPIC protocols and with
openUTM-LU62.

Cross Coupled System / XCS
Cluster of BS2000 computers with the Highly Integrated System Complex Multiple
System Control Facility (HIPLEX® MSCF).

Glossary

260 Concepts and Functions

data access control
In data access control openUTM checks whether the communication partner is
authorized to access a particular object belonging to the application. The
access rights are defined as part of the configuration.

dead letter queue
The dead letter queue is a TAC queue which has the fixed name
KDCDLETQ. It is always available to save queued messages sent to transac-
tion codes or TAC queues but which could not be processed. The saving of
queued messages in the dead letter queue can be activated or deactivated for
each message destination individually using the TAC statement's
DEAD-LETTER-Q parameter.

DES
DES (Data Encryption Standard) is an international standard for encrypting
data. One key is used in this method for encoding and decoding. If the DES
method is used, the UPIC client generates a DES key for each session.

dialog conversation
CPI-C conversation in which both the initiator and the acceptor are permitted to
send. A dialog transaction code for the acceptor must have been generated in
the UTM application.

dialog job, interactive job
Job which starts a dialog service. The job can be issued by a client or, when two
servers communicate with each other (server-server communication), by a differ-
ent application.

dialog message
A message which requires a response or which is itself a response to a request.
The request and the response both take place within a single service. The
request and reply together form a dialog step.

dialog program
Program unit which partially or completely processes a dialog step.

dialog service
Service which processes a job interactively (synchronously) in conjunction with
the job submitter (client or another server application) . A dialog service pro-
cesses dialog messages received from the job submitter and generates dialog
messages to be sent to the job submitter. A dialog service comprises at least
one transaction. In general, a dialog service encompasses at least one dialog
step. Exception: in the event of service chaining, it is possible for more than one
service to comprise a dialog step.

Glossary

Concepts and Functions 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

dialog step
A dialog step starts when a dialog message is received by the UTM application. It
ends when the UTM application responds.

dialog terminal process (Unix systems/Windows systems)
A dialog terminal process connects a terminal of a Unix system or a Windows
system with the work processes of the UTM application. Dialog terminal pro-
cesses are started either when the user enters utmdtp or via the LOGIN shell.
A separate dialog terminal process is required for each terminal to be con-
nected to a UTM application.

Distributed Lock Manager / DLM (BS2000 systems)
Concurrent, cross-computer file accesses can be synchronized using the
Distributed Lock Manager.
DLM is a basic function of HIPLEX® MSCF.

distributed processing
Processing of dialog jobs by several different applications or the transfer of back-
ground jobs to another application. The higher-level protocols LU6.1 and OSI TP
are used for distributed processing. openUTM-LU62 also permits distributed
processing with LU6.2 partners. A distinction is made between distributed pro-
cessing with distributed transactions (transaction logging across different applica-
tions) and distributed processing without distributed transactions (local transac-
tion logging only). Distributed processing is also known as server-server
communication.

distributed transaction
Transaction which encompasses more than one application and is executed in
several different (sub)-transactions in distributed systems.

distributed transaction processing
Distributed processing with distributed transactions.

dynamic configuration
Changes to the configuration made by the administrator. UTM objects such as
program units, transaction codes, clients, LU6.1 connections, printers or user IDs can
be added, modified or in some cases deleted from the configuration while the
application is running. To do this, it is necessary to create separate administra-
tion programs which use the functions of the program interface for administration.
The WinAdmin administration program or the WebAdmin administration pro-
gram can be used to do this, or separate administration programs must be cre-
ated that utilize the functions of the administration program interface.

Glossary

262 Concepts and Functions

encryption level
The encryption level specifies if and to what extent a client message and pass-
word are to be encrypted.

event-driven service
This term has been superseded by event service.

event exit
Routine in an application program which is started automatically whenever cer-
tain events occur (e.g. when a process is started, when a service is terminated).
Unlike event services, an event exit must not contain any KDCS, CPI-C or XATMI
calls.

event function
Collective term for event exits and event services.

event service
Service started when certain events occur, e.g. when certain UTM messages are
issued. The program units for event-driven services must contain KDCS calls.

filebase
UTM application filebase
In BS2000 systems, filebase is the prefix for the KDCFILE, the user log file
USLOG and the system log file SYSLOG.
In Unix and Windows systems, filebase is the name of the directory under which
the KDCFILE, the user log file USLOG, the system log file SYSLOG and other
files relating to to the UTM application are stored.

generation
Static configuration of a UTM application using the UTM tool KDCDEF and cre-
ation of an application program.

global secondary storage area
See secondary storage area.

hardcopy mode
Operating mode of a printer connected locally to a terminal. Any message which
is displayed on screen will also be sent to the printer.

heterogeneous link
In the case of server-server communication: a link between a UTM application and
a non-UTM application, e.g. a CICS or TUXEDO application.

Glossary

Concepts and Functions 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

Highly Integrated System Complex / HIPLEX®
Product family for implementing an operating, load sharing and availability clus-
ter made up of a number of BS2000 servers.

HIPLEX® MSCF
(MSCF = Multiple System Control Facility)
Provides the infrastructure and basic functions for distributed applications with
HIPLEX®.

homogeneous link
In the case of server-server communication: a link between two UTM applications.
It is of no significance whether the applications are running on the same oper-
ating system platforms or on different platforms.

inbound conversation (CPI-C)
See incoming conversation.

incoming conversation (CPI-C)
A conversation in which the local CPI-C program is the acceptor is referred to as
an incoming conversation. In the X/Open specification, the term “inbound con-
versation” is used synonymously with “incoming conversation”.

initial KDCFILE
In a UTM cluster application, this is the KDCFILE generated by KDCDEF and
which must be copied for each node application before the node applications
are started.

initiator (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The initiator sets up the conversation with the CPI-C calls
Initialize_Conversation and Allocate.

insert
Field in a message text in which openUTM enters current values.

inverse KDCDEF
A function which uses the dynamically adapted configuration data in the KDC-
FILE to generate control statements for a KDCDEF run. An inverse KDCDEF
can be started “offline” under KDCDEF or “online” via the program interface for
administration.

Glossary

264 Concepts and Functions

JDK
Java Development Kit
Standard development environment from Sun Microsystems for the develop-
ment of Java applications.

job
Request for a service provided by a UTM application. The request is issued by
specifying a transaction code. See also: queued output job, dialog job, background
job, job complex.

job complex
Job complexes are used to assign confirmation jobs to asynchronous jobs. An
asynchronous job within a job complex is referred to as a basic job.

job-receiving service (KDCS)
A job-receiving service is a service started by a job-submitting service of another
server application.

job-submitting service (KDCS)
A job-submitting service is a service which requests another service from a dif-
ferent server application (job-receiving service) in order to process a job.

KDCADM
Standard administration program supplied with openUTM. KDCADM provides
administration functions which are called with transaction codes (administration
commands).

KDCDEF
UTM tool for the generation of UTM applications. KDCDEF uses the configuration
information in the KDCDEF control statements to create the UTM objects KDC-
FILE and the ROOT table sources for the main routine KDCROOT.
In UTM cluster applications, KDCDEF also creates the cluster configuration file,
the cluster user file, the cluster page pool, the cluster GSSB file and the cluster ULS
file.

KDCFILE
One or more files containing data required for a UTM application to run. The
KDCFILE is created with the UTM generation tool KDCDEF. Among other
things, it contains the configuration of the application.

KDCROOT
Main routine of an application program which forms the link between the program
units and the UTM system code. KDCROOT is linked with the program units to
form the application program.

Glossary

Concepts and Functions 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

KDCS message area
For KDCS calls: buffer area in which messages or data for openUTM or for the
program unit are made available.

KDCS parameter area
See parameter area.

KDCS program interface
Universal UTM program interface compliant with the national DIN 66 265 stan-
dard and which includes some extensions. KDCS (compatible data communi-
cations interface) allows dialog services to be created, for instance, and permits
the use of message queuing functions. In addition, KDCS provides calls for distrib-
uted processing.

