
Edition November 2014

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-S
W

K
\S

O
R

T
\1

4
04

10
0

_s
or

t_
08

0\
pr

o
d_

e\
so

rt
_e

.v
or

English

SORT V8.0A

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2014 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U6184-J-Z125-6-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

8.
07

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

40
41

00
_

so
rt

_0
80

\p
ro

d
_e

\s
or

t_
e.

iv
z

Contents

1 Preface . 11

1.1 Objectives and target groups of this manual . 11

1.2 Summary of contents . 12

1.3 Changes since the last edition of the manual . 14

1.4 Notational conventions . 15

2 SORT functions and definitions . 17

2.1 Command and statement sequences in sort and merge runs 20

2.2 Sort types . 24
2.2.1 Full sort . 25
2.2.2 Selection sort . 27
2.2.3 Tag sort . 29
2.2.4 Merge . 35

2.3 Control fields for sort/merge runs . 37
2.3.1 Sort fields . 38
2.3.2 Remainder fields . 54
2.3.3 Constant fields . 56
2.3.4 Sum fields . 58
2.3.5 Mask fields . 60
2.3.6 Match fields and match constants . 66
2.3.7 Symbolic names . 69
2.3.8 Overlap table for the different field types . 71

2.4 Record processing and modification in SORT 73

2.5 SORT in an XS environment (31-bit addressing) 80

Contents

 U6184-J-Z125-6-76

2.6 Using extended character sets in SORT . 81
2.6.1 SORT-specific applications of extended character sets 82
2.6.1.1 Sorting with extended codes . 82
2.6.1.2 CCSN entry in the SORT files . 83
2.6.1.3 Explicit CCSN entry for data records and output file 83
2.6.1.4 Converting character constants into the code of the data records 84
2.6.1.5 Conditions for mask fields . 84
2.6.1.6 Using extended character sets in user exits . 84

2.7 Use of Unicode character sets with SORT . 85
2.7.1 Normalization . 86
2.7.2 Characters with special processing . 87
2.7.3 Characters which are not supported . 88

3 Files of the sort/merge program SORT . 89

3.1 Input files . 93
3.1.1 Input files for sort runs . 93
3.1.2 Input files for merge runs . 97
3.1.3 PAM key elimination for input files . 98

3.2 Output file for sort/merge runs . 99
3.2.1 PAM key elimination for the output file . 103
3.2.2 POSIX output file . 104

3.3 Work files . 105
3.3.1 PAM key elimination for work files . 107

3.4 Auxiliary files . 108
3.4.1 PAM key elimination for auxiliary files . 111

3.5 Checkpoint file . 112
3.5.1 PAM key elimination for checkpoint files . 113

3.6 Object module library SORTMODS . 114

3.7 Statement files . 114

3.8 Close processing for SORT files . 115

3.9 Processing POSIX files with SORT . 117
3.9.1 POSIX in BS2000 . 117
3.9.2 Sorting POSIX files with SORT . 118

3.10 SORT and ACS . 119

Contents

U6184-J-Z125-6-76

©
 S

ie
m

en
s

N
ix

d
or

f I
nf

or
m

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-S
W

K
\S

O
R

T
\1

40
4

10
0_

so
rt

_0
8

0\
pr

od
_

e\
so

rt
_e

.iv
z

3.11 Working with files larger than 32 GB . 120
3.11.1 Creating files larger than 32 GB . 120
3.11.2 Tag sort . 121
3.11.3 Recommendations when working with large files 122

4 SORT statements . 125

4.1 Input sources . 125

4.2 SDF syntax representation . 126

4.3 Error handling . 126

4.4 Overview of the SORT statements . 127
ADD-SYMBOLIC-NAMES . 128
ASSIGN-EXITS . 132
ASSIGN-FILES . 139
ASSIGN-RESOURCES . 142
END . 144
MERGE-RECORDS . 145
MODIFY-CODE . 151
MODIFY-SORT-DEFAULTS . 152
SELECT-INPUT-RECORDS . 156
SET-RECORD-ATTRIBUTES . 160
SET-SORT-OPTIONS . 166
SHOW-SORT-DEFAULTS . 174
SORT-RECORDS . 175
SUM-RECORDS . 187

5 Calling SORT . 191

5.1 Calling SORT as a standalone program . 191
START-SORT . 192
SORT-FILE . 194
Command return codes . 202

5.2 Calling SORT as a subroutine . 206
5.2.1 Passing control information to SORT . 209
5.2.1.1 Level 0 . 210
5.2.1.2 Level 1 . 211
5.2.2 SORT macros . 212
5.2.2.1 SRT0: call to SORT at level 0 . 212
5.2.2.2 SRT1: call to SORT at level 1 . 215

Contents

 U6184-J-Z125-6-76

5.3 SORT access method SORTZM . 220
5.3.1 Function of the SORT access method SORTZM 220
5.3.2 Macros of the SORT access method SORTZM . 223
5.3.3 SRTOPEN: initiate sorting . 223
5.3.4 SRTPUT: pass record to SORT . 225
5.3.5 SRTGET: fetch record from SORT . 227
5.3.6 SRTCLSE: terminate sorting . 229
5.3.7 Example . 230

6 SORT user exits . 233

6.1 PLANNING: planning completed . 238

6.2 INPUT: input record processing . 239

6.3 OUTPUT: output record processing . 244

6.4 WORK-FILE-OVERFLOW . 249

6.5 EXLST-FOR-INPUT EXLST: exit for input files 251

6.6 EXLST-FOR-OUTPUT: user exit for output files 253

6.7 PHYSICAL-TRANSLATE: special character conversion table 255

6.8 VIRTUAL-TRANSLATE: special character conversion table 256

6.9 EXTERNAL-COMPARE: sequence defined by user routine 258

6.10 TRANSLATE-CHARACTER: sequence defined by equating tables and coded
character set . 260

6.11 INT: sort/merge run interrupt . 261

7 Checkpoint processing . 263

8 Optimization of sort runs . 265

8.1 Suitable CORE allocation . 265

8.2 Virtual merging . 267

8.3 Choice of sort method . 268
8.3.1 Code conversion . 268
8.3.2 Cycle sorting . 268
8.3.3 Multi-task sorting . 271

Contents

U6184-J-Z125-6-76

©
 S

ie
m

en
s

N
ix

d
or

f I
nf

or
m

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-S
W

K
\S

O
R

T
\1

40
4

10
0_

so
rt

_0
8

0\
pr

od
_

e\
so

rt
_e

.iv
z

8.4 Suitable choice of file characteristics . 278

8.5 Record summation . 278

8.6 SORT as subsystem . 279

8.7 Use of the OPTIMIZATION operand in the SET-SORT-OPTIONS statement 279

8.8 Modifying the preset default values for SORT 279

9 Installation . 281

10 Examples . 287

10.1 Introduction . 287
10.1.1 Calling SORT . 288
10.1.2 Assigning the files . 288
10.1.3 Defining the sort criteria . 289
10.1.4 Terminating statement input and starting the sort run 291

10.2 Example: Sorting a file with fixed-length records 292

10.3 Example: Sorting a SAM file with variable record format 295

10.4 Overview of the application examples . 298
10.4.1 SORT as main program . 298
10.4.2 Connection of user routines . 299
10.4.3 SORT as a subroutine . 299
10.4.4 Sorting according to Unicode . 299

10.5 Examples . 300
10.5.1 Example 1: Full sort of fixed format records . 301
10.5.2 Example 2: Full sort of variable format records . 303
10.5.3 Example 3: Full sort of an ISAM input file into a SAM output file 305
10.5.4 Example 4: Full sort of ISAM files with variable record format 308
10.5.5 Example 5: Full sort of multiple files with variable record format 310
10.5.6 Example 6: Full sort (input file = output file) . 313
10.5.7 Example 7: Full sort EBCDIC to DIN standard for text ordering 315
10.5.8 Example 8: Full sort using FORMAT=*MODIFY-CODE 318
10.5.9 Example 9: Full sort using FORMAT=*EXTENDED-CHARACTER and

FORMAT=*TRANSLATE-CHARACTER . 320
10.5.10 Example 10: Full sort with summation and SELECT-INPUT-RECORDS 325
10.5.11 Example 11: Selection sort of variable format records 329
10.5.12 Example 12: Selection sort (binary) of fixed-format records 332
10.5.13 Example 13: Selection sort of a POSIX file . 334

Contents

 U6184-J-Z125-6-76

10.5.14 Example 14: Tag sort of fixed-format records . 337
10.5.15 Example 15: Merging files . 339
10.5.16 Example 16: INPUT user exit . 341
10.5.17 Example 17: OUTPUT user exit . 345
10.5.18 Example 18: PHYSICAL-TRANSLATE user exit 349
10.5.19 Example 19: VIRTUAL-TRANSLATE user exit . 353
10.5.20 Example 20: SORT as a subroutine (level 0) . 357
10.5.21 Example 21: SORT as a subroutine (level 1) . 361
10.5.22 Example 22: SORT access method . 366
10.5.23 Example 23: SORT access method (multiple sort) 371
10.5.24 Example 24: Full sort according to data in Unicode 380

10.6 Contents of the example files . 383
10.6.1 Preliminary remark . 383
10.6.2 Contents of the file RESTAURANT . 384
10.6.3 Contents of the file LITERATURE . 384
10.6.4 Contents of the file MUSEUM . 385
10.6.5 Contents of the file CULTURE.1 . 386
10.6.6 Contents of the file CULTURE.2 . 386
10.6.7 Contents of the file CULTURE.3 . 387

11 Messages of the sort/merge program . 389

11.1 Message output to SYSOUT . 389

11.2 Message output in S variables . 391

11.3 SORT/MERGE messages . 396

12 Appendix . 397

12.1 SORT error handling . 397
12.1.1 Handling internal SORT errors . 397
12.1.2 Error information when SORT is called as a standalone program 398
12.1.3 Error information when SORT is called as a subroutine 400
12.1.4 Structure of the RCF area . 401

12.2 Structure of SORT control tables . 402
12.2.1 Table overview . 402
12.2.2 Input block SVB . 404
12.2.3 Transfer control area . 406
12.2.4 SORT statement tables . 408

12.3 Sort table UTF-16 . 409

Contents

U6184-J-Z125-6-76

©
 S

ie
m

en
s

N
ix

d
or

f I
nf

or
m

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-S
W

K
\S

O
R

T
\1

40
4

10
0_

so
rt

_0
8

0\
pr

od
_

e\
so

rt
_e

.iv
z

Related publications . 435

Index . 437

Contents

 U6184-J-Z125-6-76

U6184-J-Z125-6-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

33
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

1

1 Preface

This manual describes how to use the software product SORT in BS2000 with the SDF
command format.

SORT V8.0A is executable in BS2000/OSD-BC® V8.0 and higher.

SORT V8.0 can be called via a SRT80 starter module, versions SORT V7.3 and higher.
However, there is no guarantee that older SORT versions with a SRT80 starter module,
version SORT V8.0, will function.

With SORT you can sort and merge data records according to specific criteria. You can also
modify the contents and format of data records. SORT is equipped with user exits for
connecting user routines and may be called as a subroutine. SORT also provides the
access method SORTZM.

1.1 Objectives and target groups of this manual

This manual is designed for BS2000 users.

The user should have experience with BS2000, and in particular be conversant with the
most important BS2000 commands. Useful reference documentation includes the BS2000
manuals “Commands” [1], “Introductory Guide to DMS” [2] and “DMS Macros” [3].

If you wish to invoke SORT as a subroutine and initiate actions via the user exits, you should
be familiar with the BS2000 Assembler and BS2000 system facilities. Useful sources of
reference in this case are the manuals “Assembler Instructions (BS2000)” [4],
“ASSEMBH” [5] and “Executive Macros” [6].

The SORT Ready Reference [12] is available as a supplement to this manual. This contains
all the SORT statements and macros and their syntax, and is intended as a reference work
for users familiar with SORT.

Summary of contents Preface

12 U6184-J-Z125-6-76

1.2 Summary of contents

Chapter 2 provides a brief overview of SORT, explains the various sort types and control
fields, the record processing and modification possible, the switch to the XS environment,
the use of extended character sets, and the special features of Unicode support in SORT.

Chapter 3 provides information on the various files with which SORT works.

Chapter 4 describes the input sources for SORT statements, as well as the syntax of the
statements in SDF format.

Chapter 5 describes the various ways in which SORT may be called and how control infor-
mation is passed to SORT.

Chapter 6 provides an overview of the various user exits and the associated measures
which the user can initiate.

Chapter 7 describes the processing of checkpoints for logging and checking the sort run.

Chapter 8 provides information on how to optimize sort runs.

Chapter 9 lists all the important information which must be borne in mind when installing
SORT.

Chapter 10 is especially well suited as an introduction fort the first-time user. In addition to
a number of application examples, this chapter also contains an introductory section. It
chiefly addresses first-time users of SORT and is intended to make the definition and
execution of SORT more easily understandable.

Chapter 11 lists all messages which can occur in a SORT/MERGE run.

The Appendix describes SORT error handling, explains the structure of the SORT control
tables, and contains the sort table UTF-16.
It is followed by the “Related publications” and “Index” chapters.

Preface Summary of contents

U6184-J-Z125-6-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

33
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

1

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last edition of the manual Preface

14 U6184-J-Z125-6-76

1.3 Changes since the last edition of the manual

This new version is SORT V8.0A, and the following functional extensions and changes
have been made since the last edition for SORT V7.9:

Chapter /
Section

Extensions / New features

All
chapters

SORT V8.0A is executable in BS2000/OSD-BC V8.0 and higher.

2.6.1.2 Depending on the type of file, SORT handles the CCSN entry differently.

4.4 SET-SORT-OPTIONS statement:
New operand IGNORE-CHARACTER
Specifies the characters that SORT is to ignore.

4.4 ASSIGN-EXITS statement:
Extension of the operand WORK-FILE-OVERFLOW= *MODULE(...) by
INTERFACE-VERSION
Indicates a record count in 8 bytes or in 4 bytes.

4.4 SORT-RECORDS statement:
Extension of the operands ESTIMATED-RECORDS, FROM-RECORD and
NUMBER-OF-RECORDS by <alphanum-name 1..19>
Extends the specification of the number of records beyond 2.147.483.639.

5.2.2 Macro calls via SRT0 and SRT1:
MULTI=NOIMON: The SYSPAR parameter file is read at the start.

6.4 WORK-FILE-OVERFLOW user exit:
Extension of MODULE by INTERFACE-VERSION=1/2

Preface Notational conventions

U6184-J-Z125-6-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

33
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

1

1.4 Notational conventions

The following notational conventions are used in this manual:

● References in the text to other publications are given in an abbreviated form. The full
titles of all publications referred to can be found under “Related publications” at the back
of the manual. This includes instructions for ordering these publications.

● In the examples, user input appears in bold Courier typeface and system output in
ordinary Courier typeface.

● The following pictogram is used to highlight important information:

 to indicate information of particular importance

● The syntax of the statements is in SDF command format.

i

Notational conventions Preface

16 U6184-J-Z125-6-76

U6184-J-Z125-6-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2 SORT functions and definitions

SORT is a program which allows data records from up to 99 input files to be sorted or
merged into a single output file.

SORT is executable in interactive or batch mode in BS2000 and supports the sort/merge
processing of SAM, ISAM, BTAM, PAM and POSIX files.

Figure 1: Sorting and merging with SORT

Sorting means arranging data records into a certain order according to criteria specified by
the user.

Merging means combining two or more ordered input files into a single output file. The input
files must first have been sorted according to the criteria applicable to the merge run.

Output file

Input files
(max. 99)

SORT

Functions to be
executed specified
by statements

•
•
•

SORT functions and definitions

18 U6184-J-Z125-6-76

The order of the output records for sorting and merging is determined by one or more fields
of the input record, as defined by the user (see section “Sort fields” on page 38). These
fields can be sorted in

● ascending order,

● descending order, or

● via a user routine (see chapter “SORT user exits” on page 233).

In addition to the sort and merge functions, SORT offers the following facilities:

● Specification of selection criteria for the records to be sorted:

– logical selection of records for sorting

– selection of a sequence of records as an extract from the specified input files

– compaction of records with identical sort keys, with or without summation of sum
fields in the resulting record

– retention of input sequence for records with identical sort keys.

● Modification of format and content of records and record areas:

– modification of record format

– modification of record length

– conversion of input data

– record creation through record selection sort.

● Insertion, deletion or modification of records or parts of records:

– editing of output records via print masks

– elimination of sort fields

– insertion of freely selectable constants.

● User control of logging and runtime parameters:

– user control of logging and program execution

– setting of checkpoints

– interruption of the SORT run followed by interactive dialog with SORT at the display
terminal.

SORT functions and definitions

U6184-J-Z125-6-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

● Interface to subroutines for additional functions:

– user exits for interfacing to user routines.

These functions, as well as calling SORT as a subroutine and the sort access method
SORTZM, are described and explained in the following chapters.

Internal processing sequence for sort runs

A sort run can be subdivided into the following distinct phases:

1. Preparatory phase

In the preparatory phase, SORT decodes all the statements.

2. Planning phase

In the planning phase, SORT determines the sorting strategy and requests the requisite
resources (e.g. memory space).

3. Input and presorting phase

In this phase, SORT reads the records to be sorted and generates ordered sequences
of blocks via a presort run.

4. DOMINO phase

In this phase SORT attempts to achieve an optimal concatenation of the presorted
blocks into block sequences. This is intended to minimize data movements between the
internal main memory and the work file and shorten internal merging operations in the
subsequent internal merge phase.

5. Internal merge phase

In the internal merge phase the block sequences are ordered in one or more internal
merge passes into a number suitable for the end merge. In cycle and multi-task sorting
(see chapter “Optimization of sort runs” on page 265), these block sequences are
buffered in separate auxiliary files.

6. End merge and output phase

In this phase SORT merges the presorted sequences (some of which may be stored in
auxiliary files) into a single block sequence and outputs this to the output file.

The input and presorting phase, and the internal merge phase, can be repeated several
times in succession in a cycle or multi-task sort.

Command and statement sequences SORT functions and definitions

20 U6184-J-Z125-6-76

2.1 Command and statement sequences in sort and merge runs

Invoking SORT as a standalone program requires the following definition steps:

– Assignment of SORT files via ADD-FILE-LINK commands, unless the file assignment
is made during the SORT run via the ASSIGN-FILES statement (which can be used in
SORT only).

– Invocation of SORT.

– Assignment of SORT files using the ASSIGN-FILES command, unless the file
assignment has already been made via the ADD-FILE-LINK command. Input/output
files must be assigned for each run, unless the user exits INPUT and OUTPUT have
been specified for this. For more information on this refer to the description of the
ASSIGN-FILES and ASSIGN-EXITS statements and see also chapter “Files of the
sort/merge program SORT” on page 89.

– Statements to SORT.
A SORT-RECORDS or MERGE-RECORDS statement is a required specification for
each run. Other optional statements may follow. Statement files can be used for
statement input. See the description of the ASSIGN-FILES statement and see also
chapter “Files of the sort/merge program SORT” on page 89 for further details.

– Specification of an END statement to complete statement input.

SORT functions and definitions General overview

U6184-J-Z125-6-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

General overview of the command and statement sequence in sort/merge runs

The statements and commands must be entered in the order defined by the numbered
sections. Within these sections the statements can be specified in any order.

1. File assignment with ADD-FILE-LINK commands
(can be omitted if the files have been assigned with the ASSIGN-FILES statement, see
point 3 of this overview)

– Input file(s)

– Output file

/CREATE-FILE FILE-NAME=outputfilename
/ADD-FILE-LINK LINK-NAME=SORTOUT[,...],FILE-NAME=outputfilename

/ADD-FILE-LINK LINK-NAME=SORTIN[,...], -
/ FILE-NAME=sortfilename

Sort using one input file

or

/ADD-FILE-LINK LINK-NAME=SORTIN01[,...], -
/ FILE-NAME=sortfilename1
/ADD-FILE-LINK LINK-NAME=SORTIN02[,...], -
/ FILE-NAME=sortfilename2
/ ...
/ADD-FILE-LINK LINK-NAME=SORTIN99[,...], -
/ FILE-NAME=sortfilename99

Sort using more than one
input file

or

/ADD-FILE-LINK LINK-NAME=MERGE01[,...], -
/ FILE-NAME=mergefilename1
/ADD-FILE-LINK LINK-NAME=MERGE02[,...], -
/ FILE-NAME=mergefilename2
/ ...
/ADD-FILE-LINK LINK-NAME=MERGE99[,...], -
/ FILE-NAME=mergefilename99

Merge run

General overview SORT functions and definitions

22 U6184-J-Z125-6-76

– Work files (optional)

– Auxiliary files (as required)

/CREATE-FILE FILE-NAME=auxfilename1
/ADD-FILE-LINK LINK-NAME=SORTWK01[,...],FILE-NAME=auxfilename1
/CREATE-FILE FILE-NAME=auxfilename2
/ADD-FILE-LINK LINK-NAME=SORTWK02[,...],FILE-NAME=auxfilename2
/ ...
/CREATE-FILE FILE-NAME=auxfilename99
/ADD-FILE-LINK LINK-NAME=SORTWK99[,...],FILE-NAME=auxfilename99

– Module library (optional)

/ADD-FILE-LINK LINK-NAME=SORTMODS,FILE-NAME=modulelibraryname

– Checkpoint file (optional)

/CREATE-FILE FILE-NAME=checkpointfilename
/ADD-FILE-LINK LINK-NAME=SORTCKPT,FILE-NAME=checkpointfilename

2. Calling SORT

/START-SORT

/CREATE-FILE FILE-NAME=workfilename
/SET-FILE-LINK LINK-NAME=SORTWK[,...], -
/ FILE-NAME=workfilename

Assignment of one work
file

or

/CREATE-FILE FILE-NAME=workfilename
/ADD-FILE-LINK LINK-NAME=SORTWK1[,...], -
/ FILE-NAME=workfilename1
/CREATE-FILE FILE-NAME=workfilename1
/ADD-FILE-LINK LINK-NAME=SORTWK2[,...], -
/ FILE-NAME=workfilename2
/ ...
/CREATE-FILE FILE-NAME=workfilename9
/ADD-FILE-LINK LINK-NAME=SORTWK9[,...], -
/ FILE-NAME=workfilename9

Assignment of more than
one work file

SORT functions and definitions General overview

U6184-J-Z125-6-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

3. Control statements to SORT

– File assignment using the ASSIGN-FILES statement
(only necessary for files which have not already been assigned with SET-FILE-LINK
commands, see point 1 of this overview)

– Specification of the sort criteria and definition of the structure of the output file

– Further (optional) statements

//SET-RECORD-ATTRIBUTES ...
//SET-SORT-OPTIONS ...
//SELECT-INPUT-RECORDS ...

4. End of the input and start of the sort/merge run

//END

//ASSIGN-FILES -

// INPUT-FILES=inputfilename(s), - Input file(s)
(max. 99)

// OUTPUT-FILES=outputfilename, - Output file

// WORK-FILES=workfilename(s), - Work file(s)
(max. 9, optional)

// AUXILIARY-FILES=auxfilename(s), - Auxiliary file(s)
(max. 99, optional)

// CHECKPOINT-FILE=checkpointfilename, - Checkpoint file (optional)

// MODULE-LIBRARY=modulelibraryname, - Module library (optional)

// STATEMENT-FILES=statementfilename(s) Statement file(s)
(max. 10, optional)

//SORT-RECORDS sort-criteria Sort

or

//MERGE-RECORDS sort-criteria Merge

General overview Sort types

24 U6184-J-Z125-6-76

2.2 Sort types

Figure 2: Sort functions of the SORT sort/merge program

SORT supports the following types of sort:

– Full sort
The complete input record is written to the output file according to the specified sort
criteria.

– Selection sort
Selected parts of the input record are combined into a new output record. The output
records are written to an output file according to the specified sort criteria.

– Tag sort
The records are sorted according to the sort criteria; SORT then tags each output
record with an address that specifies the position of the original record (retrieval
address) in the input file.

– Merge
Up to 99 input files with the same record format (and length in the case of fixed-length
records), after having been sorted according to identical criteria, can be merged into a
single output file on the basis of the sort criteria.

Output

Full sort

Selection sort

Tag sort

Merge

*COMPLETE-RECORD

*COMPOUND-RECORD

*TAG-...

MERGE-RECORDS

SORT-RECORDS
 SORT-TYPE=

Input

SORT

Sort types Full sort

U6184-J-Z125-6-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.2.1 Full sort

In a full sort, the entire input record is processed by SORT and sorted in ascending or
descending order according to the sort fields (see section “Sort fields” on page 38).
Records of fixed or variable length can be processed.

Under certain defined conditions, the output records may have a different record length
and/or format than the input records (see section “Record processing and modification in
SORT” on page 73). This type of sort is selected by specifying
SORT-TYPE=*COMPLETE-RECORD in the SORT-RECORDS statement. As
SORT-TYPE=*COMPLETE-RECORD is the default setting, it does not have to be specified
explicitly.

Because the complete input record is processed in a full sort, no print masks are permitted.

Example

The input file ADDRESSES contains the following variable-length records:

The input records are to be sorted by SORT by last name and first name and then written
unchanged to the output file ADDRESSES.SORT.

rl MILLER ANDREW LONDON PETER HOOGANFORD DRIVE 5

rl BECKETT SAM LIVERPOOL SEASIDE 37

rl SOLOW BRIGITTE LEEDS DEARSBY STREET 49

rl BECKETT FRANK MANCHESTER LOREAN STREET 2

Full sort Sort types

26 U6184-J-Z125-6-76

/start-sort ——— (1)
//assign-files input-files=addresses,output-file=addresses.sort ——————— (2)
//sort-records fields=(*field-explicit(position=5,length=9), - ———————— (3)
// *field-explicit(position=14,length=10))
//set-record-attributes input=*variable(maximum-record-size=64) ——————— (4)
//end ——— (5)

(1) SORT is invoked.

(2) The input and output files are assigned.

(3) The sort fields “first name” and “last name” are defined; sort type “full sort” and
sorting order “ascending” are preset by default.

(4) The maximum length of the input records is defined.

(5) End of statement input and start of the sort run.

Output file ADDRESSES.SORT:

rl BECKETT FRANK MANCHESTER LOREAN STREET 2

rl BECKETT SAM LIVERPOOL SEASIDE 37

rl MILLER ANDREW LONDON PETER HOOGANFORD DRIVE 5

rl SOLOW BRIGITTE LEEDS DEARSBY STREET 49

Sort types Selection sort

U6184-J-Z125-6-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.2.2 Selection sort

In a selection sort, the record to be sorted is composed of those parts of the input record
specified in the FIELDS operand of the SORT-RECORDS statement as sort, remainder,
and constant fields. In the output record, the order of these parts corresponds to the order
in which these fields were defined.

SORT generates fixed-length output records by default in a selection sort, regardless of the
record format of the input records. The sort type “selection sort” must be specified by means
of the operand SORT-TYPE=*COMPOUND-RECORD in the SORT-RECORDS statement.

Special points to note concerning variable-length input records:

– For output of fixed-length records, the specified sort and remainder fields must be in the
area common to all the records in the input file (minimum record length).

– To generate variable-length selection records, OUTPUT=*VARIABLE must be specified
in the SET-RECORD-ATTRIBUTES statement. The following applies to the last field
specified:
If a remainder field, it may be located wholly or partly within the “variable” part of the
input record, i.e. that notional area of the record that lies outside the minimum record
length and extends to the maximum record length.

If the field is a sort field having CHARACTER, EBCDIC-DIN or EBCDIC-
INTERNATIONAL format, then at least the first character must be located in the fixed
part of the input record. SORT automatically calculates the new record length and
prefixes this as a record length field to the new selection record. No remainder field is
required for this record length field.

Under certain conditions, or upon request, the output records may have a different record
length and record format than the original selection record, or be made longer or shorter
than the input record (see section “Record processing and modification in SORT” on
page 73).

In a selection sort it is possible to edit sort, remainder and sum fields in BINARY, FIXED-
POINT, PACKED-DECIMAL and ZONED-DECIMAL format ready for printing. This requires
the use of a print mask which corresponds to the edit mask of the Assembler instruction ED
(see section “Mask fields” on page 60).

Selection sort Sort types

28 U6184-J-Z125-6-76

Example

An output file ADDRESSES.SORT is to be created from the variable-length records of the
ADRESSES input file. This file should only contain the areas bounded by bytes 5 - 13 (last
name) and bytes 24 - 38 (place of residence) of the input records, and should be sorted
according to these fields.

Input file ADDRESSES:

/start-sort ——— (1)
//assign-files input-files=addresses, - ——————————————————————————————— (2)
// output-file=addresses.sort
//sort-records fields=(*field-explicit(position=5,length=9), - ———————— (3)
// *field-explicit(position=24,length=15)), -
// sort-type=*compound-record
//set-record-attributes input=*variable(maximum-record-size=64) ——————— (4)
//end ——— (5)

(1) SORT is invoked.

(2) The input and output files are assigned.

(3) The sort fields are defined and the sort type “selection sort” is specified.

(4) The record type and maximum record length are defined.

(5) End of statement input.

Output file ADDRESSES.SORT:

rl MILLER ANDREW LONDON PETER HOOGANFORD DRIVE 5

rl BECKETT SAM LIVERPOOL SEASIDE 37

rl SOLOW BRIGITTE LEEDS DEARSBY STREET 49

rl BECKETT FRANK MANCHESTER LOREAN STREET 2

BECKETT LIVERPOOL

BECKETT MANCHESTER

MILLER LONDON

SOLOW LEEDS

Sort types Tag sort

U6184-J-Z125-6-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.2.3 Tag sort

In a tag sort, as in a selection sort, selection records are constructed from the individual sort
fields. In addition, SORT tags each record of the output file with the record address of the
associated record from the input file (see the SORT-TYPE operand of the SORT-
RECORDS statement). As the address and sort key always have a fixed length in a
selection sort, SORT also generates fixed-length output records in a tag sort, regardless of
the record format of the input file, its DMS attributes, or the specifications made via the SET-
FILE-LINK command. These default settings of the SORT program can be changed by
means of the SET-RECORD-ATTRIBUTES statement.

For special points to note concerning variable-length records, refer to selection sorting
above (see section “Selection sort” on page 27).

The sort type “tag sort” must be specified in the SORT-RECORDS statement by means of
the SORT-TYPE operand, as follows:

Conditions for tag sorting

– The input file must be a disk file.

– The input file must be a SAM, ISAM or PAM file.

– The input file must not be a POSIX file.

– Multiple input files of the same type are permitted, but since the retrieval address does
not include a file identifier, the user must make sure that the position (and thus the
address) of the input records can be distinguished.

– Output and input file must be different.

– Use of print masks is not permitted.

– The input file must not be a POSIX file, since it cannot be guaranteed that the retrieval
address does not contain characters which POSIX might interpret as record separators
(see section “Sorting POSIX files with SORT” on page 118).

– SORT-TYPE = *TAG-TRAILER (appended address)

– SORT-TYPE = *TAG-HEADER (prefixed address)

– SORT-TYPE = *TAG-COMPOUND (prefixed and extended address).

Tag sort Sort types

30 U6184-J-Z125-6-76

Advantages of tag sorting

Tag sorting provides the following advantages if several files are to be created from one
input file and sorted according to different criteria, or if the (unsorted) input file is to be
retained:

– Storage space for output files can be saved, since these only contain the tag assigned
to the record of the input file and possibly the sort key (which can be suppressed by
means of the ELIMINATE operand).

– Changes to the data need only be made in one file, the input file (SORTIN file).
If such changes only affect parts of the record which do not constitute a sort key, no
further action is necessary because every record in the input file can be directly
accessed via the retrieval address in the address field of the records in the (sorted)
output files.
Similarly, if a sort key is modified, only the sort run whose sort key is affected must be
repeated.

Figure 3: Generating a file with tag records

To tag-sort a file (on disk) according to a sort key, the user must first generate a file with tag
records in a sort run using SORT-TYPE=*TAG-COMPOUND
SORT-TYPE=*TAG-HEADER, or SORT-TYPE=*TAG-TRAILER. These tag records consist
of sort and remainder fields and an address or “tag” field (prefixed to the record in the case
of *TAG-COMPOUND or *TAG-HEADER, appended in the case of *TAG-TRAILER). It is,
however, possible to eliminate sort fields using the ELIMINATE operand.

Sort field + ADDR(RECORD4)

Sort field + ADDR(RECORDn)

Sort field + ADDR(RECORD1)

Sort field + ADDR(RECORD2)

Sort field + ADDR(SATZ3)

...

Output file with tag recordsDisk input file

SORT-RECORDS

SORT-TYPE=*TAG-...

RECORD1

RECORD2

RECORD3

RECORD4

RECORDn

...

SORT

Tag

Sort types Tag sort

U6184-J-Z125-6-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Address field

The format of the address field with which the tag record begins (with *TAG-COMPOUND
or *TAG-HEADER) or ends (with *TAG-TRAILER) is dependent on the access method of
the input file, as follows:

● SAM

Depending on the sort type, the retrieval address is either four or six bytes long:

– With *TAG-HEADER and *TAG-TRAILER a four-byte address with the format
bbbbbbrr is created.

Example

Address field for the first record of a file (in hexadecimal notation):

– With *TAG-COMPOUND a six-byte address with the format bbbbbbbbrrrr is
created.

Example

Address field for the first record of a file (in hexadecimal notation):

● ISAM

The address field contains the ISAM key of the associated input record. The length
corresponds to the file attribute KEY-LENGTH in the input file and can be between
1 and 255 bytes long.

bbbbbb Number of the accompanying file block in which the record is located.

rr Relative record number in the file block (1 Î rr Î 255, i.e. the file block
must not contain more than 255 records).

000001 01

1st record

1st file block

bbbbbbbb Number of the accompanying file block in which the record is located.

rrrr Relative record number in the file block (1 Î rrrr Î 65535).

00000001 0001

1st record

1st file block

Tag sort Sort types

32 U6184-J-Z125-6-76

● PAM

The address field comprises bytes 4 - 7 of the PAM key in the format vppp.

Example

Address field (in hexadecimal notation):

Example

“Personnel” is a SAM file consisting of records of fixed length (59 bytes) and having the
following format and contents:

This file is to be tag-sorted according to (last) name, first name, address, department and
personnel no. This requires a total of 5 sort runs using SORT-TYPE=*TAG-TRAILER or
SORT-TYPE=*TAG-COMPOUND/*TAG-HEADER. The sort run for the record area “Name”
is described here. Similar runs are performed for the other record areas.

v Version number of the file (byte 4)

ppp Logical number of the PAM block (bytes 5 - 7)

01 000003

3rd PAM block

1st version

Name First name Address Dept. Pers. no.

Miller
Allan
Smith
Majors
Smythe
Kennedy
Stevens
Baker
Johnston
Mellors
Brown
Charles
Walthers
Richards
Drever

Andrew
Hillary
Albert
Christine
Brenda
George
Henry
Fred
Annette
Ingrid
Tony
Ernest
Claudia
Bernard
James

Poplar Avenue 47
High Street 101
Gardener Street 14
Railway Cuttings 12
Thomas Square 1
Edgeware Road 62
Market Square 13
Scott Street 34
Richmond Street 98
Salford Drive 4
Skyview Terrace 9
Millhouse Street 23
Millford Crescent 31
Illsley Square 3
Rose Drive 31

KT25
AY4
PX453
PX23
BT34
NY211
NY12
KT23
BT342
TI34
UB81
TI32
ZY21
UB12
PX3

544507
345670
047913
987650
965471
873250
987234
765921
345678
456372
786534
537892
342108
518376
875211

Sort types Tag sort

U6184-J-Z125-6-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

/start-sort
//assign-files input-files=personnel, -
// output-file=name
//sort-records fields=(*field-explicit(position=1,length=13)), -
// sort-type=*tag-trailer
//end

On completion of this sort run, the output file “Name” contains the following records, each
17 bytes long (13 data bytes and 4 bytes for the retrieval address):

Name Address
field*

Blk. no. A.

A l l a n
B a k e r
B r o w n
C h a r l e s
D r e v e r
J o h n s t o n
K e n n e d y
M a j o r s
M e l l o r s
M i l l e r
R i c h a r d s
S m i t h
S m y t h e
S t e v e n s
W a l t e r s

000001
000001
000001
000001
000001
000001
000001
000001
000001
000001
000001
000001
000001
000001
000001

02
08
0B
0C
0F
09
06
04
0A
01
0E
03
05
07
0D

* The contents of the address field are shown in hexadecimal form to make them easier to
read

Blk no.: File block number

A.: Logical record address in block,
 e.g. 0D is the 13th record of the input file “Personnel”

Tag sort Sort types

34 U6184-J-Z125-6-76

Figure 4: Processing a file using tag records

A user program can make use of the address field (retrieval address, see the “DMS Macros”
manual [3]) of the records in the “Name” file to access the associated (complete) record in
the “Personnel” file. For example, it is possible to tell from the “Name” file that the record
containing the data field “Kennedy” has the logical record number 06 and the block number
1. Thus, the address field can be used to retrieve the complete record “Kennedy George
Edgeware Road 62 NY211 873250” from the personnel file.

Suppose, for example, that a change of address needs to be registered for an employee in
the personnel file: only a new sort run to generate a new “Address” file is required. All the
other files (“Name”, “First name”, “Department”, etc.) remain unchanged.

Note

By eliminating the sort fields it is possible to reduce the output records produced during
tag sorting to the retrieval address and thus save on storage space (see also the
ELIMINATE operand of the SORT-RECORDS statement).

PROG XY

Input file

Output file

Tag file

Read records by direct
access in order of tag
records

Read tag records in
sequential order

RECORD ADDR

Sort types Merge

U6184-J-Z125-6-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.2.4 Merge

Figure 5: Merging files

In a merge run, up to 99 input files having identical record format (and identical record
length in the case of fixed-length record format) can be merged into a single output file
according to specified sort criteria. All the input files must already have been sorted
according to these same sort criteria before the merge run.

Output file

Up to 99 input files
(presorted)

SORT

...

MERGE ...

MERGE ...

MERGE ...

•
•
•

Merge Sort types

36 U6184-J-Z125-6-76

Example

Two input files, sorted in ascending order by name, are to be merged into an output file
called “PERSONNEL.TOTAL”:

Input files:

/start-sort ——— (1)
//assign-files input-files=(personnel1,personnel2), - ————————————————— (2)
// output-file=personnel.total
//merge-records fields=*field-explicit(position=1,length=9) ——————————— (3)
//end ——— (4)

(1) SORT is invoked

(2) The input and output files are assigned

(3) Merge statement

(4) End of statement input

Output file PERSONNEL.TOTAL:

File “PERSONNEL1” File “PERSONNEL2”

Name First name Name First name
1 10 20 1 10 20

Allan
Brown
Drever
Kennedy

Hilary
Tony
James
George

Baker
Charles
Johnston
Majors

Fred
Ernest
Annette
Christine

Name First name
1 10 20

Allan
Baker
Brown
Charles
Drever
Johnston
Kennedy
Majors

Hilary
Fred
Tony
Ernest
James
Annette
George
Christine

Control fields

U6184-J-Z125-6-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.3 Control fields for sort/merge runs

Control fields are areas of the records to be sorted that are evaluated by SORT when deter-
mining the sequence in a given sort/merge run.

Control fields must be specified in the statements for the sort/merge run; they may be:

– sort fields

– remainder fields

– constant fields

– sum fields

– mask fields

– match fields

– match constants

Symbolic names can be defined for all control fields by means of the statement ADD-
SYMBOLIC-NAMES. They can then be used in any subsequent statements.

SORT generates different processing routines depending on the control field specifications.
No single routine may occupy more than 4096 bytes of main memory space. Making these
specifications too complex may cause problems with internal addressing (error message
SRT1250). In such a case the statements should be simplified and the sort/merge run
repeated.

Sort fields Control fields

38 U6184-J-Z125-6-76

2.3.1 Sort fields

Sort fields are byte sequences in a record that are evaluated by SORT in order to determine
the order of the output records. One or more All the sort fields with a defined sequence (see
the PRIORITY operand of the SORT-RECORDS and MERGE-RECORDS statements) are
combined into a sort key. The sort field value, which is the determinant factor for the sort
comparisons, and the permissible length are format-dependent.

The following formats are permitted in SORT:

Sort fields can be specified in the SORT-RECORDS and MERGE-RECORDS statements.
How to define sort fields is explained in the descriptions of these statements.

BINARY Binary 1 bit - 256 bytes

CHARACTER Character 1 - max. record
length

FIXED-POINT Fixed-point 1 - 256

FLOATING-POINT Floating-point 1 - 256

PACKED-DECIMAL Packed decimal 1 - 16

ZONED-DECIMAL Zoned decimal 1 - 16

EBCDIC-DIN EBCDIC to DIN standard 1 - 256

EBCDIC-
INTERNATIONAL

EBCDIC to international standard 1 - 256

VIRTUAL-TRANSLATE Order specified by conversion table (ASSIGN-EXITS) 1 - 256

PHYSICAL-TRANSLATE Order specified by conversion table (ASSIGN-EXITS) 1 - 256

MODIFY-CODE Order specified by MODIFY-CODE statement 1 - 256

EBCDIC-ISO-EBCDIC Input in EBCDIC code, sort in ISO code, output in
EBCDIC code

1 - 256

EXTENDED-
CHARACTER

Order specified by coded character set 1 - 256

TRANSLATE-
CHARACTER

Order specified by equating tables and coded
character set (ASSIGN-EXITS/load module)

1 - 256

UNICODE-
CHARACTER

Order specified by the Unicode Default Collation Table
supplied by XHCS

2 - 256

Control fields Sort fields

U6184-J-Z125-6-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

The mandatory and optional specifications for sort fields are summarized in the following
table:

Example

Format of the input records:

Variant 1

The sort key contains only one sort field, the “Name” field, which begins at position 1 and
is 13 bytes long. Both these numbers must be specified in the sort statement.

/start-sort
//sort-records fields=*field-explicit(position=1,length=13)
//end

To sort according to the 10-byte field “Telephone” as of position 48, the following statements
are necessary:

/start-sort
//sort-records fields=*field-explicit(position=48,length=10)
//end

POSITION mandatory Starting point of sort field

LENGTH mandatory Length of sort field

FORMAT optional Format of sort field

PRIORITY optional Sequence number of sort field

SORTING-ORDER optional Sorting sequence

ELIMINATE optional Sort field to be eliminated

PRINT-MASK optional Print mask to be used to edit field

Name First name Address Telephone

Sort fields Control fields

40 U6184-J-Z125-6-76

Variant 2

Records are to be sorted according to the “Name” field and (for records with identical
contents in the “Name” field) the “Address” field. The sort key therefore contains more than
one sort field.

/start-sort
//sort-records fields=(*field-explicit(position=1,length=13), -
// *field-explicit(position=26,length=22))
//end

Sort fields for variable-length records

With variable-length records, sort fields in all formats except CHARACTER, EBCDIC-DIN
and EBCDIC-INTERNATIONAL may only be located in an area of the record which does
not belong to the “variable part”, i.e. that notional area of the record that lies outside the
minimum record length and extends to the maximum record length.

This means that (except for the aforementioned formats) a sort field must not be longer than
the shortest record to be processed. Remember also that it is subject to the permitted
(format-dependent) lengths.

With the CHARACTER, EBCDIC-DIN and EBCDIC-INTERNATIONAL formats, the sort
fields may also extend into the “variable part” of the record.

In sort comparisons, the notional (non-existent) record area is treated as if it were padded
with the filler character (see the FILLER operand of the SET-RECORD-ATTRIBUTES
statement). If no filler character is specified, X’00’ is assumed.

In a selection sort, a sort field of this type must also be the last selection field. Then only the
existing part of the field is transferred and the record length recalculated (see section
“Remainder fields” on page 54).

Example

SORT is to sort variable-format records with the following structure according to the sort
field “Department” (CHARACTER format):

RL Name First name Address Department

minimum record length var. part

maximum record length

Control fields Sort fields

U6184-J-Z125-6-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Contents of the file

The “Department” field lies in the variable part of the records to be sorted. For this field to
be used as the sort key, *FIELD-EXPLICIT(POSITION=54,LENGTH=8) must be specified
in the FIELDS operand, since the first byte of the field (byte 54) has to be within the
minimum record length (record 2), and the maximum record length extends to byte 61.

The record length field as sort field

In variable-length records, the record length field can also be used as a sort field; for
example, to sort the records according to length.
To do so, the format of the sort field should be either BINARY, CHARACTER or FIXED-
POINT.
If other formats are used, an error message is issued and SORT is aborted.

RL Miller Andrew Platerton Road 47 DV8

RL Summer Brenda Thomas Circuit 1 D

RL Becker Frank Solomon Hill 34 DSTQM217

Sort fields Control fields

42 U6184-J-Z125-6-76

Overlapping of sort fields

Sort fields may overlap provided their formats may be combined with each other. The
permitted combinations are shown in the table below.

Key:

BI CH VT ED EI PD ZD FI FL PT MC EE EC TC UC

BINARY (BI) + + + + + + o o o o o o o + +

CHARACTER (CH) + + + + + + o o o o o o o + +

VIRTUAL-
TRANSLATE (VT)

+ + + + + + o o o o o o o + +

EBCDIC-DIN (ED) + + + + + + o o o o o o o + +

EBCDIC-
INTERNATIONAL (EI)

+ + + + + + o o o o o o o + +

PACKED-DECIMAL
(PD)

+ + + + + - - - - - - - - + +

ZONED-DECIMAL
(ZD)

o o o o o - - - - - - - - o o

FIXED-POINT (FI) o o o o o - - o o o o o o o o

FLOATING-POINT
(FL)

o o o o o - o o o o o o o o o

PHYSICAL-
TRANSLATE (PT)

o o o o o - o o o o o o o o o

MODIFY-CODE (MC) o o o o o - o o o o o o o o o

EBCDIC-ISO-EBCDIC
(EE)

o o o o o - o o o o o o o o o

EXTENDED-
CHARACTER (EC)

o o o o o - o o o o o o o o o

TRANSLATE-
CHARACTER (TC)

+ + + + + + o o o o o o o + +

UNICODE-
CHARACTER (UC)

+ + + + + + o o o o o o o + +

+ This format combination is permitted.

- This format combination is not permitted, because it can cause data errors during the
comparison. If the FIELDS operand contains such a combination, SORT issues an error
message.

o This format combination can produce an undefined result during the comparison. If the
FIELDS operand contains such a combination, SORT issues a warning.

Control fields Sort fields

U6184-J-Z125-6-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Example

The following example illustrates how two sort fields may overlap. The first field starts at
byte 5 and is 10 bytes long. The sort field format is CHARACTER, the sorting order
ascending. As these are default values, they apply even though they are not specified
explicitly in the example.

The second sort field starts at byte 10 and has a length of 7 bytes. The field format is
BINARY, the sorting order descending.

Both sort fields therefore overlap at bytes 10 through 14.

/start-sort
//sort-records fields=(*field-explicit(position=5,length=10), -
// *field-explicit(position=10,length=7, -
// format=*binary, -
// sorting-order=*descending))
//end

Conversion of sort fields

The EBCDIC-DIN, EBCDIC-INTERNATIONAL, EBCDIC-ISO-EBCDIC, VIRTUAL-
TRANSLATE, MODIFY-CODE, PHYSICAL-TRANSLATE, EXTENDED-CHARACTER and
TRANSLATE-CHARACTER and UNICODE-CHARACTER formats include built-in conver-
sions which are used for comparisons during sorting or merging and partly also for SORT
output.

For the VIRTUAL-TRANSLATE, PHYSICAL-TRANSLATE and MODIFY-CODE formats,
the code tables must be defined by the user in order to match SORT to specific require-
ments. Two basic code tables are available to the user for the TRANSLATE-CHARACTER
format; the user is provided with the Unicode Default Collation Table (UTF-16) for the
UNICODE-CHARACTER format. Further tables can easily be created using model sources
(see page 50).

Sort fields Control fields

44 U6184-J-Z125-6-76

EBCDIC-DIN format

Sort fields in EBCDIC-DIN format enable textual sorting in conformance with the DIN
standard. The aim of this textual ordering is to achieve a sequence that matches the ISO 7-
bit code (German Reference Version according to DIN 66003; numbers come before letters
in this sequence) but equates lowercase letters with the corresponding uppercase letters.
Sort fields in EBCDIC-DIN format that contain German special characters are equated by
SORT with other character combinations, as follows:

– X’00’ is treated as X’40’ (space character)

– ’ä’ and ’Ä’ are treated as ’AE’

– ’ö’ and ’Ö’ are treated as ’OE’

– ’ü’ and ’Ü’ are treated as ’UE’, and

– ’ß’ is treated as ’SS’.

SORT does not modify the sort fields in EBCDIC-DIN format in the records themselves, but
uses auxiliary fields instead.

In EBCDIC-DIN format, SORT requires the sort fields in the following codes:

– EBCDIC.SRV.10 (Reference Version 10 of the 8-bit code) or

– EBCDIC.DF.03 (International/German DF Version 03).

SORT uses a common conversion table for both codes.

EBCDIC-INTERNATIONAL format

Sort fields in EBCDIC-INTERNATIONAL format enable textual sorting according to interna-
tional conventions derived from the DIN standard. The aim of this textual ordering is to
achieve a sequence that matches the ISO 7-bit code (German Reference Version to
DIN 66003; numbers come before letters in this sort sequence) while equating lowercase
letters with the corresponding uppercase ones. (Here, German umlauts are not equated,
but instead are treated as special characters.)

Control fields Sort fields

U6184-J-Z125-6-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

VIRTUAL-TRANSLATE format

For sort/merge runs using sort fields in VIRTUAL-TRANSLATE format, the user must
specify an ASSIGN-EXITS statement in which the user exit VIRTUAL-TRANSLATE is
assigned the name of a module containing a conversion table. There is no need for the
character conversion to be one-to-one, i.e. more than one character may be converted to
the same value.

In VIRTUAL-TRANSLATE format each of the sort fields is converted into an auxiliary field;
the auxiliary fields are then compared to determine the sorting order. The sort fields
themselves are not modified.

PHYSICAL-TRANSLATE format

For a sort/merge run using sort fields in PHYSICAL-TRANSLATE format, the user must
specify an ASSIGN-EXITS statement in which the user exit PHYSICAL-TRANSLATE is
assigned the name of a module containing two user-defined conversion tables. These must
contain the character strings for performing the conversion at the start and end of the
sort/merge run. The second code table is necessary in order to reconvert the sort field at
the end of the run. Unlike the VIRTUAL-TRANSLATE format, in this case the sort fields are
converted, compared, and then reconverted. This means that the user has to preserve the
uniqueness of the characters during and after the conversion and that no two characters
may have the same value.

MODIFY-CODE format

Sort fields in MODIFY-CODE format refer to a MODIFY-CODE statement. Using this
statement, SORT creates two conversion tables containing character assignments. The
advantage of this type of conversion compared with the PHYSICAL-TRANSLATE format is
that SORT is responsible for ensuring a unique character assignment. SORT uses the two
conversion tables to convert the sort field character strings in MODIFY-CODE format in the
record itself at the start and end of the sort/merge run.

EBCDIC-ISO-EBCDIC format

Based on the format specification of the individual sort fields, SORT converts the character
strings of sort fields in EBCDIC-ISO-EBCDIC format into the internal comparison code and
then back again to the output code.

The conversion tables for doing so are shown on the next pages.

Code for SORT input Code for internal merging Code for SORT output

EBCDIC ASCII EBCDIC

Sort fields Control fields

46 U6184-J-Z125-6-76

Code conversion table for EBCDIC to extended ASCII

0 1 2 3 4 5 6 7 8 9 A B C D E F

 0 00 21 24 25 03 09 0E FF 26 27 2A 0B 0C 31 34 35

 1 36 11 37 60 15 0D 08 10 61 6A 1A 6B 1C 1D 1E 1F

 2 20 12 22 23 1B 0A 17 01 28 29 06 2B 2C 2D 2E 2F

 3 30 13 32 33 02 18 0F 04 38 39 3A 3B 3C 3D 3E 3F

 4 40 14 6C 6D 6E 6F 71 7A 7B 7C E0 4E 5C 48 4B FC

 5 46 16 7D 7E 7F 81 82 83 84 85 41 44 4A 49 5B 19

 6 4D 4F 62 63 64 65 66 67 68 69 BE 4C 45 BF 5E 5F

 7 70 05 72 73 74 75 76 77 78 79 5A 43 A0 47 5D 42

 8 80 E1 E2 E3 E4 E5 E6 E7 E8 E9 8A 8B 8C 8D 8E 8F

 9 90 EA EB EC ED EE EF F0 F1 F2 9A 9B 9C 9D 9E 9F

 A 86 87 F3 F4 F5 F6 F7 F8 F9 FA 88 89 91 92 93 94

 B 95 96 97 98 99 C1 C2 C3 C4 C5 C6 BB BC BD C7 C8

 C C0 A1 A2 A3 A4 A5 A6 A7 A8 A9 CA CB CC CD CE CF

 D D0 AA AB AC AD AE AF B0 B1 B2 DA DB DC DD DE DF

 E 07 C9 B3 B4 B5 B6 B7 B8 B9 BA D1 D2 D3 D4 D5 D6

 F 50 51 52 53 54 55 56 57 58 59 D7 FB D8 FD D9 FE

Control fields Sort fields

U6184-J-Z125-6-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Code conversion table for extended ASCII to EBCDIC

0 1 2 3 4 5 6 7 8 9 A B C D E F

 0 00 27 34 04 37 71 2A E0 16 05 25 0B 0C 15 06 36

 1 17 11 21 31 41 14 51 26 35 5F 1A 24 1C 1D 1E 1F

 2 20 01 22 23 02 03 08 09 28 29 0A 2B 2C 2D 2E 2F

 3 30 0D 32 33 0E 0F 10 12 38 39 3A 3B 3C 3D 3E 3F

 4 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

 5 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

 6 13 18 62 63 64 65 66 67 68 69 19 1B 42 43 44 45

 7 70 46 72 73 74 75 76 77 78 79 47 48 49 52 53 54

 8 80 55 56 57 58 59 A0 A1 AA AB 8A 8B 8C 8D 8E 8F

 9 90 AC AD AE AF B0 B1 B2 B3 B4 9A 9B 9C 9D 9E 9F

 A 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

 B D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 BB BC BD 6A 6D

 C C0 B5 B6 B7 B8 B9 BA BE BF E1 CA CB CC CD CE CF

 D D0 EA EB EC ED EE EF FA FC FE DA DB DC DD DE DF

 E 4A 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

 F 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 FB 4F FD FF 07

Sort fields Control fields

48 U6184-J-Z125-6-76

EXTENDED-CHARACTER format

Sort fields in EXTENDED-CHARACTER format are used for sorting text in the sequence
which is compatible with the coded character set. As with PHYSICAL-TRANSLATE, the sort
fields are converted, compared, and then reconverted. The internal code table depends on
the coded character set (CCS) used.

SORT tries to locate the CCS for sorting the data records though evaluating the following
sources:

– catalog entry of the input file

– SET-RECORD-ATTRIBUTES statements of the sort run
(no input file available)

– if no input file is available and no CCSN is specified via the SET-RECORD-ATTRI-
BUTES statement, then SORT uses the EDF03IRV code.

If the CCSN of a code is located which is not defined in XHCS, the sort run is terminated
with message SRT1258.

With an ISAM output file, the EXTENDED-CHARACTER format must not be used for sort
fields which form the ISAM key. The ISAM keys must be sorted in ascending order as
specified by the host code, not according to any other code. If an error is detected, the sort
run is terminated with message SRT1261.

TRANSLATE-CHARACTER format

Two conversion tables are required for the TRANSLATE-CHARACTER format. SORT uses
these tables to generate the code of the character to be sorted for the sort operation. The
first table contains the code with which the character to be sorted is equated. The second
table contains the code of the character which is added to the character to be sorted. SORT
decides whether to simply equate the character or to also expand it on the basis of the
location of the character’s code in the second table. If it is X’00’, the character is equated;
otherwise, the character from the second table is added to the equated character. After
equating and expanding the character, SORT arranges the sort fields in the sorting order of
the CCS.

Control fields Sort fields

U6184-J-Z125-6-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

The characters of the sort field can be influenced in two ways for sorting depending on the
entries in the two tables:

– Equating of characters

For equating, the code of the character with which the character to be sorted will be
equated is entered in the first table in the code location of the character to be sorted.
The value X’00’ must then be entered in the second table in the code location of the
character.

Example: ’a’ is to be equated with ’A’.

The code of the character ’A’ (=X’C1’) must occupy the code location of ’a’ (=X’81’)
in the first table. The value X’00’ must be entered in the code location of X’81’ in the
second table (see the tables on page 51f).

– Expanding a character to two replacement characters

For expanding, the code of the first replacement character is entered in the first table in
the code location of the character; the code of the second replacement character is
entered in the second table.

Example: ’ä’ is to be converted to ’AE’.

The first replacement character ’A’ (=X’C1’) must be entered in the first table in the
code location of ’ä’ (=X’AB’ for EBCDIC.SRV.10 or X’FB’ for EBCDIC.DF.03). The
second replacement character ’E’(=X’C5’) must be entered in the same code
location in the second table (see the tables on page 51f).

The sorting process is the same as with VIRTUAL-TRANSLATE, i.e. the sort fields are
converted into auxiliary fields and the auxiliary fields are compared with each other to
determine the sorting order. The internal code table depends on the coded character set
used. The CCS for sorting the data records is specified in the same way as it is with
EXTENDED-CHARACTER.

The sort fields are not modified.

Character conversion does not necessarily have to be unique, i.e. more than one character
can be represented by the same value.

In the case of an ISAM output file, the TRANSLATE-CHARACTER format cannot be used
for sort fields which create the ISAM key. The ISAM keys must be arranged in ascending
order as specified by the host code, not according to any other code. If an error is detected,
the sort run will be terminated with the message SRT1261.

Sort fields Control fields

50 U6184-J-Z125-6-76

Notes on creating the TRANSLATE-CHARACTER tables:

Both tables for each coded character set are stored as object modules in the library with the
logical name SYSLNK.TAB.
The name of the object module corresponds to the name of the CCS (e.g. “EDF03DRV”).
In addition to the standard object modules “EDF03DRV” and “EDF03IRV”, the library also
contains their corresponding sources as well as a model source which can be used by the
operator for creating further object modules with conversion tables for the TRANSLATE-
CHARACTER format.

The tables can also be provided via the user exit TRANSLATE-CHARACTER (see
page 132). These tables then take precedence over the standard tables which are stored
in the library with the logical name SYSLNK.TAB.

Please note the following when creating new tables:

– The table value X’00’ is not a valid replacement character, but rather an indication that
the character in question is not to be converted.

– If X’00’ is entered in a location in the first table, it must also be entered in the same
location in the second table.

– In the code location of a character that is used as a replacement character, X’00’ must
be entered in the second table. Concatenation is not allowed. The characters below
cannot therefore be equated as shown:

e.g. ’ä’ = ’ae’ and ’a’ = ’A’ and ’e’ = ’E’ or
’ä’ = ’a’ and ’a’ = ’A’.

Control fields Sort fields

U6184-J-Z125-6-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Converting with TRANSLATE-CHARACTER

Using the tables shown below, which are provided as standard with the CCS “EDF03DRV”,
the characters below are equated as follows:

– lowercase letters = uppercase letters (equating of characters)

– ’ä’, ’Ä’ = ’AE’; ’ö’, ’Ö’ = ’OE’; ’ü’, ’Ü’ = ’UE’; ’ß’ = ’SS’ (equating a character with two
replacement characters).

First table for TRANSLATE-CHARACTER (EDF03DRV):

0 1 2 3 4 5 6 7 8 9 A B C D E F

 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 1 00 00 00 00 00 00 00 00 C1 D1 00 00 00 00 00 00

 2 00 00 00 00 00 00 00 00 C2 D2 E2 00 00 00 00 00

 3 00 00 00 00 00 00 00 00 C3 D3 E3 00 00 00 00 00

 4 00 00 00 00 00 00 00 00 C4 D4 E4 00 00 00 00 00

 5 00 00 00 00 00 00 00 00 C5 D5 E5 00 00 00 00 00

 6 00 00 00 00 00 00 00 00 C6 D6 E6 00 00 00 00 00

 7 00 00 00 00 00 00 E2 00 C7 D7 E7 00 00 00 00 00

 8 00 00 00 00 00 00 00 00 C8 D8 E8 00 00 00 00 00

 9 00 00 00 00 00 00 00 00 C9 D9 E9 00 00 00 00 00

 A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 B 00 00 00 00 00 00 00 00 C1 00 C1 C1 00 00 00 C1

 C 00 00 00 00 00 00 00 00 D6 00 D6 D6 00 00 00 00

 D 00 00 00 00 00 00 00 00 E4 00 E4 E4 00 00 00 E4

 E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 F 00 00 00 00 D6 00 00 00 00 00 00 00 00 00 00 E2

Sort fields Control fields

52 U6184-J-Z125-6-76

Second table for TRANSLATE-CHARACTER (EDF03DRV):

0 1 2 3 4 5 6 7 8 9 A B C D E F

 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 7 00 00 00 00 00 00 E2 00 00 00 00 00 00 00 00 00

 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 B 00 00 00 00 00 00 00 00 C5 00 C5 C5 00 00 00 C5

 C 00 00 00 00 00 00 00 00 C5 00 C5 C5 00 00 00 00

 D 00 00 00 00 00 00 00 00 C5 00 C5 C5 00 00 00 C5

 E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 F 00 00 00 00 C5 00 00 00 00 00 00 00 00 00 00 E2

Control fields Sort fields

U6184-J-Z125-6-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

UNICODE-CHARACTER format

Sort fields in UNICODE-CHARACTER format permit text to be sorted according to the
Unicode Default Collation Table. SORT currently supports the Unicode character set
UTF-16.

The length of the field is specified in bytes.
The maximum length of the field is 256 bytes (128 Unicode characters).
An uneven length or a length greater than 256 bytes is acknowledged with SRT1157.
In the case of variable-length records, part of the sort field can be outside the record.
If, in the case of variable-length records, a record ends within a Unicode character (i.e. after
the first byte), the incomplete Unicode character is ignored totally and comparison
continues with the fill character.

 The values for the sort elements (Unicode Default Collation Table) published on the
Unicode Consortium website
http://www.unicode.org/Public/UCA/4.0/allkeys-4.0.0txt
can change.

Detailed information on Unicode is provided in the manual “Unicode in BS2000 [17]” and
the section “Use of Unicode character sets with SORT” on page 85.

i

http://www.unicode.org/Public/UCA/4.0/allkeys-4.0.0txt
http://www.unicode.org/Public/UCA/4.0/allkeys-4.0.0txt

Remainder fields Control fields

54 U6184-J-Z125-6-76

2.3.2 Remainder fields

Remainder fields are the parts of an input record having neutral format which are trans-
ferred to the output record but are not significant for sorting. They are relevant only in
selection sorts (and thus also in tag sorts).

In a selection sort, only those parts of the input record contained in the SORT-RECORDS
statement are transferred. Thus, if parts of the input record are to be transferred to the
output record but not evaluated in the sort, they should be defined as remainder fields.

Remainder fields can be used to arrange the fields in the output file in a different order to
the input file. The order of the individual fields is determined by the sequence of the speci-
fications in the FIELDS operand of the SORT-RECORDS statement.

Remainder fields are defined by specifying *REMAINDER-EXPLICIT or *REMAINDER-
SYMBOLIC in the FIELDS operand. No format specification may be made for a remainder
field if no print mask has been defined for it. If this rule is violated, SORT issues a warning
and ignores the specification.

– Remainder fields in variable-length records

In variable-length input records, a remainder field may begin and end at any bit position
within the fixed part of the record.
If the output record is to be of variable length (INTERNAL=*VARIABLE in the SET-
RECORD-ATTRIBUTES statement), then the last remainder field (last field of the
FIELDS operand) is the only record field which may also refer to the variable part of the
record. All other record fields must relate to the fixed part of the input record. SORT
automatically calculates the new record length, including the variable part, and adds a
corresponding record length field without the user having to supply a remainder field.

Control fields Remainder fields

U6184-J-Z125-6-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Example

From a file with the following record structure, SORT is to create an output file which
contains only the fields “ZIP”, “Prod.no.” and “Qty” and is sorted according to “ZIP”:

“ZIP” must be defined as the sort field and “Prod.no.” and “Qty” as remainder fields. This is
done by means of the following statements:

Format of the output records:

RL ZIP Desti-
nation

Prod.no. Date of
shipment

Qty

/start-sort
//sort-records -
// fields=(*field-explicit(position=5,length=5), -
// *remainder-explicit(position=18,length=9), -

// *remainder-explicit(position=36,length=5)), -
// sort-type=*compound-record
//end

Sort field “ZIP”
Remainder field
“Prod.no.”
Remainder field
“Qty”

ZIP Prod.no. Qty

Constant fields Control fields

56 U6184-J-Z125-6-76

2.3.3 Constant fields

Constant fields are used in selection and tag sorting in a similar manner to remainder fields
for building a new selection record. They are fields whose contents do not change and
which are included in the output record. They are particularly useful for constructing tables:

A better visual presentation of lists or tables can be achieved by using a series of one-
character constant fields containing the vertical bar ’|’ as a separator.

Like remainder fields, constant fields have no effect on sorting. They are specified in the
FIELDS operand of the SORT-RECORDS statement. The following types of constants are
possible:

Key:

n Digit from 0 through 9.

h Hexadecimal digit from 0 through F.

c Any representable character. An apostrophe (’) in a character string must be repre-
sented by two consecutive apostrophes (’’).

Decimal numbers must be in the range +231-1 to -231. SORT converts the decimal number
into a fixed-point number which it stores as a 4-byte constant field in the new output record.
Unsigned decimal numbers are treated as positive numbers.
Hexadecimal and character strings can be up to 256 bytes in length. SORT converts the
strings into constant fields whose length is determined by the specified character pattern
and its length.

The total length allowed for all constant fields is 4000 bytes.

Decimal number

Hexadecimal string X’ss...s’

Character string [C]’cc...c’

+nn...n
-nn...n

Control fields Constant fields

U6184-J-Z125-6-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Example

SORT is to perform a selection sort in which the input records are to be sorted on the
“Name” field. The “Telephone” field is to be specified as a remainder field. The constants
C’|Ë’, C’Ë|Ë’ and C’Ë|’ are to be entered in the selection records for optical reasons.

Format of the input records:

The associated statements are as follows:

/start-sort
//sort-records fields=(*constant-explicit(constant=c’| ’), -
// *field-explicit(position=14,length=9), -
// *constant-explicit(constant=c’ | ’), -
// *remainder-explicit(position=23,length=10), -
// *constant-explicit(constant=c’ |’)), -
// sort-type=*compound-record
//end

Output:

Format of the output records:

First name Name Telephone

ANTON
ELVIRA
KLAUS

SCHERER
MAUS
EPPLER

789543
453214
814300

Name Telephone

|
|
|

EPPLER
MAUS
SCHERER

|
|
|

814300
453214
789543

|
|
|

Sum fields Control fields

58 U6184-J-Z125-6-76

2.3.4 Sum fields

Sum fields are defined in the SUM-RECORDS statement. They are record fields which
contain addable values. Sum fields must not overlap other sum fields or sort fields.

SORT adds together the values of these fields when records with identical sort fields are to
be combined. An addition which produces an overflow is suppressed by SORT and the two
records concerned are not compacted. For this reason the user should extend the sum
fields by a specifiable number of bytes to the left if there is a risk of an overflow.

Formats and lengths of sum fields:

Depending on the particular format, the fields are padded as necessary according to the
following table:

With fields in ZONED-DECIMAL format, blanks (X’40’) are automatically converted into
zeros (X’F0’). In addition, positive numbers in this format have the sign zone of their final
digit position set to X’Fx’ (0ÎxÎ9).

Notes

– In selection sorts, the sum field positions refer to the selection record. If there is a
change in record format, the record length field to be inserted or omitted must also be
taken into account. Sum fields may be remainder and constant fields only. Extended
sum fields must always refer to the first position of a remainder or constant field.

– In tag sorts, the record address fields (retrieval addresses) to be generated by SORT
on the basis of *TAG-HEADER or *TAG-COMPOUND must not be taken into account
when specifying the position of the sum fields.

 Format Format description Length in bytes

 BINARY Binary 2, 4, 8

 FIXED-POINT Fixed-point 2, 4, 8

 PACKED-DECIMAL Packed decimal 1 - 16

 ZONED-DECIMAL Zoned decimal 1 - 16

 Format Type of padding Filler character

 BINARY Left-justified Zero

 FIXED-POINT Left-justified Arithmetic sign

 PACKED-DECIMAL Left-justified Zero

 ZONED-DECIMAL Left-justified X' F0' (EBCDIC zero)

Control fields Sum fields

U6184-J-Z125-6-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Example

The file DELIVERY contains a record with the structure shown below for every completed
delivery. You want to create an output file which contains a record with the number of deliv-
eries and their total value for each delivery destination. This file is to be sorted according to
“Destination”.

To do this, you need to define “Destination” as the sort field and “Order value”, which is to
be added up to give the total value of the deliveries, as the remainder field. You also need
a constant field with the value 1 in the selection record so that the deliveries for each desti-
nation can be counted.
To do this, you enter the following statements:

The selection record to which the specifications in the SUM-RECORDS statement must
refer in a selection sort has the following structure:

Here the constant field occupies four bytes because SORT stores decimal numbers by
default as 4-byte fixed-point numbers. With the SUM-RECORDS statement you now define
the fields which SORT is to add up in the case of the same sort key. To avoid overflows you
should extend the sum field “Total value” by means of the FIELD-EXTENSION operand.
The sum field “Qty.” does not need to be extended because it is already large enough with
four bytes.

//sum-records -
// fields=(*field-explicit(position=19,length=10, -
// format=*zoned-decimal,field-extension=3), -
// *field-explicit(position=29,length=4))
//end

Structure of the output records:

RL ZIP Destination Prod.no. Date of
shipment

Order value

/start-sort
//sort-records -
// fields=(*field-explicit(position=10,length=18), -
// *remainder-explicit(position=47,length=10), -

// *constant-explicit(constant=1)), -
// sort-type=*compound-record

Sort field “Destination”
Remainder field
“Order value”
Constant field

Destination Order value 1

Destination Total value Qty.

Mask fields Control fields

60 U6184-J-Z125-6-76

2.3.5 Mask fields

In selection sorting, it is possible to edit sort, remainder and sum fields in BINARY, FIXED-
POINT, PACKED-DECIMAL and ZONED-DECIMAL format ready for printing. For this, a
print mask is used which corresponds to the edit mask of Assembler instruction ED.

