
U9583-J-Z125-1-7600 1

1 Preface

1.1 Brief product description of CMX(BS2000)

The transport access system CMX(BS2000) is one of the BS2000 products (DCAM,
CMX(BS2000), SOCKETS(BS2000)) that provide an interface to the BCAM (Basic
Communication Access Method) transport system. This interface is also available in the
SINIX and MS-DOS operating systems. CMX(BS2000) can be used to create application
programs that can communicate with other applications irrespective of the transport
system.

1.2 Target group

This manual is intended for programmers who develop transport service (TS) applications.
These TS applications are used for communication, and consist of application programs
implemented in C.

In order to work with CMX(BS2000), you must be familiar with the C programming language
and the C development system. Knowledge of the principles and methods of data commu-
nications will also prove helpful, in particular of the OSI Reference Model as standardized
in ISO 7498.

2 U9583-J-Z125-1-7600

Summary of contents Preface

1.3 Summary of contents

This manual describes the CMX(BS2000) program interfaces, i.e. all the tools you will need
in order to develop TS applications of your own.
Diagnostic information is included in the appendix.

Structure of the manual

The manual is divided into two parts:

Part 1 is intended to help you get acquainted with CMX and focuses on helping the first-
time user to create TS applications.
This part describes the mapping of a TS application onto the task concept of your system
and the allocation of transport connections to tasks of the TS application. The structure of
a TS application is explained, showing how it can be divided into three communication
phases and how the functions of the program interfaces are used within these phases. In
addition, you will learn how to obtain diagnostic information from CMX(BS2000) in the case
of errors. To explain the individual programming steps, program fragments have been
provided as examples.

Part 2 consists of the chapter entitled "The ICMX program interface". This chapter gives a
detailed description of the CMX(BS2000) program interface and each individual function
call of this interface and its parameters. The description is arranged in alphabetical order.
The chapter begins with a summary of all the information you will need to use the functions.

The description takes into account all the various ways of connecting a computer to a
network (LAN and WAN).

The program interface is described independent of which operating system is used.

U9583-J-Z125-1-7600 3

2 The CMX(BS2000) transport access system
Any application that wishes to exchange data with another application in some other end
system requires the services of a transport system. The transport system performs all the
necessary tasks to set up the connection and to transport data over the physical media
(lines, computers). Applications that use the services of a transport system are called
TS applications.

A TS application should be capable of setting up connections and exchanging data using
different connection mechanisms. As far as possible, the TS application should be
independent of the underlying connection mechanism. These may differ in various
respects, e.g. the size of the data unit that can be transferred, the format of the partner
application’s transport address to be passed, and the format of the TS application’s address
in the local system. For this reason, CMX(BS2000) provides TS applications with a uniform
interface known as the ICMX program interface. This interface provides TS applications
with access to the services of transport systems that conform to the standards laid down in
the OSI Reference Model. CMX(BS2000) is thus a transport access system.

4 U9583-J-Z125-1-7600

Communication between TS applications Overview

2.1 Communication between TS applications

BS2000 system Partner system Layers of the OSI
(DCM V11.0 or later) (e.g. SINIX system) Reference Model

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
   
 TS   Partner TS  7 Application layer
 application   application  6 Presentation layer
    5 Session layer
ÀÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ

 
ÚÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄ¿
 BS2000   
 ÄÄÄÁÄÄÄ   
 ICMX   *  Transport access system
 ÄÄÄÄÄÄÄ   
ÀÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ

 
ÚÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄ¿
    4 Transport layer
 Transport   Transport  3 Network layer
 system   system  2 Data link layer
    1 Physical layer
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

↑ ↑
 
ÀÄtransmission mediumÄÄÙ

* = Transport access system in the partner system
The CMX(BS2000) transport access system

A TS application that uses CMX(BS2000) functions can thus communicate in a uniform way
with the following TS applications:

– other TS applications in the same computer (local communication),

– TS applications in other SINIX or SINIX-ODT computers which use the functions of the
CMX(L) transport access system,

– TS applications in host computers running BS2000 and using the functions of the
DCAM and CMX(BS2000) transport access systems, or of UTM.

– TS applications in communication computers running PDN and using the functions of
the CAM transport access system,

– TS applications in systems of other vendors, assuming they conform to the standards
described in the OSI model (for example, ICP/IC according to RFC 1006)

U9583-J-Z125-1-7600 5

Overview Communication between TS applications

For the programmer, the ICMX uniform program interface means that he or she can develop
TS applications independent of specific data transmission characteristics, i.e. only the
ICMX functions need to be programmed for communication. These functions can be used
to:

– attach the TS application to CMX(BS2000),
– set up transport connections to partner applications,
– send and receive data,
– control the data flow,
– disconnect transport connections,
– detach TS applications from CMX(BS2000).

TS applications that use the functions of CMX(BS2000) interfaces are also called
CMX(BS2000) applications in the description below. This term is always used whenever it
is necessary to make a distinction between TS applications running under CMX(BS2000)
and other TS applications.

6 U9583-J-Z125-1-7600

CMX(BS2000) program interfaces Overview

2.2 The CMX(BS2000) program interfaces - an overview

CMX(BS2000) provides the programmer of TS applications with functions for connection-
oriented communication. These functions cover local services, connection handling and
data exchange. They are available via the ICMX program interface.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 TS applications 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ


ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
  
 ÄÁÄ 
 ICMX 
 ÄÂÄ 
  
 ÚÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿ 
  Communication  
  functions  
   
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ 
 
 C M X 
 
ÀÄÄÙ
CMX(BS2000) program interface

The CMX(BS2000) program interface is a library interface, i.e. the functions of
CMX(BS2000) are provided in the form of a connection module (YDCMXLNK) and a large
library module (YDCMXLIB). The connection module is located with the cmx.h header file in
the SYSLIB.CMX.010 library. The large library module is provided in the SYSLNK.CMX.010
library and is installed as the CMX-TU subsystem.

U9583-J-Z125-1-7600 7

Overview CMX(BS2000) program interfaces

2.2.1 CMX(BS2000) functions for communication (ICMX)

The CMX(BS2000)(ICMX) program interface includes all functions which are used by a
TS application for communication.

The following function groups are provided at the program interface:

Functions for attaching to and detaching from CMX(BS2000)

When a TS application attaches itself to CMX(BS2000), it passes its LOCAL NAME, i.e. its
own address within the local system, to CMX(BS2000). Only then is the TS application
addressable. After communication, the TS application must detach itself from
CMX(BS2000).

Functions to establish a connection

This includes the following functions:

– active connection setup:
The two functions in this group are used to request a connection with a remote TS appli-
cation (connection request), and to set up the connection after receipt of a positive
response from the remote TS application (connection confirmation).

– passive connection:
The two functions in this group serve to accept a connection setup request from a
remote TS application (connection indication) and to respond to this request
(connection response).

Functions to close down a connection

The two functions in this group are used to actively close down a connection (disconnection
request), or to accept a disconnection request (disconnection indication).

Functions to redirect a connection

Within a TS application, a connection may be passed on (redirected) to another task of the
same TS application. The two functions in this group can be used to redirect a connection
and to accept a connection (redirect request) from another task (redirect indication).

8 U9583-J-Z125-1-7600

CMX(BS2000) program interfaces Overview

Functions for the exchange of data

These functions allow you to exchange data as follows:

– send (data request) and receive (data indication) normal data.
– send (expedited data request) and receive (expedited data indication) expedited data.

Expedited data refers to small amounts of data that can be transmitted to a communi-
cation partner with priority over the main data stream. These functions are optional.

Functions for flow control

If you currently cannot or do not wish to receive any data, you can have the data flow
stopped by informing CMX(BS2000). CMX(BS2000) will then stop signaling incoming data.
The communication partner is (usually) notified, and will not be permitted to send you any
further data until you release the data flow. The data flow can be controlled separately for
normal and expedited data (datastop, datago, xdatstop, xdatgo).

Functions to request information

This group includes functions that can be used to:

– await or fetch an event (event).
A typical example of an event is a disconnection request from the communication
partner.

– request information on errors (error).
– request information on CMX(BS2000) parameters (info).
– query LOCAL and GLOBAL NAMES, and TRANSPORT ADDRESSES (get local name,

get name, get address).

Function for synchronizing other events

This function can be user for wakening a task (another or its own) from the waiting status
(wake).

The use of the functions in the programs of a TS application is explained in the chapters
entitled "Event processing and error handling, "Attaching to/detaching from
CMX(BS2000)", "Managing connections" and "Transmitting data". The function calls are
described in detail in the chapter entitled "The ICMX program interface"

U9583-J-Z125-1-7600 9

Overview CMX(BS2000) program interfaces

2.2.2 System and user options

The functions of the CMX(BS2000) program interfaces consist of mandatory and optional
functions with mandatory and optional parameters.
For communication with partners via CMX(BS2000), the mandatory functions with the
mandatory parameters are always available for all transport connections. Depending on the
type of network interface, optional functions are also available, as well as optional param-
eters for the mandatory functions.

The options are the following:

The system options are oriented to the functionality of the transport connections used. If
options are used that the transport system or the communication interface of the partner
application does not provide, the connection will not be established, or a disconnect
indication will be issued by CMX(BS2000). Given an appropriate transport system,
CMX(BS2000) guarantees error-free execution of your CMX(BS2000) application.

If communication is to be error-free, the user options must also be correct, i.e. the partners
must have a common understanding of how they are used.

This means that CMX(BS2000) does not compensate for the difference between the
functionality expected in the TS application and that actually provided by the transport
system. This applies particularly to the system options shown above.

Option optional
function

optional
parameter

s/u

User data at connection setup n y s/u

User data at disconnection n y s/u

Expedited data y y s/u

Monitoring of inactive time *) n y s/u

Connection limit, active/passive mode *) n y u

User reference of attachment n y u

User reference of connection n y u

Time limit on synchronous event processing (?60 sec.) n y u

Waiting time for connection redirection *) n y u

n/y = no/yes
* = not in CMX(BS2000)
s = System option
u = User option

Table 1: CMX(BS2000) options

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9583-J-Z125-1-7600 11

3 TS applications
This chapter outlines the characteristics of TS applications that use the functions of the
CMX(BS2000) program interfaces.

The following points are covered in the sections of this chapter:

– Name and properties of a TS application
Every TS application has a GLOBAL NAME, with which it can be uniquely identified
within the network. To communicate with other TS applications in the network, a
TS application must be addressable. For this reason, a TS application is assigned the
properties TRANSPORT ADDRESS and LOCAL NAME in addition to other properties.

– Structure of a TS application
A TS application is a C program or a system of C programs that calls CMX(BS2000)
functions.
This section describes what is required when writing TS application programs, how
such C programs are compiled, and which libraries must be linked into the source code.

– Association between a TS application, tasks, and connections
This section deals with the question of how a TS application can be mapped onto a
system’s task concept, and illustrates the association between a task and a connection.

12 U9583-J-Z125-1-7600

Names/addresses TS application

3.1 Names and addresses of TS applications

Every TS application has a GLOBAL NAME. This name identifies the TS application
uniquely in the network, i.e. different TS applications have different GLOBAL NAMES. The
GLOBAL NAME specifies which TS application is involved.

The GLOBAL NAMES of all TS applications in the local system and those of all TS appli-
cations in remote systems with which the local TS applications wish to communicate are
recorded in a name and address directory of the local transport system.

In BS2000, the name and address directory is implemented by the BCAM mapping admin-
istration function (see /BCMAP command in the manual "BS2000 System Operator’s
Guide). The generation of the entries in the Transport Name Service is the responsibility of
the system or network administrator, and is therefore not dealt with in this manual. In order
to generate the entries, the developer of a TS application must inform the administrator of
the names of his/her own TS applicatio, the names of all accessible partners, and the type
of connection.

3.1.1 The GLOBAL NAME of a TS application

The GLOBAL NAME of a TS application is a hierarchically structured name consisting of
up to 5 name parts: name part[1] through name part[5]. Of these, name part[1] is the highest
in the hierarchy and name part[5] the lowest. All levels of the hierarchy need not be present
in a GLOBAL NAME; it is possible to omit name parts. A GLOBAL NAME can also consist
of a single name part at any hierarchy level.

Examples of GLOBAL NAMES are given below:

The GLOBAL NAMES are written in the C procedures as in SINIX (name parts separated
by a period ".", for example franz.xyz.1). When entering them in the Transport Name Service
(/BCMAP command), the name parts must be separated by X’00’.

Np[1] Np[2] Np[3] Np[4] Np[5]

GLOBAL NAME 1
GLOBAL NAME 2
GLOBAL NAME 3

 D

49

Siemens AG
Dept A
089

Mch-P
Reg18
636

DF1
Proc. 1

G._Meier
$DIALOG
47658

Np = Name part

U9583-J-Z125-1-7600 13

TS application Names/addresses

Example:

#include <stdio.h>
#include <cmx.h>
 .
 .
struct t_myname *p_myname;
 .
 .
if ((p_myname = t_myname("franz.xyz.1",NULL)) !=NULL
{
 .
 .
}
else t_perror("error in t_getloc",t_error());

The name "franz.xyz.1" (=X’86998195A94BA7A8A94BF1’) is allocated the T-selector
"TEST001" for the LOCAL NAME using the following BCAM command:

/BCMAP FU=DEF,SUBFU=LOCAL,APPL=(OSI,X'86998195A900A7A8A900F1'),
TSEL-I=(8,C'TEST001')

(see also the chapter entitled "Program examples").

3.1.2 The properties LOCAL NAME and TRANSPORT ADDRESS

Every TS application is assigned a unique Transport Service Access Point (TSAP) when it
is attached to CMX(BS2000). The TSAP is identified by means of the LOCAL NAME that is
specified by the TS application when it attaches itself to CMX(BS2000).

The TS application can access the services of the transport system via the TSAP. Which
transport systems, i.e. network interfaces, can be accessed by the TS application will
depend on the T-selectors contained in the LOCAL NAME of the TS application. The
LOCAL NAME contains one or more T-selectors. A single T-selector can be valid for
multiple network interfaces, provided these are of the same type.

The TS application can be addressed from the network via the T-selector, since the
T-selector is a component of its TRANSPORT ADDRESS for the respective network. The
TRANSPORT ADDRESS provides a means of iniquely addressing the TS application in the
entire network. The TRANSPORT ADDRESS of a TS application consists of the network
address of the end system in which the TS application is located, and the T-selector of the
TS application for this network unterface. The TRANSPORT ADDRESS is thus structured
as follows:

TRANSPORT ADDRESS =
end system network address + (locally unique) T-selector

14 U9583-J-Z125-1-7600

Names/addresses TS application

The following diagram illustrates the relationship between the LOCAL NAME, TSAP, and
TRANSPORT ADDRESS.

GLOBAL NAME GLOBAL NAME
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 TS application   TS application 
ÀÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ

 
 Link via Link via

LOCAL NAME LOCAL NAME
 (T-selectors) (T-selectors)

 
ÚÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿
 Transport   Transport 
 Service Access   Service Access 
 Point (TSAP)   Point (TSAP) 
ÀÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ

 
TRANSPORT ADDRESS TRANSPORT ADDRESS

(Network address + T-selector) (Network address + T-selector)
 
 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Network ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

TRANSPORT ADRESS and LOCAL NAME

The t_getloc(), t_getaddr() and t_getname() calls provided at the CMX(BS2000) program
interface can be used to determine the LOCAL NAME or TRANSPORT ADDRESS for a
given GLOBAL NAME, and the GLOBAL NAME corresponding to a given TRANSPORT
ADDRESS. The TS application must carry out name-address conversion with these calls.
The contents of the address structures generated may not be evaluated or changed by the
TS application. This ensures that the application will not be affected by possible changes in
the address structure.

U9583-J-Z125-1-7600 15

TS application Structure

3.2 Structure of a TS application

A TS application is a C program or a system of C programs that call CMX(BS2000)
functions. This chapter describes what should be observed when creating such a program.

The following figure illustrates the structure of a program of this type. The specified function
calls are part of the ICMX interface.

#include <cmx.h>
 .
 .
main(argc, argv)
int argc;
char *argv[];
{
 .
 .
 /* 1st communication phase */

 t_getloc(); /* Ascertain LOCAL NAME */
 t_attach(); /* Attach to CMX(BS2000) */

 /* 2nd communication phase */

 t_getaddr(); /* Ascertain TRANSPORT ADDRESS */
 /* of partner */
 t_conrq(); /* Set up connection */
 .
 .
 t_concf(); /* Accept connection confirmation */

 /* 3rd communication phase */

 t_datarq(); /* Send data to partner */
 .
 .
 t_datain(); /* Receive data from partner */
 .
 .
 t_disrq(); /* Close down connection */
 t_detach(); /* Detach from CMX(BS2000) */
 .
 .
 exit();
}
Structure of a TS application program in ICMX

16 U9583-J-Z125-1-7600

Structure TS application

Header file

Every TS application program must contain an include statement for the file <cmx.h>.
<cmx.h> contains the definitions of the parameters for the functions of the ICMX interface.
This header file is located in the SYSLIB.CMX.010 library.

Permissible order for calling CMX(BS2000) functions

TS application programs must call CMX(BS2000) communication functions in a certain
order. The process of communication can be divided into three phases. A TS application
must pass through each phase successfully before it can enter the next phase.

1st communication phase:
The TS application must attach itself to CMX(BS2000). Only when the TS application
is known to CMX(BS2000) can it make use of the services of CMX(BS2000). The
operations of this communication phase are described in the chapter entitled "Attaching
to/detaching from CMX(BS2000)".

2nd communication phase:
In this phase the TS application sets up the connection to its communication partner.
During connection setup the two partners must reach an agreement as to how the
subsequent exchange of data is to take place and what form the data is to have. Both
partners determine, for example, whether they wish to exchange expedited data. The
operations of this communication phase are described in the chapter entitled
"Managing connections".

3rd communication phase:
In the third phase the data is exchanged between the partners. Both communication
partners can send and receive data. The operations of this communication phase are
described in the chapter entitled "Transmitting data".

This is the order in which a TS application program may call CMX(BS2000) functions. In
addition, note that some calls may be issued only after certain responses from the other
communication partner have arrived and been received by the TS application (see the
section on "Event processing"). One might say that a TS application assumes various
states during the course of communication. Several states are possible within each commu-
nication phase. Only certain transitions are possible between the states within a given
phase and between states of different phases.

A TS application can shift from one state to the next only by calling certain CMX(BS2000)
functions or when certain events arrive for it from the network. These are represented in
diagram form in the section entitled "States of TS applications and state transitions". These
diagrams should make it easier to create TS application programs.

U9583-J-Z125-1-7600 17

TS application Structure

Reaching an agreement as to the form of transferred data

Two TS applications wishing to communicate with each other must also reach an
agreement as to the form of the data to be transferred. The TS applications themselves
must carry out the necessary recoding, as data transfer through the transport system and
CMX(BS2000) is code-transparent. Of importance here is the character set in use in each
system. In SINIX and SINIX-ODT computers, this is the ISO 7-bit code; in BS2000 and PDN
systems, it is the EBCDIC code.

Parameter passing and storage allocation

In TS applications parameters are passed to CMX(BS2000) functions as values or pointers;
for options, unions (union ...) are defined. All structures are declared in the header files. In
your program, you must always provide all storage areas used to pass values to
CMX(BS2000), or in which CMX(BS2000) is to return anything. You allocate such storage
areas either at compile time (statically) or at runtime (dynamically), e.g. with malloc() (see
the description of the C library functions (BS2000)). In the CMX(BS2000) parameter struc-
tures, length fields are defined for areas of variable length. Before calling CMX(BS2000),
enter in these fields the lengths of the areas provided. Then, upon return, you can usually
read from these fields the lengths of the data returned by CMX(BS2000).

18 U9583-J-Z125-1-7600

Compiling, linking TS application

3.3 Compiling and linking TS application programs

After a C program prog.c of a TS application has been edited, is must be compiled using the
Siemens C compiler (V1.0 or later); the CMX(BS2000) functions from the CMX(BS2000)
library SYSLIB.CMX.010 must then be linked into the program. The C-RTS must also be
linked in, as must the YDCMXLNK module from the SYSLIB.CMX.010 library. This module
connects to the CMX-TU subsystem, which implements the actual CMX library.

The advantages of this are as follows:

– The linked programs are considerably smaller.

– The application programs need not be relinked after a library has been switched
(possibly for maintenance purposes).

Please refer to the system manuals or the Release Notice for further information on the
subsystems.

Note

CMX stores task-specific data in the YDCMXLNK module. For this reason, the module
may not be write-protected, and may not be linked to SHARED CODE modules.

U9583-J-Z125-1-7600 19

TS application TS applications, tasks, connections

3.4 TS applications, tasks, connections

The two following sections describe the relationships of TS applications to tasks and of
tasks to connections.

3.4.1 TS applications and tasks

In the simplest case a TS application is implemented in a single task. However, there are
additional possibilities for structuring a TS application.

A TS application can work with multiple tasks, which need not be started under the same
user ID, but can run under various IDs. Each task of a TS application must attach itself to
CMX(BS2000) separately. Tasks belong to the same TS application when they have
attached themselves to CMX(BS2000) using the same LOCAL NAME. The first task to
attach itself creates the TS application.

ÚÄÄÄ¿
 TS application 
 ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ 
       
  Task 1   Task 2   Task 3  
       
 ÀÄÄÄÄÄÂÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÙ 
    
  Attach with LOCAL NAME  
 ÚÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄ¿ 
ÀÄÄ´ C M X(BS2000) ÃÄÄÙ

ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
One TS application - multiple tasks

20 U9583-J-Z125-1-7600

TS applications, tasks, connections TS application

On the other hand, one task may control multiple TS applications. To achieve this, you
attach the task to CMX(BS2000) using different LOCAL NAMES.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 TS application: GLOBAL NAME 1 
 
 ÚÄÄÄÄÄÄÄÄÄ¿ Attach with ÚÄÄÄÄÄÄÄÁÄ¿
   LOCAL NAME 1  
  ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ→ 
ÀÄÄ´ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 

 Task   C M X 
ÚÄÄ´ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 
  ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ→ 
   Attach with  
 ÀÄÄÄÄÄÄÄÄÄÙ LOCAL NAME 2 ÀÄÄÄÄÄÄÂÄÄÙ
 
 TS application: GLOBAL NAME 2 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
One task - multiple TS applications

The task distinguishes the various TS applications it controls by means of the different
LOCAL NAMES, or by means of a freely chosen user reference.

Like in SINIX, the CMX(BS2000) concept does not allow for asynchronous routines (contin-
gencies).
If contingencies are used in spite of this, please note that only one CMX call at a time can
be processed in the library. However, this does not apply to the t_wake call.

3.4.2 Connections and tasks

The tasks of a TS application can set up connections to other TS applications indepen-
dently of one another, and individual tasks of the TS application may maintain multiple
connections simultaneously. If the task is attached to more than one TS application, the
connections may also belong to different TS applications. When the connection is set up, a
Transport Connection Endpoint (TCEP) is created for each connection. In other words, a
single task can serve a number of TCEPs, but the same TCEP may not be simultaneously
assigned to multiple tasks. Each connection is assigned to one and only one one task at
a given time.

