
Preface
DRIVE/WINDOWS allows you to access the SQL database system using SQL
statements.

While this directory gives you a brief description of the syntax of the DRIVE SQL
statements for UDS, a detailed description is provided in the "SQL for UDS/SQL V1.0
Language Reference Manual" [13]. This directory describes the DRIVE SQL statements
for UDS of the DRIVE/WINDOWS version 1.1 for BS2000 and SINIX.

Complex statement sections which occur in both DRIVE and SQL statements are
described separately in the chapter on "Metavariables" in the "DRIVE/WINDOWS V1.0:
System Directory" [3]. Additional DRIVE SQL metavariables which are not included in
this chapter are described in this statement directory under "UDS metavariables". The
term "with the TP monitor" refers to UTM mode in BS2000.

SQL return codes are accepted by UDS/SQL and output by DRIVE/WINDOWS as error
messages in the form DRI9xxx. For their meaning, refer to the "SQL for UDS/SQL
(BS2000) V1.0: Language Reference Manual" [13].

U20073-J-Z145-2-7600 1

UDS/SQL statements

CLOSE Close the cursor

CLOSE closes a cursor that you declared with the DECLARE statement for a query
expression and opened with the OPEN statement.

The cursor declaration is retained. You must open the cursor using the OPEN or
RESTORE statement before accessing the cursor again using the FETCH statement. An
open cursor is closed at the end of a transaction.

In program mode, cursors can only be referenced in the source file in which they were
declared.

CLOSE cursor

cursor Name of the cursor you wish to close.

It makes sense to issue a CLOSE statement followed by an OPEN statement if, for
instance, you have used variables in the query-expression when declaring the cursor.
When the OPEN statement is issued, the current values for the variables are assigned
to query-expression and the active set is filled with the current data from the database.

U20073-J-Z145-2-7600 3

COMMIT WORK UDS/SQL statements

COMMIT WORK Terminate a transaction

COMMIT WORK terminates a transaction and commits all the updates performed on the
database since the beginning of the transaction to the database. The first error-free
SQL statement after the COMMIT WORK statement starts a new transaction.

COMMIT WORK closes all cursors opened during the transaction. A cursor defined with
TEMPORARY in a DRIVE program is deleted at a higher program level when the next
COMMIT WORK is issued.

Recommendation:
In the DRIVE program, the COMMIT WORK statement should immediately follow the
declarations in order to commit the declarations to the database.
COMMIT WORK may only be used in a loop which performs cursor processing if the
cursor is stored with STORE and restored with RESTORE (see the example).

display
COMMIT WORK [WITH send message]

stop

WITH WITH allows you to specify a statement to be executed after the end of
the transaction.

If WITH is not specified in an interactive program of an applicattion with a
TP monitor, the transaction is terminated, and the program continues to
run in the successor subprogram without screen output.

WITH may only be specified in program mode.

display Displays a form. The following statements may be used:
DISPLAY screen-form (see DISPLAY screen-form statement in the
"DRIVE/WINDOWS: System Directory" [3]).
DISPLAY form-name (see DISPLAY form-name statement in the
"DRIVE/WINDOWS: System Directory" [3]).
DISPLAY FORM (see DISPLAY FORM statement in the
"DRIVE/WINDOWS: System Directory" [3]).

send message
Sends messages (see SEND MESSAGE statement in the
"DRIVE/WINDOWS: System Directory" [3]).

stop Stops DRIVE execution (see STOP statement in the "DRIVE/WINDOWS:
System Directory" [3]).

4 U20073-J-Z145-2-7600

UDS/SQL statements COMMIT WORK

Rules

If the programmer does not explicitly terminate the transaction with COMMIT WORK,
ROLLBACK WORK or with UTM language elements, it is rolled back implicitly when
the run unit ends. In this case, DRIVE outputs an error message.

If the current transaction was opened with a SET TRANSACTION statement,
COMMIT WORK resets the end-of-transaction status defined by SET TRANSACTION
to the default value.

Example of cursor processing in a loop:

DECLARE c1 ...

.

.
CYCLE c1 INTO &var.*;

.

.
STORE c1;
COMMIT WORK;
RESTORE c1;

.

.
END CYCLE;

U20073-J-Z145-2-7600 5

CREATE TEMPORARY VIEW UDS/SQL statements

CREATE TEMPORARY VIEW Declare a view

CREATE TEMPORARY VIEW declares a view, i.e. a database query stored under a
given name.

A view is no longer valid in the following circumstances:
when the program is terminated
if the program is aborted
When DRIVE is terminated (STOP)
if DROP TEMPORARY VIEW view or DROP TEMPORARY VIEWS is issued (only
possible in interactive mode or within the EXECUTE statement if the view was also
declared using EXECUTE).

CREATE TEMPORARY VIEW view [(column,...)] AS query-expression

view identifies the view.
PLAM_DIRECTORY must not be specified for view. All view names must
be unique within the compilation unit. A view must not have the same
name as a base table.
No two views with the same names can be declared on a single program
level or in interactive mode.

(column,...)
declares new names for the columns within the view.

The number of columns specified must match the number of columns
returned by query-expression.
If you declare a new name for a vector, the new name must be used in
the form vector (index1[..index2]) when referring to the view. If you
specify structured columns in query-expression, you can reference their
elements in the view using the names they have in the base table.

You must specify column if the names of the columns returned by query-
expression are not unique within the view (due to join fields, for example)
or if no name exists, as in the case of arithmetic expressions, set
functions or constants.

If no names are specified, the names of the columns returned by query-
expression are used.

query-expression
derives the view from existing tables (see the metavariable query-
expression).

6 U20073-J-Z145-2-7600

UDS/SQL statements CREATE TEMPORARY VIEW

The query-expression is subject to the following restrictions:

No variable may be specified in a query-expression in the CREATE
TEMPORARY VIEW statement.

Only names of base tables may be specified in the FROM clause for
table.

Updatable view

 Only an updatable view can be used to perform updates on the underlying base table.
 A view is updatable if query-expression is updatable. The contents of an updatable
 view are thus the same as the corresponding section of the underlying base table.

Rule

The view must be declared in the program text before any non-declarative
statements or declarations that reference it. No view with the same name should
have been released in the current transaction before the declaration of this view.
The view declaration is only valid within one compilation unit.

U20073-J-Z145-2-7600 7

DECLARE UDS/SQL statements

DECLARE... CURSOR FOR... Declare cursor

DECLARE declares a cursor and assigns it a cursor-specification that defines the active
set. The cursor must be declared in the declaration section. The declaration is valid
throughout a compilation unit.

You can use a cursor to access individual rows in the active set. The current row
indicated by the cursor can be read, deleted or updated. Updates or deletions
performed on the active set are also performed on the underlying base table.

Recommendation:
In the DRIVE program, the COMMIT WORK statement should immediately follow the
declarations in order to commit the declarations to the database. Control statements for
transactions are permitted at different program levels, but can lead to seemingly erratic
program behavior.

Scope of validity of a cursor:
A cursor ceases to be valid

at the end of a program
when a program is aborted
when DRIVE terminates (STOP)
DROP CURSOR cursor (DRIVE statement, in interactive mode, dynamically or with
variable cursor)
DROP CURSORS (DRIVE statement, only in interactive mode or dynamically)

When you switch from DRIVE interactive mode to program mode, the cursor definition
remains valid, but the cursor position is lost (you can, however, store the cursor
position with the STORE statement).

In DRIVE program mode, a cursor defined with PERMANENT remains valid beyond the
end of a program invoked with CALL, and its position is retained.

A cursor defined with TEMPORARY is closed when the program is terminated and
deleted if a COMMIT WORK statement is issued on a higher program level.

A cursor always ceases to be valid in program mode when you switch to interactive
mode, if the program is aborted and when DRIVE is terminated (when the STOP or
COMMIT WORK WITH STOP statement is issued).

8 U20073-J-Z145-2-7600

UDS/SQL statements DECLARE

PERMANENT
DECLARE cursor CURSOR [FOR cursor-specification]

TEMPORARY

- -

cursor-specification::= query-expression

integer ASCENDING
[ORDER BY { []},...]

column DESCENDING

cursor Name of the cursor.
All cursor names must be unique within a compilation unit. No two
cursors with identical names may be declared at the same time at one
program level or in interactive mode.

PERMANENT
PERMANENT can only be specified within programs called using CALL.
The cursor’s position is retained after the termination of a program
invoked with CALL if no COMMIT WORK statements are permitted in the
called program or in the calling program between the CALL statements.
The cursor position only ceases to be retained if the cursor is closed
explicitly with CLOSE, or the user switches to interactive mode.

When the program invoked with CALL runs for the first time, the
cursor must be opened with the OPEN statement. Whenever it
executes subsequently, no OPEN statement may be issued for
that cursor.
The calling program must not contain a COMMIT WORK
statement.

TEMPORARY
TEMPORARY can only be specified in programs called using CALL.
The cursor is closed at the end of the CALLed program and its position is
lost. The cursor ceases to be valid when the next COMMIT WORK
statement is issued at a higher program level.

FOR clause The FOR clause may only be omitted for a static cursor declaration in
program mode. If it is omitted, a "variable cursor" is declared. A cursor of
this kind is only recognized by the database system if a subsequent
dynamic declaration with a FOR clause is made. In the case of a dynamic
declaration with EXEC, you must specify the FOR clause. Apart from the
FOR clause, the static and dynamic declaration of a cursor must be
identical. All other cursor statements (OPEN, FETCH, DROP, CYCLE) may

U20073-J-Z145-2-7600 9

DECLARE UDS/SQL statements

be specified statically for the variable cursor, which improves performance
(see the chapter on "Dynamic SQL statements" in the "DRIVE Supplement"
[50] or "DRIVE Programming Language [2]).

query-expression
defines the active set by selecting columns and rows from existing base
tables or views. Variables are evaluated when the cursor is opened with
OPEN.