The print mask has the following format:

C’xxx...x’

The following characters are allowed as mask characters xxx...x:

– A freely definable filler character as the first character of the print mask. Substitute
characters are not converted into filler characters.

– Control characters for editing.

The control characters (numeric characters) of the Assembler ED instruction are repre-
sented in the print mask by substitute characters. SORT converts these into the correct
control characters.

The following substitute characters should be used in the print mask:

– Characters to be inserted

All characters except “#” and “^” are treated as characters to be inserted. An
apostrophe (’) for insertion must be represented in the print mask by two successive
apostrophes (’’).

Note

If the edit mask contains an even number of control characters (“#” and/or “^”), then
SORT includes an additional control character “#” immediately before the first control
character. This is due to the manner in which the Assembler ED instruction operates.

Digit select # (number sign) X' 20'

Significant start ^ (circumflex) X' 21'

Control fields Mask fields

U6184-J-Z125-6-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Example

Restrictions

– Mask fields are permitted only in selection sorting. The length of the output records is
determined by the sum of the length of the mask fields and the remaining selection
fields.

– Mask fields are permitted only for the BINARY, FIXED-POINT, PACKED-DECIMAL and
ZONED-DECIMAL formats.

– No bit position specifications or bit lengths are allowed with BINARY format.

– Fields in BINARY or FIXED-POINT format that are longer than 4 bytes have only their
four low-order bytes taken into account during editing (warning).

– The ELIMINATE parameter is not permitted with mask fields and is ignored if specified
(warning).

– Overlapping of remainder fields and sum fields specified as mask fields results in the
mask field being ignored in the case of the remainder field; a warning message is also
issued.

If SORT is called as a subroutine and if the statements are transferred via a program
interface, the control characters “#” and “^” of the print masks must always contain the
code X’76’ or X’6A’ in order to be recognized as control characters. They are not
converted according to the CCS, but are represented as X’20’ or X’21’ for the
ED command of the assembler.

Specified mask: C’Ë#^#.#’ Ë # ^ # . #

Mask as expanded by SORT: Ë # # ^ # . #

↑
Inserted control character

Mask fields Control fields

62 U6184-J-Z125-6-76

Rules for processing print masks

The print mask of a mask field is processed according to the same rules as an edit mask of
the Assembler ED instruction.

These rules are:

1. The field to be edited (source field) and the print mask are processed from left to right.

2. The filler character (first character of the mask) is transferred unchanged as the first
character of the output field.

3. The digits in the source field are then moved to the output field in accordance with the
characters of the print mask (control characters and characters to be inserted), as
follows:

– Each digit in the source field is moved to the output field in zoned format, replacing
the associated control character. Leading zeros are replaced by the filler character
until the first non-zero digit is encountered in the source field or the control character
“^” (significant start digit) occurs in the print mask.

– Characters to be inserted are replaced in the output field by the filler character until
the first non-zero digit is encountered in the source field or the control character “^”
occurs in the print mask. All further characters transferred are left unchanged.

– A positive sign in the source field causes the remainder of the print mask to be
replaced by the filler character. A negative sign results in it being transferred
unchanged.

Special cases

If there are more digits in the source field than control characters in the print mask, SORT
truncates the source field, starting from the left. If this results in non-zero digits being lost,
SORT terminates with an error message.

If there are fewer digits in the source field than control characters in the print mask, SORT
pads out the output field with leading zeros.

Examples 1-4 below illustrate how the print mask is processed.

Control fields Mask fields

U6184-J-Z125-6-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Example 1

The source field is edited as follows:

1. The first character to be transferred is the filler character “*”, which goes into the left-
justified byte of the output field.

2. Leading zeros are replaced by the filler character.

3. The first non-zero digit in the source field causes all subsequent digits to be transferred
in zoned decimal format (i.e. unpacked).

4. The punctuation character “.” is inserted.

5. The negative sign in the source field is transferred to the output field as a minus sign.

Source field (PACKED-DECIMAL format): 0 0 1 2 0 2 0 D

Mask specified: * # # # # # . # # -

1. 2. 3. 4. 3. 5.

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
This produces the output field: * * * 1 2 0 . 2 0 -

Mask fields Control fields

64 U6184-J-Z125-6-76

Example 2

The source field is edited as follows:

(1) The first character to be transferred is the filler character “Ë”, which goes into the
left-justified byte of the output field.

(2) Leading zeros are replaced by the filler character until the control character “^” is
encountered in the mask. The punctuation character “.” and the control character
“^” are also replaced by the filler character.

(3) The zero immediately to the right of the control character “^” is transferred.

(4) The punctuation character “,” is inserted.

(5) The digits 6 and 8 are transferred.

(6) As the packed decimal number is positive, the minus sign in the print mask is
replaced by the filler character.

Source field (PACKED-DECIMAL format): 0 0 0 0 0 6 8 C

Mask specified: Ë # # . # ^ # , # # -

1. 2. 3. 4. 5. 6.

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
The output field then looks like this: Ë Ë Ë Ë Ë Ë 0 , 6 8 Ë

Control fields Mask fields

U6184-J-Z125-6-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Example 3

Because the specified mask contains six control characters, i.e. an even number, SORT
extends the specified mask to include a digit selection character “#”.

The source field is edited as follows:

The number of digits in the source field is 2 greater than the number of control characters.
Therefore the two zeros in the first byte of the source field are truncated. Non-zero digits in
the first byte would cause SORT to terminate with an error message.

Example 4

The number of control characters in the mask is 3 greater than the number of digits in the
source field (9 control characters for 6 digits). SORT therefore expands the source field on
the left with 3 leading zeros.

As the packed decimal number is negative, the minus sign from the print mask is transferred
to the output field.

Source field (PACKED-DECIMAL format): 0 0 0 0 0 0 0 3 8 C

Mask specified: Ë # ^ # . # # # -

Mask as expanded by SORT: Ë # # ^ # . # # # -

Output field: Ë Ë Ë Ë Ë 0 . 0 3 8 Ë

Source field
(FIXED-POINT format):

F F F 6 8 F A D

Equivalent to decimal: -618579

Mask specified: * # # # Ë # ^ # Ë # # # -

Source field (expanded): 0 0 0 6 1 8 5 7 9 D

Output field: * * * * * 6 1 8 Ë 5 7 9 -

Match fields and match constants Control fields

66 U6184-J-Z125-6-76

2.3.6 Match fields and match constants

Match fields and match constants are used to define conditions in the SELECT-INPUT-
RECORDS statement to control whether records are to be included in or omitted from the
sorting process. In these conditions, an area of the input record, a “match field”, can be
compared either with a second match field or with a fixed value, a “match constant”.

Match fields

The following formats and lengths are permissible for the match fields:

Match fields may overlap within a record provided the user ensures that there is no violation
of the format representation and that no data errors occur as a result of the comparison
operations.
Match fields may also overlap without constraints with sort fields or sum fields. Relations
between match fields with different formats are, however, subject to restrictions.

BI Binary 1 - 256

CH Character 1 - 256

FI Fixed-point 1 - 256

PD Packed decimal 1 - 16

ZD Zoned decimal 1 - 16

Control fields Match fields and match constants

U6184-J-Z125-6-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Match constants

Match constants have the same format as constant fields.

Key:

n Digit from 0 through 9.

h Hexadecimal digit from 0 through F.

c Any representable character. An apostrophe (’) in a character string must be repre-
sented by two consecutive apostrophes (’’).

Decimal numbers must be within the range +231-1 to -231.

The total length of all match constants must not be more than 4000 bytes.

Match relations

With match relations the format of the first (or only) match field must be compatible with that
of the second, or with the type of the match constant. The combinations allowed are shown
in the table below.

Permitted format combinations

Key:

Decimal number

Hexadecimal string X’ss...s’

Character string [C]’cc...c’

1st match field 2nd match field Match constant

BI CH FI PD ZD Decimal
number

Hexa-
decimal
string

Character
string

 BI + + - - - - + +

 CH + + - - - - + +

 FI - - + - - + - -

 PD - - - + + + - -

 ZD - - - + + + - -

+ This format combination is permitted.

- This format combination is not permitted. If such a combination is specified, SORT issues
an error message.

+nn...n
-nn...n

Match fields and match constants Control fields

68 U6184-J-Z125-6-76

If the match fields used in relations are not the same length, SORT pads out the shorter to
the same length as the longer according to the table below. Match fields in numerical format
(FI, PD, ZD) are always filled on the left, and match fields in string format (BI, CH) on the
right.

With variable-length records, the match fields (or parts thereof) may extend into the
“variable part” of the record. Depending on the format, SORT pads out these notional match
fields according to the above table.

Match constants too may have their length aligned with the associated first match field.
Numerical constants are lengthened or shortened to or from the left, character constants to
or from the right.

Example

The output of this sort run should only contain input file records which have C’@@@@@’
in the first five bytes, and which do not have the same contents in the eight bytes as of
byte 7 and in the eight bytes as of byte 22.

/start-sort
/sort-records ...
//select-input-records condition=(1,5),eq,c’@@@@@’,and,not((7,8),eq,(22,8))
//end

FI right-justified on left Arithmetic sign

PD right-justified on left Zero

ZD right-justified on left X' F0' (zero)

BI left-justified on right Zero

CH left-justified on right X' 40' (blank)

Control fields Symbolic names

U6184-J-Z125-6-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.3.7 Symbolic names

Sort, remainder, sum and match fields, as well as insertion and match constants and print
masks, can be assigned symbolic names by means of the ADD-SYMBOLIC-NAMES
statement. These can then be used in subsequent statements to refer to the fields.

Symbolic names are useful for assigning a meaning to the objects addressed, thus making
an application easier to use and increasing its security.

For fields, names are assigned by specifying their position, length and format; for constants
and masks, via their value.

Up to 255 different symbolic names may be used. Lowercase letters are converted to
uppercase. The length of a name is limited to 20 characters.

Before it can be used, a symbolic name must be defined by means of the ADD-SYMBOLIC-
NAMES statement according to its later use as a field, constant or print mask.

Each symbolic name may only be used once in the ADD-SYMBOLIC-NAMES statement.

Example

Contents of file RESTAURANT.SAM.FIX

The ADD-SYMBOLIC-NAMES statement can be used to define symbolic names and to
assign these to fields. In the SORT-RECORDS statement, the sort fields are addressed via
these symbolic names.

Orlando's
Java
Golden Fleece
Le Gourmet
Palenque Mexico
Strawberry
Persepolis
Vietnam
Chayota's
Willi's Bar

Thompson Street 62
Hope Street 51
Arran Street 44
Lime Street 46
Millwood Drive 2
Sauchiehall Street 8
Salford Square 20
Thurston Street 47
Thurston Street 60
Westland Street 113

220061
522221
242437
505397
980149
595521
597004
522518
292742
748293

Italian
Indonesian
Yugoslavian
French
Mexican
Vegetarian
Persian
Vietnamese
Japanese
German

1 21 48 56

Symbolic names Control fields

70 U6184-J-Z125-6-76

/start-sort
//assign-files input-files=restaurant.sam.fix,output-file=restaurant.sort
//add-symbolic-names fields=(restaurantname(position=1,length=20), -
// adresse(position=21,length=27))
//sort-records fields=(*field-symbolic(sort-field-name=restaurantname), -
// *field-symbolic(sort-field-name=adresse)
//end

Contents of output file RESTAURANT.SORT

Chayota's
Golden Fleece
Java
Le Gourmet
Orlando's
Palenque Mexico
Persepolis
Strawberry
Vietnam
Willi's Bar

Thurston Street 60
Arran Street 44
Hope Street 51
Lime Street 46
Thompson Street 62
Millwood Drive 2
Salford Square 20
Sauchiehall Street 8
Thurston Street 47
Westland Street 113

Control fields Overlap table

U6184-J-Z125-6-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.3.8 Overlap table for the different field types

Key:

Example of overlapping field types

The input to SORT is to consist of records with the following structure:

SORT is to process these input records as follows:

A selection sort is to produce selection records which are sorted according to the sort key
“Name – First name” and contain the field “Telephone” as a remainder field. In addition,
another field “IT”, containing the initials of the names, is to be prefixed. This field comprises
two remainder fields, each with the length 1, whose position corresponds to the positions
of both sort fields.

Sort field Sum field Remainder
field

Match field Constant field

Sort field * - + + -

Sum field - - + + +

Remainder field + + + + -

Match field + + + + -

Constant field - + - - -

* Permissible overlaps are specified for each field type according to the relevant format.

+ Overlapping is permitted.

- Overlapping is not permitted.

Name First name Address Telephone

HILLER
BECKER

PETER
THEODORE

CHURCH ROAD 2
MARKET SQUARE 3

700781
378543

Overlap table Control fields

72 U6184-J-Z125-6-76

The statements required are as follows:

/start-sort
//sort-records fields=(*remainder-explicit(position=1,length=1), -
// *remainder-explicit(position=10,length=1), -
// *field-explicit(position=1,length=18), -
// *remainder-explicit(position=38,length=8)), -
// sort-type=*compound-record
//end

Output:

This example contains the following overlapping fields:

The first byte of the sort field overlaps with the remainder field located at the same position.
There is also an overlap from byte 1 to byte 9 with the match field. A further overlap results
with the second remainder field at byte 10.

IT Name First name Telephone

SORT functions and definitions Record processing and modification

U6184-J-Z125-6-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.4 Record processing and modification in SORT

During a sort/merge run the records read in by SORT can be processed or modified inter-
nally as follows (see next page, Figure 6):

● Record selection during input

● Record format and record length modification based on specifications in the SET-
RECORD-ATTRIBUTES statement

● Record length modification based on specifications in the SORT-RECORDS statement
during selection sorting

● Record length modification based on specifications in the SUM-RECORDS statement
when extending the sum fields

● Modification of contents

● Summation of records (SUM-RECORDS statement)

Record processing and modification SORT functions and definitions

74 U6184-J-Z125-6-76

Figure 6: Record processing and modification in SORT (part 1 of 2)

Input via
user exit

INPUT

File input

SELECT-INPUT-
RECORDSSelect records according to

defined conditions

SET-
RECORD-
ATTRIBUTES
INTERNAL =

Accept records in INPUT in
input format (format1, length1)

SORT changes record length
(length2), if required

SORT changes record format
(format2), if required

MODIFY-CODE

SUM-RECORDS

COMPOUND-
RECORD
TAG-...

KEEP-EQUAL-
SEQUENCESInsert generated sequence number

Convert sort fields (internally)

Insert constants for selection/tag sort

Extend sum fields

Select fields for selection/tag sort

Convert sort fields

Transfer records to user exit
INPUT in input format
(format1, length1)

INPUT changes record length
(length2), if required

INPUT changes record format
(format2), if required

Accept records with length2
and/or format2

INPUT-RANGE =Skip m records,
then read n records

SORT
input

Record processing after
SORT input

User exit INPUT defined No user exit INPUT defined

continued

SORT functions and definitions Record processing and modification

U6184-J-Z125-6-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Figure 6: Record processing and modification in SORT (part 2 of 2)

Internal sorting and summation of
records with same sort keys

Presorting and summation of records
with same sort keys

End merge and summation of
records with same sort keys

Output via
user exit

OUTPUT

SET-
RECORD-
ATTRIBUTES
OUTPUT =

Accept records
in output format

SORT changes record length
(length3), if required

SORT changes record
format (format3), if required

Transfer records in output
format to user exit OUTPUT

Accept records with length3 and/or
format3, if required

SORT
output

OUTPUT changes record
length (length3), if required

OUTPUT changes record
format (format3), if required

User exit OUTPUT defined No user exit OUTPUT defined

ELIMINATE

Edit fields for printing using mask

Reconvert sort fields

Reconvert sort fields (internally)

Delete generated sequence numbers

Eliminate sort fields

Continuation

Output for file

Record processing prior
to SORT output

Summation of records
with same sort keys

Record processing and modification SORT functions and definitions

76 U6184-J-Z125-6-76

Record selection during input

The user can include or exclude input records from the sort/merge run as follows:

● SORT-RECORDS statement, INPUT-RANGE operand
Specifying the INPUT-RANGE operand for a sort run determines how many records will
be skipped at the beginning of the input file and how many will subsequently be sorted
(see the SORT-RECORDS statement, page 175).

● SELECT-INPUT-RECORDS statement
Those records in the input file that meet the condition set in the SELECT-INPUT-
RECORDS statement are included in the sort/merge (see page 156).

● User exit INPUT
A user routine for the user exit INPUT (ASSIGN-EXITS statement) can be used to
transfer, insert or exclude records during the sort/merge run (see chapter “SORT user
exits” on page 233).

Record format and record length modification based on specifications in the SET-
RECORD-ATTRIBUTES statement

The format and length of the input file records (current status) cannot be modified by SORT.
Modifications are only possible when switching from

● SORT input to internal SORT processing (internal record format and internal record
length)

● internal SORT processing to SORT output (output record format and length).

These changes to the record format and record length are defined by means of the SET-
RECORD-ATTRIBUTES statement (see the SET-RECORD-ATTRIBUTES statement,
page 160). The following points apply:

● Current status
The format and length of the input file records are determined primarily by the ADD-
FILE-LINK command or the catalog entry (RECORD-FORMAT, RECORD-SIZE) for the
input file. If these specifications are not available (e.g. inputs via the user exit INPUT),
the format and length of the input records must be defined by means of a SET-
RECORD-ATTRIBUTES statement.

SORT functions and definitions Record processing and modification

U6184-J-Z125-6-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

If a SET-RECORD-ATTRIBUTES statement is specified, then

– the format entry *VARIABLE() or *FIXED() in the INPUT operand determines the
record format of the input records, and

– the length specified in the MAXIMUM-RECORD-SIZE or RECORD-SIZE operand
determines the length of the input records.

If a SET-RECORD-ATTRIBUTES statement has been specified even though there is
an existing catalog entry, and the specifications made in the statement do not tally with
the attributes of the input file, SORT takes over the input file attributes and issues a
warning message.

● Variable-length input records
With variable-length records, SORT uses an input record length equal to the maximum
value specified in the RECORD-SIZE entries of all the input files and the entry in the
MAXIMUM-RECORD-SIZE operand of the SET-RECORD-ATTRIBUTES statement. If
these specifications are not made, the value specified for BUFFER-LENGTH is used as
the input record length.

● File attributes of the output file
If the ADD-FILE-LINK command or catalog entry already includes record format and
length specifications for the output file, for fixed-length records these values must
match the values that are specified in the SET-RECORD-ATTRIBUTES statement or
that have been calculated by SORT. If the values do not match, an error message is
issued and SORT terminates with an error condition. For variable-length records, the
maximum record length determined by SORT is entered in the catalog entry for the
output file.

● Record format/length modification using the SET-RECORD-ATTRIBUTES statement
Internal modifications to the record format are defined using the operand
INTERNAL=*VARIABLE() or *FIXED() of the SET-RECORD-ATTRIBUTES statement.
Modifications to the record format of the output records are defined using the operand
OUTPUT=*VARIABLE() or *FIXED() of the SET-RECORD-ATTRIBUTES statement.

● Record format/length modifications via defined user exits
If the user exits INPUT and/or OUTPUT are defined, SORT does not carry out any
modification to the record format or record length. The routines linked to the user exits
are responsible for this.

– User exit INPUT is responsible for the internal record format and internal record
length.

– User exit OUTPUT is responsible for the record format and length of the output
records.

Record processing and modification SORT functions and definitions

78 U6184-J-Z125-6-76

● Record format/length modifications via undefined user exits

If no INPUT and/or OUTPUT user exits are defined, SORT performs the record format
and length modifications, as follows:

– Record format modification
For a change of format from fixed to variable record length, SORT recalculates the
record length and prefixes a (4-byte) record length field to the converted record.
For a change of format from variable to fixed record length, SORT removes the
(4-byte) record length field from the beginning of the record. The converted records
are padded out to the maximum record length (internal or output records) according
to the values specified in the FILLER operand of the SET-RECORD-ATTRIBUTES
statement.

– Record length modification
Record length modifications effected by SORT result in the following:
Fixed-length records are shortened by truncation or lengthened by padding
according to the value specified in the FILLER operand of the SET-RECORD-
ATTRIBUTES statement. Variable-length records are shortened (truncated and
record length field corrected) only if they exceed the new length. However, if
variable-length records do not exceed the maximum record length, the existing
record length is left unchanged. The number of truncated records is indicated by
message SRT1054.

Record length modification based on entries in the SORT-RECORDS statement

● ELIMINATE operand
If the ELIMINATE operand is specified in the sort field description, SORT shortens the
record by the length of this sort field.

● SORT-TYPE operand
In selection sorts (SORT-TYPE=*COMPOUND-RECORD) and tag sorts (SORT-
TYPE=*TAG-COMPOUND/*TAG-TRAILER/*TAG-HEADER), the record length is
modified. The new record length of the selection record is the sum of the lengths of the
sort fields, constant fields, remainder fields and address field.

Record length modification based on entries in the SUM-RECORDS statement

A field extension can be specified in the field description of the SUM-RECORDS statement.
The record is then lengthened by the specified number of bytes.

SORT functions and definitions Record processing and modification

U6184-J-Z125-6-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

Modification of contents

Changes in content can be produced as a result of:

● Record selection specifications in the SORT-RECORDS statement.

● Code conversion for sort fields in PHYSICAL-TRANSLATE format.

● Record processing via the INPUT and/or OUTPUT user exits.

● ELIMINATE operand entry if the sort field description of the SORT-RECORDS or
MERGE-RECORDS statement.

● Padding of records according to the FILLER operand value in the SET-RECORD-
ATTRIBUTES statement in the case of record format and record length modifications.

● Editing by means of print masks.

Summation of records

The SUM-RECORDS statement can be used to compact records having the same sort keys
and identical sort field contents, i.e. the specified sum fields are added together.
This compaction of records extends over the entire sort/merge operation, i.e. through the
presorting phase, internal merging and end merge (see section “Sum fields” on page 58).

SORT in an XS environment SORT functions and definitions

80 U6184-J-Z125-6-76

2.5 SORT in an XS environment (31-bit addressing)

SORT is able to execute in 24-bit or 31-bit addressing mode. The addressing mode is
selected when SORT is started with the START-SORT command or invoked as a
subroutine by a main program. SORT itself does not effect any switchover in the hardware
addressing mode.

The following points should be noted with regard to the addressing mode:

– in 24-bit addressing mode

User routines invoked by SORT may be used in their old (unconverted) form (equivalent
to AMODE/RMODE=24, PARMOD=24). But they may also be in a wholly or partially
converted state (equivalent to AMODE/RMODE=ANY, PARMOD=31). At the relevant
PARMOD interface of the user routine EXLST-FOR-INPUT/EXLST-FOR-OUTPUT,
SORT adapts to the specified EXLST macro and generates the associated FCBs with
a suitable PARMOD.
The functions in SORT may be used without constraints.

– in 31-bit addressing mode

The user exits INPUT, OUTPUT and EXTERNAL-COMPARE must be used in combi-
nation with PARAMETER-MODE=ANY.

For all SORT interfaces to the user exits, 31-bit addressing applies.

For user exits EXLST-FOR-INPUT/EXLST-FOR-OUTPUT, the EXLST macros must be
assembled using PARMOD=31.

FCB reference tables must not be used in 31-bit addressing mode.

If the conventions for SORT-XS conversion are not observed, SORT or the Dynamic
BinderLoader issue error messages.

SORT functions and definitions Extended character sets in SORT

U6184-J-Z125-6-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.6 Using extended character sets in SORT

Computer systems (hosts) and data display terminals each operate with one character set,
i.e. a set of letters, digits and characters used to form words and other basic components
of a language.

By expanding the character set, country-specific characters, such as umlauts (German)
and accents (French), can also be offered by a specific character set.

A coded character set (CCS) is the unique representation of the characters in a character
set in binary form. The content of a coded character set and its rules, such as sorting order
and conversion guidelines, are defined by international standards.

Example: In the coded character set EBCDIC.DF.03 (German reference version), the
character “ä” is represented by the byte X’FB’, and in EBCDIC.DF.04-1 by
X’43’.

Every coded character set (also simply called “code”) is referred to by its unique name
(coded character set name, CCSN).

Example: The code EBCDIC.DF.03 (international reference version) is referred to as
“EDF03IRV”.

The appendix at the end of the “XHCS” manual ([11]) provides a list of all existing codes.

Extended codes expand the current

The specification of an 8-bit code ISO8859-x for instruciton files is not supported.

Requirements

The software product XHCS (eXtended Host Code Support) is required for generating
expanded codes in the host and for transmitting data between the host and data display
terminals. A detailed description of the principles and functions of XHCS, a list of code
tables and the names of standard codes are provided in the “XHCS” manual [11].

For inputting and outputting extended character sets on data display terminals, 8-bit
terminals are required as hardware.
You can use the software product VTSU to test data display terminals for 8-bit capability.

7-bit codes EBCDIC.DF.03 for hosts and
ISO646 for data display terminals
with approx. 90 characters used

by

8-bit codes EBCDIC.DF.04-x for hosts and
ISO8859-x for data display terminals
with approx. 190 characters used.

Extended character sets in SORT SORT functions and definitions

82 U6184-J-Z125-6-76

SORT requires and uses XHCS functions:

– if the sort fields contain the EXTENDED-CHARACTER or TRANSLATE-CHARACTER
format or

– if the statements contain character constants and the CCSN of the data records is
different from the CCSN of the statements.

If SORT requires XHCS functions and XHCS is not available, the sort run is aborted with
message SRT1257.

2.6.1 SORT-specific applications of extended character sets

Data records can be sorted using extended codes. The procedures and requirements for
doing so are described on the following pages.

2.6.1.1 Sorting with extended codes

SORT offers the EXTENDED-CHARACTER and TRANSLATE-CHARACTER formats for
sorting with extended codes. With these formats you can sort data records in the sorting
order of the codes in question.
You can enter these formats for the sort fields in the SORT statements ADD-SYMBOLIC-
NAMES, MERGE-RECORDS and SORT-RECORDS and in the SORT-FILE command.

The example on page 320 shows how both formats can be used.

The restrictions that apply to the overlapping of sort fields are shown in the table
“Overlapping of sort fields” on page 42. Sort fields are 1-256 bytes in length.

SORT tries to obtain the CCSN for sorting the data records by evaluating the following
sources:

– catalog entry of the input file

– SET-RECORD-ATTRIBUTES statement of the sort run
(no input file available)

– if no input file is available and no CCSN is provided by the SET-RECORD-ATTRI-
BUTES statement, SORT uses the code EDF03IRV.

If the CCSN of a code is obtained which is not defined in XHCS and if SORT requires XHCS
functions, the sort run is aborted with message SRT1258.
In no XHCS functions are needed, the CCSN obtained is accepted as a CCS attribute in
the catalog entry of the output file without being tested.

With an ISAM output file, the EXTENDED-CHARACTER and TRANSLATE-CHARACTER
formats cannot be used for sort fields which form the ISAM key. The ISAM keys must be
sorted in ascending order as specified by the host code, not according to any other code.
If an error is detected, the sort run is aborted with message SRT1261.

SORT functions and definitions Extended character sets in SORT

U6184-J-Z125-6-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.6.1.2 CCSN entry in the SORT files

How SORT handles the CCSN entry depends on the type of file.

– Input files:
If the data records are entered from an input file, SORT uses the CCSN of the input file
to sort the data records.

Since SORT does not perform data conversion for adapting different input file codes,
when multiple input files are used the input files must all have the same CCSN. Dummy
input files behave neutrally. If an error is detected, the sort run is aborted with message
SRT1254.

Note: No error message will appear if the different input files “EDF03IRV” and “no
CCSN defined” are used. In this case, the CCSN of the data records is undefined.

If the SET-RECORD-ATTRIBUTES statement contains an input file (or files) and a
CCSN entry, the CCSN of the input file(s) is used for sorting, the CCSN entry in the
SET-RECORD-ATTRIBUTES statement is ignored and message SRT1256 is
displayed.

– Output file:
SORT issues the CCSN of the output file; a user entry for the output file is ignored. The
CCSN of the output file is specified in the same way as the CCSN of the data records.

If an input file exists, the CCSN of this file will be used.
If several input files exist, the CCSN of the first file is used.
If the first file is a dummy file, the CCSN of the first non-dummy file is used.
All input files dummy do not result in a CCSN for the output.

– Statement file:
SORT evaluates the CCSN of the statement file when reading the commands (see
section “Converting character constants into the code of the data records” on page 84).

– Auxiliary, work and checkpoint files:
SORT does not issue a CCS attribute for these files; any user entry is ignored.

2.6.1.3 Explicit CCSN entry for data records and output file

If no input file is available, i.e. if the data records are input via the user exit INPUT or the
access method SORTZM, the name of the CCS of the data records can be entered via the
statement SET-RECORD-ATTRIBUTES, operand CODED-CHARACTER-SET=
<name 1..8>.

The CCSN is accepted for the output file. If no input file is available and no CCSN is
provided via the SET-RECORD-ATTRIBUTES statement, SORT uses the EDF03IRV code.

Extended character sets in SORT SORT functions and definitions

84 U6184-J-Z125-6-76

2.6.1.4 Converting character constants into the code of the data records

Constants can be defined as character strings in the following SORT statements (e.g. SET-
RECORD-ATTRIBUTES FILLER=’#’). These are converted by SORT from the CCS of the
constants to the CCS of the data records before these constants are integrated in the output
record or compared to the fields of the input record.
If the data records have a Unicode-CCSN, the conversion is rejected with SRT1260.

Constants can be entered as character strings in the following commands:

SORT obtains the CCSN of the character constants when the statements (with character
constants) are input via SYSDTA.

If SORT is called as a subroutine and the statements (with character constants) are trans-
ferred via a program interface, the CCSN of the character constants in the statements can
be defined by the SORT statement SET-SORT-OPTIONS, STATEMENT-CCSN operand.

If no CCSN entry is available in the SET-SORT-OPTIONS statement, SORT uses the
EDF03IRV code.

2.6.1.5 Conditions for mask fields

If SORT is called as a subroutine and the statements are transferred via a program
interface, the control characters “#” and “^” of the print masks must always contain the code
X’76’ or X’6A’ in order to be recognized as control characters. They are not converted
according to the CCS, but rather are represented as X’20’ or X’21’ for the Assembler
instruction ED.

2.6.1.6 Using extended character sets in user exits

The CCSN of the data records is transferred to the user at the user exits INPUT, OUTPUT
and EXTERNAL-COMPARE (31-bit interface). The CCSN is only for the user’s information;
comparing sort fields with EXTERNAL-COMPARE can only be done effectively with this
CCSN.

ADD-SYMBOLIC-NAMES CONSTANTS=list-poss(256):<name(VALUE=<c-string>)>

MODIFY-CODE SEQUENCES=list-poss(256):<c-string>

SELECT-INPUT-RECORDS CONDITION=<text>

SET-RECORD-ATTRIBUTES FILLER=<c-string>

SET-SORT-OPTIONS IGNORE-CHARACTER=<c-string 1..1 >

SORT-RECORDS FIELDS=*CONSTANT-EXPLICIT(CONSTANT=<c-string>)

SORT-RECORDS FIELDS=*FIELD-EXPLICIT(PRINT-MASK=<c-string>)

SUM-RECORDS FIELDS=*FIELD-EXPLICIT(PRINT-MASK=<c-string>).

SORT functions and definitions Unicode character sets in SORT

U6184-J-Z125-6-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.7 Use of Unicode character sets with SORT

Unicode is a standardized alphanumeric character set and includes all known text
characters in the world in a single character set. SORT currently supports the Unicode
variant UTF-16 (UCS Transformation Format 16 Bit) in which each character is represented
by two bytes. In UTF-16 the first 256 of the maximum of 65,536 characters correspond to
the ISO Latin-1 character set (ISO 8859-1).

The Unicode standard defines a linguistic sort algorithm. Each Unicode character is
assigned a collation element. The sequence in which the Unicode characters are sorted is
defined with the aid of these collation elements. The collation elements are defined by
means of a table supplied by XHCS (Unicode Default Collation Table). This table contains
a priority for the character at various levels. SORT recognizes three levels, and these are
displayed in the table below. The individual characters are always compared from left to
right. The first difference determines the result of the comparison.

In BS2000 you can supply values for the collation element via XHCS, see also the “XHCS”
manual [10].

Level 1 : Each base character (a,b,c, etc.) is assigned a permanent priority in the
Unicode Default Collation Table. The following characters or diacritics have no
influence on the sort sequence of the characters.

Level 2 : The base character has a diacritic. A diacritic is an additional character (e.g.
accent, slash, dot, cedilla, tilde) which is paced in, above or below a character
to define how it is pronounced or stressed. At level 1, a base character with a
diacritic has the same priority as the associated base character without a
diacritic. At level 2, a character with a diacritic has a higher priority than the
same character without a diacritic. If the sort key is otherwise identical, the sort
sequence is defined using this diacritic (see the example for level 2: role < rôle).

Level 3: The sort sequence is defined by the distinction between upper- and lowercase
letters. Uppercase letters have a higher priority than lowercase letters. Level 3
is taken into account only if level 1 and level 2 are identical for the entire sort
key (see the example for level 3: role < Role).

Comparison level Description Example

Level 1 Base character a < b
role < roles < rule

Level 2 Diacritics A < Å
role < rôle < roles

Level 3 Uppercase/lowercase a < A
role < Role < rôle

Unicode character sets in SORT SORT functions and definitions

86 U6184-J-Z125-6-76

 When two Unicode sort fields follow directly one after the other, the sort
sequence can differ depending on whether the sort fields are specified as one
or two fields in the SORT-RECORDS or MERGE-RECORDS statement. At
level 2 and level 3, the sort sequence is only defined within a sort field.

A collation element can be assigned a pointer to a second collation element. For
example, if a base character has a diacritic and the two characters are encoded
as one character.
If a pointer refers to a second collation element with faulty content (e.g. pointer
points out of the table), the sort run is aborted with SRT1089.

2.7.1 Normalization

In the case of a base character with a diacritic (level 2), the encoding of a character can
vary in Unicode. Consequently several encodings can exist for one character. The
character “Ä”, for example, can also be written as a string consisting of “A” and “°”. These
characters are treated as equal when the comparison takes place. The normalization
functions DECOMPOSE and COMPOSE are provided to unify a file. Normalization assigns
a uniform format to identical characters with different encoding. The basis for normalization
is provided by the XHCS normalization table, which is derived from the Unicode collation
table, see also the “XHCS” manual [10].

The normalization function is executed using the XHCS macro:
NLSCNV ACTION = COMPOSE or
NLSCNV ACTION = DECOMPOSE.

COMPOSE combines a base character with the associated diacritics to form a single
character.

DECOMPOSE splits a composite character into the base character and the associated
diacritics. The sequence of the linked diacritics is strictly defined here.

If neither of the normalization methods is available, consequent errors can occur in the sort
sequence.

i

SORT functions and definitions Unicode character sets in SORT

U6184-J-Z125-6-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

2

2.7.2 Characters with special processing

The IGNORE-UNICODE-BLANK operand in the SET-SORT-OPTIONS statement enables
particular characters in a text to be taken into account or ignored. When characters are
ignored, the sort key is contracted and, if necessary, padded with the Unicode fill character
at the end. As a result, the sort sequence is changed. The characters which can be ignored
are blank, slash, hyphen and variable collation elements.

The example in the table below illustrates how the sort sequence changes:

The following characters consisting of more than one base character (not diacritics) are
treated in a special manner:

Character Taken into account Ignored

Blank at home

at school

Atlantic

at home

Atlantic

at school

Slash, e.g. Three characters:

1 (one), - (slash), 4 (four)

Two characters:

14
1
4

� (hex: 0153) is equivalent to: oe (hex: 006F 0065)

� (hex: 0152) is equivalent to: OE (hex: 004F 0045)

 (hex: 2116) is equivalent to: No (hex: 004E 0366)

ß (hex: 00DF) is equivalent to: ss (hex: 0073 0073)

Unicode character sets in SORT SORT functions and definitions

88 U6184-J-Z125-6-76

2.7.3 Characters which are not supported

Not all two-byte encryptions belong to a supported Unicode character. All characters which
are not supported are ignored. These characters also include the two-byte characters which
are outside the supported range. Currently the range from X'0000' through X'2FFF' is
supported. If characters are not supported, the sort key is contracted and, if necessary,
padded with the Unicode fill character at the end.

The characters which are not supported also include the NIL character (X'0000'). If a search
key comprises only NIL characters, only Unicode fill characters are used for the
comparison. The Unicode fill character is specified in the SET-RECORD-ATTRIBUTES
statement.

 If the sort table supplied by XHCS changes (e.g. through the addition of new
characters), the sort sequence may also change. Characters which were previ-
ously ignored are then evaluated after they have been included in the Unicode
table.

i

U6184-J-Z125-6-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3 Files of the sort/merge program SORT

The SORT sort/merge program operates with files which can be set up either by SORT or
by the user, and with files which must be set up by the user. Dummy files can be processed.
Following are the various types of file used by SORT (see figure 7):

– sort input files

– merge input files

– output file

– work files (not when using a merge application)

– auxiliary files (not when using a merge application)

– checkpoint file

– object module library SORTMODS

– statement files

Overview Files of the SORT program

90 U6184-J-Z125-6-76

Figure 7: Files used by SORT

The necessary files are assigned either by means of the ASSIGN-FILES statement or via
the file link name given in a ADD-FILE-LINK command or FILE macro. If the ASSIGN-
FILES statement is used, SORT issues internal ADD-FILE-LINK commands with the appro-
priate file link names (SORTIN or SORTINxx, MERGExx, SORTOUT, SORTWK or
SORTWKx, SORTWKxx, SORTCKPT and SORTMODS). Any TFT entries already in
existence for these file link names will be overwritten.

If the same files are assigned both via the ASSIGN-FILES statement and via the ADD-FILE-
LINK command, the files assigned via the command will be ignored. If the LINK-PREFIX-
CHANGE operand is specified in the SET-SORT-OPTIONS statement, the “SORT” or
“MERGE” prefix in the file link names used will be replaced by the specified prefix.

The IGNORE-INOUT-FILE operand of the SET-SORT-OPTIONS statement has no effect
on files that have been assigned via the ASSIGN-FILES statement.

SORT

Sort input files
LINK-NAME=SORTIN or
LINK-NAME=SORTINxx (max. 99)

or

Merge input files
LINK-NAME=MERGExx (max. 99)

Checkpoint file
LINK-NAME=SORTCKPT

Object module library
LINK-NAME=SORTMODS

Output file
LINK-NAME=SORTOUT

Auxiliary files
LINK-NAME=SORTWKxx (max. 99)

Work files
LINK-NAME=SORTWK or
LINK-NAME=SORTWKx (max. 9)

Final auxiliary file
LINK-

Files of the SORT program Overview

U6184-J-Z125-6-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

Notes

– If the user sets up the input, output, work and auxiliary files with SET-FILE-LINK, entries
can be made for using fast storage media (PERFORMANCE operand). If SORT sets
up these files, the value PERFORMANCE=*STD is used, i.e. the default storage
medium is used.

– Input and output files can be in DIV (Data-in-Virtual) format (PAM file with BLOCK-
CONTROL-INFO=*NO). SORT processes these files with the UPAM access method.

– All SORT tape files must be set up on separate tapes. The only exception permitted is
when sort runs take place in which the sort input files and the sort output files are on the
same tape.

Handling temporary files set up by SORT

Files created by SORT, such as auxiliary files and work files, are automatically deleted at
the end of a sort operation if the sort run completed normally or terminated in error without
a RESTART capability. If a run terminates abnormally with the possibility of a RESTART,
SORT does not delete these files. If the RESTART is not activated, the user is responsible
for deleting the temporary files.

Assigning and creating Files of the SORT program

92 U6184-J-Z125-6-76

Assigning and creating the SORT files

Key:

Notes

– Specifying the operand LINK-PREFIX-CHANGE=<name 1..4> in the SET-SORT-
OPTIONS statement causes the “SORT” or “MERGE” part of the file link name to be
replaced by the specified prefix <name 1..4>. In the following file descriptions this
applies to all specified file link names which include “SORT” and “MERGE” as part of
the name.

– The file series x and xx must be numbered consecutively, without gaps. If there is a gap
in the numbering sequence, only the files up to the gap will be processed.

– SORTIN and SORTWK may only be specified in conjunction with one input or work file.
The file link names SORTIN and SORTINxx, or SORTWK and SORTWKx, must not be
combined.

File type
Assigned via Created

/ADD-FILE-
LINK

//ASSIGN-FILES on basis of
operand
entries

by SORT as
necessary

Sort input file
Sort input files

SORTIN
SORTINxx

INPUT-FILES=
INPUT-FILES=(...)

- -

Merge input files MERGExx INPUT-FILES=(...) - -

Sort/merge output file SORTOUT OUTPUT-FILE= - -

Sort work file
Sort work files

SORTWK
SORTWKx

WORK-FILES=
WORK-FILES=(...)

- 1 disk file

Sort auxiliary files SORTWKxx AUXILIARY-FILES=(...) 1 - 99 1 disk file in
reserve

Checkpoint file SORTCKPT CHECKPOINT-FILE= 1 file 1 disk file

Object module library SORTMODS MODULE-LIBRARY= - -

Statement files - STATEMENT-FILES=(...) - -

x stands for values from 1 to 9

xx stands for values from 01 to 99

- not allowed

Files of the SORT program Input files

U6184-J-Z125-6-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3.1 Input files

3.1.1 Input files for sort runs

SORT can sort up to 99 input files into one output file. The link to the sort/merge program
is set up by means of the INPUT-FILES operand of the ASSIGN-FILES statement with the
internally assigned file link name SORTIN or SORTINxx.

File link names for input files

The file link names must be specified in ADD-FILE-LINK commands or FILE macros, or are
generated by SORT as a result of an ASSIGN-FILES statement.

● One input file (single-file sort)

/ADD-FILE-LINK LINK-NAME=SORTIN,FILE-NAME=filename,... €

or

//ASSIGN-FILES INPUT-FILES=filename,... €

● Multiple input files (multi-file sort)
In order to sort a number of input files into one output file, SORT requires each of the
input files to be assigned either via a ADD-FILE-LINK command or by the ASSIGN-
FILES statement.

ADD-FILE-LINK statement

ADD-FILE-LINK LINK-NAME=SORTINxx,....

The input files must be specified consecutively in ascending numerical order, with 01,
02, .., 99 being inserted for “xx”, according to the number of files present. For example,
if there are 4 input files the file link names must be specified as follows:

ASSIGN-FILES statement

//ASSIGN-FILES -
// INPUT-FILES=(filename1, filename2, filename3, filename4)

/ADD-FILE-LINK LINK-NAME=SORTIN01,FILE-NAME=filename1 ... 1st input file

/ADD-FILE-LINK LINK-NAME=SORTIN02,FILE-NAME=filename2 ... 2nd input file

/ADD-FILE-LINK LINK-NAME=SORTIN03,FILE-NAME=filename3 ... 3rd input file

/ADD-FILE-LINK LINK-NAME=SORTIN04,FILE-NAME=filename4 ... 4th input file

Input files Files of the SORT program

94 U6184-J-Z125-6-76

Note

If neither an ASSIGN-FILES statement nor ADD-FILE-LINK commands or FILE macros
have been specified for assigning input files, the sort input must have been defined via
the user exit INPUT. If no input is defined, SORT issues an error message.

Input file = output file

In tag sorts, the input file must not be used as the output file. This applies also to those
cases in which file attributes (record format, record length) are different for input and output.

File attributes of multiple input files

Multiple input files for a sort run must all have the same record format (RECORD-
FORMAT=*FIXED or RECORD-FORMAT=*VARIABLE). Input files having fixed record
format must additionally have the same record length. File type (ACCESS-METHOD) and
block size (BUFFER-LENGTH) may be different for a sort involving multiple input files.
When using the EXTENDED-CHARACTER and TRANSLATE-CHARACTER formats, the
input files must all have the same CCSN since SORT does not perform data conversion for
adapting different input file codes. If an error is detected, the sort run is aborted with
message SRT1254.
If one input file is a POSIX file, all input files must be POSIX files.

With cataloged files, SORT checks the file attributes at the very start of the sort run. With
foreign files (files for which no system catalog entry exists yet), SORT does not check the
file attributes until immediately before the file is opened. This is important to remember
when the input consists of a number of files.

Access rights for POSIX input files

POSIX input files are only sorted if the read access right is available. Access rights for
POSIX input files are not changed by SORT.

Files of the SORT program Input files

U6184-J-Z125-6-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

Opening of input files

SORT opens input files with OPEN=INPUT by default. With BTAM and SAM tape files, the
user can change the OPEN mode in the ADD-FILE-LINK command to OPEN-MODE=
*REVERSE so that the tape input files will be read in reverse.

SORT attempts to open locked files at 1-second intervals (max. 100 tries). If still not
successful after 100 attempts, SORT issues an error message. The effect of this is different
depending on whether there is only one input file or multiple input files:

● One input file
In a single-file sort, SORT terminates the run if the input file cannot be opened.

● Multiple input files
SORT’s response if one of the input files cannot be opened can be defined by means
of the INPUT-OPEN-ERROR operand of the SET-SORT-OPTIONS statement.
Possible options are:

– *CONTINUE-NEXT-FILE(TERMINATE=*NORMAL)
SORT reports the error, skips the file concerned and continues processing the other
files.

– *FINISH-INPUT
SORT reports the error, terminates the input, and sorts the records read in up to that
point.

– *TERMINATE-ABNORMAL
SORT reports the error and terminates abnormally.

– *CONTINUE-NEXT-FILE (TERMINATE=*ABNORMAL)
SORT reports the error, skips the file concerned, continues processing the other
files and terminates as follows:

a) in a standalone sort run, with TERM UNIT=STEP, MODE=ABNORMAL.

b) in a sort subroutine run, with storage of the return code X’FF’ the low-order byte
of register 15. The first two bytes of register 15 contain the message number
(e.g. open error SRT1035 produces the contents X’103500FF’ in register 15).

Note

Other DMS errors cause the SORT run to terminate with an error.

Input files Files of the SORT program

96 U6184-J-Z125-6-76

Close processing of input files after termination of the sort run

The input file(s) is (are) closed by SORT (CLOSE) after being read in, and the associated
file link name is released (RELEASE). SORT controls the release of the input files (or
devices) on the following basis:

– type of input device (tape/disk)

– device assignment prior to sort run (PREMOUNT-LIST=0 in the ADD-FILE-LINK
command)

– location of tape files (multi-file/multi-volume sets).

Using this information, SORT selects the optimal RELEASE mode for the input files. This
ensures the earliest possible release for the devices. With tape files, this also optimizes
tape unloading.

The KEEP-INPUT-TAPES operand of the SET-SORT-OPTIONS statement can be used to
define whether input tapes are to be rewound and unloaded after they have been read, or
just rewound. With multi-volume files, it should be noted, only the final tape of the multi-
volume set is not unloaded in this case.

Note

In the case of multi-volume input files for which no catalog entry yet exists, if not all
tapes are specified in the ADD-FILE-LINK command, SORT requests the missing tapes
to be provided. If the request is refused by the operator, end-of-file is assumed and the
sort run continued. Records read up to that point are sorted. If a tape request is refused
by the operator in the case of a cataloged multi-volume input file, the sort run is aborted.

– For tape input files belonging to multi-file/multi-volume sets, the position of the files
on the tape(s) should correspond to the order of processing so as to avoid
unnecessary positioning and unloading operations
(1st file = SORTIN01, 2nd file = SORTIN02).

– Where the input is a mix of tape and disk files, the input files should be arranged
according to device groups, i.e. first all tape files, then all disk files (or vice versa).
By issuing a LOCK-FILE-LINK command the user can prevent the ADD-FILE-LINK
assignment from being released. LOCK-FILE-LINK remains effective until an
UNLOCK-FILE-LINK command is issued.

With tape files, all tape units are released at the end of the sort run.

Files of the SORT program Input files

U6184-J-Z125-6-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3.1.2 Input files for merge runs

SORT can merge up to 99 input files into one output file. Before the merge run, all the input
files must be presorted according to the same sort criteria. The file link names MERGE01,
MERGE02, ... , MERGExx set up the link to the sort/merge program. The input files must
be specified consecutively in ascending numerical order, with 01, 02, .., 99 being inserted
for “xx”, according to the number of files present. These file link names are assigned inter-
nally when the ASSIGN-FILES command is used, but they can also be specified explicitly
in a ADD-FILE-LINK command or FILE macro.

/START-SORT
.
.
//ASSIGN-FILES INPUT-FILES=(list of input files)
//MERGE-RECORDS FIELDS=...
.
//END €

When the file link names are used, the associated ADD-FILE-LINK commands for, say, 4
input files are as follows:

Note

If the input for the merge run is defined via the user exit INPUT, then the entire input
must be read in via this user exit.

File attributes of merge input files

All merge input files must have the same record format (RECORD-FORMAT=*VARIABLE
or RECORD-FORMAT=*FIXED). Merge input files having fixed record format must also
have the same record length. With variable-length records, the record structure must be the
same in those parts of the records to which the sort field description refers.
When using the EXTENDED-CHARACTER and TRANSLATE-CHARACTER formats, the
input files must all have the same CCSN since SORT does not perform data conversion for
adapting different input file codes. If an error is detected, the sort run is aborted with
message SRT1254.
If one of the merge input files is a POSIX file, all merge input files have to be POSIX files
and must have the read access right.

/ADD-FILE-LINK LINK-NAME=MERGE01,FILE-NAME=filename1 ... 1st input file

/ADD-FILE-LINK LINK-NAME=MERGE02,FILE-NAME=filename2 ... 2nd input file

/ADD-FILE-LINK LINK-NAME=MERGE03,FILE-NAME=filename3 ... 3rd input file

/ADD-FILE-LINK LINK-NAME=MERGE04,FILE-NAME=filename4 ... 4th input file

Input files Files of the SORT program

98 U6184-J-Z125-6-76

Opening of merge input files

Input files for a merge run are opened with OPEN=INPUT by default. BTAM files and SAM
tape files can also be read in reverse. In this case they are opened with OPEN-MODE=
*REVERSE.
If an error occurs during opening of an input file, SORT message SRT1035 is issued. Other
DMS errors cause SORT to issue message SRT1036. Following this, the merge run is
aborted.

Close processing of merge input files

On termination of the merge run SORT closes the input files (CLOSE) and releases the
associated file link names (RELEASE). The user can stop the ADD-FILE-LINK assignment
from being released by issuing a LOCK-FILE-LINK command. LOCK-FILE-LINK remains
in force until an UNLOCK-FILE-LINK command is issued.
With tape files, all tape units are released at the end of the merge run.

3.1.3 PAM key elimination for input files

PAM key elimination only affects input files if they are PAM files.

For files with BLOCK-CONTROL-INFO=*WITHIN-DATA-BLOCK, the input record begins
after the control field (start of block + 12).

For tape files with BLOCK-CONTROL-INFO=*NO, each block (padded with X’00’ to the
maximum block length, if necessary) is interpreted as an input record.

For files with BLOCK-CONTROL-INFO=*PAMKEY/*WITHIN-DATA-BLOCK, the check to
determine whether a block being read belongs to the input file and is therefore to be
processed further (interblock gap check) is carried out by comparing the coded file ID in the
PAM key / control field with the catalog entry. For PAM files with BLOCK-CONTROL-
INFO=*NO all the blocks are transferred.

Files of the SORT program Output file

U6184-J-Z125-6-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3.2 Output file for sort/merge runs

Only one output file may be assigned, irrespective of the number of input files. Sufficient
memory space has to be allocated to the output file with the SPACE operand of the
CREATE-FILE command. To avoid having to make secondary space allocations, the user
should specify the number of PAM pages to be read from the input files as the primary
allocation. Selection criteria and record length modifications can be taken into account
when determining the necessary primary allocation.
The file link name SORTOUT sets up the link to the sort/merge program. It applies equally
to sort and merge runs and is either assigned internally through the ASSIGN-FILES
command or specified in the ADD-FILE-LINK command or FILE macro.

Note

– If neither a ADD-FILE-LINK command or FILE macro with LINK-NAME= SORTOUT
nor an ASSIGN-FILES statement has been specified, the sort output must be
defined via the user exit OUTPUT. If this is also not the case, SORT issues an error
message.

– If SORT cannot open the specified output file, SORT message SRT1035 is issued
and the run is terminated abnormally.

File attributes of the output file

ACCESS-METHOD (FILE-STRUCTURE)

Output files can be PAM, BTAM, SAM or ISAM files. If no access method has been specified
for the output file, SORT assumes the access method of the input file, or of the first input
file if there is more than one. If this is not possible (e.g. input via the INPUT user exit), SORT
sets ACCESS-METHOD=*SAM by default.

RECORD-FORMAT

If no format attribute is specified for the output file, SORT takes the value from the OUTPUT
operand of the SET-RECORD-ATTRIBUTES statement as the default. If this is not possible,
SORT uses the value set for the input file.

Exception

With the selection of sort and tag sort (see page 27 and page 29) SORT will by default
specify the output files using RECORD-FORMAT=*FIXED.

Output file Files of the SORT program

100 U6184-J-Z125-6-76

RECORD-SIZE

If no record length specification has been entered for the output file, SORT uses the value
specified for the first (or only) input file. If this is not possible, SORT takes the value from
the OUTPUT operand of the SET-RECORD-ATTRIBUTES statement or uses the length
that it has calculated.
If RECORD-SIZE=0 is defined for the first (or only) input file, this value is not taken over for
the output file. If, however, RECORD-SIZE=0 is actually desired for the output file in this
case, SORT must be forced to take over the value with an appropriate ADD-FILE-LINK
command.

BUFFER-LENGTH

If no block size is defined for the output file, SORT uses the same block size as the input
file, or as the first input file if there is more than one. If this is smaller than the output record
length, or if there is no input file (i.e. the records to be sorted were passed via the INPUT
user exit), then the block size for the output file is set equal to the output record length,
rounded up to a multiple of STD(1) blocks (2048 bytes, K/NK2 disks) or STD(2) blocks
(4096 bytes, NK4 disks). SORT takes the output record length from the SET-RECORD-
ATTRIBUTES statement or calculates it separately.
If the block size is defined for the output file, SORT checks whether this is equal to or
greater than the output record length. If the block size of the output file is less than the
output record length, the run is aborted due to an error. With NK4 disks, the block size must
be a multiple of STD(2), otherwise the run is aborted with error message SRT1252.

CODED-CHARACTER-SET

SORT issues the CCSN of the output file; any entry made by the user for the output file is
ignored. The CCSN of the output file is specified in the same way as the CCSN of the data
records. If “EDF03IRV” is found, no CCS attribute is defined for the output file (see section
“Sorting with extended codes” on page 82).

BLOCK-CONTROL-INFO (BLKCTRL)

If the data format of the output file is not defined, the format is taken from the input file (from
the first input file if there are multiple input files). If necessary, SORT corrects the data
format on the basis of ACCESS-METHOD, block size and class 2 option BLKCTRL.
If the data format of the output file is defined, SORT tries to load the output file. If an error
is detected, the sort run is aborted with message SRT1253.

Files of the SORT program Output file

U6184-J-Z125-6-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

Special characteristics of ISAM output files

● ISAM key
For ISAM output files without defined ISAM keys, SORT uses the most significant sort
field (field with sequence number 1) as the ISAM key. Thus, the most significant sort
field and other sort fields used for the ISAM key may only be sorted in ascending order.
If a value is explicitly specified for KEY-POSITION, this must tally with the beginning of
the most significant sort field.

● Length of the ISAM key
For ISAM output files, SORT takes the length of the most significant sort field as the key
length. If KEY-LENGTH is already defined for the output file (ADD-FILE-LINK
command/FILE macro or catalog entry), the key length may also extend to the
secondary sort fields. These fields must be contiguous and follow immediately after the
most significant sort field. Overlapping of the sort fields is not allowed. The permitted
value for KEY-LENGTH is derived from the sum of the lengths of the most significant
sort field and the immediately following sort fields. With variable-length records, the
entire ISAM key must lie within the fixed part of the record.

● Data formats for ISAM output files
The most significant sort field of the input file may have the data format BINARY or
CHARACTER only. All other formats are not allowed. This is because SORT uses this
field as the ISAM key for the output file. Fields having BINARY data format must begin
on a byte boundary.

● Flagged ISAM files
SORT assumes a default value of “0” for LOGICAL-FLAG-LENGTH and VALUE-FLAG-
LENGTH. However, if values for LOGICAL-FLAG-LENGTH and VALUE-FLAG-
LENGTH are specified in the CREATE-FILE command/FILE macro, the sum of KEY-
LENGTH + VALUE-FLAG-LENGTH + LOGICAL-FLAG-LENGTH must not be greater
than 255. SORT checks for this condition and aborts the run if there is an error.

● Identical sort keys
If there are records with the same sort key, the order of output is undefined. This also
applies if KEEP-EQUAL-SEQUENCES=*YES has been specified.

Output file Files of the SORT program

102 U6184-J-Z125-6-76

● Duplicate ISAM keys
SORT uses the default setting DUPLICATE-KEY=*YES, i.e. the output file may contain
records with the same ISAM keys. If this is the case, SORT issues the warning
SRT1070 and proceeds with the sort/merge run as normal.
If DUPLICATE-KEY=*NO is selected in the ADD-FILE-LINK command and duplicate
ISAM keys are detected during sorting, SORT aborts the run with error message
SRT1036.

No secondary keys can be created when using duplicate ISAM keys (see the CREATE-
ALTERNATE-INDEX command in the “Commands” [1] manual).

To avoid records with identical ISAM keys from appearing in the output file, the length
of the sort field must be increased, or in the case of a defined ISAM key, the length of
the key must be increased.

● DMS sets the percentage of free buffer length (PADDING-FACTOR) to 15% by default.
This means that the (max.) record length must not be greater than the buffer size
BUFFER-LENGTH - PADDING-FACTOR. Otherwise DMS reports an error.

Opening of the output file

The open mode for output files may vary depending on the access method, as follows:

– PAM files: with OUTIN

– BTAM files: with OUTPUT or OUTIN

– SAM or ISAM files: with OUTPUT or EXTEND

If the open mode is not specified, SORT opens PAM files with OPEN=OUTIN by default.
BTAM, SAM and ISAM files are opened with OPEN=OUTPUT by default.

Note

If SORT cannot open the specified output file, SORT message SRT1035 is issued and
the run is terminated abnormally.

Close processing of the output file

On termination, SORT closes the output file (CLOSE). The file link name is not released.

Files of the SORT program Output file

U6184-J-Z125-6-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3.2.1 PAM key elimination for the output file

SORT determines the file attribute BLOCK-CONTROL-INFO for output files as follows:

1. If the user has specified a ADD-FILE-LINK command with the BLOCK-CONTROL-
INFO operand, this value applies.

2. If a value for BLOCK-CONTROL-INFO for the file is already entered in the catalog, this
value applies.

3. If neither of these two conditions are met, SORT will attempt to take the value for
BLOCK-CONTORL-INFO from the input file. However, this is only possible if the output
medium permits it, for example, it is not possible to create a file with PAMKEY on a
NONKEY disk.

4. If neither of the above is the case, the following default rule applies:

For tape files, BLOCK-CONTROL-INFO=*DATA (for performance reasons) applies.

For disk files, BLOCK-CONTROL-INFO depends on ACCESS-METHOD and the pre-
format (SM pubsets) or the class 2 option BLKCTRL according to the following table
(see also the manual “Introductory Guide to DMS” [2]):

SAM output file

With SAM output files, the connection between block length and maximum record length is
as follows, depending on the value specified by BLOCK-CONTROL-INFO and the record
format:

ACCESS-METHOD
Class 2 option BLKCTRL / Pre-format

PAMKEY NONKEY / NK2 NONKEY / NK4

*SAM *PAMKEY *DATA *DATA

*ISAM *PAMKEY *DATA2K *DATA4K

*PAM *PAMKEY *NO *NO

 BLOCK-CONTROL-INFO Record format Max. record length

 *PAMKEY *FIXED BUFFER-LENGTH

*VARIABLE BUFFER-LENGTH-4

 *WITHIN-DATA-BLOCK *FIXED BUFFER-LENGTH-16

*VARIABLE BUFFER-LENGTH-16

 *NO *) *FIXED BUFFER-LENGTH

*VARIABLE BUFFER-LENGTH-4

*) For tape files only

Output file Files of the SORT program

104 U6184-J-Z125-6-76

PAM output file

With BLOCK-CONTROL-INFO=*WITHIN-DATA-BLOCK, the output record is entered after
the control field (start of block + 12).
For a tape file with BLOCK-CONTROL-INFO=*NO, each individual output record (padded
with X’00’ if necessary) is written to the tape in the block length.

3.2.2 POSIX output file

Access rights of an existing POSIX output file are not changed by SORT. A POSIX file which
is created by SORT is given read and write access rights for the user.

Files of the SORT program Work files

U6184-J-Z125-6-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3.3 Work files

For sort runs in which the amount of data to be sorted is greater than the available CORE
memory, SORT requires a work file on disk for buffering and internal merging. If the sort is
performed using multi-tasking, the user has to set up at least 2, and not more than 9 such
work files on disk. Work files must be created as PAM files.

With simple merge runs, no work files are required.

Creating work files

The user can create work files using the ASSIGN-FILES statement or via a CREATE-
FILE-/ADD-FILE-LINK command or FILE macro. Work files can also be created by SORT
itself.
When this is done, the block size calculated for the work file is always rounded up to a
multiple of STD(2) (any block size entered by the user is ignored).
The coded character set is of no relevance to work files. Entries made by the user are
ignored.

When setting up work files with the ADD-FILE-LINK command or FILE macro, the user
must specify one or more file link names. For one work file the file link name is SORTWK,
for multiple files SORTWKx, where “x” stands for a digit from 1 to 9, assigned consecutively
in ascending numerical order. Work files must be present during the sort/merge run and
may not be deleted by the user until after the run.
If the file assignment is made via the ASSIGN-FILES statement, the file link names are
assigned by SORT.

SORT calculates the primary and secondary allocations for work files on the basis of one
of the following entries, in the order of precedence given:

– Size of the input files (for disk files)

– DISK-SPACE specification (ASSIGN-RESOURCES statement)
Eight times the internal block length is taken as the minimum size.

– RECORDS-PER-CYCLE specification (SORT-RECORDS statement)

– ESTIMATED-RECORDS specifications (SORT-RECORDS statement) divided by the
number of auxiliary files

– NUMBER-OF-RECORDS specification of the INPUT-RANGE operand (SORT-
RECORDS statement) divided by the number of auxiliary files

– MEMORY-SIZE specification * 16.

Work files Files of the SORT program

106 U6184-J-Z125-6-76

The primary and secondary allocations of user-defined work files are increased if they are
less than the values calculated by SORT. Their values can be output via the user exit
PLANNING. SORT makes no correction to the values specified by the user if a value of zero
was specified for the secondary allocation.

A work file that is created by SORT is cataloged under the file link name SORTWK and the
file name

SORTWORK.tsn.yymmdd.hhmmss

Key:

If the operand LINK-PREFIX-CHANGE=<name 1..4> is given in the SET-SORT-OPTIONS
statement, the “SORTWORK” part of the name is replaced by “<name 1..4>WORK”.

Allocation of storage space for work files

The size of work files (in PAM pages) required by SORT can be calculated as follows:

Notes

– If a work file is set up with a secondary allocation = 0, then a factor of 1.2 should be
substituted for 1.1 in the above formula in order to provide an adequate margin for
contingencies.

With very large files, (for example, greater than 32 GB), the factor of 1.2 should be
selected as well, since the secondary allocation (maximum of 32767 PAM pages) is
negligible compared to the file size.

– For a user working with the PLANNING user exit and specifying the action DIALOG,
SORT calculates the size of file required and outputs its estimate via SORT message
SRT1031.

tsn Task sequence number (TSN) for sort run

yy Year

mm Month

dd Day

hhmmss Six-digit time-of-day entry

File size =
1.1 * PAM pages of sort data

(number of auxiliary files + 1)

Files of the SORT program Work files

U6184-J-Z125-6-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

Sorting time and throughput improvements can be achieved by the user by

– allocating sufficient storage space or specifying accurate values for the ESTIMATED-
RECORDS or RECORDS-PER-CYCLE operands in order to avoid frequent secondary
allocations

– setting up the work files on separate private volumes

– not setting up the work files on the volumes used for the input/output files.

Close processing of work files

– Work files set up by SORT are closed, released and deleted at the end of the sort run
if this terminates normally. If the sort run ends abnormally and at least one checkpoint
has been written, SORT does not release or delete these files, as otherwise no
RESTART-PROGRAM would be possible. If no RESTART-PROGRAM is initiated, the
user is responsible for deleting the file. If a RESTART-PROGRAM is performed and the
run terminates normally, SORT signs off the file, releases it, and deletes it.

– Work files set up by the user are closed at the end of the sort run. The file link name is
not released, however. The specification DELETE-WORK-FILES=*YES for the SET-
SORT-OPTIONS statement allows the user to specify that SORT is also to delete the
work files that are created by the user or the requesting program. By default SORT does
not delete these files.

Notes

Work files with the file link name SORTWKx (’x’ stands for a value from 1-9) can only
be used in multi-task sorting (see page 271). Different SORTWKx cannot be used to
supply parallel sort runs with different work files when the SORT access method
SORTZM is used (see page 220).

3.3.1 PAM key elimination for work files

Work files on tape will be created as BLOCK-CONTROL-INFO=*NO, even if *WITHIN-
DATA-BLOCK has been specified by the user.

Auxiliary files Files of the SORT program

108 U6184-J-Z125-6-76

3.4 Auxiliary files

Auxiliary files are required by SORT whenever large amounts of data are to be processed
in a cycle sort, i.e. the data is divided into subsets for separate sorting. This is the case with
cycle and multi-task sorts. SORT requires one auxiliary file for each subset except the last,
which remains in the work file. This produces the following formula:

Auxiliary files may be disk or tape files (exception: disk files only for multi-task sorts). SORT
writes and reads these files sequentially (SAM). It may therefore be possible to speed up
data throughput by setting up the files on separate volumes. Up to 99 auxiliary files are
permitted.

With simple merge runs no auxiliary files are required.

Creating auxiliary files

The user can create auxiliary files on disk using the ASSIGN-FILES statement or CREATE-
FILE-/ADD-FILE-LINK command or FILE macro. Auxiliary files on tape must be assigned
via the ADD-FILE-LINK command. The coded character set is of no relevance to auxiliary
files. Entries made by the user are ignored.

The auxiliary files are assigned to SORT via the file link name SORTWKxx, where “xx” must
be numbered consecutively from 01 through 99 (max.) in strict ascending sequence. The
user should always set up auxiliary files explicitly when there are large amounts of data to
be sorted and checkpoints to be written, or when a multi-task sort run is to be performed.

If the user has made specifications that allow SORT to determine the number of cycles (for
example, ESTIMATED-RECORDS and RECORDS-PER-CYCLE in the SORT-RECORDS
statement), SORT is able to create the required number of auxiliary files itself.

If this information is missing, SORT creates 8 auxiliary files as required. If the user has
already created some of these auxiliary files, then SORT will finish creating the rest. If there
are not enough auxiliary files, or an overflow occurs for a work file, SORT will create a
single, additional final disk auxiliary file.

Creation of this final auxiliary file is carried out regardless of whether the other auxiliary files
have been created by SORT or by the user. However, if the number of files has already
reached 99, then the final auxiliary file will not be created. The final auxiliary file can also
accomodate exactly a cycle. All remaining records are left in the work file and must be
processed there.

The final auxiliary file occupies PUBLIC disk space by default.

Number of auxiliary files = Number of cycles - 1

Files of the SORT program Auxiliary files

U6184-J-Z125-6-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

The user can prevent this (in some circumstances unwanted) use of PUBLIC disk space by
doing the following:

– The final auxiliary file can be set up by the user themselves. This is done by assigning
the file link name SORTWKEX.

– This file may be located on a private disk.

– The space for this file may be limited by a small primary allocation and the specification
of 0 for the secondary allocation. In this case, an excessive number of records leads to
SORT being aborted. This process ensures that work and auxiliary files are not able to
occupy all of the PUBLIC disk space.

If the space available in the final auxiliary file is used up, the sort run is aborted with the
message SRT1060.

Auxiliary files are cataloged under the file link name SORTWKxx. SORT generates the file
name as follows:

SORTWKxx.tsn.yymmdd.hhmmss

Key:

If the operand LINK-PREFIX-CHANGE=<name 1..4> is given in the SET-SORT-OPTIONS
statement, the “SORTWKxx” part of the name is replaced by “<name 1..4>WKxx”.

Tape auxiliary files set up by SORT

Tape files can be assigned via ASSIGN-FILES statements only if a catalog entry already
exists. If the user has already set up auxiliary files on tape using the ADD-FILE-LINK
command/FILE macro, SORT increases their number to that specified in the TAPE-UNITS
operand of the ASSIGN-RESOURCES statement.

Note

With auxiliary files on tape, the RECORDS-PER-CYCLE record set should not exceed
the capacity of the shortest tape (or shortest tape series, as applicable).

xx File link name sequence number

tsn Task sequence number (TSN) for sort run

yy Year

mm Month

dd Day

hhmmss Six-digit time-of-day entry

Auxiliary files Files of the SORT program

110 U6184-J-Z125-6-76

Disk auxiliary files set up by SORT

SORT sets up auxiliary files on disk using the space occupied by the work file as the value
for the primary allocation.

In the case of auxiliary files set up by the user, the primary and secondary allocations are
increased if they are less than the values calculated by SORT. SORT makes no correction
to the values specified by the user if a value of zero was specified for the secondary
allocation.

Close processing of auxiliary files

– Auxiliary files set up by SORT are signed off, released and deleted at the end of the sort
run when this terminates normally. If the sort run terminates with an error but check-
points have already been written, SORT does not release or delete the files, as
otherwise no RESTART-PROGRAM would be possible. A user choosing not to initiate
a RESTART-PROGRAM becomes responsible for deleting the files. If a RESTART-
PROGRAM is performed and the run terminates normally, SORT closes the files,
releases them, and deletes them.

– Auxiliary files set up by the user are closed at the end of the sort run, but the file link
name is not released. Tape files are rewound but not unloaded.

By specifying DELETE-WORK-FILES=*YES in the SET-SORT-OPTIONS statement
the user can invoke SORT to delete the auxiliary files that are set up by SORT or the
calling program. By default SORT does not delete those files.

Note

Sorting time and throughput improvements can be achieved by the user when using
auxiliary files on disk by

– allocating sufficient storage space or specifying accurate values for the ESTIMATED-
RECORDS or RECORDS-PER-CYCLE operands in order to avoid frequent secondary
allocations

– setting up the auxiliary files on separate private volumes, thereby enabling SORT to
process the files sequentially without having to delay processing for multiple files due
to the time taken to reposition disk arms

– not setting up the auxiliary files on the volumes used for the input/output files.