CMX(BS2000) assigns each connection an identifier, known as the transport reference.
This alone enables the task to address a specific connection.

U9583-J-Z125-1-7600 21

TS application TS applications, tasks, connections

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
TS application A: GLOBAL NAME A  TS application B: GLOBAL NAME B
 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ 
  Task 1   Task 2  
 attached with  attached with attached with  
 LOCAL NAME A  LOCAL NAME A LOCAL NAME B  
 ÀÄÄÄÂÄÄÄÄÄÂÄÄÄÄÙ ÀÂÄÄÄÄÄÂÄÂÄÄÄÄÄÂÄÂÄÄÂÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÄÙ 
 TCEP1 TCEP2 TCEP3   TCEP4 
 ÀÄÄÂÄÄÙ ÀÄÄÂÄÄÙ ÀÄÄÂÄÄÙ   ÀÄÄÂÄÄÙ 
       
       
ÀÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÅÄÄÄÄÙ ÀÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

   
↓ ↓ ↓ ↓

 Connection1 Connection2 Connection3 Connection4
Connections and tasks

A task may, however, redirect a connection to another task that has attached itself in the
same TS application. The connection will then no longer be recognized in the task that
redirected it. In this way, it is possible to handle connections to various partners in various
tasks. A central distribution task may, for instance, receive all connections and then redirect
them to appropriate subordinate tasks. In the above diagram for example, task 2 could
redirect connection 2 or connection 3 to task 1.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9583-J-Z125-1-7600 23

4 Event processing and error handling
This chapter describes event processing and error handling for TS applications using
CMX(BS2000).

4.1 Event processing

The operations involved during communication between TS applications are
asynchronous, i.e. a wide variety of events can occur independently of the activity of
TS application. Events are requests and responses received by CMX(BS2000) from other
TS applications in the network, or messages from the transport systems involved.

Examples of such events are:

– The connection request of a communication partner
(the "calling application")

– The arrival of data via an existing connection
– Flow control events (set and released send locks)
– Disconnection by the communication partner or CMX(BS2000)

CMX(BS2000) forwards these events to the TS application when the t_event() function is
called by the TS application. Exactly one event is passed by CMX(BS2000) for each
t_event() call, possibly with the identification of the connection involved (transport
reference). The TS application must then directly process the received event as required,
e.g. by calling the corresponding "fetch" function.

The CMX(BS2000) functions are designed in a manner that allows, but does not compel
the TS application to wait for a possible answer from the network after issuing a call. There
are two ways in which a TS application can process events.

24 U9583-J-Z125-1-7600

Events Event processing, error handling

1. Synchronous processing

The TS application calls t_event() with the parameter cmode = T_WAIT. As long as no event
is waiting, the task sleeps and consumes no CPU time. When there is an event (T_CONIN
in diagram below), CMX(BS2000) awakens the task, and t_event() returns the code of the
event and, when appropriate, the transport reference of the connection involved.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 
 t_event() with T_WAIT
 
 task sleeps 
 

T_CONIN  
ÄÄÄÄÄÄÄÄ→ 

 t_conin() 
 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Synchronous processing

The task can be awakened with t_wake(), even if it is sleeping in t_event. CMX(BS2000) then
resumes it with T_NOEVENT.
When t_event() is called, it is also possible to limit the waiting time. Simply specify how long
the task is to wait for an event. If no event arrives within this time, CMX(BS2000) will resume
the task with T_NOEVENT.

U9583-J-Z125-1-7600 25

Event processing, error handling Events

2. Asynchronous processing

Call t_event() with the parameter cmode = T_CHECK. If no event is waiting, the call will
immediately return with T_NOEVENT. You may continue with any processing and subse-
quently call t_event() again to check for a possible event.

However, it is not wise to just have t_event() run in a continuous loop; it is better to use
synchronous event processing (cmode = T_WAIT).

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 
 t_event() with T_CHECK 

T_NOEVENT 
ÄÄÄÄÄÄÄÄÄ→ . 

 . processing 
 . 
 
 t_event() with T_CHECK 

T_CONIN  
ÄÄÄÄÄÄÄÄÄ→ 

 t_conin() 
 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Asynchronous processing

CMX(BS2000) expects a particular reaction, depending on which event was reported.
Since program execution is determined by what events occur, the program logic can be
largely encapsulated in a switch construction, whose cases are the various events (as in
the sample programs).

26 U9583-J-Z125-1-7600

Error handling Event processing, error handling

4.2 Error handling

A function call resulting in an error (t_ ...) always returns with a global error indicator
(T_ERROR). A more precise value is obtained by calling the error checking function
(t_error()).

The values returned by t_error() are in hexadecimal form, and are used for diagnostic
purposes.

The appendix contains a description of the format of CMX(BS2000) error messages, a table
with the CMX error values, tables showing the allocation of the CMX error values to the
BCAM return codes, and the meaning of the individual return codes.

U9583-J-Z125-1-7600 27

5 Attaching to/detaching from CMX(BS2000)
A TS application comes into existence as soon as a task attaches itself to CMX(BS2000)
using the application’s LOCAL NAME. Each further task wishing to operate within this
TS application must also attach itself to CMX(BS2000) for this TS application, i.e. by using
the same LOCAL NAME.

Before a task terminates it must detach all of its TS applications from CMX(BS2000). When
the last task of a TS application has detached itself from CMX(BS2000), the TS application
no longer exists for CMX(BS2000).

5.1 Attaching to CMX(BS2000)

A task attaches itself to CMX(BS2000) via the ICMX program interface using the t_attach()
call.

When doing this, the task must pass the LOCAL NAME of the TS application for which it
wishes to attach itself to CMX(BS2000). The task must determine the LOCAL NAME prior
to attachment, i.e. before the t_attach() call. To do this, it calls the ICMX function t_getloc()
and passes to t_getloc() a parameter with the GLOBAL NAME of the TS application for
which it wishes to attach itself. t_getloc() returns a pointer to a structure in which the LOCAL
NAME is stored. This pointer is passed as a parameter in t_attach().
Thus, the t_getloc() call must precede the t_attach() call.

When the first task of a TS application attaches itself, a Transport Service Access Point
(TSAP) is created for the TS application. The TSAP is the point at which the transport
services is accessible. It is assigned the LOCAL NAME of the TS application.

28 U9583-J-Z125-1-7600

Attaching to CMX(BS2000) Attaching to/detaching from CMX(BS2000)

Each task of a TS application can:

– actively set up connections for the TS application. The TS application can then assume
the role of the "calling TS application" in the subsequent connection setup phase.

– wait passively on behalf of the TS application for connection requests from other
TS applications in the network. The TS application can then assume the role of the
"called TS application" during the course of communication.

– accept connections that another task of the same TS application wishes to pass to it
(i.e. accept connection redirection). A task of the same TS application is a task that has
attached itself to CMX(BS2000) using the same LOCAL NAME.

A task can also attach itself for several different TS applications. To do this, it calls t_getloc()
and t_attach() for each of these TS applications.

CMX(BS2000) accepts connection requests from remote TS applications on behalf of a
TS application as soon as a task of the TS application has attached itself to CMX(BS2000).
Incoming connection requests are initially forwarded by CMX(BS2000) to the first task in
the TS application to attach itself.

Only after successful attachment can a task call other CMX(BS2000) functions, i.e. issue
other t_...() calls.

U9583-J-Z125-1-7600 29

Attaching to/detaching from CMX(BS2000) Detaching from CMX(BS2000)

5.2 Detaching from CMX(BS2000)

Before a task terminates, it calls t_detach(). t_detach() dateches the task from CMX(BS2000)
for that TS application. First, however, all TS connections maintained by the task must be
closed down (see the chapter entitled "Managing connections"). If the task does not do this,
CMX(BS2000) implicitly closes down all TS connections itself. This is provided only for
exceptional situations, for example when a task is terminated prematurely.

When the last task of a TS application has detached itself, the TS application no longer
exists for CMX(BS2000). Connection requests from remote TS applications will no longer
be accepted for that TS application.

30 U9583-J-Z125-1-7600

Examples of attaching and detaching a task Attaching to/detaching from CMX(BS2000)

5.3 Examples of attaching and detaching a task

Example of attaching and detaching a task at ICMX

The following program fragment shows what happens when a task is attached and
detached at the ICMX interface.
A task attaches itself to CMX(BS2000) for the TS application "Test-application-ACT" and
then detaches itself. In the option structure t_opta2, it specifies that it only wishes to actively
set up connections in this TS application (T_ACTIVE), and that no more than one
connection is to be simultaneously maintained. However, this data is ignored by
CMX(BS2000) Version 1.0, i.e. several connections can be set up both actively and
passively.

#include <stdio.h>
#include <cmx.h>
.
.
#define ERROR 1
 .
 .
struct t_opta2 t_opta2 = { T_OPTA3, 0, 0, }; /* t_attach () */
 .
 .
 /* Structures for addressing */

#define MYNAME "Test_application_ACT"
char *myname = { MYNAME } ;
struct t_myname t_myname, *p_myname;
 .
 .
/* Attach active application to CMX(BS2000) */

if ((p_myname = t_getloc(myname, NULL)) != NULL)
 t_myname = *p_myname;
else {
 fprintf(stderr, ">>> ERROR 0x%x in t_getloc\n", t_error());
 exit(ERROR);
}
if (t_attach(&t_myname, &t_opta2) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_attach\n", t_error());
 exit(ERROR);
}
fprintf(stderr, "Application '%s' attached.\n", myname);
 .
 .
/* Detach TS application from CMX(BS2000) */
if (t_detach(&t_myname) == T_ERROR)
 fprintf(stderr, ">>> ERROR 0x%x in t_detach\n", t_error());
fprintf(stderr, "Application '%s' detached.\n", myname);
 .
 .

U9583-J-Z125-1-7600 31

6 Managing connections
Connection setup and disconnection involve two TS applications. One is the calling
TS application; it initiates connection setup. The other is the called TS application, with
whom the calling TS application wishes to establish a connection. The following sections
elucidate the relationships and sequences.

The fact that CMX(BS2000) is displayed only once in the diagrams is just a simplification of
the presentation. Actually, each partner uses "its" CMX(BS2000) in its processor with the
network and the transport systems in between.

6.1 Establishing a connection

The processing sequence in the course of setting up a connection at ICMX is explained first.
The following figure illustrates the chronological sequence of ICMX calls in the programs of
the calling and called TS application.

Calling TS application Called TS application

 .  Transport  .
 .  system  .
t_getloc ÄÄÄÄÄÄÄÄÄÄÄÄÄ→ ←ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ t_getloc
t_attach ÄÄÄÄÄÄÄÄÄÄÄÄÄ→ ←ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ t_attach
 .   t_event
 .  
t_getaddr ÄÄÄÄÄÄÄÄÄÄÄÄ→ 
t_conrq ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄ→ T_CONIN
t_event   t_conin

 
  .

 T_CONCF ←ÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ t_conrs
t_concf   :
 :   :
Establishing a connection (ICMX)

32 U9583-J-Z125-1-7600

Establishing a connection Managing connections

Connection setup in the calling TS application

The calling TS application first obtains its LOCAL NAME, and then attaches itself to
CMX(BS2000). It then ascertains the TRANSPORT ADDRESS of the called TS application
with t_getaddr() and requests a connection using t_conrq(). It then waits with t_event() for
confirmation from the alled TS application, i.e. for the TS event T_CONCF. When t_event()
has reported the TS event, the calling TS application establishes the connection with the
call t_concf().

Connection setup in the called TS application

After being attached, the called TS application initially waits for a TS event with t_event().
The TS event T_CONIN indicates the connection request of the calling TS application. The
called TS application accepts the connection request with t_conin() and answers it with
t_conrs().

Exchanging user data during connection setup

The reason the calls t_conin() (connect indication) and t_concf() (connect confirmation) are
required is that both TS applications can already exchange user data while the connection
is being set up, if the transport system supports this option (see section entitled "System
and user options).

With t_conrq() the calling TS application may pass user data, i.e. a small quantity of data
that the called TS application receives with t_conin(). If the called TS application then
answers the connection request with t_conrs(), it in turn may also pass information. This is
received by the calling TS application with t_concf().

Calling TS application Called TS application

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ÚÄÄÄÄ¿   ÚÄÄÄÄ¿ 
 t_conrq   ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ→   t_conin 
 ÀÄÄÄÄÙ   ÀÄÄÄÄÙ 
   
   
 ÚÄÄÄÄ¿   ÚÄÄÄÄ¿ 
 t_concf   ←ÄÄÄÄÄÄÄÄÄÄÄÄÄ´   t_conrs 
 ÀÄÄÄÄÙ   ÀÄÄÄÄÙ 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
Exchange of user data during connection setup

U9583-J-Z125-1-7600 33

Managing connections Establishing a connection

Rejecting a connection request

The called TS application may also reject the connection request. The sequence is the
same. The event T_CONIN must first be accepted with t_conin(), but instead of the call
t_conrs() the call instead of the call t_conrs() the call t_disrq() is issued (see section entitled
"Closing down a connection").

Calling TS application Called TS application

 
 Transport  t_event
 system 

t_getaddrÄÄÄÄÄÄÄÄÄÄÄÄÄÙ→ 
t_conrq ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄ→ T_CONIN
t_event   t_conin

 
  :

 T_DISIN ←ÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄ t_disrq
t_disin   :
 :
Rejecting a connection request

34 U9583-J-Z125-1-7600

Establishing a connection Managing connections

Agreeing on expedited data

If the transport connection to be set up permits expedited data, the TS applications may
agree on its use during connection setup. This takes place as follows:

With the connection request with t_conrq(), the calling TS application makes a proposal,
which the called TS application can only "negotiate down". This means: If the calling
TS application proposes not using any expedited data, then this is settled for the
connection. If, on the other hand, it proposes that expedited data be exchanged, the called
TS application may accept or reject this in its connection response with t_conrs(). In both
cases the answer is binding.

If one of the two TS applications does not agree with the result of the expedited data negoti-
ation, it may close down the connection.

Calling TS application Called TS application

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ÚÄÄÄÄ¿   ÚÄÄÄÄ¿ 
 t_conrq  NO  ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄ→  NO  t_conin 
 ÀÄÄÄÄÙ   ÀÄÄÄÄÙ 
 ÚÄÄÄÄ¿   ÚÄÄÄÄ¿ 
 t_concf  NO  ←ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´  NO  t_conrs 
 ÀÄÄÄÄÙ   ÀÄÄÄÄÙ 
   
 ÚÄÄÄÄ¿   ÚÄÄÄÄ¿ 
 t_conrq  YES ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄ→  YES t_conin 
 ÀÄÄÄÄÙ   ÀÄÄÄÄÙ 
   then either 
 ÚÄÄÄÄ¿   ÚÄÄÄÄ¿ 
 t_concf  YES ←ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´  YES t_conrs 
 ÀÄÄÄÄÙ   ÀÄÄÄÄÙ 
   or 
 ÚÄÄÄÄ¿   ÚÄÄÄÄ¿ 
 t_concf  NO  ←ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´  NO  t_conrs 
 ÀÄÄÄÄÙ   ÀÄÄÄÄÙ 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
Negotiation regarding expedited data during connection setup

U9583-J-Z125-1-7600 35

Managing connections Closing down a connection

6.2 Closing down a connection

Either of the two communicating TS applications may call t_disrq() in order to close down
the connection. The partner TS application then receives the event T_DISIN.
By calling t_disin() it accepts the disconnection. With this call it obtains the reason for the
disconnection.

Calling TS application Called TS application

 
 Transport  :
 system  t_event
 

t_disrq ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ→ T_DISIN
  t_disin
  :

 or
 

 T_DISIN ←ÄÄÄÄ´ ÃÄÄÄÄ→ T_DISIN
 

t_disin   t_disin
 

Closing down a connection

If the transport system provides the appropriate option, the TS application that closes down
the connection may include user data with t_disrq(). The partner TS application receives this
with t_disin().

The transport system can also close down the connection. In this case, both TS applica-
tions receive the event T_DISIN, which they must fetch with t_disin(). Based on the reason
given for the disconnection, each TS application can ascertain whether the connection was
closed down by the other TS application or by the transport system.

36 U9583-J-Z125-1-7600

Example of setting up and closing down a connection with ICMX Managing connections

6.3 Example of setting up and closing down a connection with
ICMX

The two following program fragments show how a connection is set up.
Example 1 shows the program structure for the calling TS application.
Example 2 shows the program structure for the called TS application.

Example 1:

The TS application actively sets up a connection to the TS application
"Test-application-PAS" and then closes it down.

#include <stdio.h>
#include <cmx.h>
 .
 .
#define ERROR 1
 .
 .
int tref; /* Transport reference */
int reason; /* Reason for disconnection */

 /* Structures for addressing */

#define PNAME "Test_application_PAS"
char *pname = { PNAME } ;
struct t_partaddr t_partaddr;
 .
 .
/* Set up connection to the passive partner */

if ((p_partaddr = t_getaddr(pname, NULL)) != NULL)
 t_partaddr = *p_partaddr;
else {
 fprintf(stderr, ">>> ERROR 0x%x in t_getaddr\n", t_error());
 exit(ERROR);
}
if (t_conrq(&tref, (union x_address *)&t_partaddr,
 (union x_address *)&t_myname, NULL) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_conrq, tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
}

U9583-J-Z125-1-7600 37

Managing connections Example of setting up and closing down a connection with ICMX

/* Event-driven processing:
 * t_event() waits synchronously (T_WAIT) */
 */
for (;;) {
 switch (event = t_event(&tref, T_WAIT, NULL)) {
 case T_CONCF:
 /*
 * Connection setup successful?
 */
 if (t_concf(&tref, NULL) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_concf tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
 }
 fprintf(stderr, "Connection established to '%s'.\n",
 pname);
 .
 .
 case T_DISIN:

 /* Disconnection by partner or system */

 if (t_disin(&tref, &reason, NULL) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_disin tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
 }
 fprintf(stderr, "Received disconnect indication, tref 0x%x,
 reason %d\n", tref, reason);
 .
 .
 }
}
 /* Disconnection */

 if (t_disrq(&tref, NULL) == T_ERROR)
 fprintf(stderr, ">>> ERROR 0x%x in t_disrq tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
 }
 fprintf(stderr, "Connection tref 0x%x actively closed down.\n", tref);
 .
 .

38 U9583-J-Z125-1-7600

Example of setting up and closing down a connection with ICMX Managing connections

Example 2:

The TS application waits passively for an incoming connection request, accepts the
connection, and then closes it down.

#include <stdio.h>
#include <cmx.h>
 .
 .
#define ERROR 1
 .
 .
int tref; /* Transport reference */
int reason; /* Reason for disconnection */
/*
 * Structures for addressing
 */
struct t_myname t_myname, *p_myname;
struct t_partaddr t_partaddr;
 .
 .
 .
/* Event-driven processing:
 * t_event() waits synchronously (T_WAIT)
 */
for (;;) {
 switch (event = t_event(&tref, T_WAIT, NULL)) {

 case T_CONIN:

 /* Accept connection request */

 if (t_conin(&tref, (union x_address *)&t_myname,
 (union x_address *)&t_partaddr, NULL) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_conin tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
 }

 if (t_conrs(&tref, NULL) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_conrs tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
 }
 .
 .

U9583-J-Z125-1-7600 39

Managing connections Example of setting up and closing down a connection with ICMX

 case T_DISIN:
 /*
 * Disconnection by partner or system
 */
 if (t_disin(&tref, &reason, NULL) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_disin tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
 }
 fprintf(stderr, "Received disconnect indication, tref 0x%x,
 reason %d\n", tref, reason);
 .
 .
 }
}
/*
 * Disconnection
 */
if (t_disrq(&tref, NULL) == T_ERROR){
 fprintf(stderr, ">>> ERROR 0x%x in t_disrq tref 0x%x\n",
 t_error(), tref);
 exit (ERROR);
}
fprintf(stderr, "Connection tref 0x%x actively closed down.\n", tref);
 .
 .

40 U9583-J-Z125-1-7600

Redirecting connections Managing connections

6.4 Redirecting connections

Incoming connections for a local TS application are initially received by the task that first
attached itself for that TS application. But in order to be able to associate particular connec-
tions with particular tasks, for example, a connection may be redirected to another task. Of
course, connections set up actively may also be redirected. Both tasks must belong to the
same TS application, i.e. they must have attached themselves with the same LOCAL
NAME.

Sequence in redirecting a connection

Task A specifies the task ID of task B when calling t_redrq(). Task B receives the event
T_REDIN and must initially accept the connection, with the call t_redin(). With this call task
B is informed of the task ID of task A. If task B does not wish to have the connection, it may
close it down or redirect it again, e.g. back to task A.

Task A Task B

 Transport-  :
 system  t_event
 

t_redrq ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ→ T_REDIN
  t_redin
  :
 

Redirecting a connection

With t_redrq() it is also possible to include user data, which task B receives when it calls
t_redin().

U9583-J-Z125-1-7600 41

Managing connections Example of redirecting a connection

6.5 Example of redirecting a connection

The following program fragments show how a connection can be redirected and how a
redirected connection is accepted.

#include <stdio.h>
#include <cmx.h>
 .
 .
#define ERROR 1
 .
 .
int tref; /* Transport reference */
int cpid; /* ID of task to receive connection */
int rpid; /* ID of task wanting to relinquish connection */
 .
 .
/* Actively redirect connection */

if (t_redrq(&tref, &cpid, NULL) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_redrq tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
}
/* Accept connection redirection */

for (;;) {
 switch (event = t_event(&tref, T_CHECK, NULL)) {

 case T_REDIN:
 if (t_redin(&tref, &rpid, NULL) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_redin tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
 }
 }
}

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9583-J-Z125-1-7600 43

7 Transmitting data
Once a connection has been set up, the two TS applications can exchange data. Either
TS application may initiate the data exchange, regardless of whether it is the calling or the
called TS application.

The amount of data forming a logical unit from the point of view of the TS applications is
referred to as a message, or TSDU (Transport Service Data Unit). A TSDU may be any
length.

However, CMX(BS2000) can accept only a limited amount of data at any one time. This is
referred to as a data unit or TIDU (Transport Interface Data Unit). The maximum length of
a TIDU depends on the transport connection. This length must be queried for every
connection using the t_info() call.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄ
 data unit  data unit  . . .
 (TIDU)  (TIDU) 
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄ

Message (TSDU)
TIDU and TSDU

The logical linkage of TIDUs to form a TSDU is controlled by means of a parameter, which
specifies for each TIDU in a message whether it is followed by a further TIDU or is the last
one in the TSDU.

If the transport connection provides this option, and both TS applications agree to it when
the connection is set up, they may also exchange expedited data. Expedited data is a small
quantity of data that is given priority over normal data, i.e. expedited data never arrives later
than normal data sent subsequently to the expedited data. Expedited data must always be
transmitted all at once. A unit of expedited data is called an ETSDU (Expedited Transport
Service Data Unit).

44 U9583-J-Z125-1-7600

Sending and receiving normal data Transmitting data

7.1 Sending and receiving normal data

Normal data is sent with one of the calls t_datarq() or t_vdatarq().

Each such call sends one TIDU. t_datarq() is called when the TIDU to be sent is contained
in one contiguous storage area. t_vdatarq() is called when the TIDU to be sent is located in
several different storage areas.