ORDER BY
sorts the rows of the active set in ascending or descending order
according to the values of the columns specified by integer or column.
When rows are sorted using the ORDER BY clause, a null value is
considered to be "less than" a non-null value. ORDER BY may be
specified only if query-expression is updatable.

If two or more columns were specified, sorting is performed initially on the
basis of the values in the first column specified.

The columns specified must not identify primary or foreign keys, neither
may they be structured.

An ORDER BY clause may specify sorting either in ascending order only
or descending order only.

column identifies a column (see the metavariable column) which is to be taken as
the basis for sorting. column must occur in the select-list of query-
expression and must not be qualified with table.

integer
identifies the position of the column to be used as the basis for sorting
within the active set (1 integer number of columns).
The columns are numbered from left to right, starting with 1, in the order
of their entry in select-list of query-expression. This allows you to sort
according to unnamed columns such as those containing the result of
calculations.

integer must lie between 1 and the number of columns in the result table.
The order of the columns is defined by query-expression.

ASCENDING
sorts the values of the specified column in ascending order.

DESCENDING
sorts the values of the specified column in descending order.

10 U20073-J-Z145-2-7600

UDS/SQL statements DECLARE

Updatable cursor

Only updatable cursors can be used with the UPDATE... WHERE CURRENT OF... or
DELETE... WHERE CURRENT OF... statements to perform updates or deletions. A
cursor is updatable if cursor-specification is of the form query-expression and if
query-expression is updatable (see the metavariable query-expression).

Rules

A given cursor must be declared in the DRIVE program text before all non-
declarative statements and before all declarative statements that use that cursor.
Also, it is not permissible to declare multiple cursors with identical names within one
program level or in interactive mode. The cursor can only be used where it is valid
(see above for the scope of validity for a cursor.

A cursor declared within a transaction can be used, i.e. opened, read with FETCH
and closed, only within that transaction since COMMIT WORK and ROLLBACK
WORK close all open cursors (you can, however, use the STORE statement to store
the cursor position for subsequent access and reopen it with the RESTORE
statement).

Columns containing the results of calculations receive no name. The data type they
acquire is determined by the arithmetic operation and the data types of the
operands (see the metavariable sql-expression).

U20073-J-Z145-2-7600 11

DELETE... WHERE condition UDS/SQL statements

DELETE... WHERE condition Delete rows

DELETE... WHERE condition deletes rows from a base table. You can also use this
statement on an updatable view.

DELETE FROM table [WHERE condition]

table identifies a base table or updatable view (see the metavariable table).

condition Each row is checked to determine whether condition is satisfied (see the
metavariable condition). Rows satisfying the specified condition are
deleted.

If no condition is entered, this statement deletes all the rows in the
specified base table or all the rows selected by the view.

Rules

If no row satisfies condition, &SQL_CODE=100 is set.

If an error occurs at the nth row (n>1) during processing of the statement
DELETE... WHERE condition, the transaction is rolled back by the database system.
If the error occurs in the first row, only the current statement is rolled back.

12 U20073-J-Z145-2-7600

UDS/SQL statements DELETE... WHERE CURRENT OF...

DELETE... WHERE CURRENT OF...
Delete the current row of the cursor

DELETE... WHERE CURRENT OF... deletes the current row of the cursor from the
underlying base table.

The cursor is then positioned in front of the next row. To move the cursor to the next
row in the active set, you must enter a FETCH statement.

DELETE FROM table WHERE CURRENT OF cursor

table identifies a base table or updatable view (see the metavariable table).
The specified table name must match the table name in the FROM clause
of the relevant cursor declaration.

cursor identifies a cursor.

Rules

The cursor must have been declared beforehand with DECLARE.

The cursor
must have been opened with an OPEN statement and positioned to a row with
FETCH, or
must have been opened with a RESTORE statement, in which case the cursor is
pointing to the same row as when the STORE statement was executed.

The cursor must be updatable.

U20073-J-Z145-2-7600 13

DROP CURSOR UDS/SQL statements

DROP CURSOR Dropping a cursor

The DROP CURSOR and DROP CURSORS statements release cursors. The statements
are permitted in interactive mode. In program mode, they are only allowed dynamically
in EXECUTE statements, and then refer to one or all dynamically declared cursors. The
only exception is for a variable cursor, where DROP CURSOR cursor is allowed
statically. A variable cursor can only be deleted explicitly with DROP CURSOR cursor.
When a DROP is performed on a variable cursor, the variable select or insert condition
(FOR clause) is deleted. This means that you can redeclare the select or insert
condition of the cursor after a DROP statement. A COMMIT WORK is required between
the DROP and redeclaration.
The DROP CURSOR(S) statement is subject to transaction management, i.e. if you
specify ROLLBACK WORK, the cursors specified in DROP CURSOR(S) are not released.

CURSOR cursor
DROP

CURSORS

cursor The cursor specified by cursor is released. If the cursor is open, an
implicit CLOSE is issued.

CURSORS All the cursors defined in interactive mode or all the cursors defined at the
same program level with EXECUTE are released. The DROP CURSORS
statement corresponds to a sequence of DROP CURSOR cursor
statements where the cursor names are specified explicitly.

Example

DCL c1 CURSOR;
EXEC ’DCL c1 CURSOR FOR’ &SEARCH1;
...
...
DROP CURSOR c1;
COMMIT WORK;
EXEC ’DCL c1 CURSOR FOR’ &SEARCH2;

14 U20073-J-Z145-2-7600

UDS/SQL statements DROP TEMPORARY VIEW

DROP TEMPORARY VIEW Dropping a view

The DROP TEMPORARY VIEW and DROP TEMPORARY VIEWS statements release
views in DRIVE’s interactive mode or within EXECUTE (only if the view was also
declared within EXECUTE).
The DROP TEMPORARY VIEW(S) statement is subject to transaction management, i.e.
if you specify ROLLBACK WORK, the temporary views specified in DROP TEMPORARY
VIEW(S) are not released.

VIEW view
DROP TEMPORARY

VIEWS

view The view specified by view is released together with all the cursors
associated with the view.

VIEWS All the views defined in interactive mode or all the views defined at the
same program level with EXECUTE are released together with the cursors
associated with them. The DROP TEMPORARY VIEWS statement
corresponds to a sequence of DROP TEMPORARY VIEW view statements
where the view names are specified explicitly.

U20073-J-Z145-2-7600 15

FETCH UDS/SQL statements

FETCH Position the cursor and supply variables with
values from columns

FETCH positions the cursor to the next row in the active set and makes that row the
current row. In program mode, the column values in the current row are passed to the
variable(s) specified. In interactive mode, the column values in the current row are
displayed on the terminal.

The current row can be updated or deleted with subsequent UPDATE... WHERE
CURRENT OF... or DELETE... WHERE statements if the cursor is updatable (see
DECLARE... CURSOR FOR...).

FETCH cursor INTO variable,... (Program mode)

FETCH cursor (Interactive mode)

cursor is the name of the cursor.

INTO passes the column values of the current row to the variables.

variable identifies a variable (see the metavariable variable).
The first column value is assigned to the first variable, the second column
value to the second variable, and so on.

Rules

The cursor must be declared beforehand with DECLARE.

The cursor must have been opened with the OPEN or RESTORE statement.

The number of variables must be equal to the number of columns in the cursor-
specification of the cursor declaration. Also, the data types of the variables must be
compatible with those of the corresponding columns.

If an error occurs, &SQL_CODE receives a negative value. The individual variables
are not assigned new values, i.e. the old contents are retained.

16 U20073-J-Z145-2-7600

UDS/SQL statements INSERT

INSERT Insert a row

INSERT adds a row to an existing base table. You can also specify this statement for
an updatable view (see CREATE TEMPORARY VIEW).

INSERT INTO table [(column,...)]

value
VALUES (NULL ,...)

*

[RETURN INTO variable]

table identifies a base table or updatable view (see the metavariable table).

(column,...)
identifies the columns into which the VALUES clause is to enter values.

If the entry is omitted, all the columns in the specified base table or view
are included. The order of the columns is determined, in the case of a
base table, by the definition of that table, and in the case of a view, by
the order you defined in the view declaration.

column must not be qualified. The columns must be located in the
specified table. If you do not specify all the columns of the table involved,
the columns of the inserted row that are not specified will receive either
the default value or the null value, depending on the schema definition.
The database system assigns a value to the system-defined primary key.

A column may not be specified more than once, not even as an element
of a structured column.

VALUES assigns the specified values to the columns. The values are assigned to
the individual columns in the order given.

The number of values specified must match the number of columns
specified. If no columns are specified, the number of values must match
the number of columns of the highest level. In the case of a structure, this
means that the values for the elements of the structure are not specified
individually. An aggregate must be declared for value.

value specifies the value which the column is to receive (see the metavariable
value).

If the column is structured, the value must have the same structure.

U20073-J-Z145-2-7600 17

INSERT UDS/SQL statements

NULL A keyword used to assign the null value to a column.

* specifies that the value for a system-defined primary key is assigned by
the database system.

* must be specified if and only if the corresponding column is the system-
defined primary key.

RETURN INTO
declares that the primary key value of the inserted row is to be passed to
the variable.
No significant places may be lost.

RETURN INTO is permitted only if a system-defined primary key exists for
the specified table.

variable identifies a variable (see the metavariable variable).

The variable must have been declared as numeric.

18 U20073-J-Z145-2-7600

UDS/SQL statements OPEN

OPEN Open a cursor

The OPEN statement opens a cursor.

 OPEN evaluates the cursor specification that you specified in the cursor declaration,
 using the current values of the variables specified in cursor-specification. OPEN
 positions the cursor before the first row of the active set.

One of the following statements is used to close a cursor:
CLOSE cursor
COMMIT WORK
DROP CURSOR or DROP CURSORS
DROP TEMPORARY VIEW or DROP TEMPORARY VIEWS, if the cursor refers to a
view.

OPEN cursor

cursor name of the cursor.

Rules

The cursor must be declared beforehand with DECLARE.

The cursor must be closed.

A position for this cursor saved with STORE in a preceding transaction is lost.