Files of the SORT program Auxiliary files

U6184-J-Z125-6-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3.4.1 PAM key elimination for auxiliary files

Auxiliary files are SAM files on disk or tape. They will be created on disk by SORT using
BLOCK-CONTROL-INFO=*PAMKEY/*WITHIN-DATA-BLOCK, depending on the class 2
option BLKCTRL = PAMKEY/NONKEY. With BLOCK-CONTROL-INFO=*WITHIN-DATA-
BLOCK it is important to remember that the maximum length of records that can be
processed by SORT is reduced by 8 bytes to 32751 bytes.

Auxiliary files on tape will be created as BLOCK-CONTROL-INFO=*NO, even if *WITHIN-
DATA-BLOCK has been specified by the user.

Checkpoint file Files of the SORT program

112 U6184-J-Z125-6-76

3.5 Checkpoint file

SORT requires a checkpoint file to be available for writing checkpoints. This file can be on
disk (not NK4 disks) or on tape, and can be created by the user or by SORT. If an error is
detected in writing a checkpoint, message SRT1042 is displayed and processing is
resumed.

A checkpoint enables an aborted sort/merge run to be restarted by means of the RESTART-
PROGRAM command.

– The user can create a checkpoint file using an ASSIGN-FILES statement or CREATE-
FILE-/ADD-FILE-LINK command or FILE macro with the file link name SORTCKPT.
The coded character set is of no relevance to checkpoint files. Entries made by the user
are ignored.
By specifying OPEN-MODE=*INOUT in the ADD-FILE-LINK command or
OPEN=INOUT in the FILE macro it is possible to continue using an existing checkpoint
file. Disk files should be set up with an adequate space allocation. The minimum size
for the primary allocation is estimated as follows:

((MEMORY-SIZE value * 4) + 80)

The optimum value for the primary allocation is calculated as follows:

((MEMORY-SIZE value * 4) + 80) * number of checkpoints

The secondary allocation should correspond to one checkpoint, i.e.:

((MEMORY-SIZE value * 4) + 80)

Unless the checkpoint file is to be on a private volume, there is no need for the user to
create such a file, since SORT automatically sets up a checkpoint file on a public
volume.

Files of the SORT program Checkpoint file

U6184-J-Z125-6-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

– If the user does not specify a checkpoint file, SORT sets up a disk file with the file link
name SORTCKPT and assigns it the file name

SORTCKPT.tsn.yymmdd.hhmmss

Key:

If the operand LINK-PREFIX-CHANGE=<name 1..4> is given in the SET-SORT-
OPTIONS statement, the “SORTCKPT” part of the name is replaced by
“<name 1..4>CKPT”.

Close processing of checkpoint files

– Checkpoint files set up by the user are closed at the end of the sort run, but the file link
name is not released. Tapes are rewound but not unloaded.

– Checkpoint files set up by SORT are closed, released and deleted if the sort/merge run
terminates normally. The same applies if the sort/merge terminates abnormally and no
checkpoints have been written. If a run terminates with an error and checkpoints have
been taken, SORT does not release or delete the checkpoint file, as this is required for
a RESTART-PROGRAM. A user choosing not to perform a RESTART-PROGRAM is
responsible for deleting the checkpoint file.

Note

When processing POSIX files as the input files, it is not possible to set up checkpoints.

3.5.1 PAM key elimination for checkpoint files

Checkpoint files are PAM files which SORT sets up using BLOCK-CONTROL-INFO=*NO.

Only BLOCK-CONTROL-INFO=*PAMKEY/*NO may be specified for checkpoint files.
Specifying BLKCTRL=*WITHIN-DATA-BLOCK causes return code X’48’ to be generated
during checkpoint writing and the run is terminated abnormally.

tsn Task sequence number (TSN) for sort run

yy Year

mm Month

dd Day

hhmmss Six-digit time of day entry

Object module library SORTMODS Files of the SORT program

114 U6184-J-Z125-6-76

3.6 Object module library SORTMODS

An additional object module library can be defined with the file link name SORTMODS for
the purpose of supporting user-defined routines that use SORT user exits. Priority will then
be given to this object module library when user routines are loaded. The SORTMODS
object module library can also be assigned by means of the ASSIGN-FILES statement.

The SET-SORT-OPTIONS statement can be used to replace the “SORTMODS” part of the
name with “<name 1..4>MODS”.

3.7 Statement files

At any point during statement input, statements grouped into so-called “statement files” can
be inserted into the input. Statement files are subject to all the rules and conventions appli-
cable to BS2000 procedure files.

Up to 10 statement files can be assigned using the ASSIGN-FILES statement
(STATEMENT-FILES operand). They are processed immediately after the ASSIGN-FILES
statement in the order in which they occur. A requirement is, however, that the ASSIGN-
FILES statement is read from SYSCMD.

Multiple ASSIGN-FILES statements may be specified. In this case statements originating
from statement files of previous ASSIGN-FILES statements remain valid until overwritten
by subsequent identically-named statements. Statement files cannot be nested, i.e. other
statement file assignments within a statement file are ignored.

Each statement file must be concluded with an END statement. The END statement causes
SYSDTA to be assigned to the next statement file or reassigned to SYSCMD.

If an error occurs during the assignment of SYSDTA to a statement file (e.g. statement file
is found to be a PAM file), the run is aborted and an error message is issued.

If a syntax error occurs in a statement file and is not corrected (e.g. PROCEDURE-
DIALOG=*NO), the remaining statement files will be processed and then the run will be
aborted.

The CCSN of the statement files is evaluated when the statements are read in. Character
sequences in the form of constants in the SORT statements are converted by SORT to the
CCS of the data records before these constants are inserted in the output record or
compared with fields in the input record.

Statement files with an ISO-CCSN are rejected with SRT1149 and statement files with
Unicode-CCSN are rejected with SRT1150.

Files of the SORT program Close processing for SORT files

U6184-J-Z125-6-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3.8 Close processing for SORT files

The table below provides an overview of the close processing for SORT files following
normal termination of the sort/merge run:

Following normal termination of the sort/merge run, SORT closes all the sort files (CLOSE).
The file link names of the input files, and of the work, auxiliary and checkpoint files set up
by SORT, are automatically released (RELEASE). After normal completion of the
sort/merge run the files set up by SORT are deleted (ERASE).

Input files on tape are rewound and unloaded if the KEEP-INPUT-TAPE operand was set
to NO (UNLOAD). Output files and auxiliary files on tape, together with checkpoint files set
up by the user, are rewound but not unloaded.

Function of
file(s)

File link
name

File set
up by

File status following the sort/merge run

The sort/merge program has Files set up on
magnetic tape:
Tapes are

closed
the
file(s)

deleted
the
file(s)

released
the file
link name

rewound unloaded

Sort input file(s) SORTIN
SORTINxx

user yes no yes yes yes 1)

no2)

Merge input
files

MERGExx user yes no yes yes yes 1)

no2)

Output file SORTOUT user yes no no yes no

Work file(s) SORTWK
SORTWKx

user yes no no - -

SORT yes yes yes - -

SORT yes yes yes yes no

Checkpoint file SORTCKPT user yes no no yes no

SORT yes yes yes no no

Object module
library

SORTMODS user - - no - -

1)If KEEP-INPUT-TAPE=*NO is set in the SET-SORT-OPTIONS statement
2)If KEEP-INPUT-TAPE=*YES is set in the SET-SORT-OPTIONS statement

Close processing for SORT files Files of the SORT program

116 U6184-J-Z125-6-76

The table below provides an overview of the close processing for SORT files following
abnormal termination of the sort/merge run:

Following abnormal termination of a sort/merge run, SORT closes all the files (CLOSE).
The file link names of the work, auxiliary and checkpoint files set up by SORT are released
(RELEASE) if no checkpoints have been written. In this case these files are also automat-
ically deleted.

Input files on tape are rewound and unloaded if the KEEP-INPUT-TAPE operand was set
to *NO (UNLOAD). Output files and auxiliary files on tape, together with checkpoint files set
up by the user, are rewound but not unloaded.

Function of
file(s)

File link
name

File set
up by

File status following the sort/merge run

The sort/merge program has Files set up on
magnetic tape:
Tapes are

closed
the
file(s)

deleted
the
file(s)

released
the file
link name

rewound unloaded

Sort input file(s) SORTIN
SORTINxx

user yes no yes yes yes 1)

no2)

Merge input
files

MERGExx user yes no yes yes yes 1)

no2)

Output file SORTOUT user yes no no yes no

Work file(s) SORTWK
SORTWKx

user yes no no - -

SORT yes yes *) yes *) - -

SORT yes yes *) yes *) yes no

Checkpoint file SORTCKPT user yes no no yes no

SORT yes yes *) yes *) no no

Object module
library

SORTMODS user - - no - -

*)Only if no checkpoints were written.
1)If KEEP-INPUT-TAPE=*NO is set in the SET-SORT-OPTIONS statement
2)If KEEP-INPUT-TAPE=*YES is set in the SET-SORT-OPTIONS statement

Files of the SORT program Processing POSIX files with SORT

U6184-J-Z125-6-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

3.9 Processing POSIX files with SORT

In order to be able to use the file processing functions to handle POSIX files in BS2000, the
POSIX subsystem must be activated.

3.9.1 POSIX in BS2000

In view of the increasing networking of different computer systems and the distributed
processing performed across these networks, computer systems and their interfaces
nowadays need to be standardized and open. These interfaces must comply with the
POSIX/XPG4 standards. The operating system BS2000 supports the POSIX/XPG4
standards with the software product “POSIX”.

POSIX (Portable Open System Interface for UNIX) or XPG4 (X/Open Portability Guide
Version 4) denotes a range of UNIX-based standards. The name POSIX refers both to
these standards and to the software product.

Through the software product POSIX, BS2000 becomes an open system. Applications
which comply with the standard can be ported between BS2000 and other systems which
support POSIX interfaces, especially UNIX.

The POSIX file system is a file system in BS2000 with the structure of a UNIX file system
(UFS). It is hierarchically structured and consists of files (POSIX files) and directories.
POSIX users can create and edit POSIX files, and can access remote UNIX file systems
from within the POSIX file system. By the same token, the local POSIX file system can be
accessed from a remote UNIX system.

POSIX can be accessed by BS2000 users with the appropriate authorization. From a UNIX
system too (via rlogin or emulation), POSIX can be accessed on a BS2000 system. The
access control is handled completely by BS2000.

For further information on POSIX in BS2000, see the manuals “POSIX Basics for Users and
System Administrators” [14] and “POSIX Commands” [15].

Processing POSIX files with SORT Files of the SORT program

118 U6184-J-Z125-6-76

3.9.2 Sorting POSIX files with SORT

Within POSIX files, data is in text format, which cannot be processed directly by SORT. In
this format, the individual records are delimited by end-of-record identifiers, which are
represented by the ▼ symbol in the following graphics.

Before it is processed by the sort routine, this data is converted by SORT into variable-
length records, each prefixed by a record length field (rlf).

After the sort process, SORT converts the sorted output file back into the text format if it is
to be stored in the POSIX file system.

The internal use of variable-length records causes the position of the user data in the record
to be displaced by the record length field, but this does not normally have any consequence
for users of POSIX files. With records from POSIX files, SORT calculates the field positions
by default relative to the beginning of the user data.

However, if the user wants to access the internal record length field, e.g. in order to sort the
records according to their length, the IGNORE-LENGTH-FIELD operand is available in the
SET-SORT-OPTIONS statement (see page 166) and in the SORT-FILE command (see
page 194).
Specifying IGNORE-LENGTH-FIELD=*NO causes the positions within the record to be
calculated from the start of the record, both with variable-length records in BS2000 files and
with records in POSIX files. The user data thus begins at position 5 in the record.

The encoding of the end-of-record identifier is determined by the CODE operand in the
ASSIGN-FILES statement (see page 139) and in the SORT-FILE command (see
page 194). If CODE=*EBCDIC is specified, the end-of-record identifier is encoded as X’15’,
if CODE=*ASCII is specified, as X’0A’.

Text 1 ▼ Text 2 ▼ … ▼ Text n ▼

rlf Text 1

rlf Text 2

…

rlf Text n

Output text 1 ▼ Output text 2 ▼ Output text 3 ▼ … ▼ Output text n ▼

Files of the SORT program SORT and ACS

U6184-J-Z125-6-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

If POSIX files are used as output files, you must make sure that the output records do not
contain characters which might be interpreted as end-of-record identifiers. More specifi-
cally:

– No constant fields containing end-of-record identifiers may be specified in the SORT-
RECORDS statement or in the SORT-FILE command.

– The records of a BS2000 input file must not contain end-of-record identifiers if the
output file is to be a POSIX file.

– The sort type “tag sort” must not be used because it cannot be guaranteed that the
address fields do not contain characters which could be interpreted as end-of-record
identifiers.

Note

Using the “sort” command, which can be called in a POSIX shell, is not the same as
calling the product SORT.

3.10 SORT and ACS

If the subsystem ACS (alias catalog service) is used, the following effects should be noted:

1. If a TFT entry created by the user exists, it is impossible to say whether or not the file
name was replaced. Consequently, if the file name taken from this entry is used (e.g.
with SHOW-FILE-ATTRIBUTES), ACS is interrupted (HOLD-ALIAS-SUBSTITUTION).

2. If SORT itself creates a TFT entry with the FILE macro, ACS remains in the same state
as when SORT is started, i.e. file names can be replaced. There is therefore no
difference with regard to file names between the TFT entries of the user and those of
SORT.

3. If a user specifies a file name in an ASSIGN-FILES statement and a TFT entry already
exists, he or she must consider whether the file name has been replaced or not. The file
name in the statement will in any case be used without replacements for the file name
comparison.

4. If the user changes the state of ACS between creation of the TFT entries and the start
of SORT (e.g. through delayed loading, interruption, etc.), it may be unclear which file
names are actually used in the end.

Files larger than 32 GBytes Files of the SORT program

120 U6184-J-Z125-6-76

3.11 Working with files larger than 32 GB

Disk storage capacities are continuously increasing in size, and the increasing volume of
data resources that must be maintained online have been taken into consideration for
BS2000/OSD-BC V5.0. Previously available disk and file sizes have been increased to
include volumes of 32 GB.

As of BS2000/OSD-BC V5.0:

– the maximum capacity of a single disk is approximately 4 terabytes
(2.147.483.647 PAM pages)

– the maximum file size is also approximately 4 terabytes (2.147.483.647 PAM pages)

SORT V8.0 supports a file size of more than 32 GB for input, output, work and auxiliary files.

Due to the numerous possible constellations when sorting, it is possible that only one,
several or all participating files exceed the 32 GB limit. In principle, SORT permits file sizes
of more than 32 GB for the files used. However, the user must usually make sure that the
files greater than 32 GB are created on a pubset that is designed to handle files of this type
and that there is sufficient storage space available to it.

Additional information about files larger than 32 GB can be found in the “Introductory Guide
to DMS” manual [2].

3.11.1 Creating files larger than 32 GB

Files where the size is permitted to exceed 32 GB should be created before a sort run using
CREATE-FILE/ADD-FILE-LINK. This guarantees that a file of sufficient size is made
available on a suitable pubset.

The creation of output, work and auxiliary files may, however, be left to SORT. For this
purpose, the names of the files that are to be created must be entered in the ASSIGN-
FILES statement along with the catalog ID (cat-id). These catalog IDs must refer to a pubset
that is suitable for files Ï 32 GB. The size of the file can only be specified explicitly for the
work file. This is done using the statement
//ASSIGN-RESOURCES ...,DISK-SPACE=<integer 1..2147483647>...

You do not need to specify the file name for work and auxiliary files, as long as the default
pubset permits files Ï 32 GB. In this case, SORT creates the files on the default pubset, as
required, under a name that it generates itself.

Files of the SORT program Files larger than 32 GBytes

U6184-J-Z125-6-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

Forcing the use of files greater than 32 GB

If the system is to check before a sort run whether there is sufficient space available for the
individual files, the relevant files must be made available with the appropriate SPACE speci-
fications. Here, the value of the primary allocation is particularly important, since the value
of the secondary allocation is not permitted to exceed 32767 PAM pages. This also applies
to automatically calculated values for the secondary allocation, if the specification made
using DISK-SPACE of the ASSIGN-RESOURCES statement specifies a larger value for the
primary allocation.

When using files Ï 32 GB, you must pay more attention to ensuring sufficient primary
allocation than for smaller files because the storage space that is made available with
secondary allocation is a smaller proportion of the overall volume.

3.11.2 Tag sort

In a tag sort the following restrictions apply for input files Ï 32 GB, according to file type:

– SAM files

When using the variants *TAG-HEADER and *TAG-TRAILER, four-byte long retrieval
address fields are formed (three bytes for the number of the data block and one for the
relative record number within the block). When using input files Ï 32 GB it may be that
the number of data blocks cannot be represented using just three bytes. The sort run
will be rejected with the message SRT1264.

With the variant *TAG-COMPOUND there are no restrictions.

– PAM files

All retrieval addresses are four bytes in length. With input files Ï 32 GB all variants of
address list sorting are rejected.

– ISAM files

There are no restrictions for input files Ï 32 GB compared with files < 32 GB.

Files larger than 32 GBytes Files of the SORT program

122 U6184-J-Z125-6-76

3.11.3 Recommendations when working with large files

As a result of the longer run times required when sorting large files, it may be sensible to
set checkpoints. This naturally assumes that you will be working with either the cycle sort
or multi-tasking sort method. The increased time expenditure of these methods is rewarded
with a greater level of safety. Sort runs of this magnitude may take 24 hours or longer.

In order to achieve longer sequences in the presort phase (and thus shorter sort times) it is
recommended that a larger MEMORY-SIZE value is entered in the ASSIGN-RESOURCES
statement (e.g. 10000 or above). The optimum value here will depend on the following
factors:
– Size of the real memory of the computer being used,
– Maximum value for the virtual memory of the ID,
– other users that are working in parallel to SORT.
Insufficient real memory and work being carried out in parallel may lead to increased
paging. This then reduces the benefit of using longer sequences. When carrying out very
long sort runs, you should try to ensure that the computer is available exclusively for SORT.

 If an excessively large value is specified for MEMORY-SIZE, the run time of the
SORT may be increased considerably because the pages of the virtual memory are
continuously being swapped in and out.

– The size of the real memory (in MB) can be determined using
/SHOW-SYSTEM-INFORMATION INFORMATION=MEMORY-SIZE

– The maximum size of the virtual memory of the ID (in MB) can be determined using
/SHOW-USER-ATTRIBUTES (ADDRESS-SPACE-LIMIT field)

The value for the maximum size of the virtual memory can be increased by systems
support if necessary.

The MEMORY-SIZE value should be set at 70% of the smaller of the two values. MEMORY-
SIZE specifies the amount of the main memory to be used in CORE pages (4096 Byte).

i

Files of the SORT program Files larger than 32 GBytes

U6184-J-Z125-6-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

34
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

3

If the real memory is extremely small, the value for MEMORY-SIZE may exceed the size of
the real memory. The size of the virtual memory may not be exceeded.

Example

The value of MEMORY-SIZE in ASSIGN-RESOURCES is, in certain circumstances,
restricted for SORT by the CORE-MAXIMUM limit value of the system. In this case, this
value can be increased by specifying CORE-MAXIMUM in the statement MODIFY-SORT-
DEFAULTS.

The value for CORE-MAXIMUM must be at least 1/16 of the value of MEMORY-SIZE,
otherwise the MEMORY-SIZE will be decreased accordingly.

A sufficiently large value for MEMORY-SIZE is then available if there is only a single presort
run and a single end merge run, but no intermediate merge run (recognizable by MIN-MSG-
WEIGHT=*ALL).

In order that large MEMORY sizes can actually be used by SORT, SORT must run in the
upper address space. You can ensure that this happens by specifying PROG-MODE=*ANY
in the START-SORT command, or by starting SORT using the SORT-FILE command.

Size of real memory 120 MByte

Size of virtual memory of the ID 128 MByte

Value of MEMORY-SIZE in ASSIGN-RESOURCES 20480 (or 80 MByte)

Files larger than 32 GBytes Files of the SORT program

124 U6184-J-Z125-6-76

U6184-J-Z125-6-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

4 SORT statements

4.1 Input sources

When SORT is used as an independent program or as a subroutine invoked at level 0,
statements can be entered at a display terminal or from a procedure or ENTER file. When
SORT is used as a subroutine at level 1, the statements must be made available in virtual
memory.

Each sort/merge run requires either a SORT-RECORDS or MERGE-RECORDS statement
to be entered. Each definition of a sort/merge run has to be concluded with an END
statement.

With the exception of the END statement and the ADD-SYMBOLIC-NAME statement, all
statements in a sort/merge run may be specified in any order. The END statement must
always be the last statement specified and may only occur once in any run. The ADD-
SYMBOLIC-NAME statement must always come ahead of the statement in which the
assigned symbolic name is used. In interactive mode, multiple statements of a single type
are permitted. In procedure, batch and level 1 modes, if more than one statement of a single
type occurs the SORT run will be aborted.

SORT statements are similar in format to variable-length records. The length specification
is stored in the first halfword of the record length field that is prefixed to the record proper.
SORT statements are read in via the system file SYSDTA. Statements entered directly at
the terminal have the length specification added by the system.

When SORT is invoked as a subroutine, the SORT statements can also be passed directly
to it in main memory.

SDF syntax representation SORT statements

126 U6184-J-Z125-6-76

4.2 SDF syntax representation

Details on the SDF metasyntax and data types and on entering commands and statements
can be found in the „SDF Dialog Interface“ [7] and "Commands" [1] manuals.

4.3 Error handling

Syntax errors are handled by SDF itself. Semantic errors within a statement (e.g. conflicting
operands) are dealt with as follows:

– in interactive and procedure mode with the SDF option PROCEDURE-
DIALOGUE=*YES, a correction dialog is initiated.

– in procedure mode with the SDF option PROCEDURE-DIALOGUE=*NO and when
running SORT as a subroutine at level 1, a branch is made to the next STEP or END
statement.

– statement files are handled like procedure files.

Correction dialog sequence

Messages indicating the type of error are followed by a request issued at the terminal to
correct the errored operands. This process is repeated until the statement is free of error.

SORT statements Overview of the SORT statements

U6184-J-Z125-6-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

4.4 Overview of the SORT statements

The SDF standard statements may be entered additionally. They are not described in the
present manual. A description may be found in the manual “SDF Dialog Interface” [7].

Operation Scope Old ISP
statement

ADD-SYMBOLIC-NAMES Assigns symbolic names to sort, sum, match and
remainder fields, as well as to constants and
masks.

ASSIGN-EXITS Enables user routines to be connected at defined
SORT exits.

MODS

ASSIGN-FILES Assigns input, output, work, auxiliary, checkpoint
and statement files.

ASSIGN-RESOURCES Specifies the amount of main memory and disk
storage space required, as well as the number of
tape units.

ALLOC

END End of statement input and start of sort/merge run END

MERGE-RECORDS Statement defining a merge run; describes the sort
fields and their most significant attributes.

MERGE

MODIFY-CODE Defines and modifies the code sorting sequence for
MODIFY-CODE sort fields.

NEWCOL

MODIFY-SORT-DEFAULTS Modifies default values.

SELECT-INPUT-RECORDS Enables records of the input file(s) to be selected
using a logical expression.

OMIT,
INCLUDE

SET-RECORD-
ATTRIBUTES

Describes the input, internal and output records in
terms of format, length and filler character (if any).

RECORD

SET-SORT-OPTIONS Defines options for message output, link name
handling, error handling, etc.

OPTION

SHOW-SORT-DEFAULTS Displays default values.

SORT-RECORDS Statement defining a sort run; describes the sort
fields and their most significant attributes.

SORT

SUM-RECORDS Records with identical sort keys can be compacted
into one record and the sum fields added together.

SUM

ADD-SYMBOLIC-NAMES SORT statements

128 U6184-J-Z125-6-76

ADD-SYMBOLIC-NAMES

ADD-SYMBOLIC-NAMES assigns symbolic names to

– sort fields

– sum fields

– match fields

– remainder fields

– constants

– print masks.

Symbolic names can be used in the following statements:

– MERGE-RECORDS

– SELECT-INPUT-RECORDS

– SORT-RECORDS

– SUM-RECORDS

Up to 255 symbolic names can be defined.

SORT statements ADD-SYMBOLIC-NAMES

U6184-J-Z125-6-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

ADD-SYMBOLIC-NAMES

FIELDS = *NO / list-poss(255): <name 1..20>(...)

<name 1..20>(...)
 ⏐ POSITION = <integer 1..32759>(...)
⏐ ⏐ <integer 1..32759>(...)
⏐ ⏐ ⏐ BIT-POSITION = 0 / <integer 0..7>
⏐ ⏐ ,LENGTH = <integer 0..32759>(...)
⏐ ⏐ <integer 0..32759>(...)
⏐ ⏐ ⏐ NUMBER-OF-BITS = 0 / <integer 0..7>
⏐ ⏐ ,FORMAT = *CHARACTER / *NO / *BINARY / *FIXED-POINT / *FLOATING-POINT /

⏐ *PACKED-DECIMAL / *ZONED-DECIMAL / *EBCDIC-DIN /

⏐ *EBCDIC-INTERNATIONAL / *PHYSICAL-TRANSLATE / *VIRTUAL-TRANSLATE /

⏐ *MODIFY-CODE / *EBCDIC-ISO-EBCDIC / *EXTENDED-CHARACTER /

⏐ *TRANSLATE-CHARACTER / *UNICODE-CHARACTER

,CONSTANTS = *NO / list-poss(255): <name 1..20>(...)

<name 1..20>(...)
 ⏐ VALUE = <integer -2147483639..2147483639> / <c-string 1..256 with-low> /

⏐ <x-string 1..512>

,PRINT-MASKS = *NO / list-poss(255): <name 1..20>(...)

<name 1..20>(...)
 ⏐ FORM = <c-string 1..254 with-low>

ADD-SYMBOLIC-NAMES SORT statements

130 U6184-J-Z125-6-76

FIELDS =
Up to 255 symbolic names may be defined for sort, sum, match and remainder fields in
respect of position, length and format for the statements SORT-RECORDS, MERGE-
RECORDS, SUM-RECORDS and SELECT-INPUT-RECORDS.

FIELDS = *NO
No symbolic names are defined for fields.

FIELDS = list-poss(255): <name 1..20(...)>
Symbolic name for the field.

POSITION = <integer 1..32759(...)>
Position of the field relative to start of record. The specified position must be within the
permitted bounds. These are indicated in the description of the POSITION operand of
the statement for which the field is defined.

BIT-POSITION = 0 / <integer_0..7>
Position of the binary field relative to start of field. BIT-POSITION may be specified
only for sort fields in BINARY format.

LENGTH = <integer 0..32759(...)>
Length of the field. The specified length must be within the permitted bounds. These are
indicated in the description of the LENGTH operand of the statement for which the field
is defined.

NUMBER-OF-BITS = 0 / <integer 0..7>
Length in bits, specified in addition to the length in bytes. NUMBER-OF-BITS may
be specified only for sort fields in BINARY format.

FORMAT = *CHARACTER / *NO / *BINARY / *FIXED-POINT / *FLOATING-POINT /
*PACKED-DECIMAL / *ZONED-DECIMAL / *EBCDIC-DIN /
*EBCDIC-INTERNATIONAL/ *PHYSICAL-TRANSLATE / *VIRTUAL-TRANSLATE /
*MODIFY-CODE / *EBCDIC-ISO-EBCDIC / *EXTENDED-CHARACTER /
*TRANSLATE-CHARACTER / *UNICODE-CHARACTER
Format of the sort field (for attributes see page 38). The format specified must be valid
for the statement for which the field is defined. The entry FORMAT=*NO is only effective
when used in conjunction with remainder fields (see SORT-RECORDS statement,
page 182).

SORT statements ADD-SYMBOLIC-NAMES

U6184-J-Z125-6-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

CONSTANTS =
Symbolic names of the constants for the SORT-RECORDS and SELECT-INPUT-
RECORDS statements. The combined length of all specified constants and print masks
must not be greater than 5000 bytes.

CONSTANTS = *NO
No symbolic names are defined for constants.

CONSTANTS = list-poss(255): <name 1..20(...)>
Symbolic names of the constants.

VALUE =
Value of the constant. Permitted values are indicated in the description of the statement
for which the constant is defined.

VALUE = <integer-2147483639..2147483639>
Decimal constant. Converted by SORT into a 4-byte fixed-point number.

VALUE = <c-string 1..256 with-low>
Character constant.

VALUE = <x-string 1..512>
Hexadecimal constant.

PRINT-MASKS =
Assigns symbolic names to print masks for the SORT-RECORDS and SUM-RECORDS
statements. The combined length of all specified constants and print masks must not be
greater than 5000 bytes, including the extra 1-byte length field required for each mask.

PRINT-MASKS = *NO
No symbolic names are defined for print masks.

PRINT-MASKS = list-poss(255): <name 1..20(...)>
Name(s) of the print mask(s).

FORM = <c-string 1..254 with-low>
Form of the print mask. The following characters are possible:

– a freely selectable filler character as the first character of the mask

– the control characters ’#’ (number sign) and ’^’ (circumflex)

– characters to be inserted (not equal to the control characters)

ASSIGN-EXITS SORT statements

132 U6184-J-Z125-6-76

ASSIGN-EXITS

ASSIGN-EXITS links the user exits provided by SORT with the associated user routines.

SORT uses modules that are loaded from libraries. The libraries first have to be assigned
in one of the following ways:
– //ASSIGN-FILES MODULE-LIBRARY=libraryname
– /ADD-FILE-LINK LINK-NAME=SORTMODS
– /ADD-FILE-LINK LINK-NAME=<BLSLIB00..BLSLIB99>
– /SET-TASKLIB LIBRARY=libraryname

SORT looks for the user routines using the following procedure:

– If a library is assigned using //ASSIGN-FILES MODULE-LIBRARY=... (see page 139)
or with the file link name SORTMODS, SORT attempts to load the routine from this
library.

If SORT is unable to locate the requested user routine in this library, it will then look in
the libraries with the file link names BLSLIB00 - BLSLIB99 in ascending order
(00, 01, .., 99). The numbers do not have to be contiguous.

– If no library is assigned with the file link name SORTMODS or using //ASSIGN-FILES
MODULE-LIBRARY=..., then the system looks for a library made available using the
SET-TASKLIB command.

SORT statements ASSIGN-EXITS

U6184-J-Z125-6-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

ASSIGN-EXITS

PLANNING = *NO / *DIALOG / *TERMINATE-ABNORMAL

,INPUT = *NO / *MODULE(...)

*MODULE(...)
 ⏐ NAME = <name 1..8>
⏐ ⏐ ,PARAMETER-MODE = 24 / *ANY

,OUTPUT = *NO / *MODULE(...)

*MODULE(...)
 ⏐ NAME = <name 1..8>
⏐ ⏐ ,PARAMETER-MODE = 24 / *ANY

,EXLST-FOR-INPUT = *NO / *MODULE(...)

*MODULE(...)

⏐ NAME = <name 1..8>

,EXLST-FOR-OUTPUT = *NO / *MODULE(...)

*MODULE(...)

⏐ NAME = <name 1..8>

,WORK-FILE-OVERFLOW = *NO / *DIALOG / *FINISH-INPUT / *TERMINATE-ABNORMAL / *MODULE(...)

*MODULE(...)
 ⏐ NAME = <name 1..8>

⏐ ,INTERFACE-VERSION = 1 / <integer 1..2>

,PHYSICAL-TRANSLATE = *NO / *MODULE(...)

*MODULE(...)
 ⏐ NAME = <name 1..8>

,VIRTUAL-TRANSLATE = *NO / *MODULE(...)

*MODULE(...)
 ⏐ NAME = <name 1..8>

,EXTERNAL-COMPARE = *NO / *MODULE(...)

*MODULE(...)
 ⏐ NAME = <name 1..8>
⏐ ⏐ ,PARAMETER-MODE = 24 / *ANY

,TRANSLATE-CHARACTER = *NO / *MODULE(...)

*MODULE(...)

⏐ NAME = <name 1..8>

ASSIGN-EXITS SORT statements

134 U6184-J-Z125-6-76

PLANNING =
Activated after the planning phase has been completed and the sort strategy selected.

PLANNING = *NO
The exit is not activated.

PLANNING = *DIALOG
SORT outputs the estimated size of the work file (in PAM pages) and the number of
requested CORE pages. After this, the following actions are allowed:

CONTINUE Processing is continued.

START The SORT run is restarted. Only the modified statements need to be
reentered. START is permitted only for independent SORT runs and
when SORT is invoked as a subroutine via level 0.

TERMINATE The SORT run is terminated.

In procedure or batch mode, if no action is specified, processing resumes with CONTINUE.

PLANNING = *TERMINATE-ABNORMAL
The SORT run is terminated.

INPUT =
Activated when SORT accepts a record from the input source. The record can be checked,
modified or deleted. It is also possible to insert new records. The user routine can also be
responsible for the entire input.

INPUT = *NO
The exit is not activated.

INPUT = MODULE(...)
Specifies a user module to be linked in and invoked by SORT.

NAME = <name 1..8>
Name of the user module.

PARAMETER-MODE =
Defines the interface between SORT and the user module and the addressing mode in
which the user module executes. For a user module which can run only in 24-bit
addressing mode, PARAMETER-MODE=24 must be set and the corresponding
interface used.

PARAMETER-MODE = 24
The user module can run in 24-bit addressing mode only.

PARAMETER-MODE = *ANY
The user module can run in 24-bit or 31-bit addressing mode.

SORT statements ASSIGN-EXITS

U6184-J-Z125-6-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

OUTPUT =
Activated before SORT writes to the output file. The record can be checked, modified or
deleted. It is also possible to insert new records. The user routine can also be responsible
for the entire output.

OUTPUT = *NO
The exit is not activated.

OUTPUT = *MODULE(...)
Specifies a user module to be linked in and invoked by SORT.

NAME = <name 1..8>
Name of the user module.

PARAMETER-MODE =
Defines the interface between SORT and the user module and the addressing mode in
which the user module executes. For a user module which can run only in 24-bit
addressing mode, PARAMETER-MODE=24 must be set and the corresponding
interface used.

PARAMETER-MODE = 24
The user module can run in 24-bit addressing mode only.

PARAMETER-MODE = *ANY
The user module can run in 24-bit or 31-bit addressing mode.

EXLST-FOR-INPUT =
Specifies EXLST exits for the input file(s).

EXLST-FOR-INPUT = *NO
The exit is not activated.

EXLST-FOR-INPUT = *MODULE(...)
Specifies a user module to be linked in by SORT.

NAME = <name 1..8>
Name of the user module.

EXLST-FOR-OUTPUT =
Specifies EXLST exits for the output file.

EXLST-FOR-OUTPUT = *NO
The exit is not activated.

EXLST-FOR-OUTPUT = *MODULE(...)
Specifies a user module to be linked in by SORT.

NAME = <name 1..8>
Name of the user module.

ASSIGN-EXITS SORT statements

136 U6184-J-Z125-6-76

WORK-FILE-OVERFLOW =
Activated if the overflow of a disk work file with a secondary allocation = 0 is imminent,
SORT cannot remove the bottleneck and no auxiliary file is available for a further cycle.

WORK-FILE-OVERFLOW = *NO
The exit is not activated.

WORK-FILE-OVERFLOW = *DIALOG
The number of records accepted by SORT up to this point is displayed and one of the
following actions is expected:

CONTINUE SORT attempts to perform the SORT run with fewer reserves.

FINISH SORT terminates record input and processes the records already
accepted.

TERMINATE SORT terminates the run.

WORK-FILE-OVERFLOW = *FINISH-INPUT
Record input is terminated and SORT processes the records read thus far.

WORK-FILE-OVERFLOW = *TERMINATE-ABNORMAL
The sort/merge run is terminated.

WORK-FILE-OVERFLOW = *MODULE(...)
Specifies a user module to be linked in and invoked by SORT.

NAME = <name 1..8>
Name of the user module.

INTERFACE-VERSION =
Version of the interface that SORT is to use when calling the exit module (see section
“WORK-FILE-OVERFLOW” on page 249).

INTERFACE-VERSION = 1
SORT uses the old interface with 4-byte record counters. Up to 2.14.483.639 records
can be processed.

INTERFACE-VERSION = 2
SORT uses the new interface with 8-byte record counters. Up to
9.223.372.036.854.775.807 - 8 records can be processed.

PHYSICAL-TRANSLATE =
Connects a user routine consisting of two code tables (of 256 characters each). The code
tables determine the sorting sequence for fields having the format PHYSICAL-
TRANSLATE. The first table is used to convert the sort fields after input, the second to
reconvert them prior to output (see chapter “SORT user exits” on page 233).

PHYSICAL-TRANSLATE = *NO
The exit is not activated.

SORT statements ASSIGN-EXITS

U6184-J-Z125-6-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

PHYSICAL-TRANSLATE = *MODULE(...)
Specifies a user module to be linked in by SORT.

NAME = <name 1..8>
Name of the user module.

VIRTUAL-TRANSLATE =
Connects a user routine consisting of one code table (of 256 characters). The code table
determines the sorting sequence for fields having the format VIRTUAL-TRANSLATE.
Before the comparisons are made, the sort field is converted into an auxiliary field. The sort
field itself is not modified (see chapter “SORT user exits” on page 233).

VIRTUAL-TRANSLATE = *NO
The exit is not activated.

VIRTUAL-TRANSLATE = *MODULE(...)
Specifies a user module to be linked in by SORT.

NAME = <name 1..8>
Name of the user module.

EXTERNAL-COMPARE =
This exit is activated for each record comparison for fields defined with the sorting order
EXTERNAL-COMPARE. The order can then be determined by the user module.

EXTERNAL-COMPARE = *NO
The exit is not activated.

EXTERNAL-COMPARE = *MODULE(...)
Specifies a user module to be linked in by SORT.

NAME = <name 1..8>
Name of the user module.

PARAMETER-MODE =
Defines the interface between SORT and the user module and the addressing mode in
which the user module executes. For a user module which can run only in 24-bit
addressing mode, PARAMETER-MODE=24 must be set and the corresponding
interface used.

PARAMETER-MODE = 24
The user module can run in 24-bit addressing mode only.

PARAMETER-MODE = *ANY
The user module can run in 24-bit or 31-bit addressing mode.

ASSIGN-EXITS SORT statements

138 U6184-J-Z125-6-76

TRANSLATE-CHARACTER =
Connects a user routine consisting of two code tables (of 256 characters each). The code
table determines the sorting sequence for fields having the format TRANSLATE-
CHARACTER when the CCSN of the input file matches the name of the specified module
(see the chapter “SORT user exits” on page 233).

TRANSLATE-CHARACTER = *NO
The exit is not activated.

TRANSLATE-CHARACTER = *MODULE(...)
Specifies a user module to be linked in by SORT.

NAME = <name 1..8>
Name of the user module.

SORT statements ASSIGN-FILES

U6184-J-Z125-6-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

ASSIGN-FILES

ASSIGN-FILES assigns input, output, work, auxiliary, checkpoint and statement files, as
well as a library containing user modules. This statement is used in combination with the
START-SORT command.

INPUT-FILES =
Assignment of input file(s) (max. 99).

INPUT-FILES = *LINK
The input files are assigned via ADD-FILE-LINK commands (file link name SORTIN,
SORTINxx or MERGExx).
By default the file link name is released again when SORT terminates. If the LOCK-FILE-
LINK command is specified before SORT is invoked, the file link name is retained.

INPUT-FILES = list-poss(99): <filename 1..54> / <posix-pathname 1..1023>
Name(s) of the input file(s). Input files assigned using a ADD-FILE-LINK command or a
preceding ASSIGN-FILES statement are ignored.
POSIX file names must be specified in single quotes to distinguish them from BS2000 file
names.
POSIX input files and BS2000 input files must not be used simultaneously in a sort run. If
one input file is a POSIX file, all other input files must also be POSIX files.

Restriction:
The sum of the number and lengths of all specified POSIX input file names must not be
greater than 5100. If any specifications exceed this, an error message is issued and SORT
is aborted.

ASSIGN-FILES

INPUT-FILES = *LINK / list-poss(99): <filename 1..54> / <posix-pathname 1..1023>

,OUTPUT-FILE = *LINK / <filename 1..54> / <posix-pathname 1..1023>

,WORK-FILES = *STD / list-poss(9): <filename 1..54>

,AUXILIARY-FILES = *STD / list-poss(99): <filename 1..54>

,CHECKPOINT-FILE = *STD / <filename 1..54>

,MODULE-LIBRARY = *STD / <filename 1..54>

,STATEMENT-FILES = *NONE / list-poss(10): <filename 1..54>

,CODE = *EBCDIC / *ASCII

ASSIGN-FILES SORT statements

140 U6184-J-Z125-6-76

OUTPUT-FILE =
Output file assignment.

OUTPUT-FILE = *LINK
The output file is assigned by means of a ADD-FILE-LINK command (file link name
SORTOUT).

OUTPUT-FILE = <filename 1..54> / <posix-pathname 1..1023>
Name of the output file. An output file assigned via a ADD-FILE-LINK command or a
preceding ASSIGN-FILES statement is ignored. Different file attributes than those taken
from the input file or specified by SORT can only be assigned via a ADD-FILE-LINK
command.
The file link name SORTOUT is used, and is retained after the sort run is completed.
A POSIX file name must be specified in single quotes to distinguish it from a BS2000 file
name.

WORK-FILES =
Assignment of the work file(s) (max. 9).

WORK-FILES = *STD
The work files are assigned via a ADD-FILE-LINK command (file link name SORTWK or
SORTWKx) or are created by SORT (file name: SORTWKx.tsn.yymmdd.hhmmss).

WORK-FILES = list-poss(9): <filename 1..54>
Name(s) of the work file(s). Work files assigned via the ADD-FILE-LINK command or a
preceding ASSIGN-FILES statement are ignored. The files and file link names are retained
after the end of the sort run.

AUXILIARY-FILES =
Assignment of the auxiliary file(s) (max. 99).

AUXILIARY-FILES = *STD
The auxiliary files are assigned via ADD-FILE-LINK commands (file link name SORTWKxx)
or are created by SORT (file name SORTWKxx.tsn.yymmdd.hhmmss).

AUXILIARY-FILES = list-poss(99): <filename 1..54>
Name(s) of the auxiliary file(s). Auxiliary files assigned via ADD-FILE-LINK commands or a
preceding ASSIGN-FILES statement are ignored. The files and file link name are retained
after the end of the sort run.

SORT statements ASSIGN-FILES

U6184-J-Z125-6-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

CHECKPOINT-FILE =
Assignment of a checkpoint file.

CHECKPOINT-FILE = *STD
The checkpoint file is assigned via a ADD-FILE-LINK command (file link name
SORTCKPT) or is created by SORT (file name: SORTCKPT.tsn.yymmdd.hhmmss).

CHECKPOINT-FILE = <filename 1..54>
Name of the checkpoint file. A checkpoint file assigned via a ADD-FILE-LINK command or
a preceding ASSIGN-FILES statement is ignored. The file and file link name are retained
after the end of the sort run.

MODULE-LIBRARY =
Assignment of an object module library containing user modules. SORT loads user
modules from this library.

MODULE-LIBRARY = *STD
The object module library is assigned via a ADD-FILE-LINK command (file link name
SORTMODS). The file link name is retained after the end of the sort run.

MODULE-LIBRARY = <filename 1..54>
Name of the object module library. A library assigned via a ADD-FILE-LINK command or a
preceding ASSIGN-FILES statement is ignored.

STATEMENT-FILES =
Assignment of one or more files (max. 10) containing SORT statements (see section
“Statement files” on page 114).

STATEMENT-FILES = *NONE
No statement files are specified.

STATEMENT-FILES = list-poss(10): <filename 1..54>
Name(s) of the statement file(s).

CODE =
Specification of the code of POSIX files. This applies to both the input file and the output file
and merely defines the encoding of the end-of-record identifier. In particular, this operand
has no effect on the sort sequence. For BS2000 files the operand has no significance and
is ignored.

CODE = *EBCDIC
The end-of-record identifier is encoded according to EBCDIC and has the value X’15’.

CODE = *ASCII
The end-of-record identifier is encoded according to ASCII and has the value X’0A’.

ASSIGN-RESOURCES SORT statements

142 U6184-J-Z125-6-76

ASSIGN-RESOURCES

ASSIGN-RESOURCES defines the size of the main memory and disk storage to be used
by SORT, as well as the number of tape units for auxiliary files. The specifications made in
ASSIGN-RESOURCES take precedence over the values determined by SORT.

MEMORY-SIZE =
Specifies the size of virtual memory for the presorting areas and the internal input/output
buffers. If this operand is not specified, SORT calculates a value from other explicit or
implicit specifications for the sort/merge run. If no data is available on which to base an
estimate, SORT uses the value which can be defined as the default value with the CORE-
DEFAULT operand of the MODIFY-SORT-DEFAULTS statement. The upper and lower
limits can also be defined with the MODIFY-SORT-DEFAULTS statement.

MEMORY-SIZE = *STD
The value is calculated by SORT from the specifications for the sort/merge run. If SORT
cannot calculate this value because the necessary specifications are missing, the preset
default value is assumed. This default can be defined specific to the ID or to the system by
means of the CORE-DEFAULT operand of the MODIFY-SORT-DEFAULTS statement
(factory presetting = 40).

MEMORY-SIZE = *MIN
Minimum value. Corresponds to the value that can be defined ID- or system-specifically
with the CORE-MINIMUM operand of the MODIFY-SORT-DEFAULTS statement (factory
presetting: SORT = 24). If this CORE value is too small (e.g. record length = 32759), it is
increased by SORT.

MEMORY-SIZE = *SMALL
Lower value, corresponds to the larger of the following values:
– value calculated by SORT minus 33% or
– specification in the CORE-MINIMUM operand of the MODIFY-SORT-DEFAULTS

statement.

ASSIGN-RESOURCES

MEMORY-SIZE = *STD / *MIN / *SMALL / *LARGE / *MAX / <integer 1..500000>

,DISK-SPACE = *BY-CALCULATION / <integer 1..2147483647>

,TAPE-UNITS = *NONE / <integer 1..99>

SORT statements ASSIGN-RESOURCES

U6184-J-Z125-6-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

MEMORY-SIZE = *LARGE
Higher value, corresponds to the smaller of the following values:
– value calculated by SORT plus 33% or
– specification in the CORE-MAXIMUM operand of the MODIFY-SORT-DEFAULTS

statement.

MEMORY-SIZE = *MAX
Maximum value. Value which can be defined ID- or system-specifically with the CORE-
LIMIT operand of the MODIFY-SORT-DEFAULTS statement (factory presetting = 96).

MEMORY-SIZE = <integer 1..500000>
Size of the desired memory area in CORE pages (4K). If a value greater than 32767 is
specified, this value is converted to megabytes (division by 256), with the result that the
actual CORE value can be up to 255 CORE pages less than the specified value.

DISK-SPACE =
Size, in PAM pages, of a disk work file to be set up by SORT.

DISK-SPACE = *BY-CALCULATION
The size of the work file is calculated by SORT from the entries for ESTIMATED-RECORDS
and RECORDS-PER-CYCLE (in the SORT-RECORDS statement). If this is not possible,
SORT uses the value for MEMORY-SIZE multiplied by 16.

DISK-SPACE = <integer 1..2147483647>
Size of the work file in PAM pages. If the user has set up one or more work files
independently, this value is ignored.

TAPE-UNITS =
Specifies auxiliary tape units to be used for cycle output during cycle sorting. If the values
given for ESTIMATED-RECORDS and RECORDS-PER-CYCLE (in the SORT-RECORDS
statement) result in the number of cycles being greater than the number of auxiliary files
assigned via file link names, SORT sets up additional auxiliary files.

TAPE-UNITS = *NONE
No tape units are made available for auxiliary files.

TAPE-UNITS = <integer 1..99>
Number of tape units available for auxiliary files.

END SORT statements

144 U6184-J-Z125-6-76

END

Function: Completes the entry of a SORT statement and initiates the sort/merge run. The
END statement is always the last statement entered and may only be used once.

This statement has no operands.

END

SORT statements MERGE-RECORDS

U6184-J-Z125-6-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

MERGE-RECORDS

MERGE-RECORDS defines sort fields and their most significant attributes (position,
length,...) for a merge run. A merge run can take place only if all of the input files are already
sorted according to the specified sort keys.

A merge run using MERGE-RECORDS should be performed when files have already been
sorted according to a common criterion, since then there is no compute-intensive sorting
phase.

MERGE-RECORDS

FIELDS = *COMPLETE-RECORD / list-poss(64): *FIELD-EXPLICIT(...) / *FIELD-SYMBOLIC(...)

*FIELD-EXPLICIT(...)
 ⏐ POSITION = <integer 1..32759>(...)
⏐ ⏐ <integer 1..32759>(...)
⏐ ⏐ ⏐ BIT-POSITION = 0 / <integer 0..7>
⏐ ⏐ ,LENGTH = <integer 0..32759>(...)
⏐ ⏐ <integer 0..32759>(...)
⏐ ⏐ ⏐ NUMBER-OF-BITS = 0 / <integer 0..7>
⏐ ⏐ ,FORMAT = *CHARACTER / *BINARY / *FIXED-POINT / *FLOATING-POINT /

⏐ *PACKED-DECIMAL / *ZONED-DECIMAL / *EBCDIC-DIN /

⏐ *EBCDIC-INTERNATIONAL / *PHYSICAL-TRANSLATE / *VIRTUAL-TRANSLATE /

⏐ *MODIFY-CODE / *EBCDIC-ISO-EBCDIC / *EXTENDED-CHARACTER /

⏐ *TRANSLATE-CHARACTER / *UNICODE-CHARACTER
⏐ ⏐ ,SORTING-ORDER = *ASCENDING / *DESCENDING / *EXTERNAL-COMPARE
⏐ ⏐ ,PRIORITY = *CURRENT-NUMBER / <integer 1..64>
⏐ ⏐ ,ELIMINATE = *NO / *YES
⏐ ⏐ ,TWO-DIGIT-YEAR = *NO / *YES

*FIELD-SYMBOLIC(...)
 ⏐ SORT-FIELD-NAME = list-poss(64): <name 1..20>
⏐ ⏐ ,SORTING-ORDER = *ASCENDING / *DESCENDING / *EXTERNAL-COMPARE
⏐ ⏐ ,PRIORITY = *CURRENT-NUMBER / <integer 1..64>
⏐ ⏐ ,ELIMINATE = *NO / *YES
⏐ ⏐ ,TWO-DIGIT-YEAR = *NO / *YES

,RECORDS-PER-CYCLE = *NO / <integer 1..2147483639>

,CHECKPOINT = *NO / *YES

MERGE-RECORDS SORT statements

146 U6184-J-Z125-6-76

FIELDS =
Specifies the sort fields that determine the merge sequence. At least one sort field must be
specified; up to 64 may be specified.

FIELDS = *COMPLETE-RECORD
With fixed record format, the whole record is used as a sort field. With variable record
format, the record length field is not included in the record comparison. For the purposes of
record comparison, the variable part of the record is padded out to the maximum record
length with the filler character defined in the FILLER operand of the SET-RECORD-
ATTRIBUTES statement (default value X’00’).

FIELDS = *FIELD-EXPLICIT(...)
Specifies sort fields in terms of position, length and format.

POSITION = <integer 1..32759(...)>
Position of the sort field relative to start of record. In fixed-length records the first data
field occupies position 1. In records with variable record format, the position of the first
data field depends on the file type and the IGNORE-LENGTH-FIELD operand of the
SET-SORT-OPTIONS statement. This dependency is shown in the following table:

For all formats except CHARACTER, EBCDIC-DIN, EBCDIC-INTERNATIONAL,
EXTENDED-CHARACTER and TRANSLATE-CHARACTER the position specifications
for sort fields must be in the range 1 to 4096.

BIT-POSITION = 0 / <integer 0..7>
Position specified in bits, in addition to the byte position entry. Specifying BIT-
POSITION is allowed only for sort fields in BINARY format.

LENGTH = <integer 0..32759(...)>
Length of the sort field. The length must be within the limits allowed for the format.
Specifying BIT-POSITION and NUMBER-OF-BITS increases the length of the sort field
by 1 byte (BIT-POSITION + NUMBER-OF-BITS Î 7) or by 2 bytes (BIT-POSITION +
NUMBER-OF-BITS > 7). This must be taken into account when specifying the
maximum length. With variable-length records sort fields in CHARACTER, EBCDIC-
DIN and EBCDIC-INTERNATIONAL format are allowed to extend into the variable part
of the record.

NUMBER-OF-BITS = 0 / <integer 0..7>
Length specified in bits, in addition to the length in bytes. Specifying NUMBER-OF-
BITS is allowed only for sort fields in BINARY format.

IGNORE-LENGTH-FIELD= *STD *YES *NO

BS2000 file 5 1 5

POSIX file 1 1 5

SORT statements MERGE-RECORDS

U6184-J-Z125-6-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

FORMAT = *CHARACTER / *BINARY / *FIXED-POINT / *FLOATING-POINT /
*PACKED-DECIMAL / *ZONED-DECIMAL / *EBCDIC-DIN /
*EBCDIC-INTERNATIONAL / *PHYSICAL-TRANSLATE / *VIRTUAL-TRANSLATE /
*MODIFY-CODE / *EBCDIC-ISO-EBCDIC / *EXTENDED-CHARACTER /
*TRANSLATE-CHARACTER / *UNICODE-CHARACTER
Format of the sort field (for attributes, see page 38).

SORTING-ORDER =
Order in which SORT is to arrange the records.

SORTING-ORDER =*ASCENDING
Ascending sorting order.

SORTING-ORDER = *DESCENDING
Descending sorting order. This option is not allowed for ISAM output files.

SORTING-ORDER = *EXTERNAL-COMPARE
The order for this sort field is defined by the user via user exit EXTERNAL-COMPARE.
This sort field must not be more than 255 bytes long.

PRIORITY =
Priority (weight) of the sort field. If several sort fields are specified, those with a priority
of 1 are compared first. If they are identical, the sort fields with a priority of 2 are
compared. This process is repeated until the sort fields compare unequal or until those
with the highest priority have been compared.

PRIORITY = *CURRENT-NUMBER
The priority is determined by the order in which the sort fields are specified (the first sort
field has a priority of 1).

PRIORITY = <integer 1..64>
Specifies the priority number. If a priority number is specified for one sort field, it must
also be specified for all other sort fields. All the priority numbers must form a
consecutive ascending sequence beginning with 1.

ELIMINATE =
Specifies whether the sort field is to be eliminated (not included in the output).

ELIMINATE = *NO
The sort field is not to be eliminated.

ELIMINATE =* YES
The sort field is to be eliminated. It serves solely to determine the sorting order. This
option is not allowed for binary fields with bit specifications; if specified, it will be ignored
and SORT will issue a warning. When the OUTPUT user exit is used (with
PARAMETER-MODE = 24), identical records are not displayed.

MERGE-RECORDS SORT statements

148 U6184-J-Z125-6-76

TWO-DIGIT-YEAR =
Determines whether the sort field contains a two-digit year number.

TWO-DIGIT-YEAR = *NO
The sort field does not contain a two-digit year number.

TWO-DIGIT-YEAR = *YES
The sort field contains a two-digit year number. This statement is legal only in
combination with FORMAT=*PACKED-DECIMAL or FORMAT=*ZONED-DECIMAL. In
this case, the sorting sequence depends on the CENTURY-WINDOW-SHIFT operand
in the SET-SORT-OPTIONS statement.

The following sort field formats are possible:

FIELDS = *FIELD-SYMBOLIC(...)
Specifies sort fields using symbolic names which must previously have been defined as
fields by means of the ADD-SYMBOLIC-NAMES statement.

SORT-FIELD-NAME = list-poss(64): <name 1..20>
Name of a sort field (max. 64 fields). If a list of symbolic names is given, the SORTING-
ORDER and ELIMINATE entries apply to all names; the value given for PRIORITY is
used for the first name specified, and a value incremented by 1 each time is entered for
the remaining names.

SORTING-ORDER =
Order in which SORT is to arrange the records.

SORTING-ORDER = *ASCENDING
Ascending sorting order.

SORTING-ORDER = *DESCENDING
Descending sorting order. This option is not allowed for ISAM output files.

SORTING-ORDER = *EXTERNAL-COMPARE
The order for this sort field is defined by the user via user exit EXTERNAL-COMPARE.
This sort field must not be more than 255 bytes long.

FORMAT= Sort field format

*PACKED-DECIMAL X’0yyv’ and X’0jjmmddv’

*ZONED-DECIMAL X’Fyvy’

With: y = one digit of the two-digit year specification, mm = month, dd = day,
s = sign (must be positive)

SORT statements MERGE-RECORDS

U6184-J-Z125-6-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

PRIORITY =
Priority (weight) of the sort field. If several sort fields are specified, those with a priority
of 1 are compared first. If they are identical, the sort fields with a priority of 2 are
compared. This process is repeated until the sort fields compare unequal or until those
with the highest priority have been compared.

PRIORITY = *CURRENT-NUMBER
The priority is determined by the order in which the sort fields are specified (the first sort
field has a priority of 1).

PRIORITY = <integer 1..64>
Specifies the priority number. If a priority number is specified for one sort field, it must
also be specified for all other sort fields. All the priority numbers must form a
consecutive ascending sequence beginning with 1.

ELIMINATE =
Specifies whether the sort field is to be eliminated (not included in the output).

ELIMINATE = *NO
The sort field is not to be eliminated.

ELIMINATE = *YES
The sort field is to be eliminated. It serves solely to determine the sorting order. This
option is not allowed for binary fields with bit specifications; if specified, it will be ignored
and SORT will issue a warning. If the OUTPUT user exit is used (with PARAMETER-
MODE=24), identical records are not displayed.

TWO-DIGIT-YEAR =
Determines whether the sort field contains a two-digit year number.

TWO-DIGIT-YEAR = *NO
The sort field does not contain a two-digit year number.

TWO-DIGIT-YEAR = *YES
The sort field contains a two-digit year number. This statement is legal only in
combination with FORMAT=*PACKED-DECIMAL or FORMAT=*ZONED-DECIMAL. In
this case, the sorting sequence depends on the CENTURY-WINDOW-SHIFT operand
in the SET-SORT-OPTIONS statement.

The following sort field formats are possible:

FORMAT= Sort field format

*PACKED-DECIMAL X’0yyv’ and X’0jjmmddv’

*ZONED-DECIMAL X’Fyvy’

With: y = one digit of the two-digit year specification, mm = month, dd = day,
s = sign (must be positive)

MERGE-RECORDS SORT statements

150 U6184-J-Z125-6-76

RECORDS-PER-CYCLE =
Number of records per checkpoint cycle. The value specified determines the number of
records after which SORT is to write a checkpoint. Specifying a value for this operand only
makes sense if CHECKPOINT=*YES is also given.

RECORDS-PER-CYCLE = *NO
No checkpoints are written.

RECORDS-PER-CYCLE = <integer 1..2147483639>
Number of records after which a checkpoint is to be written.

CHECKPOINT =
Controls the output of checkpoints.

CHECKPOINT = *NO
SORT writes no checkpoints.

CHECKPOINT = *YES
SORT writes a checkpoint after the number of records specified in the RECORDS-PER-
CYCLE operand.

SORT statements MODIFY-CODE

U6184-J-Z125-6-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

MODIFY-CODE

MODIFY-CODE changes the sorting order determined by the EBCDIC code into a user-
defined sequence. This statement is required if a field has been defined using
FORMAT=*MODIFY-CODE.

SEQUENCES =
Specifies all characters that are to be sorted in a different sequence than that given by the
EBCDIC code. A list of character pairs of the form ’cq’ (character) or X’cq’ (hexadecimal) is
used to cause each occurrence of the character ’q’ to be moved in the sorting order to a
position immediately after the character ’c’. Up to 256 character pairs can be specified.

SEQUENCES = list-poss(256): <c-string 2..2 with-low>
Specifies a character pair in character representation. Example: MODIFY-CODE
SEQUENCES = (’aA’,’bB’). This causes ’A’ to be placed immediately after ’a’ in the sorting
order, and ’B’ immediately after ’b’.

SEQUENCES = list-poss(256): <x-string 3..4>
Specifies a character pair in hexadecimal representation. Example: MODIFY-CODE
SEQUENCES = (X’81C1’). This causes X’C1’ (=’A’) to be placed immediately after
X’81’ (=’a’) in the sorting order.

If a character is to be moved to a position in the sorting order after a character that has
already been converted, then the new position applies, not the original EBCDIC position.

If a character (e.g. X’F8’) is to be moved to the first position in the sorting order, then
2 character pairs have to be specified:

MODIFY-CODE SEQUENCES = (X’00F8’,X’F800’)

The first character pair causes X’F8’ to be placed immediately after X’00’, and the second
causes X’00’ to be placed immediately after X’F8’, thereby moving X’F8’ to the beginning
of the sorting order.

MODIFY-CODE

SEQUENCES = list-poss(256): <c-string 2..2 with-low> / <x-string 3..4>

MODIFY-SORT-DEFAULTS SORT statements

152 U6184-J-Z125-6-76

MODIFY-SORT-DEFAULTS

MODIFY-SORT-DEFAULTS defines or modifies default values for SORT parameters.
The SORT parameters can be preset specific to the system or to the ID. The validity of the
defaults can be restricted to the current SORT run or extended to cover all subsequent
SORT runs.

MIN-MSG-WEIGHT =
Default for the minimum message weight to be output.
This specifies the priority level as of which messages are to be output. Messages are then
output if their priority is greater than or equal to the specified value.

MIN-MSG-WEIGHT = *UNCHANGED
The value remains unchanged (see note on page 155).

MIN-MSG-WEIGHT = *STD
The default value is used (*NORMAL).

MIN-MSG-WEIGHT = *NORMAL
With autonomous sort/merge runs, messages with a priority of 2 or above are output. With
SORT as a subroutine, messages with a priority of 3 or above are output.

MIN-MSG-WEIGHT = *ALL
All messages are output (as of priority 0).

MIN-MSG-WEIGHT = *CRITICAL
Messages with a priority of 3 or above are output.

MIN-MSG-WEIGHT = *NONE
Messages with a priority of 7 or above are output (only messages concerning internal
errors).

MODIFY-SORT-DEFAULTS

MIN-MSG-WEIGHT = *UNCHANGED / *STD / *ALL / *NORMAL / *CRITICAL / *NONE

,CORE-MINIMUM = *UNCHANGED / *STD / <integer 24..32767>

,CORE-MAXIMUM = *UNCHANGED / *STD / <integer 24..32767>

,CORE-LIMIT = *UNCHANGED / *STD / <integer 24..32767>

,CORE-DEFAULT = *UNCHANGED / *STD / <integer 24..32767>

,SUBTASK-JOB-CLASS = *UNCHANGED / *STD / <name 1..8>

,SAVE-DEFAULTS = *NO / *YES

SORT statements MODIFY-SORT-DEFAULTS

U6184-J-Z125-6-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

Note
If a SET-SORT-OPTIONS statement exists in the sort run, the specification or the default
value as set for MIN-MSG-WEIGHT in the SET-SORT-OPTIONS statement will take
priority.

CORE-MINIMUM =
Lower limit for the CORE value calculation by SORT.

CORE-MINIMUM = *UNCHANGED
The value remains unchanged (see note on page 155).

CORE-MINIMUM = *STD
The default value is used (24).

CORE-MINIMUM = <integer 24...32767>
The specified value is used.

CORE-MAXIMUM =
Maximum value for the intensively used virtual memory. If a value greater than 400 is
specified in the ASSIGN-RESOURCES statement, only a sixteenth of this memory is used
intensively. If the intensively used memory exceeds the value specified here, the value
specified in the ASSIGN-RESOURCES statement is reduced.

CORE-MAXIMUM = *UNCHANGED
The value remains unchanged (see note on page 155).

CORE-MAXIMUM = *STD
The default value is used (4096).

CORE-MAXIMUM = <integer 24...32767>
The specified value is used.

Note
If the specified value does not exceed the minimum value specified using the CORE-
MINIMUM operand, then the maximum value is the same as the minimum value.

MODIFY-SORT-DEFAULTS SORT statements

154 U6184-J-Z125-6-76

CORE-LIMIT =
Upper limit for the CORE value calculation by SORT.

CORE-LIMIT = *UNCHANGED
The value remains unchanged (see note on page 155).

CORE-LIMIT = *STD
The default value is used (96).

CORE-LIMIT = <integer 24...32767>
The specified value is used.

Note
The specified value must not be lower than the value defined by the CORE-MINIMUM
operand or higher than the value defined by the CORE-MAXIMUM operand. If either of
these situations is the case, the limit value used is the value defined in the corresponding
operand.

CORE-DEFAULT =
CORE value if any specifications are missing.

CORE-DEFAULT = *UNCHANGED
The value remains unchanged (see note on page 155).

CORE-DEFAULT = *STD
The default value is used (40).

CORE-DEFAULT = <integer 24...32767>
The specified value is used.

Note
The specified value must not be lower than the value defined by the CORE-MINIMUM
operand or higher than the value defined by the CORE-MAXIMUM operand. If either of
these situations is the case, the limit value used is the value defined in the corresponding
operand.

SUBTASK-JOB-CLASS =
Job class to be used for the start of a subtask.

SUBTASK-JOB-CLASS = *UNCHANGED
The value remains unchanged (see note on page 155).

SUBTASK-JOB-CLASS = *STD
The default value is used (*STD).

SUBTASK-JOB-CLASS = <name 1...8>
The specified job class is used.

SORT statements MODIFY-SORT-DEFAULTS

U6184-J-Z125-6-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

SAVE-DEFAULTS =
Specifies the period of validity for the modified defaults.

SAVE-DEFAULTS = *NO
Defaults changed for this SORT run only.

SAVE-DEFAULTS = *YES
Defaults changed for all subsequent SORT runs.
The result is stored in the parameter file.
If the user ID under which the command is entered matches the one under which the central
parameter file is installed, the new defaults apply to the whole system. Otherwise, they
apply only to the ID.

Note

The operand value *UNCHANGED is interpreted as follows:
If in a previous MODIFY-SORT-DEFAULTS statement of the same SORT run a value other
than *UNCHANGED was specified, this value applies. Otherwise, the value is taken from
the ID-specific parameter file or, if this does not yet exist, from the central parameter file.
When the first MODIFY-SORT-DEFAULTS statement is executed, the ID-specific
parameter file is stored under an ID with SAVE-DEFAULTS=*YES, and is modified at each
subsequent execution of this statement.
The central parameter file is created when the product SORT is installed.
System-specific modification of the default value is only possible from the ID under which
SORT is installed, because the central parameter file is stored there too.

You can view the current defaults using the SHOW-SORT-DEFAULTS statement.

SELECT-INPUT-RECORDS SORT statements

156 U6184-J-Z125-6-76

SELECT-INPUT-RECORDS

SELECT-INPUT-RECORDS enables the user to select those records from the input files
that are to be sorted by SORT. Selection is on the basis of a logical expression (logically
combined comparisons).

CONDITION = <text 0..1800 with-low>
The CONDITION operand must specify the condition under which an input record is
included in the sort operation. The condition may be formed from one or more comparison
relations joined by the logical operators AND or OR. Eight levels of nesting are possible
using parentheses. Up to 64 relations may be specified.

Comparison relations are specified in the following form:

If NOT is specified, all records that do not meet the condition are included in the sorting
operation.

The relations rel1,rel2... have the following format:

The match fields field1,field2 have the following format:

SELECT-INPUT-RECORDS

CONDITION = <text 0..1800 with-low>

[NOT] (rel1,
AND

,rel2 ...)
OR

rel = field1, rop,
field2

constant

field =
(start, length, format)

symbolic name

SORT statements SELECT-INPUT-RECORDS

U6184-J-Z125-6-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

Start:
The start of the match field must be specified here. The value may only be given in
bytes, even for binary data format. With fixed record format, the first data byte occupies
position 1; in records with variable record format, this position depends on the file type
and the IGNORE-LENGTH-FIELD operand of the SET-SORT-OPTIONS statement.
The position of the first data field in these cases is shown in the following table:

Length:
The length of the match field must be specified here (in bytes). The maximum permitted
lengths are dependent on the data format. See the following table.

Format:
The following formats and lengths are permitted for match fields:

Symbolic name:
This name must previously have been defined as a field in terms of position, length and
format by means of the ADD-SYMBOLIC-NAMES statement. If the name has not
already been so defined, SORT issues an error message. A symbolic name may be up
to 20 characters long.

IGNORE-LENGTH-FIELD= *STD *YES *NO

BS2000 file 5 1 5

POSIX file 1 1 5

 Format Format description Length in bytes

 BI Binary 1 - 256

 CH Character 1 - 256

 FI Fixed-point 1 - 256

 PD Packed decimal 1 - 16

 ZD Zoned decimal 1 - 16

SELECT-INPUT-RECORDS SORT statements

158 U6184-J-Z125-6-76

Constants which can be specified in place of the second match field field2 take the
following form:

The combined length of all constants must not be greater than 4000 bytes.

Decimal constants must be specified with an arithmetic sign. If the first match field has
FIXED-POINT format, the constant must not have a value greater than +2147483647
or less than -2147483648.

Hexadecimal and character constants must not be more than 256 bytes long.

Symbolic name:
This name must previously have been defined as a constant with the ADD-SYMBOLIC-
NAMES statement. If the name has not already been so defined, SORT issues an error
message. A symbolic name may be up to 20 characters long. The rules regarding
maximum length, matching of constants and format compatibility are the same as for
direct specification of the constant value.

Relational operator rop:
The following relational operators are permitted:

The relations can be combined using AND or OR. If desired, parentheses can be used to
reverse the normal precedence of AND over OR.

Relational operator Replacement character Meaning

EQ = equal to

LT < less than

GT > greater than

NE <> not equal to

GE >= greater than or equal to

LE <= less than or equal to

decimal number
+nn...n

-nn...n

hexadecimal string
character string
symbolic name

X’ss...s’
C’cc...c’
name

constant =

SORT statements SELECT-INPUT-RECORDS

U6184-J-Z125-6-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

Permissible combinations of match fields and match constants:

The format of the first (or only) match field must be compatible with that of the second or
with the type of the match constant. The combinations allowed are shown in the table below.

Key:

When comparing match fields of different lengths, SORT adjusts the shorter field to the
same length as the longer one. The following table provides an overview of how the shorter
field can be padded:

When a match field is compared with a constant, the constant is adjusted to the length of
the match field. Numerical constants are lengthened or shortened to or from the left,
character constants to or from the right. If this adjustment causes the match constant to be
truncated by a significant amount, i.e. an amount not equal to the corresponding padding,
SORT issues a warning message.