Kerberos
Kerberos is a standardized network authentication protocol (RFC1510) based
on encryption procedures in which no passwords are sent to the network in
clear text.

Kerberos principal
Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two loca-
tions, namely with the key owner (principal) and the KDC (Key Distribution Cen-
ter).

key code
Code that represents specific access authorization or a specific role. Several
key codes are grouped into a key set.

key set
Group of one or more key codes under a particular a name. A key set defines
authorization within the framework of the authorization concept used (lock/key
code concept or access list concept). A key set can be assigned to a user ID, an
LTERM partner an (OSI) LPAP partner, a service or a TAC queue.

linkage program
See KDCROOT.

local secondary storage area
See secondary storage area.

Glossary

266 Concepts and Functions

Log4j
Log4j is part of the Apache Jakarta project. Log4j provides information for log-
ging information (runtime information, trace records, etc.) and configuring the
log output. WS4UTM uses the software product Log4j for trace and logging func-
tionality.

lock code
Code protecting an LTERM partner or transaction code against unauthorized
access. Access is only possible if the key set of the accesser contains the appro-
priate key code (lock/key code concept).

logging process
Process in Unix and Windows systems that controls the logging of account
records or monitoring data.

LPAP bundle
LPAP bundles allow messages to be distributed to LPAP partners across sev-
eral partner applications. If a UTM application has to exchange a very large
number of messages with a partner application then load distribution may be
improved by starting multiple instances of the partner application and distribut-
ing the messages across the individual instances. In an LPAP bundle, openUTM
is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The
slave LPAPs are assigned to the master LPAP on generation. LPAP bundles
exist for both the OSI TP protocol and the LU6.1 protocol.

LPAP partner
In the case of distributed processing via the LU6.1 protocol, an LPAP partner for
each partner application must be configured in the local application. The LPAP
partner represents the partner application in the local application. During com-
munication, the partner application is addressed by the name of the assigned
LPAP partner and not by the application name or address.

LTERM bundle
An LTERM bundle (connection bundle) consists of a master LTERM and multi-
ple slave LTERMs. An LTERM bundle (connection bundle) allows you to distrib-
ute queued messages to a logical partner application evenly across multiple
parallel connections.

LTERM group
An LTERM group consists of one or more alias LTERMs, the group LTERMs
and a primary LTERM. In an LTERM group, you assign multiple LTERMs to a
connection.

Glossary

Concepts and Functions 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

LTERM partner
LTERM partners must be configured in the application if you want to connect cli-
ents or printers to a UTM application. A client or printer can only be connected if
an LTERM partner with the appropriate properties is assigned to it. This assign-
ment is generally made in the configuration, but can also be made dynamically
using terminal pools.

LTERM pool
The TPOOL statement allows you to define a pool of LTERM partners instead
of issuing one LTERM and one PTERM statement for each client. If a client
establishes a connection via an LTERM pool, an LTERM partner is assigned to
it dynamically from the pool.

LU6.1
Device-independent data exchange protocol (industrial standard) for transac-
tion-oriented server-server communication.

LU6.1-LPAP bundle
LPAP bundle for LU6.1 partner applications.

LU6.1 partner
Partner of the UTM application that communicates with the UTM application via
the LU6.1 protocol.
Examples of this type of partner are:
– a UTM application that communicates via LU6.1
– an application in the IBM environment (e.g. CICS, IMS or TXSeries) that

communicates via LU6.1

main process (Unix systems / Windows systems)
Process which starts the UTM application. It starts the work processes, the UTM
system processes, printer processes, network processes, logging process and the timer
process and monitors the UTM application.

main routine KDCROOT
See KDCROOT.

management unit
SE Servers component; in combination with the SE Manager, permits centralized,
web-based management of all the units of an SE server.

mapped host name
Mapping of the partner application's UTM host name to a real host name or vice
versa.

Glossary

268 Concepts and Functions

message definition file
The message definition file is supplied with openUTM and, by default, contains
the UTM message texts in German and English together with the definitions of
the message properties. Users can take this file as a basis for their own mes-
sage modules.

message destination
Output medium for a message. Possible message destinations for a message
from the openUTM transaction monitor include, for instance, terminals, TS appli-
cations, the event service MSGTAC, the system log file SYSLOG or TAC queues,
asynchronous TACs, USER queues, SYSOUT/SYSLST or stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/
SYSLST and stderr/stdout.

message queue
Queue in which specific messages are kept with transaction management until
further processed. A distinction is drawn between service-controlled queues and
UTM-controlled queues, depending on who monitors further processing.

message queuing
Message queuing (MQ) is a form of communication in which the messages are
exchanged via intermediate queues rather than directly. The sender and recip-
ient can be separated in space or time. The transfer of the message is indepen-
dent of whether a network connection is available at the time or not. In
openUTM there are UTM-controlled queues and service-controlled queues.

message router (BS2000 systems)
Device in a central host or a communication computer which distributes queued
input messages to different UTM applications which can be located on different
computers. The message router also allows you to work with multiplex connec-
tions.

MSGTAC
Special event service that processes messages with the message destination
MSGTAC by means of a program. MSGTAC is an asynchronous service and is
created by the operator of the application.

multiplex connection (BS2000 systems)
Special method of connecting terminals to a UTM application. A multiplex con-
nection enables several terminals to share a single transport connection.

multi-step service (KDCS)
Service carried out in a number of dialog steps.

Glossary

Concepts and Functions 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

multi-step transaction
Transaction which comprises more than one processing step.

Network File System/Service / NFS
Allows Unix systems to access file systems across the network.

network process (Unix systems / Windows systems)
A process in a UTM application for connection to the network.

network selector
The network selector identifies a service access point to the network layer of the
OSI reference model in the local system.

node
Individual computer of a cluster.

node application
UTM application that is executed on an individual node as part of a UTM cluster
application.

node bound service
A node bound service belonging to a user can only be continued at the node
application at which the user was last signed on. The following services are
always node bound:
– Services that have started communications with a job receiver via LU6.1 or

OSI TP and for which the job-receiving service has not yet been terminated
– Inserted services in a service stack
– Services that have completed a SESAM transaction
In addition, a user’s service is node bound as long as the user is signed-on at
a node application.

node filebase
Filename prefix or directory name for the node application's KDCFILE, user log
file and system log file.

node recovery
If a node application terminates abnormally and no rapid warm start of the appli-
cation is possible on its associated node computer then it is possible to perform
a node recovery for this node on another node in the UTM cluster. In this way,
it is possible to release locks resulting from the failed node application in order
to prevent unnecessary impairments to the running UTM cluster application.

Glossary

270 Concepts and Functions

normal termination of a UTM application
Controlled termination of a UTM application. Among other things, this means
that the administration data in the KDCFILE are updated. The administrator ini-
tiates normal termination (e.g. with KDCSHUT N). After a normal termination,
openUTM carries out any subsequent start as a cold start.

object identifier
An object identifier is an identifier for objects in an OSI environment which is
unique throughout the world. An object identifier comprises a sequence of inte-
gers which represent a path in a tree structure.

open terminal pool
Terminal pool which is not restricted to clients of a single computer or particular
type. Any client for which no computer- or type-specific terminal pool has been
generated can connect to this terminal pool.

online import
In a UTM cluster application, online import refers to the import of application data
from a normally terminated node application into a running node application.

online update
In a UTM cluster application, online update refers to a change to the application
configuration or the application program or the use of a new UTM revision level
while a UTM cluster application is running.

OpenCPIC
Carrier system for UTM clients that use the OSI TP protocol.

OpenCPIC client
OSI TP partner application with the OpenCPIC carrier system.

openSM2
The openSM2 product line offers a consistent solution for the enterprise-wide
performance management of server and storage systems. openSM2 offers the
acquisition of monitoring data, online monitoring and offline evaluation.

openUTM application
See UTM application.

openUTM cluster
From the perspective of UPIC clients, not from the perspective of the server:
Combination of several node applications of a UTM cluster application to form
one logical application that is addressed via a common symbolic destination
name.