U20073-J-Z145-2-7600 19

PERMIT UDS/SQL statements

PERMIT Declare a user ID

PERMIT declares the user ID for a relational schema used in a UDS data base.

If user identification and the assignment of a password-protected database are needed
during the execution of a DRIVE program, the PERMIT statement must be issued before
the program is invoked.

Mask-driven specification:

If PERMIT OFF is not specified, the UTM leader routine automatically outputs a PERMIT
input mask on the screen following entry of the TAC. The entry fields in this screen
mask are filled with blanks. If part of the mask or the whole mask is filled in, a PERMIT
statement is generated internally using the specified values or default values.
The PERMIT mask can be filled any number of times as long as ’R’ (default) is set in
the bottom line. If ’N’ is set, a PERMIT statement is generated and executed. Following
this, the screen mask is deleted. If ’S’ is specified, the mask is terminated and no
PERMIT statement generated.

Default declaration

Until you specify a PERMIT statement for a schema, the following default declaration
applies:

User group: SQLGRP

User name: SQLUSR

Password: SQLPWD

20 U20073-J-Z145-2-7600

UDS/SQL statements PERMIT

schema
PERMIT SCHEMA=

variable

[USERGROUP=user-group]
[USERNAME=user-name]
[PASSWORD=password]

schema is the name of the UDS schema.

variable Variable containing the name of the schema or the UDS database.

USERGROUP=user-group
assigns a user group (see the metavariable value). user-group must be
specified as a variable, or as a character or hexadecimal literal (up to 8
characters).
user-group must conform to the UDS conventions.
In programs, user-group must be specified as a variable.

USERNAME=user-name
assigns a user name (see the metavariable value). user-name must be
specified as a variable, or as a character or hexadecimal literal (up to 24
characters).
user-name must conform to the UDS conventions.
In programs, user-name must be specified as a variable.

PASSWORD=password
assigns a password (see the metavariable value). password must be
specified as a variable, or as a character or hexadecimal literal.
password must not exceed 48 characters in length and must conform to
the UDS or SESAM conventions for passwords.
In programs, the password must be specified as a variable.

Rules

Only one relational schema may be referenced for each UDS database in a
transaction.

The PERMIT statement must be executed in a transaction before any other SQL
statements that reference the same relational schema.

A second PERMIT statement for a relational schema is only permitted within a
transaction if the relational schema has not yet been accessed.

U20073-J-Z145-2-7600 21

PERMIT OFF UDS/SQL statements

If you are working with two or more relational schemas from different UDS
databases and the user ID differs from the default declaration, you must enter a
PERMIT statement for each schema.

The specification remains in effect until

the end of the run unit or UTM conversation,
the next PERMIT statement is executed for the same schema, or
the transaction is rolled back with the ROLLBACK WORK statement. If the
transaction is rolled back, either the last valid user ID for the schema is in effect,
or the default declaration.

PERMIT OFF Suppress a UTM input mask

PERMIT OFF may only be used in the UTM start procedure.

The statement suppresses the input mask for user identification (PERMIT) which is
displayed by default in the UTM leader routine.

PERMIT OFF

22 U20073-J-Z145-2-7600

UDS/SQL statements RESTORE

RESTORE Restore a cursor

RESTORE restores a cursor stored with the STORE statement.

This statement has the following effects:

It opens the cursor. In contrast to the OPEN statement, it does not load the current
values of the variables; the values are the same as when this cursor was last
opened with OPEN.

The cursor points to the same row as it pointed to when the STORE statement was
executed in a previous transaction.

Afterwards, no cursor position is stored for the cursor.
RESTORE can therefore not be specified again without another STORE being
entered beforehand.

RESTORE cursor

cursor identifies the cursor. The cursor position must have been saved with
STORE in a previous transaction within the same conversation.

Rules

You cannot restore the cursor if the stored cursor was rendered invalid after the
STORE statement with one of the following SQL statements:
OPEN open a cursor
RESTORE restore a cursor
This is also true if the transaction in which the OPEN or RESTORE statement was
executed is rolled back.

The cursor position stored with STORE may be lost if the following occurs in the
current or a foreign transaction

the current row is deleted
the current row is updated in such a way that it no longer satisfies the WHERE
condition in cursor-specification of the associated cursor declaration.

Entering a second STORE statement for the same cursor overwrites the previously
stored cursor.

The current row can be updated with UPDATE... WHERE CURRENT OF... or deleted
with DELETE... WHERE CURRENT OF... following RESTORE.
A FETCH statement can be used to read the row following the current row.

U20073-J-Z145-2-7600 23

ROLLBACK WORK UDS/SQL statements

ROLLBACK WORK Roll back a transaction

ROLLBACK WORK terminates a transaction and undoes all the updates performed on
the database since the start of the transaction. Under UTM, the save area is reset to
the last synchronization point after a ROLLBACK WORK statement.

A cursor stored before the transaction was opened cannot be restored if it was
processed with OPEN or RESTORE during the transaction reset with ROLLBACK
WORK. In this case, the cursor must be reopened with OPEN if it is to be used.

Any cursors opened within the transaction are closed.

If an open transaction is not terminated before the end of a program which executes
dynamically, DRIVE performs a ROLLBACK WORK. The program aborts and outputs an
error message.

The first error-free SQL statement after the ROLLBACK WORK statement opens a new
transaction.

ROLLBACK WORK [WITH RESET]

WITH RESET is only permitted in program mode and only applies to DRIVE system
control. The program rolls back to the status prior to the last COMMIT
WORK and continues with the statement which follows that COMMIT
WORK. The contents of the DRIVE variables are reset to the values valid
at the last COMMIT WORK. Moreover, with the DRIVE/WINDOWS(SINIX)
version all windows which are open after the COMMIT WORK statement
are closed (see the section on transaction management or Window-4GL
applications in the chapter on "Transaction procesing" in the manual
"DRIVE/WINDOWS: Programming Language [2]).

If no COMMIT WORK has been issued since the start of the program, the
program aborts and outputs an error message.
As far as the database is concerned, the two statements ROLLBACK
WORK and ROLLBACK WORK WITH RESET are identical.

If the database system reports that it has rolled back the current transaction implicitly
(automatically), both the database transaction and the DRIVE transaction are rolled
back.

24 U20073-J-Z145-2-7600

UDS/SQL statements SELECT

Rule

If a PERMIT statement was specified in the current transaction, either the user ID
that was valid for the schema beforehand or the default declaration is again valid
following a rollback.

If the ROLLBACK WORK WITH RESET statement is specified without a condition,
there is a potential risk of an endless loop, since the DRIVE program is
continued with the statement that follows the last COMMIT WORK statement.

SELECT Retrieve data

SELECT retrieves a row from base tables or views. You can link rows from two base
tables (join). In program mode, SELECT transfers the values of the columns to the
variables specified with INTO. In interactive mode, SELECT displays the values on
screen.

The number of rows found by the SELECT statement must not exceed 1. If you want to
read more than one row, you must use a cursor.

SELECT [ALL] select-list

[INTO variable,...]

FROM {table-specification},...

[WHERE condition]

ALL Default value.
This operand returns all the rows selected with WHERE condition. Even
duplicate rows can be selected. Please note that an error occurs each
time duplicates are present as the result set of the SELECT statement may
contain only one row.

select-list
Use a select-list to specify the columns in the result table (see the
metavariable query-expression).

INTO You use INTO to assign the column values of the (single-row) result table
to variables. INTO is only valid in program mode.

U20073-J-Z145-2-7600 25

SELECT UDS/SQL statements

variable identifies a variable (corresponds to the term variable in the "SQL for
ISO/SQL (BS2000) Language Reference Manual" [11]).
The first variable is assigned the first column value in the result set, the
second variable the second column value, and so on.

The number of columns in the select-list must match the number of
variables. Structured columns must be assigned to variables with the
same structure.

The data types of the variables and the corresponding columns in the
select-list must be compatible (see the "DRIVE/WINDOWS: Programming
Language Reference Manual" [2], chapter on "Using variables and
constants", section on "Data type conversion compatibility").

If no row could be determined, &SQL_CODE receives the value 100 and
no values are assigned to the variables.

FROM You use the FROM clause to specify the base tables or view from which
data is to be selected for the result table (see the metavariable query-
expression).

WHERE In the WHERE clause, you specify the conditions to be applied in
selecting rows for the result table. The result table contains only rows
which fulfill the specified conditions (see the metavariable query-
expression).

26 U20073-J-Z145-2-7600

UDS/SQL statements SET TRANSACTION

SET TRANSACTION Set consistency level

SET TRANSACTION sets the consistency level and status for a transaction.
The higher the consistency level, the lower the degree of transaction concurrency.

2
SET TRANSACTION CONSISTENCY LEVEL

3

If the SET TRANSACTION statement is not specified, the transaction has the
consistency level 2.

The following applies in transaction processing:

A transaction is either executed in its entirety or not at all.

No updates can be "lost". The following situation could result in "lost updates":
if transaction-1 updates a row that is then updated by transaction-2, the second
update could also be lost if transaction-1 is rolled back.

Updates performed in a transaction that is still open are not accessible by any other
transaction, i.e. "dirty read" is not possible.

Depending on the consistency level set, the following phenomena may occur if two
transactions access a row concurrently:

"Non-repeatable read"
One transaction accesses a row "reading without locking" (consistency level 0 or 2)
that is then updated by a second transaction. The second transaction is terminated
and the update committed to the database. This row is then no longer in its original
state if reread by the first transaction.

"Phantoms" One transaction reads rows from a table in which additional rows are
then inserted by a second transaction. If the first transaction performs the same
query again, the number of rows found may be greater.

U20073-J-Z145-2-7600 27

SHOW UDS/SQL statements

The following table shows which phenomena can occur at the different consistency
levels:

Consistency level non-repeatable read phantoms

2 x x

3 x

Rule

The SET TRANSACTION statement may only be preceded by PERMIT in the static
statements of a transaction.