1st match field 2nd match field Match constant

BI CH FI PD ZD Decimal
number

Hexa-
decimal
string

Character
string

 BI + + - - - - + +

 CH + + - - - - + +

 FI - - + - - + - -

 PD - - - + + + - -

 ZD - - - + + + - -

+ This format combination is permitted.

- This format combination is not permitted and causes SORT to issue an error message.

 Format Data is stored Padding on the Filler character

 BI left-justified right Zero

 CH left-justified right X' 40' (space)

 FI right-justified left Sign

 PD right-justified left Zero

 ZD right-justified left X' F0' (zero)

SET-RECORD-ATTRIBUTES SORT statements

160 U6184-J-Z125-6-76

SET-RECORD-ATTRIBUTES

SET-RECORD-ATTRIBUTES defines the format for input and output records, and also for
internal records. The user must specify this statement if SORT cannot obtain this infor-
mation from other statements or cannot calculate it (e.g. no input file if records are read
solely via the INPUT user exit) or if record lengths or formats are to be changed.

SET-RECORD-ATTRIBUTES

INPUT = *STD / *VARIABLE(...) / *FIXED(...)

*VARIABLE(...)
 ⏐ MAXIMUM-RECORD-SIZE = *STD / <integer 1..32759>

*FIXED(...)
 ⏐ RECORD-SIZE = *STD / <integer 1..32759>

,INTERNAL = *BY-CALCULATION / *VARIABLE(...) / *FIXED(...)

*VARIABLE(...)
 ⏐ MAXIMUM-RECORD-SIZE = *BY-CALCULATION / <integer 1..32759>
⏐ ⏐ ,MINIMUM-RECORD-SIZE = *BY-CALCULATION / <integer 1..32759>
⏐ ⏐ ,AVERAGE-RECORD-SIZE = *BY-CALCULATION / <integer 1..32759>

*FIXED(...)
 ⏐ RECORD-SIZE = *BY-CALCULATION / <integer 1..32759>

,OUTPUT = *STD / *VARIABLE(...) / *FIXED(...)

*VARIABLE(...)
 ⏐ MAXIMUM-RECORD-SIZE = *STD / <integer 1..32759>

*FIXED(...)
 ⏐ RECORD-SIZE = *STD / <integer 1..32759>

,FILLER = *NIL / <c-string 1..1 with-low> / <x-string 1..2>

,CODED-CHARACTER-SET = *NOT-SPECIFIED / <name 1..8>

,UNICODE-FILLER = *BLANK / <x-string 4..4>

SORT statements SET-RECORD-ATTRIBUTES

U6184-J-Z125-6-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

INPUT =
Describes the input records in terms of record format and length.

INPUT = *STD
SORT attempts to obtain the record format and length from a preceding ADD-FILE-LINK
command or from the catalog entry. If the record format cannot be ascertained, the format
of the internal record is used. If that is not possible, fixed record format is assumed. If the
record length cannot be ascertained, the maximum possible record length, derived from the
BUFFER-LENGTH specification, is used as a replacement value. If that is not possible,
2048 is assumed.

INPUT = *VARIABLE(...)
The input records have variable record format. If the specified value does not match the
value taken from a preceding ADD-FILE-LINK command or the catalog entry, SORT issues
a warning and ignores the specified value.

MAXIMUM-RECORD-SIZE =
Maximum length of the input records.

MAXIMUM-RECORD-SIZE = *STD
The record length is taken from a preceding ADD-FILE-LINK command or from the
catalog entry. If that is not possible, the maximum possible record length, derived from
the BUFFER-LENGTH specification, is used as a replacement value. If that is not
possible, 2048 is assumed.

MAXIMUM-RECORD-SIZE = <integer 1..32759>
Specifies the maximum input record length. SORT uses the maximum value from the
record lengths of all the input files and the length specified here. If the specified value
is less than the maximum value from the record lengths of all the input files, SORT
issues a warning.

INPUT = *FIXED(...)
The input records have fixed record format. If the specified value does not match the value
taken from a preceding ADD-FILE-LINK command or the catalog entry, SORT issues a
warning and ignores the specified value.

RECORD-SIZE =
Length of the input records.

RECORD-SIZE = *STD
SORT attempts to obtain the record length from a previously specified ADD-FILE-LINK
command or from the catalog entry. If the record length cannot be ascertained, the
BUFFER-LENGTH is used. If that is not possible, 2048 is assumed.

RECORD-SIZE = <integer 1..32759>
Length of the input records. If the specified value does not match the value taken from
a preceding ADD-FILE-LINK command or from the catalog entry, SORT issues a
warning and ignores the specified value.

SET-RECORD-ATTRIBUTES SORT statements

162 U6184-J-Z125-6-76

INTERNAL =
Describes the internal records. This only needs to be specified if the record format or length
is to be changed compared with the input records in the INPUT user exit or by SORT. If the
INPUT user exit is specified, it is responsible for making the changes; otherwise the record
format or length is adjusted by SORT.

INTERNAL = *BY-CALCULATION
The record format and length are the same as for the input records. If the input record
format is not specified, fixed record format is taken as the replacement value.

INTERNAL = *VARIABLE(...)
The internal records are to have variable record format. If the input records are in fixed
format and the adjustment is to be carried out by SORT, a record length field (4 bytes) is
prefixed to the internal records.

MAXIMUM-RECORD-SIZE =
Maximum length of the internal records.

MAXIMUM-RECORD-SIZE = *BY-CALCULATION
With input records in variable record format, the maximum internal record length is
equal to the maximum input record length. With input records in fixed record format, the
maximum internal record length is equal to the maximum input record length + 4.

MAXIMUM-RECORD-SIZE = <integer 1..32759>
Specifies the maximum length of the internal records. Fixed-length input records are
truncated if their length is greater than the internal length minus 4; variable-length input
records are truncated if they are longer than the specified length.

MINIMUM-RECORD-SIZE =
Minimum length of the internal records. Used for capacity calculations; should be
specified only if known.

MINIMUM-RECORD-SIZE = *BY-CALCULATION
Calculated by SORT.

MINIMUM-RECORD-SIZE = <integer 1..32759>
Specifies the minimum record length.

AVERAGE-RECORD-SIZE =
Average length of the internal records. Used for capacity calculations; should be
specified only if known.

AVERAGE-RECORD-SIZE = *BY-CALCULATION
Calculated by SORT.

AVERAGE-RECORD-SIZE = <integer 1..32759>
Specifies the average record length.

SORT statements SET-RECORD-ATTRIBUTES

U6184-J-Z125-6-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

INTERNAL = *FIXED(...)
The internal records are to have fixed record format. If the input records have variable
record format and the adjustment is carried out by SORT, the record length field (4 bytes)
of the input records is truncated.

RECORD-SIZE =
Length of the internal records.

RECORD-SIZE = *BY-CALCULATION
With input records in fixed record format, the internal record length is equal to the input
record length. With input records in variable record format, the internal record length is
equal to the maximum input record length minus 4.

RECORD-SIZE = <integer 1..32759>
Specifies the internal record length. If the adjustment is carried out by SORT, the input
records are truncated if longer than the specified length or padded with the character
specified in the FILLER operand if shorter.

OUTPUT =
Describes the output records. This only needs to be specified if the record format or length
is to be changed compared with the internal records in the OUTPUT user exit or by SORT.
If the OUTPUT user exit is specified, it is responsible for making the changes; otherwise the
record format or length is adjusted by SORT. If the specified record format does not match
the RECORD-FORMAT operand in a ADD-FILE-LINK command or the format given in the
catalog entry for the output file, the sort run is abnormally terminated. If the RECORD-
FORMAT entry is missing, a suitable value is supplied by SORT.

OUTPUT = *STD
The record format and length are as for the internal records, taking into account the
eliminated sort fields and the print masks.

SET-RECORD-ATTRIBUTES SORT statements

164 U6184-J-Z125-6-76

OUTPUT = *VARIABLE(...)
The output records are to have variable record format. If the internal records have fixed
record format and the adjustment is carried out by SORT, a record length field (4 bytes) is
prefixed to the internal records.

MAXIMUM-RECORD-SIZE =
Maximum record length of the output records. Inserted for RECORD-SIZE in the
catalog entry for the output file.

MAXIMUM-RECORD-SIZE = *STD
With internal records in variable record format, the maximum output record length is
equal to the maximum internal record length. With internal records in fixed record
format, the maximum output record length is equal to the internal record length + 4.

MAXIMUM-RECORD-SIZE = <integer 1..32759>
Specifies the maximum output record length. Fixed-length internal records are
truncated if their length is greater than the specified length minus 4; variable-length
internal records are truncated if they are longer than the specified length.

OUTPUT = *FIXED(...)
The output records are to have fixed record format. If the internal records are in variable
record format and the adjustment is to be carried out by SORT, the record length field (4
bytes) of the internal records is truncated.

RECORD-SIZE =
Length of the output records. If the specified length does not match the RECORD-SIZE
operand of a preceding ADD-FILE-LINK command or the value in the catalog entry for
the output file, the sort run is abnormally terminated.

RECORD-SIZE = *STD
With internal records in fixed record format, the output record length is equal to the
internal record length. With internal records in variable record format, the output record
length is equal to the maximum internal record length minus 4. Sort fields that are to be
eliminated and print masks are additionally taken into account.

RECORD-SIZE = <integer 1..32759>
Specifies the output record length. If the adjustment is to be carried out by SORT, the
internal records are truncated if they are longer than the specified length; if shorter, they
are padded out to the specified length with the character specified in the FILLER
operand.

SORT statements SET-RECORD-ATTRIBUTES

U6184-J-Z125-6-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

FILLER =
Specifies a 1-byte filler character to be used for padding records in the event of a change
of format (V → F) or record length (internal record length > input record length or output
record length > internal record length).

FILLER = *NIL
NUL (X’00’) is used as the filler character.

FILLER = <c-string 1..1 with-low>
Character constant (1 byte).

FILLER = <x-string 2..2>
Hexadecimal constant (1 byte).

CODED-CHARACTER-SET =
Specifies the name of the coded character set for sorting the data records. This operand is
only evaluated by SORT when the data records are input via the INPUT user exit or via the
SORT access method. If an input file is available, this operand is ignored and the warning
SRT1256 appears.

CODED-CHARACTER-SET = *NOT-SPECIFIED
No coded character set is specified. EDF03IRV code is used.

CODED-CHARACTER-SET = <name 1..8>
Specifies the name of the coded character set.

UNICODE-FILLER =
Specifies a character which is two bytes long which, when necessary, can be used to fill a
sort field with the UNICODE-CHARACTER format. This is required, for example, then the
field is incomplete because of variable records, or when it is shortened as a result of
IGNORE-UNICODE-BLANK.

UNICODE-FILLER = *BLANK
X’0020’ (Unicode blank) is used.

UNICODE-FILLER = <x-string 4..4>
The character specified is used.

SET-SORT-OPTIONS SORT statements

166 U6184-J-Z125-6-76

SET-SORT-OPTIONS

SET-SORT-OPTIONS allows the user to define the following options for a sort/merge run:

– influence of the record length field on the position calculation for control fields

– message output

– sort sequence check

– variations on predefined file link names

– error response action

– sort and merge run optimization

– file and tape handling

– diagnostics output

– whether blanks or other variable collation elements are taken into account when the sort
sequence is defined.

SORT statements SET-SORT-OPTIONS

U6184-J-Z125-6-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

SET-SORT-OPTIONS

MIN-MSG-WEIGHT = *NORMAL / *ALL / *CRITICAL / *NONE

,SEQUENCE-CHECK = *YES / *NO

,LINK-PREFIX-CHANGE = *NO / <name 1..4>

,IGNORE-INOUT-FILE = *NO / *YES

,INPUT-OPEN-ERROR = *CONTINUE-NEXT-FILE(...) / *FINISH-INPUT / *TERMINATE-ABNORMAL

*CONTINUE-NEXT-FILE(...)
 ⏐ TERMINATION = *ABNORMAL / *NORMAL

,OPTIMIZATION = *RUN-TIME / *CPU-TIME / *VIRTUAL-MEMORY

,DESTROY-WORK-FILES = *NO / *YES

,KEEP-INPUT-TAPES = *NO / *YES

,DUMP = *YES / *NO

,STATEMENT-CCSN = *NOT-SPECIFIED / <name 1..8>

,IGNORE-LENGTH-FIELD = *STD / *YES / *NO

,DELETE-WORK-FILES = *NO / *YES

,CENTURY-WINDOW-SHIFT = 50(...) / <integer 0..99> (...)

<integer 0..99>(...)
 ⏐ WINDOW-BOUNDARY = *SUBTRACT-FROM-CURRENT-YEAR / *ADD-TO-CURRENT-YEAR

,IGNORE-UNICODE-BLANK = *NO / *YES

,IGNORE-CHARACTER = *NONE / < list-poss(4):<c-string 1..1 with low> / <x-string 1..2>

SET-SORT-OPTIONS SORT statements

168 U6184-J-Z125-6-76

MIN-MSG-WEIGHT =
Specifies the message output priority. A message is output if its priority is greater than or
equal to the specified message level.

MIN-MSG-WEIGHT = *NORMAL
In independent sort/merge runs, messages are output starting at priority 2 or the predefined
priority. When SORT is run as a subroutine, messages with priority 3 or higher are output.

MIN-MSG-WEIGHT = *ALL
All messages are output (starting at priority 0).

MIN-MSG-WEIGHT = *CRITICAL
Messages with priority 3 or higher are output.

MIN-MSG-WEIGHT = *NONE
Messages with priority 7 or higher are output (messages concerning internal errors only).

SEQUENCE-CHECK =
This operand controls the check on ascending or descending sorting sequence prior to the
final output. If the SUM-RECORDS statement is used, the sorting sequence is checked
anyway, so that SEQUENCE-CHECK=*NO would be ineffective in this case. The sequence
check is carried out ahead of any OUTPUT user exit specified. Thus, the records inserted
or changed by means of this user exit can disrupt the sorting sequence. The SEQUENCE-
CHECK operand has precedence over the corresponding flag byte in the OUTPUT user exit
(only with PARAMETER-MODE=24).

SEQUENCE-CHECK = *YES
SORT checks the ascending or descending sorting sequence prior to the final output.

SEQUENCE-CHECK = *NO
The sorting sequence is not checked.

LINK-PREFIX-CHANGE =
Defines alternative prefixes for the following file link names: SORTIN / SORTINxx /
MERGExx / SORTOUT / SORTWK / SORTWKx / SORTWKxx / SORTCKPT /
SORTMODS. The “SORT” or “MERGE” character string in these file link names is replaced
by the specified string (1 to 4 characters). This enables multiple SORT runs to be performed
concurrently from a single main program. The alternative prefix is also used for generation
of the names of the files set up by SORT (work, auxiliary and checkpoint files).

LINK-PREFIX-CHANGE = *NO
The prefix is not changed.

LINK-PREFIX-CHANGE = <name 1..4>
Specifies a prefix.

SORT statements SET-SORT-OPTIONS

U6184-J-Z125-6-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

IGNORE-INOUT-FILE =
This operand enables the user to specify whether SORT is to ignore the file link names
SORTIN / SORTINxx for the SORT input file and SORTOUT for the SORT output file. It
should be used when input and output are to take place via the INPUT and OUTPUT user
exits.

IGNORE-INOUT-FILE = *NO
SORT takes the file link names into account.

IGNORE-INOUT-FILE = *YES
The file link names are not taken into account.

INPUT-OPEN-ERROR =
This operand enables the user to define how SORT is to behave when there are multiple
input files and one of these input files cannot be opened.

INPUT-OPEN-ERROR = *CONTINUE-NEXT-FILE(...)
SORT reports the error, skips the file concerned and processes the remaining files.

TERMINATION =

TERMINATION = *ABNORMAL
The sort/merge run is to terminate abnormally in the event of an error. In an
independent sort/merge run, SORT terminates with TERM
UNIT=STEP,MODE=ABNORMAL. When SORT is run as a subroutine, it stores X’FF’
in the low-order byte of register 15 and the message number in the first two bytes (e.g.
following open error SRT1035 register 15 will contain X’103500FF’).

TERMINATION = *NORMAL
The sort/merge run is to terminate normally.

INPUT-OPEN-ERROR = *FINISH-INPUT
SORT reports the error, terminates the input phase and sorts the records read up to that
point.

INPUT-OPEN-ERROR = *TERMINATE-ABNORMAL
SORT reports the error and terminates abnormally.

SET-SORT-OPTIONS SORT statements

170 U6184-J-Z125-6-76

OPTIMIZATION =
Optimizes the sort/merge run.

OPTIMIZATION = *RUN-TIME
Runtime optimization is requested.

OPTIMIZATION = *CPU-TIME
CPU-time optimization is requested. There is currently no difference between *RUN-TIME
and *CPU-TIME.

OPTIMIZATION = *VIRTUAL-MEMORY
Memory optimization is requested (e.g. by releasing load modules that are no longer
needed). When SORT is run as a subroutine, all dynamically loaded modules are unloaded
again at the end of the sort run (SRTXGEN, SRTXKERN and SRTXKRN1).

DESTROY-WORK-FILES =
Controls how files set up by SORT are deleted.

DESTROY-WORK-FILES = *NO
The files set up by SORT are logically deleted, i.e. only the catalog entry is deleted.

DESTROY-WORK-FILES = *YES
The files set up by SORT are logically and physically deleted, i.e. the catalog entry is
deleted and the file overwritten with binary zeros. This can be used for data protection.

KEEP-INPUT-TAPES =
Controls how input tapes are unloaded.

KEEP-INPUT-TAPES = *NO
Input tapes are rewound and unloaded in order to make the tape unit available for other
files.

KEEP-INPUT-TAPES = *YES
After being read, the input tapes are rewound but not unloaded; this means they can be
used by another program. With multi-volume files, however, only the last tape is not
unloaded.

SORT statements SET-SORT-OPTIONS

U6184-J-Z125-6-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

DUMP =
Controls the output of memory contents and errored data to SYSOUT and SYSLST when
internal SORT errors or application errors occur.

DUMP = *YES
Diagnostics are output.

DUMP = *NO
Diagnostics are suppressed. This value should only be used when there are compelling
data protection reasons for it, because of the risk that SORT or application errors cannot be
diagnosed.

STATEMENT-CCSN =
Specifies the coded character set of the character constants in the statements. This value
is valid for the constants of all statements of the program run. SORT only evaluates this
operand when SORT is called as a subroutine.

STATEMENT-CCSN = *NOT-SPECIFIED
No coded character set is specified. EDF03IRV code is used.

STATEMENT-CCSN = <name 1..8>
Specifies the name of the coded character set.

IGNORE-LENGTH-FIELD =
Specifies whether, in the case of variable record lengths, the record length field must be
taken into account in position specifications for control fields.

The specification applies to all control fields in the current sort run. It does not affect position
specifications in fixed-length records.

IGNORE-LENGTH-FIELD = *STD
With BS2000 files, *STD has the same effect as *NO, i.e. the record length field must be
taken into account in position specifications. The behavior is therefore the same as in the
previous versions.

With POSIX files, *STD has the same effect as *YES. The record length field created inter-
nally by SORT is therefore ignored in the position calculation.

IGNORE-LENGTH-FIELD = *YES
The record length field is ignored in the position calculation. The first data field of a record
begins at position 1.

IGNORE-LENGTH-FIELD = *NO
The record length field is taken into account in the position calculation. The first data field
of a record begins at position 5.

SET-SORT-OPTIONS SORT statements

172 U6184-J-Z125-6-76

DELETE-WORK-FILES =
Indicates whether work and auxiliary files (SORTWK, SORTWKx, SORTWKxx) set up by
the user are deleted by SORT at the end of the sort run.

DELETE-WORK-FILES = *NO
The auxiliary and work files are deleted at the end of the sort run only if they were created
by SORT.

DELETE-WORK-FILES = *YES
At the end of the sort run, the auxiliary and work files are deleted even if they were set up
by the user.

Note

If SORT aborts during a run that uses checkpoint/restart, the work and auxiliary files are
maintained regardless of what has been specified for the DELETE-WORK-FILES operand,
in order to enable a restart.

CENTURY-WINDOW-SHIFT = 50(...) / <integer 0..99>(...)
Determines how SORT interprets and sorts fields that contain two-digit years (FORMAT=
*PACKED-DECIMAL or *ZONED-DECIMAL and TWO-DIGIT-YEAR=*YES). The
CENTURY-WINDOW-SHIFT operand defines a century window within which sorting is
executed (ascending or descending order). Depending on what is specified for the
WINDOW-BOUNDARY operand, this century window is determined by either its start or its
end date.

WINDOW-BOUNDARY =
Specifies the way the start and the end of the century window is calculated.

WINDOW-BOUNDARY = *SUBTRACT-FROM-CURRENT-YEAR
The start of the century window is computed as follows:

 <century window start> = <current year> - <integer in century-window-shift>.

 Since the century window is 100 years long, its end is 99 years later, i.e.:

 <century window end> = <century window start> + 99.

WINDOW-BOUNDARY = *ADD-TO-CURRENT-YEAR
The end of the century window is computed as follows:

 <century window end> = <current year> + <integer in century-window-shift>.

 Since the century window is 100 years long, its start is 99 years earlier, i.e.:

 <century window start> = <century window end> - 99.

SORT statements SET-SORT-OPTIONS

U6184-J-Z125-6-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

Example:

The current year is 2002, and the SET-SORT-OPTIONS statement contains
CENTURY-WINDOW-SHIFT=55. The century window therefore ranges from
1947 (=2002-55) through 2046 (=1947+99).

For the sort process, this means:
The two-digit year numbers 00 through 46 are interpreted as 2000 through 2046
and are therefore larger than the years 47 through 99 since these are interpreted
as 1947 through 1999.

In this case, the sort sequence (with ascending sort) looks as follows:

44, 45, ..., 98, 99, 00, 01, ..., 42, 43.

IGNORE-UNICODE-BLANK =
This operand defines whether blanks or other characters represented by variable collation
elements are taken into account when the sort sequence is defined.

IGNORE-UNICODE-BLANK = *NO
All characters are taken into account.

IGNORE-UNICODE-BLANK = *YES
Blanks and other characters represented by variable collation elements are not used to
define the sort sequence. The search key is contracted and, if necessary, padded with the
Unicode fill character at the end.

IGNORE-CHARACTER =
Specifies the characters that must be ignored by sort. The characters are ignored for the
formats *CHARACTER and *TRANSLATE-CHARACTER. Although the characters are
ignored when comparing the sort fields, they remain in the record.

IGNORE-CHARACTER = *NONE
No characters are to be ignored.

IGNORE-CHARACTER = list-poss(4): <c-string 1..1 with-low>
Character constant (1 byte).

IGNORE-CHARACTER = list-poss(4): <x-string 1..2>
Hexadecimal constant (1 byte).

Examples:

SET-SORT-OPTIONS IGNORE-CHARACTER=C' '
SET-SORT-OPTIONS IGNORE-CHARACTER=X'40'
SET-SORT-OPTIONS IGNORE-CHARACTER=(C' ',C'_')
SET-SORT-OPTIONS IGNORE-CHARACTER=(C' ',X'6D')
SET-SORT-OPTIONS IGNORE-CHARACTER=(C'(',C')',C'<',C'>')
SET-SORT-OPTIONS IGNORE-CHARACTER=*NONE

SHOW-SORT-DEFAULTS SORT statements

174 U6184-J-Z125-6-76

SHOW-SORT-DEFAULTS

SHOW-SORT-DEFAULTS is used to display default values.

The currently valid defaults for the following SORT parameters are output:

– minimum message weight that causes messages to be output
(MIN-MSG-WEIGHT)

– maximum value for intensively used memory
(CORE-MAXIMUM)

– lower limit for the CORE value calculation
(CORE-MINIMUM)

– upper limit for the CORE value calculation
(CORE-LIMIT)

– default for the CORE value
(CORE-DEFAULT)

– job class for subtasks
(SUBTASK-JOB-CLASS)

This statement has no operands.

SHOW-SORT-DEFAULTS

SORT statements SORT-RECORDS

U6184-J-Z125-6-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

SORT-RECORDS

SORT-RECORDS defines sort, remainder and constant fields and their most significant
attributes (position, length,...) for a sort run. Fields can be defined via symbolic names.

SORT-RECORDS

FIELDS = *COMPLETE-RECORD / list-poss(64): *FIELD-EXPLICIT(...) / *FIELD-SYMBOLIC(...) /

*REMAINDER-EXPLICIT(...) / *REMAINDER-SYMBOLIC(...) / *CONSTANT-EXPLICIT(...) /

*CONSTANT-SYMBOLIC(...)

*FIELD-EXPLICIT(...)
 ⏐ POSITION = <integer 1..32759>(...)
⏐ ⏐ <integer 1..32759>(...)
⏐ ⏐ ⏐ BIT-POSITION = 0 / <integer 0..7>
⏐ ⏐ ,LENGTH = <integer 0..32759>(...)
⏐ ⏐ <integer 0..32759>(...)
⏐ ⏐ ⏐ NUMBER-OF-BITS = 0 / <integer 0..7>
⏐ ⏐ ,FORMAT = *CHARACTER / *BINARY / *FIXED-POINT / *FLOATING-POINT /

⏐ *PACKED-DECIMAL / *ZONED-DECIMAL / *EBCDIC-DIN /

⏐ *EBCDIC-INTERNATIONAL / *PHYSICAL-TRANSLATE / *VIRTUAL-TRANSLATE /

⏐ *MODIFY-CODE / *EBCDIC-ISO-EBCDIC / *EXTENDED-CHARACTER /

⏐ *TRANSLATE-CHARACTER / *UNICODE-CHARACTER
⏐ ⏐ ,SORTING-ORDER = *ASCENDING / *DESCENDING / *EXTERNAL-COMPARE
⏐ ⏐ ,PRIORITY = *CURRENT-NUMBER / <integer 1..64>
⏐ ⏐ ,ELIMINATE = *NO / *YES
⏐ ⏐ ,PRINT-MASK = *NO / <c-string 1..254 with-low>
⏐ ⏐ ,TWO-DIGIT-YEAR = *NO / *YES

*FIELD-SYMBOLIC(...)
 ⏐ SORT-FIELD-NAME = list-poss(64): <name 1..20>
⏐ ⏐ ,SORTING-ORDER = *ASCENDING / *DESCENDING / *EXTERNAL-COMPARE
⏐ ⏐ ,PRIORITY = *CURRENT-NUMBER / <integer 1..64>
⏐ ⏐ ,ELIMINATE = *NO / *YES
⏐ ⏐ ,PRINT-MASK-NAME = *NO / <name 1..20>
⏐ ⏐ ,TWO-DIGIT-YEAR = *NO / *YES

(part 1 of 2)

SORT-RECORDS SORT statements

176 U6184-J-Z125-6-76

FIELDS =
The FIELDS operand is used to define sort, remainder and constant fields. At least 1 field
must be specified; up to 64 fields may be specified in a list.

FIELDS = *COMPLETE-RECORD
With fixed record format, the whole record is used as a sort field. With variable record
format, the record length field is not included in the record comparison. For the purpose of
the comparison, the variable part of the record is padded to the maximum record length with
the filler character specified in the FILLER operand of the SET-RECORD-ATTRIBUTES
statement. *COMPLETE-RECORD may only be specified for full sorts (SORT-TYPE =
*COMPLETE-RECORD).

*REMAINDER-EXPLICIT(...)
 ⏐ POSITION = <integer 1..32759>
⏐ ⏐ ,LENGTH = <integer 1..32759>
⏐ ⏐ ,FORMAT = *NO / *BINARY / *FIXED-POINT / *PACKED-DECIMAL / *ZONED-DECIMAL
⏐ ⏐ ,PRINT-MASK = *NO / <c-string 1..254 with-low>

*REMAINDER-SYMBOLIC(...)
 ⏐ FIELD-NAME = list-poss(64): <name 1..20>
⏐ ⏐ ,PRINT-MASK-NAME = *NO / <name 1..20>

*CONSTANT-EXPLICIT(...)
 ⏐ CONSTANT = <integer -2147483639..2147483639> / <c-string 1..256 with-low> /

⏐ <x-string 1..512>

*CONSTANT-SYMBOLIC(...)
 ⏐ CONSTANT-NAME = list-poss(64): <name 1..20>

,SORT-TYPE = *COMPLETE-RECORD / *COMPOUND-RECORD / *TAG-COMPOUND / *TAG-HEADER /

*TAG-TRAILER

,ESTIMATED-RECORDS = *BY-CALCULATION / <integer 1..2147483639> / <alphanum-name 1..19>

,RECORDS-PER-CYCLE = *BY-CALCULATION / <integer 1..2147483639>

,INPUT-RANGE = *ALL / *PARAMETER(...)

*PARAMETER(...)
 ⏐ FROM-RECORD = 0 / <integer 0..2147483639> / <alphanum-name 1..19>
⏐ ⏐ ,NUMBER-OF-RECORDS = *REST-INPUT / <integer 1..2147483639> / <alphanum-name 1..19>

,CHECKPOINT = *NO / *YES

,KEEP-EQUAL-SEQUENCES = *NO / *YES

(part 2 of 2)

SORT statements SORT-RECORDS

U6184-J-Z125-6-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

FIELDS = *FIELD-EXPLICIT(...)
Specifies sort fields in terms of position, length and format.

POSITION = <integer 1..32759(...)>
Position of the sort field relative to start of record. In fixed-length records the first data
field occupies position 1. In records with variable record format, the position of the first
data field depends on the file type and the IGNORE-LENGTH-FIELD operand of the
SET-SORT-OPTIONS statement. This dependency is shown in the following table:

For all formats except CHARACTER, EBCDIC-DIN, EBCDIC-INTERNATIONAL,
EXTENDED-CHARACTER and TRANSLATE-CHARACTER the position specifications
for sort fields must be in the range 1 to 4096.

BIT-POSITION = 0 / <integer 0..7>
Position specified in bits in addition to the byte position entry. This entry is only
permitted for sort fields in BINARY format when no PRINT-MASK operand has been
specified for these.

LENGTH = <integer 0..32759(...)>
Length of the sort field. The length must be within the limits allowed for the format.
Specifying BIT-POSITION and NUMBER-OF-BITS increases the length of the sort field
by 1 byte (BIT-POSITION + NUMBER-OF-BITS Î 7) or by 2 bytes (BIT-POSITION +
NUMBER-OF-BITS > 7). This must be taken into account when specifying the
maximum length. With variable-length records, sort fields in CHARACTER, EBCDIC-
DIN and EBCDIC-INTERNATIONAL format are allowed to extend into the variable part
of the record.

NUMBER-OF-BITS = 0 / <integer 0..7>
Length specified in bits, in addition to the length in bytes. Specifying NUMBER-OF-
BITS is allowed only for sort fields in BINARY format when the PRINT-MASK
operand is not specified.

FORMAT = *CHARACTER / *BINARY / *FIXED-POINT / *FLOATING-POINT /
*PACKED-DECIMAL / *ZONED-DECIMAL / *EBCDIC-DIN /
*EBCDIC-INTERNATIONAL / *PHYSICAL-TRANSLATE / *VIRTUAL-TRANSLATE /
*MODIFY-CODE / *EBCDIC-ISO-EBCDIC / *EXTENDED-CHARACTER /
*TRANSLATE-CHARACTER / *UNICODE-CHARACTER
Format of the sort field (for attributes, see page 38).

IGNORE-LENGTH-FIELD= *STD *YES *NO

BS2000 file 5 1 5

POSIX file 1 1 5

SORT-RECORDS SORT statements

178 U6184-J-Z125-6-76

SORTING-ORDER =
Order in which SORT is to arrange the records.

SORTING-ORDER = *ASCENDING
Ascending sorting order.

SORTING-ORDER = *DESCENDING
Descending sorting order. This option is not permitted for ISAM output files.

SORTING-ORDER = *EXTERNAL-COMPARE
The order for this sort field is defined by the user via the user exit EXTERNAL-
COMPARE. This sort field must not be more than 255 bytes long.

PRIORITY =
Priority (weight) of the sort field. If several sort fields are specified, those with a priority
of 1 are compared first. If they are identical, the sort fields with a priority of 2 are
compared. This process is repeated until the sort fields compare unequal or until those
with the highest priority have been compared.

PRIORITY = *CURRENT-NUMBER
The priority is determined by the order in which the sort fields are specified (the first sort
field has a priority of 1).

PRIORITY = <integer 1..64>
Specifies the priority number. If a priority number is specified for one sort field, it must
also be specified for all other sort fields. All the priority numbers must form a
consecutive ascending sequence beginning with 1.

ELIMINATE =
Specifies whether the sort field is to be eliminated (not included in the output).

ELIMINATE = *NO
The sort field is not to be eliminated.

ELIMINATE = *YES
The sort field is to be eliminated. It serves solely to determine the sorting order. This
option is not allowed for binary fields with bit position specifications or for mask fields.
If specified in such cases, it is ignored and SORT issues a warning. When the OUTPUT
user exit is used (with PARAMETER-MODE=24), identical records are not displayed.

PRINT-MASK =
Print mask used to edit the field for printing. Print masks are permitted only for selection
sorting and only with the formats BINARY, FIXED-POINT, PACKED-DECIMAL and
ZONED-DECIMAL. The combined length of all constants and print masks must not be
greater than 4000 bytes. Note here that an additional 1-byte length field must be taken
into account for each mask.

PRINT-MASK = *NO
No print mask is specified.

SORT statements SORT-RECORDS

U6184-J-Z125-6-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

PRINT-MASK = <c-string 1..254>
Format of the print mask. The following characters may be used in a mask:

– a freely selectable filler character as the first character of the mask

– the control characters ’#’ (number sign) and ’^’ (circumflex)

– characters to be inserted (not equal to the control characters)

TWO-DIGIT-YEAR =
Determines whether the sort field contains a two-digit year number.

TWO-DIGIT-YEAR = *NO
The sort field does not contain a two-digit year number.

TWO-DIGIT-YEAR = *YES
The sort field contains a two-digit year number. This statement is legal only in
combination with FORMAT=*PACKED-DECIMAL or FORMAT=*ZONED-DECIMAL. In
this case, the sorting sequence depends on the CENTURY-WINDOW-SHIFT operand
in the SET-SORT-OPTIONS statement.

The following sort field formats are possible:

FIELDS = *FIELD-SYMBOLIC(...)
Specifies sort fields using symbolic names which must previously have been defined as
fields by means of the ADD-SYMBOLIC-NAMES statement.

SORT-FIELD-NAME = list-poss(64): <name 1..20>
Name of a sort field (max. 64 fields). If a list of symbolic names is given, the SORTING-
ORDER, ELIMINATE and PRINT-MASK-NAME entries apply to all names; the value
given for PRIORITY is used for the first name specified, and a value incremented by 1
each time is entered for the remaining names.

SORTING-ORDER =
Order in which SORT is to arrange the records.

SORTING-ORDER = *ASCENDING
Ascending sorting order.

SORTING-ORDER = *DESCENDING
Descending sorting order. This option is not allowed for ISAM output files.

FORMAT= Sort field format

*PACKED-DECIMAL X’0yyv’ and X’0jjmmddv’

*ZONED-DECIMAL X’Fyvy’

With: y = one digit of the two-digit year specification, mm = month, dd = day,
s = sign (must be positive)

SORT-RECORDS SORT statements

180 U6184-J-Z125-6-76

SORTING-ORDER = *EXTERNAL-COMPARE
The order for this sort field is defined via the user exit EXTERNAL-COMPARE. The field
must not be more than 255 bytes long.

PRIORITY =
Priority (weight) of the sort field. If several sort fields are specified, those with a priority
of 1 are compared first. If they are identical, the sort fields with a priority of 2 are
compared. This process is repeated until the sort fields compare unequal or until those
with the highest priority have been compared.

PRIORITY = *CURRENT-NUMBER
The priority is determined by the order in which the sort fields are specified (the first sort
field has a priority of 1).

PRIORITY = <integer 1..64>
Specifies the priority number. If a priority number is specified for one sort field, it must
also be specified for all other sort fields. All the priority numbers must form a
consecutive ascending sequence beginning with 1.

ELIMINATE =
Specifies whether the sort field is to be eliminated (not included in the output).

ELIMINATE = *NO
The sort field is not to be eliminated.

ELIMINATE = *YES
The sort field is to be eliminated. It serves solely to determine the sorting order. This
option is not allowed for binary fields with bit position specifications or for mask fields.
In such cases it is ignored and SORT issues a warning. If the OUTPUT user exit is used
(with PARAMETER-MODE=24), identical records are not displayed.

PRINT-MASK-NAME =
Specifies a print mask by means of a symbolic name. Print masks are allowed for
selection sorting only, and only for the formats BINARY, FIXED-POINT, PACKED-
DECIMAL and ZONED-DECIMAL. The combined length of all constants and print
masks must not be more than 4000 bytes. Note that an additional 1-byte length field
also has to be taken into account for each mask.

PRINT-MASK-NAME = *NO
No print mask is specified.

PRINT-MASK-NAME = <c-string 1...254>
Format of the print mask. The following characters are permitted in masks:

– a freely selectable filler character as the first character of the mask

– the control characters ’#’ (number sign) and ’^’ (circumflex)

– characters to be inserted (not equal to the control characters)

SORT statements SORT-RECORDS

U6184-J-Z125-6-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

TWO-DIGIT-YEAR =
Determines whether the sort field contains a two-digit year number.

TWO-DIGIT-YEAR = *NO
The sort field does not contain a two-digit year number.

TWO-DIGIT-YEAR = *YES
The sort field contains a two-digit year number. This statement is legal only in
combination with FORMAT=*PACKED-DECIMAL or FORMAT=*ZONED-DECIMAL. In
this case, the sorting sequence depends on the CENTURY-WINDOW-SHIFT operand
in the SET-SORT-OPTIONS statement.

The following sort field formats are possible:

FIELDS = *REMAINDER-EXPLICIT(...)
Specifies remainder fields in terms of position and length. Remainder fields are used in
selection and tag sorting for constructing the output record; they have no effect on the
sorting order.

POSITION = <integer 1..32759(...)>
Position of the remainder field relative to start of record. In fixed-length records the first
data field occupies position 1. In records with variable record format, the position of the
first data field depends on the file type and the IGNORE-LENGTH-FIELD operand of
the SET-SORT-OPTIONS statement. This dependency is shown in the following table:

Remainder fields may start at any position in the record. In selection sorting with
variable-length records, a remainder field may also be wholly or partially in the variable
part of the record if it is the last field specified. With fixed-length records, the remainder
field must be wholly within the record.

LENGTH = <integer 1..32759>
Length of the remainder field. The length of remainder fields is not limited provided they
are within the specified record length.

FORMAT= Sort field format

*PACKED-DECIMAL X’0yyv’ and X’0jjmmddv’

*ZONED-DECIMAL X’Fyvy’

With: y = one digit of the two-digit year specification, mm = month, dd = day,
s = sign (must be positive)

IGNORE-LENGTH-FIELD= *STD *YES *NO

BS2000 file 5 1 5

POSIX file 1 1 5

SORT-RECORDS SORT statements

182 U6184-J-Z125-6-76

FORMAT = *NO / *BINARY / *FIXED-POINT / *PACKED-DECIMAL /
*ZONED-DECIMAL
Format of the remainder field. Specifying a format rather than NO is permitted only in
combination with a print mask.

PRINT-MASK =
Print mask used to edit the field for printing. The remainder field must have one of the
formats BINARY, FIXED-POINT, PACKED-DECIMAL or ZONED-DECIMAL.
The combined length of all constants and print masks must not be greater than
4000 bytes (note that an additional 1-byte length field must also be taken into account
for each mask).

PRINT-MASK = *NO
No print mask is specified.

PRINT-MASK = <c-string 1..254>
Format of the print mask. The following characters are allowed in a print mask:

– a freely selectable filler character as the first character of the mask

– the control characters ’#’ (number sign) and ’^’ (circumflex)

– characters to be inserted (not equal to the control characters)

FIELDS = *REMAINDER-SYMBOLIC(...)
Specifies remainder fields using symbolic names which must previously have been defined
as fields by means of the ADD-SYMBOLIC-NAMES statement. Remainder fields are used
in selection or tag sorting for constructing the output record; they have no effect on the
sorting order.

FIELD-NAME = list-poss(64): <name 1..20>
Name of the remainder field (max. 64 fields). If a list of symbolic names is given, the
entries for PRINT-MASK-NAME apply to all the names.

Format Format description Length in bytes

BINARY Binary 1 bit - 256 bytes

FIXED-POINT Fixed-point 1 - 256

PACKED-DECIMAL Packed decimal 1 - 16

ZONED-DECIMAL Zoned decimal 1 - 16

NO 1 - maximum record length

SORT statements SORT-RECORDS

U6184-J-Z125-6-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

PRINT-MASK-NAME =
Specifies a print mask name using a symbolic name which must previously have been
defined as a mask by means of the ADD-SYMBOLIC-NAMES statement. The
remainder field must have one of the formats BINARY, FIXED-POINT, PACKED-
DECIMAL or ZONED-DECIMAL. The combined length of all constants and print masks
must not be more than 4000 bytes; this total must also include the additional 1 byte
required for a length field for each mask.

PRINT-MASK-NAME = *NO
No print mask is specified.

PRINT-MASK-NAME = <name 1..20>
Name of the print mask.

FIELDS = *CONSTANT-EXPLICIT(...)
Specifies constants used in selection or tag sorting for constructing the output record.

CONSTANT =
Value of the constant. The total length of all constants and print masks must not be more
than 4000 bytes; this is including the extra 1 byte required for a length field for each
mask.

CONSTANT = <integer-2147483639..2147483639>
Decimal numbers are converted by SORT into fixed-point numbers with a length of
4 bytes.

CONSTANT = <c-string 1..256 with-low>
Character string. A single quote embedded in a character string must be represented
by 2 consecutive single quotes.

CONSTANT = <x-string 1..512>
Hexadecimal string.

FIELDS = *CONSTANT-SYMBOLIC(...)
Specifies constants using a symbolic name which must previously have been defined as a
constant by means of the ADD-SYMBOLIC-NAMES statement. The constants are used in
selection and tag sorting for constructing the output record.

CONSTANT-NAME = list-poss: <name 1..20>
Specifies a symbolic name. The total length of all constant fields and print masks must
not be more than 4000 bytes; this is including the extra 1 byte required for a length field
for each mask.

SORT-RECORDS SORT statements

184 U6184-J-Z125-6-76

SORT-TYPE =
Type of sort by which the records are to be processed.

SORT-TYPE = *COMPLETE-RECORD
Full sort. The entire input record is processed in the sort operation.

SORT-TYPE = *COMPOUND-RECORD
Selection sort. The record to be sorted is composed of those parts of the input record that
were specified in the FIELDS operand as sort fields, remainder fields and constants. The
order in which these fields are combined to form the output record is determined by the
order in which the fields were defined. In selection sorts, fixed-length records are generated
as standard, regardless of the input record format.

SORT-TYPE = *TAG-COMPOUND
Tag sort. SORT prefixes the record address - for SAM files an extended record address (six-
digit) - to the start of the selection record.

SORT-TYPE = *TAG-HEADER
Tag sort. SORT prefixes the record address to the start of the selection record.

SORT-TYPE = *TAG-TRAILER
Tag sort. SORT appends the record address to the end of the selection record.

ESTIMATED-RECORDS =
Approximate number of records to be processed. This helps SORT to work out the sort
strategy and memory requirements with greater precision.

ESTIMATED-RECORDS = *BY-CALCULATION
No specification is given for the approximate number of records.

ESTIMATED-RECORDS = <integer 1..2147483639>
Estimated number of records to be sorted. Records that are to be inserted or omitted using
user routines should not be taken into account for this estimate.

ESTIMATED-RECORDS = <alphanum-name 1..19>
Estimated number of records to be sorted exceeding a size of 2.14.483.639.

RECORDS-PER-CYCLE =
Size of a sort cycle. In each cycle, SORT is to presort the specified number of records,
merge them internally and write the resulting record sequence to an auxiliary file. If a value
has been specified for the ESTIMATED-RECORDS operand, the number of auxiliary files
is derived from the ESTIMATED-RECORDS figure divided by the RECORDS-PER-CYCLE
value. SORT sets up the calculated number of auxiliary files or makes up the number of
existing auxiliary files to the calculated number.

RECORDS-PER-CYCLE = *BY-CALCULATION
No cycle sorting is performed by SORT.

SORT statements SORT-RECORDS

U6184-J-Z125-6-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

RECORDS-PER-CYCLE = <integer 1..2147483639>
Number of records to be sorted in a cycle.

INPUT-RANGE =
Excludes records at the beginning or end of the input file from the sorting process.

INPUT-RANGE = *ALL
All records are included in the sort.

INPUT-RANGE = *PARAMETER(...)
Specifies a range of records to be included in the sort run.

FROM-RECORD =
Number of records that SORT is to skip, counting from the beginning of the input file.

FROM-RECORD = 0
No records are to be skipped.

FROM-RECORD = <integer 0..2147483639>
Number of records that SORT is to skip.

FROM-RECORD = <alphanum-name 1..19>
Number of records exceeding a size of 2.14.483.639 that SORT is to skip.

NUMBER-OF-RECORDS =
Number of records that SORT is to read.

NUMBER-OF-RECORDS = *REST-INPUT
SORT is to read all records up to end-of-file.

NUMBER-OF-RECORDS = <integer 1..2147483639>
Specifies the number of records.

NUMBER-OF-RECORDS = <alphanum-name 1..19>
Specifies the number of records exceeding a size of 2.14.483.639.

CHECKPOINT =
Controls the output of checkpoints.

CHECKPOINT = *NO
No checkpoints are written by SORT.

CHECKPOINT = *YES
SORT is to write a new checkpoint after every n records, where n is the number of records
specified in the RECORDS-PER-CYCLE operand.

KEEP-EQUAL-SEQUENCES =
Controls whether the sequence of records with identical sort keys is to be preserved.

SORT-RECORDS SORT statements

186 U6184-J-Z125-6-76

KEEP-EQUAL-SEQUENCES = *NO
The input sequence is not preserved. The order in which records with identical sort keys
are transferred to the output is random.

KEEP-EQUAL-SEQUENCES = *YES
The input sequence of records with identical sort keys is preserved.

SORT statements SUM-RECORDS

U6184-J-Z125-6-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

SUM-RECORDS

SUM-RECORDS is used to define sum fields. This is a means whereby records with
identical sort keys are combined into a single record and the sum fields selected with SUM-
RECORDS added together. Any summation that would result in an arithmetic overflow is
cancelled and a warning is issued by SORT. Records with a unique sort key are not
modified. Records with non-addable sum fields are retained intact.

FIELDS =
Up to 64 sum fields can be specified in the FIELDS operand. If there are two records with
identical sort keys, their sum fields are added together and one of the two records is
eliminated. Sum fields must not overlap other sum fields or sort fields.

FIELDS = *NONE
Out of all the records with identical sort keys, one record is moved to the output and the rest
are eliminated. No summation is performed. The record transferred for output is selected
entirely at random.

SUM-RECORDS

FIELDS = *NONE / list-poss(64): *FIELD-EXPLICIT(...) / *FIELD-SYMBOLIC(...)

*FIELD-EXPLICIT(...)
 ⏐ POSITION = <integer 1..4096>
⏐ ⏐ ,LENGTH = <integer 1..16>
⏐ ⏐ ,FORMAT = *FIXED-POINT / *BINARY / *PACKED-DECIMAL / *ZONED-DECIMAL
⏐ ⏐ ,FIELD-EXTENSION = 0 / <integer 0..16>
⏐ ⏐ ,PRINT-MASK = *NO / <c-string 1..254 with-low>

*FIELD-SYMBOLIC(...)
 ⏐ SUM-FIELD-NAME = list-poss(64): <name 1..20>
⏐ ⏐ ,FIELD-EXTENSION = 0 / <integer 0..16>
⏐ ⏐ ,PRINT-MASK-NAME = *NO / <name 1..20>

SUM-RECORDS SORT statements

188 U6184-J-Z125-6-76

FIELDS = *FIELD-EXPLICIT(...)
Specifies a sum field in terms of position, length and format.

POSITION = <integer 1..4096>
Position of the sum field relative to start of record.
In fixed-length records the first data field occupies position 1. In records with variable
record format, the position of the first data field depends on the file type and the
IGNORE-LENGTH-FIELD operand of the SET-SORT-OPTIONS statement. This
dependency is shown in the following table:

The record length field must not be used as a sum field. In selection and tag sorting, the
specified positions refer to the newly constructed selection record (including any format
modifications).

LENGTH = <integer 1..16>
Length of the sum field in bytes. The permissible or maximum length is determined by
the format.

FORMAT = *FIXED-POINT / *BINARY / *PACKED-DECIMAL / *ZONED-DECIMAL
Format of the sum field. In ZONED-DECIMAL format, blanks (X’40’) are automatically
converted to zeros (X’F0’). With positive numbers, the sign zone of the final digit
position is additionally set to X’Fx’ (where 0 Î x Î 9).

IGNORE-LENGTH-FIELD= *STD *YES *NO

BS2000 file 5 1 5

POSIX file 1 1 5

Format Format description Length in bytes

BINARY Binary 2, 4, 8

FIXED-POINT Fixed-point 2, 4, 8

PACKED-DECIMAL Packed decimal 1 - 16

ZONED-DECIMAL Zoned decimal 1 - 16

SORT statements SUM-RECORDS

U6184-J-Z125-6-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

4

FIELD-EXTENSION = 0 / <integer 0..16>
Specifies a sum field extension. The sum field is extended (on the left) by the specified
number of bytes. By this means it is also possible to combine records in which the
addition of the sum fields would lead to an overflow. Padding for the extended sum
fields is dependent on the format.
Even for extended sum fields, only the format-specific lengths or maximum lengths are
permitted.

PRINT-MASK =
Print mask with which the sum field is edited for printing. Print masks are only permitted
in selection sorting. The combined length of all the print masks must not be more than
2000 bytes, including the additional one byte required for a length field for each mask.

PRINT-MASK = *NO
No print mask is specified.

PRINT-MASK = <c-string 1..254_with-low>
Format of the print mask. The following characters are permitted in a print mask:

– a freely selectable filler character as the first character of the mask

– the control characters ’#’ (number sign) for digit selection and ’^’ (circumflex) for the
start of the digits

– characters to be inserted (not equal to the control characters)

Format Padding on the Filler

BINARY left X’00’ (zero)

FIXED-POINT left Sign

PACKED-DECIMAL left Zero

ZONED-DECIMAL left X’F0’ (zero)

SUM-RECORDS SORT statements

190 U6184-J-Z125-6-76

FIELDS = *FIELD-SYMBOLIC(...)
Specifies sum fields using symbolic names which must previously have been defined as
fields by means of the ADD-SYMBOLIC-NAMES statement.

SUM-FIELD-NAME = list-poss(64): <name 1..20>
Name of the sum field. Up to 64 sum fields can be specified. If a list of symbolic names
is used, the entries given for FIELD-EXTENSION and PRINT-MASK-NAME apply to all
the names.

FIELD-EXTENSION = 0 / <integer 0..16>
Specifies a sum field extension. The sum field is extended (on the left) by the specified
number of bytes. By this means it is also possible to combine records in which the
addition of the sum fields would result in an overflow. Padding for the extended sum
fields is dependent on the format.

PRINT-MASK-NAME =
Specifies a print mask using a symbolic name which must previously have been defined
as a mask by means of the ADD-SYMBOLIC-NAMES statement. A print mask is
permitted only in selection sorting.

PRINT-MASK-NAME = *NO
No print mask is specified.

PRINT-MASK-NAME = <name 1..20>
Name of the print mask.

U6184-J-Z125-6-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

5 Calling SORT

5.1 Calling SORT as a standalone program

SORT can be invoked by means of one of the following statements:

/START-SORT
/SORT-FILE

In interactive mode the start command is entered directly at the display terminal or is
included within a procedure.

In batch mode the command is contained in an ENTER procedure.

In each case the SORT control statements are read from the SYSDTA system file.

START-SORT Calling SORT

192 U6184-J-Z125-6-76

START-SORT

The START-SORT command is used to call SORT as a standalone program. For further
processing, SORT control statements are necessary.

SORT delivers a command return code on termination (see “Command return codes” on
page 202).

VERSION =
Product version of SORT to be started (see also “Coexistence” on page 283).

VERSION = *STD
No explicit specification of the product version. In this case, the product version is selected
as follows:

1. The version specified by the /SELECT-PRODUCT-VERSION command.

2. The highest SORT version installed with IMON.

VERSION = <product-version 3..8 without-man>
Explicit specification of product version using the format n.n or nn.n (where n stands for a
number e.g. 07.9). It is possible to prefix the number with the character V, or to enter it in
quotes (or as follows with a preceeding C, e.g. C’V07.9’).

For reasons of compatibility it is possible to specify the release and correction status.
However, this specification is not evaluated since coexistence and exchangeability is only
permitted for main versions.

CPU-LIMIT =
Maximum CPU time (in seconds) available to the program during its execution. If this time
is exceeded, the sort/merge run terminates abnormally (with message SRT1038).

Domain: FILE, UTILITIES

START-SORT

VERSION = *STD / <product-version 3..8 without-man>

,CPU-LIMIT = *JOB-REST / <integer 1..32767>

,MONJV = *NONE / <filename 1..54 without-gen-vers>

,PROGRAM-MODE = 24 / *ANY / *DBL-DEFAULT

Calling SORT START-SORT

U6184-J-Z125-6-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

CPU-LIMIT = *JOB-REST
If the operand CPU-LIMIT=*NO is specified in the SET-LOGON-PARAMETERS command,
there are no time constraints on the program. If the operand CPU-LIMIT=
<integer 1..32767> is specified in the SET-LOGON-PARAMETERS command, the value
defined at system generation is used as the time limit for the program.

CPU-LIMIT = <integer 1..32767>
Specifies the CPU time in seconds.

MONJV =
Specifies a job variable. This operand is effective only when the JV software product is
installed on the system.

MONJV = *NONE
No job variable is specified.

MONJV = <filename 1..54>
Name of the job variable that is to monitor the program. If no JV of this name is present, it
will be created. The system then sets the JV to the appropriate values in the course of
program execution:
$R Program running
$T Program terminated
$A Program terminated abnormally
After termination of the SORT run, the JV also contains information on the reason for the
termination. For the exact structure of the JV, see section “Error information when SORT is
called as a standalone program” on page 398.

PROGRAM-MODE =
This operand determines whether SORT is loaded into the lower or upper (>16 Mb) address
space.

PROGRAM-MODE = 24
SORT is loaded into the address space below the 16-Mb boundary. The program executes
in 24-bit addressing mode. External references are interpreted as 24-bit addresses.

PROGRAM-MODE = *ANY
SORT can be loaded above or below the 16-Mb boundary.

PROGRAM-MODE = *DBL-DEFAULT
The setting made for the last MODIFY-DBL-DEFAULT command is valid here. At the
beginning of the task *ANY is preset.

SORT-FILE Calling SORT

194 U6184-J-Z125-6-76

SORT-FILE

SORT is invoked by the SORT-FILE command. In the command the user also defines the
input and output files, sort fields and statement files for the sort run. Consequently, no
SORT control statements are requested. Sorting is performed on the basis of the
SORT-FILE specifications. If additional statements are required, these must be combined
in statement files and assigned by means of the STATEMENT-FILES operand.

Note

This command is processed by a procedure. The operands of the command are passed as
a single parameter. For example, the operand

FIELDS=FIELD-EXPLICIT(POSITION=100,LENGTH=10,FORMAT=CHARACTER,
 SORTING-ORDER=ASCENDING)

is passed to the procedure as follows:

FIELDS=F(100,10,CH,A,,,,*NO)

A parameter may be up to 254 characters long. If this limit is exceeded (e.g. by specifying
too many sort fields or too many statement files), the following message is issued:

SSM2054 SYMBOLIC OPERAND ERROR IN COMMAND. COMMAND IGNORED

The command should be simplified or alternatively the START-SORT command should be
used.

SORT-FILE is always executed with
PROGRAM-MODE=*ANY,
MONJV=*NONE and
CPU-LIMIT=*JOB-REST.

Domain: FILE, UTILITIES

Calling SORT SORT-FILE

U6184-J-Z125-6-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

INPUT-FILES =
Assigns the input file(s) (max. 99).

INPUT-FILES = *LINK
The input files are assigned via ADD-FILE-LINK commands (file link name SORTIN or
SORTINxx).
By default the file link name is released again when SORT terminates. If the LOCK-FILE-
LINK command is specified before SORT is invoked, the file link name is retained.

SORT-FILE

INPUT-FILES = *LINK / list-poss(99): <filename 1..54> / <posix-pathname 1..1023>

,OUTPUT-FILE = *LINK / <filename 1..54> / <posix-pathname 1..1023>

,CODE = *EBCDIC / *ASCII

,FIELDS = *COMPLETE-RECORD / list-poss(64): *FIELD-EXPLICIT(...) / *FIELD-SYMBOLIC(...)

*FIELD-EXPLICIT(...)
 ⏐ POSITION = <integer 1..32759>
⏐ ⏐ ,LENGTH = <integer 1..32759>
⏐ ⏐ ,FORMAT = *CHARACTER / *FIXED-POINT / *FLOATING-POINT / *PACKED-DECIMAL /

⏐ *ZONED-DECIMAL / *EBCDIC-DIN / *EBCDIC-INTERNATIONAL /

⏐ *PHYSICAL-TRANSLATE / *VIRTUAL-TRANSLATE / *MODIFY-CODE /

⏐ *EBCDIC-ISO-EBCDIC / *EXTENDED-CHARACTER / *TRANSLATE-CHARACTER /

⏐ *UNICODE-CHARACTER
⏐ ⏐ ,SORTING-ORDER = *ASCENDING / *DESCENDING
⏐ ⏐ ,TWO-DIGIT-YEAR = *NO / *YES

*FIELD-SYMBOLIC(...)
 ⏐ SORT-FIELD-NAME = list-poss(64): <name 1..20>
⏐ ⏐ ,SORTING-ORDER = *ASCENDING / *DESCENDING
⏐ ⏐ ,TWO-DIGIT-YEAR = *NO / *YES

,IGNORE-LENGTH-FIELD = *STD / *YES / *NO

,STATEMENT-FILES = *NONE / list-poss(10): <filename 1..54>

,VERSION = *STD / <product-version 3..8 without-man>

,CENTURY-WINDOW-SHIFT = 50(...) / <integer 0..99> (...)

<integer 0..99>(...)
 ⏐ WINDOW-BOUNDARY = *SUBTRACT-FROM-CURRENT-YEAR / *ADD-TO-CURRENT-YEAR

SORT-FILE Calling SORT

196 U6184-J-Z125-6-76

INPUT-FILES = list-poss(99): <filename 1..54> / <posix-pathname 1..1023>
Name(s) of the input file(s). Input files assigned via a ADD-FILE-LINK command are
ignored. Up to 99 input files may be specified.
POSIX file names must be specified in single quotes to distinguish them from BS2000 file
names.
POSIX input files and BS2000 input files must not be used simultaneously in a sort run. If
one input file is a POSIX file, all other input files must also be POSIX files.
Restriction:
The sum of the number and lengths of all specified POSIX input file names must not be
greater than 5100. If any specifications exceed this, an error message is issued and SORT
is aborted.

OUTPUT-FILE =
Assigns the output file.

OUTPUT-FILE = *LINK
The output file is assigned via a ADD-FILE-LINK command (file link name SORTOUT).

OUTPUT-FILE = <filename 1..54> / <posix-pathname 1..1023>
Name of the output file. An output file that has been assigned via a ADD-FILE-LINK
command is ignored. Different file attributes from those taken over from the input file or
defined by SORT can be assigned only by means of a ADD-FILE-LINK command.
The file link name SORTOUT is used, and is retained after the sort run is completed.
A POSIX file name must be specified in single quotes to distinguish it from a BS2000 file
name.

CODE =
Specification of the code of POSIX files. This applies to both the input file and the output file
and merely defines the encoding of the end-of-record identifier. In particular, this operand
has no effect on the sort sequence. For BS2000 the operand has no significance and is
ignored.

CODE = *EBCDIC
The end-of-record identifier is encoded according to EBCDIC and has the value X’15’.

CODE = *ASCII
The end-of-record identifier is encoded according to ASCII and has the value X’0A’.

Calling SORT SORT-FILE

U6184-J-Z125-6-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

FIELDS =
Specifies whether sorting is to be based on the complete input record or on individual sort
fields. Describes sort fields in terms of position, length, format and sorting order. At least
1 field must be specified, up to 64 fields may be specified either explicitly or using their
symbolic names.

FIELDS = *COMPLETE-RECORD
With fixed-length input records, the entire record is taken as a sort field. With variable
records, the record length field does not form part of the sort field. When records of different
lengths are compared, the shorter record is padded to the length of the longer with the value
specified in the FILLER operand of the SET-RECORD-ATTRIBUTES statement (default
value: X’00’).

FIELDS = *FIELD-EXPLICIT(...)
Specifies sort fields in terms of position, length, format and sorting order.

POSITION = <integer 1..32759>
Position of the sort field relative to start of record.
In fixed-length records the first data field starts at position 1. For records with variable
record format, this position depends on the file type and the value of the IGNORE-
LENGTH-FIELD operand. The position of the first data field in these cases is shown in
the following table:

For all formats except CHARACTER, EBCDIC-DIN, EBCDIC-INTERNATIONAL,
EXTENDED-CHARACTER and TRANSLATE-CHARACTER, the position
specifications for sort fields must be in the range 1 through 4096.

LENGTH = <integer 1..32759>
Length of the sort field in bytes. The length must be within the limits allowed for the
format.

FORMAT = *CHARACTER / *FIXED-POINT / *FLOATING-POINT /
*PACKED-DECIMAL / *ZONED-DECIMAL / *EBCDIC-DIN /
*EBCDIC-INTERNATIONAL / *PHYSICAL-TRANSLATE / *VIRTUAL-TRANSLATE /
*MODIFY-CODE / *EBCDIC-ISO-EBCDIC / *EXTENDED-CHARACTER /
*TRANSLATE-CHARACTER / *UNICODE-CHARACTER
Format of the sort field (for attributes, see section “Sort fields” on page 38).

IGNORE-LENGTH-FIELD= *STD *YES *NO

BS2000 file 5 1 5

POSIX file 1 1 5

SORT-FILE Calling SORT

198 U6184-J-Z125-6-76

SORTING-ORDER =
Order in which SORT is to arrange the records.

SORTING-ORDER = *ASCENDING
Ascending sorting order.

SORTING-ORDER = *DESCENDING
Descending sorting order. This option is not permitted for ISAM output files.

TWO-DIGIT-YEAR =
Determines whether the sort field contains a two-digit year number.

TWO-DIGIT-YEAR = *NO
The sort field does not contain a two-digit year number.

TWO-DIGIT-YEAR = *YES
The sort field contains a two-digit year number. This statement is legal only in
combination with FORMAT=*PACKED-DECIMAL or FORMAT=*ZONED-DECIMAL. In
this case, the sorting sequence depends on the CENTURY-WINDOW-SHIFT operand.

The following sort field formats are possible:

FIELDS = *FIELD-SYMBOLIC(...)
Specifies sort fields using symbolic names which must previously have been defined as
fields by means of the ADD-SYMBOLIC-NAMES statement (in a statement file).

SORT-FIELD-NAME = list-poss(64): <name 1..20>
Name(s) of the sort field(s). If a list of symbolic names (max. 64) is given, the SORTING-
ORDER operand entry applies to all the names.

SORTING-ORDER =
Order in which SORT is to arrange the records.

SORTING-ORDER = *ASCENDING
Ascending sorting order.

SORTING-ORDER = *DESCENDING
Descending sorting order. This option is not permitted for ISAM output files.

FORMAT= Sort field format

*PACKED-DECIMAL X’0yyv’ and X’0jjmmddv’

*ZONED-DECIMAL X’Fyvy’

Where: y = one digit of the two-digit year specification, mm = month, dd = day,
s = sign (must be positive)

Calling SORT SORT-FILE

U6184-J-Z125-6-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

TWO-DIGIT-YEAR =
Determines whether the sort field contains a two-digit year number.

TWO-DIGIT-YEAR = *NO
The sort field does not contain a two-digit year number.

TWO-DIGIT-YEAR = *YES
The sort field contains a two-digit year number. This statement is legal only in
combination with FORMAT=*PACKED-DECIMAL or FORMAT=*ZONED-DECIMAL. In
this case, the sorting sequence depends on the CENTURY-WINDOW-SHIFT operand.

The following sort field formats are possible:

IGNORE-LENGTH-FIELD =
Specifies whether, in the case of variable record lengths, the record length field must be
taken into account in position specifications for control fields.

The specification applies to all control fields in the current sort run. It does not affect position
specifications in fixed-length records.

IGNORE-LENGTH-FIELD = *STD
With BS2000 files, *STD has the same effect as *NO, i.e. the record length field must be
taken into account in position specifications. The behavior is therefore the same as in the
previous versions.
With POSIX files, *STD has the same effect as *YES. The record length field created
internally by SORT is therefore ignored in the position calculation.

IGNORE-LENGTH-FIELD = *YES
The record length field is ignored in the position calculation. The first data field of a record
begins at position 1.

IGNORE-LENGTH-FIELD = *NO
The record length field is taken into account in the position calculation. The first data field
of a record begins at position 5.

FORMAT= Sort field format

*PACKED-DECIMAL X’0yyv’ and X’0jjmmddv’

*ZONED-DECIMAL X’Fyvy’

With: y = one digit of the two-digit year specification, mm = month, dd = day,
s = sign (must be positive)

SORT-FILE Calling SORT

200 U6184-J-Z125-6-76

STATEMENT-FILES =
Assigns one or more files (max. 10) containing SORT statements. The statement files are
processed before the sort statement.

STATEMENT-FILES = *NONE
No statement files are specified.

STATEMENT-FILES = list-poss:(10)<filename 1..54>
Names of the statement files.

VERSION =
Product version of SORT to be started (see also “Coexistence” on page 283).

VERSION = *STD
No explicit specification of the product version. In this case, the product version is selected
as follows:

1. The version specified by the /SELECT-PRODUCT-VERSION command.

2. The highest SORT version installed with IMON.

VERSION = <product-version 3..8 without-man>
Explicit specification of product version using the form n.n or nn.n (where n stands for a
number e.g. 07.9). It is possible to prefix the number with the character V, or to enter in
quotes (or as follows with a preceeding C, e.g. C’V07.9’).

For reasons of compatibility it is possible to specify the release and correction status.
However, this specification is not evaluated since coexistence and exchangeability is only
permitted for main versions.

Calling SORT SORT-FILE

U6184-J-Z125-6-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

CENTURY-WINDOW-SHIFT = 50(...) / <integer 0..99>(...)
Determines how SORT interprets and sorts fields that contain two-digit years (FORMAT=
*PACKED-DECIMAL or *ZONED-DECIMAL and TWO-DIGIT-YEAR=*YES). The
CENTURY-WINDOW-SHIFT operand defines a century window within which sorting is
executed (ascending or descending order). Depending on what is specified for the
WINDOW-BOUNDARY operand, this century window is determined by either its start or its
end date.

WINDOW-BOUNDARY =
Specifies the way the start and end of the century window is calculated.

WINDOW-BOUNDARY = *SUBTRACT-FROM-CURRENT-YEAR
The start of the century window is computed as follows:

 <century window start> = <current year> - <integer in century-window-shift>.

 Since the century window is 100 years long, its end is 99 years later, i.e.:

 <century window end> = <century window start> + 99.

WINDOW-BOUNDARY = *ADD-TO-CURRENT-YEAR
The end of the century window is computed as follows:

 <century window end> = <current year> + <integer in century-window-shift>.

 Since the century window is 100 years long, its start is 99 years earlier, i.e.:

 <century window start> = <century window end> - 99.

Example:

The current year is 2002, and the SET-SORT-OPTIONS statement contains
CENTURY-WINDOW-SHIFT=55. The century window therefore ranges from
1947 (=2002-55) through 2046 (=1947+99).

For the sort process, this means:
The two-digit year numbers 00 through 46 are interpreted as 2000 through 2046
and are therefore larger than the years 47 through 99 since these are interpreted
as 1947 through 1999.

In this case, the sort sequence (with ascending sort) looks as follows:

44, 45, ..., 98, 99, 00, 01, ..., 42, 43.

Command return codes Calling SORT

202 U6184-J-Z125-6-76

Command return codes

SORT delivers a command return code, which can be used with SDF-P statements for
control in S procedures. The command return code allows you to provide specific
responses to specific error situations.

The command return code consists of three parts:

– the main code, which corresponds to a message code; this allows detailed information
to be queried with the HELP-MSG-INFORMATION command

– the subcode1 (SC1), which classifies the error situations into error classes as they
occur; this code indicates the severity of an error

– the subcode2 (SC2), which can contain additional information (value other than zero)

If SORT is invoked as a subroutine, no command return code is delivered.

If several warnings occur, only the command return code for the last warning is delivered.

If both warnings and errors occur, the command return code for the error is delivered.

(SC2) SC1 Maincode Meaning

0 0 CMD0001 Normal termination of the SORT run. Neither errors nor
warnings occurred.

2 0 SRTxxxx Normal termination of the SORT run. Errors occurred but
not warnings.
The main code contains the number of the last warning
message to occur.
Affected SRT messages (xxxx =):
1034, 1042, 1054, 1055, 1058, 1060, 1065, 1066, 1070,
1082, 1086, 1129, 1133, 1159, 1161, 1162, 1163, 1166,
1167, 1173, 1174, 1179, 1183, 1186, 1189, 1190, 1191,
1192, 1196, 1207, 1219, 1221, 1222, 1227, 1228, 1229,
1230, 1256, 1310

Calling SORT Command return codes

U6184-J-Z125-6-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

0 1 SRTxxxx Abnormal termination of the SORT run with an error.
The main code contains the number of the abort
message.
Affected SRT messages (xxxx =):
1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079,
1080, 1081, 1085, 1088, 1099, 1103*, 1104*, 1105*,
1106*, 1107*, 1108*, 1109*, 1110*, 1111*, 1112*, 1113*,
1114*, 1115*, 1116*, 1117*, 1118*, 1119*, 1120*, 1121*,
1122*, 1123*, 1124*, 1125*, 1126*, 1131*, 1134, 1135,
1136, 1138, 1139, 1140*, 1141*, 1142*, 1143*, 1144*,
1145*, 1146*, 1147*, 1148*, 1155*, 1156*, 1157*, 1158*,
1168*, 1169*, 1170*, 1171, 1172, 1178, 1180, 1181, 1182,
1184*, 1185, 1187*, 1188*, 1193*, 1194*, 1195, 1199*,
1201, 1203, 1204, 1205, 1206, 1209, 1211, 1212, 1213,
1215, 1218, 1220, 1223, 1224, 1225, 1226, 1231, 1232,
1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1250,
1251, 1253, 1254, 1260, 1261, 1301, 1302, 1303, 1304,
1305, 1307, 1308, 1309, 1311, 1317
* The messages marked with an asterisk refer to errored
SORT control statements. If these were entered in the
dialog and corrected by a subsequent statement, the
return code is not given a value.