Glossary

Concepts and Functions 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

openUTM-D
openUTM-D (openUTM distributed) is a component of openUTM which allows
distributed processing. openUTM-D is an integral component of openUTM.

OSI-LPAP bundle
LPAP bundle for OSI TP partner applications.

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI TP partners generated in
openUTM. In the case of distributed processing via the OSI TP protocol, an OSI-
LPAP partner for each partner application must be configured in the local appli-
cation. The OSI-LPAP partner represents the partner application in the local
application. During communication, the partner application is addressed by the
name of the assigned OSI-LPAP partner and not by the application name or
address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization,
described this model in the ISO IS7498 standard. The OSI reference model
divides the necessary functions for system communication into seven logical
layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP
Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner
Partner of the UTM application that communicates with the UTM application via
the OSI TP protocol.
Examples of such partners are:
– a UTM application that communicates via OSI TP
– an application in the IBM environment (e.g. CICS) that is connected via

openUTM-LU62
– an application of the OpenCPIC carrier system of the openUTM client
– applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)
See outgoing conversation.

outgoing conversation (CPI-C)
A conversation in which the local CPI-C program is the initiator is referred to as
an outgoing conversation. In the X/Open specification, the term “outbound con-
versation” is used synonymously with “outgoing conversation”.

Glossary

272 Concepts and Functions

page pool
Part of the KDCFILE in which user data is stored.
In a standalone application this data consists, for example, of dialog messages,
messages sent to message queues, secondary memory areas.
In a UTM cluster application, it consists, for example, of messages to message
queues, TLS.

parameter area
Data structure in which a program unit passes the operands required for a UTM
call to openUTM.

partner application
Partner of a UTM application during distributed processing. Higher communica-
tion protocols are used for distributed processing (LU6.1, OSI TP or LU6.2 via
the openUTM-LU62 gateway).

postselection (BS2000 systems)
Selection of logged UTM events from the SAT logging file which are to be eval-
uated. Selection is carried out using the SATUT tool.

prepare to commit (PTC)
Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system
waits for the partner to confirm the end of the transaction.

preselection (BS2000 systems)
Definition of the UTM events which are to be logged for the SAT audit. Preselec-
tion is carried out with the UTM-SAT administration functions. A distinction is
made between event-specific, user-specific and job-specific (TAC-specific) pre-
selection.

presentation selector
The presentation selector identifies a service access point to the presentation
layer of the OSI reference model in the local system.

primary storage area
Area in main memory to which the KDCS program unit has direct access, e.g.
standard primary working area, communication area.

print administration
Functions for print control and the administration of queued output jobs, sent to a
printer.

Glossary

Concepts and Functions 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

print control
openUTM functions for controlling print output.

printer control LTERM
A printer control LTERM allows a client or terminal user to connect to a UTM
application. The printers assigned to the printer control LTERM can then be
administered from the client program or the terminal. No administration rights
are required for these functions.

printer control terminal
This term has been superseded by printer control LTERM.

printer group (Unix systems)
For each printer, a Unix system sets up one printer group by default that con-
tains this one printer only. It is also possible to assign several printers to one
printer group or to assign one printer to several different printer groups.

printer pool
Several printers assigned to the same LTERM partner.

printer process (Unix systems)
Process set up by the main process for outputting asynchronous messages to a
printer group. The process exists as long as the printer group is connected to the
UTM application. One printer process exists for each connected printer group.

process
The openUTM manuals use the term “process” as a collective term for pro-
cesses (Unix systems / Windows systems) and tasks (BS2000 systems).

processing step
A processing step starts with the receipt of a dialog message sent to the UTM
application by a client or another server application. The processing step ends
either when a response is sent, thus also terminating the dialog step, or when a
dialog message is sent to a third party.

program interface for administration
UTM program interface which helps users to create their own administration pro-
grams. Among other things, the program interface for administration provides
functions for dynamic configuration, for modifying properties and application
parameters and for querying information on the configuration and the current
workload of the application.

Glossary

274 Concepts and Functions

program unit
UTM services are implemented in the form of one or more program units. The
program units are components of the application program. Depending on the
employed API, they may have to contain KDCS, XATMI or CPIC calls. They can
be addressed using transaction codes. Several different transaction codes can
be assigned to a single program unit.

queue
See message queue.

queued output job
Queued output jobs are asynchronous jobs which output a message, such as a
document, to a printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it
is not necessary to create program units to process them.

Quick Start Kit
A sample application supplied with openUTM (Windows systems).

redelivery
Repeated delivery of an asynchronous message that could not be processed cor-
rectly because, for example, the transaction was rolled back or the asynchronous
service was terminated abnormally. The message is returned to the message
queue and can then be read and/or processed again.

reentrant program
Program whose code is not altered when it runs. In BS2000 systems this con-
stitutes a prerequisite for using shared code.

request
Request from a client or another server for a service function.

requestor
In XATMI, the term requestor refers to an application which calls a service.

resource manager
Resource managers (RMs) manage data resources. Database systems are
examples of resource managers. openUTM, however, also provides its own
resource managers for accessing message queues, local memory areas and
logging files, for instance. Applications access RMs via special resource man-
ager interfaces. In the case of database systems, this will generally be SQL and
in the case of openUTM RMs, it is the KDCS interface.

Glossary

Concepts and Functions 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

restart
See screen restart,
see service restart.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to
the TCP/IP family that implements the ISO transport services (transport
class 0) based on TCP/IP.

RSA
Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir
and Adleman). This method uses a pair of keys that consists of a public key and
a private key. A message is encrypted using the public key, and this message
can only be decrypted using the private key. The pair of RSA keys is created by
the UTM application.

SAT audit (BS2000 systems)
Audit carried out by the SAT (Security Audit Trail) component of the BS2000
software product SECOS.

screen restart
If a dialog service is interrupted, openUTM again displays the dialog message of
the last completed transaction on screen when the service restarts provided that
the last transaction output a message on the screen.

SE manager
Web-based graphical user interface (GUI) for the SE series of Business
Servers. SE Manager runs on the management unit and permits the central
operation and administration of server units (with /390 architecture and/or x86
architecture), application units (x86 architecture), net unit and peripherals.

SE server
A Business Server from Fujitsu's SE series.

secondary storage area
Memory area secured by transaction logging and which can be accessed by the
KDCS program unit with special calls. Local secondary storage areas (LSSBs)
are assigned to one service. Global secondary storage areas (GSSBs) can be
accessed by all services in a UTM application. Other secondary storage areas
include the terminal-specific long-term storage (TLS) and the user-specific long-term
storage (ULS).

Glossary

276 Concepts and Functions

selector
A selector identifies a service access point to services of one of the layers of the
OSI reference model in the local system. Each selector is part of the address of
the access point.

semaphore (Unix systems / Windows systems)
Unix systems and Windows systems resource used to control and synchronize
processes.

server
A server is an application which provides services. The computer on which the
applications are running is often also referred to as the server.

server-server communication
See distributed processing.

server side of a conversation (CPI-C)
This term has been superseded by acceptor.

service
Services process the jobs that are sent to a server application. A service of a
UTM application comprises one or more transactions. The service is called with
the service TAC. Services can be requested by clients or by other servers.

service access point
In the OSI reference model, a layer has access to the services of the layer
below at the service access point. In the local system, the service access point
is identified by a selector. During communication, the UTM application links up to
a service access point. A connection is established between two service access
points.

service chaining (KDCS)
When service chaining is used, a follow-on service is started without a dialog
message specification after a dialog service has completed .

service-controlled queue
Message queue in which the calling and further processing of messages is con-
trolled by services. A service must explicitly issue a KDCS call (DGET) to read
the message. There are service-controlled queues in openUTM in the variants
USER queue, TAC queue and temporary queue.