In the simplest case, data transfer proceeds as follows:

– The sending TS application passes one TIDU to CMX(BS2000) with each call.

– The receiving TS application receives the event T_DATAIN. This indicates that data has
arrived.

– The receiving TS application must accept the data with the call t_datain() or the call
t_vdatain().

t_datain() and t_vdatain() differ, in that with t_datain() the data is placed into one contiguous
storage area, while with t_vdatain() the data is placed into several different storage areas.

Sending Receiving
TS application TS application

 
 Transport  :
 system  t_event
 

t_datarq ÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ→ T_DATAIN
  t_datain
  :
 

Transmitting normal data

If the TSDU is longer than the maximum TIDU ...

it must be broken down into TIDUs. This is done as follows:

– The sending TS application determines, as sender, when the TSDU is ended. Each time
a TIDU is sent with t_datarq() or t_vdatarq(), this TS application indicates in the chain
parameter whether a further TIDU of the current TSDU is to follow
(chain = T_MORE), or the TIDU being sent is the last one (chain = T_END).

– In the same way, the receiving TS application is informed with each t_datain() or
t_vdatain() call by chain as to whether there is another TIDU to come in the current
TSDU.

U9583-J-Z125-1-7600 45

Transmitting data Sending and receiving normal data

Each TIDU is announced by CMX(BS2000) with a T_DATAIN event. However:

There are TIDUs and TIDUs!

The length of a TIDU may be different for each of the two TS applications. Therefore it may
happen that the receiving TS application will need to call t_datain() or t_vdatain() less often
than the sending TS application calls t_datarq() or t_vdatarq() (or vice-versa). This is
because the receiving TS application reads TIDUs in "its" length. This is represented below:

Sending Receiving
TS application TS application

 
 :  Transport-  :
 :  system  t_event
 :  
t_datarq(T_MORE) ÄÄÄÄÄÅÄÄÄÄÄ¿ 
 :   
 :   
t_datarq(T_MORE) ÄÄÄÄÄÅÄÄÄÄÄ´ 
 :   
 :  ÀÄÄÄÄÄÄÅÄÄÄÄÄ→ T_DATAIN
 :   t_datain(T_MORE)
 :   t_event
 :  
t_datarq(T_END) ÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄ→ T_DATAIN
 :   t_datain(T_END)
 :   :
 :  
TSDU in multiple TIDUs

The value returned by t_datain() and t_vdatain()

With t_datain() and t_vdatain() you must specify a length for the incoming data to be read. If
the length specified is less than the size of the TIDU for the receiver, the value returned by
t_datain() or t_vdatain() will indicate the excess length of the data in the waiting TIDU.

If a TIDU has not yet been completely read, t_datain() or t_vdatain() must be called
repeatedly until the TIDU has been completely read. During this time, t_event() may not be
called, the connection may not be redirected, nor may the data flow be controlled.
Note that CMX(BS2000) does not guarantee that at the receiving TS application all TIDUs
of a message will be completely filled, even when the size of a TIDU is the same for both
the sending and the receiving TS application and the sending TS application sends only
completely filled TIDUs.

46 U9583-J-Z125-1-7600

Examples of transmitting normal data Transmitting data

7.2 Examples of transmitting normal data

The following program fragments show what happens when transmitting normal data via
ICMX.

The TS application receives and sends data. The length of the data is limited here to one
TIDU.

#include <stdio.h>
#include <cmx.h>
.
.
#define ERROR 1
.
.
/* Send and receive buffers */

char e_bufpt[8000]; /* Receive buffer */
int e_bufl; /* Transfer length */
char s_bufpt[8000]; /* Send buffer */
int s_bufl; /* Transfer length */

int chain; /* TSDU indicator for t_datarq(), t_datain() */
int tref; /* Transport reference */
 .
 .
/* Event-driven processing: */
 * t_event() waits synchronously (T_WAIT) */

for (;;) {
 switch (event = t_event(&tref, T_WAIT, NULL)) {
 .
 .
 /* Receive data; e_bufl is the TIDU length (t_info()) */

 case T_DATAIN:
 if ((rc = t_datain(&tref,e_bufpt,&e_bufl,&chain)) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_datain tref 0x%x\n",
 t_error(), tref);
 exit (ERROR);
 }
 .
 .
 }
}
/* Send data; s_bufl is maximum TIDU length */

if ((rc = t_datarq(&tref, s_bufpt, &s_bufl, &chain)) == T_ERROR) {
 fprintf(stderr, ">>> ERROR 0x%x in t_datarq tref 0x%x\n",
 t_error(), tref);
 exit(ERROR);
}

U9583-J-Z125-1-7600 47

Transmitting data Sending and receiving expedited data

7.3 Sending and receiving expedited data

If the exchange of expedited data was agreed at connection setup (see the section entitled
"Establishing a connection"), the TS applications may do so as follows:

Expedited data is sent with the t_xdatrq() call. In the simplest case the sequence is as
follows:

– The sending TS application sends expedited data with a call.
– The receiving TS application receives the T_XDATIN event. This indicates that

expedited data has arrived.
– The receiving TS application must accept the data with the call t_xdatin().

Sending Receiving
TS application TS application

 
 Transport  :
 system  t_event
 

 t_xdatrq ÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ→ T_XDATIN
  t_xdatin
 
 

Transmitting expedited data

48 U9583-J-Z125-1-7600

Sending and receiving expedited data Transmitting data

The value returned by t_xdatin()

With t_xdatin(), a length must be specified for the incoming expedited data to be read. If the
length specified is less than the amount of expedited data that has arrived, the value
returned by t_xdatin() will then give the excess length of the waiting expedited data.

If the expedited data has not yet been completely read, t_xdatin() must be called repeatedly
until the data has been completely read. During this time, t_event() may not be called, the
connection may not be redirected, nor may the data flow be controlled.

Sending Receiving
TS application TS application

 Transport 
 :  system  :
 :   t_event
t_xdatrq ÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄ→ T_XDATIN
 :   t_xdatin
 :   t_xdatin
 :   t_xdatin
 :   t_event
 :  
 :  
Reading expedited data in piecemeal fashion

U9583-J-Z125-1-7600 49

Transmitting data Flow control of normal and expedited data

7.4 Flow control of normal and expedited data

If a TS application is not ready to receive data over a connection, it informs CMX(BS2000)
of this with the call t_datastop(). CMX(BS2000) immediately stops delivering the T_DATAIN
event for that connection. With one of the following t_datarq() calls, the communication
partner will receive the return value T_DATASTOP from CMX(BS2000), and may not send
any more data.

As soon as the TS application is again ready to receive data over the connection, it calls
t_datago(). The TS application can receive data from the communication partner again. It
again receives the T_DATAIN event.

Flow control for expedited data takes place in the same way. Here the calls t_xdatstop() and
t_xdatgo() are used. The corresponding events are T_XDATIN and T_XDATGO.
Note however:

When the flow of expedited data is stopped (with t_xdatstop()), CMX(BS2000) also
implicitly stops the flow of normal data. When the flow of expedited data is then released
again (with t_xdatgo()), the flow of normal data remains blocked! It must be expressly
released (with t_datago()).

When the flow of normal data is released, CMX(BS2000) implicitly also releases the
flow of expedited data again. Thus, after calling t_xdatstop(), calling t_datago() releases
both the flow of normal data and the flow of expedited data.

What are the advantages of preventing T_DATAIN or T_XDATIN from being sent?

During this time, the TS application can issue other CMX(BS2000) calls, e.g. to set up a
further connection. This would not be possible if a T_DATAIN event were waiting. If the
TS application did not fetch the data, every t_event() call would again return the T_DATAIN
event, and the TS application would not be able to receive the T_CONCF event required to
set up a connection.

50 U9583-J-Z125-1-7600

Flow control of normal and expedited data Transmitting data

Sending Receiving
TS application TS application

 :   :
 :  Transport  :
 :  system  t_datastop
 :   :
t_datarq ÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄ¿  :

   :
←ÄÄ T_DATASTOP ÄÄÄÄÅÄÄÄÄÄÙ  :

t_event   :
 :  ←ÄÄÄÄÄÄÄÄÄÄÄÄ t_datago
 :   t_event
 :  
 :  ÄÄÄÄÄÄÄÅÄÄÄÄÄ→ T_DATAIN
 :  :  t_datain
 :  :  t_event
 :←ÄÄ T_DATAGO ÄÄÄÄÄÄÅÄÄÄÄÄ 
 :  
t_datrq ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄ→ T_DATAIN
 Returns T_OK   t_datain
 :   :
Data flow control at the sending end

The sending TS application receives T_DATASTOP in response to the call t_datarq() or
t_vdatarq(), because the receiving TS application has stopped the data flow, or because
there is a temporary resource bottleneck in CMX(BS2000) or BCAM. The data was sent,
but was no longer indicated to the receiving TS application. The sending TS application
must now wait with t_event() for the T_DATAGO event, in order to be able to send data
again.

U9583-J-Z125-1-7600 51

8 The ICMX program interface
This chapter describes the ICMX program interface to the CMX(BS2000) communication
method CMX(BS2000). It contains:

– A summary of the functions of the ICMX interface, with details on the communication
phases,

– Notes on the correct use of the functions (finite-state automata),

– Notes on the availability of the system options for the transport systems,

– Precise descriptions of the ICMX function calls, with all parameters, in alphabetical
order.

8.1 Overview of the program interface

Transport Service ISO 8072

With ICMX, the present version of CMX(BS2000) provides a program interface to the
connection-oriented transport service (TS) as defined in ISO 8072 within the framework of
the OSI Reference Model for open systems. Therefore, in ICMX, the services T-CONNECT
(connection setup), T-DISCONNECT (disconnection), T-DATA (data exchange), and
T-EXPEDITED-DATA (exchange of expedited data) are defined with the primitives:

T-CONNECT.request
T-CONNECT.indication
T-CONNECT.response
T-CONNECT.confirmation
T-DATA.request
T-DATA.indication

T-DISCONNECT.request
T-DISCONNECT.indication

T-EXPEDITED-DATA.request
T-EXPEDITED-DATA.indication

52 U9583-J-Z125-1-7600

Overview ICMX

In addition, ICMX provides local services that simplify the implementation of TS applica-
tions. These are:

The TS permits two TS applications to exchange messages over a transport connection
(TC). This connection-oriented communication provides for the exchange of messages
without loss or duplication while maintaining the message sequence. Furthermore, by
means of connection identification, the connection-oriented TS makes it possible to
dispense with transferring and processing addresses in the data phase. An established TC
is uniquely identified (in both end systems) by a transport reference (tref) between
CMX(BS2000) and the TS application. Certain parameters that influence message
transport on a TC can be negotiated between the TS applications at connection setup. To
ensure that communication functions correctly, certain rules must be observed, which are
described below.

ICMX is implemented as a set of C functions, which make communication between
TS applications independent of the specific characteristics of the transport systems used
(layers 1 - 4 in the OSI Reference Model) with regard to profiles, protocol classes, etc.

Names and addresses

Every TS application has a GLOBAL NAME. This name uniquely identifies the TS appli-
cation in the network.

A TS application works exclusively with GLOBAL NAMES. a TS application obtains infor-
mation from its GLOBAL NAME using CMX(BS2000) calls, e.g. the LOCAL NAME it must
specify when attaching to CMX(BS2000). A TS application can use the GLOBAL NAME of
a remote TS application to asecertain the TRANSPORT ADDRESS it must pass to
CMX(BS2000) at connection setup.

The LOCAL NAME links the local TS application to a Transport Service Access Point
(TSAP). The TRANSPORT ADDRESS of the remote TS application is required to address
the Transport Service Access Point (i.e. the TS application linked to it) in the partner
system.

T-ATTACH
T-DETACH
T-ERROR
T-REDIRECT
T-FLOWCONTROL
T-EXPEDITED-FLOWCONTROL
T-EVENT
T-INFO

Attach a TS application to CMX(BS2000)
Detach a TS application from CMX(BS2000)
Query errors
Redirect a connection to another task
Flow control for normal data
Flow control for expedited data
TS event check
Information

U9583-J-Z125-1-7600 53

ICMX Overview

The LOCAL NAME and TRANSPORT ADDRESS are read from the Transport Name
Service.

ICMX functions for querying information from the Transport Name Service are:

t_getaddr()
Given the GLOBAL NAME of a TS application, returns its TRANSPORT ADDRESS.
The TRANSPORT ADDRESS must be passed through as a parameter to the relevant
ICMX call.

t_getname()
Given a TRANSPORT ADDRESS, returns the GLOBAL NAME of the TS application.

t_getloc()
Given the GLOBAL NAME of a TS application, returns its LOCAL NAME in the current
end system. The LOCAL NAME must be forwarded as a parameter to the relevant
ICMX call.

<cmx.h> defines the structures t_myname and t_partaddr.

t_myname is used by a TS application to receive (pass) the LOCAL NAME to/from
CMX(BS2000) with getloc(), t_attach(), and t_conrq(); t_partaddr is used by a TS application
to receive (pass) its TRANSPORT ADDRESS with t_getaddr(), t_getname(), t_conin, and
t_conrq.

Error handling and diagnosis

All function calls return a return code. This is either T_OK, to indicate successful
completion, or T_ERROR to generally indicate that an error occurred. The error check
function t_error(), called immediately following an error, returns more detailed diagnostic
information. All errors detected by CMX(BS2000) as violations of the communications rules
by the TS application have specific error codes and are defined in <cmx.h>. The transport
systems used generate no error messages; any errors result in disconnection with a corre-
sponding reason. The reason for disconnection is obtained by the TS application when
t_disin() is called.

The following functions return the text version of an error code returned by t_error():

t_strerror()
Returns a pointer to the text string for an error code received from ICMX.

t_perror()
Calls the ts_strerror to ascertain the text string for an error code received from ICMX,
and writes the string to stderr.

54 U9583-J-Z125-1-7600

Overview ICMX

The following functions return the text for a disconnection reason returned by t_disin():

t_strreason()
Returns a pointer to the text string for a disconnection reason that has been received.
The reason for disconnection is passed to the TS application when t_disin() is called.

t_preason()
Calls t_strreason() to ascertain the text string for a disconnection reason that has been
received with disin(), and writes the string to stderr.

TS applications, transport connections and tasks

A TS application is a system of programs that uses the TS, i.e. the services of
CMX(BS2000). The mapping of a TS application to the task concept of the system is left up
to the implementor. A TS application may organize itself into one or more (not necessarily
related) tasks. In theory, the tasks may independently maintain TCs to remote TS applica-
tions. The tasks of a TS application may exchange their TCs among one another. However,
at any point in time the transport reference of a TC is assigned to exactly one task. In
CMX(BS2000), there is a separate local service, REDIRECT, for redirecting a TC to another
task.

One task may also simultaneously control multiple TS applications. In this case, the imple-
mentation must provide for suitable coordination of the execution of the various TS appli-
cations. CMX(BS2000) supports this through its asynchronous processing mode.

Synchronous and asynchronous functions, TS events

Communications operations are by nature asynchronous: a wide variety of TS events can
occur independently of the activity of a TS application. For example, a TS application may
be sending data over one TC when, a disconnection indication for another TC arrives
asynchronously, of which the TS application must be informed immediately.

In principle, the functions of CMX(BS2000) are asynchronous: this means, after issuing a
call a TS application need not wait for a possible answer from the network. Any answer will
be accepted by CMX(BS2000) when it arrives and on request, sent to the TS application as
a TS event at the next opportunity.

For this, CMX(BS2000) provides the TS application with a query mechanism in two forms:
synchronous (waiting) and asynchronous (checking). This query mechanism must be used
appropriately by the TS application if it wishes to react quickly and properly to TS events.

With synchronous execution, the calling task is suspended until a TS event arrives. This
wakes up the task, so that it can immediately process the TS event. Waiting can be limited
by specifying a waiting period, or it can be cut short early by calling the function t_wake
(wake program from t_event). The synchronous mechanism is useful for TS applications that
maintain several TCs at a time, so that they need not poll them.

U9583-J-Z125-1-7600 55

ICMX Overview

With asynchronous execution the task can check at its convenience (at the end of the
processing step, for instance) whether a TS event has arrived, and handle it before
continuing with the next processing step. This is useful for tasks that expect longer delays
between TS events, during which times they can or must attend to other operations.

The corresponding function in CMX(BS2000) is

t_event()
If the parameter value T_WAIT is passed, t_event() suspends the task until a TS event
arrives, the time limit expires, or the t_wake function is called. If a TS event is already
waiting, or there is an error, the function returns immediately with the code for the event,
or T_ERROR. In contrast to CMX(SINIX), t_event() is not terminated automatically when
a signal routine ends. Processing resumes when the function t_wake is called from a
signal routine (contingency) or another task. t_event() returns with T_NOEVENT. When
the time limit expires, the task resumes with the TS event T_NOEVENT. With the
parameter value T_CHECK, t_event() always returns immediately with either the code
of the TS event encountered, T_NOEVENT, or T_ERROR.

The following asynchronous TS events are defined in CMX(BS2000):

T_NOEVENT
In the asynchronous case: No TS event present
In the synchronous case: Abort by signal or waiting time elapsed

T_CONIN
Arrival of a connection indication from a calling TS application

T_CONCF
Arrival of a connection confirmation from a called TS application

T_DISIN
Arrival of a disconnect indication from a remote TS application or from CMX(BS2000)

T_REDIN
Arrival of a redirection indication from another task of the same TS application (this
TS event is local; it is an extension to the TS to make implementation of TS applications
more flexible)

T_DATAIN
Arrival of normal data from a remote TS application

T_XDATIN
Arrival of expedited data from a remote TS application

T_DATAGO
Removal of a block on the sending of normal data and expedited data set through flow
control

T_XDATGO
Removal of a block on the sending of expedited data set through flow control

56 U9583-J-Z125-1-7600

Overview ICMX

T_SYS_EVENT
t_event() was unable to identify a signal from the CMX(BS2000) bourse mechanism as
a CMX(BS2000) event.

T_ERROR
Fatal error; more detailed information is provided by the query function t_error().

With each TS event, except for T_NOEVENT and T_ERROR, the TS application is also
given the transport reference, so that it can react for that TC specifically to the TS event.

Some TS events must be accepted by the TS application by calling corresponding
functions. Exceptions are T_ERROR, T_DATAGO, and T_XDATGO. Such function calls
return additional information on the TS events. The following table lists the TS events and
the corresponding functions.

As a rule, TS events are delivered in the order in which they occur. Of course, the TS event
T_XDATIN may overtake the TS event T_DATAIN, and T_DISIN may overtake T_DATAIN
and T_XDATIN. In the latter case the overtaken TS events on that TC are dropped.

Attaching/detaching

Communication by a task via CMX(BS2000) is activated when the task attaches itself to
CMX(BS2000). A TS application is generated when the first task attaches itself for that
TS application. When this is done, a Transport Service Access Point (TSAP) is created, at
which the TS is accessible. When the first task is attached, the TS application is linked to
this TSAP. The TSAP is assigned the LOCAL NAME of the TS application. It thereby
becomes addressable from the network. When the TS application is detached, any TCs still
in existence are closed down, along with the TSAP; the task environment is dissolved, and
assigned resources are released for future use.

The same task may attach itself for several TS applications at the same time (i.e. manage
multiple TSAPs) and in each of these TS applications maintain multiple Transport
Connection Endpoints (TCEP). Also, several tasks may attach themselves for the same
TS application (use the same TSAP) and actively set up TCs or passively wait for
connection indications without interfering with one another. Of course, each TCEP is
assigned to exactly one task.

TS event Function for fetching

T_CONCF
T_CONIN
T_DATAIN
T_DISIN
T_REDIN
T_XDATIN

t_concf()
t_conin()
t_datain() or t_vdatain()
t_disin()
t_redin()
t_xdatin()

U9583-J-Z125-1-7600 57

ICMX Overview

The following functions are used for attaching and detaching. They perform primarily local
tasks. If no implicit disconnection must be performed, no information is passed to the
network.

t_attach()
Attaches (the current task of) a TS application to CMX(BS2000) BCAM. When
attached, the task may specify its future behavior in the TS application. The first time a
task is attached CMX(BS2000) begins accepting connection indications for the
TS application.

t_detach()
Detaches (the current task of) a TS application from CMX(BS2000). Any existing TCs
of the task in the TS application are closed down by CMX(BS2000). If no more tasks of
the TS application are attached, the TS application is no longer known to
CMX(BS2000).

Connection setup, disconnection, and redirection

Before two TS applications can exchange data, a TC must be set up between them. One
of the two TS applications is viewed as the calling TS application; it initiates connection
setup. The other is the called TS application; it waits for requests from calling TS applica-
tions.

The calling TS application issues a connection request and receives an answer from the
called TS application. The called TS application waits for a connection indication (indication
of a connection request) and accepts it or rejects it. During connection setup, the TS appli-
cations negotiate certain attributes of the TC for data transmission and may exchange user
data.

The TC may be closed down at any time by either of the TS applications or by
CMX(BS2000). This is not negotiated between the TS applications, but instead is immedi-
ately carried out by CMX(BS2000). The other TS application (or both, if CMX(BS2000)
closes down the TC) receives a disconnect indication, which may be neither answered nor
averted. CMX(BS2000) indicates all errors in the transport systems by closing down the
TCs involved. CMX(BS2000) does not guarantee that data still in transit at the time of the
disconnection request will be delivered.

Connection redirection is a local service in CMX(BS2000) that simplifies the organization of
a TS application into tasks. A task holding ca completely established TC may redirect it
(depending, of course, on the state; see the diagrams on redirecting connections in the
chapter entitled "Managing connections") to another task of the same TS application. The
TSAP and the TCEP remain unchanged. The redirecting task loses the transport reference
for the TC, whereupon the TC is no longer available. This is described in further detail in
the diagram "Status of TS applications and permissible state transitions" in the section
entitled "Status of TS applications and permissible state transitions".

58 U9583-J-Z125-1-7600

Overview ICMX

The relevant functions are:

t_conrq()
Requests connection setup to the called TS application with the specified TRANSPORT
ADDRESS. The reference to the TSAP is established via the LOCAL NAME used when
the calling TS application was attached. The function returns immediately after issuing
the request; the calling TS application receives a transport reference. It must then wait
synchronouously or asynchronously for the answer of the called TS application (see
above).

t_concf()
Accepts from CMX(BS2000) the answer of the called TS application, indicated with
T_CONCF; connection setup is now complete.

t_conin()
Receives from CMX(BS2000) a connection request, indicated with T_CONIN, from the
calling TS application, along with that TS application’s TRANSPORT ADDRESS. The
reference to the TSAP is established for the called TS application through provision of
the LOCAL NAME specified when it was attached.

t_conrs()
Answers (accepts) a connection request after it has been indicated with T_CONIN and
received by the TS application.

t_disrq()
Requests that a connection be closed down; this function may be called at any time by
either of the TS applications; it is also used to reject a connection request (instead of
accepting it) after the request has been indicated by CMX(BS2000) and received by the
TS application.

t_disin()
Accepts from CMX(BS2000) the disconnect indication indicated with T_DISIN. The
reason for disconnection is also passed to the TS application with this function call.

t_redrq()
Redirects a TC to a task of the same TS application; the TC is then no longer available
for the redirecting task.

t_redin()
Accepts from CMX(BS2000) a connection redirection indicated with T_REDIN; the
receiving task must accept it, but may immediately pass it on (return it) or close the TC
down.