0 32 SRTxxxx Abnormal termination of the SORT run with an internal
error.
The main code contains the number of the abort
message.
Affected SRT messages (xxxx =):
1039, 1069, 1127

0 64 SRTxxxx Abnormal termination of the SORT run with a different
type of error.
The main code contains the number of the abort
message.
Affected SRT messages (xxxx =):
1032, 1035, 1036, 1040, 1043, 1044, 1045, 1047, 1048,
1051, 1056, 1057, 1064, 1067, 1068, 1083, 1084, 1087,
1089, 1132, 1137, 1149, 1150, 1197, 1202, 1208, 1214,
1216, 1244, 1252, 1255, 1257, 1258, 1259, 1262, 1263,
1264, 1266, 1306, 1314, 1315, 1316

0 255 SRT1312 Abnormal termination of the SORT run because the
requested SORT version is not available.

(SC2) SC1 Maincode Meaning

Command return codes Calling SORT

204 U6184-J-Z125-6-76

In the event of an error, the components of the return code can be queried with the SDF-P
functions SUBCODE1(), SUBCODE2() and MAINCODE().

After an error-free SORT run (SC1 = 0), the return code can be saved with the SAVE-
RETURNCODE command and also evaluated. (For further information on command return
codes and on querying return codes, see the “SDF-P” manual [13].)

Example of querying return codes

/SORT-FILE INPUT,OUTPUT ——— (1)
/SAVE-RETURNCODE —— (2)
/IF-BLOCK-ERROR ——— (3)
/ WRITE-TEXT '--' ———— (4)
/ WRITE-TEXT '--- SORT run terminated with error -'
/ WRITE-TEXT '--'
/ELSE
/ IF &SUBCODE2 > 0 ——— (5)
/ WRITE-TEXT '--' —— (6)
/ WRITE-TEXT '--- SORT run terminated with warning -'
/ WRITE-TEXT '--'
/ ELSE
/ WRITE-TEXT '--' —— (7)
/ WRITE-TEXT '--- SORT run terminated without warning or error -'
/ WRITE-TEXT '--'
/ END-IF
/END-IF
/IF &SUBCODE1 > 0 OR &SUBCODE2 > 0 ————————————————————————————————————— (8)
/ WRITE-TEXT 'Subcode 1: &SUBCODE1'
/ WRITE-TEXT 'Subcode 2: &SUBCODE2'
/ WRITE-TEXT 'Main code: &MAINCODE'
/ HELP-MSG-INFORMATION &MAINCODE
/END-IF

(1) Start command for SORT.

(2) Saves the SORT return code
(only executed if SORT terminates normally, i.e. if the spin-off mechanism was not
activated).

(3) Checks the SORT abortion (also restart point in the procedure if the spin-off
mechanism was activated).

Calling SORT Command return codes

U6184-J-Z125-6-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

(4) Output after abortion of SORT.

(5) If the SORT run was not aborted, checks whether a warning was issued (subcode
2 greater than zero).

(6) Output if at least one warning but no error occurred in the SORT run.

(7) Output if neither warnings nor errors occurred in the SORT run.

(8) If a warning or an error occurred (at least one of the two subcodes is greater than
0), the three components of the return code and the corresponding message are
output.

SORT as a subroutine Calling SORT

206 U6184-J-Z125-6-76

5.2 Calling SORT as a subroutine

SORT is invoked as a subroutine by means of a subroutine branch to SORTU or ILSORT.
The return address must be stored in register 14.

Note

SORT V8.0 can be started with a starter module SRT80, Version level SORT V7.3 and later.
In contrast, there is no guarantee that older SORT versions with a SRT80 starter module,
version SORT V8.0, will function.

Example

Before the program is executed, the unresolved external reference to the SORT starter
module SRT80 must be resolved. The easiest way to do this is using the DBL (dynamic
binder loader).

So that the DBL can find the starter module SRT80, it must be informed of the name of the
associated library in a ADD-FILE-LINK command with the link name BLSLIBxx.

If SORT was installed using IMON-GPN, the name of the sort library is freely selectable. It
then has to be determined from the IMON-SCI (Software-Configuration-Inventory), the
central IMON data basis. SDF-P procedures are available for doing this.

The command

/SET-VARIABLE SORTLIB=INSTALLATION-PATH -
/ (LOGICAL-ID = 'SYSLNK' -
/ ,INSTALLATION-UNIT = 'SORT' -
/ ,VERSION = '*STD' -
/ ,DEFAULT-PATH-NAME = '$.SORTLIB')

assigns the name of the current sort library to the SORTLIB variable.

In the subsequent command

/ADD-FILE-LINK LINK-NAME=BLSLIBxx,FILE-NAME=&SORTLIB

the name ascertained in this way is used.

L 15,=V(SORTU) or L 15,=V(ILSORT)

BALR 14,15 BALR 14,15

Calling SORT SORT as a subroutine

U6184-J-Z125-6-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

The following excerpt from a sample procedure shows how, following successful assembly
of the main program, the generated *OMF file can be invoked.

:
Assemble main program

:
/SET-VARIABLE SORTLIB = '$.SORTLIB'
/IF (SDF-P-VERSION >= 'V02.0A00')
/ SET-VARIABLE SORTLIB = INSTALLATION-PATH -
/ (LOGICAL-ID = 'SYSLNK' -
/ ,INSTALLATION-UNIT = 'SORT' -
/ ,VERSION = '*STD' -
/ ,DEFAULT-PATH-NAME = '&SORTLIB')
/END-IF
/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=&SORTLIB
/START-EXE-PROG FROM-FILE=*OMF

:

Procedures for static linking using BINDER must be similarly structured.

A similar procedure is available for specifying the macro library (previously
$.SORTMACLIB) in assembler runs.

If the program is called using /START-PROGRAM FROM-FILE=*MODULE(*OMF) or /EXEC * then
RUN-MODE=*STD is valid. In this case, the library used to fulfill external references must
be assigned using /SET-TASKLIB.

SORT as a subroutine Calling SORT

208 U6184-J-Z125-6-76

Register conventions

Reg 1 Contains the address of the input block SVB (static communication area).

Reg 13 Contains the address of the 18-word save area to which the register
contents of the calling program are saved. This save area must be set up
by the user.

Reg 14 Return address of the calling program.

Reg 15 The low-order byte contains the return code which is passed at the end of
the sort/merge run.

X’00’ The sort/merge run terminated normally.

X’FF’ The sort/merge run terminated abnormally. The errors are indicated
in a message.

If an error occurs, the two high-order bytes contain the last 4 digits of the
SORT message key, as an unsigned packed decimal number. For example,
if a SORT run terminates abnormally with error message SRT1035,
register 15 contains X’103500FF’.

Data must be transferred to SORT from the program address space.

If the operand STXIT=YES is specified in the associated SORT macro (SRT0, SRT1),
SORT checks the validity of the transferred data and addresses. If a program error is
detected, a message (SRT1071 to SRT1077) is displayed and the program run is termi-
nated. In this case, the program error must be rectified and the program must be run again.
Transferred data which is valid, but not correct, can result in unpredictable program
behavior.

Calling SORT SORT as a subroutine

U6184-J-Z125-6-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

5.2.1 Passing control information to SORT

When SORT is called as a subroutine by another program, the control parameters for the
sort/merge run must be passed by means of

– SORT statements (see chapter “SORT statements” on page 125) or

– SORT macro calls (see section “SORT macros” on page 212).

Two different levels are available for passing the control information to SORT.

Level 0 SORT expects statements via SYSDTA. The user creates the associated
input block SVB by means of a SRT0 macro (see section “SORT macros”
on page 212). Register 1 then points to the address of the SRT0 macro.

Level 1 SORT expects statements in the calling program as variable-length records.
The user sets up the statements and the associated input block SVB by
means a sequence of SRT1 macros (see section “SORT macros” on
page 212). Register 1 points to the address of the first SRT1 macro in the
sequence.

SORT as a subroutine Calling SORT

210 U6184-J-Z125-6-76

5.2.1.1 Level 0

Figure 8: Calling SORT as a subroutine at level 0

At level 0, SORT expects the SORT statements to be supplied via SYSDTA. Register 1
must point to the input block (SVB). The user can set up the SVB input block by means of
the SRT0 macro (see section “SORT macros” on page 212). The structure of the SVB is
described in the appendix on page 404.

SORT statements
via SYSDTA

PROG XY SORT

Address of SVB

Register 1

Transfer control area1 UEBA

SVB

Calling SORT SORT as a subroutine

U6184-J-Z125-6-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

5.2.1.2 Level 1

Figure 9: Calling SORT as a subroutine at level 1

At level 1, SORT expects the SORT statements to be passed as variable-length records in
the calling program. Register 1 must point to the SVB input block. The user generates the
level 1 statements by means of SRT1 macros (see section “SORT macros” on page 212).
The structure of the SVB input block is described in the appendix on page 404.

PROG XY SORT

Address of SVB

Register 1

Transfer control area1 UEBA

SVB

SORT statement2 SRTA

3 RECA

4 MODA

9 INOA

… ……

Statements
to SORT
as variable-
length
records

SORT as a subroutine Calling SORT

212 U6184-J-Z125-6-76

5.2.2 SORT macros

The following macros are available for calling SORT as a subroutine at levels 0 and 1:
SRT0 Call to SORT at level 0
SRT1 Call to SORT at level 1

These macros also set up the input block SVB, including the transfer control area.

5.2.2.1 SRT0: call to SORT at level 0

The SRT0 macro allows the user to input control information to the SORT sort/merge
program via level 0.

name A short symbolic name (max. 4 characters long) used to address the
SVB input block for passing control data at level 0. The address
must be loaded into register 1. The name is added as a prefix to all
symbolic names generated by means of the SRT0 macro.

SDF = NO / YES If SDF is to be used, SDF=YES must be specified explicitly. Omitting
the operand or specifying NO means that subsequent inputs have
to be in ISP format.

STXIT = YES / NO Specifies whether the STXIT facility is to be used (see the
“Executive Macros” manual [6]).

YES SORT uses the STXIT entries.

NO SORT does not use the STXIT entries.

STXIT=NO has the following effect:
– the user cannot interrupt the SORT run by means of the SEND-

MSG command.
– SORT does not output a special dump when an error condition

occurs.
– user data and addresses are not checked for validity.

Name Operation Operands

[name] SRT0 [SDF = NO / YES]
[,STXIT = YES / NO]
[,RDONLY = NO / YES]
[,RCF = NO / aaddr / saddr]
[,RCFL = length]
[,MSGPROT = OUT / LST / BOTH / NO]
[,VERSION=*STD / version]
[,MULTI=*STD / OPT / NOIMON

Calling SORT SORT as a subroutine

U6184-J-Z125-6-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

RDONLY = YES / NO Specifies whether the SRT0 macros are stored in a write-protected
or non-write-protected module.

YES The SRT0 macros are stored in a write-protected READONLY
module (e.g. for shared access).

NO The SRT0 macros are stored in a module which is not write-
protected.

RCF = aaddr / saddr / NO
Specifies an area for storing the return code and SORT messages.
The first 4 bytes of the RCF area are used to store the return code
RC (see appendix, page 401). Following this, the SORT messages
output as a result of the MIN-MSG-WEIGHT operand of the SET-
SORT-OPTIONS statement are stored contiguously as variable-
length records (corresponding to an output to SYSOUT/SYSLST).

aaddr Symbolic address of the area.

Example

RCF=RCAREA

saddr Symbolic address of the area in S-type address format.

“saddr” must be in parentheses, as in Assembler notation, but
without an S as prefix.

Example

RCF=(RCAREA)
RCF=(DISPLACEMENT(REG))
RCF=(0(5))

NO No storage area is set up for the return code or the SORT
messages.

RCFL = length Defines the length of the specified RCF area. The maximum
permitted length is 32767 bytes. If the RCFL operand is not
specified or has a value less than 4, a length of 4 bytes is assumed.

MSGPROT = OUT / LST / BOTH / NO
Specifies whether SORT messages are to be written to SYSOUT
and/or SYSLST. If the RCF operand is specified, the SORT
messages are additionally written to the RCF area.

OUT SORT messages are written to SYSOUT and to the RCF area.

LST SORT messages are written to SYSLST and to the RCF area.

BOTH SORT messages are written to SYSOUT and SYSLST and to the
RCF area.

SORT as a subroutine Calling SORT

214 U6184-J-Z125-6-76

NO No SORT messages are written to SYSOUT or SYSLST. The
messages are written to the RCF area only.

VERSION = *STD / version
Specifies the SORT version to be dynamically loaded as a
subroutine.
The version specification is interpreted in the same way as when the
main program is called.

*STD No special SORT version is requested.

version Version name in the format [v]v.v[a[nn]]

MULTI = STD / OPT / NOIMON
Specifies whether the file names should be determined and the
SYSPAR parameter file read during every sort run.

If SORT is called frequently (more than 1000 times) as a subroutine,
reducing the operations that need to be performed optimizes the
runtime.

STD All preparatory operations are executed. The SYSPAR parameter
file is read at the start of each sort run.

OPT The file names are determined by means of IMON only when the
SORT subroutine is called for the first time. The SYSPAR parameter
file is read only at the start of the first sort run.

NOIMON The file names are not determined by means of IMON. The default
names apply (e.g. SYSLNK.SORT.ver). The SYSPAR parameter
file is read at the start. The generated defaults apply for the param-
eters.

[v]v.v : Product version

a : Release status

nn : Revision status

– It is not possible to specify an additional “V” and single quotes,
as with the start command.

– Release and correction status can be specified, although they
will not be evaluated since coexistence and exchangeability
are only permitted for main versions.

Calling SORT SORT as a subroutine

U6184-J-Z125-6-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

Note

If MULTI= OPT or MULTI=NOIMON is set and the MODIFY-SORT-DEFAULTS
statement is specified during a sort run, the parameters selected there apply for this sort
run. These parameters can be saved in the SYSPAR file using SAVE-
DEFAULTS=*YES. However, the changes are not effective for subsequent calls of a
sort subroutine in the same main program call.

5.2.2.2 SRT1: call to SORT at level 1

The SRT1 macro allows the user to input all the necessary control information to the SORT
sort/merge program via level 1, including the SVB input block and the transfer control area.

One SRT1 macro call is required for each statement. For the SVB input block and for each
statement specified, SORT generates a symbolic name consisting of the short name and
the first 2 or 3 characters of the statement. These names appear in the macro listing if
“PRINT GEN” has been specified. A statement whose contents are to be modified can be
addressed using its symbolic name.

name A short symbolic name (max. 4 characters long) that identifies a
group of SRT1 macros used to generate the statements for a SORT
run. It must be specified in the first SRT1 macro of the group. None
of the other SRT1 macros in the same SORT run may specify
“name”.

The name is used for addressing the SVB input block for passing
control data at level 1 and thus creates the reference to the
statement. The address must be loaded into register 1.
The name is added as a prefix to all symbolic names generated by
means of the SRT1 macro.

Name Operation Operands

[name] SRT1 (statementtext) [SDF = NO / YES]
[STXIT = YES / NO]
[,RDONLY = NO / YES]
[,RCF = NO / aaddr / saddr]
[,RCFL = length]
[,MSGPROT = OUT / LST / BOTH / NO]
[,VERSION=*STD / version
[,MULTI=*STD / OPT / NOIMON

SORT as a subroutine Calling SORT

216 U6184-J-Z125-6-76

statementtext The relevant SORT statement, enclosed in parentheses, must be
specified here. The format is the same as for input at level 0. Abbre-
viated keywords and positional operands are permitted.

SDF = YES / NO If SDF is to be used, SDF = YES must be specified explicitly.
Omitting the operand or specifying NO means that the statements
have to be specified in ISP format.

STXIT = YES / NO Specifies whether the STXIT facility is to be used (see the
“Executive Macros” manual [6]). This operand may only be specified
in the first SRT1 macro, identified by “name”.

YES SORT uses the STXIT entries.

NO SORT does not use the STXIT entries.

STXIT=NO has the following effect:
– the user cannot interrupt the SORT run by means of the SEND-

MSG command
– SORT does not output a special dump when an error condition

occurs
– user data and addresses are not checked for validity

RDONLY = YES / NO Specifies whether the SRT1 macros are stored in a write-protected
or non-write-protected module.

YES The SRT1 macros are stored in a write-protected READONLY
module (e.g. for shared access).

NO The SRT1 macros are stored in a module which is not write-
protected.

RCF = aaddr / saddr / NO
Specifies an area for storing the return code and SORT messages.
The first 4 bytes of the RCF area are used to store the return code
RC (see appendix, page 401). Following this, the SORT messages
output as a result of the MIN-MSG-WEIGHT operand of the SET-
SORT-OPTIONS statement are stored contiguously as variable-
length records (corresponding to an output to SYSOUT/SYSLST).

aaddr Symbolic address of the area.

Example

RCF=RCAREA

Calling SORT SORT as a subroutine

U6184-J-Z125-6-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

saddr Symbolic address of the area in S-type address format.

“saddr” must be in parentheses, as in Assembler notation, but
without an S as prefix.

Example

RCF=(RCAREA)
RCF=(DISPLACEMENT(REG))
RCF=(0(5))

NO No storage area is set up for the return code or the SORT
messages.

RCFL = length Defines the length of the specified RCF area.

The maximum permitted length is 32767 bytes. If the RCFL operand
is not specified or has a value less than 4, a length of 4 bytes is
assumed.

MSGPROT = OUT / LST / BOTH / NO
Specifies whether SORT messages are to be written to SYSOUT
and/or SYSLST. If the RCF operand is specified, the SORT
messages are additionally written to the RCF area.

OUT SORT messages are written to SYSOUT and to the RCF area.

LST SORT messages are written to SYSLST and to the RCF area.

BOTH SORT messages are written to SYSOUT and SYSLST and to the
RCF area.

NO No SORT messages are written to SYSOUT or SYSLST. The
messages are written to the RCF area only.

VERSION = *STD / version
Specifies the SORT version to be dynamically loaded as a
subroutine.
The version specification is interpreted in the same way as when the
main program is called.

*STD No special SORT version is requested.

SORT as a subroutine Calling SORT

218 U6184-J-Z125-6-76

version Version name in the format [v]v.v[a[nn]]

MULTI = STD / OPT / NOIMON
Specifies whether the file names should be determined and the
SYSPAR parameter file read during every sort run.

If SORT is called frequently (more than 1000 times) as a subroutine,
reducing the operations that need to be performed optimizes the
runtime.

STD All preparatory operations are executed. The SYSPAR parameter
file is read at the start of each sort run.

OPT The file names are determined by means of IMON only when the
SORT subroutine is called for the first time. The SYSPAR parameter
file is read only at the start of the first sort run.

NOIMON The file names are not determined by means of IMON. The default
names apply (e.g. SYSLNK.SORT.ver). The SYSPAR parameter
file is read once when it is first called. Its values are then used to
create the SORT standard parameters.

Note

If MULTI= OPT or MULTI=NOIMON is set and the MODIFY-SORT-DEFAULTS
statement is specified during a sort run, the parameters selected there apply for this sort
run. These parameters can be saved in the SYSPAR file using SAVE-
DEFAULTS=*YES. However, the changes are not effective for subsequent calls of a
sort subroutine in the same main program call.

[v]v.v : Product version

a : Release status

nn : Revision status

– It is not possible to specify an additional “V” and single quotes,
as with the start command.

– Release and correction status can be specified, although they
will not be evaluated since coexistence and exchangeability
are only permitted for main versions.

Calling SORT SORT as a subroutine

U6184-J-Z125-6-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

Conventions for SRT1 macros

– One SRT1 macro is required for each statement.

– The statement text has to be enclosed in parentheses.

– Abbreviated keywords and positional operands are permitted.

– The first SRT1 macro must be identified by a 4-character name. None of the remaining
SRT1 macros, including SRT1 (END), may specify a symbolic name.

– SDF=YES must also be added to the end of the first SRT1 macro, outside of the paren-
theses which surround the macro itself.

– Apart from this, the SRT1 macro calls must conform to Assembler macro conventions,
e.g. in respect of continuation lines, length constraints per operand=127, etc.
The entire statement text thus forms an operand of the macro statement.
In the SELECT-INPUT-RECORDS statement, the comma before and after AND/OR
must not be omitted.

– When a SRT1 macro is converted into Assembler DC statements, every occurrence of
a single quote (in the representation of constants) is doubled in accordance with
Assembler conventions. If single quotes are also to be used within a constant, however,
all the single quotes must be explicitly included (e.g. FILLER=’’’’’’).

Example

 START
 .
 .
 .
 LA 13,SAVE
 LA 1,VS1
 L 15,=V(SORTU)
 BALR 14,15
 .
 .
 .
 SAVE DS 18F
 VS1 SRT1 (SORT-RECORDS FIELDS=*FIELD-EXPLICIT(POSITION=30,
 LENGTH=8)),SDF=YES,STXIT=NO
 SRT1 (ASSIGN-EXITS PLANNING=*DIALOG)
 SRT1 (SET-SORT-OPTIONS MIN-MSG-WEIGHT=*ALL)
 SRT1 (END)

SORT access method SORTZM Calling SORT

220 U6184-J-Z125-6-76

5.3 SORT access method SORTZM

For full sorts and selection sorts, the user can call SORT not only as a standalone program
(using the /START-SORT command) or as a subroutine (via SORTU or ILSORT) but also
via a special access method (SORTZM).

5.3.1 Function of the SORT access method SORTZM

Figure 10 shows how SORTZM works. The SORTZM access method passes the input
records to SORT for sorting and receives them back from SORT once they have been
sorted. The main program must provide a special record buffer in which the records to be
sorted are made available to SORT. Which records are selected for sorting is always left up
to the user. SORT does not process records selected via the SELECT-INPUT-RECORDS
statement. SORT also ignores any entry for INPUT-RANGE in the SORT-RECORDS
statement and the INPUT user exit.

The sorted records are subsequently returned by SORT to a separate record buffer.
The link between the main program and SORT is established by the following macros,
which must be specified in the order given:

SRTOPEN Initiate sorting

SRTPUT Pass record to SORT (one SRTPUT call required per record)

SRTGET Fetch record from SORT (one SRTGET call required per record)

SRTCLSE Terminate sorting

SRTCLSE is also necessary in the case of empty sorts. SRTPUT and SRTGET may be
omitted (empty sorts). The SRTGET loop may also be closed prematurely, if required, by a
SRTCLSE macro.
The SORTZM access method can pass the SORT statements to SORT at level 0 or level 1
(see page 209).

Calling SORT SORT access method SORTZM

U6184-J-Z125-6-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

Figure 10: Interfaces to the SORTZM access method

SORT

first record

Record
buffer

SORTZM access
method

Input to SORT at:
level 0
level 1

last record

first record

last record

Main program

SRTCLSE

SRTGET

SRTGET

SRTPUT

SRTPUT

SRTOPEN

Record
buffer

SORT access method SORTZM Calling SORT

222 U6184-J-Z125-6-76

Conditions for the use of SORTZM

● Mixing files is not permitted.

● Specified input and output files and the INPUT and OUTPUT user exits are ignored.

● SORTZM supports only full sorts and selection sorts; tag sorts are not possible.

● The SET-RECORD-ATTRIBUTES statement must be included in the input specifica-
tions.

● Registers 0, 1, 14 and 15 are modified by SORTZM.

● If the operand STXIT=YES is specified in the associated SORT macro (SRT0, SRT1),
SAORT checks the validity of the transferred record address and length. If an error is
detected, message SRT1079 is displayed and the program run is terminated abnor-
mally (see the ERROR operand for SRTOPEN). In this case, the program error must be
rectified and the program must be run again.

● The macros of SORTZM can be run in both write-protected (RDONLY=YES) and
overwrite memory pages (RDONLY=NO).

– If RDONLY=YES is specified (see the SRT0 and SRT1 macros), SORT also uses
register 13. Consequently, the contents of this register must not be modified
between succeeding SORTZM macros (if necessary, its contents must be saved
and restored by the user).

– If RDONLY=NO (default) applies, SORTZM sets up a 4-byte save area in the
transfer control area and handles the saving and restoring of register 13 itself (see
appendix, page 406).

Multiple sorting with SORTZM

SORTZM permits nesting of sort runs, with input records being passed to a number of
different sort runs within a nested structure.
The corresponding macro calls may be specified in any order in the main program. The only
constraint is that the macros for a given sort run must be specified in the proper sequence,
i.e. SRTOPEN, SRTPUT, SRTGET and SRTCLSE. If the sequence of the macro calls is not
correct (e.g. duplicate SRTOPEN, SRTPUT following SRTGET), SORT issues message
SRT1308 and terminates the program run abnormally (see also the ERROR operand for
SRTOPEN).
A separate input area for control information must be set up for each sort run (see also
examples for SORTZM on page 366ff).
The operands of the SORTZM macros may be specified as positional or keyword operands.

SORTZM SRTOPEN

U6184-J-Z125-6-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

5.3.2 Macros of the SORT access method SORTZM

The macros of earlier SORT versions (V7.0 to V7.3) are fully compatible with SORT V8.0
without needing to be recompiled; however, the correct sequence of the macros is not
checked.
Macros as of version 7.4 can be used in SORT V8.0 without restrictions (except for the
LINKADR operand).
For macros as of version 8.0 there is no guarantee that these macros can be run with older
versions of SORT. When running SORT version V7.3 or lower unresolved external refer-
ences occur.

5.3.3 SRTOPEN: initiate sorting

The SRTOPEN macro invokes the SORT program.

name Symbolic name by which the macro is addressed (e.g. for use as a
branch address).

SCB = addr1 / (r1) Identifies the SVB input block.

addr1 Symbolic address of the SVB input block.

(r1) Register containing the address of the SVB input block.
0 Î r1 Î 15

If the SCB operand is not specified, r1=0 is used as the default
value.

ERROR = addr2 / (r2)
Identifies the error routine to which a branch will be made if an error
condition occurs in the SORT run.
If there is an error during execution and a branch is taken to the
ERROR address, no SRTCLSE macro may subsequently be called
for this sort run.

addr2 Symbolic address of the error routine.

Name Operation Operands

[name] SRTOPEN [[SCB =] addr1 / (r1)]
[,[ERROR =] addr2 / (r2)
[,LINKADR = linkaddr / (r3)]

SRTOPEN SORTZM

224 U6184-J-Z125-6-76

(r2) Register containing the address of the error routine.
2 Î r2 Î 12
The contents of register r2 must not be changed at any time during
the sort run.

If the ERROR operand is not specified and an error is detected,
SORT aborts the run with TERM MODE=ABNORMAL,UNIT=STEP.

LINKADR = linkaddr / (r3)
Specifies the address of the entry point for the access method. This
is the entry point SORTZM1.

linkaddr Symbolic address of a word in which the user has stored the
address of the entry point before execution of the macro.

(r3) Register containing the address of a word that refers to the address
of the entry point.
2 Î r3 Î 12

If no LINKADR operand is specified, V(SORTZM1) is taken as the
default value.

Note

If the LINKADR operand is used, it must be specified with all access
method macros.

SORTZM SRTPUT

U6184-J-Z125-6-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

5.3.4 SRTPUT: pass record to SORT

The SRTPUT macro passes one record from the input area to SORT. One SRTPUT call is
required for each input record to be transferred. No SRTPUT calls may be issued after the
first SRTGET call in the sequence.

name Symbolic name by which the macro is addressed (e.g. for use as a
branch address).

SCB = addr1 / (r1) Identifies the SVB input block.

addr1 Symbolic address of the SVB input block.

(r1) Register containing the address of the SVB input block.
0 Î r1 Î 15

If the SCB operand is not specified, r1=0 is used as the default
value.

RECORD = addr2 / (r2)
Identifies the record buffer in the main program from which the
record is to be passed to SORT.

addr2 Symbolic address of the record buffer.

(r2) Register, containing the address of the record buffer.
0 Î r2 Î 12

If the RECORD operand is not specified, r2=1 is used as the default
value.

LINKADR = linkaddr / (r3)
Specifies the address of the entry point for the access method. This
is the entry point SORTZM1.

linkaddr Symbolic address of a word in which the user has stored the
address of the entry point before execution of the macro.

Name Operation Operands

[name] SRTPUT [[SCB =] addr1 / (r1)]
[,[RECORD =] addr2 / (r2)
[,LINKADR = linkaddr / (r3)]

SRTPUT SORTZM

226 U6184-J-Z125-6-76

(r3) Register containing the address of a word that refers to the address
of the entry point.
2 Î r3 Î 12

If no LINKADR operand is specified, V(SORTZM1) is taken as the
default value.

Note

If the LINKADR operand is used, it must be specified with all access
method macros.

SORTZM SRTGET

U6184-J-Z125-6-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

5.3.5 SRTGET: fetch record from SORT

The SRTGET macro accepts one record from SORT after sorting has been completed. One
SRTGET call must be issued for each record in the SORT output area.

name Symbolic name by which the macro is addressed (e.g. for use as a
branch address).

SCB = addr1 / (r1) Identifies the SVB input block.

addr1 Symbolic address of the SVB input block.

(r1) Register containing the address of the SVB input block.
0 Î r1 Î 15

If the SCB operand is not specified, r1=0 is used as the default
value.

RECORD = addr2 / (r2)
Identifies the record buffer in the main program from which the
record is to be transferred from the SORT output area (move mode).

addr2 Symbolic address of the record buffer.

(r2) Register containing the address of the record buffer.
0 Î r2 Î 12

If the RECORD operand is not specified, the record from the SORT
output area is made available in a special SORT record buffer
whose address is supplied in register 1 (locate mode).

EOS = addr3 / (r3) Identifies the routine to which a branch is to be made at the end of
the record transfer operation.

addr3 Symbolic address of the routine.

(r3) Register containing the address of the routine.
2 < r3 Î 12

If the EOS operand is not specified, the completion of the record
transfer is signaled to the main program by an address value of zero
in register 1.

Name Operation Operands

[name] SRTGET [[SCB =] addr1 / (r1)]
[,[RECORD =] addr2 / (r2)
[,[EOS =] addr3 / (r3)
[,LINKADR = linkaddr / (r4)]

SRTGET SORTZM

228 U6184-J-Z125-6-76

LINKADR = linkaddr / (r4)
Specifies the address of the entry point for the access method. This
is the entry point SORTZM1.

linkaddr Symbolic address of a word in which the user has stored the
address of the entry point before execution of the macro.

(r4) Register containing the address of a word that refers to the address
of the entry point.
2 Î r4 Î 12

If no LINKADR operand is specified, V(SORTZM1) is taken as the
default value.

Note

If the LINKADR operand is used, it must be specified with all access
method macros.

SORTZM SRTCLSE

U6184-J-Z125-6-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

5.3.6 SRTCLSE: terminate sorting

The SRTCLSE macro terminates the sort operation. The SRTCLSE macro must not be
called if SORT has returned to the main program via the ERROR exit.

name Symbolic name by which the macro is addressed (e.g. for use as a
branch address).

SCB = addr / (r1) Identifies the SVB input block.

addr Symbolic address of the SVB input block.

(r1) Register containing the address of the SVB input block.
0 Î r1 Î 15

If the SCB operand is not specified, r=0 is used as the default value.

LINKADR = linkaddr / (r2)
Specifies the address of the entry point for the access method. This
is the entry point SORTZM1.

linkaddr Symbolic address of a word in which the user has stored the
address of the entry point before execution of the macro.

(r2) Register containing the address of a word that refers to the address
of the entry point.
2 Î r2 Î 12

If no LINKADR operand is specified, V(SORTZM1) is taken as the
default value.

Note

If the LINKADR operand is used, it must be specified with all access
method macros.

Name Operation Operands

[name] SRTCLSE [[SCB =] addr / (r1)]
[,LINKADR = linkaddr / (r2)]

Example SORTZM

230 U6184-J-Z125-6-76

5.3.7 Example

SRTZM START
 .
 .
 .
SRTOPEN SCB=B1,ERROR=BUGS —— (1)
 .
 .
 .
RDLOOP RDATA INPT,BUGS ——— (2)
 SRTPUT SCB=B1,RECORD=INPT
 B RDLOOP
 .
 .
 .
OUTLOOP SRTGET SCB=B1,RECORD=OUTB,EOS=CLOSE ———————————————————————— (3)
 B OUTLOOP
CLOSE SRTCLSE SCB=B1 —— (4)
 .
 .
 .
 TERM
BUGS TERM MODE=ABNORMAL,UNIT=STEP
 .
 .
 .
INPT DS CL80 —— (5)
 .
 .
 .
OUTB DS CL80 —— (6)
 .
 .
 .
B1 SRT1 (SORT-RECORDS FIELDS=FIELD-EXPLICIT(POSITION=5,- ———— (7)
 LENGTH=5)),SDF=YES
 SRT1 (SET-RECORD-ATTRIBUTES INPUT=VARIABLE(80))
 SRT1 (END)

 END SRTZM

SORTZM Example

U6184-J-Z125-6-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

5

(1) The SRTOPEN macro calls SORT as a subroutine. Address B1 indicates where
SORT can find the macros that contain the statements for this sort/merge run.
BUGS is the address to which a branch is to be made if the SORT run terminates
prematurely.

(2) This is the start of the read loop. The records to be sorted are read into the input
area INPT (e.g. via RDATA). Then the record is passed from the input area to SORT
by the SRTPUT macro. The SRTPUT call is repeated once for each record to be
transferred to SORT.

(3) This is the start of the output loop. The SRTGET macro transfers the sorted records
from SORT to the output area OUTB. The SRTGET call is repeated once for each
record to be transferred. When all the records have been transferred (end condition
EOS), a branch is made to the address of the SRTCLSE macro in order to terminate
the SORT run.

(4) The SRTCLSE SCB=B1 terminates the SORT run defined under the symbolic
address B1.

(5) Input area for the records to be sorted.

(6) Output area for the sorted records.

(7) SRT1 macros containing the statements for the B1 SORT run.

Example SORTZM

232 U6184-J-Z125-6-76

U6184-J-Z125-6-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

6 SORT user exits

The SORT sort/merge program provides a number of user exits at which the user can
initiate certain actions.

The following user exits are available:

PLANNING Activated when the planning phase has been
completed and SORT has determined the sort
strategy (cf. description on page 238).

Planning phase

INPUT Activated when SORT accepts a record from the
input area. The record can be updated, deleted or
inserted. The structure of the interface is dependent
on the PARAMETER-MODE operand of the ASSIGN-
EXITS statement.
The functional scope is virtually identical for the 24-bit
and 31-bit addressing modes
(cf. description on page 239).

Initial input

OUTPUT Activated immediately before SORT writes to the
output file. Output records can be validated, updated,
inserted or deleted The structure of the interface is
dependent on the PARAMETER-MODE operand of
the ASSIGN-EXITS statement. The functional scope
is virtually identical for 24-bit and 31-bit addressing
modes (cf. description on page 244).

Final output

WORK-FILE-
OVERFLOW

Activated if the capacity of the work file is exhausted
(SORT)
(cf. description on page 249).

Initial input

EXLST-FOR-
INPUT

Allows a DMS EXLST macro to be connected for
input (cf. description on page 251).

Preparatory phase

EXLST-FOR-
OUTPUT

Allows a DMS EXLST macro to be connected for
output (cf. description on page 253).

Output file processing

PHYSICAL-
TRANSLATE

Specifies 2 code tables for conversion of the
PHYSICAL-TRANSLATE format fields for deter-
mining a different sorting sequence
(cf. description on page 255).

Initial input, internal
merge, final output,
merge run

Overview SORT user exits

234 U6184-J-Z125-6-76

Except for the INT user exit, the user can specify actions for all exits in the ASSIGN-EXITS
statement. The user can connect user-written routines via the exits, enter into an interactive
dialog with the sort/merge program or intervene in the SORT run at certain predetermined
points in its execution.

VIRTUAL-
TRANSLATE

Specifies a code table for VIRTUAL-TRANSLATE
format fields for determining a different sorting
sequence (cf. description on page 256).

Initial input, internal
merge, final output,
merge run

EXTERNAL-
COMPARE

Activated for each record for sort fields with
EXTERNAL-COMPARE as the sorting order so that
the user routine can determine the sequence. The
structure of the interface is dependent on the
PARAMETER-MODE operand of the ASSIGN-EXITS
statement. The functional scope is virtually identical
for 24-bit and 31-bit addressing modes
(cf. description on page 258).

Initial input, internal
merge, final output,
merge run

TRANSLATE-
CHARACTER

Specifies 2 code tables for recoding the
TRANSLATE-CHARACTER format fields for deter-
mining a different sorting sequence
(cf. description on page 260).

Initial input, internal
merge, final output,
merge run

INT Activated if the user enters a SEND-MESSAGE
command to request information on the status of the
sort/merge run or wants to have some other permitted
action executed.
In batch processing operation the command can also
be entered by the operator at the console. In this case
the task sequence number must be specified
(cf. description on page 261).

All phases

SORT user exits Overview

U6184-J-Z125-6-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

One of the following actions must be specified in the user exit (provided it is a valid option
for the user exit).

DIALOG SORT is to report the current execution status via SYSOUT and
request a further action via SYSDTA. When a user exit is reached,
DIALOG causes SORT to output the associated message together
with the actions permitted as a response. Specifying DIALOG is
possible in interactive mode only. One of the following responses is
possible, depending on the user exit concerned. At the INT exit it is
also possible for a number of actions to be executed in succession.

C[ONTINUE] Processing is to continue.

F[INISH] SORT is to terminate record input and process the
records already entered.

S[TART] The SORT run is to be restarted with corrected state-
ments. Only the amended statements need to be
entered.

T[ERMINATE] The SORT run is to be terminated.

The following actions are also possible via the INT exit (which cannot
be specified in the ASSIGN-EXITS statement):

D[ISPLAY] SORT is to report on the processing status, i.e. the
currently active phase of the SORT run, usage of
CPU time, and the processing counters in use.

CK[PT] SORT is to write a checkpoint, if this is possible.

Notes

– If the user specifies no action for DIALOG in a procedure,
processing is continued as if CONTINUE had been specified.

– Entries for the DIALOG actions can be abbreviated from the right
as long the meaning remains clear.

– The entry of DIALOG in a batch procedure is ignored, processing
is continued.

FINISH-INPUT SORT is to terminate record input and process the records already
entered.

Overview SORT user exits

236 U6184-J-Z125-6-76

MODULE
(NAME=<text 1..8>)

SORT is to link in a user routine and call it at the specified exit. The
user routine must be stored as an object module in the TASKLIB used
or in a library assigned with the file link name SORTMODS.

Register conventions

– All registers to be used in a user routine must first be saved (e.g.
via SAVE (14,12) or STM 14,12,12(13)).

– Before control is returned from the user routine to the sort/merge
program, the saved registers (except for registers 1 and 15) have
to be reloaded, e.g. using RETRN (14,12),RC=8.

– The following registers have a fixed usage:

Reg 1 When a branch is made to a user routine, register 1
contains the address of an operand list with record
addresses and possibly flags.
When control is returned to the sort/merge program,
register 1 must have the following contents:
– with the INPUT user exit, the address of the

processed record
– with the OUTPUT and EXTERNAL-COMPARE

user exits, the address of the corresponding input
area.

Reg 13 points to an 18-word save area in the sort/merge
program.

Reg 14 contains the return address to the sort/merge
program. The branch to the user routine is effected
using BALR 14,15.

Reg 15 When a branch is made to a user routine, register 15
contains the address of the entry point into the
routine.
When PARAMETER-MODE=24 is used, with the
return of control to the sort/merge program the
rightmost byte of register 15 contains the return code
(this applies to user exits INPUT, OUTPUT and
EXTERNAL-COMPARE). The remaining bytes must
be set to zero. When PARAMETER-MODE=ANY is
used, register 1 points to the parameter area. The
fourth pointer in this area points to the action word in
which the return code is stored.

SORT user exits Overview

U6184-J-Z125-6-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

Data must be passed to SORT from the program address area.
If the STXIT=YES operand is specified in the associated SORT
macro (SRT0, SRT1), SORT checks the validity of the data and
addresses sent back by the user routine. If a program error is
detected, a corresponding message is displayed and the sort run is
terminated.
In this case, the program error must be rectified and the sort run must
be repeated.

TERMINATE-
ABNORMAL

The sort run is to be terminated.

PLANNING SORT user exits

238 U6184-J-Z125-6-76

6.1 PLANNING: planning completed

The PLANNING exit is activated when all the information for the sort/merge run has been
evaluated and an execution strategy determined. The user can make use of the PLANNING
exit for optimizing a SORT run by specifying the action DIALOG. Then, after SORT has
checked the allocated resources, the run can be restarted with the improved statements.

The PLANNING exit allows one of the following actions to be specified in the ASSIGN-
EXITS statement.

DIALOG SORT outputs the following messages (only with
MIN-MSG-WEIGHT=*ALL):

SRT1031
SRT1033
SRT1050
SRT1061

estimated size of the work file
intensively used storage
block size of work and auxiliary file
maximum number of merge runs

In batch mode, processing is continued with CONTINUE as the action. In
interactive mode, the following actions are permitted:

C[ONTINUE] Processing is to continue.

S[TART] A restart of the SORT run is to take place using the
improved statements. Only the statements that have
been modified need to be reentered.
START may only be specified for runs with SORT as a
standalone program or when SORT is called as a
subroutine at level 0.

T[ERMINATE] The SORT run is to be terminated.

TERMINATE-
ABNORMAL

The SORT run is to be terminated.

SORT user exits INPUT

U6184-J-Z125-6-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

6.2 INPUT: input record processing

The INPUT user exit can be used to monitor and control the record input to the sort/merge
program. Records can be validated, modified, inserted or deleted. The user can also route
the entire input via INPUT. A branch is made to INPUT each time an input record is to be
passed to SORT.

The structure of the interface is dependent on the PARAMETER-MODE operand of the
ASSIGN-EXITS statement.

Interface to the user routine when PARAMETER-MODE=ANY

In 31-bit addressing mode, the user exit also offers an extension in the form of the user
constants and the name of the coded character set. When the sort/merge program passes
control to the user routine, register 1 contains the address of a 20-byte input area with the
following structure:

Bytes 0 - 3: Address of the next input record

To insert or modify an input record, the user must pass its address in this
field. The address of the next input record is set to zero when:

– the end of the input file is sensed
– the end of a file sequence is sensed (multi-file sort)
– the input file is missing.

Bytes 4 - 7: Address of the user constant

The address of the user constant points to a 4-byte area via which the user
can pass information to the OUTPUT user exit (e.g. the address of a dynam-
ically requested memory area).

Bytes 8 - 11: Address of the file identifier

The address of the file identifier points to a 4-byte area. SORT supplies the
identifier of the current file in this area (right-justified) when a record is
inserted.
The file identifier of the input file is specified in binary and corresponds to
the consecutive number of SORTINxx or MERGExx.
The file identifier is provided only for the information of the user.
On the return to the sort program, this field is not evaluated.

INPUT SORT user exits

240 U6184-J-Z125-6-76

Bytes 12 - 15: Address of the action word

When the user routine returns control to SORT, the rightmost byte of the
action word must contain one of the following return codes:

X’00’ SORT is to fetch the input record. Bytes 0 - 3 of the input area must
contain the address of the input record. This record may be the
record taken from the input stream or a record that has been
modified.
If a record is to be extended, the user must provide a separate area
for this purpose.
With records of variable lengths, the length field (the first four bytes
of the record) may not be modified in the original area. If the length
of variable records is to be modified, then a separate record area
must be made available, even when shortening.

X’04’ The record whose address is contained in bytes 0 - 3 of the input
area is to be deleted. This return code is not valid if the address in
the input area is set to zero, i.e. input has been completed or no input
file is present.

X’08’ This return code must be specified by the user if no further branches
are to be made to the user routine. Code X’08’ is required at the end
of the entire input except where an enforced finish is indicated by
X’14’, or abortion of the SORT run by X’10’.
If code X’08’ is set before input is complete, SORT reads in the
remaining input records but does not call the user routine.

X’0C’ The record whose address is contained in bytes 0 - 3 of the input
area is to be inserted. It is also possible to insert records even when
the address in the input area is set to zero when the user routine is
called, i.e. the input has been completed or there is no input file
present. X’0C’ must always be set when the user is personally
handling the input.

X’10’ This causes the SORT run to be aborted. If SORT was called as a
subroutine, a return to the calling program is made with error code
X’FF’.

X’14’ Input is forced to a close. In a sort run this refers to all the files in the
sequence, i.e. X’14’ also implies return code X’08’.
In a merge run only the merge input file referenced by the file
identifier supplied by SORT is closed. The merge run then continues
with the remaining merge input files. X’14’ for the last merge input file
also implies X’08’.

SORT user exits INPUT

U6184-J-Z125-6-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

Notes

– When control is returned to the sort/merge program with return code X’00’ or X’0C’ set,
bytes 0 - 3 of the input area must contain the address of the record to be transferred or
else a zero address.
In sort runs, return code X’00’ or X’0C’ combined with a zero address in the input area
results in the current input file being closed. In a file sequence, the current input file is
closed and processing continues with the next. In merge runs, a zero address causes
SORT to close the input file referenced by the supplied file identifier (same effect as
return code X’14’). The merge run then proceeds with the remaining merge input files.

– The INPUT user exit must not be used for inserting records during tag sorting.

– Processing of the transferred record is initiated while it is still in the user’s record
transfer area; the record undergoes some modification (conversion) at the same time.

– When inserting new records and extending existing ones the user must ensure that a
separate record area is made available.

– With records of variable lengths, the length field (the first four bytes of the record) may
not be modified in the original area. If the length of variable records is to be modified,
then a separate record area must be made available, even when shortening.

Bytes 16 - 19: Address of the CCSN

This address refers to an area of 8 bytes in size in which SORT stores the
name of the coded character set of the data.
The name is for the user’s information only. This field is not evaluated when
returning to the sort program.

INPUT SORT user exits

242 U6184-J-Z125-6-76

Interface to the user routine when PARAMETER-MODE=24

When the sort/merge program passes control to the user routine, register 1 points to a
4-byte area with the following structure:

When the user routine returns control to SORT, one of the following return codes must be
passed in the rightmost byte of register 15:

Byte 0: File identifier

This byte contains the file identifier of the input file from which the input
record was read. When a record is inserted, SORT puts the identifier of the
current file in this byte. The identifier is specified in binary and corresponds
to the consecutive number xx in SORTINxx or MERGExx.
The file identifier is provided only for the information of the user.
On the return to the sort program, this field is not evaluated.

Bytes 1 - 3: Address of the next input record

To insert or modify an input record, the user must pass its address in this
field. The address of the next input record is set to zero when:

– the end of the input file is sensed
– the end of a file sequence is sensed (multi-file sort)
– the input file is missing.

X’00’ SORT is to fetch the input record. The address of the record must then be loaded
into register 1. This record may be a record taken from the input stream or a record
that has been modified.
If a record is to be extended, the user has to provide a separate area for this
purpose.
With records of variable lengths, the length field (the first four bytes of the record)
may not be modified in the original area. If the length of variable records is to be
modified, then a separate record area must be made available, even when short-
ening.

X’04’ This causes the record specified in the input area to be deleted.

X’08’ This return code must be specified by the user if no further branches are to be
made to the user routine.
Code X’08’ is required at the end of the complete input except where an enforced
finish is indicated by X’14’, or abortion of the SORT run by X’10’.
If code X’08’ is set before input is completed, SORT reads in the remaining input
records but does not call the user routine.

X’0C’ The record whose address is contained in register 1 is to be inserted. It is also
possible to insert records even when the address in the input area is set to zero,
i.e. the input has been completed or there is no input file present. X’0C’ must
always be set when the user personally handles the input.

SORT user exits INPUT

U6184-J-Z125-6-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

Notes

– In sort runs, return code X’00’ or X’0C’ combined with a zero address in register 1
results in the current input file being closed. In a file sequence, the current input file is
closed and processing continues with the next. In merge runs, a zero address causes
SORT to close the input file referenced by the file identifier (same effect as return code
X’14’). The merge run then proceeds with the remaining merge input files.

– The INPUT user exit must not be used for inserting records during tag sorting.

– Processing of the transferred record is initiated while it is still in the user’s record
transfer area; the record undergoes some modification (conversion) at the same time.

– When introducing new records and lengthening existing ones the user must ensure that
a separate record area is made available.

– With records of variable lengths, the length field (the first four bytes of the record) may
not be modified in the original area. If the length of variable records is to be modified,
then a separate record area must be made available, even when shortening.

X’10’ This causes the SORT run to be aborted. If SORT was called as a subroutine, a
return to the calling program is made with error code X’FF’.

X’14’ Input is forced to a close. In a sort run this refers to all the files in the sequence, i.e.
X’14’ also implies return code X’08’.
In a merge run only the merge input file referenced by the file identifier supplied by
SORT is closed. The merge run then continues with the remaining merge input
files. X’14’ for the last merge input file also implies X’08’.

OUTPUT SORT user exits

244 U6184-J-Z125-6-76

6.3 OUTPUT: output record processing

The OUTPUT user exit can be used to monitor and control the output of records from the
sort/merge program. By this means the user can have records validated, modified, inserted
or deleted by a user routine. It is also possible to combine records with identical sort fields
(compaction, summation record formation). The user routine connected via OUTPUT can
also handle the entire output.

With PARAMETER-MODE=24, activating the OUTPUT exit before the very first output from
the sort/merge program is effected by supplying a zero value. In this way the desired type
of record processing can be indicated using a flag byte. Subsequently OUTPUT is activated
each time a record is to be written to the output file.

With PARAMETER-MODE=ANY, the OUTPUT exit is activated prior to each write of a
record to the output file.

The structure of the interface is dependent on the PARAMETER-MODE operand of the
ASSIGN-EXITS statement.

Interface to the user routine when PARAMETER-MODE=ANY

In 31-bit addressing mode, the user exit offers an extension in the form of the user constants
and the name of the coded character set. The following functions cannot be performed at
the user exit:

– Sequence check control.
This function can be effected using the SEQUENCE-CHECK parameter in the SET-
SORT-OPTIONS statement.

– Duplicate records indication.
This function is contained in the SUM-RECORDS statement.

When the sort/merge program passes control to the user routine, register 1 contains the
address of a 20-byte input area with the following structure:

Bytes 0 - 3: Address of the next output record

These bytes contain the address of the next record that will be output by
SORT from the SORT record buffer. When the last output record is in the
DMS output buffer, the bytes contain a zero address.
On returning control with a return code of X’00’ or X’0C’ in the action word,
the user routine must enter the record address in this field.

SORT user exits OUTPUT

U6184-J-Z125-6-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

Bytes 4 - 7: Address of the current output record

These bytes contain the address of the current output in the DMS output
buffer.
The address is zero when the first record is processed. The address
specified here must not be modified.

Bytes 8 - 11: Address of the user constant

The address of the user constant points to a 4-byte area from which the user
can take any information that may have been transferred by the INPUT user
exit.

Bytes 12 - 15: Address of the action word

When the user routine returns control to SORT, the rightmost byte of the
action word must contain one of the following return codes.

X’00’ The record whose address is contained in bytes 0 - 3 of the input
block is to be transferred to the output stream.
This can be the record in its original form, a modified record or a
replacement record. If the record is to be extended, the user must
make it available in a separate area.

X’04’ The record whose address is stored in bytes 0 - 3 of the input area
is to be deleted. A return code of X’04’ is not allowed if the address
is zero.
X’04’ must always be set if the user personally takes responsibility
for handling the output.

X’08’ No more calls are to be made to the user routine. This code must be
set at the end of the output phase, except where return code X’10’ is
passed to indicate that processing is to be aborted. If X’08’ is set
before the end of the output phase, SORT outputs the remaining
records without making a further call to the user routine.

X’0C’ The record whose address is contained in bytes 0 - 3 of the input
area is to be inserted. Records can be inserted even when bytes
0 - 3 contain a zero address.

X’10’ The SORT run is to be terminated. If SORT was called as a
subroutine, error code X’FF’ is set when control is returned to the
calling program.

Bytes 16 - 19: Address of the CCSN

This address refers to an area of 8 bytes in size in which SORT stores the
name of the coded character set of the data.
The name is for the user’s information only. This field is not evaluated when
returning to the sort program.

OUTPUT SORT user exits

246 U6184-J-Z125-6-76

Notes

– If return code X’00’ or X’0C’ is set when control is returned to the sort/merge program,
then bytes 0 - 3 of the input area must contain the address of the record to be trans-
ferred or zero. A zero address results in termination of the sorting process (possibly also
with forced termination of the output). In this case the effect of return code X’08’ is
implicit in the action.

– The two records specified in the input area are available to the user routine in the output
record format.

– The user has to provide a separate area for any records that are to be inserted or
extended.

Interface to the user routine when PARAMETER-MODE=24

When SORT passes control to the user routine, register 1 contains the address of an 8-byte
input area with the following structure:

Byte 0: Continuation flag

This byte indicates whether the sort fields of the two records specified are
identical. If so, a sum record can be formed, for example. If sort fields are to
be eliminated by means of the ELIMINATE operand, no flag is set. The
continuation flag is set only if an output file is present.

X’00’ is set if the sort fields are not identical.

X’04’ is set if the sort fields of two consecutive records are identical.

Bytes 1 - 3: Address of the next output record

These bytes contain the address of the next record that SORT is to output
from the SORT record buffer. When the final output record is in the DMS
output buffer, this address is zero.
When the user routine returns control to SORT with return code X’00’ or
X’0C’, register 1 must contain this address, another record address or zero.

Byte 4: Flag byte

When the OUTPUT user routine is called for the first time, the type of record
processing must be specified in this byte.

X’00’ The user exit is to be activated for each output record without a
sequence check being performed.

X’04’ The exit is to be activated for each output record and a sequence
check is to be performed.

SORT user exits OUTPUT

U6184-J-Z125-6-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

Conventions for return of control to the sort/merge program when
PARAMETER-MODE = 24

● First call to the OUTPUT user exit
When the OUTPUT user routine is called for the first time, the desired type of record
processing must be specified in the flag byte of the input area. The remaining bytes of
the input area must be set to zero. Register 15 is checked for the presence of return
code X’08’. Register 1 has no significance here. The flag byte must not be modified at
any time during processing.

● Further calls to the OUTPUT user exit
When the user routine returns control to SORT, registers 1 and 15 must be loaded with
the appropriate value.

X’10’ The exit is to be activated for each output record and a sequence
check is to be performed. In addition, the continuation flag byte is to
indicate whether the records have identical sort fields, except in the
case of sort fields with the ELIMINATE operand.

Note

Sequence checking specifications in the SET-SORT-OPTIONS
statement (SEQUENCE-CHECK operand) take precedence over
identifier byte settings.

Bytes 5 - 7: Address of the current output record

These bytes contain the address of the current output record in the DMS
output buffer.
The address is zero when the first record is processed or there is no output
file present. The address specified here must not be modified.

Reg 15 The rightmost byte must contain one of the following return codes

X’00’ The record whose address is contained in register 1 is to be moved
to the output area. The record may be the original input record, a
modified record or a replacement. If the record is to be extended,
the user must make it available in a separate area.

X’04’ The record whose address is contained in bytes 1-3 of the input is
to be deleted. Return code X’04’ is not allowed if the address is
zero.
X’04’ must always be set if the user personally handles output
processing.

OUTPUT SORT user exits

248 U6184-J-Z125-6-76

Notes

– With the flag byte set to X’10’ in a run in which records with identical sort fields are to
be compacted (cumulation of sum fields), it is simplest for the user to proceed as
follows:

Add the sum fields of the 1st record (address in bytes 1 - 3 of the input area) to the 2nd
record (address in bytes 5 - 7 of the input area). Record processing can then be
continued, e.g. with an overflow check. Following this, return code X’04’ (delete record)
must be set and a return made to the sort/merge program. Register 1 has no signifi-
cance in this case.

– The records specified in the input area (record addresses in bytes 1 - 3 and 5 - 7) are
available to the user routine in the output format.

– X’04’ (delete record) refers to the record address in bytes 1 - 3 of the input area.

– X’00’ or X’0C’ (fetch or insert record) refers to the record address in) register 1.

– Records that are to be inserted or extended must be made available in a separate
memory area.

X’08’ No more calls are to be made to the user routine. This code must
be set at the end of the output phase, except where return code
X’10’ is passed to indicate that processing is to be aborted. If X’08’
is set before the end of the output phase, SORT outputs the
remaining records without making a further call to the user routine.

X’0C’ The record whose address is contained in register 1 is to be
inserted. Records can be inserted even when bytes 1-3 of the input
area contain a zero address.

X’10’ The SORT run is to be terminated. If SORT was called as a
subroutine, error code X’FF’ is set when control is returned to the
calling program.

Reg 1 If return code X’00’ or X’0C’ is set when control is returned to the sort/merge
program, register 1 must contain the address of the record to be transferred
or zero.
A zero address in register 1 results in termination of the sort/merge run
(possibly also entailing forced termination of the output). In this case the
action also implies the effect of return code X’08’.

SORT user exits WORK-FILE-OVERFLOW

U6184-J-Z125-6-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

6.4 WORK-FILE-OVERFLOW

The WORK-FILE-OVERFLOW exit is activated if a disk work file is about to overflow and
the secondary allocation is zero, SORT is unable to remove the bottleneck and no auxiliary
file is available for a further cycle.
The user can abort the run or limit the sorting operation to the records already accepted by
SORT.

DIALOG The number of records read by SORT up to this point is indicated
by “SRT1017 RECORDS TO BE SORTED/MERGED: ...n”; one of the
following actions is expected as a response:

C[ONTINUE] SORT tries to perform the sort run with more limited
resources.

F[INISH] SORT terminates record input and processes the
records already accepted.

T[ERMINATE] SORT terminates the run.

FINISH-INPUT Record input is terminated and SORT processes the records read
in up to this point.

WORK-FILE-OVERFLOW SORT user exits

250 U6184-J-Z125-6-76

MODULE
(NAME=<name 1..8>,
INTERFACE-
VERSION=1/2)

A user routine is connected. Register 1 contains the address of an
8-byte input area.

Bytes 0 - 3: INTERFACE-VERSION=1:
Number of records already read in. If this number is
greater than 2.147.483.647, then it is set to that
value, which can lead to malfunctions in the user
exit.

INTERFACE-VERSION=2:
Address of an 8-byte area containing the number of
records already read in

Byte 4: File identifier
This byte provides information on the file type.
X’01’ work file
X’02’ auxiliary file

Byte 5: File sequence number
This byte contains the sequence number from the
file link name SORTWKx or SORTWKxx.

Bytes 6 - 7: Size of the work file

Register conventions

On returning control to SORT, the user routine loads one of the
following codes into the rightmost byte of register 15:

X’00’ SORT is to continue processing (this can lead to an
abort because of input/output errors).

X’04’ Input is terminated and the records already entered
are sorted (FINISH action).

X’08’ The sort run is terminated because of an error
(TERMINATE action).

SORT user exits EXLST-FOR-INPUT

U6184-J-Z125-6-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

6.5 EXLST-FOR-INPUT EXLST: exit for input files

The EXLST-FOR-INPUT user exit enables the user to specify EXLST exits for the input
file(s). The listed routines can then be made available to SORT in accordance with DMS
conventions.

At the start of this module is an EXLST macro containing references to the user routines for
the individual DMS exits used. The operands of the EXLST macro, which are passed on to
DMS, are summarized in the following table (for a detailed description see the “DMS
Macros” manual [3]).

Notes

– When control is passed to the user routine, register 1 contains the address of the FCB
for the file.

– An EXLST macro is accepted with either PARMOD=24 or PARMOD=31 when SORT is
called in 24-bit addressing mode. PARMOD=31 is, however, mandatory when SORT is
called in 31-bit addressing mode.

COMMON Tape/disk All exits may be specified that are also covered by COMMON,
except for EOFADDR and USERERR.

EOVCTRL Tape This exit closes label processing after a new data volume is made
available.

ERRADR Tape/disk Control is passed to this exit if a hardware error has occurred or an
input/output has terminated in error.

ERROPT Tape/disk This exit is useful for SAM files and connects to routines that are
to be executed if a defective block is detected.

LABEND Tape This exit checks user labels for end of file (EOF).

LABEOV Tape This exit checks user and end of tape (EOT) labels.

LABGN Tape This exit is used for checking user labels that precede the data of
the input files.

OPENV Tape This exit is used for data volumes with non-standard labels.

PGLOCK Disk Control is passed to this exit if another job has caused locks to be
put on the desired data.

EXLST-FOR-INPUT SORT user exits

252 U6184-J-Z125-6-76

Example

Note

The return operation using EXRTN is only permitted for some of the EXLST routines
(see the EXRTN macro section of the “DMS Macros” manual [3]).

/SET-LOGON-PARAMETERS ...
 .
/START-SORT
//ASSIGN-FILES...
 .
 .
//ASSIGN-EXITS EXLST-FOR-INPUT=*MODULE(NAME=EXIT18)
 .
 .
//END
 .

Main routine

User routines

E18 START
EXIT18 EXLST COMMON=routnam1,
 EOVCTRL=routnam2,
 LABEND=routnam3
 . .
 . .

Sort/merge run

routnam1 STM 14,12,12(13) SAVE REGISTERS
 BALR ...,0 LOAD BASE REGISTER?
 USING *,...
 . ACTIONS OF THE
 . USER ROUTINE
 B RETRN
routnam2 STM 14,12,12(13)
 BALR ...,0 ?
 USING *,...
 . ACTIONS OF THE
 . USER ROUTINE
 B RETRN
 . .
 . .

RETRN LM 14,12,12 (13)
 EXRTN (1),0
 END

SORT user exits EXLST-FOR-OUTPUT

U6184-J-Z125-6-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

6.6 EXLST-FOR-OUTPUT: user exit for output files

The EXLST-FOR-OUTPUT user exit allows the user to specify EXLST exits for the output
file. The routines listed in the exits can then be made available to SORT in accordance with
DMS conventions.

At the start of the module is an EXLST macro containing references to the user routines for
the individual DMS exits used. The operands of the EXLST macro, which are passed on to
DMS for the output file used, are summarized in the following table (for a detailed
description see the “DMS Macros” manual [3]).

Notes

– When control is passed to the user routine, register 1 contains the address of the FCB
for the file.

– An EXLST macro is accepted with either PARMOD=24 or PARMOD=31 when SORT is
called in 24-bit addressing mode. PARMOD=31 is, however, mandatory when SORT is
called in 31-bit addressing mode.

COMMON Tape/disk All exits may be specified that are also covered by COMMON.

EOVCTRL Tape This exit closes label processing after a new data volume is made
available.

ERRADR Tape/disk Control is passed to this exit if a hardware error has occurred or an
input/output has terminated in error.

ERROPT Tape/disk This exit is useful for SAM files and connects to routines that are
to be executed if a defective block is detected.

LABEND Tape This exit checks user labels for end of file (EOF).

LABEOV Tape This exit checks header labels, which are at the end of the tape
reel in the case of output files.

LABGN Tape This exit is used to check user labels that precede the data of
output files, or to generate user header labels (UHLs) for output
files.

OPENV Tape This exit is used for data volumes with non-standard labels.

EXLST-FOR-OUTPUT SORT user exits

254 U6184-J-Z125-6-76

Example

Note

The return operation using EXRTN is only permitted for some of the EXLST routines
(see the EXRTN macro section of the “DMS Macros” manual [3]).

/SET-LOGON-PARAMETERS ...
 .
/START-SORT
//ASSIGN-FILES...
 .
 .
//ASSIGN-EXITS EXLST-FOR-OUTPUT=*MODULE(NAME=EXIT39)
 .
 .
//END
 .

Main routine

User routines

E39 START
EXIT39 EXLST COMMON=routnam1,
 ERROPT=routnam2,
 . .
 . .

Sort/merge run

routnam1 STM 14,12,12(13) SAVE REGISTERS
 BALR ...,0 LOAD BASE REGISTER ?
 USING *,...
 . ACTIONS OF THE
 . USER ROUTINE
 B RETRN
routnam2 STM 14,12,12(13)
 BALR ...,0 ?
 USING *,...
 . ACTIONS OF THE
 . USER ROUTINE
 B RETRN
 . .
 . .

RETRN LM 14,12,12 (13)
 EXRTN (1),0
 END

SORT user exits PHYSICAL-TRANSLATE

U6184-J-Z125-6-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

6.7 PHYSICAL-TRANSLATE: special character conversion table

This exit allows a user routine to be connected for converting sort fields in PHYSICAL-
TRANSLATE format.

The user routine is not actively invoked; it consists simply of two 256-character code
conversion tables. The first code table (relative address 0) is used for the initial conversion,
and the second (relative address 256) is for converting the characters back at the end of
sorting.

Table 1 This table is used for converting PHYSICAL-TRANSLATE format
fields before the comparisons are performed.

Table 2 This table is used for subsequent reconversion of the fields
converted using Table 1. In this way the original contents are
restored once processing has been completed.

The position of the characters in the tables determines the association of argument and
function value for the conversion.

The character represented by hexadecimal 11 in the EBCDIC table is assigned to position
E2 in the user table. All bytes containing X’11’ in the PHYSICAL-TRANSLATE fields are
converted to X’E2’. Upon completion of processing by SORT, X’E2’ is converted back to
X’11’.

Note

The conversion tables need to be constructed with great care in order to achieve the
desired sorting sequence. This is particularly important when the original code is to be
unequivocally restored on reconversion. It may be easier to produce a changed
sequence via conversion formats. The MODIFY-CODE statement also provides a
simple conversion facility, and the VIRTUAL-TRANSLATE format using the VIRTUAL-
TRANSLATE code table is useful for special conversions (combining several code
characters).

Table 1: User table

0 1 2 … E F

0 xx xx xx … xx xx

1 xx E2 xx … xx xx

2 xx xx xx … xx xx

… … … … … …

E xx xx xx … xx xx

F xx xx xx … xx xx

Table 2: EBCDIC table

0 1 2 … E F

0 xx xx xx … xx xx

1 xx xx xx … xx xx

2 xx xx xx … 11 xx

… … … … … …

E xx xx xx … xx xx

F xx xx xx … xx xx

xx: Character in hexadecimal notation

VIRTUAL-TRANSLATE SORT user exits

256 U6184-J-Z125-6-76

6.8 VIRTUAL-TRANSLATE: special character conversion table

This exit enables sort fields in VIRTUAL-TRANSLATE format to be sorted according to a
coded order of priority. Unlike the PHYSICAL-TRANSLATE exit, it entails no changes to the
sort fields themselves.

A 256-byte code table is specified as the user routine for converting the VIRTUAL-
TRANSLATE format fields to an auxiliary field for each comparison. This has the advantage
that no conversion back to the original code is necessary and a number of characters can
be converted to a new character.

The user routine is not actively invoked; it consists simply of a 256-byte code table with an
address of 0 relative to the start of the routine (object module).

Example for an user table:

0 … 8 9 A B C D E F

0 00 … 00 00 00 00 00 00 00 00

1 00 … 0B 14 00 00 0B 14 00 00

2 00 … 0C 15 1D 00 0C 15 1D 00

3 00 … 0D 16 1E 00 0D 16 1E 00

4 00 … 0E 17 1F 00 0E 17 1F 00

5 00 … 0F 18 20 00 0F 18 20 00

6 00 … 10 19 21 00 10 19 21 00

7 00 … 11 1A 22 00 11 1A 22 00

8 00 … 12 1B 23 00 12 1B 23 00

9 00 … 13 1C 24 00 13 1C 24 00

A 00 … 00 00 00 00 00 00 00 00

B 00 … 00 00 00 00 00 00 00 00

C 00 … 00 00 00 00 00 00 00 00

D 00 … 00 00 00 00 00 00 00 00

E 00 … 00 00 00 00 00 00 00 00

F 00 … 00 00 00 00 00 00 00 00

SORT user exits VIRTUAL-TRANSLATE

U6184-J-Z125-6-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

This user table causes all capitals and lowercase letters to be treated as equal during
sorting. For example, ’A’ (X’C1’) and ’a’ (X’81’) are both assigned to X’0B’ in the user code
table and therefore are treated as identical during sorting (see example for VIRTUAL-
TRANSLATE, page 353). A table of this type can be built using an Assembler CSECT,
which can then be specified as a MODULE(NAME=<name=1..8>) action in the ASSIGN-
EXITS statement.

EXTERNAL-COMPARE SORT user exits

258 U6184-J-Z125-6-76

6.9 EXTERNAL-COMPARE: sequence defined by user routine

The EXTERNAL-COMPARE exit allows the user to define ascending or descending order
for each sort field comparison, provided that the EXTERNAL-COMPARE option has been
specified as the sorting order for the fields in the FIELDS operand of the SORT-RECORDS
statement.
The EXTERNAL-COMPARE user exit may be used for 24-bit or 31-bit addressing. The
interface is set up in accordance with the PARAMETER-MODE operand of the ASSIGN-
EXITS statement.

Interface to the user routine when PARAMETER-MODE=ANY

The user routine is called each time two EXTERNAL-COMPARE sort fields are compared.
In 31-bit addressing mode, the user exit offers an extension in the form of the name of the
coded character set, the address of the internal record format and the address of the
internal sort field position.

When the sort/merge program transfers control to the user routine, register 1 contains the
address of a 32-byte input area with the following structure:

Bytes 0 - 3: Address of the EXTERNAL-COMPARE sort field in the first match record

Bytes 4 - 7: Address of the EXTERNAL-COMPARE sort field in the second match record

Bytes 8 - 11: Address of the sequence number of the sort field

This address points to a data area 4 bytes in length in which relevant infor-
mation is stored in the rightmost byte.

Bytes 12 - 15: Address of the sort field length

This address points to a data area 4 bytes in length in which relevant infor-
mation is stored in the rightmost byte.

Bytes 16 - 19: Address of the action word

When the user routine returns control to SORT, the rightmost byte of the
action word must contain one of the following return codes:

X’00’ The sort field of the 1st match record has priority.

X’04’ The two sort fields have equal priority.

X’08’ The sort field of the 2nd match record has priority.

SORT user exits EXTERNAL-COMPARE

U6184-J-Z125-6-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

Note

The user routine must not modify the sort fields.

Bytes 20 - 23: Address of the internal record format

This address points to a data area 4 bytes in length in which the following
information is stored in the rightmost byte.

X’02’ variable record format

X’04’ fixed record format.

The record format is only for the user’s information. This field is not
evaluated when returning to the sort program.

Byte 24 - 27: Address of the internal sort field position

This address points to a data area 4 bytes in length in which the distance
between the sort field and the beginning of the record is stored in its two
rightmost bytes. The address of the sort field is stored in the input area in
bytes 0 - 3. The sort field position is only for the user’s information. This field
is not evaluated when returning to the sort program.