Glossary

Concepts and Functions 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

service restart (KDCS)
If a service is interrupted, e.g. as a result of a terminal user signing off or a UTM
application being terminated, openUTM carries out a service restart. An asynchro-
nous service is restarted or execution is continued at the most recent synchroni-
zation point, and a dialog service continues execution at the most recent synchro-
nization point. As far as the terminal user is concerned, the service restart for a
dialog service appears as a screen restart provided that a dialog message was
sent to the terminal user at the last synchronization point.

service routine
See program unit.

service stacking (KDCS)
A terminal user can interrupt a running dialog service and insert a new dialog ser-
vice. When the inserted service has completed, the interrupted service contin-
ues.

service TAC (KDCS)
Transaction code used to start a service.

session
Communication relationship between two addressable units in the network via
the SNA protocol LU6.1.

session selector
The session selector identifies an access point in the local system to the services
of the session layer of the OSI reference model.

shared code (BS2000 systems)
Code which can be shared by several different processes.

shared memory
Virtual memory area which can be accessed by several different processes
simultaneously.

shared objects (Unix systems / Windows systems)
Parts of the application program can be created as shared objects. These objects
are linked to the application dynamically and can be replaced during live oper-
ation. Shared objects are defined with the KDCDEF statement SHARED-
OBJECT.

sign-on check
See system access control.

Glossary

278 Concepts and Functions

sign-on service (KDCS)
Special dialog service for a user in which program units control how a user signs
on to a UTM application.

single-step service
Dialog service which encompasses precisely one dialog step.

single-step transaction
Transaction which encompasses precisely one dialog step.

SOA
(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the
form of re-usable, technically independent, loosely coupled services. Services
can be called independently of the underlying implementations via interfaces
which may possess public and, consequently, trusted specifications. Service
interaction is performed via a communication infrastructure made available for
this purpose.

SOAP
SOAP (Simple Object Access Protocol) is a protocol used to exchange data
between systems and run remote procedure calls. SOAP also makes use of the
services provided by other standards, XML for the representation of the data
and Internet transport and application layer protocols for message transfer.

socket connection
Transport system connection that uses the socket interface. The socket inter-
face is a standard program interface for communication via TCP/IP.

standalone application
See standalone UTM application.

standalone UTM application
Traditional UTM application that is not part of a UTM cluster application.

standard primary working area (KDCS)
Area in main memory available to all KDCS program units. The contents of the
area are either undefined or occupied with a fill character when the program unit
starts execution.

start format
Format output to a terminal by openUTM when a user has successfully signed
on to a UTM application (except after a service restart and during sign-on via the
sign-on service).

Glossary

Concepts and Functions 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

static configuration
Definition of the configuration during generation using the UTM tool KDCDEF.

SYSLOG file
See system log file.

synchronization point, consistency point
The end of a transaction. At this time, all the changes made to the application
information during the transaction are saved to prevent loss in the event of a
crash and are made visible to others. Any locks set during the transaction are
released.

system access control
A check carried out by openUTM to determine whether a certain user ID is
authorized to work with the UTM application. The authorization check is not car-
ried out if the UTM application was generated without user IDs.

system log file
File or file generation to which openUTM logs all UTM messages for which
SYSLOG has been defined as the message destination during execution of a UTM
application.

TAC
See transaction code.

TAC queue
Message queue generated explicitly by means of a KDCDEF statement. A TAC
queue is a service-controlled queue that can be addressed from any service using
the generated name.

temporary queue
Message queue created dynamically by means of a program that can be deleted
again by means of a program (see service-controlled queue).

terminal-specific long-term storage (KDCS)
Secondary storage area assigned to an LTERM, LPAP or OSI-PAP partner and
which is retained after the application has terminated.

time-driven job
Job which is buffered by openUTM in a message queue up to a specific time until
it is sent to the recipient. The recipient can be an asynchronous service of the
same application, a TAC queue, a partner application, a terminal or a printer.
Time-driven jobs can only be issued by KDCS program units.

Glossary

280 Concepts and Functions

timer process (Unix systems / Windows systems)
Process which accepts jobs for controlling the time at which work processes are
executed. It does this by entering them in a job list and releasing them for pro-
cessing after a time period defined in the job list has elapsed.

TNS (Unix systems / Windows systems)
Abbreviation for the Transport Name Service. TNS assigns a transport selector
and a transport system to an application name. The application can be reached
through the transport system.

Tomcat
see Apache Tomcat

transaction
Processing section within a service for which adherence to the ACID properties
is guaranteed. If, during the course of a transaction, changes are made to the
application information, they are either made consistently and in their entirety or
not at all (all-or-nothing rule). The end of the transaction forms a synchronization
point.

transaction code/TAC
Name which can be used to identify a program unit. The transaction code is
assigned to the program unit during static or dynamic configuration. It is also pos-
sible to assign more than one transaction code to a program unit.

transaction rate
Number of transactions successfully executed per unit of time.

transfer syntax
With OSI TP, the data to be transferred between two computer systems is con-
verted from the local format into transfer syntax. Transfer syntax describes the
data in a neutral format which can be interpreted by all the partners involved.
An Object Identifier must be assigned to each transfer syntax.

transport selector
The transport selector identifies a service access point to the transport layer of
the OSI reference model in the local system.

transport system application
Application which is based directly on a transport system interface (e.g. CMX,
DCAM or socket). When transport system applications are connected, the part-
ner type APPLI or SOCKET must be specified during configuration. A transport
system application cannot be integrated in a distributed transaction.

Glossary

Concepts and Functions 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

TS application
See transport system application.

typed buffer (XATMI)
Buffer for exchanging typed and structured data between communication part-
ners. Typed buffers ensure that the structure of the exchanged data is known to
both partners implicitly.

UPIC
Carrier system for openUTM clients. UPIC stands for Universal Programming
Interface for Communication.

UPIC Analyzer
Component used to analyze the UPIC communication recorded with UPIC
Capture. This step is used to prepare the recording for playback using UPIC
Replay.

UPIC Capture
Used to record communication between UPIC clients and UTM applications so
that this can be replayed subsequently (UPIC Replay).

UPIC client
The designation for openUTM clients with the UPIC carrier system.

UPIC Replay
Component used to replay the UPIC communication recorded with UPIC
Capture and prepared with UPIC Analyzer.

user exit
This term has been superseded by event exit.

user ID
Identifier for a user defined in the configuration for the UTM application (with an
optional password for system access control) and to whom special data access
rights (system access control) have been assigned. A terminal user must specify
this ID (and any password which has been assigned) when signing on to the
UTM application. In BS2000 systems, system access control is also possible
via Kerberos.
For other clients, the specification of a user ID is optional, see also connection
user ID.
UTM applications can also be generated without user IDs.

Glossary

282 Concepts and Functions

user log file
File or file generation to which users write variable-length records with the
KDCS LPUT call. The data from the KB header of the KDCS communication area
is prefixed to every record. The user log file is subject to transaction manage-
ment by openUTM.

USER queue
Message queue made available to every user ID by openUTM. A USER queue is
a service-controlled queue and is always assigned to the relevant user ID. You
can restrict the access of other UTM users to your own USER queue.

user-specific long-term storage
Secondary storage area assigned to a user ID, a session or an association and which
is retained after the application has terminated.

USLOG file
See user log file.

UTM application
A UTM application provides services which process jobs from clients or other
applications. openUTM is responsible for transaction logging and for managing
the communication and system resources. From a technical point of view, a
UTM application is a process group which forms a logical server unit at runtime.

UTM cluster application
UTM application that has been generated for use on a cluster and that can be
viewed logically as a single application.
In physical terms, a UTM cluster application is made up of several identically
generated UTM applications running on the individual cluster nodes.

UTM cluster files
Blanket term for all the files that are required for the execution of a UTM cluster
application. This includes the following files:
– Cluster configuration file
– Cluster user file
– Files belonging to the cluster page pool
– Cluster GSSB file
– Cluster ULS file
– Files belonging to the cluster administration journal*
– Cluster lock file*
– Lock file for start serialization* (only in Unix systems and Windows systems)
The files indicated by * are created when the first node application is started. All
the other files are created on generation using KDCDEF.

Glossary

Concepts and Functions 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

UTM-controlled queue
Message queues in which the calling and further processing of messages is
entirely under the control of openUTM. See also asynchronous job, background job
and asynchronous message.