U9583-J-Z125-1-7600 59

ICMX Overview

Data exchange and flow control

Once a connection has been set up, the initiative rests with the TS application (not with
CMX(BS2000)). It may:

– send normal data and (if agreed) expedited data, or

– indicate, with t_event(), that it is ready to receive normal data or (if agreed) expedited
data.

Data transfer is message-oriented: the TS applications exchange Transport Service Data
Units (TSDU) (messages of any length) or Expedited Transport Service Data Units
(ETSDU) (expedited data of limited length). Expedited data is limited to a few bytes; when
transferred it is given priority over the stream of normal data and placed into separate
queues. CMX(BS2000) guarantees only that expedited data will never arrive at the
receiving TS application later than normal data sent subsequently. At most, one complete
ETSDU may be passed to CMX(BS2000) per call.

A TSDU (which in principle may be any length) is passed to CMX(BS2000) in portions the
length of one Transport Interface Data Unit (TIDU). The maximum length of a TIDU is
TC-specific and must therefore be queried by CMX(BS2000) for each TC (t_info()). Thus, a
TSDU may have to be transferred using multiple send calls. A parameter in each send call
inidcates whether a further TIDU for that TSDU follows (T_MORE) or not (T_END). It cannot
be determined from this how a TIDU is packed for transfer or delivery to the receiving TS
application. CMX(BS2000) guarantees only that sequential joining of the TIDUs on the
receiving side will reproduce the TSDU on the sending side. The maximum TIDU length
may be different for the two TS applications and depends on the TC. CMX(BS2000) does
not guarantee that the TIDU of a TSDU will be delivered to the
TS application completely filled.

The arrival of a TIDU of a TSDU (or the arrival of an ETSDU) is indicated to the receiving
TS application by means of the TS event T_DATAIN (T_XDATIN). The TS application then
fetches the TIDU (ETSDU) with a corresponding function call, either completely or in
piecemeal fashion. If necessary it may or must issue several similar calls in order to take in
one TIDU (ETSDU) from CMX(BS2000).

The transfer of TIDUs (ETSDUs) is subject to flow control mechanisms, which can be
controlled by CMX(BS2000) and the TS applications. The return code T_DATASTOP
(T_XDATSTOP) returned when data is sent indicates to the sending TS application that the
TIDU (ETSDU) was processed, but the flow of TIDUs (ETSDUs) has been blocked. No
further TIDUs (ETSDUs) may be sent until the flow is released again. Release is indicated
by means of the TS event T_DATAGO (T_XDATGO).

The receiving TS application stops and starts the flow of TIDUs (ETSDUs) by means of
function calls to CMX(BS2000), which affect the sending TS application as described
above.

60 U9583-J-Z125-1-7600

Overview ICMX

The following functions implement data exchange and (active) flow control:

t_datarq()
Requests transfer of a TIDU from a contiguous storage area. The return code
T_DATASTOP signifies that the flow is blocked; further send requests are rejected with
an error until the flow is released again.

t_vdatarq()
Functions like t_datarq, but the TIDU can be located in multiple, non-contiguous storage
areas.

t_datain()
Accepts the data of a TIDU from CMX(BS2000), placing it into a contiguous storage
area, after the TIDU has been indicated with T_DATAIN. The return code specifies how
much data is still contained in the current TIDU, so that a TIDU can be read in piecemeal
fashion.

t_vdatain()
Functions like t_datain, but the TIDU can be located in multiple, non-contiguous storage
areas.

t_xdatrq()
Requests transfer of an ETSDU; the return code T_XDATSTOP signifies that the flow
is blocked; further send requests are then rejected with an error until the flow is released
again.

t_xdatin()
Accepts the data of an ETSDU from CMX(BS2000), after it has been indicated with
T_XDATIN. The return code specifies how much data is still contained in the current
ETSDU, so that an ETSDU can be read in piecemeal fashion.

t_datastop()
Blocks, from the receiving side the flow of normal data over a connection; the TS event
T_DATAIN will no longer be indicated for this connection by CMX(BS2000).

t_datago()
Releases, on the receiving side, the (blocked) flow of normal data and expedited data
over a connection; the TS events T_DATAIN and T_XDATIN can again be indicated for
the connection by CMX(BS2000).

t_xdatstop()
Blocks, on the receiving side, the flow of expedited data and normal data over a
connection; CMX(BS2000) will no longer indicate the TS events T_XDATIN and
T_DATAIN for this connection.

t_xdatgo()
Releases, on the receiving side, the (blocked) flow of expedited data over a connection;
the event T_XDATIN can again be indicated by CMX(BS2000) for the connection.

U9583-J-Z125-1-7600 61

ICMX Overview

t_wake()
awakens its own or another task from t_event(). The awakened task receives the return
value T_NOEVENT. t_wake() is designed to synchronize non-CMX(BS2000) events at
the CMX(BS2000) waiting point. In TU, only tasks with the same user ID can be
awakened. t-wake() always generates a T_NOEVENT event even when the task being
wakened does not call t_event.

Information service

The information service is a local service with which the TS application can query configu-
ration-dependent parameter values from CMX(BS2000). The information service is imple-
mented with the following function:

t_info()
Returns the length of a TIDU for an established TC.

62 U9583-J-Z125-1-7600

Finite-state automata ICMX

8.2 States of TS applications and permissible state transitions

The sequences of operations at the ICMX program interface are represented in the
following diagram by means of finite-state automata. The diagram shows the defined states
that a TS application may assume during the course of communication, and the permissible
transitions between these states. With the aid of the diagram, it is possible to identify
permissible sequences of CMX(BS2000) calls. The diagram shows when and how the
tasks of a TS application should react to certain events.

Programs that behave as shown in this state diagram are compatible with CMX(SINIX); in
this situation, CMX(BS2000) and CMX(SINIX) behave in a similar manner. Results and
responses differ if their behavior differs!

In the diagram, each state is represented by a rectangle with a double border. The rectangle
contains the name of the state.

The surrounding (outer) rectangles represent the three communication phases.

1. communication phase: Attach task
The task exists, but is not yet or no longer attached to CMX(BS2000).

2. communication phase: Connection setup
The task is attached to CMX(BS2000), but no connection exists.
A connection can now be set up.

3. communication phase: Data transfer
The connection has been set up.
The task can send and receive data.

The 3rd communication phase is subdivided by dotted lines into four subareas. These
subareas are:

– Send normal data
– Receive normal data
– Send expedited data
– Receive expedited data

When it reaches this phase, the task is in exactly one state in each subarea at any given
time. Only certain combinations of states in these subareas are permitted, i.e. a state
transition within one subarea may cause a state transition in another subarea. The connec-
tions between the individual states in the various subareas can be seen by examining the
conditions for state transitions (see below). If the exchange of expedited data has not been
agreed for the connection, the task can only assume states of the top two subareas.

U9583-J-Z125-1-7600 63

ICMX Finite-state automata

States of TS applications and permissible state transitions

64 U9583-J-Z125-1-7600

Finite-state automata ICMX

The arrows o-C→ between the rectangles indicate the possible state transitions.
C indicates the condition for making the transition from an initial state to the subsequent
state (initial state o-C→ subsequent state). Transitions are possible only in the directions
indicated by the arrows.

To begin with, the abbreviations used in the diagram are explained below:

Abbreviations for the states:

Nex The task does not exist (no longer exists).
Det The TS application is not yet attached to CMX(BS2000), or the TS application has

been detached from CMX(BS2000).
Idl Initial state for connection setup and for accepting a connection redirection, or a

previously existing connection was closed down.
Act Waiting for the event T_CONCF following a t_conrq() call (active connection setup).
Pas A T_CONIN event has arrived (passive connection setup).
S1n Initial state for t_datarq() or t_vdatarq().
S2n Normal data flow blocked.
R1n Initial state for t_datain().
R2n T_DATAIN indicated.
R3n T_DATAIN blocked.
S1x Initial state for t_xdatrq().
S2x Flow of expedited data blocked.
R1x Initial state for t_xdatin().
R2x T_XDATIN indicated.
R3x T_XDATIN blocked.

Abbreviations for the state transition conditions

exec Program start
exit Program end

U9583-J-Z125-1-7600 65

ICMX Finite-state automata

The following state transitions occur when certain return values are returned by
CMX(BS2000) functions:

DST T_DATASTOP returned by t_datarq() or T_vdatarq()
XST T_XDATSTOP returned by t_xdatrq()
DTO 0 returned by t_datain() or t_vdatain()

(current TIDU completely read)
XDO 0 returned by t_xdatin() (ETSDU completely read)

The state transitions below occur when
a CMX(BS2000) function is called:

The state transitions below occur when an
event is accepted:

att
det
crq
crs
drq
rrq
dst
dgo
xst
xgo

t_attach()
t_detach()
t_conrq()
t_conrs()
t_disrq()
t_redrq()
t_datastop()
t_datago()
t_xdatstop()
t_xdatgo()

NEV
CIN
CCF
DIN
RIN
DTI
XDI
DGO
XGO

T_NOEVENT
T_CONIN
T_CONCF
T_DISIN
T_REDIN
T_DATAIN
T_XDATIN
T_DATAGO
T_XDATGO

66 U9583-J-Z125-1-7600

Finite-state automata ICMX

8.2.1 Explanations of the possible state transitions

Arrows that terminate at a surrounding rectangle indicate that normally the task first
switches to the states indicated by D→.
For example, in the transition to the 3rd communication phase (data transfer) the task
initially switches to the states S1n, S1x, R1n, R1x.
An exception to this is the transition RIN H→. When connection redirection occurs, this
means that the receiving task assumes the states in the 3rd phase (data transfer) that the
redirecting task assumed in this phase prior to the redirection.

Arrows that begin at a surrounding rectangle indicate that a transition is possible from any
given state within the rectangle.

State transitions of this kind are:

– exec
The task starts an application program that can use CMX functions.

– exit
The application program is terminated. All connections are closed down by
CMX(BS2000).

– det
If the task calls t_detach() in any state, it switches to the Det state. CMX(BS2000) closes
down its connections.

– drq|DIN (drq or DIN)
If the task calls t_disrq() in any state during data transfer (3rd phase), or during
connection setup (2nd phase), the task switches to the state Idl. The same thing
happens when CMX(BS2000) indicates the T_DISIN event to the task. The existing
connection is closed down or the connection request of another TS application is
rejected.

U9583-J-Z125-1-7600 67

ICMX Finite-state automata

State transitions within the 3rd phase (data transfer)

The following describes the connections between state transitions in the subareas of the
3rd phase. The state assumend by a task in the subarea "Send normal data" depends on
its state in the subarea "Sned expedited data", and vice-versa. The state assumed by a task
in the subarea "Receive normal data" depends on its state in the subarea "Receive
expedited data", and vice-versa.

The following connections exist between the states of the four subareas:

DGO/XGO (DGO initiates XGO)
The event T_DATAGO initiates T_XDATGO. Along with normal data flow, expedited
data flow is released, assuming it was blocked. Thus, the state transition S2n → S1n
initiates the state transition S2x → S1x.

XST/DST (XST initiates DST)
The event T_XDATSTOP initiates the event T_DATASTOP. The state transition
S1x → S2x brings about the state transition S1n → S2n. Blocking the expedited data
flow causes blocking of normal data flow.

dgo/xgo (dgo initiates xgo)
If the task calls t_datago() in the state R3n (T_DATAIN blocked), t_xdatgo() is implicitly
called. The state transition R3n → R1n initiates the state transition R3x → R1x, if the
task had previously assumed the state R3x.

xst[in R1n|R3n]/dst
If the task is in the state R1x, it may call t_xdatstop() only if it is in the state R1n or R3n
in the subarea "Receive normal data". It thereby initiates t_datastop(). This means the
flow of expedited data can be blocked by the task only so long as no T_DATAIN is
indicated. Along with the flow of expedited data, the flow of normal data is implicitly
blocked (R1x → R3x initiates R1n → R3n).

68 U9583-J-Z125-1-7600

System options/message length ICMX

8.3 System options and message length

It is important to note when creating TS applications that the system options "exchange
user data when setting up and closing down a connection" and "exchange expedited data"
are not supported by all transport connections. Moreover, in transport connections that
support these system options, the permitted length of the user data or the expedited data
unit is not always the same.

U9583-J-Z125-1-7600 69

ICMX Programming notes

8.4 Programming notes

The primary purpose of ICMX is to make TS applications independent of the transport
systems used. This allows TS applications to execute in a variety of network environments.
ICMX supports this independence for TS applications that adhere to the following rules:

1) The application should make no explicit assumptions regarding the length of a TIDU or
regarding the way TIDUs are packed for communication.

2) The limits defined in <cmx.h> for the options must never be exceeded. Please note that
some transport systems do not provide certain options.

3) The TS application must only carry out name-address conversion with the t_getloc(),
t_getaddr(), and t_getname functions. These functions are based on the name service
entries in BCAM mapping.

4) CMX(BS2000) functions should not be called in contingencies. The contingencies are
designed for performing asynchronous CMX processing outside the current context.

5) The program logic should be arranged in a switch/case construction, which is ideally
suited for these purposes.

70 U9583-J-Z125-1-7600

Programming notes ICMX

Example

Calling TS application Called TS application

t_attach(); t_attach();
: for (;;) {
: switch (t_event()) {
t_conrq(); ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ→ case T_CONIN:
for (;;) { t_conin();
 switch(t_event()){ :
 case T_CONCF: ←ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ t_conrs();
 t_concf(); :
 t_datarq(); ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ→ case T_DATAIN:
 : t_datain();
 t_disrq(); ÄÄÄÄÄ¿ :
 :  :
 case T_DATAIN: ←ÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ t_datarq();
 t_datain();  :
 :  :
 case T_DISIN: ←ÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄ t_disrq();

 
 t_disin(); ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄ→ case T_DISIN:
 :   t_disin();
 :   :
 case T_NOEVENT:   case T_NOEVENT:
 continue;   continue;
 case T_ERROR:   case T_ERROR:
 t_detach(); ÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄ t_detach();
 exit();   exit();
 default:   default:
 :   :
 }   }
 t_detach(); ÄÄÄÄÄÙ ÀÄÄÄÄ t_detach();

U9583-J-Z125-1-7600 71

ICMX Conventions

8.5 Conventions

When using ICMX the following conventions must be observed:

1) All identifiers starting with "_" (underscore) are reserved for the system software.

2) All identifiers starting with "t_" or "ts" or "Ts" are reserved for CMX(BS2000).

3) All preprocessor definitions starting with "T_" or "TS_" are reserved for CMX(BS2000).

72 U9583-J-Z125-1-7600

Function calls ICMX

8.6 ICMX function calls

The following pages describe the CMX(BS2000) calls in detail. Italic type in running text
represents ordinary, replaceable formal parameters or the names of functions and files.
Names in upper case letters (e.g. T_MSGSIZE) represent constants that have been defined
in a header file (with #define).

The following conventions are used in the parameter descriptions:

-> Indicates a parameter in which CMX(BS2000) expects a value provided by the caller.

<- Indicates a parameter in which CMX(BS2000) returns a value after the call.

<> Indicates a parameter in which the caller must provide a value, which is then modified
by CMX(BS2000). Modification generally only takes place if processing was successful.
If it was unsuccessful, the value remains unchanged.

Of course, if a parameter involves a pointer, this marking does not refer to the pointer itself
(which is always provided by the caller), but instead to the contents of the field to which the
pointer points.

In sll cases, for values to be returned by CMX(BS2000) appropriate storage space must be
provided by the caller, and a pointer must be passed to CMX(BS2000).

All error values that can occur with the individual calls are listed in the appendix.

U9583-J-Z125-1-7600 73

ICMX t_attach

t_attach
Attach a task to CMX(BS2000) (attach task)

t_attach() attaches the current task of the TS application to CMX(BS2000). If this is the first
task to be attached for the TS application, the TS application (TSAP) is created. Further
tasks can be attached for the same TS application. With t_attach(), the same task can also
be attached for a number of TS applications. The LOCAL NAME of the TS application must
be specified as a parameter.

However, in BS2000 the LOCAL NAME returned by t_getloc() does not contain the transport
addresses, but rather the GLOBAL NAME with its modified syntax. Conversion to transport
addresses takes place internally in BCAM when t_attach() is called, using the name
mapping entries. The Name Service is replaced by BCAM mapping.

Privileged TS applications can be defined with BCAM mapping. Here, for each /BCMAP you
must assign one privileged NEA T-sel (first character = $) and/or one privileged port number
to the GLOBAL NAME of the TS applications. TS applications defined in this way can only
be opened by tasks with the TSOS or NETADM privilege.

After the first successful attach operation for a TS application, CMX(BS2000) starts to
accept connection requests for the application. The connection requests are always sent to
the oldest task attached to the TSAP (generally the first task to open the TSAP).

Using the parameters passed by the t_attach() call, you can define the TS application for
which the task attached itself.

-> name
Pointer to a data area with the LOCAL NAME of the TS application. The t_getloc() call
returns the LOCAL NAME as a property of the GLOBAL NAME of the TS application.

#include <cmx.h >
int t _attach (name, opt)

struct t_myname *name;
union {

struct t_opta1 opta1;
struct t_opta2 opta2;

} *opt;

74 U9583-J-Z125-1-7600

t_attach ICMX

<> opt
For the opt parameter, specify the value NULL or a pointer to a union with user options.
If opt = NULL is specified, CMX(BS2000) uses the given default values. The t_opta1
option is only supported to ensure compatibility with SINIX. It has the same effect as
specifying NULL, since CMX(BS2000) does not evaluate any of the parameters.

The following structures are defined in <cmx.h>:

 struct t_opta1 {
 -> int t_optnr; /* Option no. T_OPTA1 */
 -> int t_apmode; /* Task mode */
 -> int t_conlim; /* Number of connections */
 }

 struct t_opta2 {
 -> int t_optnr; /* Option no. T_OPTA2 */
 -> int t_apmode; /* Task mode */
 -> int t_conlim; /* Number of connections */
 -> int t_uattid; /* User attachment reference */
 <- int t_attid; /* CMX attachment reference */
 <- int t_ccbits; /* Reserved */
 <- int t_sptypes; /* Reserved */
 }

t_optnr
Option number. Specify:

T_OPTA1 in t_opta1
T_OPTA2 in t_opta2

t_apmode
t_apmode is not evaluated by CMX(BS2000).

Default value in BS2000: T-ACTIVE | T_PASSIVE | T_REDIRECT

t_conlim
t_conlim is not evaluated in BS2000. BCAM limits the maximum number of connec-
tions by TSAP and not by task. This value can be specified by the BCAM adminis-
tration for the whole of BCAM.

t_uattid
In the field t_uattid you can pass CMX(BS2000) any user reference desired for this
application. This user reference will be subsequently returned by CMX(BS2000) as
an option in t_event, i.e. when the current task queries CMX(BS2000) regarding the
arrival of an event.
This user reference makes it easier for a task that controls multiple TS applications
to associate an arriving event with the appropriate attachment.

Default value if NULL specified: 0

U9583-J-Z125-1-7600 75

ICMX t_attach

t_attid
This field serves trace and diagnostic purposes. It is used exclusively for logging.
In the t_attid field CMX(BS2000) returns the internal CMX(BS2000) reference to the
attachment.

t_ccbits
This field is reserved and is not evaluated by CMX(BS2000).

t_sptyps
This field is reserved and is not evaluated by CMX(BS2000).

Return values

T_OK
The call was successful. The task was the first to attach itself with this name.

T_NOTFIRST
The call was successful. However, the task was not the first to attach itself for this
TS application.

T_ERROR
Error. Error code can be queried using t_error().

Errors

See appendix for error values.

See also

t_detach(), t_event(), t_error(), t_getloc().

76 U9583-J-Z125-1-7600

t_concf ICMX

t_concf
Establish connection (connect confirmation)

t_concf() accepts a T_CONCF event from CMX(BS2000) previously reported with t_event().
T_CONCF indicates that the called TS application has positively answered a connection
request (t_conrq() call) of the current task.

t_concf() returns:

– The user data that the called TS application included, if the transport system used
provides this option.

– The answer of the called TS application if the current task proposed the exchange of
expedited data when issuing the connection request t_conrq().

If the t_concf() call is successful the connection is established for the current task. As soon
as a connection is established, the TS application (not CMX(BS2000)) has the initiative. It
may:

– send normal data and (if agreed) expedited data, or

– indicate, through t_event(), that it is ready to receive normal data or (if agreed) expedited
data, or

– redirect or close down the connection.

-> tref
Pointer to a field with the transport reference of the connection, passed to the current
task via t_event().

<> opt
For opt, specify the value NULL or a pointer to a union containing a structure with
system options. This union is used to receive the user data that the called TS appli-
cation included with its answer to the connection request.
If opt = NULL is specified, CMX(BS2000) discards the user data and options.
If the called TS application specified no user data and no options, CMX(BS2000) uses
the given default values.

#include <cmx.h >
int t _concf (tref,opt)

int *tref;
union {struct t_optc1 optc1;} *opt;

U9583-J-Z125-1-7600 77

ICMX t_concf

The following structure is defined in <cmx.h>:

 struct t_optc1 {
 -> int t_optnr; /* Option no. */
 <- char *t_udatap; /* Data buffer */
 <> int t_udatal; /* Length of the data buffer */
 <- int t_xdata; /* Choice for expedited data */
 <- int t_timeout; /* Reserved */
 };

t_optnr
Option number. Specify T_OPTC1.

t_udatap
Pointer to a data area in which CMX(BS2000) enters the user data received from
the called TS application. The area must be large enough to accommodate the data
received. The maximum required length depends on the transport connection being
used.

Default value if NULL specified: Undefined

t_udatal
Prior to the call 0 or the length of the data area t_udatap must appear here.
T_CON_SIZE is the maximum size suitable for all transport systems. T_CON_SIZE
is defined in <cmx.h>.
After the call, CMX(BS2000) returns in this field the number of bytes placed in
t_udatap.

Default value if NULL specified: 0

t_xdata
CMX(BS2000) returns here the answer of the called TS application if the exchange
of expedited data was proposed at connection setup. The answer is binding.
Possible answers:

T_YES
The called TS application accepts the proposal.

T_NO
The called TS application rejects the proposal.

Default value if NULL specified: T_NO

t_timeout
This field always contains T_NO.

78 U9583-J-Z125-1-7600

t_concf ICMX

Return values

T_OK
The call was successful.

T_ERROR
Error. Error code can be queried using t_error().

Errors

See appendix for error values.

See also

t_conrq(), t_error(), t_event()

U9583-J-Z125-1-7600 79

ICMX t_conin

t_conin
Receive connection request (connect indication)

t_conin() accepts a T_CONIN event previously reported with t_event(). T_CONIN indicates
that a calling TS application wishes to set up a connection to the current task.

The call returns:

– the TRANSPORT ADDRESS of the calling TS application,
– the LOCAL NAME of the local TS application, and
– the user data that the calling TS application included.