Byte 28 - 31: Address of the CCSN

This address points to an area 8 bytes in length in which SORT stores the
name of the coded character set which is used to process the data records.
The name is only for the user’s information in order to effectively compare
the sort fields. This field is not evaluated when returning to the sort program.

TRANSLATE-CHARACTER SORT user exits

260 U6184-J-Z125-6-76

Interface to the user routine when PARAMETER-MODE=24

The user routine is called each time two EXTERNAL-COMPARE sort fields are compared.
Register 1 points to the following 8-byte input area:

The user routine returns control to SORT after comparing the two EXTERNAL-COMPARE
sort fields. It must also load one of the following return codes into the rightmost byte of
register 15:

X’00’ The sort field of the 1st match record has priority.

X’04’ The two sort fields have equal priority.

X’08’ The sort field of the 2nd match record has priority.

Note

The user routine must not modify the sort fields.

6.10 TRANSLATE-CHARACTER: sequence defined by equating
tables and coded character set

This exit allows a user routine to be connected for converting sort fields in TRANSLATE-
CHARACTER format when the CCSN of the input file matches the name of the specified
module. The user routine consists of two 256-character code conversion tables. SORT
uses these tables to generate the code of the character to be sorted for the sort operation.
These tables take precedence over the standard tables supplied by SORT in the library with
the logical name SYSLNK.TAB. Otherwise the tables are treated like standard tables. It is
not necessary for a standard table with the same name to exist. However, XHCS must know
the CCSN.
If the file which is to be sorted has a CCSN which is not contained in the statement but is
contained in the library with the logical name SYSLNK.TAB, the file in this library is
accessed.

Byte 0: Sequence number of the sort field

Bytes 1 - 3: Address of the EXTERNAL-COMPARE sort field in the first match record

Byte 4: Sort field length

Bytes 5 - 7: Address of the EXTERNAL-COMPARE sort field in the second match record

SORT user exits INT interrupt exit

U6184-J-Z125-6-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

35
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

6

6.11 INT: sort/merge run interrupt

The INT exit enables a user at a terminal to hold an interactive dialog with the SORT
sort/merge program. The INT exit cannot be specified in the ASSIGN-EXITS statement.
This means that it cannot be used to connect to a user routine.

The INT exit is activated

– in interactive mode: by first switching from program mode (SORT) to system mode; this
is done by pressing the K2 key of the terminal from which SORT was started. When the
system displays the slash prompt, the command /INFORM-PROGRAM can be entered.

– in batch mode: by entering /INFORM-PROGRAM JOB-ID=*TSN(TSN=tsn) at the
console (where <tsn> is the number of the task in which SORT is running).

This is followed by a message to the terminal indicating the elapsed runtime and CPU time
and requesting one of the following actions:

Notes

– After a DISPLAY or CKPT action has been executed, a further action is requested. If no
checkpoint could be written following the CKPT and TERMINATE actions, SORT issues
an error message and continues with the sort/merge processing.

– SORT cannot be addressed via the INT user exit if it has been called under the
SORTZM access method or as a subroutine and the operand STXIT=NO is specified in
the first SRT0 or SRT1 macro.

D[ISPLAY] Show the processing status, e.g. the number of records processed so far.

CK[PT] Write a checkpoint at the earliest possible time. If, for example, the
TERMINATE action is selected next, SORT takes a checkpoint before
terminating the sort/merge run.

C[ONTINUE] Continue processing.

F[INISH] Terminate record input to SORT and process (sort/merge) the records
already entered.

T[ERMINATE] Terminate the SORT run.

INT interrupt exit SORT user exits

262 U6184-J-Z125-6-76

Example

/SET-LOGON-PARAMETERS ...
 .
 .
 .
/START-SORT
 .
 .
 .
//SORT-RECORDS...
 .
 .
//END
 .
 .
 .

K2 key or ESCAPE/BREAK key

/SEND-MESSAGE TO=PROGRAM

Enter desired action, e.g. CKPT

 .
 .
 .

U6184-J-Z125-6-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

32
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

7

7 Checkpoint processing

Checkpoints are written by SORT during sort/merge runs when either of the following condi-
tions applies:

– the CHECKPOINT operand has been specified in the SORT-RECORDS or MERGE-
RECORDS statement

– a SEND-MESSAGE call is issued in interactive mode and CKPT entered as the desired
action (in this case the checkpoint is written at the earliest possible time).

No checkpoints are written if SORT is called as a subroutine and the user does not comply
with the restrictions of the CHKPT macro. (For information about using a stack, a memory
pool or inter-task communication (ITC) see also “Executive Macros” [6], WRCPT macro.)

No checkpoints can be written during processing of POSIX files as input files either.

In multi-task sorts, checkpoints may only be written before the last merge pass with the final
output.

Sort runs

During a sort run, checkpoints are only written at the end of a cycle. A cycle is terminated
after SORT has output a sorted subset to an auxiliary file. In the final cycle, checkpoints can
be written immediately before the merge pass with the final output.

A checkpoint can be written irrespective of the execution status by the user issuing a SEND-
MESSAGE call and, after entering CKPT as the desired action, requesting termination of
the SORT run with TERMINATE. This does not apply to multi-task sorts.

Merge runs

During a merge run, there are no limits on the number and frequency of checkpoints. By
specifying the CHECKPOINT and RECORDS-PER-CYCLE operands in the MERGE-
RECORDS statement, the user can define the number of merge input records in a cycle,
i.e. after how many records a checkpoint is to be taken.

In interactive mode, a SEND-MESSAGE command and a CKPT action can be entered at
any time. A checkpoint will then be written at the earliest possible point. This requires the
checkpoint file to be of adequate size.

Checkpoint processing

264 U6184-J-Z125-6-76

PAM key elimination

The value BLOCK-CONTROL-INFO=*WITHIN-DATA-BLOCK must not be specified for
checkpoint files.

RESTART-PROGRAM

The RESTART-PROGRAM command enables an interrupted sort/merge run to be resumed
from the last checkpoint written. The name of the checkpoint file and the corresponding
PAM page logged at each checkpoint must be specified in the command.

U6184-J-Z125-6-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

8

8 Optimization of sort runs

Sort runs can be optimized by

– suitable CORE allocation

– virtual merging

– choice of sorting method (code conversion, cycle sorting, multi-task sorting)

– suitable choice of file characteristics

– summation of records

– load SORT as subsystem

– inclusion of the OPTIMIZATION operand in the SET-SORT-OPTIONS statement

– modification of the preset default values of SORT.

8.1 Suitable CORE allocation

The CORE value defines the size of virtual memory for intensive use.

In normal system utilization, SORT should be left to determine the CORE allocation. SORT
calculates the CORE value on the basis of the number of records in a sort cycle. The
requisite information for this must be made available to SORT (RECORDS-PER-CYCLE or
ESTIMATED-RECORDS value, together with the definition of the auxiliary files via ADD-
FILE-LINK assignment and/or TAPE-UNITS specification).

Calculation of the CORE value by SORT:

In interactive and batch modes SORT outputs the value calculated for CORE in SORT
message SRT1033 if PLANNING=*DIALOG was specified in the ASSIGN-EXITS
statement.

CORE =
cycle data set in bytes

2 ** 20
 + 16

CORE allocation Optimization

266 U6184-J-Z125-6-76

In a system with low utilization or a very large memory capacity, sorting can be accelerated
by using the ASSIGN-RESOURCES statement to allocate a CORE value greater than the
value calculated by SORT.

In a heavily utilized system it may be possible to improve performance by using the
ASSIGN-RESOURCES statement to allocate a CORE value that is less than the value
calculated by SORT.

You can modify the CORE value calculated by SORT by specifying the MEMORY-SIZE
operand with the ASSIGN-RESOURCES statement. The following priority classes are
possible:

The specification of MIN-MSG-WEIGHT=*ALL in the statement SET-SORT-OPTIONS
gives the user information about the way the sort run is set up:

– With small input files (e.g. 1000 records, each 50 bytes in length) the system attempts
to sort all the records immediately in main memory without buffering to a SORTWK file.
The message SRT1013 informs the user of this.

– With larger input files, the system attempts to merge all the sequences created during
the pre-sort using a merge run at the end of the process. The message SRT1012
informs the user of this. Only when handling large sort runs is it necessary to use inter-
mediate merge runs as well.

– When using the user exit “PLANNING” with DIALOG, the message SRT1061 specifies
the maximum number of merge runs that can be combined in the final end merge.

– When the DOMINO phase is completed, the message SRT1028 specifies the number
of sequences that were actually created. By modifying MEMORY-SIZE you may be able
to create a more suitable constellation. However, the number of sequences created will
actually change from sort run to sort run as the input data changes.

MEMORY-
SIZE =

Explanation

MIN Minimum value. Corresponds to the CORE value, which can be preset ID- or system-
specifically with the MODIFY-SORT-DEFAULTS statement and the CORE-MINIMUM
operand (factory presetting: 24).

SMALL Lower value. Equivalent to the CORE value calculated by SORT -33%.

STD Value calculated by SORT on the basis of the sort/merge run specifications.

LARGE Upper value. Equivalent to the CORE value calculated by SORT +33%.

MAX Maximum value. Corresponds to the CORE limit value, which can be preset ID- or
system-specifically with the MODIFY-SORT-DEFAULTS statement and the CORE-
LIMIT operand (factory presetting: 96).

Optimization Virtual merging

U6184-J-Z125-6-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

8

8.2 Virtual merging

The records to be sorted must be placed in an area of virtual memory so that comparisons
can be performed. The size of the area can be specified by the user in the MEMORY-SIZE
operand of the ASSIGN-RESOURCES statement or is calculated by SORT from the infor-
mation on the quantity of data. Access to this area is characterized by a very high degree
of dispersion, which means that paging may intensify in proportion to the size of the area.
This may affect concurrently executing tasks, and this, in turn, may have an impact on
SORT runtime.

In a presort with virtual merging, the memory area is divided up in the ratio 1 to 15 into a
presorting area and a merging area. This limits the dispersed type of access to 1/16; the
remainder (merging area) is accessed sequentially.

A prerequisite for virtual merging is a MEMORY-SIZE value Ï 400 (defined in the ASSIGN-
RESOURCES statement) and a minimum availability of 400 pages of class 6 memory. In
addition, the intensively used memory area (1/16 of the specified value) must not exceed
the maximum value which can be set using the CORE-MAXIMUM operand of the MODIFY-
SORT-DEFAULTS statement. If it does, its size is reduced to this maximum value and the
total memory request is recalculated (through multiplication by 15). Only if this newly
computed value is Ï 400 can a virtual merge be performed.

Example

CORE value = 1600, CORE-MAXIMUM = 50

The memory area for intensive use is determined by 1600/16 = 100. As this is greater than
the preset limit (50), the latter value is used instead. The definitive CORE value, and thus
the amount of virtual memory requested, is reduced by back-calculation (i.e. by multiplying
the intensive memory value by 16) to 800 pages (= 50 * 16).

Information concerning the use of virtual merging is provided by the following SORT
messages:

The message SRT1033 indicates the size of the requested memory area.

This message SRT1062 indicates that conditions are suitable for virtual merging.

These two messages are output only if DIALOG was specified as the action for the
PLANNING user exit in the ASSIGN-EXITS statement and the appropriate message priority
was set in the SET-SORT-OPTIONS statement.

Choice of sort method Optimization

268 U6184-J-Z125-6-76

8.3 Choice of sort method

Runtime and system throughput in sort operations can be improved by the use of

– code conversion

– cycle sorting

– multi-task sorting.

8.3.1 Code conversion

Code conversions increase the amount of CPU time required. The following is intended to
help in the choice of conversion format (assuming such a choice exists).

– Small requirement for conversion and reconversion (MODIFY-CODE, PHYSICAL-
TRANSLATE, EBCDIC-ISO-EBCDIC formats)

– Large requirement for conversion per record comparison on auxiliary storage
(VIRTUAL-TRANSLATE, EBCDIC-INTERNATIONAL formats)

– Very large requirement for DIN-oriented conversion with special treatment of umlauts
(EBCDIC-DIN formats).

8.3.2 Cycle sorting

In cycle sorting, the data set to be sorted is divided up into subsets (cycles). SORT sorts
each subset separately in a work file (SORTWKx) and then places the result in an auxiliary
file (SORTWKxx). Auxiliary files can be set up on tape or disk.

Essentially, cycle sorting is used for the controlled generation of checkpoints (RESTART
capability). Some savings in runtime may be possible by setting up the auxiliary files on
separate (independent) volumes, thus reducing positioning times. The CPU times will,
however, always be greater than for a simple sort run with one cycle.

A cycle sort is performed only if the RECORDS-PER-CYCLE operand is specified, and then
only if its value is less than the number of input records.

Optimization Cycle sorting

U6184-J-Z125-6-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

8

SORT requires the following resources for cycle sorting:

– 1 disk work file, whose size is given by 1.1 * cycle data set

– n auxiliary files (disk and/or tape), where n=number of cycles-1; the size of each
auxiliary file is given by 1.1 * cycle data set.

The number of auxiliary files required is the maximum value produced by

the number of files assigned via ADD-FILE-LINK commands with LINK-
NAME=SORTWKxx, plus the TAPE-UNITS operand value (in the ASSIGN-
RESOURCES statement)

and

For this, the FILE command specifications take precedence.

Notes

– If the number of auxiliary files defined by ADD-FILE-LINK commands with LINK-
NAME=SORTWKxx and the TAPE-UNITS operand does not match the cycle number
resulting from the ESTIMATED-RECORDS value/RECORDS-PER-CYCLE - 1 then
SORT sets up the missing files on disk.

– If there are still not enough auxiliary files, SORT automatically sets up an additional
auxiliary disk file. If this also proves insufficient, SORT tries to sort the remainder of the
input using an extension of the work file (secondary allocation).

The number of records per cycle is calculated as follows:

or alternatively:

ESTIMATED-RECORDS value

RECORDS-PER-CYCLE value
- 1

Cycle record number = RECORDS-PER-CYCLE value

Cycle record number =
INPUT-RANGE, NUMBER-OF-RECORDS value

Number of auxiliary files + 1

Cycle sorting Optimization

270 U6184-J-Z125-6-76

Example

/add-file-link file-name=input.1,link-name=sortin
/add-file-link file-name=output.1,link-name=sortout
/start-sort
% SRT1001 2014-10-12/15:41:58/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//sort-records fields=*field-explicit(position=5,length=8, -
// sorting-order=*descending), -
// records-per-cycle=90
//set-sort-options min-msg-weight=*all
//end
% SRT1046 2014-10-12/15:42:27/000000.25 END OF PREPARATORY PHASE
% SRT1010 2014-10-12/15:42:27/000000.27 END OF PRESORT PHASE
% SRT1027 STRINGS AFTER PRESORTING:.............................1
% SRT1028 STRINGS AFTER DOMINO:.................................1
% SRT1012 NO INTERNAL MERGE NECESSARY
% SRT1015 2014-10-12/15:42:28/000000.30 END OF CYCLE1
% SRT1010 2014-10-12/15:42:28/000000.30 END OF PRESORT PHASE
% SRT1027 STRINGS AFTER PRESORTING:.............................1
% SRT1028 STRINGS AFTER DOMINO:.................................1
% SRT1012 NO INTERNAL MERGE NECESSARY
% SRT1015 2014-10-12/15:42:28/000000.33 END OF CYCLE2
% SRT1010 2014-10-12/15:42:28/000000.33 END OF PRESORT PHASE
% SRT1027 STRINGS AFTER PRESORTING:.............................1
% SRT1028 STRINGS AFTER DOMINO:.................................1
% SRT1012 NO INTERNAL MERGE NECESSARY
% SRT1015 2014-10-12/15:42:28/000000.36 END OF CYCLE3
% SRT1010 2014-10-12/15:42:28/000000.36 END OF PRESORT PHASE
% SRT1027 STRINGS AFTER PRESORTING:.............................1
% SRT1028 STRINGS AFTER DOMINO:.................................1
% SRT1012 NO INTERNAL MERGE NECESSARY
% SRT1016 SORT/MERGE INPUT RECORDS:...........................300 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:..........................300
% SRT1025 PAM INPUTS:..8
% SRT1026 PAM OUTPUTS:...8
% SRT1002 2014-10-12/15:47:26/000000.48 SORT/MERGE COMPLETED

The auxiliary files are set up by SORT and deleted again at the end of the run.

Optimization Multi-task sorting

U6184-J-Z125-6-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

8

8.3.3 Multi-task sorting

Figure 11: Multi-task sorting

…

…

Presort

Final output

Internal merge
with output to auxiliary files (max. 99)
via separate subtasks

Input files

Output file

Work files
(max. 9)

Last cycle

S
o

rt
 m

ai
n

 t
a

s
k

S
o

rt
 m

a
in

 t
a

sk
S

o
rt

 s
u

b
ta

s
k

Internal merge by
main task

Multi-task sorting Optimization

272 U6184-J-Z125-6-76

Multi-task sorting involves the use of a number of work files (between 2 and a maximum
of 9). This sorting technique is a form of cycle sorting with multiple task runs, where there
is one main task and up to 8 subtasks. The number of tasks (one main task and several
subtasks) that can execute concurrently is equal to the number of work files. This deter-
mines the degree of parallel working by SORT. The total number of subtasks activated is
primarily determined by the result of (ESTIMATED-RECORDS/RECORDS-PER-CYCLE).
If the corresponding values are not available, SORT uses the number of auxiliary files.

Properly applied, multi-task sorting produces savings in runtime that can be considerable.
However, since the CPU time required is always greater than for simple sorting in one cycle
or for cycle sorting, increased throughput can only be achieved in a lightly loaded system
with adequate reserves of CPU time.

Sort main task

The sort main task

– presorts the first input

– outputs subsets to work files

– coordinates the subtask merge runs

– uses the final sort cycle to merge the auxiliary files written by the subtasks

The first input is presorted in the sort main task. Each of the work files is then assigned to
a separate sort subtask for internal merging followed by output to an auxiliary file. In the final
cycle the main task merges the generated auxiliary files and performs internal merging in
order to produce the final output.

The sort main task and the subtasks communicate with one another in order to synchronize
their execution. Thus, for example, the main task may have to wait until a work file becomes
free or all subtask runs are completed.

Presorting in the main task and internal merging in the subtasks are performed in parallel.

Optimization Multi-task sorting

U6184-J-Z125-6-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

8

Sort subtasks

In the sort subtasks, dummy records are used to optimize the sorted sequences (usually
accomplished in the main task) and the individual subsets (sorted sequences) are merged
internally and output to auxiliary files.

Resources required for multi-task sorting include:

– input file(s) (max. 99)

– work files on disk (2 to max. 9)

– auxiliary files on disk (max. 99)

– output file.

Note

The MIN-MSG-WEIGHT operand of the SET-SORT-OPTIONS statement controls the
SYSLST output of the sort subtasks. When MIN-MSG-WEIGHT=*ALL is specified, the
SYSLST log is always output; it is otherwise only output when there is an error in the
sort subtask.

Requirements for multi-task sorting

The conditions outlined below should apply for multi-task sorting. Otherwise a cycle sort
should be performed using a single work file. Where there is uncertainty about certain
values (e.g. record length, ESTIMATED-RECORDS), it is better to make no specifications
since incorrect values may lead to an abort.

– SORT has to be assigned at least 2 and at most 9 work files. This is how SORT recog-
nizes that a multi-task sort is required.

– The user ID under which the sorting is performed must possess an “express tag”
(SHOW-USER-ATTRIBUTES command, START-IMMED=YES operand).

– If ESTIMATED-RECORDS and RECORDS-PER-CYCLE are specified, SORT calcu-
lates the number of auxiliary files (max. 99).

– System loading should be light enough to allow the subtasks responsible for internal
merging to be started immediately and run without interruption.

– Auxiliary files on work tapes must not be used for multi-task sorting. If the TAPE-UNITS
parameter in the ASSIGN-RESOURCES control statement is set to a non-zero value,
SORT automatically performs only a cycle sort.

– Devices on which private disks containing work or auxiliary files are used must be
shareable.

Multi-task sorting Optimization

274 U6184-J-Z125-6-76

– The VIRTUAL-TRANSLATE and/or EXTERNAL-COMPARE user exits must not be
used.

If no ESTIMATED-RECORDS or RECORDS-PER-CYCLE values have been specified,
SORT calculates a RECORDS-PER-CYCLE value from the input data set (size of the input
file in PAM pages), the average record length and the number of auxiliary files. With tape
files, SORT cannot determine the amount of input data and so cannot calculate a
RECORDS-PER-CYCLE value. It follows that in such cases no multi-task sorting is
performed.

Special error situations

SORT issues an error message when the following errors have occurred. If necessary the
sort run is aborted.

– The “Express” entry is missing in the user ID:
Message SRT1065 is issued; the sort run continues normally with cycle sorting in the
main task.

– The “Express” entry is removed during the sort run:
Warning SRT1066 is issued; the sort run continues normally with cycle sorting in the
main task.

– Sort subtasks are aborted with “CANCEL-JOB”:
Messages SRT1051, SRT1052 and SRT1053 are issued; the sort run is resumed. The
auxiliary files of the aborted auxiliary tasks are ignored in the last sort cycle (main task).
The sort/merge run ends normally with message SRT1059.

– Sort subtasks are not initiated:
After a waiting time of 10 minutes, message SRT1068 is issued; the sort run is termi-
nated.

– Other error conditions of sort subtasks:
In this case, messages SRT1067, SRT1052 and SRT1053 are issued during the end
merge; the sort run is resumed. The auxiliary files of the affected subtasks are ignored
during the final sort cycle (main task). The sort/merge run ends normally with message
SRT1059.

Optimization Multi-task sorting

U6184-J-Z125-6-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

8

Examples:

Variant 1

/add-file-link link-name=sortin,file-name=input.1
/add-file-link link-name=sortout,file-name=output.1
/add-file-link link-name=sortwk1,file-name=work.1
/add-file-link link-name=sortwk2,file-name=work.2
/start-sort
% SRT1001 2014-10-12/13:50:09/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//sort-records fields=*field-explicit(position=5,length=10), -
// estimated-records=1000,records-per-cycle=300
//set-sort-options min-msg-weight=*all
//end
% SRT1046 2014-10-12/13:50:10/000000.24 END OF PREPARATORY PHASE
% SRT1010 2014-10-12/13:50:11/000000.30 END OF PRESORT PHASE
% JMS0066 JOB ‚EXAMPLE‘ ACCEPTED ON 96-02-05 AT 13:50, TSN = 8D2R
% SRT1010 2014-10-12/13:50:13/000000.41 END OF PRESORT PHASE
% JMS0066 JOB ‚EXAMPLE‘ ACCEPTED ON 96-02-05 AT 13:50, TSN = 8D2U
% SRT1010 2014-10-12/13:51:00/000000.51 END OF PRESORT PHASE
% JMS0066 JOB ‚EXAMPLE‘ ACCEPTED ON 96-02-05 AT 13:51, TSN = 8D3B
% SRT1010 2014-10-12/13:51:01/000000.59 END OF PRESORT PHASE
% SRT1027 STRINGS AFTER PRESORTING:..............................1
% SRT1028 STRINGS AFTER DOMINO:..................................1
% SRT1012 NO INTERNAL MERGE NECESSARY
% SRT1016 SORT/MERGE INPUT RECORDS:..........................2.000 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:.........................2.000
% SRT1025 PAM INPUTS:..2
% SRT1026 PAM OUTPUTS:..11
% SRT1002 2014-10-12/13:51:39/000000.72 SORT/MERGE COMPLETED

Altogether, 3 subtasks are started, each sorting 600 records into an auxiliary file. The
number of auxiliary files is calculated by SORT (using ESTIMATED-RECORDS/
RECORDS-PER-CYCLE). The final 200 records are sorted by the main task and merged
together with the three auxiliary files into the output file.

Multi-task sorting Optimization

276 U6184-J-Z125-6-76

Variant 2

/add-file-link link-name=sortin,file-name=input.1
/add-file-link link-name=sortout,file-name=output.1
/add-file-link link-name=sortwk1,file-name=work.1
/add-file-link link-name=sortwk2,file-name=work.2
/add-file-link link-name=sortwk01,file-name=auxiliary.1
/add-file-link link-name=sortwk02,file-name=auxiliary.2
/add-file-link link-name=sortwk03,file-name=auxiliary.3
/start-sort
% SRT1001 2014-10-12/13:46:36/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//sort-records fields=*field-explicit(position=5,length=10), -
// estimated-records=2000
//set-sort-options min-msg-weight=*all
//end
% SRT1046 2014-10-12/13:46:37/000000.25 END OF PREPARATORY PHASE
% SRT1010 2014-10-12/13:46:37/000000.31 END OF PRESORT PHASE
% JMS0066 JOB ‚EXAMPLE‘ ACCEPTED ON 96-02-05 AT 13:46, TSN = 8DZB
% SRT1010 2014-10-12/13:46:38/000000.42 END OF PRESORT PHASE
% JMS0066 JOB ‚EXAMPLE‘ ACCEPTED ON 96-02-05 AT 13:46, TSN = 8DZC
% SRT1010 2014-10-12/13:47:35/000000.51 END OF PRESORT PHASE
% JMS0066 JOB ‚EXAMPLE‘ ACCEPTED ON 96-02-05 AT 13:47, TSN = 8DZI
% SRT1010 2014-10-12/13:47:36/000000.60 END OF PRESORT PHASE
% SRT1027 STRINGS AFTER PRESORTING:.............................1
% SRT1028 STRINGS AFTER DOMINO:.................................1
% SRT1012 NO INTERNAL MERGE NECESSARY
% SRT1016 SORT/MERGE INPUT RECORDS:.........................2.000 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:........................2.000
% SRT1025 PAM INPUTS:...3
% SRT1026 PAM OUTPUTS:...12
% SRT1002 2014-10-12/13:48:27/000000.70 SORT/MERGE COMPLETED

SORT calculates a RECORDS-PER-CYCLE value from the value specified for
ESTIMATED-RECORDS and the number of assigned auxiliary files. The number of
subtasks is equal to the number of assigned auxiliary files.

Optimization Multi-task sorting

U6184-J-Z125-6-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

8

Variant 3

/add-file-link file-name=input.1,link-name=sortin
/add-file-link file-name=output.1,link-name=sortout
/add-file-link file-name=work.1,link-name=sortwk1
/add-file-link file-name=work.2,link-name=sortwk2
/start-sort
% BLS0517 MODULE ’SRT80’ LOADED
% SRT1001 2014-10-12/12:10:46/000000.00 SORT/MERGE STARTED, VERSION
08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//sort-records fields=*field-explicit(position=5,length=10)
//set-sort-options min-msg-weight=*all
//end
% SRT1046 2014-10-12/12:10:47/000000.24 END OF PREPARATORY PHASE
% SRT1010 2014-10-12/12:10:49/000000.41 END OF PRESORT PHASE
% SRT1027 STRINGS AFTER PRESORTING:..............................2
% SRT1028 STRINGS AFTER DOMINO:..................................2
% SRT1012 NO INTERNAL MERGE NECESSARY
% SRT1016 SORT/MERGE INPUT RECORDS:..........................2.000 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:.........................2.000
% SRT1025 PAM INPUTS:...11
% SRT1026 PAM OUTPUTS:..11
% SRT1002 2014-10-12/12:10:51/000000.51 SORT/MERGE COMPLETED

As SORT cannot calculate a RECORDS-PER-CYCLE value and no auxiliary files are
assigned either, no multi-task sorting is performed.

Note

Performance can be improved in multi-task sorting, as in cycle sorting, by storing work
files and auxiliary files on separate data volumes with independent access facilities. The
same applies to the input files and output files, though these do not require separate
access facilities.

Suitable choice of file characteristics Optimization

278 U6184-J-Z125-6-76

8.4 Suitable choice of file characteristics

Input files (SORTINxx)
Wherever possible, input files should be set up with a block size of at least 4096 bytes (even
chaining just 2 PAM pages can produce significant savings in CPU time and runtime).
Setting up input files on private volumes usually results in faster processing (runtime
saving).

Output file (SORTOUT)
Output files should be set up with a block size of at least 4096 bytes. Even chaining just 2
PAM pages can produce significant savings in CPU time and runtime).
It is also important to ensure that adequate primary and secondary space allocations are
defined. This can reduce administrative overhead in respect of file extensions. Other file
attributes should, as far as possible, be taken over by SORT from the input file so as to
avoid errors. Runtime improvements can usually be achieved by setting up output files on
private volumes.

Work files (SORTWK or SORTWKx)
Significant savings in runtime are possible by setting up work files on a private disk and
making sure that the disk will not be accessed concurrently by other executing tasks. In
multi-task sorting this applies to each individual work file.
The file attributes of a work file are fully defined by SORT and if the SPACE specification is
too low, it will be corrected.

Auxiliary files (SORTWKxx)
The same applies to auxiliary files as to work files, this time including files on tape. Here,
the restrictions on multi-task sorting have to be taken into account. Tapes should be
processed at high recording density.

8.5 Record summation

The SUM-RECORDS statement should be used for record summation. This causes
summation to be initiated in the presort phase, thereby helping to avoid high-volume inputs
and outputs. Record summation means that each time that two records with identical sort
keys are encountered, the contents of the sum fields specified in the SUM-RECORDS
statement are added together in the first record and the second record is deleted. In test
measurements, savings in CPU time and runtime of up to 60% (!) have been recorded
(dependent on the degree of compression).

Optimization SORT as subsystem

U6184-J-Z125-6-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

8

8.6 SORT as subsystem

Parts of SORT can be loaded by systems support in the form of a subsystem. This saves
part of the load process and thus makes SORT faster.

This is particularly valid for multi-task sort operations which would otherwise reload some
of the modules for each subtask.

8.7 Use of the OPTIMIZATION operand in the SET-SORT-
OPTIONS statement

The OPTIMIZATION operand of the SET-SORT-OPTIONS statement can be used to
optimize the sort run in terms of runtime, CPU time or memory requirements. Thus,
OPTIMIZATION = VIRTUAL-MEMORY causes load modules (which account for about 85%
of static program code) to be released when they are no longer required. Runtimes and
CPU times increase when load modules are released and when they are reloaded for a
succeeding sort run. Against this, in a system short of address space OPTIMIZATION =
VIRTUAL-MEMORY can be used so that memory freed by releasing the load modules can
be made available for sort work areas. As a result, SORT makes more efficient use of
available memory.

8.8 Modifying the preset default values for SORT

SORT parameters can be modified and displayed by means of the statements MODIFY-
SORT-DEFAULTS (see page 152) and SHOW-SORT-DEFAULTS (see page 174).

Modifying the preset default values for SORT Optimization

280 U6184-J-Z125-6-76

U6184-J-Z125-6-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

9

9 Installation

SORT V8.0 runs under the operating system BS2000/OSD as of V8.0.

For compatibility reasons with older applications, a library SORTLIB is still required.
SORTLIB contains the starter module SRT80 (object module). The object module
SRTXKERN is also included. This is used to satisfy calls which are permanently
programmed in old applications and refer to this module in the library SORTLIB.
If IMON is not in use, the library SORTLIB is still accessed during subprogram calls. This is
also valid for old starter modules from SORT V7.4 and lower as they do not yet work with
IMON.

The installation is not tied to fixed file names and IDs. This means that the products
themselves have to dynamically establish the location of all components of a version. The
tool provided for this is the IMON subsystem (see the “IMON” [11]).

Product files Installation

282 U6184-J-Z125-6-76

Product files

Comments

1. The SYSSPR.SORT.080 and SYSACF.SORT.080 files have fixed names and must be
provided under these names in the default user ID (DEFLUID).

2. For the purposes of compatibility the macro library SYSLIB.SORT.080 is still to be
saved as $.SORTMACLIB, or is to be assigned this name using ACS resources.

3. The library $.SORTLIB is always supplied. It contains the modules SRT80 and
SRTXKERN. The correct library is always entered from SRTXKERN
(SYSLNK.SORT.080).

SYSPRG Phase (compatibility) SORT

SYSOML Module library SORTLIB

SYSLNK Module library SYSLNK.SORT.080

SYSLNK.TAB Table library SYSLNK.SORT.080.TAB

SYSPAR Parameter file SYSPAR.SORT.080

SYSLIB Macro library SYSLIB.SORT.080

SYSSDF SDF syntax file SYSSDF.SORT.080

SYSMES Message file (MSGMAKER format) SYSMES.SORT.080

SYSSPR Procedure library SYSSPR.SORT.080

SYSREP REP file SYSREP.SORT.080

SYSSSC Subsystem declarations upper address space SYSSSC.SORT.080

SYSSSC.LOW Subsystem declarations lower address space SYSSSC.SORT.080.LOW

SYSSII Installation information for IMON SYSSII.SORT.080

SYSFGM.D Release Notice - German SYSFGM.SORT.080.D

SYSFGM.E Release Notice - English SYSFGM.SORT.080.E

SYSACF ACS model file SYSACF.SORT.080

SYSRME.D Readme File - German SYSRME.SORT.080.D

SYSRME.E Readme File - Englisch SYSRME.SORT.080.E

SYSNRF SYSNRF.SORT.080

Installation Freely selectable file names

U6184-J-Z125-6-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

9

Freely selectable file names

The installation is not tied to fixed file names and IDs.

The names of the individual SORT files and the IDs under which they are stored can be
defined during installation with IMON-GPN. This allows you, for example, to store the sort
library under an ID called SORT.

The prerequisite for this is that the subsystems DSSM and IMON-GPN are installed.

The associated file names of all product files (the complete path names) are stored in the
so-called IMON-SCI (Software-Configuration-Inventory), the central IMON data basis and
can be retrieved from there in later SORT applications. So the user does not need to know
these names - they are ascertained for him or her by the operating system.

The IMON-SCI contains the following three pieces of information for each product file:

1. Logical name of the file (for the sort library this is, for example, SYSLNK)

2. Name of the product (SORT)

3. Product version (e.g. 08.0A00)

Coexistence

Because the names and storage IDs of the product files are not fixed, it is possible to
provide several versions of a product on one system. The various versions of the product
must only be installed under different IDs or with different file names.

This coexistence of various product versions on a single system is supported by SORT as
of V7.5A, this basically means that SORT V8.0A is able to coexist with SORT versions as
of V7.5A. Neither version V7.4A nor any of the lower versions are capable of coexistence,
since they still contain hard-wired file names and do not contain organisatory utilities.

Coexistence is only permitted for main versions, the various release or correction statuses
of the same main version are not capable of coexisting with each other.

Example

Versions V7.9A and V8.0A are capable of coexisting with each other. But version V8.0B
or V8.0A10 would not be capable of coexisting with V7.9A00.

In the START-SORT and SORT-FILE commands as well as in the macros for calling
subroutines, the user can select the desired SORT version using the VERSION operand.

A further possibility of requesting the desired SORT version is provided by the system
command SELECT-PRODUCT-VERSION. In this command the user can define the
desired SORT version before the SORT call (in the case of a SORT subroutine variant,
before the associated main program is called). This SORT version is then selected if no
explicit version is specified when SORT is started. The SCOPE operand of the SELECT-

Coexistence Installation

284 U6184-J-Z125-6-76

PRODUCT-VERSION command controls the period of validity of this specification.
SCOPE=*PROGRAM defines the SORT version for the subsequent program call, i.e. the
SELECT-PRODUCT-VERSION command must be repeated before each main-program
call. SCOPE=*TASK defines the SORT version until the end of the task.

If the version is specified in full in the start command or during the subroutine call, this is
the version used (provided this version is correctly installed). If the version specification is
missing (i.e. *STD) or is not precise enough, more than one version may be possible. In this
case, the command server, or SORT in the subroutine call, ascertains all the versions that
could be meant. The version is then determined according to the following priorities:

1. The version preset with the /SELECT-PRODUCT-VERSION command.

2. The highest SORT version installed with IMON.

If in an operating system the IMON-GPN subsystem is not installed, the pre-linked SORT
module is dynamically loaded from the $.SYSLNK.SORT.080 or $.SORTLIB library. This
also applies if the IMON-GPN subsystem is active but its IMON-SCI does not contain the
product SORT.

If an explicitly requested SORT version is not found, the process is aborted.

Installation Interchangeability

U6184-J-Z125-6-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k0

9

Interchangeability

If several versions of SORT are installed at the same time, it is possible to swap between
them during operation. The following figure shows an example of the time sequence
involved in exchanging one version (V7.9A) of the SORT subsystem for another (V8.0A):

At the beginning of the example, SORT V7.9A is active. Three tasks (task1, task2 and
task3) start one SORT run each.
With the START-SUBSYSTEM command, the system administrator activates version
V8.0A of SORT, allowing the temporary coexistence of several versions by specifying
VERSION-PARALLELISM=*EXCHANGE-MODE. By this time the SORT run in task 3 has
already terminated, but the two tasks task1 and task2 are still working with SORT. Version
V7.9A of SORT therefore remains active, but all tasks which start a SORT run from now on
(task3 and task4) work with the new version, V8.0A.
The termination of the SORT run in task1 does not affect the termination of V7.9A of SORT.
This version of the SORT subsystem is not deactivated until the last task (task2), which is
still using it, terminates the SORT run.

/START-SORT

/START-SORT

//END

/START-SORT

//END

/START-SORT

//END

Task2

Task3

Task1

/START-SUBSYSTEM -
/ SUBSYSTEM-NAME=SORT, -
/ VERSION=8.0A, -
/ VERSION-PARALLELISM=*EXCHANGE-MODE

System administrator task

//END

Active
SORT
version:

V7.9A
and
V8.0A

V7.9A

V8.0A

/START-SORT

//END

Task4

Interchangeability Installation

286 U6184-J-Z125-6-76

U6184-J-Z125-6-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10 Examples

This chapter contains application examples for most of the SORT functions. The examples
have been tried out in practice and the resulting trace listings reprinted here, except in the
case of assembler programs, where for reasons of space the source code is given instead
of the assembly listing.

10.1 Introduction

This introduction has the following structure:

– brief recapitulation of the syntax of the SORT statements

– examples illustrating the syntax

Brief recapitulation of the syntax of the SORT statements

Executing a sort run generally requires three steps:

– calling SORT

– assignment of the input and output files required by SORT

– definition of the sort criteria

Examples

288 U6184-J-Z125-6-76

10.1.1 Calling SORT

SORT can be called with one of the following commands (see chapter “Calling SORT” on
page 191):

START-SORT SORT must be called with this command if the entire SORT
functionality is to be available. The examples that follow will
therefore use only this type of call.

SORT-FILE This command can be used to perform simple sorting. No further
input is necessary because with this command the file assignments
and the definition of sort criteria are made directly.

Calling SORT with START-SORT

/start-sort
% SRT1001 2014-10-12/12:19:38/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V14.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
%//

By means of the prompt ’//’ (double slash), SORT indicates that it is ready to receive SORT
control statements.

10.1.2 Assigning the files

Before any SORT run can take place, SORT requires (at least) one input file and an output
file.
SORT requires the input and output files to be specified explicitly for each SORT run.

Input and output files can be assigned in various ways:

– In a SORT statement:

//ASSIGN-FILES INPUT-FILES=inputfile, OUTPUT-FILE=outputfile

– Before calling SORT:

/ADD-FILE-LINK LINK-NAME=SORTIN, FILE-NAME=inputfile....
/CREATE-FILE FILE-NAME=outputfile
/ADD-FILE-LINK LINK-NAME=SORTOUT, FILE-NAME=outputfile....

Examples

U6184-J-Z125-6-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

– By direct specification of the files in the SORT-FILE command:

/SORT-FILE ... INPUT-FILES=inputfile,OUTPUT-FILE=outputfile...

Note

In general SORT generates output files with the same file attributes as the input files.
Exceptions to this are

– sorts in which SORT has other default specifications (cf. selection sorting)

– sorts in which the output file format is intentionally different from that of the input file

SORT accesses or creates the following files in a sort/merge run:

Small files can be sorted directly in the CORE space.

10.1.3 Defining the sort criteria

Sort criteria in the wider sense comprise all instructions (statements) issued to SORT. Sort
criteria in the narrower sense are specifications which refer to the sort key and the sorting
method. Sort criteria is always used below in its narrower sense.

Syntax example for a simple sort run

The simplest type of sort can be initiated by

//sort-records

Here SORT uses the default settings predefined by SDF. These defaults are:

– input files
must be assigned by the user for every sort process

– output file

– work files

– auxiliary files
only significant with large input files

– checkpoint file

FIELDS = COMPLETE-RECORD The entire record is evaluated

FORMAT = CHARACTER The data is interpreted as alphanumeric characters

SORTING-ORDER = ASCENDING The data is sorted in ascending order. Following the sort,
the least significant data comes first and the most signif-
icant is located at the end of the file.

Examples

290 U6184-J-Z125-6-76

Example

Using the command as given in the example to sort a file consisting only of uppercase
letters would result in a sorted file with ’A’ first and ’Z’ last.

SORT does not restrict sorting to whole data records only. The SORT-RECORDS
statement offers the following additional possibilities:

– Sections of a record can be specified which are to be taken into account in the sort
process. Other parts of the record do not then affect the sorting. For example, a list of
names is to be sorted according to last names and within the same last name according
to first names, whereby these fields need not necessarily be at the beginning of the
record.

– The fields of an input record can be combined to form an output record in a new order
defined by the user.

The FIELDS operand in the SORT-RECORDS statement is available for defining fields
which are to be taken into account for the sorting or incorporated into the output record.

Field definitions

The sort key consists of one or more sort fields. Sort fields describe all areas of the input
record that are evaluated by SORT in order to determine the order of the records in the
output file. The fields are defined via the FIELDS operand.
By default SORT evaluates the sort fields in the order given in the command. The most
significant (or primary) sort argument should be specified first. (For departures from this
rule, cf. PRIORITY in SORT-RECORDS.)

//sort-records fields=(-
// *field-explicit(position=..,length=..,format=..,sorting-order=..), -
// *field-explicit(...),..)

Here, the specifications following FIELD-EXPLICIT have the following function:

Descriptions of the maximum sizes and possible entries for the wildcard characters are
given in the preceding chapters of the manual.

POSITION Start of the field, in bytes

LENGTH Length of the field, in bytes

FORMAT Data format

SORTING-ORDER Sorting direction

Examples

U6184-J-Z125-6-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Syntax example: one sort key - two sort fields

//sort-records fields=(-
// *field-explicit(position=1,length=11), -
// *field-explicit(position=23,length=10,sorting-order=*descending))

The statement defines two sort fields as the sort key.

1st sort field: *FIELD-EXPLICIT(POSITION=1,LENGTH=11)

SORT begins at byte 1 (POSITION) and evaluates the following 11 bytes (LENGTH) of the
record. This part of the record is to be used for sorting in ascending order. The data itself is
of the type CHARACTER. These last two criteria do not need to be specified explicitly, as
they are already preset as the default values.

2nd sort field: *FIELD-EXPLICIT(POSITION=23,LENGTH=10,
SORTING-ORDER=*DESCENDING)

The second sort field begins at position 23 and extends over the next 10 bytes. The
difference is that this part of the record is to be used for sorting in descending order
(SORTING-ORDER=*DESCENDING).

10.1.4 Terminating statement input and starting the sort run

Every sort run definition has to be concluded by the END statement. This indicates to SORT
that it can begin to execute the statements entered.

Sorting a file Examples

292 U6184-J-Z125-6-76

10.2 Example: Sorting a file with fixed-length records

SORT is to sort a file called ADDRESSES alphabetically by street names. The records in
the ADDRESSES file have the following structure and contents:

Displaying the attributes of the ADDRESSES file

/show-file-attributes file-name=addresses, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.ADDRESSES
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 62
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

The attributes of the input file ADDRESSES are requested via the SHOW-FILE-ATTRI-
BUTES command. The system identifies the following attributes, among others, for the
ADDRESSES file:

– SAM file (FILE-STRUC=SAM)

– fixed record length (REC-FORM=(F,N))

– length of record (REC-SIZE=62).

SORT sets up the output file with these same attributes.

Name First name Street
Sorting is to be performed on this
field (sort field)

ZIP Tel.

Miller
Allan
Smith
Majors
Smythe
Kennedy
Stevens
Baker
Johnston
Mellors
Brown
Charles
Walters
Richards
Drever

Andrew
Hilary
Albert
Christine
Brenda
George
Henry
Fred
Annette
Ingrid
Tony
Ernest
Claudia
Bernard
James

Poplar Avenue 47
High Street 101
Gardener Street 14
Railway Cuttings 12
Thomas Square 1
Edgeware Road 62
Market Square 13
Scott Street 34
Richmond Street 98
Salford Drive 4
Skyview Terrace 9
Millhouse Street 23
Millford Crescent 31
Illsley Square 3
Rose Drive 31

KT25
AY4
PX453
PX23
BT34
NY211
NY12
KT23
BT342
TI34
UB81
TI32
ZY21
UB12
PX3

544507
345679
047913
987650
965471
873250
987234
765921
345678
456372
786534
537892
342108
518376
875211

Examples Sorting a file

U6184-J-Z125-6-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Calling SORT

/start-sort
% SRT1001 2014-10-12/16:05:25/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0

SORT reports that it is ready and expects the input of the SORT-RECORDS statement.

Assigning the input and output files

//assign-files input-files=addresses,output-file=addresses.sort

The ASSIGN-FILES statement is used to assign the ADDRESSES file as the input file and
the ADDRESSES.SORT file as the output file.
ADDRESSES.SORT is set up as the output file by SORT with the same file attributes as
the ADDRESSES input file.

Defining the sort field

//sort-records fields=(*field-explicit(position=23,length=26))

The ADDRESSES file is to be sorted by street names. The “Street” field begins at byte 23
and the following 26 bytes are to be evaluated. Thus, the sort field
(POSITION=23,LENGTH=26) is specified as the sort key in the *FIELD-EXPLICIT operand
of the SORT-RECORDS statement.

Concluding the statement sequence and starting the sort run

//end

The input of statements to SORT is concluded by means of the END statement, and the
sort run is started.

Messages from SORT

% SRT1016 SORT/MERGE INPUT RECORDS:..............................15 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:.............................15
% SRT1002 2014-10-12/16:12:59/000000.13 SORT/MERGE COMPLETED

SORT reports that 15 records have been read in and 15 records output. The result of the
sort can be viewed by displaying the output file ADDRESSES.SORT.

Sorting a file Examples

294 U6184-J-Z125-6-76

Contents of the ADDRESSES.SORT file (output file)

File attributes of the ADDRESSES.SORT output file

/show-file-attributes file-name=addresses.sort, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.ADDRESSES.SORT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 62
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

The output file has the same file attributes as the input file.

Name First name Street (sort field) ZIP Tel.
1 11 23 49 56 62

Kennedy
Smith
Allan
Richards
Stevens
Walters
Charles
Miller
Majors
Johnston
Drever
Mellors
Baker
Brown
Smythe

George
Albert
Hilary
Bernard
Henry
Claudia
Ernest
Andrew
Christine
Annette
James
Ingrid
Fred
Tony
Brenda

Edgeware Road 62
Gardener Street 14
High Street 101
Illsley Square 3
Market Square 13
Millford Crescent 31
Millhouse Street 23
Poplar Avenue 47
Railway Cuttings 12
Richmond Street 98
Rose Drive 31
Salford Drive 4
Scott Street 34
Skyview Terrace 9
Thomas Square 1

NY211
PX453
AY4
UB12
NY12
ZY21
TI32
KT25
PX23
BT342
PX3
TI34
KT23
UB81
BT34

873250
047913
345679
518376
987234
342108
537892
544507
987650
345678
875211
456372
765921
786534
965471

Examples Sorting a file

U6184-J-Z125-6-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.3 Example: Sorting a SAM file with variable record format

The file named LITERATURE is a SAM file containing variable-length records
(RECFORM=V).

File attributes of the LITERATURE.SAM file

/show-file-attributes file-name=literature, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.LITERATURE
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 0
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

The file contains records with the following structure and contents and is to be sorted by
title.

Calculating the position of the first data byte in records of variable length

Every variable-length record is prefixed by a 4-byte record length field. In the example this
field is identified by RL. Although the user has no control over this field, it still forms part of
the data record. Therefore the number of bytes in the record length field must be added to
each data byte position.

 RL Name First name Title (sort field) Genre
1 5 19 30 63

Pasternak
Capote
Boyle
Arden
Milligan
Dahl
Shakespeare
Fielding
Jonson
Dumas
Troyat
Shaw
Sharpe
Thomas
Gogol

Boris
Truman
Jimmy
John
Spike
Roald
William
Henry
Ben
Alexandre
Henri
Bernard
Tom
Dylan
Nikolai

Doctor Zhivago
In Cold Blood
A Sense of Freedom
Sergeant Musgrave's Dance
Puckoon
Kiss Kiss
Romeo and Juliet
Tom Jones
Volpone
The Three Musketeers
Pushkin
Pygmalion
Riotous Assembly
Fern Hill
Dead Souls

Novel
Novel
Autobiography
Theater
Novel
Short Stories
Theater
Novel
Theater
Novel
Biography
Theater
Novel
Poem
Novel

Sorting a file Examples

296 U6184-J-Z125-6-76

Trace listing of the sort by title

/start-sort
% SRT1001 2014-10-12/15:56:27/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=literature,output-file=literature.sort
//sort-records fields=(*field-explicit(position=30,length=33))
//end
% SRT1016 SORT/MERGE INPUT RECORDS:.............................15 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:.............................15
% SRT1002 2014-10-12/15:56:31/000000.26 SORT/MERGE COMPLETED

Result of the sort in the output file LITERATURE.SORT

The LITERATURE.SORT file is now arranged in ascending alphabetical order by title.

1 5 19 30 63

Boyle
Gogol
Pasternak
Thomas
Capote
Dahl
Milligan
Troyat
Shaw
Sharpe
Shakespeare
Arden
Dumas
Fielding
Jonson

Jimmy
Nikolai
Boris
Dylan
Truman
Roald
Spike
Henri
Bernard
Tom
William
John
Alexandre
Henry
Ben

A Sense of Freedom
Dead Souls
Doctor Zhivago
Fern Hill
In Cold Blood
Kiss Kiss
Puckoon
Pushkin
Pygmalion
Riotous Assembly
Romeo and Juliet
Sergeant Musgrave‘s Dance
The Three Musketeers
Tom Jones
Volpone

Autobiography
Novel
Novel
Poem
Novel
Short Stories
Novel
Biography
Theater
Novel
Theater
Theater
Novel
Novel
Theater

Examples Sorting a file

U6184-J-Z125-6-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

File attributes of the output file LITERATURE.SORT

/show-file-attributes file-name=literature.sort, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.LITERATURE.SORT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 2044
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

Overview of the application examples Examples

298 U6184-J-Z125-6-76

10.4 Overview of the application examples

10.4.1 SORT as main program

No. Sort method File type and
record format
of input file

File type and
record format
of output file

Supplementary
criteria

01 Full sort SAM, fixed SAM, fixed SORT-RECORDS

02 Full sort SAM, variable SAM, variable Position of sort field with RLF

03 Full sort ISAM, variable SAM, variable Different file attributes for output file

04 Full sort ISAM, variable ISAM, variable Output file with different key position

05 Full sort ISAM, variable SAM, variable More than one unsorted input files

06 Full sort SAM, variable SAM, variable Input file identical to output file; use of
symbolic name

07 Full sort SAM, variable SAM, variable Difference between
DIN/EBCDIC sorting

08 Full sort SAM, variable SAM, variable MODIFY-CODE: user-own character
sequence

09 Full sort SAM, variable SAM, variable Sorting with extended character sets

10 Full sort SAM, variable SAM, variable Summation/exclusion of certain records

11 Selection sort SAM, variable SAM, variable 2 sort fields, 1 remainder field

12 Selection sort SAM, fixed SAM, fixed Sort field definition in binary format

13 Selection sort POSIX POSIX 1 sort field, 2remainder fields

14 Tag sort SAM, fixed SAM, fixed SORT-TYPE=
*TAG-TRAILER

15 Merge SAM, variable SAM, variable 3 sorted input files
MERGE-RECORDS

Examples Overview of the application examples

U6184-J-Z125-6-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.4.2 Connection of user routines

10.4.3 SORT as a subroutine

10.4.4 Sorting according to Unicode

16 Full sort SAM, fixed SAM, fixed INPUT user exit

17 Full sort SAM, variable SAM, variable OUTPUT user exit

18 Full sort SAM, fixed SAM, fixed PHYSICAL-TRANSLATE user exit

19 Full sort SAM, variable SAM, variable VIRTUAL-TRANSLATE user exit

20 Full sort SAM, fixed SAM, fixed Control statements passed at level 0

21 Full sort SAM, fixed SAM, fixed Control statements passed at level 1

22 Full sort SAM, variable SAM, variable SORT access method SRTZM

23 Multiple sort
(full/selection sort)

SAM, fixed SAM, fixed SORT access method SRTZM

24 Full sort SAM, variable SAM, variable Unicode character format

Examples

300 U6184-J-Z125-6-76

10.5 Examples

Various files are used for demonstration purposes in the examples. The contents of the
unsorted files are identical if the first part of the file name is also identical. The file properties
do, however, change in various examples, because ultimately the type of the file determines
the position of the data. The file type is therefore contained within the file name.
Thus, for example, the file with RESTAURANT as the first part of its name makes use of the
following files:

Variable files therefore indicate just the access type in the file name, while files containing
fixed-length records have been given the suffix FIX.

The output files are identified accordingly, but with the string SORT appended to their
names.
RESTAURANT.ISAM.SORT is thus the sorted file corresponding to RESTAURANT.ISAM.
As the contents of the input file do not change, a printout is given at the end of this chapter.

Attributes File name

SAM file with fixed record length RESTAURANT.SAM.FIX

SAM file with variable record length RESTAURANT.SAM

ISAM file with variable record length RESTAURANT.ISAM

Example 1 Full sort of fixed format records

U6184-J-Z125-6-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.1 Example 1: Full sort of fixed format records

Input: SAM file RESTAURANT.SAM.FIX with fixed record format

Output: SAM file RESTAURANT.SAM.FIX.SORT with fixed record format

Exercise:

– Determine position of sort field

– Call SORT

– Enter sort command: SORT-RECORDS FIELDS=*FIELDS-EXPLICIT

Structure of the input file RESTAURANT.SAM.FIX

The complete contents of this file are listed in section “Contents of the example files” on
page 383.

File attributes of the file RESTAURANT.SAM.FIX

/show-file-attributes file-name=restaurant.sam.fix, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.RESTAURANT.SAM.FIX
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 66
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

Restaurant name
(Sort field)

Street Tel. Cuisine

1 21 48 56 66

Full sort of fixed format records Example 1

302 U6184-J-Z125-6-76

Trace listing

/start-sort
% SRT1001 2014-10-12/14:16:58/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=restaurant.sam.fix, -
// output-file=restaurant.sam.fix.sort
//sort-records fields=*field-explicit(position=1,length=20)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................10
% SRT1002 2014-10-12/14:16:58/000000.27 SORT/MERGE COMPLETED

Contents (extract) of the output file RESTAURANT.SAM.FIX.SORT

1 21 48 56 66

Example 2 Full sort of variable format records

U6184-J-Z125-6-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.2 Example 2: Full sort of variable format records

Input: SAM file RESTAURANT.SAM with variable record format

Output: SAM file RESTAURANT.SAM.SORT with variable record format

Exercise:

– Determine position of sort field

– Call SORT

– Enter sort command: SORT-RECORDS FIELDS=FIELDS-EXPLICIT

The records of the input file RESTAURANT.SAM are structured as follows:

The complete contents of this file are listed in section “Contents of the example files” on
page 383.

File attributes of the file RESTAURANT.SAM

/show-file-attributes file-name=restaurant.sam, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.RESTAURANT.SAM
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 0
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

RESTAURANT.SAM is a file containing variable-length records. A 4-byte record length (RL)
field must therefore be added to the position of the first data byte. The “O” in “Orlando’s” is
thus at position 5 in the record.

RL Restaurant name Street (sort field) Tel. Cuisine
1 5 25 52 60 70

Orlando‘s Thompson Street 62 220061 Italian

Full sort of variable format records Example 2

304 U6184-J-Z125-6-76

Trace listing

/start-sort
% SRT1001 2014-10-12/14:17:05/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=restaurant.sam,output-file=restaurant.sam.sort
//sort-records fields=*field-explicit(position=25,length=27)
//set-record-attributes output=*variable(maximum-record-size=74)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................10
% SRT1002 2014-10-12/14:17:06/000000.29 SORT/MERGE COMPLETED

Contents of the output file RESTAURANT.SAM.SORT (extract)

/show-file-attributes file-name=restaurant.sam.sort, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.RESTAURANT.SAM.SORT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 74
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

The record length specified via SET-RECORD-ATTRIBUTES is entered in the catalog by
SORT.

RL Restaurant name Street (sort field) Tel. Cuisine
1 5 25 52 60 74

Golden Fleece
Java
Le Gourmet

Arran Street 44
Hope Street 51
Lime Street 46

242437
522221
505397

Yugoslavian
Indonesian
French

Example 3 Full sort of an ISAM input file into a SAM output file

U6184-J-Z125-6-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.3 Example 3: Full sort of an ISAM input file into a SAM output file

Input: ISAM file RESTAURANT.ISAM with variable record format

Output: SAM file RESTAURANT.ISAM.SORT.SAM with variable record format

Exercise:

– Determine position of sort field

– Call SORT

– Enter sort command: SORT-RECORDS FIELDS=*FIELDS-EXPLICIT

– Convert ISAM file into SAM file

Comment

Two things must be taken into account in the following sort run:

1. the file types are different (ISAM input file, SAM output file).

2. the position of the first data byte is shifted to the right by the number of bytes in the
record length field and the ISAM key.

The first point has an impact on the SET-FILE-LINK command, the second on how the
position of the sort field is calculated.

By default, SORT sets up the file assigned as SORTOUT with the same file attributes as
the SORTIN file. If other attributes are desired, the new type must be specified explicitly.
This is accomplished in the SET-FILE-LINK command by means of the operand entry
ACCESS-METHOD=*SAM.

Full sort of an ISAM input file into a SAM output file Example 3

306 U6184-J-Z125-6-76

Contents of the input file RESTAURANT.ISAM

Trace listing

/add-file-link link-name=sortin,file-name=restaurant.isam
/create-file file-name=restaurant.isam.sort.sam
/set-file-link link-name=sortout,file-name=restaurant.isam.sort.sam, -
/ access-method=sam
/start-sort
% SRT1001 2014-10-12/14:17:13/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//sort-records fields=*field-explicit(position=13,length=20)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:............................10
% SRT1002 2014-10-12/14:17:14/000000.23 SORT/MERGE COMPLETED

RL ISAM key Restaurant name Street (sort field) Tel. Cuisine
1 5 13 33 60 68

00010000
00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
00100000

Orlando's
Java
Golden Fleece
Le Gourmet
Palenque Mexico
Strawberry
Persepolis
Vietnam
Chayota's
Willi's Bar

Thompson Street 62
Hope Street 51
Arran Street 44
Lime Street 46
Millwood Drive 2
Sauchiehall Street 8
Salford Square 20
Thurston Street 47
Thurston Street 60
Westland Street 113

220061
522221
242437
505397
980149
595521
597004
522518
292742
748293

Italian
Indonesian
Yugoslavian
French
Mexican
Vegetarian
Persian
Vietnamese
Japanese
German

Example 3 Full sort of an ISAM input file into a SAM output file

U6184-J-Z125-6-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Structure and contents of the output file RESTAURANT.ISAM.SORT.SAM

File attributes of the output file RESTAURANT.ISAM.SORT.SAM

/show-file-attributes file-name=restaurant.isam.sort.sam, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.RESTAURANT.ISAM.SORT.SAM
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 2044
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

Comment

The original ISAM key forms part of the data record. Normally, when the file is processed
with editors (e.g. EDT), the key is not visible; but in SAM files it has no DMS function and
is therefore visible.
The ISAM keys are an indicator for the changed (sorted) order of the data records. The
factor which determines the order of the records, however, is the sort field, which begins at
position 13.

RL original
ISAM key

Restaurant name Street (sort field) Tel. Cuisine

1 5 13 33 60 68

00090000
00030000
00020000
00040000
00010000
00050000
00070000
00060000
00080000
00100000

Chayota‘s
Golden Fleece
Java
Le Gourmet
Orlando‘s
Palenque Mexico
Persepolis
Strawberry
Vietnam
Willi‘s Bar

Thurston Street 60
Arran Street 44
Hope Street 51
Lime Street 46
Thompson Street 62
Millwood Drive 2
Salford Square 20
Sauchiehall Street 8
Thurston Street 47
Westland Street 113

292742
242437
522221
505397
220061
980149
597004
595521
522518
748293

Japanese
Yugoslavian
Indonesian
French
Italian
Mexican
Persian
Vegetarian
Vietnamese
German

Full sort of ISAM files with variable record format Example 4

308 U6184-J-Z125-6-76

10.5.4 Example 4: Full sort of ISAM files with variable record format

Input: ISAM file RESTAURANT.ISAM with variable record format

Output: ISAM file RESTAURANT.ISAM.SORT with variable record format

Exercise:

– Record the ISAM characteristics of the input and output files

SORT creates the output file with new file attributes. The sort key determines the position
and length of the ISAM key of the output file.

If ISAM files are used as the output files of a sort run, the following important rules apply:

– sorting must be in ascending order only

– the sort fields must be contiguous

Contents of the input file RESTAURANT.ISAM (extract)

The complete contents of this file are listed in section “Contents of the example files” on
page 383.

File attributes of the file RESTAURANT.ISAM

/show-file-attributes file-name=restaurant.isam, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.RESTAURANT.ISAM
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = ISAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 0
% KEY-LEN = 8 KEY-POS = 5
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

The file has the typical key position and length for the editor EDT.

RL ISAM key Restaurant name Street (sort field) Tel. Cuisine
1 5 13 33 60 68

00010000
00020000
00030000
00040000

Orlando's
Java
Golden Fleece
Le Gourmet

Thompson Street 62
Hope Street 51
Arran Street 44
Lime Street 46

220061
522221
242437
505397

Italian
Indonesian
Yugoslavian
French

Example 4 Full sort of ISAM files with variable record format

U6184-J-Z125-6-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Trace listing

/start-sort
% SRT1001 2014-10-12/14:17:21/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=restaurant.isam,output-file=restaurant.isam.sort
//sort-records fields=*field-explicit(position=13,length=20)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................10
% SRT1002 2014-10-12/14:17:22/000000.27 SORT/MERGE COMPLETED

In the output file in ISAM format, the definition of the sort field corresponds to the new ISAM
key. Depending on the length and position of the new key, the output file cannot be
processed with the EDT editor. In this example neither the position nor the length of the key
conforms to the sizes assumed by EDT.

Structure and contents of the output file RESTAURANT.ISAM.SORT (extract)

File attributes of the output file RESTAURANT.ISAM.SORT

/show-file-attributes file-name=restaurant.isam.sort, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.RESTAURANT.ISAM.SORT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = ISAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 2048
% KEY-LEN = 20 KEY-POS = 13
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

The ISAM key position and key length now correspond to the definitions of the sort field.

RL (ISAM key
of the
input file)

Restaurant name
(ISAM key)

Street Tel. Cuisine

1 5 13 33 60 68

00090000
00030000
00020000

Chayota‘s
Golden Fleece
Java

Thurston Street 60
Arran Street 44
Hope Street 51

292742
242437
522221

Japanese
Yugoslavian
Indonesian

Full sort of multiple files with variable record format Example 5

310 U6184-J-Z125-6-76

10.5.5 Example 5: Full sort of multiple files with variable record format

Input: ISAM file CULTURE.ISAM.1 with variable record format
ISAM file CULTURE.ISAM.2 with variable record format
ISAM file CULTURE.ISAM.3 with variable record format

Output: SAM file CULTURE.SAM.SORT with variable record format

Exercise:

– Assign multiple input files for sort and merge run

– Verify whether assignment has taken place

– Change characteristics of the output file

Preliminary remark

It is possible to sort multiple files in one operation and place the sorted result in a single
output file. If the individual input files are already sorted according to a common sort
criterion, a merge run should be started. SORT provides the MERGE-RECORDS command
for this purpose.

Contents of the input file CULTURE.ISAM.1 (extract)

The complete contents of this and the other files are listed in section “Contents of the
example files” on page 383.

RL ISAM key Restaurant name
(sort field)

Street Tel. Cuisine

1 5 13 34 56 66

00010000
00020000
00030000

Aquitaine
August Gardens
Bosna

Acacia Avenue 39
Newton Street 16
Freeling Street 11

284028
2604106
64115447

French
Argentinian
Yugoslavian

Example 5 Full sort of multiple files with variable record format

U6184-J-Z125-6-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Trace listing

/add-file-link link-name=sortin01,file-name=culture.1.isam
/add-file-link link-name=sortin02,file-name=culture.2.isam
/add-file-link link-name=sortin03,file-name=culture.3.isam
/create-file file-name=culture.sam.sort
/add-file-link link-name=sortout,file-name=culture.sam.sort, -
/ access-method=*sam
/show-file-link
%-- LINK-NAME --------- FILE-NAME ---
% SORTIN01 :CTID:$EXAMPLE.CULTURE.1.ISAM
% SORTIN02 :CTID:$EXAMPLE.CULTURE.2.ISAM
% SORTIN03 :CTID:$EXAMPLE.CULTURE.3.ISAM
% SORTOUT :CTID:$EXAMPLE.CULTURE.SAM.SORT
/start-sort
% SRT1001 2014-10-12/14:17:30/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//sort-records fields=*field-explicit(-
// position=13,length=20,sorting-order=*descending)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................15 (FROM 01)
% SRT1016 SORT/MERGE INPUT RECORDS:............................16 (FROM 02)
% SRT1016 SORT/MERGE INPUT RECORDS:............................14 (FROM 03)
% SRT1017 RECORDS TO BE SORTED/MERGED:.........................45
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................45
% SRT1002 2014-10-12/14:17:31/000000.26 SORT/MERGE COMPLETED

SORT issues messages indicating the number of records read from each input file, the total
number of records to be sorted and the number of output records.

Full sort of multiple files with variable record format Example 5

312 U6184-J-Z125-6-76

Contents of the output file CULTURE.SAM.SORT (extract)

00150000Zung-Hua Bond Street 33 555320 Chinese
00140000Zigzag Taylor Drive 72 226750 Argentinian
00160000Ziggy‘s Leslie Street 72 390092 Argentinian
00150000Zagreb Sutherland Drive 8 6515509 Yugoslavian
00130000Why Not? Wimbledon Drive 11 399936 French
00120000Watermill Leslie Street 33 348000 Swiss
00140000Veracruz Landers Street 207 5702520 Mexican
00130000Venezia Landers Street 84 847414 Italian
00110000Torino Gardener Lane 8 469571 Italian
00100000Tivoli Wilberforce Drive 52 221274 Italian
00120000Tivoli Wilberforce Drive 52 221274 Italian
00110000Tai Tung Acacia Avenue 77 281104 Chinese
00100000Sultana Fulton Street 28 332871 Indian
00140000Spiros Upman Street 65 366883 Greek
00130000Slavonia Allcock Street 16 564906 Yugoslavian
00120000Siracusa Polson Street 33 770613 Italian
00090000Scorpio Leslie Street 35 399897 Greek
00110000Saint George‘s Upman Street 67 363666 English
00080000Opatija Robertson Street 2 268353 Yugoslavian
00100000Nitaya Thompson Street 19 197772 Thai

.

.

.
00060000Don Quixote Billington Street 6 342318 Spanish
00050000Datscha King Street 3 341218 Russian
00040000China House May Street 20 531620 Chinese
00030000Canton Theresa Street 49 522185 Chinese
00020000Buenos Aires Zoo Road 22 779646 Argentinian
00040000Bouillabaisse Falcon Street 10 297909 French
00030000Bosna Freeling Street 11 64115447 Yugoslavian
00050000Bologna Leslie Street 23 393939 Italian
00040000Baltic Grillhouse Dartford Road 33 554401 Yugoslavian
00020000August Gardens Newton Street 16 2604106 Argentinian
00030000Aubergine Penman Street 19 674829 Argentinian
00020000Auberge Richmond Drive 15 347577 French
00010000Asado Steak Taylor Drive 1 294577 Argentinian
00010000Aquitaine Acacia Avenue 39 284028 French
00010000Alcazar‘s Doubleway Drive 39 8111590 Argentinian

The original ISAM key additionally printed here is an indicator of the changed order from
the individual files. Duplicate ISAM key references also occur (cf. the final three records)
because ISAM keys are created separately for each file.

Example 6 Full sort (input file = output file)

U6184-J-Z125-6-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.6 Example 6: Full sort (input file = output file)

Input: SAM file RESTAURANT.SAM.INOUT with variable record format

Output: SAM file RESTAURANT.SAM.INOUT with variable record format

Exercise:

– Assign the same file as both input and output file

– Use a symbolic field name

The file RESTAURANT.SAM.INOUT has the same contents as RESTAURANT.SAM. The
file for this example was created by copying RESTAURANT.SAM.

Trace listing

/start-sort
% SRT1001 2014-10-12/14:17:38/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=restaurant.inout,output-file=restaurant.inout
//add-symbolic-name fields=restaurantname(position=5,length=20)
//sort-records fields=*field-symbolic(restaurantname)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................10
% SRT1002 2014-10-12/14:17:39/000000.27 SORT/MERGE COMPLETED

Contents of the output file (extract)

Chayota‘s Thurston Street 60 292742 Japanese
Golden Fleece Arran Street 44 242437 Yugoslavian
Java Hope Street 51 522221 Indonesian

Full sort (input file = output file) Example 6

314 U6184-J-Z125-6-76

Comment

The same name is used in the ASSIGN-FILES statement for the input and output files. This
means that the input file is made into the output file.
The sort criterion is defined using a symbolic name. Instead of the position and length
having to be defined via *FIELD-EXPLICIT, the already existing definition can be referenced
by means of the ADD-SYMBOLIC-NAME statement, using the previously declared user-
defined symbolic name.
Upon completion of the sort operation, the result is stored under the same name as the
input file.

Example 7 Full sort EBCDIC to DIN standard for text ordering

U6184-J-Z125-6-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.7 Example 7: Full sort EBCDIC to DIN standard for text ordering

Input: SAM file DEUTSCH with variable record format

Output: SAM file DEUTSCH.DIN with variable record format

Exercise:

– Change the format from the preset default format

– Compare the different results

Preliminary remark

Many sort operations require a different sorting order than that defined by EBCDIC.
An example of this is alphabetic sorting according to the DIN collating sequence.
SORT offers various options with the FORMAT parameter, including one which caters for
sorting according to the DIN standard. The following example illustrates how sorting
according to DIN produces a different order to EBCDIC.