SHOW Display information on metadata

SHOW can be used to display information on base tables, views, cursors, columns and
schema names.

SCHEMA [schema-name]
TABLES FROM VIEW view-name

CURSOR cursor

VIEWS

VIEW view-name

CURSORS

SHOW CURSOR cursor

TABLE table
VIEW view-name

ITEMS FROM
CURSOR cursor
ITEM column

ITEM column

SCHEMA

28 U20073-J-Z145-2-7600

UDS/SQL statements SHOW

TABLES FROM
The table name is displayed for all base tables of the specified schema,
view or cursor.

If schema-name is not specified, schema-name from PARAMETER
DYNAMIC is assumed.

VIEWS The view name and "updatable (AE)/not updatable" is displayed for all
views.

VIEW view-name
The name of the view and "updatable (AE)/not updatable" is displayed
for view-name.

CURSORS The cursor name and "updatable (AE)/not updatable" is displayed for all
cursors.

CURSOR cursor
The name of the cursor and "updatable (AE)/not updatable" is displayed
for cursor-name.

ITEMS FROM
The name and data type, with number of digits and decimal places, is
displayed for all columns of the specified table, view or cursor, plus:

the repetition factor, for vectors or repeating groups
the key identification
the null value constraint
the name of the referenced table

ITEM column
The same information is displayed for column as in ITEMS FROM,
however only for the column specified.

column must be specified with prefix and, in the case of tables, with
schema-name (see column).

SCHEMA In UDS databases, all schema names are displayed for which access
rights are in effect at this time.

U20073-J-Z145-2-7600 29

STORE UDS/SQL statements

STORE Save the cursor position

STORE saves a cursor position beyond transaction boundaries.

All cursors are closed at the end of a transaction.
STORE can be used to save a cursor position before the end of a transaction. The
cursor can then be restored with RESTORE in a later transaction. The cursor has the
same position after RESTORE as when STORE was executed.

STORE cursor

cursor identifies a cursor.

Rules

The cursor must be declared beforehand with DECLARE.

The cursor position can be saved until the end of the UTM conversation or the end
of the application program run, but no longer than that.

The cursor must have been opened with the OPEN or RESTORE statement and
positioned to a row.

Entering a second STORE statement for the same cursor overwrites the cursor
position stored earlier.

30 U20073-J-Z145-2-7600

UDS/SQL statements UPDATE... WHERE condition

UPDATE... WHERE condition
Update column values in selected rows

UPDATE ... WHERE condition updates column values of selected rows in a base table.
You can also specify this statement for an updatable view.

sql-expression
UPDATE table SET {column= },...[WHERE condition]

NULL

table identifies a base table or updatable view (see the metavariable table).

SET assigns the columns the new values specified in sql-expression or the
keyword NULL.

The data types of the expression and the column must be compatible.

column identifies the column to be updated (see the metavariable column). The
column must be located in the table specified. column may not be
qualified with table.

A column may not be specified more than once, even as an element in a
structured column.
The column must not identify the primary key.

The values of any columns not specified remain unchanged.

sql-expression
identifies an expression (see the metavariable sql-expression) whose value
is assigned to the corresponding column. If a column of table occurs in
sql-expression, the values of this column are valid before any update with
UPDATE.

If the column is structured, either a variable with the same structure or an
aggregate must be specified for sql-expression (see the metavariable
value).

NULL assigns the null value to a column.

condition selects the rows that are to be updated (see the metavariable condition).

If this entry is omitted, all the rows in the base table or view specified are
updated.

U20073-J-Z145-2-7600 31

UPDATE... WHERE CURRENT OF... UDS/SQL statements

Rules

If no row satisfies the condition, &SQL_CODE is set to 100.

If an error occurs in the nth row (n>1) during execution of the statement UPDATE...
WHERE condition, the transaction is rolled back by the database system. If the error
occurred in the first row, only the current statement is rolled back.

An sql-expression must not contain a set-function.

UPDATE... WHERE CURRENT OF...
Update column values in the current row of the cursor

UPDATE... WHERE CURRENT OF... updates the values of the columns in the row to
which the cursor is positioned.

The position of the cursor remains unchanged.

sql-expression
UPDATE table SET {column= },... WHERE CURRENT OF cursor

NULL

table identifies a base table or updatable view (see the metavariable table).
The specified table name must match the table name specified in the
FROM clause of the underlying cursor declaration.

SET assigns the columns the new values specified in sql-expression or NULL.

The data types of the expression and the corresponding column must be
compatible.

column identifies the column to be updated (see the metavariable column). The
column must be located in the base table specified.
column may not be qualified with table.

A column may not be specified more than once, even as an element in a
structured column. The column must not identify the primary key.

The values of any columns not specified remain unchanged.

32 U20073-J-Z145-2-7600

UDS/SQL statements UPDATE... WHERE CURRENT OF...

sql-expression
identifies an expression (see the metavariable sql-expression) whose value
is assigned to the corresponding column. If a column of table occurs in
sql-expression, the values of this column are valid before any update with
UPDATE.

If the column is structured, either a variable with the same structure or an
aggregate must be specified for sql-expression (see the metavariable
value).

NULL assigns the null value to a column.

cursor identifies a cursor. The cursor must be updatable.

Rules

The cursor must be declared beforehand with DECLARE.

The cursor
must have been opened with an OPEN statement and positioned to a row with
FETCH, or
must have been opened a RESTORE statement, in which case the cursor is
pointing to the same row as when the STORE statement was executed.

sql-expression must not contain a set-function.

U20073-J-Z145-2-7600 33

column UDS/metavariables

column Specifying columns

For column, you can specify a:

simple column
vector
structure
vector with structured elements

column ::=

simple-column

table structure1 structure2
[.][.]...

correlation vector-structured1(index1) vector[(index1[..index2])]

vector-structured2[(index1)]

table identifies a base table or view (see the metavariable table).

If a statement includes identical names for columns from different tables,
you must specify table to uniquely identify these columns.

correlation
Correlation for a table.
correlation can be declared in the FROM clause of the SELECT statement
or query-expression. If a statement includes identical names for columns
from different tables and you have declared correlations for these tables,
you must also specify correlation to uniquely identify the columns.

structure1
identifies a structure.

vector-structured1(index1)
structured element of a vector; index1 must be greater than 0.

simple-column
identifies a non-structured column.

structure2
identifies a structure.

34 U20073-J-Z145-2-7600

UDS/metavariables column

vector[(index1[..index2])]
identifies a vector.
You can specify only one element of a vector (indexed vector) with index1
or a partial vector with index1..index2.
The elements specified must be contained in the vector.
For index1 or index2:
index1 and index2 must be integer constants.
index1 must be greater than 0 and
index2 must be greater than index1.

vector-structured2[(index1)]
identifies a vector with structured elements.
You can specify only one element of the vector with index1. The element
specified must be contained in the vector.
index1 must be greater than 0.

Rules

table and correlation must not be specified for column in an ORDER BY clause.

If you specify a column, structure, vector or vector-structured as a lower-level
column, the higher-level column must be a structure or vector-structured. The
individual column names must be separated by periods ".".

If the column is an element of a vector with structured elements, you must use
vector-structured1(index1) to specify which occurrence of the vector with structured
elements the specified column belongs to.

If the name specified is not unique within the statement, you must prefix the column
with the name of the table or the correlation for the table.

If you prefix a column name with its table name in a SELECT query, you must also
specify this table name in the relevant FROM clause.

U20073-J-Z145-2-7600 35

condition UDS/metavariables

condition Specifying a condition

A condition consists of one or more logical expressions and the logical operators AND,
OR and NOT.
A row is included the result table if it satisfies the specified condition (CREATE,
DECLARE) or else the appropriate action is carried out (DELETE, UPDATE).

There is a distinction between join conditions and selection conditions; you use a join
condition to link base tables together, and a selection condition to select rows from a
table.

The following selection conditions can be formulated:

Comparison of a column with an expression

Comparison of a column with a value range

Comparison of a column with a list of values

Comparison of a column with the null value

Comparison of a column with a pattern

Null values in conditions

If the null value occurs in a condition, the result of the condition may be either
satisfied, not satisfied or unknown. Refer to the section on the condition syntax
element in the "SQL for UDS/SQL V1.0 Language Reference Manual" [13] for a detailed
description of when a condition is satisfied, not satisfied or unknown.
If the result of WHERE condition is unknown, the database system reacts as if the
result of the condition were not satisfied.

36 U20073-J-Z145-2-7600

UDS/metavariables condition

The syntax for condition:

join-condition [AND selection-condition]...

condition := AND
selection-condition1 [selection-condition2]...

OR

join-condition := column = column [AND column = column]...

=
<
>

sql-expression <> sql-expression
<=
>=

column[NOT] BETWEEN sql-expression1 AND sql-expression2

selection-condition := [NOT] column[NOT] IN (value,...)

column IS[NOT] NULL

column[NOT] LIKE pattern
[ESCAPE escape-character]

AND
(selection-condition[selection-condition]...)

OR

U20073-J-Z145-2-7600 37

condition UDS/metavariables

The following applies to conditions combined with AND or OR, or negated with NOT:

AND both conditions combined by AND must be satisfied for the overall
condition to be satisfied.

OR at least one of the two conditions combined by OR must be satisfied for
the overall condition to be satisfied.

NOT negation: the condition negated with NOT must be not satisfied for the
overall condition to be satisfied.
If the result of the negated condition is unknown, the result of the overall
condition is also unknown.

join-condition
You use a join condition to link base tables together (a join). The columns
you specify in a join condition are called join columns.

To create a join condition, you formulate a comparison predicate with the
"=" comparison operator to compare a column from one base table with
a column from a second base table.

The data types of the columns being compared must be compatible.

If one of the columns is a foreign key, the other must be the primary key
of the base table to which the foreign key refers.
In this case, you join the base tables via a foreign key and its associated
primary key.

You can join several base tables by logically ANDing two or more
comparison predicates in a join condition. This is referred to as a multiple
join.