Subsequently, the connection request may be answered (confirmed) with t_conrs() or
rejected with t_disrq().

-> tref
Pointer to a field with the transport reference of the connection, passed to the current
task via t_event().

<- toaddr
Pointer to a union t_address in which CMX(BS2000) returns the LOCAL NAME of the
called TS application that is to receive the connection.
If the current task is attached for multiple TS applications, this information can be used
to associate the connection request with the correct TS application.

<- fromaddr
Pointer to a union t_address in which CMX(BS2000) returns the TRANSPORT
ADDRESS of the calling TS application. The TRANSPORT ADDRESS can be
converted to the GLOBAL NAME of the calling TS application with the aid of the call
t_getname().

<> opt
For opt, specify the value NULL or a pointer to a union containing a structure with
system options.

This union is used to fetch the user data that the calling TS application specified at
connection setup.
If opt = NULL is specified, CMX(BS2000) discards the user data.

#include <cmx.h >
int t_conin (tref, toaddr, fromaddr, opt)
int *tref;
union t_address *toaddr;
union t_address *fromaddr;
union {struct t_optc1 optc1;} *opt;

80 U9583-J-Z125-1-7600

t_conin ICMX

If the calling TS application specified no user data and no options in t_conrq(),
CMX(BS2000) returns the specified default values.

The following structure is defined in <cmx.h>:

 struct t_optc1 {
 -> int t_optnr; /* Option no. */
 <- char *t_udatap; /* Data buffer */
 <> int t_udatal; /* Length of the data buffer */
 <- int t_xdata; /* Choice for expedited data */
 <- int t_timeout; /* Inactive time */
 };

t_optnr
Option number. Specify T_OPTC1.

t_udatap
Pointer to a data area in which CMX(BS2000) enters the user data received from
the calling TS application.
The area must be large enough to accommodate the user data received. The
maximum length of user data required depends on the transport connection being
used.
T_CON_SIZE is the maximum size suitable for all transport systems. T_CON_SIZE
is defined in <cmx.h>.

Default value if NULL specified: Undefined

t_udatal
Prior to the call, 0 or the length of the data area t_udatap must appear here.
After the call, CMX(BS2000) returns in this field the number of bytes placed in
t_udatap.

Default value if NULL specified: 0

t_xdata
In this field, CMX(BS2000) returns the proposal of the calling TS application
regarding expedited data.

Possible answers:

T_YES
The calling TS application proposes exchanging expedited data.

T_NO
The exchange of expedited data is ruled out by the calling TS application.

U9583-J-Z125-1-7600 81

ICMX t_conin

If the calling TS application proposes exchanging expedited data (T_YES), the
answer of the current task in the subsequent t_conrs() is final.
If the calling TS application desires no expedited data (T_NO), none can be
requested by the current task in the subsequent t_conrs(). It may then be necessary
for the current task to reject the connection request with t_disrq().

Default value if NULL specified: T_NO

t_timeout
This field always contains T_NO.

Return values

T_OK
The call was successful.

T_ERROR
Error. Error code can be queried using t_error().

Errors

See appendix for error values.

See also

t_attach(), t_conrs(), t_conrq(), t_disrq(), t_error(), t_event(), t_getname()

82 U9583-J-Z125-1-7600

t_conrq ICMX

t_conrq
Request connection (connection request)

t_conrq() requests the establishment of a transport connection from the local TS application
to a called TS application (active connection setup).

More specifically, the effects of t_conrq() are:

– The called TS application receives the event T_CONIN as a connection indication, to
which it must respond.
CMX(BS2000) later indicates the answer of the called TS application to the current task
in a t_event() call as T_CONCF or T_DISIN.

– The called TS application may be sent user data along with the connection request, if
the transport system used provides this option.

<- tref
Pointer to a field in which CMX(BS2000) returns the connection-specific transport
reference. This uniquely identifies the connection in the subsequent communication
phases. It must therefore be specified with all calls that involve this connection.

-> toaddr
Pointer to a union t_address with the TRANSPORT ADDRESS of the called TS appli-
cation. The TRANSPORT ADDRESS is returned by the call t_getaddr() as a property of
the GLOBAL NAME of the called TS application. It can be ascertained in advance using
the t_getaddr() call.

-> fromaddr
Pointer to a union t_address with the LOCAL NAME of the calling TS application. The
same LOCAL NAME must be specified here as was specified in t_attach() for this
TS application.

#include <cmx.h >
int t _conrq (tref, toaddr, fromaddr, opt)
int *tref;
union t_address *toaddr;
union t_address *fromaddr;
union {

struct t_optc1 optc1;
struct t_optc3 optc3;

} *opt;

U9583-J-Z125-1-7600 83

ICMX t_conrq

-> opt
For opt, specify the value NULL or a pointer to a union with system options.
This is used to specify the user data and options that the called TS application is to
receive with the connection indication.
If opt = NULL is specified, CMX(BS2000) uses the given default values.

The following structures are defined in <cmx.h>:

 struct t_optc1 {
 -> int t_optnr; /* Option no. */
 -> char *t_udatap; /* Data buffer */
 -> int t_udatal; /* Length of the data buffer */
 -> int t_xdata; /* Choice for expedited data */
 -> int t_timeout; /* Inactive time */
 };

 struct t_optc3 {
 -> int t_optnr; /* Option no. */
 -> char *t_udatap; /* Data buffer */
 -> int t_udatal; /* Length of the data buffer */
 -> int t_xdata; /* Choice for expedited data */
 -> int t_timeout; /* Inactive time */
 -> int t_ucepid; /* User connection reference */
 };

t_optnr
Option number. Specify:

T_OPTC1 in t_optc1
T_OPTC3 in t_optc3

t_udatap
Pointer to a storage area containing user data that the called TS application is to
receive with the connection indication.

Default value if NULL specified: Undefined

t_udatal
Length of the user data, in bytes, to be transferred from the area t_udatap.
If 0 is specified for t_udatal, t_udatap is ignored.
The maximum value for t_udatal depends on the transport connection that is to be
set up.

Default value if NULL specified: 0

84 U9583-J-Z125-1-7600

t_conrq ICMX

t_xdata
In the t_xdata parameter, the current task informs the called TS application as to
whether it is ready to exchange expedited data.

Permissible values are:

T_YES
Exchange of expedited data proposed.

T_NO
Exchange of expedited data ruled out.

Default value if NULL specified: T_NO

t_timeout
The t_timeout option is only supported to ensure compatibility with SINIX. In
CMX(BS2000), there is no time monitoring of the connections. The parameter is
silently ignored by CMX(BS2000).
Default value: T_NO.

t_ucepid
This field can be used to pass a freely-selectable user reference for this connection
to CMX(BS2000).
This user reference can be returned to the current task by CMX(BS2000) as an
option in a t_event() call.
If the current task is maintaining multiple connections, this mechanism enables it to
associate a TS event with the appropriate connection via a user-defined attribute.
The user reference constitutes an alternative to the transport reference tref, defined
by CMX(BS2000).

Default value if NULL specified: 0

Note

If several routes (from generation) to a TS application are available for the transport
connection, the transport system itself selects a suitable one. A specific route can only
be assigned by using a BCAM mapping entry for the called TS application. This route
is then always used.

If the underlying protocol does not permit the exchange of connection data, this data is
lost, sometimes without being reported.

The memory storage areas must be allocated with either read (*fromaddr, *toaddr, *opt,
*t_udatap) or write (*tref) access; otherwise, the program terminates with an address
error. CMX(BS2000) recognizes that user data has been specified by t_ud<atal > 0.
t_udatap = NULL is permissible.

U9583-J-Z125-1-7600 85

ICMX t_conrq

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_attach(), t_error(), t_event(), t_getaddr().

86 U9583-J-Z125-1-7600

t_conrs ICMX

t_conrs
Respond to connection request (connection response)

t_conrs() is used by the called TS application to accept (confirm) the connection request of
a calling TS application, the connection request having been previously indicated to the
current task in t_event() with the T_CONIN event. The current task must accept the
T_CONIN event with t_conin() (passive connection setup) before calling t_conrs(). The
calling TS application receives this response as connection confirmation with the
T_CONCF event.

With t_conrs()

– user data can be sent to the calling TS application, if the transport system used provides
this option;

– the connection is completely set up for the current task.

As soon as a connection has been established, the TS application (not CMX(BS2000)) has
the initiative. It may:

– send both normal data and (if agreed) expedited data, or

– indicate, via t_event(), that it is prepared to receive normal data or (if agreed) expedited
data, or

– close down or redirect the connection.

-> tref
Pointer to a field with the transport reference for the connection used in the corre-
sponding t_conin().

-> opt
For opt, specify the value NULL or a pointer to a union with system options.
This is used by the current task to pass the user data for the calling TS application
together with the response to the connection request. If opt = NULL is specified,
CMX(BS2000) uses the given default values.

#include <cmx.h >
int t_conrs (tref,opt)
int *tref;
union {

struct t_optc1 optc1;
struct t_optc3 optc3;

} *opt;

U9583-J-Z125-1-7600 87

ICMX t_conrs

The following structures are defined in <cmx.h>:

 struct t_optc1 {
 -> int t_optnr; /* Option no. */
 -> char *t_udatap; /* Data buffer */
 -> int t_udatal; /* Length of the data buffer */
 -> int t_xdata; /* Choice for expedited data */
 -> int t_timeout; /* Inactive time */
 };

 struct t_optc3 {
 -> int t_optnr; /* Option no. */
 -> char *t_udatap; /* Data buffer */
 -> int t_udatal; /* Length of the data buffer */
 -> int t_xdata; /* Choice for expedited data */
 -> int t_timeout; /* Inactive time */
 -> int t_ucepid; /* User connection reference */
 };

t_optnr
Option number. Specify:

T_OPTC1 in t_optc1
T_OPTC3 in t_optc3

t_udatap
Pointer to a storage area containing user data that the calling TS application is to
receive.

Default value if NULL specified: Undefined

t_udatal
Length of the user data, in bytes, to be transferred from the area t_udatap.
If 0 is specified for t_udatal, t_udatap is ignored.
The maximum value for t_udatal depends on the transport connection.

Default value if NULL specified: 0

t_xdata
In t_xdata the current task responds to the proposal of the calling TS application
regarding the exchange of expedited data. The proposal is passed to the task after
the t_conin() call.

Permissible values are:

T_YES
The proposal of the calling TS application regarding expedited data is accepted.

T_NO
Expedited data is refused.
The response is binding.

88 U9583-J-Z125-1-7600

t_conrs ICMX

If the calling TS application had ruled out the use of expedited data, the response
here must be T_NO.

Default value if NULL specified: T_NO

t_timeout
With CMX(BS2000), the value of this field is always T_NO.

t_ucepid
This field can be used to pass a freely-selectable user reference for this connection
to CMX(BS2000).
This user reference can be returned to the current task by CMX(BS2000) as an
option in a t_event() call.
If the current task is maintaining multiple connections, this mechanism enables it to
associate a TS event with the appropriate connection via a user-defined attribute.
The user reference constitutes an alternative to the transport reference tref, defined
by CMX(BS2000).

Default value if NULL specified: 0

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_conin(), t_error(), t_event()

Note

The storage areas *tref, *opt, *t_udatap must be assigned with read-access from the
program; otherwise, the program will abort an address error. CMX(BS2000) recog-
nizes that user data has been specified by t_udatal > 0. t_udatap = NULL is permis-
sible.

U9583-J-Z125-1-7600 89

ICMX t_datago

t_datago
Release the flow of data (data go)

t_datago() releases the blocked flow of data on the specified connection. By means of this
call, the current task informs CMX(BS2000) that it is again ready to receive data. This call
also releases the flow of expedited data (if agreed) if it was (also) blocked. The call has the
effect of allowing the current task to receive any pending T_DATAIN and T_XDATIN events
for the specified connection.

-> tref
Pointer to a field with the transport reference of the connection on which the flow of data
is to be released.

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_datastop(), t_xdatstop(), t_error(), t_event(), t_redin()

Note

In CMX(BS2000), data flow control at the interface is independent of data flow
control on the transport connection. This means that t_datastop() - t_datago() are not
detected by the other TS applications until flow control of the transport connection
responds.

#include <cmx.h >
int t _datago (tref)
int *tref;

90 U9583-J-Z125-1-7600

t_datain ICMX

t_datain
Receive data (data indication)

t_datain() accepts a T_DATAIN event previously reported via t_event().

By means of the t_datain() call, the current task receives data of a Transport Interface Data
Unit (TIDU) belonging to the current Transport Service Data Unit (TSDU) of the sending
TS application on the specified connection.

The maximum length of a TIDU depends on the transport connection used. It can be
queried for a connection that has already been set up by means of t_info().
A TIDU need not be completely full. The breakdown of a TSDU into TIDUs is purely local
and does not indicate anything regarding the breakdown of the TSDU into TIDUs at the
sending TS application.
Between two TIDUs of a TSDU, any other CMX(BS2000) events can occur for the same or
a different connection.

When t_datain() is called, a contiguous data area datap is provided in which CMX(BS2000)
enters the data of the TIDU received.

t_datain() indicates:

– (in the chain parameter)
whether a further TIDU belonging to the current TSDU exists (chain = T_MORE) or does
not exist (chain = T_END).
The individual TIDUs of a TSDU are each indicated via t_event() with the event
T_DATAIN.

– (with the return value)
whether the current TIDU has been completely read or not.
If the value T_OK is returned, the TIDU fits into the storage area provided. The current
task has received the current TIDU in its entirety.
If a value n > 0 is returned, only a part of the TIDU has been read. n is the number of
bytes of the TIDU that have not yet been read (remaining length). In this case t_datain()
or t_vdatain() must be called repeatedly until the entire TIDU has been read. Only then
can other CMX(BS2000) calls be issued again, e.g. t_event().

#include <cmx.h >
int t _datain (tref, datap, datal, chain)
int *tref;
char *datap;
int *datal;
int *chain;

U9583-J-Z125-1-7600 91

ICMX t_datain

-> tref
Pointer to a field containing the transport reference of the connection, obtained via
t_event().

<- datap
Pointer to a storage area in which CMX(BS2000) enters the data of the TIDU received.

<> datal
Prior to the call, a pointer must be specified for datal indicating a feild in which the length
of t_datap must be entered (at least 1). Following the call, CMX(BS2000) returns in this
field the number of bytes entered in the datap storage area. This need not be the
maximum length of the TIDU.

<- chain
chain is a pointer to a field in which CMX(BS2000) returns an indicator. This indicator
shows whether or not an additional TIDU belonging to the TSDU exists.

Possible values:

T_MORE
Another TIDU belonging to the TSDU follows. It will be indicated with a separate
T_DATAIN event.

T_END
The present TIDU is the last of the TSDU.

Return values

T_OK
The call was successful. The TIDU was completely read.

n > 0
n bytes are still contained in the TSDU.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_error(), t_event(), t_info(), t_vdatain()

92 U9583-J-Z125-1-7600

t_datarq ICMX

t_datarq
Send data (data request)

t_datarq() sends the next (or only) Transport Interface Data Unit (TIDU) of a Transport
Service Data Unit (TSDU) to the receiving TS application on the specified connection.

The TIDU to be sent by t_datarq() must be provided by the current task in a contiguous data
area.

If the TSDU to be sent is longer than one TIDU, it must be transferred using several
t_datarq() (or t_vdatarq()) calls in succession. Therefore, in each t_datarq() call, the sending
task must specify in the chain parameter whether additional TIDUs belonging to the same
TSDU follow.

The maximum length of a TIDU depends on the transport connection used. It can be
queried for an established connection by means of t_info().

If t_datarq() returns the value T_DATASTOP, the TIDU has been accepted by CMX(BS2000)
but the flow of TIDUs on this connection has been blocked.

The flow of TIDUs can be blocked by:

– the receiving TS application,
which can block the flow of TIDUs by calling t_datastop() or t_xdatstop(), or

– CMX(BS2000),
if the local buffer is full.

If the flow of TIDUs is blocked, before further TIDUs can be sent you must wait, by means
of t_event(), for the T_DATAGO event for the connection.

Successful termination of t_datarq() (T_OK) does not mean that the receiving TS application
has already accepted the data.
Unsuccessful termination of t_datarq() (T_ERROR) always means that an error has been
detected locally.

-> tref
Pointer to a field with the transport reference of the connection.

#include <cmx.h >
int t _datarq (tref, datap, datal, chain)
int *tref;
char *datap;
int *datal;
int *chain;

U9583-J-Z125-1-7600 93

ICMX t_datarq

-> datap
Pointer to a storage area containing the TIDU to be sent.

-> datal
Pointer to a field containing the number of bytes to be sent from the storage area datap.
You must specify at least 1, and at most the maximum length of a TIDU.

-> chain
Pointer to an indicator used by the task to indicate whether there is an additional TIDU
belonging to the TSDU.

Possible values:

T_MORE
Another TIDU belonging to the TSDU follows.

T_END
The present TIDU is the last of the TSDU.

Return values

T_OK
The call was successful; further TIDUs may be sent immediately.

T_DATASTOP
The call was successful, but further TIDUs may not be sent until the event T_DATAGO
has arrived for this connection.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_datastop(), t_error(), t_event(), t_info(), t_vdatarq(), t_xdatstop()

Note

It is forbidden to continue to send data "on spec" after T_DATASTOP. Although
CMX(BS2000) will not prevent this, offenders must realize that this will lead to the
arrival of either too many or already invalid T_DATAGO events.

The storage area *datap must be assigned with read-access from the program;
otherwise, the program will abort with an address error. Null is a valid address for
datap.

94 U9583-J-Z125-1-7600

t_datastop ICMX

t_datastop
Stop the flow of data (data stop)

t_datastop() blocks data indication on the specified connection.

In particular, the effects of t_datastop() are:

– The current task tells CMX(BS2000) that, until further notice, it is not ready to receive
data for this connection. However, a T_DATAIN event that has already been indicated
must be responded to first.

– The current task no longer receives the T_DATAIN event for the specified connection.
However, while the data display is blocked, it may call other CMX(BS2000) functions,
e.g. to set up, close down, or redirect an additional connection.

– The sending TS application receives the return value T_DATASTOP when it calls
t_datarq(). It may not send any more data.

The flow of data is released with t_datago().
Expedited data is not affected by t_datastop().

-> tref
Pointer to a field with the transport reference of the connection.

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can queried by calling t_error.
All error values are listed in the appendix.

#include <cmx.h >
int t _datastop (tref)
int *tref;

U9583-J-Z125-1-7600 95

ICMX t_datastop

See also

t_datarq(), t_datago(), t_event(), t_xdatstop()

Note

Unlike CMX(SINIX), CMX(BS2000) accepts the call t_datastop() even when
T_DATAIN has been indicated for this connection, and data has not been fully
retrieved. However, data must still be fetched using a t_datain() or v_datain() call.

96 U9583-J-Z125-1-7600

t_detach ICMX

t_detach
Detach a task from a TS application (detach task)

t_detach() detaches the current task for the TS application specified in the parameter name.
If connections still exist for this task, they are implicitly closed down. Normally however, all
connections for this task should be closed down with t_disrq() before calling t_detach().

When the last task of a TS application detaches itself, the TS application ceases to exist.
Connection requests for that TS application will then no longer be accepted.
If further tasks are attached for this TS application, the task that attached itself after the
current task will receive all subsequent connection requests.

-> name
Pointer to a structure t_myname with the LOCAL NAME of the TS application. The same
LOCAL NAME must be specified as with t_attach().

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_attach(), t_error()

#include <cmx.h >
int t _detach (name)
struct t_myname *name;

U9583-J-Z125-1-7600 97

ICMX t_disin

t_disin
Accept disconnection (disconnection indication)

t_disin() accepts a T_DISIN event previously reported with t_event(). T_DISIN indicates that
the connection has been closed down.

t_disin() specifies whether the remote TS application or the transport system initiated
T_DISIN event.

In addition, t_disin() returns:

– the user data sent by the remote TS application, if the T_DISIN event was initiated by
the remote TS application and if the transport connection used provides this option;

– the reason for closing the transport connection, if the T_DISIN event was initiated by
CMX(BS2000) or by the transport system.
The reason for the disconnection is returned by t_disin() in hexadecimal form. The
readable text form of the code can be obtained with the aid of t_preason() or t_strreason().

-> tref
Pointer to a field containing the transport reference of the connection.

<- reason
Pointer to a field in which CMX(BS2000) enters the reason for the disconnection.

Possible values:

T_USER
The connection was closed down by the remote TS application.

other
The connection was closed down by CMX(BS2000) or the transport system. The
reasons for disconnection are described later in this section.

<> opt
For opt, specify the value NULL or a pointer to a union containing a structure with
system options.
This union can be used to check the user data that the remote TS application specified
when closing down the connection.
If opt = NULL is specified, CMX(BS2000) discards the user data.

#include <cmx.h >
int t _disin (tref, reason, opt)
int *tref;
int *reason;
union {struct t_optc2 optc2;} *opt;

98 U9583-J-Z125-1-7600

t_disin ICMX

If the remote TS application did not specify any user data, CMX(BS2000) returns the
specified default values. The transfer of user data when disconnecting is not
guaranteed and depends on the underlying transport connection.

The following structure is defined in <cmx.h>:

 struct t_optc2 {
 -> int t_optnr; /* Option no. */
 <- char *t_udatap; /* Data buffer */
 <> int t_udatal; /* Length of the data buffer */
 };

t_optnr

Option number. Specify T_OPTC2.

t_udatap
Pointer to a data area in which CMX(BS2000) enters the user data received from
the remote TS application. The area must be large enough to accommodate the
user data received. The maximum length of user data required depends on the
transport connection being used.
T_DIS_SIZE is the maximum size suitable for all transport systems.

Default value if NULL specified: Undefined

t_udatal
Prior to the call 0 or the length of the data area t_udatap must appear here.
After the call, CMX(BS2000) returns in this field the number of bytes placed in
t_udatap.

Default value if NULL specified: 0

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be can be queried by callingt_error().
All error values are listed in the appendix.

See also

t_detach(), t_disrq(), t_event(), t_preason(), t_strreason()

U9583-J-Z125-1-7600 99

ICMX t_disin

Reasons for disconnection

The disconnection grounds given in reason have the following significance. The given
symbolic values are defined in cmx.h; where any doubt arises the numerical value defined
in cmx.h is valid.

T_USER 0 at the request of the partner the connection was closed down
T_RUNKNOWN 256 disconnection from the remote transport system, no reason given.
T_RPERMLOST 261 disconnection by the administration of the transport system.
T_RSYSERR 262 disconnection from the remote transport system due to network errors.
T_RCONGEST 385 disconnection from the remote transport system due to resource scarcity.
T_RNOCONN 392 connection of the network connection to the remote transport system
 rejected.
T_RLCONGEST 448 disconnection from the local transport connection due to resource
 scarcity.
T_RLPROTERR 464 disconnection from the local transport system due to transport protocol
 error (System error).
T_RLPERMLOST 481 disconnection by the administration of the transport system.

Note

The storage area *datap must be assigned with read-access (*tref) or write-access
(*reason, *opt, *t_udatap) from the program; otherwise, the program will abort with
an address error. CMX(BS2000) recognizes that user data has been specified by
t_udatal > 0, t_udatap = NULL is permissible!.