UTM-D
See openUTM-D.

UTM-F
UTM applications can be generated as UTM-F applications (UTM fast). In the
case of UTM-F applications, input from and output to hard disk is avoided in
order to increase performance. This affects input and output which UTM-S uses
to save user data and transaction data. Only changes to the administration data
are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-
MODE=FAST), application data that is valid throughout the cluster is also
saved. In this case, GSSB and ULS data is treated in exactly the same way as
in UTM cluster applications generated with UTM-S. However, service data relat-
ing to users with RESTART=YES is written only when the relevant user signs
off and not at the end of each transaction.

UTM message
Messages are issued to UTM message destinations by the openUTM transaction
monitor or by UTM tools (such as KDCDEF). A message comprises a message
number and a message text, which can contain inserts with current values.
Depending on the message destination, either the entire message is output or
only certain parts of the message, such as the inserts).

UTM page
A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone
UTM applications, the size of a UTM page on generation of the UTM application
can be set to 2K, 4K or 8 K. The size of a UTM page in a UTM cluster application
is always 4K or 8 K. The page pool and the restart area for the KDCFILE and
UTM cluster files are divided into units of the size of a UTM page.

utmpath (Unix systems / Windows systems)
The directory under which the openUTM components are installed is referred to
as utmpath in this manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH
must be set to the value of utmpath. On Unix systems, you must set UTMPATH
before a UTM application is started. On Windows systems, UTMPATH is set on
installation.

Glossary

284 Concepts and Functions

UTM-S
In the case of UTM-S applications, openUTM saves all user data as well as the
administration data beyond the end of an application and any system crash
which may occur. In addition, UTM-S guarantees the security and consistency
of the application data in the event of any malfunction. UTM applications are
usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)
UTM-SAT administration functions control which UTM events relevant to secu-
rity which occur during operation of a UTM application are to be logged by SAT.
Special authorization is required for UTM-SAT administration.

UTM system process
UTM process that is started in addition to the processes specified via the start
parameters and which only handles selected jobs. UTM system processes
ensure that UTM applications continue to be reactive even under very high
loads.

UTM terminal
This term has been superseded by LTERM partner.

virtual connection
Assignment of two communication partners.

warm start
Start of a UTM-S application after it has terminated abnormally. The application
information is reset to the most recent consistent state. Interrupted dialog ser-
vices are rolled back to the most recent synchronization point, allowing processing
to be resumed in a consistent state from this point (service restart). Interrupted
asynchronous services are rolled back and restarted or restarted at the most
recent synchronization point.
For UTM-F applications, only configuration data which has been dynamically
changed is rolled back to the most recent consistent state after a restart due to
a preceding abnormal termination.
In UTM cluster applications, the global locks applied to GSSB and ULS on
abnormal termination of this node application are released. In addition, users
who were signed on at this node application when the abnormal termination
occurred are signed off.

WebAdmin
Web-based tool for the administration of openUTM applications via a Web
browser. WebAdmin includes not only the full function scope of the adminis-
tration program interface but also additional functions.

Glossary

Concepts and Functions 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

4:
24

.4
8

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

1_
K

o
nf

u\
en

\k
o

nf
u_

e
.m

ix

Web service
Application which runs on a Web server and is (publicly) available via a stan-
dardized, programmable interface. Web services technology makes it possible
to make UTM program units available for modern Web client applications inde-
pendently of the programming language in which they were developed.

WinAdmin
Java-based tool for the administration of openUTM applications via a graphical
user interface. WinAdmin includes not only the full function scope of the admin-
istration program interface but also additional functions.

work process (Unix systems / Windows systems)
A process within which the services of a UTM application run.

workload capture & replay
Family of programs used to simulate load situations; consisting of the main
components UPIC Capture, UPIC Analyzer and Upic Replay (on Unix and
Windows systems) the utility program kdcsort. Workload Capture & Replay can
be used to record UPIC sessions with UTM applications, analyze these and
then play them back with modified load parameters.

WS4UTM
WS4UTM (WebServices for openUTM) provides you with a convenient way of
making a service of a UTM application available as a Web service.

XATMI
XATMI (X/Open Application Transaction Manager Interface) is a program inter-
face standardized by X/Open for program-program communication in open net-
works.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI
CAE Specification. The interface is available in COBOL and C. In openUTM,
XATMI can communicate via the OSI TP, LU6.1 and UPIC protocols.

XHCS (BS2000 systems)
XHCS (Extended Host Code Support) is a BS2000 software product providing
support for international character sets.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by the
W3C (WWW Consortium) in which the interchange formats for data and the
associated information can be defined.

Glossary

286 Concepts and Functions

Concepts and Functions 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
a

r
20

15
 S

ta
nd

 1
4:

24
.4

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
ab

k

Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used
in the original German product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000)

DB Database

DC Data Communication

DCAM Data Communication Access Method

Abbreviations

288 Concepts and Functions

DES Data Encryption Standard

DLM Distributed Lock Manager (BS2000)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

Abbreviations

Concepts and Functions 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
a

r
20

15
 S

ta
nd

 1
4:

24
.4

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
ab

k

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000)

RTS Runtime System

SAT Security Audit Trail (BS2000)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

Abbreviations

290 Concepts and Functions

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 (Task User)

TX Transaction Demarcation (X/Open)

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

Abbreviations

Concepts and Functions 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
a

nu
a

r
20

15
 S

ta
nd

 1
4:

24
.4

8
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
nU

T
M

V
6.

3\
14

0
36

01
_

K
on

fu
\e

n\
ko

nf
u_

e.
ab

k

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Process-
ing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

Abbreviations

292 Concepts and Functions

Concepts and Functions 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

3:
00

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

1_
K

on
fu

\e
n\

ko
nf

u_
e

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

i PDF files of all openUTM manuals are included on the openUTM Enterprise DVD
with open platforms and on the openUTM WinAdmin DVD (for BS2000 systems).

openUTM documentation

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Using openUTM Applications under BS2000 Systems
User Guide

openUTM
Using openUTM Applications under Unix Systems and Windows Systems
User Guide

openUTM
Administering Applications
User Guide

openUTM
Messages, Debugging and Diagnostics in BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com

Related publications

294 Concepts and Functions

openUTM
Messages, Debugging and Diagnostics in Unix Systems and Windows Systems
User Guide

openUTM
Creating Applications with X/Open Interfaces
User Guide

openUTM
XML for openUTM

openUTM Client (Unix systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

Related publications

Concepts and Functions 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

3:
00

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

1_
K

on
fu

\e
n\

ko
nf

u_
e

.li
t

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

openUTM
Master Index

Related publications

296 Concepts and Functions

Documentation for the openSEAS product environment

BeanConnect
User Guide

JConnect
Connecting Java Clients to openUTM
User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Related publications

Concepts and Functions 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

3:
00

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

1_
K

on
fu

\e
n\

ko
nf

u_
e

.li
t

Documentation for the BS2000 environment

AID
Advanced Interactive Debugger
Core Manual
User Guide

BCAM
BCAM Volume 1/2
User Guide

BINDER
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BS2000
BLSSERV
Dynamic Binder Loader / Starter
User Guide

DCAM
COBOL Calls
User Guide

DCAM
Macros
User Guide

DCAM
Program Interfaces
Description

FHS
Format Handling System for openUTM, TIAM, DCAM
User Guide

IFG for FHS
User Guide

Related publications

298 Concepts and Functions

HIPLEX AF
High-Availability of Applications in BS2000/OSD
Product Manual

HIPLEX MSCF
BS2000 Processor Networks
User Guide

IMON
Installation Monitor
User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU (BS2000)
Functions and Commands
User Guide

OMNIS/OMNIS-MENU (BS2000)
Administration and Programming
User Guide

OSS (BS2000)
OSI Session Service
User Guide

RSO
Remote SPOOL Output
User Guide

SECOS
Security Control System
User Guide

SECOS
Security Control System
Ready Reference

SESAM/SQL
Database Operation
User Guide

Related publications

Concepts and Functions 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

3:
00

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

1_
K

on
fu

\e
n\

ko
nf

u_
e

.li
t

openSM2
Software Monitor
Volume 1: Administration and Operation

TIAM
User Guide

UDS/SQL
Database Operation
User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support
User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD
User Guide

Related publications

300 Concepts and Functions

Documentation for the Unix system environment

CMX V6.0 (Unix systems)
Betrieb und Administration (only available in German)
User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2
The documentation of openSM2 is provided in the form of detailed online help systems,
which are delivered with the product.