The DIN order is characterized as follows:
– case-insensitive (no distinction made between uppercase and lowercase)
– the umlauts ä, ö, ü are treated as ae, oe and ue
– the voiceless S (ß) is treated as ss.

This form of sorting is intended, for example, for sorting lists of names which include
umlauts. The following example shows the effects of DIN sorting as compared with the
EBCDIC sorting order.

Trace listing

/sort-file input-files=deutsch,output-file=deutsch.din, -
/ fields=*field-explicit(position=5,length=8,format=*ebcdic-din)
% SRT1001 2014-10-12/14:17:21/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
% SRT1016 SORT/MERGE INPUT RECORDS:............................34 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................34
% SRT1002 2014-10-12/14:17:22/000000.27 SORT/MERGE COMPLETED

Comment

As a simple sort is to be performed in this instance, the SORT-FILE command is used. Note
the use here of the option FORMAT=*EBCDIC-DIN , which defines the special DIN sorting
order.

Full sort EBCDIC to DIN standard for text ordering Example 7

316 U6184-J-Z125-6-76

Result of different sort runs using the input file DEUTSCH

Input file EBCDIC order DIN order

scherzen
allgemein
überlegen
mexikanisch
Mehrzahl
oder
Trennung
Verhältniswort
Stilkunde
brasilianisch
philosophisch
medizinisch
ändern
dichterisch
Druckersprache
Astronomie
mechanisch
Übertragung
scherzhaft
bretonisch
Biologie
Brasilien
Allgemeinheit
öffentlich
astronomisch
Mechanik
Franzosen
englisch
Landwirtschaft
französisch
Abendland
Österreich
Scherz
Deutschland

allgemein
astronomisch
brasilianisch
bretonisch
dichterisch
englisch
französisch
Österreich
Übertragung
mechanisch
medizinisch
mexikanisch
oder
philosophisch
scherzen
scherzhaft
ändern
öffentlich
überlegen
Abendland
Allgemeinheit
Astronomie
Biologie
Brasilien
Deutschland
Druckersprache
Franzosen
Landwirtschaft
Mechanik
Mehrzahl
Scherz
Stilkunde
Trennung
Verhältniswort

Abendland
ändern
allgemein
Allgemeinheit
Astronomie
astronomisch
Biologie
brasilianisch
Brasilien
bretonisch
Deutschland
dichterisch
Druckersprache
englisch
französisch
Franzosen
Landwirtschaft
Mechanik
mechanisch
medizinisch
Mehrzahl
mexikanisch
oder
öffentlich
Österreich
philosophisch
Scherz
scherzen
scherzhaft
Stilkunde
Trennung
überlegen
Übertragung
Verhältniswort

Example 7 Full sort EBCDIC to DIN standard for text ordering

U6184-J-Z125-6-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

When lists of names are sorted, it does not make sense for all lowercase letters to be placed
before the uppercase “A” and umlauts between the lowercase letters. In the DIN-based
sort, these special characters have been arranged in the correct alphabetical position.

Full sort using FORMAT=*MODIFY-CODE Example 8

318 U6184-J-Z125-6-76

10.5.8 Example 8: Full sort using FORMAT=*MODIFY-CODE

Input: SAM file MODCOD.INPUT with variable record format

Output: SAM file MODCOD.OUTPUT with variable record format

Exercise:

– Define a non-EBCDIC character ordering sequence

– Enter the character definition as a letter pair or as pairs of hexadecimal characters in
the MODIFY-CODE command

Contents of the input file MODCOD.INPUT

U
o
A
u
O
a
ö
Ä
Ö
ä
Ü

Comment

This option may be used when predefined sorting sequences do not match the desired
order (e.g. for sorting lists containing French accents or German umlauts).

This file should illustrate this option and indicate that special characters require special
handling. The sort order is defined in the way described below:

The character ’a’ should be placed immediately after ’A’, ’Ä’ (X’8B’) after ’a’ (X’81’) and ’ä’
(X’AB’) after ’Ä’. The same procedure applies to the characters ’O’, ’o’ (X’96’), ’Ö’ (X’8C’)
and ’ö’ (X’AC’) as well as to ’U’, ’u’ (X’A4’), ’Ü’ (X’8D’) and ’ü’ (X’AD’). The hexadecimal
specifications are based on the EBCDIC.SRV.10 code.

Example 8 Full sort using FORMAT=*MODIFY-CODE

U6184-J-Z125-6-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Trace listing

/start-sort
% SRT1001 2014-10-12/14:17:38/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=modcode.input,output-file=modcode.output
//sort-records fields=*field-explicit(-
// position=5,length=1,format=*modify-code)
//modify-code sequences= -
// (c’Aa’,x’818b’,x’8bab’,c’Oo’,x’968c’,x’8cac’,c’Uu’,x’a48d’,x’8dad’)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................12 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................12
% SRT1002 2014-10-12/14:17:39/000000.27 SORT/MERGE COMPLETED

Contents of the output file MODCOD.OUTPUT

A
a
Ä
ä
O
o
Ö
ö
U
u
Ü
ü

Full sort using extended character sets Example 9

320 U6184-J-Z125-6-76

10.5.9 Example 9: Full sort using FORMAT=*EXTENDED-CHARACTER and
FORMAT=*TRANSLATE-CHARACTER

Input: SAM file XHCS.SAM with variable record format

Output: SAM file XHCS.SAM.SORT.EXCHAR with variable record format
SAM file XHCS.SAM.SORT.TRCHAR with variable record format

Exercise:

– Call SORT

– Decide which sort format should be used

– Enter sort statements:
SORT-RECORDS FIELDS=*FIELD-EXPLICIT(...FORMAT=*EXTENDED-CHARACTER)
SORT-RECORDS FIELDS=*FIELD-EXPLICIT(...FORMAT=*TRANSLATE-CHARACTER)

Contents of the input file XHCS.SAM

RL Sort
field

1 5 9

orde
anbi
unor
Ärge
Öffe
Über
Unfa
Orga
über
Aber
ärge
öffe

ntlich
eten
dentlich
r
ntlichkeit
fluss
ll
nisation
flüssig
witz
rlich
ntlich

Example 9 Full sort using extended character sets

U6184-J-Z125-6-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

File attributes of the input file

/show-file-attributes file-name=xhcs.sam, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.XHCS.SAM
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 0
% COD-CH-SET = EDF03DRV
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

Notes on sorting with different format entries

With some sorts it is necessary to enter a special sort format in order to maintain a
sequence which corresponds to the local rules. This may apply when a CCS is used.

The file shown here is to be sorted according to German rules. This can be seen by the
umlauts, which sometimes require a special sort procedure. The following points should be
considered before beginning the sort:

– If no format is entered, SORT uses the CCS found in the catalog entry of the input file.
This may cause umlauts to be processed as special characters and placed at the
beginning of the sort list.

– When sorting according to the CCS code sequence (here EDF03DRV), umlauts are
always placed after vowels (FORMAT=*EXTENDED-CHARACTER). In other CCSs,
other rules may be specified.

– When sorting with the format entry *TRANSLATE-CHARACTER, characters are
replaced in accordance with specified equating tables (here the tables on page 51f
were used) and are sorted using the code sequence of the CCS (here EDF03DRV).
Using predefined or self-defined tables ensures accurate sorting according to your
personal specifications.

– The DIN sort procedure previously discussed in “Example 7: Full sort EBCDIC to DIN
standard for text ordering” on page 315 converts umlauts and makes lowercase and
uppercase letters equivalent, and sorts according to DIN guidelines. No conversion
tables can be defined.

The following example illustrates this.

Full sort using extended character sets Example 9

322 U6184-J-Z125-6-76

The letter sequences of the original text are sorted according to the entries in the FORMAT
operand:

When sorting with FORMAT=*EXTENDED-CHARACTER, the vowels come first (and
lowercase letters before uppercase letters) and then the umlauts.

When using FORMAT=*TRANSLATE-CHARACTER, the character string “öööööööö” is
processed as “oeoeoeoeoeoeoeoe” and is therefore alphabetized before “oooooooo”.
Thus, in this example, the O umlauts (Ös) come before a double “O”. In a series of “aaaaa”
and “äääää” the “aaaaa”s come before the “äääää”s, since “aa” comes before “ae”.

Trace listing

/start-sort
% SRT1001 2014-10-12/14:17:38/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=xhcs.sam,output-file=xhcs.sam.exchar
//sort-records fields=*field-explicit(-
// position=5,length=4,format=*extended-character)
//set-record-attributes output=*variable(maximum-record-size=40)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................12 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................12
% SRT1002 2014-10-12/14:17:39/000000.31 SORT/MERGE COMPLETED

Original
After sorting with
EXTENDED-CHARACTER
(CCS: EDF03DRV)

After sorting with
TRANSLATE-CHARACTER
(CCS: EDF03DRV)

oooooooo
öööööööö
OOOOOOOO
ÖÖÖÖÖÖÖÖ

oooooooo
OOOOOOOO
öööööööö
ÖÖÖÖÖÖÖÖ

öööööööö
ÖÖÖÖÖÖÖÖ
oooooooo
OOOOOOOO

Example 9 Full sort using extended character sets

U6184-J-Z125-6-76 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

/start-sort
% SRT1001 2014-10-12/14:19:07/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=xhcs.sam,output-file=xhcs.sam.trchar
//sort-records fields=*field-explicit(-
// position=5,length=4,format=*translate-character)
//set-record-attributes output=*variable(maximum-record-size=40)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................12 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................12
% SRT1002 2014-10-12/14:19:26/000000.27 SORT/MERGE COMPLETED

Results of the sort procedure (without record length field)

Input file
XHCS.SAM

Output file
XHCS.SAM.SORT.EXCHAR

Output file
XHCS.SAM.SORT.TRCHAR

ordentlich
anbieten
unordentlich
Ärger
Öffentlichkeit
Überfluss
Unfall
Organisation
überflüssig
Aberwitz
ärgerlich
öffentlich

anbieten
Aberwitz
ärgerlich
Ärger
ordentlich
Organisation
öffentlich
Öffentlichkeit
unordentlich
Unfall
überflüssig
Überfluss

ärgerlich
Ärger
Aberwitz
anbieten
öffentlich
Öffentlichkeit
ordentlich
Organisation
Überfluss
überflüssig
unordentlich
Unfall

Full sort using extended character sets Example 9

324 U6184-J-Z125-6-76

File attributes of the sorted files

/show-file-attributes file-name=xhcs.sam., -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.XHCS.SAM.EXCHAR
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 40
% COD-CH-SET = EDF03DRV
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED
%0000000003 :CTID:$EXAMPLE.XHCS.SAM.TRCHAR
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 40
% COD-CH-SET = EDF03DRV
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

Example 10 Summation and SELECT-INPUT-RECORDS

U6184-J-Z125-6-76 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.10 Example 10: Full sort with summation and SELECT-INPUT-RECORDS

Input: SAM file CLIENT.SELECT with variable record format

Output: SAM file CLIENT.SELECT.SORT with variable record format

Exercise:

– Sort records

– Define part of a record as a number

– Sum the defined numbers in identical records

– Select records for summation and sorting

– Extend sum field to prevent overflow

Preliminary remark

An application for the example chosen here might be the preparation of a balance sheet
(summation) by customer number, without taking account of orders placed in a particular
month.

The following specifications are therefore required for this example:

– on which field is the sort to be based (SORT-RECORDS)?

– what is the position of the sum field (SUM-RECORDS)?

– does the expected sum exceed the existing field length?

– which records are to be excluded from the sort (SELECT-INPUT-RECORDS)?

The result of the summation can be seen in the file CLIENT.SELECT.SUM.

Summation and SELECT-INPUT-RECORDS Example 10

326 U6184-J-Z125-6-76

Contents of the input file CLIENT.SELECT

RL Sort field Sum field Match
field

1 5 14 21 32 38

CLIENT-A
CLIENT-F
CLIENT-E
CLIENT-D
CLIENT-B
CLIENT-G
CLIENT-J
CLIENT-A
CLIENT-K
CLIENT-S
CLIENT-C
CLIENT-B
CLIENT-A
CLIENT-W
CLIENT-D
CLIENT-E
CLIENT-C
CLIENT-J
CLIENT-X
CLIENT-A
CLIENT-T
CLIENT-Y

700000
000083
000700
076000
006900
000070
006700
800000
075600
000099
000001
010000
030000
008700
024000
001350
999999
000305
123456
600000
000058
005000

MOTOR
AUTO
MOTOR
AUTO
MOTOR
AUTO
AUTO
MOTOR
AUTO
AUTO
MOTOR
AUTO
AUTO
AUTO
MOTOR
AUTO
AUTO
MOTOR
AUTO
MOTOR
AUTO
AUTO

MAY
JAN
AUG
JUN
AUG
JAN
JUN
AUG
JAN
JUN
AUG
JAN
JUN
JAN
AUG
JAN
JAN
AUG
JAN
MAY
JUN
JAN

INPUTRECORD1
INPUTRECORD2
INPUTRECORD3
INPUTRECORD4
INPUTRECORD5
INPUTRECORD6
INPUTRECORD7
INPUTRECORD8
INPUTRECORD9
INPUTRECORD10
INPUTRECORD11
INPUTRECORD12
INPUTRECORD13
INPUTRECORD14
INPUTRECORD15
INPUTRECORD16
INPUTRECORD17
INPUTRECORD18
INPUTRECORD19
INPUTRECORD20
INPUTRECORD21
INPUTRECORD22

Example 10 Summation and SELECT-INPUT-RECORDS

U6184-J-Z125-6-76 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Trace listing

/start-sort
% SRT1001 2014-10-12/09:31:48/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=client.select,output-file=client.select.sum
//sort-records fields=*field-explicit(position=5,length=8)
//sum-records fields=*field-explicit(-
// position=14,length=6,format=*zoned-decimal,field-extension=2)
//select-input-records condition=(32,3,ch<>’JUN’)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................22 (FROM 01)
% SRT1024 DELETED SELECT-INPUT-RECORDS RECORDS:..........................5
% SRT1017 RECORDS TO BE SORTED/MERGED:.........................17
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................12
% SRT1020 DELETED SUM RECORDS:...................................5
% SRT1002 2014-10-12/09:32:00/000000.29 SORT/MERGE COMPLETED

Contents of the file CLIENT.SELECT.SUM

RL Sum field
with sum
field
extension

1 5 14 23 34 40 52

CLIENT-A
CLIENT-B
CLIENT-C
CLIENT-D
CLIENT-E
CLIENT-F
CLIENT-G
CLIENT-J
CLIENT-K
CLIENT-W
CLIENT-X
CLIENT-Y

02100000
00016900
01000000
00024000
00002050
00000083
00000070
00000305
00075600
00008700
00123456
00005000

MOTOR
AUTO
MOTOR
MOTOR
AUTO
AUTO
AUTO
MOTOR
AUTO
AUTO
AUTO
AUTO

MAY
JAN
AUG
AUG
JAN
JAN
JAN
AUG
JAN
JAN
JAN
JAN

INPUTRECORD1
INPUTRECORD12
INPUTRECORD11
INPUTRECORD15
INPUTRECORD16
INPUTRECORD2
INPUTRECORD6
INPUTRECORD18
INPUTRECORD9
INPUTRECORD14
INPUTRECORD19
INPUTRECORD22

Summation and SELECT-INPUT-RECORDS Example 10

328 U6184-J-Z125-6-76

Comment

The output file does not contain the records separated out by means of the SELECT-
INPUT-RECORDS statement. Equally, all records which match the sort criterion are repre-
sented by just a single record in the file. Note, however, that the sum fields of these identical
records are added together. The sum for the sort criterion “client” is now stored in the sum
field.

Example

The sum fields for CLIENT-A contain the entries 700000, 800000, 30000 and 600000.
However, the entry 30000 refers to JUN, and no records for that month were to be
included in the sort operation. The sum of the remaining three values is 2100000. This
result was entered in the sum field for CLIENT-A.

Specifying an extension of the sum field avoids the risk of overflows.

Example 11 Selection sort of variable format records

U6184-J-Z125-6-76 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.11 Example 11: Selection sort of variable format records

Input: SAM file RESTAURANT.SAM with variable record format

Output: SAM file RESTAURANT.SAM.SELECT with variable record format

Exercise:

– Define two sort fields

– Define a remainder field

– Exclude part of the input record (selection sort)

– Change the file attributes predefined by SORT

Preliminary remark

This example is meant to demonstrate the facilities SORT offers for

– constructing output records from individual fields of the input records

– changing the file attributes of the output file within SORT.

The latter possibility is especially important in this example. In a selection sort, SORT
generates a file containing fixed-length records, irrespective of the type of the input file. If
the output file is to be processed further with an editor such as EDT, then in most cases a
file containing variable-length records is preferred.
File attributes are changed by means of the SET-RECORD-ATTRIBUTES statement.

Structure of the input file RESTAURANT.SAM

The complete contents of this file are listed in section “Contents of the example files” on
page 383.

RL Restaurant name
(2nd sort field)

Street
(Remainder field)

Tel.(to be
dropped)

Cuisine
(1st sort field)

1 5 25 52 60

Orlando‘s Thompson Street 62 220061 Italian

Selection sort of variable format records Example 11

330 U6184-J-Z125-6-76

Trace listing

/start-sort
% SRT1001 2014-10-12/09:36:05/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=restaurant.sam,output-file=restaurant.sam.select
//set-record-attributes output=*variable(maximum-record-size=*std), -
// filler=’ ’
//sort-records fields=(-
// *field-explicit(position=60,length=13), -
// *field-explicit(position=5,length=20), -
// *remainder-explicit(position=25,length=27)), -
// sort-type=*compound-record
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................10
% SRT1002 2014-10-12/09:36:14/000000.27 SORT/MERGE COMPLETED

File attributes of the output file RESTAURANT.SAM.SELECT

/show-file-attributes file-name=restaurant.sam.select, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.RESTAURANT.SAM.SELECT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 64
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

SORT enters the sum of the length of all the fields as the maximum record length in the
catalog.

Example 11 Selection sort of variable format records

U6184-J-Z125-6-76 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Contents of the output file RESTAURANT.SAM.SELECT

The “Tel.” field in the records of the input file has been excluded from the output file by the
selection sort.

RL Cuisine
(1st sort field)

Restaurant name
(2nd sort field)

Street
(Remainder field)

1 5 18 38 68

French
German
Indonesian
Italian
Japanese
Mexican
Persian
Vegetarian
Vietnamese
Yugoslavian

Le Gourmet
Willi's Bar
Java
Orlando's
Chayota's
Palenque Mexico
Persepolis
Strawberry
Vietnam
Golden Fleece

Lime Street 46
Westland Street 113
Hope Street 51
Thompson Street 62
Thurston Street 60
Millwood Drive 2
Salford Square 20
Sauchiehall Street 8
Thurston Street 47
Arran Street 44

Selection sort (binary) Example 12

332 U6184-J-Z125-6-76

10.5.12 Example 12: Selection sort (binary) of fixed-format records

Input: SAM file SAM.BIN.FIX with fixed record format

Output: SAM file SAM.BIN.FIX.SORT with fixed record format

Exercise:

– Specify a bit position

– Change the FORMAT parameter

Contents of the input file SAM.BIN.FIX

printable hexadecimal binary

1 2 3 Byte

01234567 0 1234567 01234 567 Bit

NCK
TUM
HEL
ELK

D5C3D2
E3E4D4
C8C5D3
C5D3D2

11010101
11100011
11001000
11000101

1
1
1
1

1000011
1100100
1000101
1010011

11010
11010
11010
11010

010
100
011
010

Record 1
Record 2
Record 3
Record 4

Sort field
(length 1 byte +
4 bits = 12 bits)

Example 12 Selection sort (binary)

U6184-J-Z125-6-76 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Trace listing

/start-sort
% SRT1001 2014-10-12/12:21:05/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=sam.bin.fix,output-file=sam.bin.fix.sort
//sort-records fields=*field-explicit(-
// position=2(bit-position=1),length=1(number-of-bits=4), -
// format=*binary), -
// sort-type=*compound-record
//end
% SRT1016 SORT/MERGE INPUT RECORDS:.............................4 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:............................4
% SRT1002 2014-10-12/12:21:17/000000.22 SORT/MERGE COMPLETED

Contents of the output file SAM.BIN.FIX.SORT

*) Binary zeros entered by SORT to pad out the output record to full bytes

hexadecimal binary

1 2 Byte

0 1234567 01234 567 Bit

43D0
45D0
53D0
64D0

0
0
0
0

1000011
1000101
1010011
1100100

11010
11010
11010
11010

000
000
000
000

Record 1
Record 3
Record 4
Record 2

*) Sort field *)

Selection sort of a POSIX file Example 13

334 U6184-J-Z125-6-76

10.5.13 Example 13: Selection sort of a POSIX file

Input: POSIX file “restaurant” with variable record format

Output: POSIX file “sorted/restaurant” with variable record format

Exercise:

– Assign POSIX files

– Define a sort field

– Define two remainder fields

– Exclude part of the input record (selection sort)

Preliminary remark

The POSIX file “restaurant” is to be sorted according to the “Cuisine” field. The output file
is to be stored in the “sorted” directory under the name “restaurant”. It should now contain
only the fields “Cuisine”, “Restaurant name” and “Tel.” from the input file.

Structure of the input file “restaurant”

Restaurant name
(1st remainder field)

Street
(to be dropped)

Tel.
(2nd rem.
field)

Cuisine
(sort field)

1 21 48 56

Orlando's
Java
Golden Fleece
Le Gourmet
Palenque Mexico
Strawberry
Persepolis
Vietnam
Chayota's
Willi's Bar

Thompson Street 62
Hope Street 51
Arran Street 44
Lime Street 46
Millwood Drive 2
Sauchiehall Street 8
Salford Square 20
Thurston Street 47
Thurston Street 60
Westland Street 113

220061
522221
242437
505397
980149
595521
597004
522518
292742
748293

Italian
Indonesian
Yugoslavian
French
Mexican
Vegetarian
Persian
Vietnamese
Japanese
German

Example 13 Selection sort of a POSIX file

U6184-J-Z125-6-76 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

File attributes of the input file “restaurant”

/start-posix-shell
POSIX Basisshell 10.0A43 created Dec 17 2012
POSIX Shell 08.0A43 created Jul 13 2012
Copyright (C) Fujitsu Technology Solutions 2009

All Rights reserved
.
.
.
$ls -l restaurant
-rw-r--r-- 1 EXAMPLE USROTHER 690 Jan 24 10:13 restaurant
$exit

Trace listing

/start-sort
% SRT1001 2014-10-12/12:46:01/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files='restaurant',output-file='sorted/restaurant'
//sort-records fields=(-
// *field-explicit(position=56,length=11), -
// *remainder-explicit(position=1,length=20), -
// *remainder-explicit(position=48,length=8)), -
// sort-type=*compound-record
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................10
% SRT1002 2014-10-12/12:50:45/000000.47 SORT/MERGE COMPLETED

Selection sort of a POSIX file Example 13

336 U6184-J-Z125-6-76

File attributes of the output file “sorted/restaurant”

/start-posix-shell
POSIX Basisshell 10.0A43 created Dec 17 2012
POSIX Shell 08.0A43 created Jul 13 2012
Copyright (C) Fujitsu Technology Solutions 2009

All Rights reserved
.
.
.
$cd sorted
$ls -l restaurant
-rw------- 1 EXAMPLE USROTHER 400 Jan 24 12:50 restaurant
$exit

Contents of the output file “sorted/restaurant”

The “Street” field in the input file was not incorporated into the output file by the selection
sort.

Cuisine
(sort field)

Restaurant name
(1st remainder field)

Tel.
(2nd rem.
field)

1 12 32

French
German
Indonesian
Italian
Japanese
Mexican
Persian
Vegetarian
Vietnamese
Yugoslavian

Le Gourmet
Willi's Bar
Java
Orlando's
Chayota's
Palenque Mexico
Persepolis
Strawberry
Vietnam
Golden Fleece

505397
748293
522221
220061
292742
980149
597004
595521
522518
242437

Example 14 Tag sort

U6184-J-Z125-6-76 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.14 Example 14: Tag sort of fixed-format records

Input: SAM file RESTAURANT.SAM.FIX with fixed record format

Output: SAM file RESTAURANT.SAM.FIX.ADR with fixed record format

Exercise:

– Use of a SAM file

– Position the addresses generated by SORT at the end of the record stored in the output
file

Preliminary remark

Tag sorting is a special sorting technique by means of which the records in the input file can
be accessed via the records in the sorted file.
For this type of sort, SORT assigns addresses which indicate where the individual records
of the input file were found. The sort type parameter determines whether the address is
prefixed (SORT-TYPE=*TAG-HEADER) or appended (SORT-TYPE=*TAG-TRAILER) to
the record. The address is also referred to as the retrieval address.

This type of sort can, for example, be used to create an index for a (long) SAM file in a data
base.

Trace listing

/start-sort
% SRT1001 2014-10-12/09:23:05/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=restaurant.sam.fix, -
// output-file=restaurant.sam.fix.adr
//sort-records fields=*field-explicit(position=1,length=13), -
// sort-type=*tag-trailer
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................10
% SRT1002 2014-10-12/09:23:22/000000.29 SORT/MERGE COMPLETED

Tag sort Example 14

338 U6184-J-Z125-6-76

Contents of the output file

Data bytes
(sort field)

SAM address
(in hexadecimal
notation)

File
block
number

Relative
record
number

1 14 17

Chayota‘s
Golden Fleece
Java
Le Gourmet
Orlando‘s
Palenque Mexico
Persepolis
Strawberry
Vietnam
Willi‘s Bar

000001
000001
000001
000001
000001
000001
000001
000001
000001
000001

09
03
02
04
01
05
07
06
08
0A

Example 15 Merging files

U6184-J-Z125-6-76 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.15 Example 15: Merging files

Input: SAM file CULTURE.SAM.1 with variable record format
SAM file CULTURE.SAM.2 with variable record format
SAM file CULTURE.SAM.3 with variable record format

Output: SAM file CULTURE.SAM.123 with variable record format

Preliminary remark

MERGE-RECORDS merges presorted files. The input files must already be sorted
according to the sort criterion. This helps save on CPU time for the compute-intensive
sorting operation that would otherwise be necessary.

Contents of the input file CULTURE.ISAM.1 (extract)

The complete contents of this and the other files are listed in section “Contents of the
example files” on page 383.

RL Restaurant name
(Sort field)

Street Telephone Cuisine

1 5 26 48 58

Aquitaine
August Gardens
Bosna

Acacia Avenue 39
Newton Street 16
Freeling Street 11

284028
2604106
64115447

French
Argentinian
Yugoslavian

Merging files Example 15

340 U6184-J-Z125-6-76

Trace listing

/start-sort
% SRT1001 2014-10-12/16:19:30/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=(culture.sam.1,culture.sam.2,culture.sam.3), -
// output-file=culture.sam.123
//merge-records fields=*field-explicit(position=5,length=21)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................15 (FROM 01)
% SRT1016 SORT/MERGE INPUT RECORDS:............................16 (FROM 02)
% SRT1016 SORT/MERGE INPUT RECORDS:............................14 (FROM 03)
% SRT1017 RECORDS TO BE SORTED/MERGED:.........................45
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................45
% SRT1002 2014-10-12/16:19:31/000000.26 SORT/MERGE COMPLETED

Example 16 INPUT user exit

U6184-J-Z125-6-76 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.16 Example 16: INPUT user exit

Full sort of fixed-format records

Input: SAM file UE.EXIT.INPUT with fixed record format

Output: SAM file UE.EXIT.OUTPUT with fixed record format

Library: SORT.EXAMPLE.LIB (user-defined)

Module: E15

User exit: INPUT (PARAMETER-MODE=*ANY)

Exercise:

– Link in a module from a library

– Select the user exit

– Define the addressing method

Description of the user module

In this example, records are to be deleted, inserted and modified by a user routine. The
routine is activated for each input record and is meant to perform the following actions:

– Delete all records beginning with the digit 8.

– Modify all records beginning with the digit 9 by replacing the first character with ’X’.

– Insert a record at the position of the first record beginning with the digit 7. This operation
is not to be repeated for other records.

A common feature of all user routines for user exits is that they have to be stored in module
libraries.

INPUT user exit Example 16

342 U6184-J-Z125-6-76

Source text

E15 START
PRINT NOGEN
ENTRY E15SEL
USING E15SEL,15

E15SEL SAVE (14,12) SAVE REGISTERS
L 7,12(1) LOAD ADDRESS OF ACTION WORD

E1 CLC 0(4,1),=XL4’00’ END?
BE ENDE YES
L 8,0(1) LOAD ADDRESS OF RECORD
CLI 0(8),C’8’ 1ST POSITION=8?
BE DELETE YES
CLI 0(8),C’9’ 1ST POSITION=9?
BE MODIFY YES

SWITCH NOP NORMAL
CLI 0(8),C’7’ 1ST POSITION=7?
BE INSERT

* N O M O D I F I C A T I O N
NORMAL MVI 3(7),X’00’ MOVE RETURN CODE TO ACTION WORD

RETRN (14,12) PROCESS RECORD
* D E L E T E R E C O R D
DELETE MVI 3(7),X’04’ MOVE RETURN CODE TO ACTION WORD

RETRN (14,12) DELETE RECORD
* M O D I F Y R E C O R D
MODIFY MVI 3(7),X’00’ MOVE RETURN CODE TO ACTION WORD

MVI 0(8),C’X’ MODIFY 1ST POSITION IN RECORD
RETRN (14,12), PROCESS RECORD

* I N S E R T R E C O R D
INSERT LA 8,SATZ ADDRESS OF RECORD TO BE INSERTED

ST 8,0(1) MOVE ADDRESS OF RECORD TO INPUT AREA
OI SWITCH+1,X’F0’ SET SWITCH TO BRANCH
MVI 3(7),X’0C’ MOVE RETURN CODE TO ACTION WORD
RETRN (14,12) INSERT RECORD

* E N D
ENDE MVI 3(7),X’08’ MOVE RETURN CODE TO ACTION WORD

RETRN (14,12) END OF INPUT FOR THIS EXIT
RECORD DS 0CL17

DC C’INSERT ONE RECORD’
END E15

Comment on the source text

The source text is assembled with ASSEMBH.

The assembled program is stored as a LLM in the SORT.EXAMPLE.LIB library and given
the name E15.

Example 16 INPUT user exit

U6184-J-Z125-6-76 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

File attributes of the input file UE.EXIT.INPUT

/show-file-attributes file-name=ue.exit.input, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.UE.EXIT.INPUT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 17
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

Contents of the input file UE.EXIT.INPUT

Trace listing

/add-file-link link-name=blslib,file-name=sort.example.lib
/start-sort
% SRT1001 2014-10-12/13:20:33/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=ue.exit.input,output-file=ue.exit.output
//assign-exits input=*module(name=e15,parameter-mode=*any)
//sort-records fields=*field-explicit(position=5,length=6), -
// estimated-records=10
//end

Sort
field

1 5 11 17

9999
2222
0000
8888
5555
1111
7777
8888
0000
9999

999999
222222
000000
888888
555555
111111
777777
888888
000000
999999

9999999
2222222
0000000
8888888
5555555
1111111
7777777
8888888
0000000
9999999

INPUT user exit Example 16

344 U6184-J-Z125-6-76

% SRT1016 SORT/MERGE INPUT RECORDS:............................10 (FROM 01)
% SRT1018 INSERTED INPUT RECORDS:...............................1
% SRT1019 DELETED INPUT RECORDS:................................2
% SRT1017 RECORDS TO BE SORTED/MERGED:..........................9
% SRT1030 SORT/MERGE OUTPUT RECORDS:............................9
% SRT1002 2014-10-12/13:26:47/000000.32 SORT/MERGE COMPLETED

File attributes of the output file UE.EXIT.OUTPUT

/show-file-attributes file-name=ue.exit.output, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.UE.EXIT.OUTPUT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 17
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

Contents of the output file UE.EXIT.OUTPUT

INSERT ONE RECORD This record has been inserted

00000000000000000
00000000000000000
11111111111111111
22222222222222222
55555555555555555
77777777777777777

X9999999999999999
X9999999999999999

This record has been modified
This record has been modified

Example 17 OUTPUT user exit

U6184-J-Z125-6-76 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.17 Example 17: OUTPUT user exit

Full sort of variable format records

Input: SAM file E35A.INPUT with variable record format

Output: SAM file E35A.OUTPUT with variable record format

Library: SORT.EXAMPLE.LIB

Module: E35B

User exit: OUTPUT (PARAMETER-MODE=*ANY)

Exercise:

– Link in a module from a library

– Assign the input and output files using ASSIGN-FILES

– Select the user exit for Assembler output routines

Description of the user routine

In this example, records are inserted, modified and deleted by means of a user routine. The
routine is activated for each output record and is meant to perform the following actions:

– Output all records that contain the digit ’3’ at byte position 5.

– Insert a record after each record that contains the digit ’1’ at byte position 5.

– Modify all records that contain the digit ’5’ at byte position 5 by replacing the first
character with ’A’.

– Delete all records that contain digits not equal to ’1’, ’3’ or ’5’ at byte position 5.

OUTPUT user exit Example 17

346 U6184-J-Z125-6-76

Source text

E35B START
PRINT NOGEN
ENTRY E35B01
USING E35B01,15

E35B01 SAVE (14,12) SAVE REGISTERS
L 7,12(1) LOAD ADDRESS OF ACTION WORD
CLC 0(4,1),=XL4’00’ LAST OUTPUT RECORD?
BE EOF YES
L 8,0(1) LOAD ADDRESS OF RECORD INTO REG 8
CLI 4(8),C’3’ 1ST POSITION=3?
BE PROCESS
CLI 4(8),C’5’ 1ST POSITION=5?
BE MODIFY

SWITCH NOP INSERT
CLI 4(8),C’1’ 1ST POSITION=1?
BNE DELETE
OI SWITCH+1,X’F0’ SET SWITCH
B PROCESS+4

* D E L E T E R E C O R D
DELETE MVI 3(7),X’04’ MOVE RETURN CODE TO ACTION WORD

B ORIGIN
* I N S E R T R E C O R D
INSERT MVC 0(4,1),=A(EIN)

MVI SWITCH+1,X’00’ RESET SWITCH
MVI 3(7),X’0C’ MOVE RETURN CODE TO ACTION WORD
B ORIGIN

* M O D I F Y R E C O R D
MODIFY MVI 4(8),C’A’ CHANGE 1ST POSITION OF RECORD
* T R A N S F E R R E C O R D
PROCESS MVI SWITCH+1,X’00’ RESET SWITCH

MVI 3(7),X’00’ MOVE RETURN CODE TO ACTION WORD
B ORIGIN

* E N D P R O C E S S I N G
EOF MVI 3(7),X’08’ NO MORE RETURNS
ORIGIN RETRN (14,12) RESTORE REGISTERS
INS DC Y(ENDE-INS) RECORD TO BE INSERTED

DS CL2
DC C’RECORD INSERTED!!’

ENDE EQU *
END E35B

Example 17 OUTPUT user exit

U6184-J-Z125-6-76 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Comment on the source text

The source text is assembled with ASSEMBH.

The assembled program is stored as a LLM in the SORT.EXAMPLE.LIB library and given
the name E35B.

Contents of the input file E35A.INPUT

RL Sort
field

1 5 11 21

111111
222222
333333
444444
555555
666666
111111
222222
333333
444444
555555
666666
111111
222222
333333
444444
555555
666666

11111111111
22222222222
33333333333
44444444444
55555555555
66666666666
11111111111
22222222222
33333333333
44444444444
55555555555
66666666666
11111111111
22222222222
33333333333
44444444444
55555555555
66666666666

OUTPUT user exit Example 17

348 U6184-J-Z125-6-76

Trace listing of the sort run

/add-file-link link-name=blslib,file-name=sort.example.lib
/start-sort
% SRT1001 2014-10-12/13:20:33/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=e35a.input,output-file=e35a.output
//assign-exits output=*module(name=e35b01,parameter-mode=*any)
//sort-records fields=*field-explicit(position=5,length=6)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................18 (FROM 01)
% SRT1021 SORTED/MERGED RECORDS................................18
% SRT1022 INSERTED OUTPUT RECORDS:..............................3
% SRT1023 DELETED OUTPUT RECORDS:...............................9
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................12
% SRT1002 2014-10-12/13:20:47/000000.32 SORT/MERGE COMPLETED

Comment

In this example, the records to be output are processed by an Assembler routine. The
Assembler module must therefore be assigned as OUTPUT. The name given to the module
matches the module name in the SORT.EXAMPLE.LIB library. The addressing mode and
the interface between SORT and the user module are defined with the PARAMETER-
MODE operand.

In this example, PARAMETER-MODE=*ANY is correct because the OUTPUT user exit
used by the Assembler routine supports both 31- and 24-bit addressing.

For user exits which allow 24-bit addressing only, PARAMETER-MODE=24 is mandatory.

Example 18 PHYSICAL-TRANSLATE user exit

U6184-J-Z125-6-76 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.18 Example 18: PHYSICAL-TRANSLATE user exit

Full sort of fixed format records

Input: SAM file PHYSICAL.TRANSLATE.INPUT

Output: SAM file PHYSICAL.TRANSLATE.OUTPUT

Library: SORT.EXAMPLE.LIB

Module: ETBSORT

User Exit: PHYSICAL-TRANSLATE

This example demonstrates how to sort a file in a user-defined order (digits, characters,
spaces) which differs from both the EBCDIC and the ASCII standard sequence.

The characters present are translated and sorted in accordance with the first code table
defined in the user routine. Before the output takes place, the characters are converted
back by means of the second code table.

PHYSICAL-TRANSLATE user exit Example 18

350 U6184-J-Z125-6-76

Source text of the user routine

ETBSORT CSECT
TITLE ’SPECIAL ALPHABET’

*
* CODE CONVERSION FROM EBCDIC
*
* TO THE FOLLOWING SEQUENCE:
* ’0123456789ABCDEFGHI’
* ’JKLMNOPQRSTUVWXYZ’
* CHANGING THE SEQUENCE OF UPPERCASE AND LOWERCASE LETTERS
* IS A SIMILAR PROCEDURE
*

DC XL64’00’
BLANK DC X’25’ SPACE AFTER LETTERS

DC XL128’00’
ATOI DC XL9’0B0C0D0E0F10111213’ LETTERS A - I

DC XL7’00’
JTOR DC XL9’1415161718191A1B1C’ LETTERS J - R

DC XL8’00’
STOZ DC XL8’1D1E1F2021222324’ LETTERS S - Z

DC XL6’00’
NULL9 DC XL10’0102030405060708090A’ DIGITS 0 - 9 BEFORE LETTERS

DC XL6’00’
*

DC X’00’
 DC ’0123456789’ RECONVERT DIGITS 0 - 9.
DC ’ABCDEFGHI’ RECONVERT LETTERS A - I.
DC ’JKLMNOPQR’ RECONVERT LETTERS J - R.
DC ’STUVWXYZ’ RECONVERT LETTERS S - Z .
DC X’40’ RECONVERT SPACE
DC XL127’00’

*
END

Comment on the source text

The source text is assembled with ASSEMBH.

The assembled program is stored as a LLM in the SORT.EXAMPLE.LIB library and given
the name ETBSORT.

Example 18 PHYSICAL-TRANSLATE user exit

U6184-J-Z125-6-76 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Trace listing

/add-file-link link-name=blslib,file-name=sort.example.lib
/start-sort
% SRT1001 2014-10-12/16:14:06/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=physical-translate.input, -
// output-file=physical-translate.output
//assign-exits physical-translate=*module(name=etbsort)
//sort-records fields=*field-explicit(position=1,length=4, -
// format=*physical-translate)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................25 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................25
% SRT1002 2014-10-12/16:14:22/000000.26 SORT/MERGE COMPLETED

Comment

Before SORT is started, the library file SORT.EXAMPLE.LIB is assigned. ASSIGN-EXITS
is specified so that the previously assembled routine ETBSORT can be activated.

PHYSICAL-TRANSLATE user exit Example 18

352 U6184-J-Z125-6-76

Contents of the input and output files

The file PHYSICAL.TRANSLATE.INPUT has been sorted according to the EBCDIC
sequence. The output file PHYSICAL.TRANSLATE.OUTPUT has been sorted using the
code table defined by the user. The following file comparison is intended to clarify the
difference between these two sort types.

PHYSICAL.TRANSLATE.INPUT PHYSICAL.TRANSLATE.OUTPUT

 FGH
ABCD
ADTX
ASDF
BKLM
BSDF
ERSK
ERU
JKDS
KLMD
SFTD
0012
1178
1234
1234
2349
2356
4456
4569
4578
7658
77 9
7777
9875
9999

906C
E234
0914
9082
O127
P093
7654
897X
7809
9808
OPLD
3POL
LLOP
OPRS
6793
MNB
ADFG
PPLO
87 N
DFGH
9XYZ
AAPK
RRRS
DGFK
9999

0012
1178
1234
1234
2349
2356
4456
4569
4578
7658
7777
77 9
9875
9999
ABCD
ADTX
ASDF
BKLM
BSDF
ERSK
ERU
JKDS
KLMD
SFTD
 FGH

3POL
LLOP
OPRS
6793
MNB
ADFG
PPLO
87 N
DFGH
9XYZ
RRRS
AAPK
DGFK
9999
E234
0914
9082
O127
P093
7654
897X
7809
9808
OPLD
906C

Example 19 VIRTUAL-TRANSLATE user exit

U6184-J-Z125-6-76 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.19 Example 19: VIRTUAL-TRANSLATE user exit

Full record sort based on a user-defined sorting order

Input: SAM file VIRTRAN.INPUT with variable record format

Output: SAM file VIRTRAN.OUTPUT with variable record format

Library: SORT.EXAMPLE.LIB (user-defined)

Module: VIRTRAN

User exit: VIRTUAL-TRANSLATE

Exercise:

– Define a special code table with the Assembler

– Write the table into a library

– Assign the library and invoke the module

– Compare the result

VIRTUAL-TRANSLATE user exit Example 19

354 U6184-J-Z125-6-76

Source text

VIRTRAN CSECT
VIRTRAN AMODE ANY
VIRTRAN RMODE ANY

TITLE ’USER-DEFINED SORT SEQUENCE’
*CODE CONVERSION FROM EBCDIC TO
*NEW SEQUENCE
*
*SEQUENCE
*UPPERCASE AND LOWERCASE LETTERS
*ARE TREATED AS EQUIVALENT

DC XL64’00’
BLANK DC X’00’ SPACE

DC XL64’00’
*
* LOWERCASE LETTERS
LWATOI DC XL9’0B0C0D0E0F10111213’ LOWERCASE LETTERS A-I

DC XL7’00’
LWJTOR DC XL9’1415161718191A1B1C’ LOWERCASE LETTERS J-R

DC XL8’00’
LWSTOZ DC XL8’1D1E1F2021222324’ LOWERCASE LETTERS S-Z

DC XL23’00’
*
* UPPERCASE LETTERS UND DIGITS
*
ATOI DC XL9’0B0C0D0E0F10111213’ UPPERCASE LETTERS A-I

DC XL7’00’
JTOR DC XL9’1415161718191A1B1C’ UPPERCASE LETTERS J-R

DC XL8’00’
STOZ DC XL8’1D1E1F2021222324’ UPPERCASE LETTERS S-Z

DC XL6’00’
ZERO DC XL10’0102030405060708090A’ DIGITS 0-9

DC XL6’00’
*

END

Comment on the source text

The source text is assembled with ASSEMBH.

The assembled program is stored as a LLM in the SORT.EXAMPLE.LIB library and given
the name VIRTRAN.

Example 19 VIRTUAL-TRANSLATE user exit

U6184-J-Z125-6-76 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Note concerning the code table

A code table is defined via the user exit VIRTUAL-TRANSLATE (cf. also the PHYSICAL-
TRANSLATE user exit).

Trace listing

/add-file-link link-name=blslib,file-name=sort.example.lib
/start-sort
% SRT1001 2014-10-12/17:17:55/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=virtran.input,output-file=virtran.output
//assign-exits virtual-translate=*module(name=virtran)
//sort-records fields=*field-explicit(position=5,length=15, -
// format=*virtual-translate),estimated-records=29
//set-record-attributes output=*variable(maximum-reocrd-size=45)
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................29 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................29
% SRT1002 2014-10-12/17:18:09/000000.37 SORT/MERGE COMPLETED

Explanation of the run

– The library containing the VIRTRAN module is assigned

– The input and output files are assigned

– The VIRTRAN module is assigned by means of the ASSIGN-EXITS statement

– A reference to the code table is given in the SORT-RECORDS statement

– An estimate of the number of records is given

– The longest entry is indicated (length 45)

SORT sets up the output file with the record length specified in the SET-RECORDS
statement and enters this value in the catalog.

VIRTUAL-TRANSLATE user exit Example 19

356 U6184-J-Z125-6-76

/show-file-attributes file-name=virtran.output, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.VIRTRAN.OUTPUT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 45
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

VIRTRAN.INPUT VIRTRAN.OUTPUT

scherzen
allgemein
mexikanisch
Mehrzahl
oder
Trennung
Verhaeltniswort
Stilkunde
brasilianisch
philosophisch
medizinisch
dichterisch
Druckersprache
Astronomie
mechanisch
scherzhaft
bretonisch
Biologie
Brasilien
Allgemeinheit
astronomisch
Mechanik
Franzosen
englisch
Landwirtschaft
franzoesisch
Abendland
Scherz
Deutschland

Abendland
allgemein
Allgemeinheit
Astronomie
astronomisch
Biologie
brasilianisch
Brasilien
bretonisch
Deutschland
dichterisch
Druckersprache
englisch
franzoesisch
Franzosen
Landwirtschaft
Mechanik
mechanisch
medizinisch
Mehrzahl
mexikanisch
oder
philosophisch
Scherz
scherzen
scherzhaft
Stilkunde
Trennung
Verhaeltniswort

Example 20 SORT as a subroutine

U6184-J-Z125-6-76 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.20 Example 20: SORT as a subroutine (level 0)

Input: SAM file RESTAURANT.SAM.FIX with fixed record format

Output: SAM file SORT.UPRG.SORT with fixed record format and output to terminal
via SYSOUT

Structure of the records in the input file RESTAURANT.SAM.FIX

The contents of this file are listed in section “Contents of the example files” on page 383.

The main program reads the records from the RESTAURANT.SAM.FIX file, edits them into
a new format and outputs them to the file SORT.UPRO. The records in SORT.UPRO are to
be sorted (in a full sort) and output simultaneously to the file SORT.UPRG.SORT and to the
terminal.

Record structure of the intermediate file SORT.UPRO

The control information for SORT is passed at level 0 (SORT statements from SYSDTA).

Restaurant name Street Tel. Cuisine

Cuisine Restaurant name Street Tel.

SORT as a subroutine Example 20

358 U6184-J-Z125-6-76

Source text

SUPROG0 START
TITLE ’THIS PROGRAM CALLS SORT AS A SUBROUTINE AT LEVEL 0’
PRINT NOGEN

SUPROG0 AMODE ANY
SUPROG0 RMODE ANY

GPARMOD 31
BEGIN BALR 3,0

USING *,3
OPEN EIN,INPUT OPEN THE INPUT FILE
OPEN AUS,OUTPUT OPEN THE OUTPUT FILE
MVI AUSB,X’40’
MVC AUSB+1(71),AUSB

READ1 EQU *
GET EIN,EINB READ ONE RECORD
MVC AF1,EF4 RE-EDIT INPUT
MVC AF2,EF1 RECORD
MVC AF3,EF2
MVC AF4,EF3
PUT AUS,AUSB OUTPUT ONE RECORD
B READ1

*
* FCB OF INPUT FILE
EIN FCB FCBTYPE=SAM, -

LINK=EIN, -
RECFORM=F, -
RECSIZE=66, -
EXIT=EXITEIN

EXITEIN EXLST EOFADDR=ENDE1 LAST INPUT RECORD
* FCB OF OUTPUT FILE
AUS FCB FCBTYPE=SAM, -

LINK=AUS, -
RECFORM=F, -
RECSIZE=72, -
EXIT=EXITAUS

EXITAUS EXLST EOFADDR=ENDE9
DS 0F

ENDE1 EQU *
CLOSE ALL
FILE SORT.UPRO,LINK=SORTIN INPUT FILE (FOR SORT RUN)
FILE SORT.UPRG.SORT,LINK=SORTOUT OUTPUT FILE FOR SORT RUN
LA 1,B1 LEVEL 0
LA 13,SAVE MOVE SAVE AREA ADDRESS TO REG13
L 15,=V(SORTU) SORT ENTRY POINT
BALR 14,15

Example 20 SORT as a subroutine

U6184-J-Z125-6-76 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

ENDE2 EQU * THE OUTPUT FILE IS GIVEN THE
FILE SORT.UPRG.SORT,LINK=AUS SAME ATTRIBUTES AS THE FILE WITH
OPEN AUS,INPUT THE ADDRESS AUS.

READ2 EQU *
GET AUS,AUSB
WROUT OUT,ERRORS
B READ2

ERRORS CLOSE ALL
TERM MODE=ABNORMAL,UNIT=STEP

ENDE9 CLOSE ALL
TERM

*
B1 SRT0 STXIT=NO,MSGPROT=BOTH,SDF=YES CONTROL INFO VIA LEVEL 0
*
SAVE DS 18F
EINB DS 0CL72
EF1 DS CL20
EF2 DS CL27
EF3 DS CL08
EF4 DS CL11
OUT DC H’77’

DC C’ ’
DC X’01’

AUSB DS 0CL72
AF1 DS CL11

DS CL03
AF2 DS CL20

DS CL03
AF3 DS CL24

DS CL03
AF4 DS CL08

DS 0F
END SUPROG0

Comment on the source text

The macro call SRT0 provides values at level 0.

The source text is assembled with ASSEMBH. To make this possible, the
$.SYSLIB.SORT.078 library containing the SORT macros must be assigned as a macro
library.

The assembled program is stored as a LLM in the SORT.EXAMPLE.LIB library and given
the name SUPROG0.

SORT as a subroutine Example 20

360 U6184-J-Z125-6-76

Trace listing

/add-file-link link-name=ein,file-name=restaurant.sam.fix
/create-file file-name=sort.upro
/add-file-link link-name=aus,file-name=sort.upro
/add-file-link link-name=blslib00,file-name=$.syslnk.sort.080
/start-executable-program library=sort.example.lib, -
/ element-or-symbol=suprog0, -
/ alternate-library=*blslib##
% SRT1001 B1 2014-10-12/13:57:52/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1130 B1 PLEASE ENTER SORT STATEMENTS
//sort-records
//end
% SRT1016 B1 SORT/MERGE INPUT RECORDS:...........................10 (FROM 01)
% SRT1030 B1 SORT/MERGE OUTPUT RECORDS:..........................10
% SRT1002 B1 2014-10-12/13:58:08/000000.26 SORT/MERGE COMPLETED
French Le Gourmet Lime Street 46 505397
German Willi's Bar Westland Street 113 748293
Indonesian Java Hope Street 51 522221
Italian Orlando's Thompson Street 62 220061
Japanese Chayota's Thurston Street 60 292742
Mexican Palenque Mexico Millwood Drive 2 980149
Persian Persepolis Salford Square 20 597004
Vegetarian Strawberry Sauchiehall Street 8 595521
Vietnamese Vietnam Thurston Street 47 522518
Yugoslavian Golden Fleece Arran Street 44 242437

Comment on the trace listing

– Assign the file RESTAURANT.SAM.FIX as the input file for the main program
SUPROG0.

– Assign the file SORT.UPRO as output file for the main program SUPROG0. The records
edited by the main program will be output to this file.

– Assign the module library $.SYSLNK.SORT.080, where the SORT modules are stored.
– Call the main program SUPROG0.
– The main program invokes SORT; SORT prompts for statements to be input.
– The SORT-RECORDS statement requests a full sort.
– The END statement concludes the sort run definition and starts the sort run.

Example 21 SORT as a subroutine

U6184-J-Z125-6-76 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.21 Example 21: SORT as a subroutine (level 1)

Input: SAM file RESTAURANT.SAM.FIX with fixed record format

Output: SAM file SORT.UPRG.SORT with fixed record format

Structure of the records in the input file RESTAURANT.SAM.FIX

The contents of this file are listed in section “Contents of the example files” on page 383.

The main program reads the records from the RESTAURANT.SAM.FIX file, edits them into
a new format and outputs them to the file SORT.UPRO.

Record structure of the intermediate file SORT.UPRO

The SORT.UPRO records are to be sorted on the sort field “cuisine” (full sort) and output
simultaneously to the file SORT.UPRG.SORT and to the terminal. A condition on records to
be included in the sort operation is that the sort field “cuisine” begins with the letter “I” or “J”.

The control information is passed to SORT at level 1 (SORT statements in main memory).

Restaurant name Street Tel. Cuisine

Cuisine Restaurant name Street Tel.

SORT as a subroutine Example 21

362 U6184-J-Z125-6-76

Source text

SUPROG1 START
TITLE ’THIS PROGRAM CALLS SORT AS A SUBROUTINE AT LEVEL 1’
PRINT NOGEN

SUPROG1 AMODE ANY
SUPROG1 RMODE ANY

GPARMOD 31
BEGIN BALR 3,0

USING *,3
OPEN EIN,INPUT OPEN INPUT FILE
OPEN AUS,OUTPUT OUTPUT FILE
MVI AUSB,X’40’
MVC AUSB+1(71),AUSB

LIES1 EQU *
GET EIN,EINB READ A RECORD
MVC AF1,EF4 EDIT INPUT RECORD
MVC AF2,EF1 INTO NEW FORMAT
MVC AF3,EF2
MVC AF4,EF3
PUT AUS,AUSB OUTPUT A RECORD
B LIES1

* FCB OF INPUT FILE
EIN FCB FCBTYPE=SAM, -

LINK=EIN, -
RECFORM=F, -
RECSIZE=66, -
EXIT=EXITEIN

EXITEIN EXLST EOFADDR=ENDE1 LAST INPUT RECORD
* FCB OF OUTPUT FILE
AUS FCB FCBTYPE=SAM, -

LINK=AUS, -
RECFORM=F, -
RECSIZE=72, -
EXIT=EXITAUS

EXITAUS EXLST EOFADDR=ENDE9
DS 0F ALIGN ON WORD BOUNDARY

ENDE1 EQU *
CLOSE ALL
FILE SORT.UPRO,LINK=SORTIN INPUT FILE FOR SORT RUN
FILE SORT.UPRG.SORT,LINK=SORTOUT OUTPUT FILE FOR SORT RUN
LA 1,B1 LEVEL 1
LA 13,SAVE MOVE SAVE AREA ADDRESS TO REG 13
L 15,=V(SORTU) SORT ENTRY POINT
BALR 14,15

Example 21 SORT as a subroutine

U6184-J-Z125-6-76 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

ENDE2 EQU *
FILE SORT.UPRG.SORT,LINK=AUS THE OUTPUT FILE IS GIVEN
OPEN AUS,INPUT THE SAME ATTRIBUTES AS THE

* FILE WITH THE ADDRESS 'AUS'.
READ2 EQU *

GET AUS,AUSB
WROUT OUT,ERRORS
B READ2

ERRORS CLOSE ALL
TERM MODE=ABNORMAL,UNIT=STEP

ENDE9 CLOSE ALL
TERM
PRINT GEN

B1 SRT1 (SORT-RECORDS FIELDS=*FIELD-EXPLICIT(POSITION=1,LENGTH=1-
1)),SDF=YES

SRT1 (SELECT-INPUT-RECORDS CONDITION=(((1,1,CH)=’I’)OR((1,1,C-
H)=’J’)))

SRT1 (SET-SORT-OPTIONS MIN-MSG-WEIGHT=*ALL)
SRT1 (END)

SAVE DS 18F
EINB DS 0CL66
EF1 DS CL20
EF2 DS CL27
EF3 DS CL08
EF4 DS CL11
OUT DC H’77’

DC C’ ’
DC X’01’

AUSB DS 0CL72
AF1 DS CL11

DS CL03
AF2 DS CL20

DS CL03
AF3 DS CL24

DS CL03
AF4 DS CL08

DS 0F
END SUPROG1

Comment on the source text

The SRT1 macro sends the following control statements to SORT (values supplied at
level 1):
– SORT-RECORDS to request a full sort
– SELECT-INPUT-RECORDS to exclude all input records which do not begin with I or J
– SET-SORT-OPTIONS to control the message output
– END statement to terminate the statement sequence.

SORT as a subroutine Example 21

364 U6184-J-Z125-6-76

The source text is assembled with ASSEMBH. To make this possible, the
$.SYSLIB.SORT.080 library containing the SORT macros must be assigned as a macro
library.

The assembled program is stored as an object module in the SORT.EXAMPLE.LIB library
and given the name SUPROG1.

Syntax of the SRT1 macro

The SDF statement text of the SRT1 macro must be enclosed in parentheses.
The first SRT1 macro must be terminated by the entry SDF=YES. This is placed after the
closing parenthesis.
All SDF statements of the macro must be written sequentially, without spaces (blanks) as
fillers, up to the continuation character in column 72. This may produce divisions that do not
conform to grammatical rules. This rule also applies to the SELECT-INPUT-RECORDS
statement used in this example.

Trace listing

/add-file-link link-name=ein,file-name=restaurant.sam.fix
/create-file file-name=sort.upro
/add-file-link link-name=aus,file-name=sort.upro
/add-file-link link-name=blslib00,file-name=$.syslnk.sort.080
/start-executable-program library=sort.example.lib, -
/ element-or-symbol=suprog1, -
/ alternate-library=*blslib##
% SRT1001 B1 2014-10-12/12:56:17/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1046 B1 2001-12-10/12:56:19/000000.26 END OF PREPARATORY PHASE
% SRT1013 B1 MAIN MEMORY SORT
% SRT1016 B1 SORT/MERGE INPUT RECORDS:..........................10 (FROM 01)
% SRT1024 B1 DELETED SELECT-INPUT-RECORDS RECORDS:.......................7
% SRT1017 B1 RECORDS TO BE SORTED/MERGED:........................3
% SRT1030 B1 SORT/MERGE OUTPUT RECORDS:..........................3
% SRT1002 B1 2014-10-12/12:56:20/000000.28 SORT/MERGE COMPLETED
Indonesian Java Hope Street 51 522221
Italian Orlando's Thompson Street 62 220061
Japanese Chayota's Thurston Street 60 292742

Example 21 SORT as a subroutine

U6184-J-Z125-6-76 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Comment on the trace listing

– Assign the file RESTAURANT.SAM.FIX as the input file for the main program
SUPROG0.

– Assign the file SORT.UPRO as output file for the main program SUPROG0. The records
edited by the main program will be output to this file.

– Assign the module library $.SYSLNK.SORT.080, where the SORT modules are stored.

– Call the main program SUPROG1.

– The main program invokes SORT; SORT prompts for statements to be input.

File attributes of the input file RESTAURANT.SAM.FIX

/show-file-attributes file-name=restaurant.sam.fix, -
/ information=*parameters(organization=*yes)
%0000000003:CTID:$EXAMPLE.RESTAURANT.SAM.FIX
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 66
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

File attributes of the output file SORT.UPRG.SORT

/show-file-attributes file-name=sort.uprg.sort, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.SORT.UPRG.SORT
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 72
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

SORT access method Example 22

366 U6184-J-Z125-6-76

10.5.22 Example 22: SORT access method

Input: SAM file RESTAURANT.SAM with variable record format

Output: SAM file RESTAURANT.SAM.AUS with variable record format

Source text: SORTZM01

Exercise:

– Assign an input file and an output file with the file link names EIN and AUS instead of
SORTIN and SORTOUT

– Use of the SORTZM macro

This example shows how to perform sorting using the SORT access method SORTZM.

The input records are provided in a SAM file RESTAURANT.SAM, which has variable
record format and is assigned the file link name EIN.

The records of the input file RESTAURANT.SAM are structured as follows:

The output records are to be written by SORT into the output file RESTAURANT.SAM.AUS,
which also has variable record format and is assigned the file link name AUS. The following
fields are selected:

The records in RESTAURANT.SAM.AUS are to be sorted on the sort field “cuisine”. The
other fields are remainder fields.

RL Restaurant name Street Tel. Cuisine

RL Cuisine Restaurant name Street

Example 22 SORT access method

U6184-J-Z125-6-76 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Source text

SORTZM01 START
PRINT NOGEN

SORTZM01 AMODE ANY
SORTZM01 RMODE ANY

GPARMOD 31
BALR 10,0
USING ANFANG,10,11

ANFANG L 11,BASADR
B BEGINN

BASADR DC A(ANFANG+4096)
*
BEGINN EQU *

OPEN EIN,INPUT OPEN INPUT FILE
OPEN AUS,OUTPUT OPEN OUTPUT FILE

*
* ***************************

SRTOPEN SCB=B1,ERROR=FEHLER OPEN SORT RUN
* ***************************
*
LIES GET EIN,EINBER READ RECORD
*
* ***************************

SRTPUT SCB=B1,RECORD=EINBER PASS RECORD TO SORT RUN
* ***************************
*

B LIES
ENDEIN LA 4,AUSBER
*
* **********************************
SCHREIB SRTGET SCB=B1,RECORD=(4),EOS=CLOSE FETCH RECORD
* **********************************
*

PUT AUS,AUSBER OUTPUT RECORD
B SCHREIB

*
* **************
CLOSE SRTCLSE SCB=B1 CLOSE SORT RUN
* **************
*
CLALL CLOSE ALL CLOSE INPUT/OUTPUT FILES

TERM
*
FEHLER CLOSE ALL ERROR EXIT FOR

TERM MODE=ABNORMAL,UNIT=STEP ABNORMAL TERMINATION
*
EIN FCB FCBTYPE=SAM,LINK=EIN,RECFORM=V,EXIT=EXITEIN

SORT access method Example 22

368 U6184-J-Z125-6-76

AUS FCB FCBTYPE=SAM,LINK=AUS,RECFORM=V,EXIT=EXITAUS
*
EXITEIN EXLST EOFADDR=ENDEIN,COMMON=CLALL
EXITAUS EXLST COMMON=CLALL
*
EINBER DS 0CL76
SL1 DS CL4
DATEN1 DS CL72
*
AUSBER DS 0CL68
SL2 DS CL4
DATEN2 DS CL64
*
B1 SRT1 (SORT-RECORDS FIELDS=(*FIELD-EXPLICIT(POSITION=60,LENGTH-

=17),REMAINDER-EXPLICIT(POSITION=5,LENGTH=20),*REMAINDER-
-EXPLICIT(POSITION=25,LENGTH=27)),SORT-TYPE=*COMPOUND-RE-
CORD),SDF=YES

SRT1 (SET-RECORD-ATTRIBUTES OUTPUT=*VARIABLE)
SRT1 (SET-SORT-OPTIONS MIN-MSG-WEIGHT=*ALL)
SRT1 (END)
END SORTZM01

Example 22 SORT access method

U6184-J-Z125-6-76 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Comment on the source text

The following actions are performed in the source text:

– Open the input file EIN.

– Open the output file AUS.

– The SRTOPEN macro initiates the SORT run.

– Read the input record from the input file EIN.

– The SRTPUT macro passes an input record to the SORT run.

– The next input record is read. The read loop is repeated until the last input record is
read.

– End of the input (EOFADDR in the EXLST macro).

– The SRTGET macro fetches the sorted records from the sort run. When all the records
have been transferred, a branch is made to close the sort run (EOS operand).

– Output the records of the sort run to the output file AUS.

– Following output of the records, the sort run is terminated with the SRTCLSE macro.

– Close the input and output files.

– SRT1 macros for the sort run (selection sort).

Notes on the syntax of the SRT1 macro

The SDF statement text of the SRT1 macro must be enclosed in parentheses.
The first SRT1 macro must be terminated by the entry SDF=YES. This is placed after
the closing parenthesis.
All SDF statements of the macro must be written sequentially, without spaces (blanks)
as fillers, up to the continuation character in column 72. This may produce divisions that
do not conform to grammatical rules.

The source text is assembled with ASSEMBH. To make this possible, the
$.SYSLIB.SORT.078 library containing the SORT macros must be assigned as a macro
library.

The assembled program is stored as a LLM in the SORT.EXAMPLE.LIB library and given
the name SORTZM01.

SORT access method Example 22

370 U6184-J-Z125-6-76

Trace listing

/add-file-link link-name=blslib00,file-name=$.syslnk.sort.080
/add-file-link link-name=ein,file-name=restaurant.sam
/create-file file-name=sort.upro
/add-file-link link-name=aus,file-name=sort.upro
/start-executable-program library=sort.example.lib, -
/ element-or-symbol=sortzm01, -
/ alternate-libraries=*blslib##
% SRT1001 B1 2014-10-12/12:56:17/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1046 B1 12:56:19/000000.26 END OF PREPARATORY PHASE
% SRT1013 B1 MAIN MEMORY SORT
% SRT1021 B1 SORTED/MERGED RECORDS:..............................10
% SRT1030 B1 SORT/MERGE OUTPUT RECORDS:..........................10
% SRT1002 B1 12:56:20/000000.28 SORT/MERGE COMPLETED

Explanation of the run:

– Assign the module library $.SYSLNK.SORT.080 in which the SORT modules are
stored.

– Assign the file RESTAURANT.SAM as the input file for the main program SORTZM01.

– Assign the file SORT.RESTAURANT.AUS as the output file for the sort run.

– Call the SORTZM01 program which calls SORT as a subroutine.

– SORT reports the number of sorted records and confirms normal termination of the sort
run.

Contents of the output file RESTAURANT.SAM.AUS

French Le Gourmet Lime Street 46
German Willi's Bar Westland Street 113
Indonesian Java Hope Street 51
Italian Orlando's Thompson Street 62
Japanese Chayota's Thurston Street 60
Mexican Palenque Mexico Millwood Drive 2
Persian Persepolis Salford Square 20
Vegetarian Strawberry Sauchiehall Street 8
Vietnamese Vietnam Thurston Street 47
Yugoslavian Golden Fleece Arran Street 44

Example 23 SORT access method

U6184-J-Z125-6-76 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.5.23 Example 23: SORT access method (multiple sort)

Input: SAM file RESTAURANT.SAM.FIX with fixed record format

Output: SAM files SORT.AUS1, SORT.AUS2 and SORT.AUS3
with fixed record format

Source text: SORTZM02

Libraries: $.SYSLIB.SORT.080 macro library for the assembly
$.SYSLNK.SORT.080 as TASKLIB

Exercise:

– Assign an input file and multiple output files with the file link names EIN and AUS1,
AUS2 and AUS3 instead of SORTIN and SORTOUT.

– Define different sort criteria for the three output files

– Call SORT as a subroutine

This example shows how to perform a multiple sort using the SORT access method
SORTZM.
The input records are made available in a SAM file RESTAURANT.SAM.FIX, which has
fixed record format and is assigned with the file link name EIN.

The records of the RESTAURANT.SAM.FIX input file are structured as follows:

The input records are read one at a time and passed to three concurrently executing sort
runs.

First sort run (full sort)

Output file SORT.AUS1 with fixed record format, which is assigned with the file link name
AUS1.

The records in SORT.AUS1 are to be sorted on the sort field “restaurant name”.

Second sort run (selection sort)

Output file SORT.AUS2 with fixed record format, which is assigned with the file link name
AUS2. The following fields are selected:

Restaurant name Street Tel. Cuisine

Restaurant name Street Tel. Cuisine

Cuisine Restaurant name Street

SORT access method Example 23

372 U6184-J-Z125-6-76

The records in SORT.AUS2 are to be sorted on the sort field “cuisine”. The other fields are
remainder fields.

Third sort run (selection sort)

Output file SORT.AUS3 with fixed record format, which is assigned with the file link name
AUS3. The following fields are selected:

The records in SORT.AUS3 are to be sorted on sort field “street”. The other fields are
remainder fields.

Source text

SORTZM02 START
PRINT NOGEN

SORTZM02 AMODE ANY
SORTZM02 RMODE ANY

GPARMOD 31
BALR 10,0
USING ANFANG,10,11

ANFANG L 11,BASADR
B BEGINN

BASADR DC A(ANFANG+4096)
*
BEGINN EQU *

OPEN EIN,INPUT OPEN INPUT FILE
OPEN AUS1,OUTPUT OPEN OUTPUT FILE1
OPEN AUS2,OUTPUT OPEN OUTPUT FILE2
OPEN AUS3,OUTPUT OPEN OUTPUT FILE3

*
* ******************************

SRTOPEN SCB=S01,ERROR=FEHLER OPEN SORT RUNS
SRTOPEN S02,FEHLER
SRTOPEN S03,FEHLER

* ******************************
*
LIES GET EIN,EINBER READ RECORD
*
* ******************************

SRTPUT SCB=S01,RECORD=EINBER TRANSFER
SRTPUT S02,EINBER RECORD TO
SRTPUT S03,EINBER SORT RUNS

* ******************************
*

B LIES

Restaurant name Cuisine Street

Example 23 SORT access method

U6184-J-Z125-6-76 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

*
ENDEIN LA 4,AUSBER
*
* *********************************
L1 SRTGET SCB=S01,RECORD=(4),EOS=L2
* *********************************
*

PUT AUS1,AUSBER OUTPUT FROM 1ST SORT RUN
B L1

*
* *********************
L2 SRTGET S02,(4),L3
* *********************
*

PUT AUS2,AUSBER OUTPUT FROM 2ND SORT RUN
B L2

*
* *********************
L3 SRTGET S03,,CLOSE
* *********************
*

LR 0,1
PUT AUS3,(0) OUTPUT FROM 3RD SORT RUN
B L3

*
* ******************
CLOSE SRTCLSE SCB=S01 CLOSE SORT

SRTCLSE S02 RUNS
SRTCLSE S03

* ******************
*
CLALL CLOSE ALL CLOSE I/O FILES

TERM
*
FEHLER CLOSE ALL

TERM MODE=ABNORMAL,UNIT=STEP
*
EIN FCB FCBTYPE=SAM,LINK=EIN,RECFORM=F,RECSIZE=66,EXIT=EXITEIN
AUS1 FCB FCBTYPE=SAM,LINK=AUS1,RECFORM=F,RECSIZE=66,EXIT=EXITAUS
AUS2 FCB FCBTYPE=SAM,LINK=AUS2,RECFORM=F,RECSIZE=58,EXIT=EXITAUS
AUS3 FCB FCBTYPE=SAM,LINK=AUS3,RECFORM=F,RECSIZE=58,EXIT=EXITAUS
*
EXITEIN EXLST EOFADDR=ENDEIN,COMMON=CLALL
EXITAUS EXLST COMMON=CLALL
*
EINBER DS CL72
AUSBER DS CL72
*

SORT access method Example 23

374 U6184-J-Z125-6-76

S01 SRT1 (SORT-RECORDS FIELDS=*FIELD-EXPLICIT(POSITION=1,LENGTH=2-
0)),SDF=YES

SRT1 (SET-RECORD-ATTRIBUTES OUTPUT=*FIXED(RECORD-SIZE=66))
SRT1 (SET-SORT-OPTIONS MIN-MSG-WEIGHT=*ALL,LINK-PREFIX-CHANGE-

=S01)
SRT1 (END)

*
S02 SRT1 (SORT-RECORDS FIELDS=(FIELD-EXPLICIT(POSITION=56,LENGTH=-

11),REMAINDER-EXPLICIT(POSITION=1,LENGTH=20),REMAINDER-E-
XPLICIT(POSITION=21,LENGTH=27)),SORT-TYPE=*COMPOUND-RECO-
RD),SDF=YES

SRT1 (SET-RECORD-ATTRIBUTES OUTPUT=*FIXED(RECORD-SIZE=58))
SRT1 (SET-SORT-OPTIONS MIN-MSG-WEIGHT=*ALL,LINK-PREFIX-CHANGE-

=S02)
SRT1 (END)

*
S03 SRT1 (SORT-RECORDS FIELDS=(*REMAINDER-EXPLICIT(POSITION=1,LEN-

GTH=20),*REMAINDER-EXPLICIT(POSITION=56,LENGTH=11),*FIEL-
D-EXPLICIT(POSITION=21,LENGTH=27)),SORT-TYPE=*COMPOUND-R-
ECORD),SDF=YES

SRT1 (SET-RECORD-ATTRIBUTES OUTPUT=*FIXED(RECORD-SIZE=58))
SRT1 (SET-SORT-OPTIONS MIN-MSG-WEIGHT=*ALL,LINK-PREFIX-CHANGE-

=S03)
SRT1 (END)

*
END SORTZM02

Example 23 SORT access method

U6184-J-Z125-6-76 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Comment on the source text

Different sort conditions are defined for each of the three output files.