When closing down connections, tref is invalid for all calls at the time of discon-
nection. tref remains valid for t_event(tref) and t_disin(tref) only.

100 U9583-J-Z125-1-7600

t_disrq ICMX

t_disrq
Close down connection (disconnection request)

t_disrq() closes down the specified connection, or rejects the connection indication of a
calling TS application. In both cases, the remote TS application receives a disconnect
indication with the reason T_USER.

Either partner may close down the connection, regardless of which one actively set it up.

Along with the disconnection, the remote TS application may be sent user data, if the
transport connection provides this option.

The t_disrq() call may overtake data that is still in transit. This data is then lost.

-> tref
Pointer to a field containing the transport reference of the connection to be closed down.

-> opt
For opt, specify the value NULL or a pointer to a union containing a structure with
system options.

This union is used to specify the user data that the remote TS application is to receive
along with the disconnection indication.
If opt = NULL is specified, CMX(BS2000) uses the default values specified.

The following structure is defined in <cmx.h>:

 struct t_optc2 {
 -> int t_optnr; /* Option no. */
 -> char *t_udatap; /* Data buffer */
 -> int t_udatal; /* Length of the data buffer */
 };

t_optnr
Option number. Specify T_OPTC2.

t_udatap
Pointer to a storage area containing user data to be received by the remote
TS application.

Default value if NULL specified: Undefined

t_udatal

#include <cmx.h >
int t _disrq (tref, opt)
int *tref;

union {struct t_optc2 optc2;} *opt;

U9583-J-Z125-1-7600 101

ICMX t_disrq

Length of the user data to be passed from the storage area t_udatap.
If t_udatal = 0 is specified, t_udatap is ignored. The maximum value for t_udatal
depends on the transport connection.

Default value if NULL specified: 0

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_detach(), t_disin(), t_event(), t_error()

102 U9583-J-Z125-1-7600

t_error ICMX

t_error
Error diagnosis (error)

t_error() returns diagnostic information when another CMX(BS2000) call returns
T_ERROR or NULL.

The possible error messages for calls to the ICMX program interface are generated either
in the CMX(BS2000) library functions in the user process or in the operating system. A
distinction must be made between messages generated in CMX(BS2000) itself and those
resulting from operating system calls in CMX(BS2000). The error messages generated by
CMX(BS2000) are returned by t_error() in hexadecimal form. These error codes can be
converted to t_perror(). t_strerror() returns a pointer to a static area that contains the
readable text form of an error message.
t_perror() writes the readable text form of an error message to stderr.

The CMX(BS2000) error messages are described in the appendix.

Return values

See appendix, starting on page 159.

Files

<cmx.h> – Global CMX(BS2000) definition file

See also

t_perror(), t_strerror

#include <cmx.h >
int t _error()

U9583-J-Z125-1-7600 103

ICMX t_event

t_event
Await or query event (event)

t_event() determines whether a CMX(BS2000) event has arrived for the current task.

The parameter cmode specifies the processing mode of t_event(). t_event() can:

– synchronously wait for a CMX(BS2000) event for the current task to arrive. While
waiting, the task is suspended.
In BS2000, waiting cannot be interrupted using signals; this is only possible using the
t_wake signal routine. A time limit for synchronous waiting may be specified in the opt
options. If no event arrives within this waiting period, waiting is terminated.

– asynchronously check whether a CMX(BS2000) event for the current task has
arrived. The function always returns immediately to the current task.

Along with the appropriate event, t_event() returns:

– the transport reference of the connection involved, to permit the event to be associated
with the appropriate connection (tref parameter),

– event-specific additional information, if this has been specified in the opt options.

In addition, t_event() permits CMX(BS2000) to signal the arrival of more data for a
connection, if data indications for the connection have not been explicitly blocked via
t_datastop() or t_xdatstop(). If a T_DATAIN or T_XDATIN event is indicated for a task, the
connection involved may not be redirected.
More importantly, t_event() may not be called again until the current task has accepted the
indicated data with t_datain(), t_vdatain() or t_xdatin().

If several events are present for a connection, they are indicated one after another in the
order in which they arrived.

Exceptions:

– A T_XDATIN event (expedited data received) may overtake T_DATAIN events (normal
data received) without destroying them.

– A T_DISIN event (disconnection indication) may overtake T_DATAIN and T_XDATIN
events for the connection involved and thus destroy them.
The data that T_DATAIN/T_XDATIN was to have indicated is lost.

104 U9583-J-Z125-1-7600

t_event ICMX

<- tref
Pointer to a field in which CMX(BS2000) returns the connection-specific transport
reference. The transport reference specifies the connection to which the event belongs.
For the events T_NOEVENT and T_ERROR the contents of tref are undefined.

-> cmode
cmode is used to specify whether t_event() is to synchronously wait for an event or is to
asynchronously check whether an event has arrived.

Possible values:

T_WAIT (synchronous processing)
The current task is suspended until a TS event arrives, the specified waiting time
elapses (t_timeout parameter in opt) or t_wake is called for this task. In the last two
cases the event T_NOEVENT is returned. The call can be terminated by calling
t_wake from a signal routine (contingency) or from another task with the same user
ID.

T_CHECK (asynchronous processing)
The current task checks whether a TS event is waiting.

If a TS event is waiting for the current task, the event is returned to the task.
If no event is waiting, the event T_NOEVENT is returned to the task.

-> opt
For opt, you may specify NULL or a pointer to a union t_optel containing a structure with
system options.
If NULL is specified, CMX(BS2000) uses the defined default values.
The following structure is defined in <cmx.h>:

 struct t_opte1 {
 -> int t_optnr; /* Option no. */
 <- int t_attid; /* CMX attachment reference */
 <- int t_uattid; /* User attachment reference */
 <- int t_ucepid; /* User connection reference */
 -> int t_timeout; /* Time limit for T_WAIT */
 <- int t_evdat; /* Event-specific information */
 };

t_optnr
Option number. Specify T_OPTE1.

#include <cmx.h >
int t _event (tref, cmode, opt)
int *tref;
int cmode;
union {struct t_opte1 opte1;} *opt;

U9583-J-Z125-1-7600 105

ICMX t_event

t_attid
In t_attid, t_event() returns the internal CMX(BS2000) reference for the attachment
involved.
The CMX(BS2000) reference is also returned by CMX(BS2000) as an option in
t_attach(). It serves only trace and diagnostic purposes and is used exclusively for
logging.

t_uattid
In t_uattid, t_event() returns the user reference for the attachment involved.
The user reference is passed to CMX(BS2000) as an option in t_attach. This
enables a task that controls multiple TS applications to associate a TS event with
the appropriate attachment of a TS application.

t_ucepid
In t_ucepid, t_event() returns the user reference for the connection involved for the
TS events T_CONCF, T_DATAIN, T_XDATIN, T_DATAGO, T_XDATGO and
T_DISIN.
The user reference is passed to CMX(BS2000) in t_conrq(), t_conrs() or t_redin().
This enables a task that maintains multiple connections to associate a TS event
with the appropriate connection. This feature, selected by the user, constitutes an
alternative to the transport reference tref, defined by CMX(BS2000).

t_timeout
With cmode = T_WAIT:

For t_timeout a waiting period may be specified during which t_event() is to synchro-
nously wait for an event.
With cmode = T_CHECK:
Any value specified for t_timeout is ignored.

Possible specifications for t_timeout:

T_NOLIMIT
No waiting period is defined. The task waits (without time limit) until an event
arrives or t_event() is terminated by t_wake().

T_NO
The task does not wait. It resumes immediately with any TS event present or
with T_NOEVENT (corresponds to cmode = T_CHECK).

n > 0
The task waits n seconds for the arrival of a CMX event. Accuracy is +/- 60 sec.
If no CMX event for the waiting task arrives within this time period, the task
resumes with the event T_NOEVENT.

Default value if NULL specified: T_NOLIMIT

106 U9583-J-Z125-1-7600

t_event ICMX

t_evdat
Here, CMX(BS2000) returns event-specific additional information.

Possible information:

With the events T_DATAIN and T_XDATIN the length of the indicated data is
specified here.
With the other TS events, including T_NOEVENT, the additional information is
undefined.

Return values

T_CONIN
This event indicates that a calling TS application wishes to set up a connection to the
current task. This connection indication must first be fetched with t_conin(), then
confirmed with t_conrs() or rejected with t_disrq().

T_CONCF
This event indicates that the called TS application has responded positively to a
connection request of the current task.
This connection setup confirmation must be fetched with t_concf().

T_DATAIN
This event indicates that data has been received via the connection specified in tref.
The data must be fetched with t_datain() or t_vdatain(). CMX(BS2000) does not indicate
this event for a connection so long as data flow on it is blocked, i.e. when the receiving
task has issued t_datastop() for it.

T_DATAGO
The local TS application may resume sending data on the connection specified in tref.
Possible reaction: t_datarq() or t_vdatarq().
The event T_DATAGO also permits the local TS application to resume sending
expedited data on this connection, assuming the sending and receiving of expedited
data was agreed at connection setup.

T_DISIN
This event indicates disconnection of the connection specified in tref.
This disconnect indication must be fetched with t_disin().

T_ERROR
Error. Query error code using t_error().

U9583-J-Z125-1-7600 107

ICMX t_event

T_NOEVENT
This event means:

If cmode = T_CHECK
No event waiting.

If cmode = T_WAIT
Wait status of the task terminated, either by signal or because the specified waiting
period elapsed. No TS event arrived.

The contents of tref are undefined.

T_REDIN
This event indicates that another task of the same TS application has redirected a
connection to the current task.
The connection redirection must be fetched with t_redin().

T_XDATIN
This event indicates that expedited data has been received on the connection specified
in tref. The data must be fetched with t_xdatin().

This event is indicated only:

– if the exchange of expedited data was agreed at connection setup, and

– while the flow of expedited data on the connection is not blocked. The flow of
expedited data is blocked when the receiving task has issued t_xdatstop() for the
connection.

T_XDATGO
With this event CMX(BS2000) indicates that the task may resume sending expedited
data on the connection specified in tref.
Possible reaction: t_xdatrq().

CMX(BS2000) indicates this event only if the exchange of expedited data was agreed
at connection setup.

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

108 U9583-J-Z125-1-7600

t_event ICMX

See also

t_attach(), t_concf(), t_conin(), t_datain(), t_datago(), t_datastop(), t_disin(), t_error(),
t_redin(), t_vdatain(), t_xdatin(), t_xdatgo(), t_xdatstop(), t_wake()

Note

An event which is indicated must be fetched immediately with the appropriate call.

If an indicated event is not fetched with t_event(), it is reindicated by CMX(BS2000)
with the next t_event(). If the message indicated was only partially fetched with
t_atain(), t_vdatain(), or t_xdatin, the next t_event call results in T_ERROR
(T_WSEQUENCE).

With t_datarq(), t_vdatarq(), and t_xdatrq(), CMX(BS2000) does not check whether
an event which has just been indicated but not yet fetched is present for this tref.
For instance with t_event(T_REDIN) the user must insure that t_redin() is called
before t_datarq().

If either T_DATASTOP or T_XDATSTOP arrives when sending the return code,
sending may only resume once the events T_DATAGO or T_XDATGO have been
indicated for this connection with t_event()

U9583-J-Z125-1-7600 109

ICMX t_getaddr

t_getaddr
Query TRANSPORT ADDRESS (get address)

t_getaddr() ascertains the TRANSPORT ADDRESS of a remote TS application.

For the parameter globname, specify the GLOBAL NAME of the TS application.
t_getaddr() returns a pointer to a static area containing the TRANSPORT ADDRESS of the
TS application.

This static area is overwritten at each call. If the contents of the area must be saved, the
caller must copy the area.
The length of the area to be copied is obtained from the length field t_palng defined in struct
t_partaddr.

-> globname
For this parameter, specify the GLOBAL NAME of the TS application whose
TRANSPORT ADDRESS you wish to obtain.
The GLOBAL NAME is to be specified as a NULL-terminated string in the form

"NP5.NP4.NP3.NP2.NP1"

The items NPi (i=1,2,3,4,5) represent the name parts of the hierarchically-structured
GLOBAL NAME. NP5 is name part[5], i.e. the name part at the lowest hierarchical level.
NP1 is name part[1], i.e. the highest name part in the hierarchy. The remaining name
parts must be specified in increasing hierarchical order from left to right.

If one of the name parts for a particular GLOBAL NAME has no value (e.g. NP4), and
this name part is followed by another name part that is higher in the hierarchy (e.g.
NP3), the separator (.) from the name part with no value must be specified.
A series of separators appearing at the end of the value of globname may be omitted.
The GLOBAL NAME is then specified as follows: "NP5..NP3"

At least one of the name parts NPi must be specified.

If the separator character (.) is a component of a name part, it must be represented as
\. (backslash period).

#include <cmx.h >
struct t_partaddr *t_getaddr (globname, opt)
char *globname;
char *opt;

110 U9583-J-Z125-1-7600

t_getaddr ICMX

Examples:

1. GLOBAL NAME:
Name part[1] = D
Name part[2] = SIEMENS-AG
Name part[3] = MCH-P
Name part[4] = DF1
Name part[5] = G.MEIER

Specification for globname:
"G\.MEIER.DF1.MCH-P.SIEMENS-AG.D"

2. GLOBAL NAME:
Name part[2] = BU&B
Name part[5] = PENCILPUSHER

Specification for globname:
"PENCILPUSHER...BU&B"

-> opt
The value of opt must be NULL.

Return values

If the call was successful, t_getloc() returns a pointer to a storage area containing the
TRANSPORT ADDRESS

In the case of an error t_getloc() returns a NULL pointer. Ther error code can be queried
using t-error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_error()

U9583-J-Z125-1-7600 111

ICMX t_getloc

t_getloc
Query LOCAL NAME (get local name)

t_getloc() ascertains the LOCAL NAME of a TS application.

For the parameter globname, specify the GLOBAL NAME of the TS application.
t_getloc() returns a pointer to a static area containing the LOCAL NAME of the TS appli-
cation.

This static area is overwritten at each call. If the contents of the area must be saved, the
caller must copy the area.
The length of the area to be copied is obtained from the length field t_mnlng defined in struct
t_myname.

-> globname
For this parameter, specify the GLOBAL NAME of the TS application whose LOCAL
NAME you wish to obtain.
The GLOBAL NAME is to be specified as a NULL-terminated string in the form

"NP5.NP4.NP3.NP2.NP1"

The items NPi (i=1,2,3,4,5) represent the name parts of the GLOBAL NAME. NP5 is
name part[5], i.e. the name part at the lowest hierarchical level. NP1 is name part[1],
i.e. the highest name part in the hierarchy. The remaining name parts must be specified
in increasing hierarchical order from left to right.

If one of the name parts for a particular GLOBAL NAME has no value (e.g. NP4), and
this name part is followed by another name part that is higher in the hierarchy (e.g.
NP3), the separator (.) from the name part with no value must be specified. A series of
separators appearing at the end of the value of globname may be omitted.
The GLOBAL NAME is then specified as follows: "NP5..NP3"

At least one of the name parts NPi must be specified.

If the separator character (.) is a component of a name part, it must be represented as
\. (backslash period).

#include <cmx.h >
struct t_myname *t_getloc (globname, opt)
char *globname;
char *opt;

112 U9583-J-Z125-1-7600

t_getloc ICMX

Examples:

1. GLOBAL NAME:
Name part[1] = D
Name part[2] = SIEMENS-AG
Name part[3] = MCH-P
Name part[4] = DF1
Name part[5] = G.MEIER

Specification for globname:
"G\.MEIER.DF1.MCH-P.SIEMENS-AG.D"

2. GLOBAL NAME:
Name part[2] = BU&B
Name part[5] = PENCILPUSHER

Specification for globname:
"PENCILPUSHER...BU&B"

-> opt
The value of opt must be NULL.

Return values

If the call was successful, t_getloc() returns a pointer to a storage area containing the
LOCAL NAME. In case of error, t_getloc() returns a NULL pointer. The error code can be
queried using t_error()

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_error()

U9583-J-Z125-1-7600 113

ICMX t_getname

t_getname
Query GLOBAL NAME (get name)

Given the TRANSPORT ADDRESS of a remote TS application, t_getname() ascertains its
GLOBAL NAME from TS directory 1.

The TRANSPORT ADDRESS of the TS application must be specified by the caller in the
parameter addr.

t_getname() returns a pointer to a static area containing the GLOBAL NAME of the TS appli-
cation.

This static area is overwritten at each call. If the contents of the area must be saved, the
caller must copy the area.

The GLOBAL NAME is returned by CMX(BS2000) as a NULL-terminated string in the form

NP5.NP4.NP3.NP2.NP1

The items NPi (i=1,2,3,4,5) represent the name parts of the GLOBAL NAME. NP5 is name
part[5], i.e. the name part at the lowest hierarchical level. NP1 is name part[1], i.e. the
highest name part in the hierarchy. Teh remaining name parts are specified in increasing
hierarchical order from left to right.

If one of the name parts for a particular GLOBAL NAME has no value (e.g. NP4), and this
name part is followed by another name part that is higher in the hierarchy (e.g. NP3), the
separator (.) from the name part with no value is nevertheless returned.
A series of separators appearing at the end of the value of globname is omitted.
The GLOBAL NAME is then specified by CMX(BS2000) as follows: "NP5..NP3"

If the separator character (.) is a component of a name part, it is represented as
\. (backslash period).

-> addr
Pointer to a storage area with the TRANSPORT ADDRESS

-> opt
The value of opt must be NULL.

#include <cmx.h >
char *t_getname (addr, opt)
struct t_partaddr *addr;
char *opt;

114 U9583-J-Z125-1-7600

t_getname ICMX

Return values

If the call was successful, t_getname() returns a pointer to a storage area containing the
GLOBAL NAME.
In case of error, t_getname() returns a NULL pointer. The error code can be queried using
t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_error()

U9583-J-Z125-1-7600 115

ICMX t_info

t_info
Query information on CMX(BS2000) (information)

t_info() informs CMX(BS2000) of the length of a Transport Interface Data Unit (TIDU) for the
specified connection.

-> tref
Pointer to a field with the transport reference of the connection.

<> opt
Pointer to a union with user options.

The following structure is defined in <cmx.h>:

 struct t_opti1 {
 -> int t_optnr; /* Option no. */
 <- int t_maxl; /* TIDU length */
 };

t_optnr
Option number. Specify T_OPTI1.

t_maxl
In this field CMX(BS2000) enters the length of a TIDU.
This value specifies the maximum number of bytes that can be sent to
CMX(BS2000) or received from CMX(BS2000) per call when transferring data over
this connection.

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

#include <cmx.h >
int t _info (tref, opt)
int *tref;
union {struct t_opti1 opti1;} *opt;

116 U9583-J-Z125-1-7600

t_perror ICMX

t_perror
Output CMX(BS2000) error message in decoded form

t_perror() decodes CMX(BS2000) error messages passed to the task in hexadecimal form
by CMX(BS2000) when t_error() is called. t_perror() writes the plain text form of the
CMX(BS2000) error message specified in code to the standard error output stderr.

In the s parameter an additional explanatory text may be specified, e.g. an indication of the
CMX(BS2000) call and TS application to which the error refers.

Format of output from t_perror():

t_perror() first writes the text specified with s (if s != NULL), then : (colon) and \n (newline).
This is followed by the plain text form of the CMX(BS2000) error message passed- This text
consists of the error symbols, as defined in <cmx.h>. Each error symbol is preceded by \t.

-> s
Pointer to a storage area containing text that is to precede the readable text form of the
error message, or the value NULL.

-> code
For code, specify the representation of the error message that was passed to the task
by CMX(BS2000) when t_error() was called.

See also

t_error(), t_strerror()

#include <cmx.h >
void t_perror (s, code)
char *s;
int code;

U9583-J-Z125-1-7600 117

ICMX t_preason

t_preason
Decode and output reasons for disconnection

t_preason() decodes reasons for disconnection passed to the task in hexadecimal form
when t_disin() is called.
t_preason() writes the plain text form of the reason for disconnection specified in reason to
the standard error output stderr..

In the s parameter an additional explanatory text may be specified, e.g. an indication of the
connection or TS application to which the output refers.

Format of output from t_preason():

t_preason() first writes the text specified with s (if s != NULL), then : (colon) and \n (newline).
This is followed by the plain text form of the disconnection reason passed. This text consists
of the symbol for the disconnection reason, as defined in <cmx.h>. The symbol for the
disconnection reason is preceded by \t.

-> s
Pointer to a storage area containing text that is to precede the plain text form of the
disconnection reason, or the value NULL.

-> reason
For reason, specify the representation of the disconnection reason that was passed to
the task by CMX(BS2000) when t_disin() was called.

See also

t_disin(), t_strreason()

#include <cmx.h >
void t_preason (s, reason)
char *s;
int reason;

118 U9583-J-Z125-1-7600

t_redin ICMX

t_redin
Accept redirected connection (redirection indication)

t_redin() accepts a T_REDIN event previously reported with t_event(). T_REDIN indicates
that another task of the same TS application has redirected a connection to the current task.

The event T_REDIN must be accepted with t_redin(). If the connection is unwanted, it can
be given back to the original task using t_redrq() or closed down using t_disrq().

The t_redin() call returns

– the task ID (TSN) of the calling task, and

– the user data that the calling task included with the redirection.

If the current task is attached for multiple TS applications, it must itself determine via
suitable means the TS application to which the redirected connection belongs. Suitable
means are, for example, the user data and the optional user reference to attachment of the
TS application returned with t_event().

-> tref
Pointer to a field with the transport reference of the connection.

<- pid
Pointer to a field in which CMX(BS2000) returns the task ID of the redirecting task.

<> opt
For opt, specify a NULL pointer or a pointer to a union with system options.

This union is used to fetch user data that the calling task included with the redirection
request (t_redrq()).
If opt = NULL is specified, CMX(BS2000) discards the user data.
If the calling task specified no user data, CMX(BS2000) returns the default values
given.

#include <cmx.h >
int t _redin (tref, pid, opt)
int *tref;
int *pid;
union {

struct t_optc2 optc2;
struct t_optc3 optc3;

} *opt;

U9583-J-Z125-1-7600 119

ICMX t_redin

The following structures are defined in <cmx.h>:

 struct t_optc2 {
 -> int t_optnr; /* Option no. */
 <- char *t_udatap; /* Data buffer */
 <> int t_udatal; /* Length of the data buffer */
 };
 struct t_optc3 {
 -> int t_optnr; /* Option no. */
 <- char *t_udatap; /* Data buffer */
 <> int t_udatal; /* Length of the data buffer */
 <- int t_xdata; /* Choice for expedited data */
 <- int t_timeout; /* Inactive time */
 -> int t_ucepid; /* User connection reference */
 };

t_optnr
Option number. Specify:

T_OPTC2 in t_optc2
T_OPTC3 in t_optc3

t_udatap
Pointer to a data area in which CMX(BS2000) enters the user data received.