Related publications

Concepts and Functions 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
8.

 J
a

nu
ar

y
20

15

S
ta

nd
 1

3:
00

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

1_
K

on
fu

\e
n\

ko
nf

u_
e

.li
t

Other publications

XCPI-C (X/Open)
Distributed Transaction Processing
X/Open CAE Specification, Version 2
ISBN 1 85912 135 7

Reference Model Version 2 (X/Open)
Distributed Transaction Processing
X/Open Guide
ISBN 1 85912 019 9

TX (Transaction Demarcation) (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 094 6

XTAMI (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)
Web page: http://www.w3.org/XML

http://www.w3.org/XML

Related publications

302 Concepts and Functions

Concepts and Functions 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

ua
ry

 2
01

5
 S

ta
n

d
14

:2
4

.4
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
01

_K
on

fu
\e

n\
ko

nf
u_

e.
si

x

Index

64-bit environment
migrating 151

64-bit platforms 240
8-bit code 230

A
abnormal termination 208
access control 178
access control with Kerberos 228
access list concept 180

with distributed processing 183
access point, logical 172
accounting 57
ACID properties 29

atomicity 29
consistency 29
durability 29
isolation 29

address space concept
BS2000/OSD 222
Unix systems 238
Windows systems 246

addressing
double-step 88
single-step 88

adjtclt.c 160
administration 153

asynchronous job 111
authorization concept 165
automatic 168
cluster application via WinAdmin 34
dialog 155
message queues and printers 169
program interface 158

via message queueing 155
with WebAdmin 163
with WinAdmin 161

administration command 155
administration functions

dialog 155
message queueing 155
program interface KDCADMI 159

administration journal 36, 256
administration program

KDCADM 154
transaction code 156

AES 187
alarm mechanisms 40
application monitoring

in a cluster 196
application program 48

generating 147
application programming 60
application restart 208, 210
applications

integrating 65
AREA 128
Assembler 122
asynchronous job 97

administration 111
control options 109
time-driven 110

asynchronous message 97
asynchronous processing 39
asynchronous request/response model 136
asynchronous service 99
atomicity 29
authentication 53, 172
authorization 53, 178

Index

304 Concepts and Functions

authorization checks
user-defined 177

automatic timeout 176
availability 52
Axis 70

B
background job 98

priority scheduling 102
remote service 100

BADTACS 132
BeanConnect 66, 67, 69
BeanConnect Proxy 67, 68
billing 57
Borland Delphi 123
browse queue messages 103
BS2000 tasks 221
buffer

type-based 137
business logic 28
bypass mode 227

C
C 122
C++ 122
cache memory 120
CALLUTM 232
carrier system 78

OpenCPIC 79
UPIC 78

certificate checking 229
certificate number 229
changing the configuration

dynamically 54
character set

extended 230
chipcard 229
CICS 43, 91
class 4 memory 222
class 5 memory 222
class 6 memory 222
client 77

trusted 188
client application 77

connecting 78
client process

Unix systems 236
Windows systems 244

client program 78
client/server communication

user concept 174
client/server computing 73

architecture variants 73
basic model 74
multi-tier 75
user concept 174

cluster 193
administration journal 36
cluster configuration file 36
cluster user file 36
load distribution 201
modifying application programs 198
monitoring 196
node applications 33
online import of application data 197, 198
online update 198
openUTM 195
UTM revision level 199
Windows 194

cluster administration journal 256
cluster application

local node files 36
online update 198

cluster configuration file 36
cluster page pool 36
cluster update 150
cluster user file 36
clusters

UTM cluster application 33
CMX application 93
COBOL 122
COBUSER 160
code conversion

BS2000/OSD 226
Unix system 240
Windows system 248

collections 162
combination

Index

Concepts and Functions 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

ua
ry

 2
01

5
 S

ta
n

d
14

:2
4

.4
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
01

_K
on

fu
\e

n\
ko

nf
u_

e.
si

x

of program interfaces 123
common memory pool 222
communication

peer-to-peer 77
server-server 77

communication area 128
communication models

XATMI 136
communication protocol 45

overview 45, 96
Communication Resource Manager 48
component technology 66
configuration 144

changing dynamically 166
dynamic 158

confirmation job 109
connection establishment

transport system application 93
connection loss

for printers 207
for terminals 206
with distributed processing 214

connection options 45
connection password 228
consistency 29
controlling print output 169
conversation

non-blocking 39
pseudo 116

conversational model 136
CPI-C 122, 134
CPU consumption

accounting 57
CUpic, C++ class 123

D
DADM 112
data access control 53

lock/key code concept 178
data areas 128
data local to the node 119
data warehousing solution 41
database key

BS2000/OSD 229

database system 30
coordinated database systems 30
coordination 30
diagnostics 32
distributed 31
error handling 32
heterogeneous 31
interface 32
supported 30

DBH
in a cluster 38

DCAM application 93
dead letter queue 99, 105, 111
decision support system 41
deferred delivery principle 100
defining configuration 144
determine capacity 58
diagnostic option 59
dialog global 83
dialog terminal process 236, 244
disk failure 206
distributed processing 73, 77

load distribution in clusters 201
distributed transaction 85
Distributed Transaction Processing (DTP) 47
document type definition 139
documentation

summary 14
double-step addressing 88
DPUT 112
DTD 139
dummy dialog

IMS and CICS 92
dump files 59
durability 29
dynamic changes to the configuration 166
dynamic configuration 54

E
encradm.c 160
encryption 187

terminal emulation 229
UPIC clients 187

encryption level 187

Index

306 Concepts and Functions

for clients 188
for services 188

end of a transaction 85
error

automatic check 205
limiting 203
with distributed processing 213

event exit
FORMAT 133, 225
INPUT 133
SERVICE 133
SHUT 133
START 133

event function 132
event exit 133
event service 132

event service 132
BADTACS 132
MSGTAC 132, 168
SIGNON 132, 177

F
failure

without connection loss 207
failure detection

cluster 196
fault tolerance 203
features overview 27
FGET 112
FHS 225
fixed price for services 57
FORMAT 133, 225
format generator 224
format handling system

FHS 224
formatting

BS2000/OSD 224
formatting error

limiting 203
Fortran 122
FPUT 112

G
generating application program 147

generation 143
changing dynamically 54

generation interface 143
generation tool

KDCDEF 144
global dialog 83
global secondary storage area 129
global transaction

restart 213
roll back 213

global transaction management
CICS and IMS 91
different interfaces 123

graphical interface
for administration 161

graphical user interface
for administration 164

GSSB 129

H
hardcopy mode 227
hardware error

terminal 206
high availability 52, 191

BS2000/OSD 191
Unix system 193
Windows system 194

HNDLUSR 160
HP-UX 13, 233

I
IBM mainframe

integration 43
ID card 176
identification 172
IFG 224
ILCS 219
IMS 43, 91
independent transaction 86
INPUT 133
integration

of applications 65
interface combinations 123
internal interfaces

Index

Concepts and Functions 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

ua
ry

 2
01

5
 S

ta
n

d
14

:2
4

.4
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
01

_K
on

fu
\e

n\
ko

nf
u_

e.
si

x

BS2000/OSD 219
Unix system 234
Windows 241

internationalization 56
BS2000/OSD 229

interprocess communication 238, 246
inverse KDCDEF 158
IP addresses 240, 248
IPC 238, 246
isolation 29
IUTMDB 32, 219
IUTMFORM 219, 225
IUTMHLL 219