The first comparison predicate in a join condition defines the two base
tables to be joined.
Each subsequent comparison predicate specifies a new base table to be
joined with one and only one base table defined in one of the preceding
comparison predicates. This means that a comparison predicate must
involve only one column from a base table already referenced in a
previous comparison predicate.

A join of three base tables involves two comparison predicates and AND.
A join of four base tables is formulated with three comparison conditions,
and so on.

38 U20073-J-Z145-2-7600

UDS/metavariables condition

There is a special type of join which involves the same base table being
joined with itself. In this case, both columns come from the same base
table. As base tables have to have different names in the FROM clause,
however, a correlation name must be declared for at least one of these
base tables.

selection-condition
You use a selection condition to select rows from a table.

selection-condition1 OR selection-condition2
All the columns must be in a single table. If the FROM clause refers to a
join view, only columns that were assigned in the view definition for the
same base table may be specified.

selection-condition1 AND selection-condition2 [AND...]
All the columns within selection-condition1, selection-condition2 etc. must
come from the same table. If the FROM clause refers to a join view, only
columns that were assigned in the view definition for the same base table
may be specified in selection-condition1, selection-condition2 etc.

You can combine selection conditions using the logical operators AND,
OR and NOT, and insert parentheses to group conditions together.

Rule

If you combine the logical operators AND, OR and NOT, the usual precedence rules
apply:
NOT before AND before OR.
If you want to change this order, you must insert parentheses at the appropriate
positions. Operators within parentheses take precedence.

The following pages describe how to use selection-condition in the individual functions
and explain the entries.

Not described in condition are the entries for:

sql-expression see the metavariable sql-expression

column see the metavariable column

U20073-J-Z145-2-7600 39

condition UDS/metavariables

Comparing expressions using comparison operators

You can compare the values of two expressions using comparison operators.

=
<
>

sql-expression1 sql-expression2
<=
>=
<>

Comparison operator Meaning

= equal to
< smaller than
> greater than
<= smaller than or equal to
>= greater than or equal to
<> not equal to

The condition is satisfied if the comparison is true.
The result of the condition is unknown if at least one expression has the null value.

Rules

At least one expression must be a column. The second expression may be either a
column or a value.

Only columns from the same base table may be used to formulate a comparison
value within a selection condition.

If an expression identifies a foreign key or primary key, the comparison operator
must be "=" or "<>".

The expressions must be either both numeric or both character-string, or have the
same structure.

If an expression identifies a structured column, the comparison operator must be
"=" or "<>", and the second expression must have the same structure.

Each character in a character string condition is compared individually. If the
expressions are of unequal length, the shorter expression is padded with blanks.

40 U20073-J-Z145-2-7600

UDS/metavariables condition

Comparing a column with a value range

This condition determines whether the column value lies within the specified value
range or not.

column [NOT] BETWEEN sql-expression1 AND sql-expression2

BETWEEN ... AND
The result of the condition is the same as for the condition
sql-expression1 <= column AND column <= sql-expression2

The condition is satisfied if the value of column lies within the value
range.

NOT BETWEEN ... AND
The result of the condition is the same as for the condition
column < sql-expression1 OR column > sql-expression2

The condition is satisfied if the value of column does not lie within the
value range.

Rules

The column and the expressions must not be structured and must be either all
character string or all numeric.

Each expression identifies a value.

U20073-J-Z145-2-7600 41

condition UDS/metavariables

Comparing a column with a list of values

This condition compares a column with a list of specified values.

column [NOT] IN (value,...)

IN
The condition is satisfied if the value of column is not the null value
and matches at least one of the values listed after IN.
The condition is not satisfied if neither the value of column nor one of
the values listed after IN is the null value and the value of column
does not match any of the values listed after IN.

Otherwise, the result of the condition is unknown.

NOT IN
The condition is satisfied if neither the value of column nor any of the
values listed after IN is the null value and the value of column does
not match any of the values listed after IN.
The condition is not satisfied if the value of column is not the null
value and matches at least one of the values listed after IN.

Otherwise, the result of the condition is unknown.

Rules

The column and the values must be either all numeric, all character string or have
the same structure.

You must specify a list of values after IN, i.e. more than one expression.

42 U20073-J-Z145-2-7600

UDS/metavariables condition

Comparing a column with the null value

column IS [NOT] NULL

IS NULL
The condition is satisfied if column contains the null value. Otherwise the
condition is not satisfied.

IS NOT NULL
The condition is satisfied if column does not contain the null value.
Otherwise the condition is not satisfied.

Rule

The column must refer to a foreign key.

U20073-J-Z145-2-7600 43

condition UDS/metavariables

Comparing a column with a pattern

This condition compares the value of a column with a specified pattern.

column [NOT] LIKE pattern
[ESCAPE escape-character]

LIKE The condition is satisfied if the value of column matches pattern.

NOT LIKE The condition is satisfied if the value of column does not match pattern.

The result of the condition is unknown if column or pattern contains the null value.

pattern You can specify a character constant const or a variable for pattern.
The pattern may consist of the following characters:

Pattern contains The condition is satisfied if
the column contains
at the same place ...

character exactly the same character

_ (underscore) any character

% any character string
or nothing

escape-character% %

escape-character_ _

escape-character-escape-character escape-character

escape-character
declares a character with which you can disable the characters "%", "_" or
the escape-character as pattern characters. In this way, you can determine
whether the column contains these characters.
You can specify a character constant const or variable with a length of 1
for escape-character.

44 U20073-J-Z145-2-7600

UDS/metavariables condition

Rules

The column must be alphanumeric.

Unless preceded by an escape-character, "%" may be specified only at the end of
pattern.

escape-character must immediately precede "%", "_" or a second escape-character.

escape-character and the following character are handled as a single character in
pattern.

The length of a pattern that contains no "%" special characters and no escape-
character must match the defined length of the corresponding column.

U20073-J-Z145-2-7600 45

query-expression/SELECT UDS/metavariables

query-expression
Specifying SELECT within SQL statements

A query-expression selects rows and columns from base tables or views and allows you
to join rows from two or more base tables.

The result is again a table, the result table.
The result table contains the columns specified in the select list and which are part of
the rows selected by the WHERE clause.

If the view or the cursor is used in further SQL statements, the result table is the basis
for retrieving data from the database and for updates.

Updatable query expression

The query-expression, and hence the result table, can be updatable or not updatable. A
query-expression is updatable if

only columns are specified in the select-list and each column is referenced only
once. A column must not be specified once as an element of a structured column
and then specified again directly under its own name.
For example, you are not allowed to specify the structured column ADDRESS and
then also specify CITY as an element of ADDRESS.
Partial vectors must not overlap.

only one table is specified in the FROM clause. The table must be a base table or
an updatable view.

A view or a cursor is updatable if cursor-specification is in the form query-expression
and query-expression is updatable.

query-expression::= SELECT[ALL] select-list

FROM table-specification,...

[WHERE condition]

The clauses must be specified in the order shown above.

[ALL] (default value)
returns all the rows selected with WHERE condition. Duplicate rows are
also selected. The ALL entry is syntactically permissible, but has no effect
on the result.

46 U20073-J-Z145-2-7600

UDS/metavariables query-expression/select-list

select-list Selecting columns

Using the select-list, you specify the columns you want to include in the result table.

*
select-list :=

sql-expression,...

* The result table contains all the columns of the table(s) specified in the
FROM clause. The order of the columns is determined

by the order of the tables in the FROM clause, and
within a table, by the order defined in the schema.

sql-expression
The result table contains the columns specified with sql-expression,... in
the order of their specification (see the metavariable sql-expression).

Rules

If an sql-expression contains a set-function, each column in the select-list must be
part of a set function.

All column names must be unique. If you want join base tables that have columns
with the same name, you have to prefix the columns with the name of the base
tables involved or their correlations in order to assure unique identification.

The characteristics of result table columns (data type, length, precision, scale factor)
are either adopted from the underlying table or result from the expression specified.

U20073-J-Z145-2-7600 47

query-expression/FROM UDS/metavariables

FROM Selecting tables

You use the FROM clause to specify the base tables or view from which data is to be
selected for the result table.

FROM table-specification,...

- -

table-specification ::= table [correlation]

table specifies a base table or view whose columns are used in the query
expression (see the metavariable table).
If you specify more than one table, they must be base tables. Only base
tables can be joined. You then use the WHERE clause to select rows from
this table.

If two or more tables are specified in the FROM clause (in which case the
WHERE clause must be specified), the result table consists of the
columns specified in select-list and result rows from all possible
combinations of the rows of the two tables (a "Cartesian product"). Since
a join condition must be specified in the WHERE clause whenever more
than one table is listed in the FROM clause, the result table specified by
the FROM clause does not, as a rule, contain all the rows of the result
table.

correlation
correlation assigns a new name to table. The new table name can then
be used within the SELECT query. The correlation must conform with the
naming conventions.

Rules

A FROM clause may refer only to base tables or a view.

If identical table names occur in the FROM clause, correlations must be specified to
distinguish the table names.

All correlations within the FROM clause must be unique and must not be the same
as any table name for which no correlation has been declared.

48 U20073-J-Z145-2-7600

UDS/metavariables query-expression/WHERE

WHERE Selecting rows

In the WHERE clause, you specify the conditions to be applied when selecting rows for
the result table. The result table contains only rows which fulfill the specified conditions.

WHERE condition

WHERE condition
selects rows which satisfy the specified condition from the result table
defined by the FROM clause (see the metavariable condition).

You must include a WHERE clause if you have specified more than one
table in the FROM clause. In this case, you must specify a join condition.

If you specify only one table in the FROM clause and no WHERE clause,
the result table will contain all the rows of the table specified.

Each column specified in condition must occur in a table referenced in
the FROM clause.

U20073-J-Z145-2-7600 49

set-function UDS/metavariables

set-function Specifying set functions

A set function is used to calculate a value from a set of rows.

COUNT(*)

SUM
set-function:= AVG

([ALL] column)
MAX
MIN

COUNT(*)
returns the number of rows, including duplicates.