Default value if NULL specified: Undefined

t_udatal
Prior to the call, 0 or the length of the data area t_udatap must appear here. The area
must be large enough that the received data completely fits. T_RED_SIZE, defined
in <cmx.h>, is a suitable maximum size. CMX(BS2000) returns in this field the
number of bytes received.

Default value if NULL specified: 0

t_xdata
In t_xdata the value T_NO is always returned.

t_timeout
In t_timeout the value T_NO is always returned.

t_ucepid
This field can be used to pass a freely-selectable user reference for this connection
to CMX(BS2000).
During subsequent processing this user reference can be returned to the current
task by CMX(BS2000) as an option in a t_event() call.
If the current task is maintaining multiple connections this mechanism enables it to
associate a TS event with the appropriate connection via a user-defined attribute.
The user reference constitutes an alternative the transport reference tref, defined
by CMX(BS2000).

Default value if NULL specified: 0

120 U9583-J-Z125-1-7600

t_redin ICMX

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs possible error values can be queried by calling t_error().
All possible error values are listed in the appendix.

See also

t_error(), t_event(), t_disrq(), t_redrq()

Note

The storage area *datap must be assigned with read-access (*tref) or write-access
(*reason, *opt, *t_udatap) from the program; otherwise, the program will abort with
an address error. CMX(BS2000) recognizes that user data has been specified by
t_udatal > 0, t_udatap = NULL is permissible!.

U9583-J-Z125-1-7600 121

ICMX t_redrq

t_redrq
Redirect connection (redirection request)

t_redrq() redirects the specified connection to another task. The receiving task is specified
by the TSN. It must be attached for the TS application to which the connection to be
redirected belongs.

With t_redrq(), the current task may specify, in the opt option, user data to be passed to the
receiving task when it accepts the connection. The user data can be used e.g. to inform the
receiving task of the TS application to which the connection belongs.

Following the t_redrq() call the connection is no longer known to the calling task and the
transport reference for this task is invalid. The called task must already exist and must be
attached to the TS application; it receives the event T_REDIN.

The connection may not be redirected

– if T_DATASTOP or T_XDATSTOP is waiting for it, or
– while a TIDU on this connection is being fetched in piecemeal fashion with t_datain()

(return value: n > 0).

-> tref
Pointer to a field with the transport reference of the connection to be redirected.

-> pid
Pointer to a field in which the TSN of the called task is to be specified.

-> opt
For the parameter opt, specify the value NULL or a pointer to a union with user options.
This union can be used to send information to the called task with the connection
redirection. The called task receives this along with the connection redirection. If
opt = NULL is specified, CMX(BS2000) delivers the given default values to the called
task.

#include <cmx.h >
int t _redrq (tref, pid, opt)
int *tref;
int *pid;
union {

struct t_optc1 optc1;
struct t_optc2 optc2;

} *opt;

122 U9583-J-Z125-1-7600

t_redrq ICMX

The following structures are defined in <cmx.h>:

 struct t_optc1 {
 -> int t_optnr; /* Option no. */
 -> char *t_udatap; /* Data buffer */
 -> int t_udatal; /* Length of the data buffer */
 int t_xdata; /* Choice for expedited data */
 -> int t_timeout; /* Waiting period for attachment */
 };

 struct t_optc2 {
 -> int t_optnr; /* Option no. */
 -> char *t_udatap; /* Data buffer */
 -> int t_udatal; /* Length of the data buffer */
 };

t_optnr
Option number. Specify:

T_OPTC1 in t_optc1
T_OPTC2 in t_optc2

t_udatap
Pointer to a storage area with user data to be delivered to the receiving task.

Default value if NULL specified: Undefined

t_udatal
Number of bytes to be transferred from the data area t_udatap. The maximum
possible number is defined in <cmx.h> as T_RED_SIZE.
If t_udatal = 0 is specified, t_udatap is ignored.

Default value if NULL specified: 0

t_xdata
This field has not yet been defined in this version. Specifications made for t_xdata
will be ignored.

t_timeout
This parameter is not evaluated by CMX(BS2000). The task to which the
connection is to be directed must be attached to the TS application before calling
t_redrq().

Default value if NULL specified: T_NO

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

U9583-J-Z125-1-7600 123

ICMX t_redrq

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_datain(), t_error(), t_event(), t_xdatin()

Note

The storage area *datap must be assigned with read-access (*tref, *opt, *t_udatap)
from the program; otherwise, the program will abort with an address error.
CMX(BS2000) recognizes that user data has been specified by t_udatal > 0,
t_udatap = NULL is permissible!.

124 U9583-J-Z125-1-7600

t_strerror ICMX

t_strerror
Decode CMX(BS2000) error message

t_strerror() decodes CMX(BS2000) error messages passed to the task in hexadecimal form
by CMX(BS2000) when t_error() is called.

t_strerror() returns a pointer to a static area that contains the plain text form of the
CMX(BS2000) error message specified in code.

This text consists of error symbols, as defined in <cmx.h> (see below).

-> code
For code, specify the representation of the error message that was passed to the task
by CMX(BS2000) when t_error() was called.

Return values

If the call was successful, t_strerror() returns a pointer to a storage area with the plain text
form of the CMX(BS2000) error message as a C string The plaintext consists of error
symbols as defined in <cmx.h>. Each error symbol is preceded by \t and has the following
structure:

"\ttype\n\tclass\n\tvalue DIAG-INF=0Xnnnnnnnn\n"

If an undefined value is specified in code, t_strerror() returns a pointer to the text:

"\t0Xnnnnnnnn ? \n"

In case of error, t_strerror() returns a NULL pointer.

See also

t_error(), t_perror()

#include <cmx.h >
char *t_strerror (code)
int code;

U9583-J-Z125-1-7600 125

ICMX t_strreason

t_strreason
Decode reasons for disconnection

t_strreason() decodes reasons for disconnection passed to the task in hexadecimal form
when t_disin() is called.

t_strreason() returns a pointer to a static area that contains the plain text form of the reason
for disconnection specified in reason.

This text consists of the symbol for the disconnection reason, as defined in <cmx.h> (see
below).

-> reason
For reason, specify the representation of the disconnection reason that was passed to
the task by CMX(BS2000) when t_disin() was called.

Return values

If the call was successful, t_strreason() returns a pointer to a storage area with the plain text
form of the disconnection reason as a C string with the following structure:

"\treason\n"

If an undefined value is specified, t_strreason() returns a pointer to the text:

"\t n ?\n"

In case of error, t_strreason() returns a NULL pointer.

Files

cmxlib.cat - Message file

See also

t_disin(), t_preason()

#include <cmx.h >
char *t_strreason (reason)
int reason;

126 U9583-J-Z125-1-7600

t_vdatain ICMX

t_vdatain
Receive data (data indication)

t_vdatain() accepts a T_DATAIN event previously reported via t_event().

By means of this call the current task receives a Transport Interface Data Unit (TIDU) of the
current Transport Service Data Unit (TSDU) from the sending TS application on the
specified connection.

t_vdatain() places the data of a received TIDU into a series of non-contiguous storage
areas. These storage areas are described by means of the vector vdata.
The number of storage areas, i.e. the number of elements in vdata, is specified in the
parameter vcnt.
Thus, vcnt t_data structures are entered in vdata. Each t_data entry describes one of the
storage areas vdata[0], vdata[1],..., vdata[vcnt-1].
The data received is stored in these storage areas sequentially; each storage area is
completely filled before the next one is used.
Between two TIDUs of a TSDU any other CMX(BS2000) events can occur for the same or
a different connection.

The maximum length of a TIDU depends on the transport connection used. It can be
queried for an established connection by means of t_info().

A TIDU need not be completely full. The breakdown of a TSDU into TIDUs is purely local
and does not indicate anything regarding the breakdown of the TSDU into TIDUs at the
sending TS application.

t_vdatain() indicates:

– (in the chain parameter)
whether a further TIDU belonging to the current TSDU exists (chain = T_MORE) or does
not exist (chain = T_END).
The individual TIDUs of a TSDU are each indicated via t_event() with the event
T_DATAIN.

– (with the return value)
whether the current TIDU has been completely read or not.
If the value T_OK is returned, the TIDU has fit into the storage area provided. The
current task has completely received the current TIDU.
If a value n > 0 is returned, only a part of the TIDU has been read. n is the number of
bytes of the TIDU that have not yet been read (remaining length).
In this case t_vdatain() or t_datain() must be called repeatedly until the entire TIDU has
been read. Only then can other CMX(BS2000) calls be issued again, e.g. t_event().

U9583-J-Z125-1-7600 127

ICMX t_vdatain

-> tref
Pointer to a field containing the transport reference of the connection.

<> vdata
Pointer to an array of t_data structures for data buffers in which CMX(BS2000) enters
the data of the received TIDU. The following structure is defined in <cmx.h>:

 struct t_data {
 <- char *t_datap; /* Data area */
 <> int t_datal; /* Length of the data area */
 };

t_datap
Pointer to a data area in which CMX(BS2000) enters data of the TIDU received.

t_datal
Prior to the call, the length of the data area t_datap must be entered in t_datal (at
least 1). Following the call, CMX(BS2000) returns in this field the number of bytes
entered.

-> vcnt
Number of elements in vdata. At least 1 and at most T_VCNT must be specified.

<- flags
Pointer to an indicator used by CMX(BS2000) to show whether there is an additional
TIDU belonging to the TSDU. Possible values:

T_MORE
Another TIDU belonging to the TSDU follows. It will be indicated with a separate
T_DATAIN event.

T_END
The present TIDU is the last of the TSDU.

#include <cmx.h >
int t _vdatain (tref, vdata, vcnt, flags)
int *tref, *vcnt, *flags;
struct t_data *vdata;

struct t_data {
char *t_datap; /* Datenbereich */
int t_datal; /* Länge des Datenbereiches */

};

128 U9583-J-Z125-1-7600

t_vdatain ICMX

Return values

T_OK
The call was successful. The TIDU was completely read.

n > 0
n bytes remain from the TIDU.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_datain(), t_error(), t_event(), t_info()

U9583-J-Z125-1-7600 129

ICMX t_vdatarq

t_vdatarq
Send data (data request)

t_vdatarq() sends the next (or only) Transport Interface Data Unit (TIDU) of a Transport
Service Data Unit (TSDU) to the receiving TS application on the specified connection.

The TIDU is provided in a series of non-contiguous storage areas.

These storage areas are defined by means of the vector vdata. The number of storage
areas, i.e. the number of elements in vdata, is specified in the parameter vcnt.
Thus, vcnt t_data structures are entered in vdata. Each t_data entry describes one of the
storage areas vdata[0], vdata[1],..., vdata[vcnt-1].
CMX(BS2000) takes the data sequentially from these storage areas. Each storage area is
completely read before turning to the next one.

If the TSDU is longer than one TIDU, it must be transferred using several t_vdatarq()(or
t_datarq()) calls in succession. Therefore in each t_vdatarq() call the sending task can
specify in the chain parameter whether an additional TIDU belonging to the same TSDU
follows.

The maximum length of a TIDU depends on the transport connection used. It can be
queried for an established connection by means of t_info().

If t_vdatarq() returns T_DATASTOP, the TIDU has been accepted but the flow of TIDUs on
this connection has been blocked.

The flow of TIDUs can be blocked by:

– the receiving TS application,
which can block the flow of TIDUs by calling t_datastop() or t_xdatstop(), or

– CMX(BS2000),
if the local buffer is full.

If the flow of TIDUs is blocked, before further TIDUs can be sent you must wait, by means
of t_event(), for the event T_DATAGO for the connection.

Successful execution of t_vdatarq() (T_OK) does not mean that the receiving TS application
has already accepted the data. If t_vdatarq() fails (T_ERROR), this always indicates that a
local error has been found.

130 U9583-J-Z125-1-7600

t_vdatarq ICMX

-> tref
Pointer to a field containing the transport reference of the connection.

-> vdata
Pointer to an array of t_data structures for data buffers from which CMX(BS2000) takes
the data of the TIDU to be sent. The following structure is defined in <cmx.h>:

 struct t_data {
 -> char *t_datap; /* Data area */
 -> int t_datal; /* Length of the data area */
 };

t_datap
Pointer to a data area from which CMX(BS2000) takes data of the TIDU to be sent.

t_datal
For this parameter, specify the length of the data area t_datap. At least 1 and at most
the length of a TIDU must be specified. The sum of all t_datal values may not
exceed the maximum length of a TIDU.

-> vcnt
Number of elements in vdata. At least 1 and at most T_VCNT must be specified. The
sum of the t_datal values of all vcnt t_data elements may not exceed the length of a
TIDU.

-> flag
Pointer to an indicator used to show CMX(BS2000) whether there is an additional TIDU
belonging to the TSDU. Possible values:

T_MORE
Another TIDU belonging to the TSDU follows.

T_END
The present TIDU is the last of the TSDU.

#include <cmx.h >
int t _vdatarq (tref, vdata, vcnt, flags)
int *tref, *vcnt, *flags;
struct t_data *vdata;

struct t_data {
char *t_datap; /* Datenbereich */
int t_datal; /* Länge des Datenbereiches */

};

U9583-J-Z125-1-7600 131

ICMX t_vdatarq

Return values

T_OK
The call was successful; further TIDUs may be sent immediately.

T_DATASTOP
The call was successful, but further TIDUs may not be sent until the event T_DATAGO
has arrived for the specified connection.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_datarq(), t_datastop(), t_error(), t_event(), t_info(), t_xdatstop()

Note

It is forbidden to continue to send data "on spec" after T_DATASTOP. Although
CMX(BS2000) will not prevent this, offenders must realize that this will lead to the
arrival of either too many or already invalid T_DATAGO events.

The storage area *datap must be assigned with read-access from the program;
otherwise the program will abort with an address error. Null is a valid address for
t_datap.

132 U9583-J-Z125-1-7600

t_wake() ICMX

t_wake()
Awakening a task from t_event

The function t_wake() awakens the task indicated by pid (=TSN) from the waiting point
t_event(). The awakened task receives the return value T_NOEVENT. t_wake() is used to
synchronize non-CMX(BS2000) events at the CMX(BS2000) waiting point. t_wake can also
be used to awaken another task with the same user-ID or, if called from a signal routine, its
own task.

t_wake() always generates a T_NOEVENT event, even when the task to be awakened is
not calling t_event().

-> pid
Pointer to a field with the TSN of the task to be awakened.

-> evref
The value of evref must always be NULL.

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code with t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_event(), t_error()

#include <cmx.h >
int t _wake (pid, evref)
int *pid;
int *evref;

U9583-J-Z125-1-7600 133

ICMX t_xdatgo

t_xdatgo
Release the flow of expedited data (expedited data go)

t_xdatgo() releases the blocked flow of expedited data on the specified connection. By
means of this call the current task informs CMX(BS2000) that it is again ready to receive
expedited data.

This call means that the current task can again receive the event T_XDATIN for the
specified connection, if the event is pending.

t_xdatgo() may be called only if the exchange of expedited data was agreed when the
connection was set up.

-> tref
Pointer to a field with the transport reference of the connection on which the flow of
expedited data is to be released again.

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_event(), t_error(), t_xdatstop()

Note

In CMX(BS2000), data flow control at the interface is independent of data flow
control on the transport connection (due to the use of BCAM). This means
t_datastop() - t_datago() is not recognized by the other TS applications until flow
control on the transport connection reacts.

#include <cmx.h >
int t _xdatgo (tref)
int *tref;

134 U9583-J-Z125-1-7600

t_xdatin ICMX

t_xdatin
Receive expedited data (expedited data indication)

t_xdatin() accepts a T_XDATIN event previously reported via t_event(). The t_xdatin() call
must be made before the next t_event().

By means of this call the current task receives an Expedited Transport Service Data Unit
(ETSDU) from the sending TS application on the specified connection. The maximum
length of an ETSDU depends on the transport connection used. However, it is never greater
than T_EXP_SIZE bytes.

If the expedited data fits into the storage area datap provided, the value T_OK is returned.
Otherwise, a value n > 0 is returned, where n is the number of bytes of the ETSDU that have
not yet been read (remaining length). In this case, t_xdatin() must be called repeatedly until
the entire ETSDU has been read. Only then can other CMX(BS2000) calls be issued again,
e.g. t_event().

-> tref
Pointer to a field containing the transport reference of the connection, obtained via
t_event().

<- datap
Pointer to a storage area in which CMX(BS2000) enters the data of the ETSDU
received.

<> datal
Pointer to a field in which the length of the data area datap must be entered prior to the
call. A value of at least 1 must be specified.
Following the call, CMX(BS2000) returns in this field the number of bytes entered.

Return values

T_OK
The call was successful. The expedited data was completely read.

n > 0
n bytes remain from the ETSDU.

T_ERROR
Error. Query error code using t_error().

#include <cmx.h >
int t _xdatin (tref, datap, datal)
int *tref;
char *datap;
int *datal;

U9583-J-Z125-1-7600 135

ICMX t_xdatin

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_error(), t_event()

136 U9583-J-Z125-1-7600

t_xdatrq ICMX

t_xdatrq
Send expedited data (expedited data request)

t_xdatrq() sends an Expedited Transport Service Data Unit (ETSDU) with expedited data to
the receiving TS application via the connection specified. The maximum length of a ETSDU
depends on the transport connection used. However, it is never greater than T_EXP_SIZE
bytes.

The t_xdatrq() call is permitted only when the exchange of expedited data was agreed when
the relevant connection was set up.

ETSDUs may overtake Transport Interface Data Units (TIDUs) with normal data that had
been sent earlier. It is guaranteed that ETSDUs will never arrive at the receiving TS appli-
cation later than TIDUs sent after them.

If T_XDATSTOP is returned, the ETSDU has been accepted but the flow of ETSDUs and
TIDUs on this connection has been blocked.

The flow of expedited data can be blocked by:

– the receiving TS application,
which can block the flow of ETSDUs by calling t_xdatstop(), or

– CMX(BS2000),
if the local buffer is full.

If the flow of ETSDUs is blocked, before further ETSDUs can be sent you must wait, by
means of t_event(), for the event T_XDATGO or T_DATAGO for the connection.

Successful execution of t_xdatrq() (T_OK) does not mean that the receiving TS application
has already accepted the data.
If t_xdatrq() fails (T_ERROR), this always indicates that a local error has been found.

-> tref
Pointer to a field with the transport reference of the connection on which the expedited
data is to be sent.

-> datap
Pointer to a storage area containing the ETSDU to be sent.

#include <cmx.h >
int t _xdatrq (tref, datap, datal)
int *tref;
char *datap;
int *datal;

U9583-J-Z125-1-7600 137

ICMX t_xdatrq

-> datal
Pointer to a field containing the number of bytes to be sent from the storage area datap.
Minimum value: 1
Maximum value: T_EXP_SIZE

(T_EXP_SIZE is defined in <cmx.h>.)

Return values

T_OK
The call was successful; further expedited data may be sent immediately.

T_XDATSTOP
The call was successful, but further ETSDUs may not be sent until the event
T_XDATGO or T_DATAGO has arrived for this connection.

T_ERROR
Error. Query error code using t_error().

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_error(), t_event(), t_xdatstop()

138 U9583-J-Z125-1-7600

t_xdatstop ICMX

t_xdatstop
Block the flow of expedited data (expedited data stop)

t_xdatstop() blocks the flow of both expedited and normal data on the specified connection.

More specifically, the effects of t_xdatstop() are:

– The current task tells CMX(BS2000) that, until further notice, it is not ready to receive
normal or expedited data for this connection. However, a T_DATAIN event or a
T_XDATIN event that has already been indicated must be responded to first.

– The current task no longer receives the events T_DATAIN and T_XDATIN for the
specified connection. However, while the data flow is blocked it may call other
CMX(BS2000) functions, e.g. to set up, close down, or redirect an additional
connection.

– The send TS application can continue to send data until data flow control on the
transport connection reacts.

– The sending TS application receives the return value T_XDATSTOP when it calls
t_xdatrq() and the return value T_DATASTOP when it calls t_datarq(). It may not send
any more normal or expedited data.

The flow of expedited data is released with t_xdatgo() or with t_datago().

t_xdatstop() may be called only if the exchange of expedited data was agreed when the
connection was set up.

-> tref
Pointer to a field with the transport reference of the connection.

Return values

T_OK
The call was successful.

T_ERROR
Error. Query error code using t_error().

#include <cmx.h >
int t _xdatstop (tref)
int *tref;

U9583-J-Z125-1-7600 139

ICMX t_xdatstop

Errors

If an error occurs, possible error values can be queried by calling t_error().
All error values are listed in the appendix.

See also

t_datago(), t_error(), t_event(), t_xdatgo(), t_xdatrq()

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9583-J-Z125-1-7600 141

9 Program examples
The following two examples show an application (rcopy) for transferring text files. The appli-
cation is divided into client (example 1) and server programs (example 2). In the examples,
case constructs are used for the evaluation of the CMX events and the breaking up of
TSDUs of any length in TIDUs (try setting tiduln at 32). In the second example, the
connection - file association is only implemented using t_ucepid.