J
Java 2 Enterprise Edition 66
Java EE 66
Java EE application server 66

inbound communication 68
Java EE server

communication with UTM cluster
application 69

JCA adapter
JConnect 67

JConnect adapter 67
job complex 109
job-receiving service 83
job-submitting service 83

K
KAA 238, 246
KB 128
KDCADM 154
KDCADMI 153, 159

sample programs 160
KDCDADM 169
KDCDEF 117, 144

inverse 158
KDCDEF control statements

overview 145
KDCDUMP 59
KDCFILE 117, 144
KDCMON 50
KDCPADM 169

KDCROOT 114, 147
KDCS 124

calls 124
return code 127
storage area 128

KDCS interface
MQ calls 112

KDCUPD 149
Kerberos 176, 228
KTA 238, 246

L
limiting program errors 203
Linux distribution 13, 233
LLM (BS2000/OSD) 220
load distribution

cluster 201
distributed processing (cluster) 201
Oracle® RAC (cluster) 202
UPIC clients (cluster) 202

load situation
simulating 51

local client process 236, 244
local queuing 98
local secondary storage area 129
locale 229
lock/key code concept 53

example 179
with distributed processing 183

logical access point 172
LPAP partner 173
LSSB 129
LTERM partner 172

privileged 116
LTERM pool 173
LU6.1 96

M
mailbox systems 40
main process 235

Windows 242
main routine KDCROOT 114, 147
man-in-the-middle 187
MCOM 112

Index

308 Concepts and Functions

memory classes (BS2000/OSD) 222
memory mapped file 246
message

adaptation 56
message queuing 39, 97

KDCS interface call 112
message-driven Beans 68
MIB 63
Microsoft Cluster Server 194
mobile computing 40
MQ call

DADM 112
DPUT 112
FGET 112
FPUT 112
MCOM 112

MSCF 259
MSGTAC 132, 168
multi threading technique 50
multi-connect 93

UPIC 79
multi-signon 93

OpenCPIC 79
UPIC 78

multi-tier scenario 74
multivendor configurations 42

N
network connection

Unix systems 240
Windows systems 248

network failure 206
network process 235, 243
network protocol 45
node application 33
node recovery 199
node update 149
non-blocking conversation 39

O
object view

for administration 162
OLTP applications 27
OMNIS 231

online import
application data (cluster) 197, 198

online update
cluster application 198

OpenCPIC 79
OpenCPIC client 79
openSEAS 65
openSM2 58
openUTM

in BS2000/OSD 217
in Unix systems 233
in Windows systems 241
internal interfaces (BS2000/OSD) 219
internal interfaces (Unix system) 234
internal interfaces (Windows system) 241
overview of features 27
platform-independence 42
X/Open conformance 47

openUTM client 77
openUTM cluster application 195
openUTM WinAdmin 61, 62
openUTM-LU62 91
operating resources

determining capacity 58
operating system error 206
Oracle WebLogic Server 66
Oracle® RAC

load distribution (cluster) 202
OSI LPAP partner 173
OSI TP 43, 96
OSI TP communication

with J2EE servers 68
output job 98
output queuing 98

P
page pool 117
parallel operation

BS2000/OSD 219
Pascal XT 122
password 174

for client programs 174
for terminals 174
restart 212

Index

Concepts and Functions 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

ua
ry

 2
01

5
 S

ta
n

d
14

:2
4

.4
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
01

_K
on

fu
\e

n\
ko

nf
u_

e.
si

x

PCMX 18
performance 50
PL/1 122
platform-independence 42
platforms

supported 42
portability 42
presentation 78
primary storage area 128
PRIMECLUSTER 193
print output functions 169
printer

connection 227
RSO 227
sharing 228

printer pool
failure 207

printer process 236
priority control 102
priority scheduling

background jobs 102
private key 187
Privileged

LTERM partner 116
process

queue messages 103
process communication 246
process limitation 102
processes

BS2000/OSD 221
concept 115
Unix systems 235
Windows systems 242

processing
asynchronous 39

program interface
administration 158
clients 123
CPI-C 134
KDCADMI 158
KDCS 121
TX 138
XATMI 136

program unit 114

pseudo-conversation 116
public key 187

R
Readme files 20
Red Hat 13, 233
redelivery 111

background jobs 98
message to message queue 111
service-controlled queues 103

remote queuing 98, 100
remote SPOOL output 227
reply queue 106
request/response model

asynchronous 136
synchronous 136

Resource Manager 30, 48
file system 32
local storage area 32
log file 32
message queue 32

response time 50
restart 203, 209

global transaction 213
local transaction 215
service 210
session 214
UTM-F 212
UTM-S 210
with distributed processing 214

restart area 118
return code

KDCS 127
reusable 222
RFC1006 communication

with J2EE servers 68
RFC1510 176
roll back 210

global transaction 213
local transaction 215

ROOT table 144
ROOTDATA 238, 246
RSA 187
RSO (Remote SPOOL Output) 227

Index

310 Concepts and Functions

RSO printer 227
run priority 228

S
SAT logging 228
SDF interface

for UTM tools 232
secondary storage area 129
SECOS 176
security audit trail 228
security functions 171

BS2000/OSD 228
external resource managers 189
overview 53
with distributed processing 183

server 77
server application 77
server-server communication

user concept 175
server-to-server communication 83
ServerShield 194
SERVICE 133
service

addressing 88
asynchronous 99
encryption 188
event-driven 132
job-receiving 83
job-submitting 83
restart 210

service hierarchy 84
Service Oriented Architecture

SOA 65
service process 243
service restart 213, 214
service routine 114
service-controlled queues 39, 97, 103
SESAM/SQL

in a cluster 38
SESDCN

in a cluster 39
session 214
session restart 214
several UTM versions 219

shareable 222
shared memory 238
SHUT 133
shutdown process 244
sign-on service 177
SIGNON 132, 177

transport system applications 93
silent alarm 176
single-step addressing 88
SM2 58
SM2 software monitor 58
SNA connection 91
SNMP subagent for openUTM 63
SOAP 70
socket application 93
socket communication with J2EE servers 68
software monitor SM2 58
Solaris 13, 233
source correction method 220
SPAB 128
spool mode 227
standalone UTM application 11
standard administration program 154
standard primary working area 128
START 133
start parameter TASKS 116
storage area 128

overview 130
storage structure

BS2000/OSD 223
SU SRMAX 160
subsystem 218
SUSE 13, 233
SUSRMAX 160
synchronization point 29
synchronized transaction 85
synchronous request/response model 136
synchronous waiting 106
SYSLOG file 59
system access control 53, 172

chipcard 229
system integration

BS2000/OSD 217
Unix systems 233

Index

Concepts and Functions 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
an

ua
ry

 2
01

5
 S

ta
n

d
14

:2
4

.4
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
01

_K
on

fu
\e

n\
ko

nf
u_

e.
si

x

Windows systems 241

T
TAC classes 102
TAC queues 39, 103, 105
tasks 221
temporary queues 40, 103, 106
terminal

direct connection 44
user concept 174

terminal-specific long-term storage area 129
termination, abnormal 208
throughput 50
tier 73
time control 110
time-driven asynchronous job 110
timeout 213

automatic 176
timer process 235, 243
TLS 129
Tomcat 70
trace file 59
trace merging 51
transaction

end of 85
global 86
local 86
rolling back 210
synchronized 85

transaction code 114
standard administration program 156

transaction concept 29
transaction logging 209
transaction manager 48
TranSON 229
transport system application 93
trusted client 188
Tuxedo 43
two-phase commit 30, 85
TX 79, 122, 138
type-based buffer

calls 137

U
UDS-D

in a cluster 39
UDS/SQL

in a cluster 38
ULS 129
unicode 56, 230
UNISYS 43
Unix platform 13, 233
UPIC 78, 96
UPIC Capture 51
UPIC client 78
UPIC clients

load distribution (cluster) 202
UpicAnalyzer 51
UpicReplay 51
user address space 222
user ID 174

for client programs 174
for terminals 174

user log file 130
USER queues 39, 103, 104
user-specific long-term storage area 129
USLOG 130
UTFE 230
UTM application

administration 153
generating 143
structure 113

UTM application program 114
generating 147

UTM cache 118
UTM call 114
UTM cluster application 11, 33

administration via WinAdmin 34
cluster administration journal 256
monitoring 196

UTM cluster files 35
UTM dump 32
UTM monitor 50
UTM system code 217
UTM system processes 115
UTM tools