SUM([ALL] column)
adds the values of column. column must be numeric.

AVG([ALL] column)
calculates the average of the values of column.
column must be numeric.

MAX([ALL] column)
returns the greatest value of column.
column must be numberic or character string.

MIN([ALL] column)
returns the lowest value of column.
column must be numeric or character string.

50 U20073-J-Z145-2-7600

UDS/metavariables set-function

The results of the set functions have the following data types:

Set function Data type of result

COUNT(*) DECIMAL data type with a precision of 15, no decimal
places.

MIN and MAX Same data type as the column specified.

SUM DECIMAL data type with a precision of 15.
The number of decimal places corresponds to the number
of decimal places in the specified column .

AVG DECIMAL data type with a precision of 15.
The number of decimal places is equal to 15 minus the
places before the decimal point in the specified
column .

Rules

Set functions are only permitted within the select-list of a SELECT statement or
query-expression.

The column must not be structured.

Null values in the column are not taken into account in the calculation of SUM,
AVG, MAX or MIN.

If the result of WHERE condition in the query-expression or the SELECT statement
returns no rows, the result of SUM, AVG, MIN or MAX is the value, and COUNT(*)
has the result "0".

U20073-J-Z145-2-7600 51

sql-expression UDS/metavariables

sql-expression Specifying expressions

Expressions consist of columns, constant, variables or set functions. You can also
combine several expressions to form one expression using arithmetic operators (+,-
,*,/). This is called an arithmetic expression.

column
value
set-function

+
sql-expression

-
sql-expression :=

+
-

sql-expression sql-expression
*
/

(sql-expression)

column identifies a column name (see the metavariable column).
The column must be contained in a table specified in the FROM clause of
the SELECT query or in the DELETE, INSERT or UPDATE statements.

value identifies a value (see the metavariable value).

set-function
identifies a set function (see the metavariable set-function). sql-expression
is the value returned by this function.
set-function may only occur in the select-list of a SELECT statement or
query-expression.

-sql-expression, +sql-expression
"-" causes a change in sign. "+" leaves the value of sql-expression
unchanged. sql-expression must be numeric. sql-expression must not
begin with "+" or "-".

The following can be specified for values or expressions:
column

+ value
- set-function

(sql-expression)

52 U20073-J-Z145-2-7600

UDS/metavariables sql-expression

+
-

sql-expression sql-expression
*
/

identifies the arithmetic operations addition, subtraction, multiplication and
division. Both operands must be numeric.

(sql-expression)
Using parentheses, you can group parts of expressions together to form a
unit in order to change the order in which arithmetic operations are
performed. The parentheses must be set according to the precedence
rules used in algebra.

The result of an arithmetic expression has the numeric data type.
The precision (number of places to the left and right of the decimal point) and the
scale factor (number of places to the right of the decimal point) of the result of the
arithmetic expression depend on

the precision and scale factor of the arithmetic operands, and

the arithmetic operation involved.

U20073-J-Z145-2-7600 53

sql-expression UDS/metavariables

The following table informs you how to determine the precision and scale factor in each
case:

Operation Result

Addition x+y The precision P is equal to the sum of the maximum
Subtraction x-y number of digits to the left of the decimal point and

the maximum number to the right plus one; maximum 15.
P = MIN (15, MAX(left x,left y) + MAX(Sx,St y) + 1) 1)

The scale factor S is equal to the number of digits
to the right of the decimal point in the operand that
has the maximum number of digits to the right.
S = MAX(Sx,S y) 1)

Multiplication The precision P is equal to the sum of the precisions
x*y of the factors; maximum 15.

P = MIN (15, P x+Py)) 1)

The scale factor is equal to the sum of the scale
factors of the factors; maximum 15.
S = MIN(15, S x+Sy) 1)

Division x/y The precision P is equal to 15.
P = 15

The scale factor S is calculated using the following
formula:
S = MAX(15-Px+Sx-S y, 0) 1)

1) leftx Number of digits to the left of the decimal point in the first arithmetic
operand

lefty Number of digits to the left of the decimal point in the second
arithmetic operand

Sx Scale factor (number of digits to the right of the decimal point) in
the first operand

Sy Scale factor (number of digits to the right of the decimal point) in
the second arithmetic operand

Px Precision of the first arithmetic operand
Py Precision of the second arithmetic operand

Where: Px = leftx + Sx Py = lefty + Sy

If the result of the arithmetic operation after removal of digits to the right of the decimal
point does not fit into the result column described in the table above, a value overflow
occurs (SQLCODE -340). Division by 0 also results in SQLCODE -340.
If the scale factor of the result is greater than 15, digits to the right of the decimal point
are lost.

54 U20073-J-Z145-2-7600

UDS/metavariables sql-literal

Rules

If a null value occurs in an arithmetic expression, the whole expression has the null
value.

The usual rules of algebra apply to the use of arithmetic operators.

If an sql-expression contains a set-function, each column in the select-list must be
part of a set-function.

sql-literal Specifying literals

Literals are character strings that represent a constant value.

A distinction is made between character and numeric literals. Numeric literals can be
assigned only to numeric columns, and character literals only to character columns.
DRIVE internally converts hexadecimal literals to character literals. In the "SQL for
UDS/SQL V1.0 Language Reference Manual" [13], the term literal has been used for
sql-literal.

char_literal
sql-literal ::= numeric_literal

hexadecimal_literal

Character literals

char_literal ::= ’character...’ [(n)]

character
Any ASCII character is permitted. char_literal can contain up to 256
characters.
If the character ’ (apostrophe) is used within char_literal, it must be
entered twice: ’ ’. The double apostrophe is regarded as a single
character.

n Repetition factor. The string preceding n is repeated n times.

U20073-J-Z145-2-7600 55

sql-literal UDS/metavariables

Numeric literals

+ integer
numeric_literal ::= []

- fixed-point-number
- -

integer[.integer]
fixed-point-number ::= integer.

.integer
- -
integer ::= digit...

digit Digit from 0 to 9.
A fixed point number can have up to 15 digits, of which up to 14 can
appear after the decimal point.

Hexadecimal literals

hexadecimnal_literal := X’hexadecimal_digit ...’ [(n)]

hexadecimal_digit
Hexadecimal digit, i.e. 0, 1,9, A, B, ... F.
Each hexadecimal digit represents the bits of a half byte. A full byte must
always be supplied with a value, i.e. ’hexadecimal_digit ...’ must always
contain an even number of hexadecimal digits.
A maximum of 512 hexadecimal digits (i.e. 256 bytes) can be specified.

56 U20073-J-Z145-2-7600

UDS/metavariables table

table Specifying tables

Tables specified in SQL statements may be base tables or views. Tables can be
qualified with the name schema.

base-table
table::= [schema.]

view

schema
identifies the relational schema where the base table is located. If this
specification is missing, the schema used in OPTION SCHEMA or
PARAMETER DYNAMIC SCHEMA is used. If neither OPTION SCHEMA nor
PARAMETER DYNAMIC SCHEMA has been specified, the table name or
view name must be unique.
If the fact that schema has not been specified means that a base table or
view cannot be identified uniquely, DRIVE issues an error message. If a
transaction accesses base tables located in different schemas, the
schemas must be defined in different databases.

view
identifies a view. A view must be declared in the program text before any
statements that reference it.

U20073-J-Z145-2-7600 57

value UDS/metavariables

value Specifying values

A value can be declared by means of a variable, literal or aggregate.
An aggregate can be specified for value only if it is to be assigned to, or compared
with, a structured column.

sql-literal
value ::= variable

aggregate

value
aggregate ::= < ,...>

NULL

sql-literal
identifies a numeric or character literal.

variable
identifies a variable.

aggregate
identifies a compound value for representing values in a structured
column. A value must be specified for each lower-level column of the
structured column.

value
identifies another literal, variable or aggregate.

NULL
specifies the null value.

58 U20073-J-Z145-2-7600

UDS/metavariables variable

variable Specifying variables

You must use the following syntax when specifying data elements as variables within
SQL statements.

variable::= &data-name

variable
is used in an SQL statement to include values from the database (output
variable), store values in the database or make available values required in
calculations or conditions (input variable).
Thus, output variables include all the variables that occur in the following
places:

in the RETURN INTO clause of the INSERT statement,
in the INTO clause of the SELECT statement or
in the FETCH statement after INTO.

All other variables are input variables.

The data types of columns and any variables associated with them must
be compatible with one another. Compatible combinations are: numeric
columns and numeric variables or character columns and character
variables. Structured variables and columns are compatible with one
another if both have the same number of components and the pairs of
corresponding components are compatible with one another.

data-name
Name of the variable.
DRIVE requires that variables are specified in the form "&data-name".
data-name can be up to 31 characters in length. Refer to the metavariable
variable for a detailed description of the syntax. DRIVE also provides you
with the option of using DECLARE VARIABLE ... LIKE to create variables
whose structure and name correspond to those of the table and cursor.

U20073-J-Z145-2-7600 59

References
[1] DRIVE/WINDOWS (SINIX)

Software Production Environment (SPE)
User Guide

Target group
Application programmers
Contents
The functions available in the software production environment (desktop) and
in expert mode. Setting up DRIVE/WINDOWS, including remote access to
BS2000 databases and generating applications for BS2000.

DRIVE/WINDOWS V1.1 (BS2000)
Programming System
User Guide

Target group
Application programmers
Contents

Introduction to the programming system DRIVE/WINDOWS
Explanation of the functions available in interactive mode
Installation
DRIVE/WINDOWS generation and administration

[2] DRIVE/WINDOWS (SINIX)
Programming Language
Reference Manual

Target group
Application programmers
Contents
The creation of programs, including graphical and alpha screen forms, as well
as list forms using DRIVE and the report generator.