Notes on the syntax of the SRT1 macro

The SDF statement text of the SRT1 macro must be enclosed in parentheses.
The first SRT1 macro must be terminated by the entry SDF=YES. This is placed after
the closing parenthesis.
All SDF statements of the macro must be written sequentially, without spaces (blanks)
as fillers, up to the continuation character in column 72. This may produce divisions that
do not conform to grammatical rules.

The following steps are coded into the source text:

– Open the input file EIN.

– Open the output files AUS1, AUS2 and AUS3.

– Initiate all three SORT runs with the SRTOPEN macro.

– Read an input record from the input file EIN.

– Pass an input record to all three SORT runs with the SRTPUT macro.

– The next input record is read. The read loop is repeated until the last input record is
read.

– End of the input (EOFADDR in the EXLST macro).

– The SRTGET macro fetches the sorted records from the first sort run. Once all the
records have been transferred, a branch is made to the second sort run (EOS operand).

– Output the records from the first sort run to the output file AUS1.

– The SRTGET macro fetches the sorted records from the second sort run. Once all the
records have been transferred, a branch is made to the third sort run (EOS operand).

– Output the records from the second sort run to the output file AUS2.

– The SRTGET macro fetches the sorted records from the third sort run.

– Output the records from the third sort run to the output file AUS3.

– Following output of the records from the third sort run, all three sort runs are terminated
by means of the SRTCLSE macro.

– Close the input and output files.

– S01: SRT1 macro for the first sort run (full sort).

– S02: SRT1 macro for the second sort run (selection sort).

– S03: SRT1 macro for the third sort run (selection sort).

SORT access method Example 23

376 U6184-J-Z125-6-76

The source text is assembled with ASSEMBH. To make this possible, the
$.SYSLIB.SORT.080 library containing the SORT macros must be assigned as a macro
library.

The assembled program is stored as an object module in the SORT.EXAMPLE.LIB library
and given the name SORTZM02.

Trace listing

/add-file-link link-name=blslib00,file-name=$.syslnk.sort.080
/add-file-link link-name=ein,file-name=restaurant.sam.fix
/create-file file-name=sort.aus1
/add-file-link link-name=aus1,file-name=sort.aus1
/create-file file-name=sort.aus2
/add-file-link link-name=aus2,file-name=sort.aus2
/create-file file-name=sort.aus3
/add-file-link link-name=aus3,file-name=sort.aus3
/start-executable-program library=sort.example.lib, -
/ element-or-symbol=sortzm02, -
/ alternate-library=*blslib##
% SRT1001 S01 2014-10-12/15:39:23/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1046 S01 2014-10-12/15:39:24/000000.25 END OF PREPARATORY PHASE
% SRT1001 S02 2014-10-12/15:39:24/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1046 S02 2014-10-12/15:39:24/000000.05 END OF PREPARATORY PHASE
% SRT1001 S03 2014-10-12/15:39:24/000000.00 SORT/MERGE STARTED,

VERSION 08.0A00/BS2000V18.0
% SRT1046 S03 2014-10-12/15:39:24/000000.05 END OF PREPARATORY PHASE
% SRT1013 S01 MAIN MEMORY SORT
% SRT1013 S02 MAIN MEMORY SORT
% SRT1013 S03 MAIN MEMORY SORT
% SRT1021 S01 SORTED/MERGED RECORDS:..................................10
% SRT1002 S01 2014-10-12/15:39:24/000000.38 SORT/MERGE COMPLETED
% SRT1021 S02 SORTED/MERGED RECORDS:..................................10
% SRT1002 S02 2014-10-12/15:39:24/000000.13 SORT/MERGE COMPLETED
% SRT1021 S03 SORTED/MERGED RECORDS:..................................10
% SRT1002 S03 2014-10-12/15:39:24/000000.08 SORT/MERGE COMPLETED

Example 23 SORT access method

U6184-J-Z125-6-76 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Comment on the trace listing

For this example, five files have to be assigned before the start of the program:

– $.SYSLNK.SORT.080 as the module library in which the SORT modules are stored.

– RESTAURANT.SAM.FIX as the input file for the main program SORTZM02.

– SORT.AUS1 as the output file for the first sort run.

– SORT.AUS2 as the output file for the second sort run.

– SORT.AUS3 as the output file for the third sort run.

– The SORTZM02 module is started.

– SORT is called via the access method SORTZM and outputs a start message for each
sort run.

– On termination of each sort run, SORT reports the number of records sorted and the
normal termination of the sort run.

SORT access method Example 23

378 U6184-J-Z125-6-76

File attributes of the input file RESTAURANT.SAM.FIX

/show-file-attributes file-name=restaurant.sam.fix, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.RESTAURANT.SAM.FIX
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 66
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

File attributes of the output files SORT.AUS1, SORT.AUS2 and SORT.AUS3

/show-file-attributes file-name=sort.aus*, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.SORT.AUS1
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 66
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED
%0000000003 :CTID:$EXAMPLE.SORT.AUS2
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 58% AVAIL = *STD
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED
%0000000003 :CTID:$EXAMPLE.SORT.AUS3
% ------------------------------- ORGANIZATION -----------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (F,N) REC-SIZE = 58
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED

Example 23 SORT access method

U6184-J-Z125-6-76 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

Contents of the output file SORT.AUS1

Chayota's Thurston Street 60 292742 Japanese
Golden Fleece Arran Street 44 242437 Yugoslavian
Java Hope Street 51 522221 Indonesian
Le Gourmet Lime Street 46 505397 French
Orlando's Thompson Street 62 220061 Italian
Palenque Mexico Millwood Drive 2 980149 Mexican
Persepolis Salford Square 20 597004 Persian
Strawberry Sauchiehall Street 8 595521 Vegetarian
Vietnam Thurston Street 47 522518 Vietnamese
Willi's Bar Westland Street 113 748293 German

Contents of the output file SORT.AUS2

French Le Gourmet Lime Street 46
German Willi's Bar Westland Street 113
Indonesian Java Hope Street 51
Italian Orlando's Thompson Street 62
Japanese Chayota's Thurston Street 60
Mexican Palenque Mexico Millwood Drive 2
Persian Persepolis Salford Square 20
Vegetarian Strawberry Sauchiehall Street 8
Vietnamese Vietnam Thurston Street 47
YugoslavianGolden Fleece Arran Street 44

Contents of the output file SORT.AUS3

Golden Fleece YugoslavianArran Street 44
Java Indonesian Hope Street 51
Le Gourmet French Lime Street 46
Palenque Mexico Mexican Millwood Drive 2
Persepolis Persian Salford Square 20
Strawberry Vegetarian Sauchiehall Street 8
Orlando's Italian Thompson Street 62
Vietnam Vietnamese Thurston Street 47
Chayota's Japanese Thurston Street 60
Willi's Bar German Westland Street 113

Sorting according to Unicode Example 24

380 U6184-J-Z125-6-76

10.5.24 Example 24: Full sort according to data in Unicode

Input: SAM file NAME with data in Unicode

Output: SAM file NAME.SORT with the sorted records

Exercise:

– Sort according to Unicode (UTF-16)

Record structure of the input file NAME

Family name First name

Müller
(004D 00FC 006C 006C 0065 0072)

Paul
(0050 0061 0075 006C)

Ahberg
(0041 0068 0062 0065 0072 0067)

Tom
(0054 006F 006D)

Werner
(0057 0065 0072 006E 0065 0072)

Tom
(0054 006F 006D)

Mueller
(004D 0075 0065 006C 006C 0065 0072)

Peter
(0050 0065 0074 0065 0072)

Åhberg
(00C5 0068 0062 0065 0072 0067)

Mike
(004D 0069 006B 0065)

Werner
(0057 0065 0072 006E 0065 0072)

Tim
(0054 0069 006D)

Werners(0057 0065 0072 006E 0065
0072 0073)

Max
(004D 0061 0078)

werner
(0077 0065 0072 006E 0065 0072)

Moritz
(004D 006F 0072 0069 0074 007A)

5 45 84

Example 24 Sorting according to Unicode

U6184-J-Z125-6-76 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

File attributes of the file name

/show-file-attributes file-name=NAME, -
/ information=*parameters(organization=*yes)
%0000000003 :CTID:$EXAMPLE.NAME
% ----------------------------- ORGANIZATION ---------------------------
% FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
% IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
% REC-FORM = (V,N) REC-SIZE = 0
% AVAIL = *STD
% WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED
/start-sort
% SRT1001 2014-12-07/12:03:49/000000.00 SORT/MERGE STARTED,
 VERSION 08.0A00/BS2000V18.0
% SRT1130 PLEASE ENTER SORT STATEMENTS
//assign-files input-files=NAME,output-file=NAME.SORT
//sort-records fields=(*field-explicit(position=5,length=40, -
// format=*unicode-character),-
// *field-explicit(position=45,length=40,-
// format=*unicode-character))
//end
% SRT1016 SORT/MERGE INPUT RECORDS:............................8 (FROM 01)
% SRT1030 SORT/MERGE OUTPUT RECORDS:...........................8
% SRT1002 2014-12-07/12:10:40/000000.14 SORT/MERGE COMPLETED

Sorting according to Unicode Example 24

382 U6184-J-Z125-6-76

Content of the output file NAME.SORT (sorted)

Explanation of the output file

Line Family name First name

1 Ahberg
(0041 0068 0062 0065 0072 0067

Tom
(0054 006F 006D)

2 Åhberg
(00C5 0068 0062 0065 0072 0067)

Mike
(004D 0069 006B 0065)

3 Mueller
(004D 0075 0065 006C 006C 0065 0072)

Peter
(0050 0065 0074 0065 0072)

4 Müller
(004D 00FC 006C 006C 0065 0072)

Paul
(0050 0061 0075 006C)

5 werner
(0077 0065 0072 006E 0065 0072)

Moritz
(004D 006F 0072 0069 0074 007A)

6 Werner
(0057 0065 0072 006E 0065 0072)

Tim
(0054 0069 006D)

7 Werner
(0057 0065 0072 006E 0065 0072)

Tom
(0054 006F 006D)

8 Werners
(0057 0065 0072 006E 0065 0072 0073)

Max
(004D 0061 0078)

5 45 84

Lines 1-2 At level 1 Ahberg and Åhberg are the same.
The sort sequence is defined at level 2: Å > A

Lines 3-4 With Müller the ü is not treated like ue, but like a u with adiactritic.
The sort sequence is defined at level 1: ü > ue

Lines 5-6 At level 1 werner in lowercase is identical to Werner in uppercase.
The sort sequence is defined at level 3: W > w

Lines 6-7 With Werner there is no difference in the first sort field.
The sort sequence is defined by the next sort field: Tom > Tim

Lines 7-8 The sort sequence is defined at level 1 : Werners > Werner

Examples Contents of the example files

U6184-J-Z125-6-76 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.6 Contents of the example files

10.6.1 Preliminary remark

In the examples, various files are used for demonstration purposes. The contents of the
unsorted files are the same when the first part of the file name is identical. The character-
istics of the files do, however, vary between different examples, since ultimately it is the
access method which determines the position of the data. This is why the file type is
included in the file name.
Thus, a file with a first name part, RESTAURANT, can be used as follows:

Thus, variable files merely indicate the access method in the file name, while files having
fixed-length record format are identifiable by the suffix FIX.

Similarly, output files are identifiable by the suffix SORT. RESTAURANT.ISAM.SORT, for
instance, would be the sorted file corresponding to the file RESTAURANT.ISAM.

Listings of the contents of the unsorted input files are given below. At the end of each listing
is a row of numbers, provided to help determine the individual positions more easily.

It should also be pointed out that with SAM files having variable-length record format, a
4-byte record length field needs to be added to the character position. In the case of ISAM
files this applies analogously to the ISAM key.

Characteristics File name

SAM file with fixed record length RESTAURANT.SAM.FIX

SAM file with variable record length RESTAURANT.SAM

ISAM file with variable record length RESTAURANT.ISAM.

Contents of the example files Examples

384 U6184-J-Z125-6-76

10.6.2 Contents of the file RESTAURANT

10.6.3 Contents of the file LITERATURE

Orlando's
Java
Golden Fleece
Le Gourmet
Palenque Mexico
Strawberry
Persepolis
Vietnam
Chayota's
Willi's Bar

Thompson Street 62
Hope Street 51
Arran Street 44
Lime Street 46
Millwood Drive 2
Sauchiehall Street 8
Salford Square 20
Thurston Street 47
Thurston Street 60
Westland Street 113

220061
522221
242437
505397
980149
595521
597004
522518
292742
748293

Italian
Indonesian
Yugoslavian
French
Mexican
Vegetarian
Persian
Vietnamese
Japanese
German

1 21 48 56 SAM fixed 66

5 25 52 60 SAM variable 70

13 33 60 68 ISAM variable 78

Pasternak
Capote
Boyle
Arden
Milligan
Dahl
Shakespeare
Fielding
Jonson
Dumas
Troyat
Shaw
Sharpe
Thomas
Gogol

Boris
Truman
Jimmy
John
Spike
Roald
William
Henry
Ben
Alexandre
Henri
Bernard
Tom
Dylan
Nikolai

Doctor Zhivago
In Cold Blood
A Sense of Freedom
Sergeant Musgrave's Dance
Puckoon
Kiss Kiss
Romeo and Juliet
Tom Jones
Volpone
The Three Musketeers
Pushkin
Pygmalion
Riotous Assembly
Fern Hill
Dead Souls

Novel
Novel
Autobiography
Theatre
Novel
Short Stories
Theatre
Novel
Theatre
Novel
Biography
Theatre
Novel
Poem
Novel

1 15 26 59 SAM fixed 71

5 19 30 63 SAM variable 75

13 27 38 71 ISAM variable 83

Examples Contents of the example files

U6184-J-Z125-6-76 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.6.4 Contents of the file MUSEUM

Ad Lib
British China Museum
British Opera House
British Theatre
Folk Company
Gallery Dubois
Gallery Dumont
Gallery Franke
Gallery Schubert
Gallery Thomas
Kensington Club
King's Theatre
Modern Theatre
Municipal Museum
New Art Gallery
New City Museum
Scottish Art House
Subway
Susi's Hideaway
Symposium
Theatre Royal
Vic's
Wings

Bryant Street 21
Majestic Square 2
Prince Albert Square 1
Majestic Square 2
St. Vincent Street 15
Sanders Street 59
Milton Drive 29
Milton Drive 22
Prince Albert Square 6
Milton Drive 60
Milton Drive 47
Gallery Street 4
High Street 3
St James's Square 1
Prince Albert Square 7
Prince Albert Square 7
Prince Albert Square 9
Soho Lane 23
Pratt Street 10
George Street 47
Marshall Square 11
Islington Road 15
Green Street 3

331452
221315
222591
2185413
241977
333510
298841
226420
475859
295517
221859
221152
3445154
2332254
5591307
5591307
224407
399482
2342660
363546
225754
223266
795088

Dixieland, trad. jazz
China, porcelain
Opera, classical concerts
Classical theater
Traditional folk theater
Contemporary artists
Latin American artists
Beckmann, Dix collection
Modern art
Contemporary sculpture
Various art exhibitions
Experimental theater
Fringe theater
History of the city
Impressionists
Beuys, Picasso
Scottish artists
Modern jazz
Nightclub, cabaret
Poetry readings
Repertory theatre
Stand-up comics
Pop music, disco

1 22 45 53 SAM fixed 77

5 26 49 57 SAM variable 81

13 34 57 65 ISAM variable 89

Contents of the example files Examples

386 U6184-J-Z125-6-76

10.6.5 Contents of the file CULTURE.1

10.6.6 Contents of the file CULTURE.2

Aquitaine
August Gardens
Bosna
Bouillabaisse
Datscha
Don Quixote
Frank's Grill
Mandarin
Mifune
Nitaya
Saint George's
Siracusa
Slavonia
Spiros
Zung-Hua

Acacia Avenue 39
Newton Street 16
Freeling Street 11
Falcon Street 10
King Street 3
Billington Street 6
Forest Road 14
Lime Street 21
Iffman Street 138
Thompson Street 19
Upman Street 67
Polson Street 33
Allcock Street 16
Upman Street 65
Bond Street 33

284028
2604106
64115447
297909
341218
342318
281235
226888
987572
197772
363666
770613
564906
366883
555320

French
Argentinian
Yugoslavian
French
Russian
Spanish
Yugoslavian
Chinese
Japanese
Thai
English
Italian
Yugoslavian
Greek
Chinese

1 22 44 54 SAM fixed 65

5 26 48 58 SAM variable 69

13 34 56 66 ISAM variable 77

1 22 44 54 SAM fixed 65

5 26 48 58 SAM variable 69

13 34 56 66 ISAM variable 77

Examples Contents of the example files

U6184-J-Z125-6-76 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

ov
em

b
er

 2
01

4
 S

ta
n

d
13

:1
4.

36
P

fa
d:

 P
:\F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
k1

0

10.6.7 Contents of the file CULTURE.3

Alcazar's
Buenos Aires
Canton
China House
El Cid
Golden Bough
La Barca
Opatija
Scorpio
Tivoli
Torino
Watermill
Why Not?
Zigzag

Doubleway Drive 39
Zoo Road 22
Theresa Street 49
May Street 20
Belgrade Street 45
Oswald Street 44
Blytheswood Square 1
Robertson Street 2
Leslie Street 35
Wilberforce Drive 52
Gardener Lane 8
Leslie Street 33
Wimbledon Drive 11
Taylor Drive 72

8111590
779646
522185
531620
3003268
242437
77613
268353
399897
221274
469571
348000
399936
226750

Argentinian
Argentinian
Chinese
Chinese
Spanish
Hungarian
Italian
Yugoslavian
Greek
Italian
Italian
Swiss
French
Argentinian

1 22 44 54 SAM fixed 65

5 26 48 58 SAM variable 69

13 34 56 66 ISAM variable 77

Contents of the example files Examples

388 U6184-J-Z125-6-76

U6184-J-Z125-6-76 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3:
14

.3
6

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_s
or

t_
0

80
\p

ro
d_

e
\s

or
t_

e.
k1

1

11 Messages of the sort/merge program

All messages issued by the sort/merge program are output on SYSOUT. In addition,
guranteed messages (warranty messages) can be output in S variables.

11.1 Message output to SYSOUT

Normally, SORT messages are presented in a message format identified by the prefix
SRT1001 through SRT13xx. If SORT is called as a subroutine or via the special access
method SORTZM, with control information being supplied via the SRT0 or SRT1 macro,
each message number is followed by the prefix specified in the first SORT macro call. The
message format is then “SRT1xxx prefix”.

The messages include information on the action to be taken and on the status of the
sort/merge program after these messages appear.
Each message is assigned a priority; this is indicated in the “Meaning” part of the message
description, e.g. priority 2 for message SRT1161. The scope of message output by SORT
can be controlled via these priorities by means of the MIN-MSG-WEIGHT operand of the
SET-SORT-OPTIONS statement. This causes a message to be output only if the priority
defined in MIN-MSG-WEIGHT is less than or equal to the priority of the message. The
appropriate key values are permitted as priority specifications: *ALL denotes the lowest
priority, and *NONE the highest. Keywords can be assigned a message priority by the user.
Specifying *NONE as the priority causes all messages to be suppressed, except for those
concerning internal errors. The default value MIN-MSG-WEIGHT=*NORMAL is preset as
follows:

– In sort/merge runs where SORT is executing as a standalone program, messages with
priority 2 or higher (or with the priority set for the particular installation or user ID) are
output.

– When SORT is called as a subroutine, messages with priority 3 or higher are output.

Special cases may occur during interpretation of the SORT statements:

– Where SYSDTA is not a terminal, all inputs, e.g. the statements passed to SORT, are
listed unchanged on SYSOUT.

Message output to SYSOUT Messages

390 U6184-J-Z125-6-76

– In interactive mode, depending on the GUIDANCE level set in the MODIFY-SDF-
OPTIONS command (see the manual “Commands” [1]), either an incorrectly entered
statement must be re-entered correctly following output of the SORT message or the
correction dialog offered by SDF must be conducted. If, however, SORT only detects
the error during the validation or planning phase, then all the statements have to be
reentered.

At certain points during processing, e.g. at the start or end of a sort/merge run, when a user
exit is activated, or in the event of an abnormal termination of the run, status messages
reporting the current situation are output. In interactive mode, a response to some
messages can be made only if the DIALOG option was selected in the user exit being used.
These action responses can be entered in abbreviated form. Permitted responses are listed
in the associated messages; characters that can be omitted from the response are
enclosed in square brackets (e.g. C[ONTINUE]).

Notes

– SORT messages showing the execution status of the sort/merge program usually begin
with the date, the clock time (time of day) and the CPU time used. Here, the date is
given using the format yyyy-mm-dd, the time format is hh:mm:ss and the CPU time
format is ssssss.ss. In the date format yyyy = year, mm = month and dd = day. In the
time format, hh = hours, mm = minutes und ss = seconds .
The CPU time is relative to the start of the sort/merge run (SRT1001). Partial execution
times must therefore be determined by subtraction; similarly, the total runtime is estab-
lished by working out the difference between the clock times.

– The remarks below concerning the continuation or termination of the sort/merge run
refer to interactive operation. In batch mode, if an invalid statement is encountered, the
next statement is read. This usually results in abnormal termination of the sort/merge
program.

– Messages SRT1016 to SRT1026 provide information on SORT performance. These
messages are displayed whenever necessary and at the end of SORT. If the perfor-
mance counter is set to zero or has remained unchanged since the last output, the
message only appears if MIN-MSG-WEIGHT=*ALL has been entered in the SET-
SORT-OPTIONS statement.

– Tables indicating the status of files following a normal and abnormal termination of the
sort/merge run are given in section “Close processing for SORT files” on page 115.

– In multi-task sorts, there is a separate trace listing for each task involved (i.e. main task
and subtask runs).
However, the trace listings of the subtask runs are produced only if the operand MIN-
MSG-WEIGHT=*ALL was specified in the SET-SORT-OPTIONS statement or if an
error has been detected in the sort subtask.

Messages Message output in S variables

U6184-J-Z125-6-76 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3:
14

.3
6

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_s
or

t_
0

80
\p

ro
d_

e
\s

or
t_

e.
k1

1

11.2 Message output in S variables

For a range of messages, message codes and inserts (number and semantics) are
guaranteed as unchangeable components for future SORT and BS2000/OSD-BC versions.
Such messages are marked as guaranteed messages.

Guaranteed messages of the product SORT

Guaranteed messages in SORT are messages which provide information on

– start or termination of SORT

– number of records sorted

– number of deleted, inserted or totaled records

The following table shows the numbers of these messages and their meanings:

Message
number

Meaning

SRT1001 SORT is starting

SRT1002 SORT is terminating normally

SRT1003 Interruption by the user

SRT1016 Number of input records

SRT1017 Number of records to be sorted

SRT1018 Number of inserted input records

SRT1019 Number of deleted input records

SRT1020 Number of deleted SUM records

SRT1021 Number of sorted records

SRT1022 Number of inserted output records

SRT1023 Number of deleted output records

SRT1024 Number of deleted records on the basis of SELECT-INPUT-RECORDS or
INCLUDE/OMIT

SRT1030 Number of output records

SRT1034 No records to be sorted

SRT1038 SORT aborted

SRT1059 SORT terminated with errors

Message output in S variables Messages

392 U6184-J-Z125-6-76

When the chargeable product SDF-P is used, these guaranteed messages can be output
in structured S variables. S variables allow you to access specific message data directly,
without having to know the output layout of the messages. This makes it possible to control
further processing in SDF-P procedures, irrespective of the contents of these variables.

For guaranteed messages the message attribute “Warranty” is documented by
“ ◆ Warranty: Y” in the line after the message text.

Procedure

An S variable which can record messages must comprise a list of structures. Its name is
freely selectable and is represented by varname in the following. You can define the variable
with the following command:

/DECLARE-VARIABLE NAME=varname(TYPE=*STRUCTURE(DEFINITION=*DYNAMIC)), -
/ MULTIPLE-ELEMENTS=*LIST,SCOPE=*TASK

Note

SCOPE=*TASK need only be specified if the variable is also to be valid in procedures
which will be called after definition of the variable. This is especially the case when
SORT is started via the SORT-FILE command, because this command is implemented
as a procedure.

For each message to be output, a list element of the variable is provided for, which is itself
a structure. This structure comprises the following elements:

Once the S variable has been defined, you assign the message stream to it:

/ASSIGN-STREAM STREAM-NAME=SYSMSG,TO=*VARIABLE(varname)

Then you start SORT or a program which calls SORT as a subroutine. After termination of
SORT or the program, you reassign the message stream to the standard output medium
for messages.

/ASSIGN-STREAM STREAM-NAME=SYSMSG,TO=*STD

Name of the structure element Contents

varname(*LIST).MSG-TEXT Complete message text

varname(*LIST).MSG-ID Message code

varname(*LIST).I0 Insert 0

…

varname(*LIST).In Insert n (n is the number of inserts,
which depends on the message)

Messages Message output in S variables

U6184-J-Z125-6-76 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3:
14

.3
6

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_s
or

t_
0

80
\p

ro
d_

e
\s

or
t_

e.
k1

1

The variable varname contains all guaranteed messages that are output between the two
ASSIGN-STREAM command. This means:

– If you start SORT as an autonomous program with START-SORT or SORT-FILE, the
variable contains all guaranteed messages that were output by SORT as well as the
guaranteed messages of the binder loader system (BLS) which were output during the
SORT run.

– If you call SORT in a subroutine, the variable also contains all guaranteed messages
that were output by the main program.
To suppress output of the additional messages, you can execute the two ASSIGN-
STREAM commands by means of a CMD macro, immediately before and after the
SORT call in the main program.

Note

The MIN-MSG-WEIGHT operand in the SET-SORT-OPTIONS statement has no effect
on the message output in S variables.

For a detailed description of the S variables, see the “SDF-P (BS2000)” manual [13].

Message output in S variables Messages

394 U6184-J-Z125-6-76

Evaluation of S variables

The contents of an S variable can be output by means of the SHOW-VARIABLE command.
After a SORT run, an S variable could contain the following:

/show-variable variable-name=sortmip
.
.
.
SORTMIP(*LIST).MSG-ID = SRT1001
SORTMIP(*LIST).I0 =
SORTMIP(*LIST).I1 = 2014-12-10/18:11:11
SORTMIP(*LIST).I2 = 000000.00
SORTMIP(*LIST).I3 = 08.0A00/BS2000V18.0
SORTMIP(*LIST).MSG-TEXT = % SRT1016 SORT/MERGE INPUT RECORDS:
...............................10 (FROM 01)
SORTMIP(*LIST).MSG-ID = SRT1016
SORTMIP(*LIST).I0 =
SORTMIP(*LIST).I1 =10
SORTMIP(*LIST).I2 = 01
SORTMIP(*LIST).MSG-TEXT = % SRT1030 SORT/MERGE OUTPUT RECORDS:
..............................10
SORTMIP(*LIST).MSG-ID = SRT1030
SORTMIP(*LIST).I0 =
SORTMIP(*LIST).I1 =10
SORTMIP(*LIST).MSG-TEXT = % SRT1002 2014-12-10/18:11:11/000000.08 SORT/
MERGE COMPLETED
SORTMIP(*LIST).MSG-ID = SRT1002
SORTMIP(*LIST).I0 =
SORTMIP(*LIST).I1 = 2014-12-10/18:11:11
SORTMIP(*LIST).I2 = 000000.08

The individual elements of the variables can also be specifically addressed. For example,
the following command gives you the structure of the second message:

/show-variable variable-name=sortmip#2

The message code of the third message is established in the same way:

/show-variable variable-name=sortmip#3.msg-id

In general, the position of a sought message within the variable cannot be predicted. It is
therefore advisable to use an SDF-P procedure with a FOR loop to query a specific
message, as shown in the following example.

Example of an SDF-P procedure for evaluating S variables

After a SORT run you should check whether message SRT1034 (no records sorted) has
been output. The result is displayed on the screen.

Messages Message output in S variables

U6184-J-Z125-6-76 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

.
N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3:
14

.3
6

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_s
or

t_
0

80
\p

ro
d_

e
\s

or
t_

e.
k1

1

/DECLARE-VARIABLE NAME=SORTMIP(TYPE=STRUCTURE), - (1)
/ MULTIPLE-ELEMENTS=LIST,SCOPE=TASK
/DECLARE-VARIABLE NAME=CURRENT(TYPE=STRUCTURE) (2)
/DECLARE-VARIABLE NAME=FOUND,TYPE=BOOLEAN,INITIAL-VALUE=FALSE (3)
/FREE-VARIABLE NAME=SORTMIP (4)
/ASSIGN-STREAM STREAM-NAME=SYSMSG,TO=*VARIABLE(SORTMIP) (5)
/SORT-FILE INPUT-FILES=EINGABE,OUTPUT-FILE=AUSGABE (6)
/ASSIGN-STREAM STREAM-NAME=SYSMSG,TO=*STD (7)
/FOR CURRENT=*LIST(SORTMIP) (8)
/ IF (CURRENT.MSG-ID = 'SRT1034')
/ WRITE-TEXT '------------------------------------'
/ WRITE-TEXT '--- no records sorted ---'
/ WRITE-TEXT '------------------------------------'
/ FOUND = TRUE
/ END-IF
/END-FOR
/IF (FOUND = FALSE) (9)
/ WRITE-TEXT '------------------------------------'
/ WRITE-TEXT '--- at least one record sorted ---'
/ WRITE-TEXT '------------------------------------'
/END-IF

(1) The S variable SORTMIP is defined as a list of structures.

(2) The structure variable CURRENT is defined. It is to be used as the control variable of
the FOR loop.

(3) The bit switch FOUND is defined for recording the result of the search for message
SRT1034. It is initialized with the value FALSE.

(4) If the SORTMIP variable already existed in this procedure before the definition, its
contents are deleted.

(5) As of now, guaranteed messages are stored in the SORTMIP variable.

(6) SORT is started.

(7) Storage of messages in the variable is stopped.

(8) With the help of a FOR loop, the whole structure list is searched for an entry with the
message ID SRT1034. If such an entry is found, the message “no records sorted” is
output and the FOUND switch is set to TRUE.

(9) When the FOR loop is completed, SORT checks whether the FOUND switch is still set
to FALSE. If so, the text “at least one record sorted” is output.

Message output in S variables Messages

396 U6184-J-Z125-6-76

11.3 SORT/MERGE messages

You can query the message text and optionally also the meaning and response texts for a
message code with the HELP-MSG-INFORMATION command.

You can also use an HTML application to find the SORT/MERGE messages on the Manual
Server (URL: http://manuals.ts.fujitsu.com) and on the “BS2000 SoftBooks” DVD.

http://manuals.ts.fujitsu.com

U6184-J-Z125-6-76 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

12 Appendix

12.1 SORT error handling

12.1.1 Handling internal SORT errors

Internal SORT errors are recognizable by

– command return codes with subcode1=32

– the SORT message “SORT INTERNAL ERROR....” or

– some other anomalous behavior by the sort/merge program.

If internal errors of this type occur, the following documentation should be collected and
made available to system maintenance personnel.

Trace listings

The trace listings should record the command and sort/merge statement sequences. If
relevant, the operator’s console log should also be made available.

Memory dumps

Memory dumps provide a record of exception conditions.

On reporting an internal error via message SRT1039, SORT also prints a special SORT
dump. In addition, a general dump is output to a file which can be printed using the utility
routine DAMP. Dump output can be controlled by means of the DUMP operand of the SET-
SORT-OPTIONS statement.

SORT is called as a standalone program SORT error handling

398 U6184-J-Z125-6-76

Data errors

If the specified format of a sort, sum or match field is not compatible with the contents of the
input record, the following message is output:

SRT1047 *** DATA ERROR X’ff’, PROGRAM COUNTER X’zzzzzzzzz’ ***

In this case, depending on the DUMP option set, a dump and the records concerned are
output on SYSLST. In interactive mode, up to 8 lines per record are additionally written to
SYSOUT.

For other types of error, the exception condition should be recorded by means of the DUMP
option.

Files

The command

/SHOW-FILE-ATTRIBUTES FILE-NAME=filename INFORMATION=*ALL-ATTRIBUTES

should be issued so that the file attributes of all files involved in the sort/merge run will be
recorded in the listing. Moreover, all the files should be preserved in the state corresponding
to the error situation. This applies particularly to errors in connection with a checkpoint or
RESTART-PROGRAM.

12.1.2 Error information when SORT is called as a standalone program

When SORT is run as a standalone program, the successful or abnormal termination of the
run is indicated as follows:

– normal (error-free) termination of SORT using the macro TERM MODE=NORMAL

– abnormal termination or abort of SORT using the macro
TERM UNIT=STEP,MODE=ABNORMAL

If SORT is called in a procedure and subsequently terminates in error (TERM
UNIT=STEP,MODE=ABNORMAL), the user can take action by branching into the
procedure via the spin-off mechanism and issuing appropriate commands (e.g. SET-JOB-
STEP command). (See also the SET-JOB-STEP command in the manual “Commands” [1].)

SORT error handling SORT is called as a standalone program

U6184-J-Z125-6-76 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

Status of the SORT run in a job variable

The user can use a program-monitoring job variable (JV) to keep track of the status of the
SORT run (see the “Job Variables” manual [8]). This presupposes that the JV function is
installed on the system. Information about the sort/merge run is stored in the JV by SORT
and can be accessed by the user. The job variable is assigned by the user when calling
SORT, with the command:

/START-SORT MONJV=jvname

The program-monitoring job variable contains the character “P” in byte 16 to identify it as
such. Bytes 0 - 6 have the structure and contents shown below. All other bytes are reserved:

The status indicator reflects the current status of the SORT run and can take the following
values:

The next 4 bytes (bytes 3 - 6) contain the return code indicator. This consists of the termi-
nation code (byte 3) and program information (bytes 4 - 6).

The termination code can take the following values:

The program information consists of the last 3 decimal digits (in EBCDIC) of the key of the
error message or warning message describing the error.

Byte 0 1 2 3 4 5 6

Status indicator

Return code indicator

Termination
code Program information

$R_ SORT running SORT run has been initiated

$T_ Normal end of
SORT run

SORT run has been successfully completed
(TERM MODE=NORMAL).

$A_ Abnormal end of
SORT run

SORT run has been aborted due to a program error or because
a defined error exit has been activated
(TERM UNIT=STEP,MODE=ABNORMAL).

C’0’ Normal end of SORT run. No errors.

C’1’ One or more warning messages issued during SORT run. The results should be checked.

C’2’ Abnormal end of SORT run. The results contain errors or are incomplete.

C’3’ SORT run terminated or aborted due to serious error. Results unusable or not available.

SORT is called as a subroutine SORT error handling

400 U6184-J-Z125-6-76

Example

If the SORT run aborts with error message SRT1206, the return code indicator in bytes
3 - 6 will contain C’3206’.

Note

To evaluate the job variable, the user should issue the command /SHOW-JV; this
causes the job variable contents to be output (see GETJV command, “Job Variables”
manual [8]).

12.1.3 Error information when SORT is called as a subroutine

Error information in register 15

When SORT is called as a subroutine, a return code is passed in the low-order byte of
register 15 upon termination of the sort/merge run. It may take one of the following values:

X’00’ Normal termination of the sort/merge run.

X’FF’ Abnormal termination of the sort/merge run. The error condition is reported
in a message.

If there is an error, the two high-order bytes additionally contain the last 4 places of the
SORT message key. The key is stored as an unsigned packed decimal number.

Example

If the SORT run terminates abnormally with error message SRT1035, register 15
contains the value X’103500FF’.

Error information in the RCF area

If SORT is called as a subroutine and control information is supplied with the SRT0 or SRT1
macro, an RCF area can be defined in the main program (RCF operand in the macro call).
SORT places return information in this area at the end of the sort/merge run and also uses
it as a store for SORT messages output during the run. The transfer control area points to
the address of the RCF area (absolute (A-type) or symbolic (S-type) address).

SORT error handling RCF area

U6184-J-Z125-6-76 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

12.1.4 Structure of the RCF area

The various fields of the RCF area have the following meanings:

RC

The RC information has the same structure as the return code indicator in the job variable
(see page 398).

Store for SORT messages

The messages are stored consecutively up to the end of the RCF area (SYSLST format).
Messages have the following format (where | denotes the total length of a message):

If the RCF area is not sufficient for displaying all messages, the last message is truncated.
The length field is not corrected.

Byte 0 1 2 3 4 … .

RC Store for SORT messages

Bytes 1 - 3: Program information
This contains the last 3 decimal digits (in EBCDIC) of the key of the error or
warning message which describes the error.

Example

If the SORT run terminates abnormally with error message SRT1035, the
RC information area contains the value C’3045’.

l undefined printable message

Overview SORT control tables

402 U6184-J-Z125-6-76

12.2 Structure of SORT control tables

12.2.1 Table overview

The tables and areas that are set up internally in order to supply control information to
SORT as a subroutine have the following structure:

SORT control tables Overview

U6184-J-Z125-6-76 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

Main
program

UEBA

SRTA

RECA

MODA

ALOA

OPTA

NCSA

SUMA

INOA

MSDA

SORT-RECORDS
MERGE-RECORDS

SET-RECORDS-ATTRIBUTES

ASSIGN-EXITS

ASSIGN-RESOURCES

SET-SORT-OPTIONS

MODIFY-CODE

SUM-RECORDS

SELECT-INPUT-RECORDS

SHOW-SORT-DEFAULTS

MODIFY-SORT-DEFAULTS

A (RCF)

SORT

A (SVB)

Store for
SORT
messages

RC

RCF area

Level 1: Statements

Transfer control area (see page 406)
SVB

FCBA or
FILA

NAMA ADD-SYMBOLIC-NAMES

FCB or ASSIGN-FILES

SHOA

SVB SORT control tables

404 U6184-J-Z125-6-76

12.2.2 Input block SVB

Register 1 points to an input block (referred to by the abbreviation SVB). This consists of
an address list of variable length in which the positions of the individual addresses are fixed.
The address list must be aligned on a word boundary. The first word contains an address
that points to the transfer control area. The remaining words contain addresses pointing to
the individual statements (level 1); care must be taken to preserve the proper sequence. A
zero address must be used to represent any statements not included in the input block.
Zero addresses at the end of the SVB may be omitted, but in this case the most significant
bit of the last address has to be set to 1 (COBOL convention).

Structure of input block SVB

Bytes 0 - 3: UEBA
The 1st word of the input block SVB contains the address of the transfer
control area.

Bytes 4 - 7: SRTA
Address of the SORT-RECORDS/MERGE-RECORDS statement.

Bytes 8 - 11: RECA
Address of the SET-RECORD-ATTRIBUTES statement.

Bytes 12 - 15: MODA
Address of the ASSIGN-EXITS statement.

Bytes 16 - 19: ALOA
Address of the ASSIGN-RESOURCES statement.

Bytes 20 - 23: OPTA
Address of the SET-SORT-OPTIONS statement.

Bytes 24 - 27: NCSA
Address of the MODIFY-CODE statement.

Bytes 28 - 31: SUMA
Address of the SUM-RECORDS statement.

Bytes 32 - 35: INOA
Address of the SELECT-INPUT-RECORDS statement.

SORT control tables SVB

U6184-J-Z125-6-76 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

Notes

– When input is at level 0 the SVB consists only of the address of the transfer control area
(UEBA).
At level 1, the SVB must contain at least the address pointers to the transfer control area
(UEBA) and the SORT-RECORDS/MERGE-RECORDS statement or the
SORT/MERGE statement table. These two areas must be specified in every SVB.

– At level 1, the statements are variable-length records prefixed by a 4-byte record length
field. The record length is contained in the first halfword of the record length field.

– The user can set up the SVB input block and the transfer control area using the SRT0
and SRT1 macros.

Bytes 36 - 39: :One of the following:

– FCBA
Address of the FCB reference table
This address is possible for level 2 only. It is not present if PARMOD=31.

or

– FILA
Address of the ASSIGN-FILES statement.

Bytes 40 - 43: NAMA
Address of the ADD-SYMBOLIC-NAMES statement.

Bytes 44 - 47 MSDA
Address of the MODIFY-SORT-DEFAULTS statement.

Bytes 48 - 51 SHOA
Address of the SHOW-SORT-DEFAULTS statement.

Transfer control area SORT control tables

406 U6184-J-Z125-6-76

12.2.3 Transfer control area

The transfer control area, the area referenced by the first word of the SVB, is 5 words long
and contains the following information:

– The transfer indicator (TI).
Among other things, this indicates which transfer level is being used to pass statements
(level 0 or 1).

– A 4-character prefix which acts as an identifier for the SORT run.

– A save area for register 13 when the SORT access method SORTZM is used.

– Address and length of the RCF area.
SORT uses the RCF area to pass the return code, and also as a store for SORT
messages concerning the status of the sort/merge run (up to the specified length).

– Transfer control area extension:
version number of SORT

Structure of the transfer control area

VERS

UKZbUKZa

reserved

Prefix

RCFLG

R13-SAVE

EXT

0

4

8

12

16

20

24

Byte

Transfer control
area extension

A(RCF)

S(RCF)

SORT control tables Transfer control area

U6184-J-Z125-6-76 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

The individual fields of the transfer control area have the following meanings:

Bytes 0 - 1: UKZa
These bytes contain the information for the MULTI operand in SRT0 and
SRT1

X’...0’ MULTI = STD

X’...1’ MULTI = OPT

X’...2’ MULTI = NOIMON

Bytes 2 - 3: UKZb
These bytes contain the transfer indicator, which tells SORT at which level
and in which format to expect the SORT statements. The following values
can be specified in the UKZ (the weighting factors are given in each case):

X’...0’ The SORT statements are passed via SYSDTA (level 0).

X’...4 The SORT statements are passed in the main memory area of the
calling program (level 1). Register 1 points to the SVB.

X’...8’ The SORT statements are passed as statement tables in the main
memory area of the calling program (level 2). Register 1 points to the
SVB.

X’..0.’ STXIT entries are used by SORT at any level.

X’..2.’ STXIT entries are not used by SORT at any level. Special dumps are
not taken in exception conditions, and the option of using the SEND-
MSG command to intervene in the processing is not available.

X’..4.’ Transfer control area extension exists.

X’..8.’ The statements are expected in SDF format.

X’.0..’ No RCF area is set up. No prefix. Save area for register 13.

X’.2..’ Address of the RCF area is specified in A format (as an A-type, or
absolute, address).

X’.3..’ Address of the RCF area is specified in S format (as an S-type, or
symbolic, address).

X’.4..’ The R13-SAVE area is used by the SORTZM macros to save the
contents of register 13 (provided RDONLY=NO is specified).

X’.8..’ Prefix present.

X’0...’ SORT messages are output to SYSOUT.

X’1...’ SORT messages are output to SYSLST.

X’2...’ SORT messages are output to SYSOUT and SYSLST.

X’3...’ SORT messages are output to the RCF area only, not to SYSOUT
and/or SYSLST.

SORT statement tables SORT control tables

408 U6184-J-Z125-6-76

12.2.4 SORT statement tables

Statement tables (in ISP via level 2) continue to be supported for reasons of compatibility.

Note

Weighting factors may be usefully combined by logical ORing.

Example

X’2284’ means:
SORT statements are passed at level 1. Register 1 points to the
SVB.
Statements are expected in SDF format.
The address of the RCF area is in A format.
Messages are output to SYSOUT and SYSLST.

Bytes 4 - 7: Prefix
A 4-character prefix identifying the SORT run.

Bytes 8 - 12: R13-SAVE
Save area for register 13 when the SORT access method SORTZM is used
(with RDONLY=NO).

Bytes 12 - 15: A(RCF)
Address of the RCF area in A address format.

Bytes 14 - 15: S(RCF)
Address of the RCF area in S address format.

Bytes 16 - 17: RCFLG
Length of the RCF area.

Byte 18 - 19: reserved

Bytes 20: EXT
Transfer control area extension

X‘8.‘ SORT version expected

Bytes 21- 27: VERS
SORT version in the format nn.nann

Appendix Sort table UTF16

U6184-J-Z125-6-76 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

12.3 Sort table UTF-16

The table below shows all the codes of Unicode UTF-16 which are currently supported.
They are listed in the order in which they are arranged by SORT.

The columns have the following meaning:

hex Hexadecimal encryption

Character Printable form of the character or its meaning

var x Variables collation element

(x) Character to which a variable collation element belongs

multi x The character consists of multiple base characters (no diacritics)

Level 1 = At level 1 the character has the same value as the character in the pre-
vious line

> At level 1 the character has a higher value than all preceding characters

Level 2 = At level 2 the character has the same value as the character in the pre-
vious line

> At level 2 the character has a higher value than the character in the pre-
vious line

Level 3 = At level 3 the character has the same value as the character in the pre-
vious line

> At level 3 the character has a higher value than the character in the pre-
vious line

Sort table UTF16 Appendix

410 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

COMBINING TILDE

Appendix Sort table UTF16

U6184-J-Z125-6-76 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

Sort table UTF16 Appendix

412 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

Appendix Sort table UTF16

U6184-J-Z125-6-76 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Zeichen var multi Ebene
1 2 3

Sort table UTF16 Appendix

414 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

Appendix Sort table UTF16

U6184-J-Z125-6-76 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

Sort table UTF16 Appendix

416 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

Appendix Sort table UTF16

U6184-J-Z125-6-76 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

Sort table UTF16 Appendix

418 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

Appendix Sort table UTF16

U6184-J-Z125-6-76 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

Sort table UTF16 Appendix

420 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

m

M

n

N

ñ

Ñ

Appendix Sort table UTF16

U6184-J-Z125-6-76 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

Char. equivalent to No
(hex: 004E 0366)

'

o

COMBINING LATIN SMALL
LETTER O*

O

º

ó

Ó

ò

Ò

ô

Ô

Sort table UTF16 Appendix

422 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

ö

Ö

õ

Õ

�
Char. equivalent to oe
(hex: 006F 0065)

�
Char. equivalent to OE
(hex: 004F 0045)

ø

Ø

p

P

q

Q

Appendix Sort table UTF16

U6184-J-Z125-6-76 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

r

R

s

S

�

�

Sort table UTF16 Appendix

424 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

ß
Char. equivalent to ss
(hex: 0073 0073)

t

T

u

U

ú

Ú

ù

Ù

û

Û

Appendix Sort table UTF16

U6184-J-Z125-6-76 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

ü

Ü

v

V

w

W

x

X

Sort table UTF16 Appendix

426 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

y

Y

ý

Ý

ÿ

�

z

Z

�

�

Appendix Sort table UTF16

U6184-J-Z125-6-76 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

þ

Þ

Sort table UTF16 Appendix

428 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

μ

	 (

Appendix Sort table UTF16

U6184-J-Z125-6-76 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

Sort table UTF16 Appendix

430 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

Appendix Sort table UTF16

U6184-J-Z125-6-76 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

Sort table UTF16 Appendix

432 U6184-J-Z125-6-76

* Character cannot be displayed

hex Character var multi Level
1 2 3

Appendix Sort table UTF16

U6184-J-Z125-6-76 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

4.
37

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

4
04

1
00

_
so

rt
_0

80
\p

ro
d

_e
\s

or
t_

e.
an

h

* Character cannot be displayed

hex Character var multi Level
1 2 3

Sort table UTF16 Appendix

434 U6184-J-Z125-6-76

U6184-J-Z125-6-76 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
27

. N
ov

em
b

er
 2

01
4

 S
ta

n
d

13
:1

4.
33

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2-
S

W
K

\S
O

R
T

\1
40

41
0

0_
so

rt
_0

8
0\

pr
od

_
e\

so
rt

_e
.li

t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

[1] BS2000/OSD-BC
Commands
User Guide

[2] BS2000/OSD-BC
Introductory Guide to DMS
User Guide

[3] BS2000/OSD-BC
DMS Macros
User Guide

[4] Assembler Instructions (BS2000/)
Reference Manual

[5] ASSEMBH (BS2000)
Reference Manual

[6] BS2000/OSD-BC
Executive Macros
User Guide

[7] SDF (BS2000)
SDF Dialog Interface
User Guide

[8] JV (BS2000)
Job Variables
User Guide

[9] BS2000/OSD-BC
Introductory Guide to Systems Support
User Guide

http://manuals.ts.fujitsu.com

Related publications

436 U6184-J-Z125-6-76

[10] XHCS (BS2000)
8-Bit Code and Unicode Processing in BS2000
User Guide

[11] IMON (BS2000)
Installation Monitor
User Guide

[12] SORT (BS2000)
Ready Reference

[13] SDF-P (BS2000)
Programming in the Command Language
User Guide

[14] POSIX (BS2000)
POSIX Basics for Users and System Administrators
User Guide

[15] POSIX (BS2000)
Commands
User Guide

[16] Unicode in BS2000
Introduction

U6184-J-Z125-6-76 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

8.
01

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

40
41

00
_

so
rt

_0
80

\p
ro

d
_e

\s
or

t_
e.

si
x

Index

0
level 209
level - SORT call at 357, 359

1
level 209
level - SORT call at 361

24-bit addressing, user exit, note 348
31-bit addressing, user exit, note 348

A
abnormal SORT termination 398
abnormal termination of sort/merge run 116
access to POSIX 117
ACS 119
ADD-FILE-LINK command 91, 103
ADD-SYMBOLIC-NAMES statement 405
address field 31
alias catalog service 119
allocation of storage space for work files 106
ASSIGN-EXITS statement 404

OUTPUT 345
ASSIGN-FILES statement 23, 94, 293, 296, 405

example 288
ASSIGN-RESOURCES statement 153, 404
assignment

of files 287
of SORT files 92

auxiliary files 108
on disk 110
on tape 109

C
calculation

of auxiliary files 108

of the CORE value 265
of work file size 106

calling SORT
as a subroutine 206
as a subroutine at level 0 210
as a subroutine at level 1 211
at level 0 212
at level 1 215

CCS
coded character set 81
EDF03DRV 321

CCSN (coded character set name) 81
change file, attributes, default definitions 329
change sorting order

FORMAT=EBCDIC-DIN, example 315
MODIFY-CODE, example 318

character set
coded 81
codes 38
extended 81

characters
hexadecimal, MODIFY-CODE, example 318

checkpoint 263
checkpoint file 112

close processing 113
CHECKPOINT operand

MERGE-RECORDS statement 263
SORT-RECORDS statement 263

close processing
auxiliary files 110
checkpoint files 113
SORT files, overview 115, 116
work files 107

Index

438 U6184-J-Z125-6-76

closing
input files 96
merge input files 98

code 81
code conversion for sort fields

ETB user exit 255
VIRTUAL-TRANSLATE user exit 256

code conversion table
for EBCDIC to extended ASCII 46
for extended ASCII to EBCDIC 47

coded character set (CCS) 38, 81
coded character set name (CCSN) 81
coexistence of product versions 283
command

ADD-FILE-LINK 91, 103
GETJV 400
representation of syntax 126
RESTART-PROGRAM 264
SEND-MESSAGE-TO 261
SHOW-JV 400

command return code 202
COMPOUND-RECORD, example 329
condition for selection

SELECT-INPUT-RECORDS, example 325
constant field 56
control fields 37
conversion table

for EBCDIC to extended ASCII code 46
for extended ASCII to EBCDIC code 47
for TRANSLATE-CHARACTER 51, 52

conversion, sort field 43
CORE allocation 265
CORE operand

ASSIGN-RESOURCES statement 266
CORE value 265

calculation 265
creating

auxiliary files 108
work files 105

cycle sorting 268

D
default value, modify 152
definition sequence for sort/merge runs 21

DIN, see EBCDIC
differences, example 315

disk auxiliary files 110
DOMINO phase 19
dummy files 89

E
E15 341

INPUT user exit 341
E23

ASSIGN-EXITS 345
see E35 345
see new E35 345

E35
ASSIGN-EXITS OUTPUT 345
see old E23 345
see OUTPUT 345
see user exit OUTPUT 345

EBCDIC-DIN format 44
EBCDIC-INTERNATIONAL format 44
EBCDIC-ISO-EBCDIC format 45
EBCDIC, see DIN

differences, example 315
EDF03DRV

CCS 321
example 321

edit mask 60
end merge and output phase 19
error information 398, 400
ETB=PHYSICAL-TRANSLATE

example 349
example

define condition with SELECT-INPUT-
RECORDS 325

DIN, see EBCDIC, differences 315
EDF03DRV 321
FORMAT=MODIFY-CODE 318
full sort of multiple files 310
full sort, input file = output file 313
ISAM file sort 308
merging sorted files 339
SELECT-INPUT-RECORDS 325
sort field, see new ISAM key 308
SRT0 macro 357

Index

U6184-J-Z125-6-76 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

8.
01

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

40
41

00
_

so
rt

_0
80

\p
ro

d
_e

\s
or

t_
e.

si
x

SRT1 macro 361
SRTCLSE macro 367
SRTGET macro 367
SRTOPEN macro 367
SRTPUT macro 367
summation 325
symbolic field name 313
TRANSLATE-CHARACTER 321

EXLST exits 251, 253
EXLST-FOR-INPUT user exit 233, 251
EXLST-FOR-OUTPUT user exit 233, 253
extend, sum field overflow 325
extended character set 81
extended host code support (XHCS) 81
EXTENDED-CHARACTER format 48, 321
EXTERNAL-COMPARE user exit 233, 258

F
field name, symbolic, example 313
file

assignment 287
change attributes 329
full sort, multiple, example 310
input file = output file, example 313
merging, example 339
variable record length 303

file attributes
of merge input files 97
of multiple input files 94
of the output file 99

file link name 90
of the input file 93
of the output file 99
SORTIN 287, 305, 366, 371
SORTOUT 287, 288, 305, 311, 357, 366, 371
SORTWKEX 109

file name, preset 283
file processing with EDT, ISAM key problems 309
files larger than 32 GBytes 120
filler character 60
FINISH-INPUT entry, user exits 235
fixed

file names 283
IDs 283

format
EBCDIC-DIN 44
EBCDIC-INTERNATIONAL 44
EBCDIC-ISO-EBCDIC 45
EXTENDED-CHARACTER 48, 321
MODIFY-CODE 45
PHYSICAL-TRANSLATE 45
TRANSLATE-CHARACTER 48, 321
UNICODE-CHARACTER 53
VIRTUAL-TRANSLATE 45

FORMAT=MODIFY-CODE, example 318
full sort 25

input file = output file, example 313
multiple files, example 310

G
GETJV command 400

H
hexadecimal character pairs

MODIFY-CODE, example 318

I
IGNORE-LENGTH-FIELD 118, 171, 199
ILSORT entry point 206
IMON 281
important information symbol 15
input and presorting phase 19
input block SVB 210, 211, 404
input files

for merge runs 97
for sort runs 93

INPUT user exit 233, 239
example 341

installation 281
INT user exit 233, 261
interchangeability 285
internal merge phase 19
internal SORT errors 397
ISAM file sort, example 308
ISAM files, sort in ascending order 308
ISAM key 31, 101

changed in sorted file 309
duplicate 312

Index

440 U6184-J-Z125-6-76

problems with, file processing with EDT 309
ISAM output files 101
ISP statements 127

J
job variable 399

L
level 0 209, 210, 359

SORT call at 357
level 1 209, 211

SORT call at 361
Link name

SORTWK 105
SORTWKx 105
SORTWKxx 108

M
macro

SRTCLSE, example 367
SRTGET, example 367
SRTOPEN, example 367
SRTPUT, example 367

macros
for SORT 212
SRT1, syntax note 364

main code 202
main task 272
mask field 60
match constants 67
match fields 66
MERGE-RECORDS statement 36, 263, 339,

404
best use 310

merging 17, 35
merging files, example 339
message priority 389
messages 389
MODIFY-CODE format 45
MODIFY-CODE statement 404

example 318
FORMAT=, example 318

MODIFY-SORT-DEFAULTS, operand
description 152

modifying default values 152
MODULE entry, user exits 236
MSG operand, OPTION statement 389
multi-file/multi-volume set 96
multi-task sorting 271
multiple sorting

example 371
with SORTZM 222

multiple sorting with SORTZM
example 380

N
NEUTRAL-TRANSLATE user exit 233
normal SORT termination 398
normal termination of sort/merge run 115

O
object module library 92

SORTMODS 114
open system 117
opening

input files 95
merge input files 98

operand REMAINDER-EXPLICIT
remainder fields 368

optimization of sort runs 265
OPTIMIZATION operand

SET-SORT-OPTIONS statement 279
order, change, FORMAT=EBCDIC-DIN,

example 315
output file 99
OUTPUT user exit 233, 345

in 24-bit addressing 246
in 31-bit addressing 244

overflow, extend sum field 325
overlap, sort field 42
overlapping sum fields 58

P
PAM key 32
PARAMETER-MODE

addressing, note 348
example 345
important note 348

Index

U6184-J-Z125-6-76 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

8.
01

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

40
41

00
_

so
rt

_0
80

\p
ro

d
_e

\s
or

t_
e.

si
x

passing control information to SORT 209
PHYSICAL-TRANSLATE

format 45
user exit 233, 255
user exit, example 349

PHYSICAL-TRANSLATE user exit
example 349

planning phase 19
PLANNING user exit 233, 238, 265
POSIX 117

file 117
file system 117
input file 94, 97
output file 104

preparatory phase 19
preventing overflow in SUM-RECORDS 325
print mask 60
priority classes 266
product versions, coexistence 283
program information 399

R
RCF area 213, 216, 400
Readme file 13
RECA, SET-RECORD-ATTRIBUTES 404
recoding of sort fields

ETB user exit 255
VIRTUAL-TRANSLATE user exit 256

record format/record length modification 76
using SET-RECORD-ATTRIBUTES

statement 77
via defined user exits 77
via undefined user exits 78

record length field
as sort field 41, 118
in sort statement 118, 157, 171, 199, 303

record length, calculation of variable records 295
record selection during input 76
RECORDS-PER-CYCLE operand

MERGE-RECORDS statement 263
records, summation 79
register conventions, user exits 236

remainder fields 54
REMAINDER-EXPLICIT operand 72, 330,

335, 368, 374
REMAINDER-EXPLICIT 72, 330, 335, 368, 374
RESTART-PROGRAM command 264
retrieval address (tag sort) 31
return code indicator 399

S
SDF statements 127
SDF, representation of syntax 126
SELECT-INPUT-RECORDS

example 325
SRT1 macro 363

SELECT-INPUT-RECORDS statement 66, 404
selection of sort criteria 287
selection sort 27, 288, 289

default fixed record length 329
example 332
see SORT-TYPE=COMPOUND-RECORD,

example 329
variable file, example 329

SEND-MESSAGE-TO command 261
SET-RECORD-ATTRIBUTES 374

example, selection sort 329
SET-RECORD-ATTRIBUTES, RECA 404
SET-SORT-OPTIONS

SRT1 macro 363, 374
statement 152, 404

SHOW-JV command 400
SHOW-SORT-DEFAULTS operand

description 174
size of work files 106
SORT

and ACS (notes) 119
as a subroutine 206
in an XS environment 80
start 191
TU variant 191

SORT access method SORTZM 220
example 366, 371

SORT call at level 0 359
example 357

SORT call at level 1, example 361

Index

442 U6184-J-Z125-6-76

sort criteria 287
sort field 38

for variable-length records 40
record length field 41, 118

sort field conversion 43
sort field overlap 42
SORT file assignment 92
SORT files 90
sort functions 24
sort key 38
SORT macros 212
sort run

execution 287
optimize 265
status 399

SORT statement tables 408
SORT termination with error 398
sort types 24
SORT-RECORDS statement 263
SORT-TYPE=COMPOUND-RECORD

example 329
see selection sort, example 329

SORT-TYPE=TAG-TRAILER 337
SORT, access method SORTZM

example 380
SORTCKPT 22
SORTIN 287, 305, 366, 371
sorting 17
sorting ISAM files in ascending order 308
sorting order

change, FORMAT=EBCDIC-DIN,
example 315

change, MODIFY-CODE, example 318
SORTINxx 287
SORTLIB 191, 279, 288
SORTMODS 22, 92, 114
SORTOUT 287, 288, 305, 357, 366, 371
SORTU entry point 206
SORTWK 105
SORTWKEX 109
SORTWKx 105
SORTWKxx 108

SORTZM 220
example 380
SORT access method, example 366, 371

SORTZM access method 220
space allocation for work files 106
specify version 192, 200
SRT0 macro 212

example 357
SRT1 macro 215

example 361
note, syntax 364
syntax 364

SRTCLSE macro 229
example 367

SRTGET macro 227
example 367

SRTOPEN macro 223
example 367

SRTPUT macro 225
example 367

SRTXKERN 279
statement

ADD-SYMBOLIC-NAMES 405
ASSIGN-EXITS 404
ASSIGN-FILES 23, 94, 296, 405
ASSIGN-RESOURCES 153, 404
MERGE-RECORDS 36, 263, 339, 404
MODIFY-CODE 404
representation of syntax 126
SELECT-INPUT-RECORDS 66, 404
SET-SORT-OPTIONS 152, 404
SORT-RECORDS 263
SUM-RECORDS 404

status of SORT run 399
STXIT 212, 407
STXIT facility 216
subcode1 (SC1) 202
subcode2 (SC2) 202
substitute characters 60
subsystem ACS 119
subtask 273
sum field 58

extend, see overflow 325

Index

U6184-J-Z125-6-76 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

7.
 N

o
ve

m
be

r
20

1
4

 S
ta

nd
 1

3
:1

8.
01

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

S
W

K
\S

O
R

T
\1

40
41

00
_

so
rt

_0
80

\p
ro

d
_e

\s
or

t_
e.

si
x

SUM-RECORDS
example 325
prevent overflow 325
statement 404

summation
example 325
of records 79

supplying control information to SORT as a
subroutine 403

SVB input block 210, 404
symbolic field name,example 313
syntax representation 126
syntax, SRT1 macro 364

T
tables, TRANSLATE-CHARACTER 51
tag records 30, 34
tag sort 29

example 337
retrieval address 31

tape auxiliary files 109
TERMINAL-ABNORMAL entry

user exits 237
transfer control area 212, 406
transfer indicator 406
TRANSLATE-CHARACTER

conversion tables 51
example 321
format 48, 321

U
Unicode 85
Unicode Default Collation Table 53
user exit

EXLST-FOR-INPUT 233, 251
EXLST-FOR-OUTPUT 233, 253
EXTERNAL-COMPARE 233, 258
INPUT 233, 239
INT 233, 261
NEUTRAL-TRANSLATE 233
OUTPUT 233, 244, 246, 345
PHYSICAL-TRANSLATE 233, 255
PLANNING 233, 238, 265
VIRTUAL-TRANSLATE 256, 353

user exits 233
note on 24/31-bit addressing 348

V
variable record format, sort fields 40
variable record length

data byte position 303
version selection, priorities 284
version specification 192, 200
virtual merging 267
VIRTUAL-TRANSLATE format 45
VIRTUAL-TRANSLATE user exit 256, 353

W
work files 105

size 106

X
XHCS (extended host code support) 81
XPG4 117

Index

444 U6184-J-Z125-6-76

	Contents
	Preface
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manual
	Notational conventions

	SORT functions and definitions
	Command and statement sequences in sort and merge runs
	Sort types
	Full sort
	Selection sort
	Tag sort
	Merge

	Control fields for sort/merge runs
	Sort fields
	Remainder fields
	Constant fields
	Sum fields
	Mask fields
	Match fields and match constants
	Symbolic names
	Overlap table for the different field types

	Record processing and modification in SORT
	SORT in an XS environment (31-bit addressing)
	Using extended character sets in SORT
	SORT-specific applications of extended character sets
	Sorting with extended codes
	CCSN entry in the SORT files
	Explicit CCSN entry for data records and output file
	Converting character constants into the code of the data records
	Conditions for mask fields
	Using extended character sets in user exits

	Use of Unicode character sets with SORT
	Normalization
	Characters with special processing
	Characters which are not supported

	Files of the sort/merge program SORT
	Input files
	Input files for sort runs
	Input files for merge runs
	PAM key elimination for input files

	Output file for sort/merge runs
	PAM key elimination for the output file
	POSIX output file

	Work files
	PAM key elimination for work files

	Auxiliary files
	PAM key elimination for auxiliary files

	Checkpoint file
	PAM key elimination for checkpoint files

	Object module library SORTMODS
	Statement files
	Close processing for SORT files
	Processing POSIX files with SORT
	POSIX in BS2000
	Sorting POSIX files with SORT

	SORT and ACS
	Working with files larger than 32 GB
	Creating files larger than 32 GB
	Tag sort
	Recommendations when working with large files

	SORT statements
	Input sources
	SDF syntax representation
	Error handling
	Overview of the SORT statements
	ADD-SYMBOLIC-NAMES
	ASSIGN-EXITS
	ASSIGN-FILES
	ASSIGN-RESOURCES
	END
	MERGE-RECORDS
	MODIFY-CODE
	MODIFY-SORT-DEFAULTS
	SELECT-INPUT-RECORDS
	SET-RECORD-ATTRIBUTES
	SET-SORT-OPTIONS
	SHOW-SORT-DEFAULTS
	SORT-RECORDS
	SUM-RECORDS

	Calling SORT
	Calling SORT as a standalone program
	START-SORT
	SORT-FILE
	Command return codes

	Calling SORT as a subroutine
	Passing control information to SORT
	Level 0
	Level 1

	SORT macros
	SRT0: call to SORT at level 0
	SRT1: call to SORT at level 1

	SORT access method SORTZM
	Function of the SORT access method SORTZM
	Macros of the SORT access method SORTZM
	SRTOPEN: initiate sorting
	SRTPUT: pass record to SORT
	SRTGET: fetch record from SORT
	SRTCLSE: terminate sorting
	Example

	SORT user exits
	PLANNING: planning completed
	INPUT: input record processing
	OUTPUT: output record processing
	WORK-FILE-OVERFLOW
	EXLST-FOR-INPUT EXLST: exit for input files
	EXLST-FOR-OUTPUT: user exit for output files
	PHYSICAL-TRANSLATE: special character conversion table
	VIRTUAL-TRANSLATE: special character conversion table
	EXTERNAL-COMPARE: sequence defined by user routine
	TRANSLATE-CHARACTER: sequence defined by equating tables and coded character set
	INT: sort/merge run interrupt

	Checkpoint processing
	Optimization of sort runs
	Suitable CORE allocation
	Virtual merging
	Choice of sort method
	Code conversion
	Cycle sorting
	Multi-task sorting

	Suitable choice of file characteristics
	Record summation
	SORT as subsystem
	Use of the OPTIMIZATION operand in the SET-SORT- OPTIONS statement
	Modifying the preset default values for SORT

	Installation
	Examples
	Introduction
	Calling SORT
	Assigning the files
	Defining the sort criteria
	Terminating statement input and starting the sort run

	Example: Sorting a file with fixed-length records
	Example: Sorting a SAM file with variable record format
	Overview of the application examples
	SORT as main program
	Connection of user routines
	SORT as a subroutine
	Sorting according to Unicode

	Examples
	Example 1: Full sort of fixed format records
	Example 2: Full sort of variable format records
	Example 3: Full sort of an ISAM input file into a SAM output file
	Example 4: Full sort of ISAM files with variable record format
	Example 5: Full sort of multiple files with variable record format
	Example 6: Full sort (input file = output file)
	Example 7: Full sort EBCDIC to DIN standard for text ordering
	Example 8: Full sort using FORMAT=*MODIFY-CODE
	Example 9: Full sort using FORMAT=*EXTENDED-CHARACTER and FORMAT=*TRANSLATE-CHARACTER
	Example 10: Full sort with summation and SELECT-INPUT-RECORDS
	Example 11: Selection sort of variable format records
	Example 12: Selection sort (binary) of fixed-format records
	Example 13: Selection sort of a POSIX file
	Example 14: Tag sort of fixed-format records
	Example 15: Merging files
	Example 16: INPUT user exit
	Example 17: OUTPUT user exit
	Example 18: PHYSICAL-TRANSLATE user exit
	Example 19: VIRTUAL-TRANSLATE user exit
	Example 20: SORT as a subroutine (level 0)
	Example 21: SORT as a subroutine (level 1)
	Example 22: SORT access method
	Example 23: SORT access method (multiple sort)
	Example 24: Full sort according to data in Unicode

	Contents of the example files
	Preliminary remark
	Contents of the file RESTAURANT
	Contents of the file LITERATURE
	Contents of the file MUSEUM
	Contents of the file CULTURE.1
	Contents of the file CULTURE.2
	Contents of the file CULTURE.3

	Messages of the sort/merge program
	Message output to SYSOUT
	Message output in S variables
	SORT/MERGE messages

	Appendix
	SORT error handling
	Handling internal SORT errors
	Error information when SORT is called as a standalone program
	Error information when SORT is called as a subroutine
	Structure of the RCF area

	Structure of SORT control tables
	Table overview
	Input block SVB
	Transfer control area
	SORT statement tables

	Sort table UTF-16

	Related publications
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