SDF interface 232

Index

312 Concepts and Functions

UTM-controlled queues 39, 97, 98
UTM-F 209

restart 212
UTM-S 209

restart 210
UTM-XML 122, 139

V
Visual Basic 78, 123
Visual C++ 78
VTSU-B

encryption 229

W
warm start 210

UTM-F 212
UTM-S 210

Web 71
Web services 70
WebAdmin 62

administration with 163
WebAdmin graphical administration

program 163
WebSphere 66
WebTransactions 71
wide area network (WAN) 45
WinAdmin 61

administering UTM cluster applications 34
administration with 161

Windows system 13, 241
work process

Unix systems 235
Windows systems 243

workflow strategy 40
World Wide Web 43
WS4UTM 70
WS4UTMAxis 70
WS4UTMDeploy 70

X
X/Open 122, 249
X/Open conformance 47

advantages 49
X/Open interface

CPI-C 134
TX 138
XATMI 136

X/Open model 47
x86 hardware 218
XA interface 32
XAP-TP 249
XATMI 122, 136
XHCS support 230
XML 122, 139

C/C++ calls 140
COBOL interface 141

XML schema 139
XSD 139

	Contents
	Preface
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Innovations in openUTM V6.3
	New server functions
	Load simulation with "Workload Capture & Replay"
	New client function
	New and modified functions for openUTM WinAdmin
	New functions for openUTM WebAdmin

	Overview of openUTM features
	openUTM – the “High-end Transaction Processing Platform”
	Transaction concept and restart functions
	Coordinating with databases and resource managers
	UTM cluster application
	UTM cluster files
	System requirements for the use of UTM cluster applications
	Using SESAM/SQL and UDS/SQL databases in the cluster

	Message queuing
	openUTM - open for different platforms and protocols
	X/Open conformance of openUTM
	Performance, throughput, and response times
	Workload Capture & Replay
	High availability
	Security functions
	Dynamic configuration
	Internationalization/adaptation of UTM messages
	openUTM in the Unicode environment
	Accounting
	Performance monitoring with the openSM2 Software Monitor
	Diagnostic capabilities in openUTM
	Simple, user-friendly application programming
	Graphical administration with WinAdmin
	Graphical administration with WebAdmin
	SNMP subagent for openUTM

	Integration scenarios with openUTM
	Integrating different applications
	Integrating openUTM in the Java Enterprise environment
	openUTM as a server for Java EE application servers
	openUTM as a client for a Java EE application server
	UTM cluster application as client or server

	Addressing openUTM via Web services
	Putting existing applications on the Web

	Distributed processing with openUTM
	Client/server architecture variants
	Figure 12: Basic model for client/server architectures
	Figure 13: Multi-tier architecture
	Disadvantages of conventional 2-tier architectures / advantages of multi-tier distribution

	What is meant by the terms “client” and “server”?
	Communication with openUTM-Client applications
	Clients with the UPIC carrier system
	Clients with the OpenCPIC carrier system

	Java clients
	Figure 14: Connecting via servlets running on the Web server
	Figure 15: Connecting in a browser environment via applets
	Figure 16: Direct connection of Java clients
	Server-to-server communication

	Global dialogs
	Figure 17: Service hierarchy in global dialogs
	Programming global dialogs

	Transaction management in server-to-server communication
	Distributed transactions
	Independent transactions

	Example: Global dialog with a distributed transaction
	Figure 18: Dialog job with global transaction management

	Addressing remote services
	Figure 19: Single-step addressing
	Figure 20: Double-step addressing

	Communication with CICS, IMS and TXSeries applications
	Figure 21: Connecting openUTM to IBM transaction monitors
	Job submitter and job receiver
	openUTM as the job submitter
	CICS as the job submitter
	IMS as the job submitter

	Communicating with transport system applications
	Connection establishment
	Establishing a connection to the UTM application

	Processing jobs
	Connection shutdown

	Overview: partners, protocols, transaction management

	Message queuing
	UTM-controlled queues
	Output jobs (output queuing)
	Background jobs
	Processing background jobs
	Sending background jobs to remote services (remote queuing)

	Priority scheduling of background jobs

	Service-controlled queues
	USER queues
	TAC queues
	Temporary queues

	Control options for message queues
	Message queue calls of the KDCS interface

	Structure of a UTM application
	UTM application program
	The process concept
	The KDCFILE - the “application memory”
	KDCFILE for a standalone application
	KDCFILEs in UTM cluster applications

	UTM cache memory

	Program interfaces
	Overview of the program interfaces
	The KDCS universal program interface
	KDCS calls
	UTM storage areas
	Event functions

	The X/Open interface CPI-C
	The X/Open interface XATMI
	The X/Open interface TX
	The XML interface of openUTM

	Generating UTM applications
	Defining the configuration
	Overview: KDCDEF control statements

	Generating the application program
	Main routine KDCROOT
	Figure 31: Generating a UTM application

	Updating the configuration using the KDCUPD tool
	KDCUPD in standalone applications
	KDCUPD in UTM cluster applications
	Node updates
	Cluster updates

	Checking the KDCFILE for consistency
	Migrating with KDCUPD
	Migrating to a 64-bit environment with KDCUPD

	Administering UTM applications
	Administration command interface
	Administration program interface
	WinAdmin graphical administration program
	WebAdmin graphical administration program
	Authorization concept
	Changing the generation dynamically
	Automatic administration
	Administering message queues and printers

	Security functions
	System access control (identification and authentication)
	Data access control (authorization)
	Lock/key code concept
	Access list concept

	System and data access control with distributed processing
	Encryption
	Security functions of external resource managers

	High availability with standalone UTM applications
	High availability in BS2000 systems
	High availability in Unix systems
	High availability in Windows systems

	High availability and load distribution with UTM cluster applications
	High availability with UTM cluster applications
	Load distribution
	Load distribution for distributed processing
	Load distribution at UPIC clients
	Load distribution with Oracle® RAC

	Fault tolerance and the restart function
	Limiting program unit and formatting errors
	Automatic checks
	Faults or crashes in local resources
	Abnormal termination of a UTM application
	The openUTM restart functions
	The UTM-S and UTM-F variants
	Restart with UTM-S
	Restart with UTM-F

	Error handling for distributed processing
	Roll-back and restart functions with global transaction management
	Roll-back and restart functions with independent transactions

	openUTM in BS2000 systems
	System integration
	UTM processes
	Address space concept
	Formatting
	Code conversion
	BS2000-specific functions

	openUTM in Unix systems
	System integration
	Figure 43: openUTM interfaces to other system components

	UTM processes
	Main process and work processes
	Timer process
	Network processes
	Dialog terminal processes (DTPs)
	Local client processes
	Printer processes
	Logging process
	Figure 44: Process interaction in a UTM application on Unix systems

	Address space concept
	Figure 45: Shared memories and processes in UTM applications on Unix systems

	Configuration of the network connection
	Code conversion
	Execution on 64-bit platforms

	openUTM in Windows systems
	Restrictions
	System integration
	Figure 46: openUTM interfaces to other system components

	UTM processes
	Main process and service process
	A UTM application can be started using the utmmains program as a service for production operation.This process is therefore called the service process. It starts the main process, which then runs in the background. All output is redirected to a file ...
	Work processes
	Timer process
	Network processes
	Dialog terminal processes (DTPs)
	Shutdown process
	Local client processes
	Logging process
	Overview: Processes of a UTM application in Windows systems
	Figure 47: Process interaction in a UTM application on Windows systems

	Address space concept
	Figure 48: Memory mapped files and processes in UTM applications on Windows systems

	Configuration of the network connection
	Code conversion

	Appendix: Supported standards and norms
	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