DRIVE/WINDOWS V1.1 (BS2000)
Programming Language

U20073-J-Z145-2-7600 61

References

Target group
Application programmers
Contents

Program creation
Transaction concept
Distributed transaction processing
Screen and list forms
Reports
Examples

[3] DRIVE/WINDOWS (SINIX)
System Directory
Reference Manual

Target group
Application programmers
Contents
The syntax and scope of functions of all DRIVE statements, as well as all
DRIVE messages and keywords.

DRIVE V6.0A (BS2000)
System Directory
User Guide

Target group
Applications programmers
Contents

Syntax and range of functions of all DRIVE statements
DRIVE messages and keywords

[4] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for INFORMIX
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE
SQL statements for INFORMIX.

[5] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for ISO/SQL
Reference Manual

Target group
Application programmers

62 U20073-J-Z145-2-7600

References

Contents
A concise description of the syntax and scope of functions of all the DRIVE
SQL statements for ISO/SQL.

[6] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for SESAM
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE
SQL statements for SESAM.

[7] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for UDS
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE
SQL statements for UDS.

[8] DRIVE/WINDOWS V1.1
(SINIX)
Supplement
User Guide

Target group
Application programmers
Contents
The manual contains the functional changes included in DRIVE/WINDOWS
(SINIX) V1.1. If this supplement is to be used, the manuals of version 1.0 are
also required.

[9] DRIVE/WINDOWS V1.1 (BS2000)
Programming Language

Target group
Application programmers

U20073-J-Z145-2-7600 63

References

Contents
Program creation
Transaction concept
Distributed transaction processing
Screen and list forms
Reports
Examples

[10] DRIVE V6.0A (BS2000)
System Directory
User Guide

Target group
Applications programmers
Contents

Syntax and range of functions of all DRIVE statements
DRIVE messages and keywords

[11] System Interfaces for Applications SQL for ISO/SQL (BS2000)
Portable SQL Applications for BS2000 and SINIX Language Reference Manual

Target group
Users wanting to access SESAM or UDS databases using SQL or DRIVE
Contents
This manual describes the language elements of the product ISO/SQL V1.0.
It also enables the creation of portable SQL applications in BS2000 and
SINIX, as the common language elements of ISO/SQL, INFORMIX and the
SQL Standard are emphasized.

[12] SQL for SESAM/SQL
Language Reference Manual

Target group
Programmers who want to access SESAM databases using SQL statements.
Contents
SQL statements available for accessing SESAM databases.

[13] SQL for UDS/SQL
Language Reference Manual

Target group
Programmers who want to access UDS databases using SQL statements.
Contents
SQL statements available for accessing UDS databases.

64 U20073-J-Z145-2-7600

References

[14] INFORMIX (SINIX)
SQL
Language Reference Manual

Target group
INFORMIX users
Contents
Complete description of the INFORMIX SQL database query language for all
INFORMIX products which provide an SQL interface.
Deviations from and extensions of the ANSI standard are also described.

[15] INFORMIX
Supplement

Target group
INFORMIX users.
Contents
The supplement for INFORMIX V4.1 contains the changes in the functions of
the INFORMIX products ’SQL Language Reference Guide’, ’SQL Reference
Guide’, ’ESQL/COBOL’, ’ESQL/C’, ’C-ISAM’ and ’Interactive Debugger’. The
version 4.0 manuals are required.

[16] INFORMIX Error Messages (SINIX)
Reference Manual

Target group
INFORMIX users
Contents
This manual contains the INFORMIX error message texts together with the
corresponding corrective action to be taken.

[17] SESAM/SQL (BS2000)
Creation and Maintenance
User’s Guide

Target group
Database administrators
Contents

Creation and maintenance of SESAM databases using the database
administration monitor SESASB
Shadow database operation

[18] Dialog Builder V2.0

[19] OSF/Motif
Programmer’s Reference
Release 1.2

U20073-J-Z145-2-7600 65

References

Target group
Application designers
Widget designers

Contents
Description of all the commands, functions and file formats of the OSF/Motif
widget set

[20] SINIX/windows User Environment
Guide for Experts and System Administrators

Target group
SINIX/windows experts and system administrators
Contents
This manual discusses the concepts underlying the product and explains how
to configure the user interface. It presents the primary clients for display and
window management and for managing desktools and files.

[21] SINIX/windows User Environment
Clients Reference Manual

Target group
SINIX/windows experts and system administrators
Contents
This manual provides a comprehensive survey of the clients: invocation,
options and resources governing client appearance and behavior. It explains
the order and precedence for interpretation of resource definitions.

[22] X Window System
Xlib Reference Manual

Target group
Application designers
Widget designers

Contents
Full description of the C interface to Xlib.

[23] FORMANT (SINIX)
Reference Manual

Target group
C programmers
COBOL programmers
Application designers

66 U20073-J-Z145-2-7600

References

Contents
Formant is a mask control program for all SINIX systems. The manual
contains:

Introduction to FORMANT
Description of FORMANTGEN
Description of user interface
Program interfaces in C and COBOL
Programming examples

[24] FHS (TRANSDATA)
User Guide

Target group
Programmers
Contents
Program interfaces of FHS for TIAM, DCAM and UTM applications.
Generation, application and management of formats.

[25] IFG for FHS (TRANSDATA)
User Guide

Target group
Terminal users, application engineers and programmers
Contents
The Interactive Format Generator (IFG) is a system that permits simple, user-
friendly generation and management of formats at a terminal. In conjunction
with FHS, these formats can be used on the host computer. This user guide
describes how formats are generated, modified and managed, plus also the
new functions of IFG.

[26] UTM(SINIX)
Formatting System

Target group
UTM(SINIX) users who wish to use formats, C programmers and COBOL
programmers
Contents
How to use the FORMANT format handler in UTM(SINIX) program units,
create formats, convert formats from BS2000 to/from SINIX.

[27] UTM (SINIX)
Generating and Administering Applications
User Guide

Target group
System administrators
UTM administrators

U20073-J-Z145-2-7600 67

References

Contents
Creation, generation and operation of UTM applications under SINIX
Working with UTM messages and error codes

Applications
SINIX transaction processing

[28] UTM (SINIX)
Planning and Design
User Guide

Target group
DP managers
Application planners
Programmers

Contents
Introduction to UTM(SINIX); description of the program memory and
interface concept, handling of data, files and databases.
Notes on the design, optimization and performance of UTM applications
under SINIX, as well as details of data protection.

Applications
SINIX transaction processing

[29] UPIC
Client-Server Communication with UTM
User Guide

Target group
Dp managers, application planners Programmers of UPIC programs
Contents
UPIC permits program-to-program communication between a UPIC
application and a UTM application. This works both locally with a UTM
(SINIX) application on the same computer and remotely with UTM
applications on other SINIX or BS2000 computers. UPIC enables you to link
modern presentation systems such as Motif and X Window System to
UTM(SINIX) and UTM(BS2000). The manual describes how you program a
UTM application in C.

[30] ERMS (SINIX)
Command Interface

Target group
End users
Database administrators

68 U20073-J-Z145-2-7600

References

Contents
ERMS concepts for the end user
Description and explanation of the end-user commands

[31] RADAR V1.0

[32] QUERY (BS2000)
Reference Manual

Target group
End users
QUERY administrator

Contents
Retrieving information from SESAM databases
Printing out search results in reports
Administering users, access authorizations and tables

Applications
Non-dp department

[33] TOM-REF (BS2000)
Data-Dictionary-System
Reference Manual

[34] C (SINIX)
Programmer’s Reference Manual
Reference Manual

Target group
C programmers working under SINIX V5.41 with C-DS V1.0.
Contents
Description of the commands for program development, library functions and
system calls, and a description of a number of header files and C-specific file
formats.

[35] C (SINIX)
Guide to Tools for Programming in C
User Guide

Target group
C programmers working under SINIX V5.41 with C-DS V1.0.
Contents
The manual describes the C compilation system (preprocessor, link editor,
header files, libraries), and utilities for developing, managing, maintaining and
generating C programs.

[36] SINIX V5.41
MX300 Installation Guide

U20073-J-Z145-2-7600 69

References

Target group
Service engineers and system administrators
Contents
Comprehensive guide to installing the SINIX V5.41 operating system.
Descriptions of starting up a preinstalled MX300, of preparatory work to be
performed before installing SINIX V5.41, and of software package installation
and removal.

[37] MX500 (SINIX V5.40)
MX300 (SINIX V5.41)
System Administrator’s Reference Manual

Target group
System administrators
Contents
Describes commands and application programs for system maintenance, file
formats and special system administration files and provides notes on
diagnostics

[38] Commands (SINIX V5.41)
Part 1, A - K
Reference Manual

Target group
SINIX shell users
Contents
Alphabetically arranged description of the SINIX command set

[39] Commands (SINIX V5.41)
Part 2, L - Z
Reference Manual

Target group
SINIX shell users
Contents
Alphabetically arranged description of the SINIX command set

[40] SINIX V5.41
User’s Guide

Target group
Users
Contents
Description of the principal features of the SINIX operating system. Among
the topics it covers are basics for SINIX system users, the file system,
process control and the shell.

70 U20073-J-Z145-2-7600

References

[41] case/4/0 Methodenhandbuch
microTOOL GmbH Berlin

[42] case/4/0 Referenzhandbuch
microTOOL GmbH Berlin

[43] case/4/0 Bedienerhandbuch
microTOOL GmbH Berlin

[44] Widget Set
Programmer’s Reference

Target group
Application designers
Widget designers

Contents
Descriptions of all the commands, functions and file formats for the
XmSniBrowser, XmSniFormat, XmSniHelp, XmSniTable and XmSniTree
widgets in the Siemens Nixdorf extension to the OSF/Motif widget set.

[45] SINIX SPOOL
Operation - Administration - Programming
User Guide

Target group
Users, administrators and programmers of the SINIX SPOOL system
Contents

Description of commands
Administration functions
C interface to the SINIX SPOOL system

[46] Style Guide
Guidelines on the Design of User Interfaces
User’s Guide

Target group
Developers of application programs
Contents
The Style Guide contains rules and recommendations for the development of
uniform user interfaces. It describes their structure and contents, and how
they are used.

[47] SINIX V5.40 (MX500)
SINIX V5.41 (MX300)
System Administrator’s Guide

Target group
System administrators

U20073-J-Z145-2-7600 71

References

Contents
Introduction to system administration on SINIX systems
Instructions for SINIX system configuration and maintenance

[48] Commands (SINIX V5.41)
Part 3, Reference Section
Reference Manual

Target group
SINIX shell users
Contents
Tables and reference section for commands described in Parts 1 and 2 -
Table of contents Command overview

Regular expressions
Bourne shell metacharacters
Data media special files
SINIX V5.23 and V5.40 SPOOL system files
ISO 646 character set
References and index

[49] File Transfer in SINIX
FT-SINIX (SINIX) V5.0A
FTOS-SINIX (SINIX) V2.0A
User Guide

Target group
This manual is intended for SINIX users who want to work with FT/FTOS-
SINIX and for SINIX system administrators.
Contents
The manual describes the functions of FT-SINIX/FTOS-SINIX. FT-SINIX is
used for transferring files and for file management on the basis of the FTNEA
protocols. The add-on product FTOS-SINIX permits the use of functions
based on the FTAM protocol.

Ordering manuals

The manuals listed above and the corresponding order numbers can be found in the
Siemens Nixdorf List of Publications. New publications are described in the
Druckschriften-Neuerscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name
placed on the appropriate mailing list. Please apply to your local office, where you can
also order the manuals.

72 U20073-J-Z145-2-7600

Index
A
aggregate 58
assign values to variables 16
average, determining 50

C
Cartesian product 48
CLOSE 3
column 34ff

determining the average 50
determining the maximum 50
determining the minimum 50
determining the sum 50
output information 28
specify 34ff

column contents, set-oriented update of 31
columns

results of several 50f
select 25
selecting 47

COMMIT WORK 4
comparison operator 40
comparison using comparison operators 40
comparison with a list of values 42
comparison with a value range 41
comparison with pattern matching 44
condition 36

comparison using comparison operators 40
comparison with a list of values 42
comparison with a value range 41
comparison with pattern matching 44
test for the null value 43

consistency level, set 27
correlation 34
counting rows 50
CREATE TEMPORARY VIEW 6f

U20073-J-Z145-2-7600 73

Index

current row
delete 13
update 32

cursor
close 3
declare 8f
open 19
output information 28
position 16
restore 23
save position 30
updatable 11
update specification of 19

D
data, retrieve 25ff
data-name 59
DECLARE 8f
declare conditions 36
default user ID 20
delete rows, set-oriented 12
delete the current row 13
DELETE... WHERE condition, error 12
DELETE... WHERE CURRENT OF... 13
determining the average 50
determining the maximum 50
determining the minimum 50
determining the sum 50

E
escape-character 44
expressions

comparison using comparison operators 40
specifying 52

F
FETCH 16
FROM

query-expression 48
SELECT statement 26

74 U20073-J-Z145-2-7600

Index

I
individual row, update 32
INSERT 17ff
insert row 17ff
INTO

FETCH 16
SELECT statement 25

J
join condition 36

L
LIKE, comparison with 44
list of values, comparison with 42
literal 55
literals, specifying 55

M
maximum, determining 50
minimum, determining 50

N
non-repeatable read 27
null value, test for 43
null values in conditions 36

O
OPEN 19
open cursor 19
ORDER BY 10
output information

column 28
cursor 28
schema 28
table 28
view 28

P
pattern 44

comparison with 44
pattern matching, comparison with 44
PERMIT 20f
phantoms 27
phenomena, parallel read 27
position cursor 16

U20073-J-Z145-2-7600 75

Index

Q
query data 25ff
query expression

selecting columns 47
selecting rows 49
selecting tables 48
specifying 46ff
updatable 46

query-expression 46ff
FROM 48
select-list 47
WHERE 49

R
RESTORE 23
results of columns, determining 50f
RETURN INTO, INSERT 18
ROLLBACK WORK 24
row deletion, individual 13
rows

counting 50
delete, set-oriented 12
insert 17ff
selecting 49
update selected 31f

S
save a cursor position 30
schema 57

output information 28
SELECT 25ff

INTO 25
select list 25, 47
select rows 26
SELECT statement 25

FROM 26
select columns 25
select rows 26
select tables 26
select-list 25
WHERE 26

select-list
query-expression 47
SELECT statement 25

selection condition 36ff

76 U20073-J-Z145-2-7600

Index

set function
AVG 50
COUNT(*) 50
MAX 50
MIN 50
specifying 50
SUM 50

SET TRANSACTION 27
set-function 50
set-oriented deletion 12
set-oriented update 31f
SHOW 28
simple-column 34
sort rows 10
sql-expression 52
STORE 30
structure 34
sum, determining 50

T
table 34, 57

output information 28
tables

select 26
selecting 48
specifying 57f

test for the null value 43
transaction 27

commit 4
roll back 24

transaction concurrency, degree of 27

U
updatable cursor 11
updatable query expression 46
updatable view 7
update, set-oriented 31f
update column contents, set-oriented 31f
update selected rows 31f
UPDATE... WHERE condition 31f
UPDATE... WHERE CURRENT OF 32
user ID, default declaration 20
user IDs, declare 20f

U20073-J-Z145-2-7600 77

Index

V
value 58f

specifying 58f
value list, comparison with 42
value range, comparison with 41
value to variable, pass 16
values, transfer to variables 25
variable 59ff

assign values 16
variables

assign values to 25
specifying 59

vector 35
vector-structured 34
view

declare 6
output information 28
updatable 7

W
WHERE

query-expression 49
SELECT statement 26

78 U20073-J-Z145-2-7600

Contents
Preface 1...........................

UDS/SQL statements 3.....................
CLOSE

Close the cursor 3......................
COMMIT WORK

Terminate a transaction 4...................
CREATE TEMPORARY VIEW

Declare a view 6.......................
DECLARE... CURSOR FOR...

Declare cursor 8.......................
DELETE... WHERE condition

Delete rows 12........................
DELETE... WHERE CURRENT OF...

Delete the current row of the cursor 13...............
DROP CURSOR

Dropping a cursor 14.....................
DROP TEMPORARY VIEW

Dropping a view 15......................
FETCH

Position the cursor and supply variables with values from columns 16...
INSERT

Insert a row 17........................
OPEN

Open a cursor 19.......................
PERMIT

Declare a user ID 20......................
PERMIT OFF

Suppress a UTM input mask 22.................
RESTORE

Restore a cursor 23......................
ROLLBACK WORK

Roll back a transaction 24....................
SELECT

Retrieve data 25.......................

U20073-J-Z145-2-7600

Contents

SET TRANSACTION
Set consistency level 27....................

SHOW
Display information on metadata 28................

STORE
Save the cursor position 30...................

UPDATE... WHERE condition
Update column values in selected rows 31.............

UPDATE... WHERE CURRENT OF...
Update column values in the current row of the cursor 32........

column
Specifying columns 34.....................

condition
Specifying a condition 36....................
Comparing expressions using comparison operators 40........
Comparing a column with a value range 41.............
Comparing a column with a list of values 42.............
Comparing a column with the null value 43.............
Comparing a column with a pattern 44...............

query-expression
Specifying SELECT within SQL statements 46............
select-list

Selecting columns 47....................
FROM

Selecting tables 48.....................
WHERE

Selecting rows 49.....................
set-function

Specifying set functions 50...................
sql-expression

Specifying expressions 52...................
sql-literal

Specifying literals 55......................
table

Specifying tables 57......................
value

Specifying values 58......................
variable

Specifying variables 59.....................

References 61.........................

Index 73...........................

U20073-J-Z145-2-7600

DRIVE/WINDOWS V1.1 (BS2000/SINIX)

Directory of DRIVE SQL Statements for UDS
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL
statements for UDS.

Edition: December 1993

File: DRV_UDS.PDF

BS2000 is a registered trademark of Siemens Nixdorf Informationssysteme AG.
SINIX is a registed trademark of Siemens Nixdorf Informationssysteme AG.
DRIVE is a registed trademark of Siemens Nixdorf Informationssysteme AG.

Copyright © Siemens Nixdorf Informationssysteme AG, 1994. All rights reserved.

The reproduction, transmission, translation or exploitation of this document or its contents
is not permitted without express written authority. Offenders will be liable for damages.

Delivery subject to availability; right of technical modifications reserved.

U20073-J-Z145-2-7600

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	UDS/SQL statements
	CLOSE Close the cursor
	COMMIT WORK Terminate a transaction
	CREATE TEMPORARY VIEW Declare a view
	DECLARE... CURSOR FOR... Declare cursor
	DELETE... WHERE condition Delete rows
	DELETE... WHERE CURRENT OF... Delete the current row of the cursor
	DROP CURSOR Dropping a cursor
	DROP TEMPORARY VIEW Dropping a view
	FETCH Position the cursor and supply variables with values from columns
	INSERT Insert a row
	OPEN Open a cursor
	PERMIT Declare a user ID
	PERMIT OFF Suppress a UTM input mask
	RESTORE Restore a cursor
	ROLLBACK WORK Roll back a transaction
	SELECT Retrieve data
	SET TRANSACTION Set consistency level
	SHOW Display information on metadata
	STORE Save the cursor position
	UPDATE... WHERE condition Update column values in selected rows
	UPDATE... WHERE CURRENT OF... Update column values in the current row of the cursor
	column Specifying columns
	condition Specifying a condition
	Comparing expressions using comparison operators
	Comparing a column with a value range
	Comparing a column with a list of values
	Comparing a column with the null value
	Comparing a column with a pattern

	query-expression Specifying SELECT within SQL statements
	select-list Selecting columns
	FROM Selecting tables
	WHERE Selecting rows

	set-function Specifying set functions
	sql-expression Specifying expressions
	sql-literal Specifying literals
	table Specifying tables
	value Specifying values
	variable Specifying variables

	References
	Index
	A-C
	D-F
	I-P
	Q-S
	T-U
	V-W