Example 1

#include <stdio.h> /* standard library */
#include <cmx.h> /* CMX library */

/*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ remote file copy ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ*/
/* program rcopy() rcopy client */
/* copy a file to the rcopy server */
/* in BS2000 set the compiler-option <parameter-prompting=YES> */
/*ÄÄ*/

#define MAXLN 12288
struct io_rec { /* io-buffer */
 int recnr;
 char buf[MAXLN];
 };

static struct t_opti1 opti = {T_OPTI1};
static struct t_myname *loc_name;
static struct t_partaddr *rem_name;

static char *own_name, *ptn_name;

static char *sendar; /* pointer to sendarea */
static int sendln = 0; /* length of data in sendarea */

static char *file_name;
static struct io_rec *io;
static FILE *sendfile = NULL;

static int tref;
static int tiduln = 0, bytecount = 0;

static void term();
static int send();

142 U9583-J-Z125-1-7600

Program examples ICMX

/*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ main procedure ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ*/
/* rcopy <file> <to-server> */
/*ÄÄÄ*/

main(argc,argv)
 int argc;
 char *argv[];
 {
 int reason;
 int run=1;

 if (argc >= 2)
 {
 file_name = argv[1];
 ptn_name = argv[2];
 printf("copy %s to %s \n",file_name,ptn_name);

 /*ÄÄÄ open sendfile ÄÄÄÄÄÄÄ*/

 if ((sendfile = fopen(file_name,"r")) == NULL)
 term("fopen()",-1);

 /*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ get local name and open TSAP ÄÄ*/

 own_name = "cmx002";
 if ((loc_name = t_getloc(own_name,NULL)) == NULL)
 term("t_getloc()",t_error());

 if (t_attach(loc_name,NULL) == T_ERROR)
 term("t_attach()",t_error());

 /*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ get partner name and request connection -*/

 if ((rem_name = t_getaddr(ptn_name,NULL)) == NULL)
 term("t_getaddr()",t_error());

 if (t_conrq(&tref,rem_name,loc_name,NULL) == T_ERROR)
 term("t_conrq()",t_error());

 /*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ cycle until file sent -*/

 while(run)
 {
 switch (t_event(&tref,T_WAIT,NULL))
 {
 case T_CONIN: /* reject unexpected T_CONIN */
 puts("unexpected conin rejected\n");
 t_disin(&tref,NULL);
 break;

 case T_CONCF: /* confirm connection and send until T_DATASTOP */
 if (t_concf(&tref,NULL) == T_ERROR)
 term("t_concf()",t_error());

 if (t_info(&tref,&opti) == T_ERROR)
 term("t_info()",t_error());

 tiduln = opti.t_maxl;
 printf("connection OK, TIDULN = %d\n",tiduln);
 io = (struct io_rec *)malloc(sizeof(struct io_rec));
 io->recnr = 0;

 while (send(sendfile,tref) == T_OK);
 break;

U9583-J-Z125-1-7600 143

ICMX Program examples

 case T_DATAIN: /* abort transmission in case of T_DATAIN */
 t_disrq(&tref,NULL);
 fprintf("unexpected datain: transmission end\n %d bytes sendt\n",
 bytecount);
 run = 0;
 break;

 case T_DATAGO: /* continue to send until T_DATASTOP or EOF */
 while (send(sendfile,tref) == T_OK);
 break;

 case T_DISIN: /* after EOF, server closes connection */
 t_disin(&tref,&reason,NULL);
 printf(" connection closed: %s %d bytes sent \n",
 t_strreason(reason), bytecount);
 run = 0;
 break;

 case T_NOEVENT: /* ignore T_NOEVENT (maybe caused by t_wake()) */
 break;

 case T_ERROR: /* terminate program */
 term("event()",t_error());
 run = 0;
 break;

 default:
 return(1);
 }
 }
 /*ÄÄÄ close TSAP ÄÄÄÄÄÄÄ*/

 if (t_detach(loc_name) == T_ERROR)
 term("t_detach()",t_error());

 /*ÄÄ close sendfile ÄÄÄÄÄÄÄ*/

 if (sendfile != NULL)
 fclose(sendfile);
 }
 else puts("parameter error");

 return(0);
}

 /*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ procedure send ÄÄÄÄÄÄÄÄÄ*/
int send(file,to)
 FILE *file;
 int to;
{
 int dataln, ret;
 int chain;

 if (sendln == 0) /* get record from sendfile */
 {
 sendar = (char *)io;
 sendln = 5;
 if (fgets(io->buf, MAXLN, file) == NULL)
 io->recnr = -1; /* set EOF-sign for server */
 else {
 io->recnr++;
 dataln = strlen(io->buf); /* compute record-length */
 sendln += dataln;
 bytecount += dataln;
 }
 }

144 U9583-J-Z125-1-7600

Program examples ICMX

 do {
 if (sendln > tiduln)
 { dataln = tiduln; chain = T_MORE; }
 else
 { dataln = sendln; chain = T_END; }
 if ((ret = t_datarq(&tref, sendar, &dataln, &chain)) == T_ERROR)
 term("t_datarq",t_error());
 sendln -= dataln;
 sendar += dataln;
 } while (sendln > 0 && ret == T_OK); /* i.e. T_DATASTOP */

 if (io->recnr == -1) /* in case of EOF stop send-cycle */
 ret = 7;

 return(ret);
}

/*ÄÄÄÄÄÄÄÄÄÄÄ write error message and terminate program ÄÄÄÄÄÄÄÄÄÄÄ*/

void term(msg,error)
 char *msg;
 int error;
{
 puts("error \n");
 t_perror(msg,error);
 if (sendfile != NULL)
 fclose(sendfile);
 t_detach(loc_name);
 exit(-1);
}

U9583-J-Z125-1-7600 145

ICMX Program examples

Example 2

#include <stdio.h> /* standard library */
#include <cmx.h> /* CMX library */

/*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ remote file copy ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ*/
/* program rcopy() rcopy server */
/* copy a file from an rcopy client */
/* in BS2000 set the compiler-option <parameter-prompting=YES> */
/*ÄÄ*/

#define MAXLN 12288
struct io_rec { /* io - area */
 int recnr;
 char buf[MAXLN];
 };

typedef struct f_par { /* record describes the receive-file */
 char name[16]; /* file-name */
 FILE *fp; /* file-pointer */
 int record_cnt; /* received records */
 int byte_cnt; /* received bytes */
 char *rec_area; /* pointer to actual receive area */
 int rec_len; /* length of received data */
 struct io_rec io; /* io-buffer */
 } F_PAR, *F_PTR;

static struct t_opti1 opti = aT_OPTI1};
static struct t_optc3 optc = aT_OPTC3,NULL,0,T_YES,T_NO,0};
static struct t_opte1 opte = aT_OPTE1,0,0,0,T_NOLIMIT,0};
static struct t_myname *loc_name, l_name;
static struct t_partaddr rem_name;

static char *own_name, *ptn_name;

static int tref;
static int filecnt = 0;

static void term();
static int receive();

/*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ main procedure ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ*/
/* rcopy <file> <to-server> */
/*ÄÄÄ*/

main(argc,argv)
 int argc;
 char *argv[];
 {
 int reason;
 int run = 1;
 register F_PTR file;

 if (argc >= 1)
 {
 own_name = argv[1];
 printf("TS-application name %s \n",own_name);

 /*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ get local name and open TSAP ÄÄ*/

 if ((loc_name = t_getloc(own_name,NULL)) == NULL)
 term("t_getloc",t_error());

 if (t_attach(loc_name,NULL) == T_ERROR)
 term("t_attach",t_error());

146 U9583-J-Z125-1-7600

Program examples ICMX

 /*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ get-event-loop ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ*/

 while(run)
 {
 switch (t_event(&tref, T_WAIT, &opte))
 {
 case T_CONIN: /* create file-param and connection response */
 if (t_conin(&tref,&l_name,&rem_name,NULL) == T_ERROR)
 term("t_conin",t_error());

 if ((file = (F_PTR)memalloc(sizeof(F_PAR))) == NULL)
 term("no memory",-1);

 file->record_cnt = file->byte_cnt = file->rec_len = 0;
 file->rec_area = (char *)&file->io;
 sprintf(file->name,"rec-file.%04d",++filecnt);
 if ((file->fp = fopen(file->name,"w")) == NULL)
 term("fopen",-1);
 /*ÄÄÄÄÄÄÄÄÄ t_ucepid = address of file-par ÄÄÄÄÄÄÄÄÄÄÄÄÄ*/
 optc.t_ucepid = (int)file;

 if (t_conrs(&tref,&optc) == T_ERROR)
 term("t_conrs",t_error());

 printf("connection accepted for file %s \n", file->name);
 break;

 case T_DATAIN: /* receive announced data */
 file = (F_PTR)opte.t_ucepid;
 if (receive(file, tref) == -1) /* EOF-sign ? */
 {
 t_disrq(&tref,NULL);
 printf("%d bytes in %d records for file %s received\n",
 file->byte_cnt, file->record_cnt, file->name);
 fclose(file->fp);
 memfree(file,sizeof(F_PAR));
 }
 break;

 case T_DISIN: /* connection lost */
 file = (F_PTR)opte.t_ucepid;
 t_disin(&tref,&reason,NULL);
 printf("connection lost %s %d bytes in %d records for file %s received\n",
 t_strreason(reason), file->byte_cnt, file->record_cnt, file->name);
 fclose(file->fp);
 memfree(file,sizeof(F_PAR));
 break;

 case T_NOEVENT: /* ignore T_NOEVENT (caused by t_wake() ?) */
 break;

 case T_ERROR:
 t_perror("event()",t_error());
 run = 0;
 break;

 default: /* unexpected event: terminate */
 return(1);
 }
 }
 if (t_detach(loc_name) == T_ERROR)
 term("t_detach",t_error());
 }
 else puts("parameter error");

U9583-J-Z125-1-7600 147

ICMX Program examples

 return(0);
}

 /*ÄÄ receive announced data until TSDU is complete and write record ÄÄ*/
int receive(file,from)
 register F_PTR file;
 int from;
{
 int chain, dataln, ret;

 dataln = MAXLN - file->rec_len;
 if ((ret = t_datain(&tref,file->rec_area,&dataln,&chain)) != T_OK)
 term("t_datain",t_error());
 else {
 if (file->io.recnr == -1) /* EOF-sign received */
 return(-1);
 file->rec_area += dataln; /* compute next receive area */
 file->rec_len += dataln;
 if (chain == T_END)
 { /* complete TSDU received - write record to file */
 if (fputs(file->io.buf,file->fp) != 0)
 return(-1);
 file->record_cnt += 1;
 file->byte_cnt += file->rec_len - 5;
 file->rec_len = 0;
 file->rec_area = (char *)&file->io;
 }
 }

 return(ret);
}
/*ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ write error-message and terminate ÄÄÄÄÄÄÄÄ*/
void term(msg,error)
 char *msg;
 int error;
{
 puts("error \n");
 t_perror(msg,error);
 exit(-1);
}

148 U9583-J-Z125-1-7600

Program examples ICMX

Example 3

The following example illustrates the entries in the name service.

If the server "central" is started on the system HARVEY and the client "cmx002" on the
computer D016ZE01, the following /BCAMP entries must first be made by the BCAM
administrator.

on D016ZE01:

/BCMAP FU=DEF,SUBFU=LOCAL,APPL=(OSI,C'cmx002'),TSEL-I=(5,C'RCOPY')
/BCMAP FU=DEF,SUBFU=GLOBAL,APPL=(OSI,C'central'),ES=HARVEY,PTSEL-I=(8,C'RCOPYSRV')

on HARVEY:

/BCMAP FU=DEF,SUBFU=LOCAL,APPL=(OSI,C'central'),TSEL-I=(8,C'RCOPYSRV')
/BCMAP FU=DEF,SUBFU=GLOBAL,APPL=(OSI,C'cmx002'),ES=D016ZE01,PTSEL-I=(5,C'RCOPY')

The T-selectors can be predefined arbitrarily, as long as they are unique within the system.
It is recommended to store the entries in a file.

U9583-J-Z125-1-7600 149

10 Appendix

10.1 Comparison of CMX(BS2000) with CMX(SINIX)

Due to the different system architectures, ICMX(BS2000) differs from ICMX(SINIX). In
particular, these differences are relevant to anyone who wishes to port CMX programs
between SINIX and BS2000. The rules of the finite-state automaton must also be strictly
adhered to in CMX(BS2000).

Parameters not evaluated in BS2000

● CMX(BS2000) does not monitor any application-specific connection limits. With
t_attach, the parameters t_apmode and t_conlim are always set to
T_ACTIVE + T_PASSIVE + T_REDIRECT and T_NOLIMIT, respectively. Incoming
connection requests are always received by the oldest task of the TS application. The
functionality of t_apmode and t_conlim can be replaced by suitable t_disrq() or t_redrq()
calls.

● CMX(BS2000) does not monitor the inactive periods of connections. With t_conrq() and
t_conrs the parameter t_timeout is always assumed to be T_NO.

● At redirection, the task to which the connection is to be redirected must already exist
and must be attached to the TS application. With t_redrq() the parameter t_timeout is
always assumed to be T_NO.

Differences in behavior of CMX(BS2000) compared to CMX(SINIX)

● With CMX(BS2000), error codes contain additional BS2000-specific diagnostic infor-
mation. In the case of error types > 15, the CMX error values can be extracted with error
= error & Oxff. There is no guarantee that the same error situation will return the same
error value for both BS2000 and SINIX. T_WTREF in particular takes on a new meaning
with CMX(BS2000):

1. The tref is false.
2. A call related to a connection which was in the process of being disconnected by

the partner - the event T_DISIN follows (in SINIX this corresponds to
T_COLLISION).

150 U9583-J-Z125-1-7600

Comparison of CMX(BS2000) with CMX(SINIX) Appendix

● In BS2000, a waiting state with the t_event() call is not automatically terminated with a
signal routine. The call t_wake() is provided for this purpose.

Differences in the transport system

● The TNSX in BS2000 is implemented by the BCAM name service (/BCMAP command).
All global names must be entered here.

● In BS2000, the maximum number of TS applications and connections can be set by a
BCAM administration command within a wide range as can the waiting time for
connection requests.

● In BS2000, a TS application can be closed by a BCAM administration command. This
situation, which is not yet provided for SINIX, is indicated in CMX(BS2000) V1.0 via
t_event with T_ERROR where the error value = T_CCP_END. In response to this, all
program TS applications of the program should be closed and then reopened, or the
program should be terminated.

U9583-J-Z125-1-7600 151

Appendix CMX(BS2000) error messages

10.2 CMX(BS2000) error messages

The following tables contain all possible CMX(BS2000) error messages, i.e. all error
messages generated at the ICMX program interfaces. The error messages are sorted by
error type and error class.

Format of CMX(BS2000) return values

Every ICMX error message is passed in the form 0x%x, where %x is a 32-bit error code.
The error code is structured as follows:

Bit Bit
31 12 8 0
ÚÄÄÄÄÄÄÄÄÄÂÄÂÄÄÄ¿
   
ÀÄÄÄÄÂÄÄÄÄÁÂÁÄÂÄÙ

  
  ÀÄÄ> CMX error value: The possible error values are in
  defined in <cmx.h>.
 
 ÀÄÄ> CMX error class: Valid, if the error type is less than 15;
 current defined values:

 T_CMXCLASS 0 CMX class
 T_DSNOT_SPEC 2 TNS class unspecified
 T_DSPAR_ERR 3 TNS parameter error
 T_DSILL_VERS 4 invalid TNS version
 T_DSSYS_ERR 5 TNS system error
 T_DSINT_ERR 6 internal TNS error
 T_DSMESSAGE 7 TNS information

ÀÄÄ> CMX error type:

 T_CMXTYPE 0 CMX error, detected by the
 CMX library
 T_DSTEMPERR 2 temporary TNS error
 T_DSCALL_ERR 3 TNS call error
 T_DSPERM_ERR 4 permanent TNS error
 T_DSWARNING 5 TNS warning
 > 15 CMX error due to error codes from the
 transport system.
 Bits 8 to 31 contain diag. info, bits 0 to 7 the
 CMX error value

From the CMX error value, the function t_strerror() produces the output string:

"\ttype\n\tclass\n\tvalue DIAG-INF = 0xnnnnnnnn \n"

The function p_error() outputs this string to standard error output stderr.

152 U9583-J-Z125-1-7600

CMX(BS2000) error messages Appendix

From the error values of the other CMX functions, behavior compatible with SINIX can be
achieved, for example with "error = t_attach() & 0xff".

The CMX error values and their meanings are listed on the next page. The diagnostic codes
(=BCAM return codes) output in DIAG-INF are listed in the tables following the CMX error
values, together with their allocated values and meaning.

U9583-J-Z125-1-7600 153

Appendix CMX(BS2000) error messages

CMX error values

Num.
value

Symbolic value Meaning

0 T_NOERROR No error

5 T_EIO Temporary bottleneck or error in the transport system

14 T_EFAULT IO area not allocated

100 T_UNSPECIFIED Error not specified more precisely:
generally an error in a system call

101 T_WSEQUENCE Invalid call sequence

103 T_WPARAMETER Incorrect parameter

104 T_WAPPLICATION The application is unknown, or the task is not authorized to attach to
the application, or the application has already been opened by this
task.

105 T_WAPP_LIMIT No further tasks may be attached in applications; the limit value for
simultaneously active applications has been reached.

106 T_WCONN_LIMIT Limit value for simultaneously active applications has been reached.

107 T_WTREF Unacceptable transport reference or the transport connection has
already been disconnected.

111 T_NOCCP The transport system does not support the desired attachment or
connection.

114 T_CCP_END The transport system (BCAM) was terminated, or the application was
closed by the administrator.

255 T_WLIBVERSION No connection possible to the CMX subsystem.

154 U9583-J-Z125-1-7600

CMX(BS2000) error messages Appendix

Allocation of the BCAM return codes to the CMX error values

C M X
error value

DIAG - INF a
t
t

c
c
f

c
i
n

c
r
q

c
r
s

d
g
o

d
i
n

d
r
q

d
s
t

d
e
t

d
s
n

d
s
q

e
r
r

e
v
e

i
n
f

r
i
n

r
r
q

v
i
n

v
r
q

w
a
k

x
g
o

x
i
n

x
r
q

x
s
t

S-RTC
2 1

M-RTC
2 1

T_EFAULT 00 00 31 08 x x x x

T_EIO 00 00 00 28
04 00 01 1C
04 00 02 1C
04 00 03 1C
04 00 04 1C
04 00 06 1C
04 00 08 1C
04 00 09 1C
04 00 0A 1C
04 00 0B 1C
04 00 0C 1C
04 00 0D 1C
04 00 0E 1C
04 00 0E 1C
04 00 13 1C
04 00 15 1C
08 00 01 1C
10 00 00 1C
00 00 01 50
00 00 02 50
00 00 03 50
00 00 01 30
00 00 02 30
00 00 00 10
00 00 00 2C
00 00 01 2C
08 00 00 10

x

x
x

x

x
x

x
x

x
x
x
x

x
x

x
x
x

x
x
x

x

x
x

x
x

x

x

x

x
x

x x

x
x

x x

x

x
x

x

x
x

x

x
x
x
x

x

x

x

x
x
x

x

x
x

x x

x

x

x

x

U9583-J-Z125-1-7600 155

Appendix CMX(BS2000) error messages

T_NOCCP 08 00 00 20
0C 00 00 20
10 00 00 20
18 00 00 24
1C 00 00 20
1C 00 00 24
1C 00 01 24
1C 00 02 24
1C 00 03 24
1C 00 04 24
1C 00 06 24
20 00 00 20
30 00 00 20
38 00 00 20
3C 00 00 20
40 00 00 24
40 00 04 24
40 00 05 24
40 00 07 24
40 00 08 24
04 00 01 1C

x
x
x

x

x
x
x

x

x
x
x
x
x
x
x

x
x
x
x

x
x

x

x

T_WAPPLICATION 00 00 04 51
00 00 08 51
00 00 0B 51
00 00 0C 51
00 00 0D 51
00 00 0E 51
00 00 10 51
04 00 00 20
18 00 01 20
40 00 00 20

x
x

x
x
x

x
x

x
x

x
x

x
x

x x x x x x
x

x
x

x

x
x

x
x

x
x

x

x

x
x

x
x
x

x
x x x x

T_WAPPLIMIT 28 00 00 20 x

T_WCONNLIMIT 24 00 00 20 x

C M X
error value

DIAG - INF a
t
t

c
c
f

c
i
n

c
r
q

c
r
s

d
g
o

d
i
n

d
r
q

d
s
t

d
e
t

d
s
n

d
s
q

e
r
r

e
v
e

i
n
f

r
i
n

r
r
q

v
i
n

v
r
q

w
a
k

x
g
o

x
i
n

x
r
q

x
s
t

S-RTC
2 1

M-RTC
2 1

156 U9583-J-Z125-1-7600

CMX(BS2000) error messages Appendix

T_WPARAMETER - - - - - - - -
00 00 00 14
00 00 02 08
00 00 07 08
00 00 0A 08
00 00 13 08
00 00 16 08
00 00 18 08
00 00 1F 08
00 00 20 08
00 00 21 08
00 00 26 08
00 00 27 08
00 00 29 08
00 00 2A 08
00 00 2B 08
00 00 2C 08
00 00 2D 08
00 00 2E 08
00 00 2F 08
00 00 30 08
00 00 33 08
00 00 34 08
00 00 35 08
00 00 36 08
00 00 37 08
00 00 00 28

x

x

x
x
x

x

x x x
x
x

x
x
x

x
x
x

x
x
x

x
x

x x

x

x

x
x

x

x

x
x

x

x
x

x
x
x

x

x

x

x

x

x

x

x
x
x

x x
x

x

x

x

x

x

x
x

x

x

x
x

x
x
x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x
x

x

x

x

x

T_WSEQUENCE - - - - - - - -
00 00 00 3C
00 00 00 3C
04 00 02 24
08 00 00 24
0C 00 00 24
14 00 02 24
14 00 00 1C
30 00 00 24
48 00 00 24
5C 00 00 24
68 00 00 24 x

x x

x
x

x

x

x

x

x

x

x

x

x x

x

x

x x

x
x

x

x

x

x

x

x x
x

T_WTREF 04 00 00 24 x x x x x x x x x x x x x x

C M X
error value

DIAG - INF a
t
t

c
c
f

c
i
n

c
r
q

c
r
s

d
g
o

d
i
n

d
r
q

d
s
t

d
e
t

d
s
n

d
s
q

e
r
r

e
v
e

i
n
f

r
i
n

r
r
q

v
i
n

v
r
q

w
a
k

x
g
o

x
i
n

x
r
q

x
s
t

S-RTC
2 1

M-RTC
2 1

U9583-J-Z125-1-7600 157

Appendix CMX(BS2000) error messages

Meaning of the diagnostic codes

C M X
error value

DIAG info Meaning

S-RTC
2 1

M-RTC
2 1

T_EFAULT
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO

T_EIO

T_EIO
T_EIO
T_EIO
T_CCP_END
T_CCP_END
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO
T_EIO

T_EIO
T_EIO
T_EIO
T_EIO
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP

00 00 31 08
00 00 00 28
04 00 01 1C
04 00 02 1C
04 00 03 1C
04 00 04 1C
04 00 06 1C
04 00 08 1C
04 00 09 1C
04 00 0A 1C
04 00 0B 1C
04 00 0C 1C
04 00 0D 1C
04 00 0E 1C
04 00 10 1C

04 00 11 1C

04 00 13 1C
04 00 14 1C
04 00 15 1C
08 00 01 1C
0C 00 01 1C
10 00 00 1C
00 00 01 50
00 00 02 50
00 00 03 50
00 00 01 30
00 00 02 30

00 00 00 10
00 00 00 2C
00 00 01 2C
08 00 00 10
0C 00 00 20
10 00 00 20
18 00 00 24
1C 00 00 20
1C 00 00 24
1C 00 01 24
1C 00 02 24

User buffer not accessible
The call can not be executed at present (try again later)
No storage area available for data buffer
No free transport reference available
No storage area available for ACONCB
No storage area available for APPCB
No storage area available for SUB-TCB
BS2000 bourse mechanism overloaded
No storage area available for ENACB
No storage area available for ADDRCB-P
No free CONNECTION_ID available
No storage area available for Layer 4 CB
No free APID available
No free port number available
No storage area available for local event group control block
available
No storage area available for global event group control
block available
No name server entry available
No storage area available for event group names
No storage area available for EVOL
BCAM shutdown announced
BCAM quick shutdown
Global limit for the number of open TSAPs reached
Unknown host
Host not active
Own INTERNET_ADDRESS is invalid
System error when starting CONHAND processing
System error when waiting for CONHAND processing to
end
No (expedited) data arrived
User data has been lost
Connection data has been lost
No telegram available
TSAP exclusively opened by another task
TSAP already opened by this task
Partner unknown
TSAP not active
Partner processor unknown
Partner processor not active
Route(s) unknown

158 U9583-J-Z125-1-7600

CMX(BS2000) error messages Appendix

T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP

T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_NOCCP
T_WAPPLICATION
T_WAPPLICATION
T_WAPPLICATION
T_WAPPLICATION
T_WAPPLICATION
T_WAPPLICATION
T_WAPPLICATION
T_WAPPLICATION

T_WAPPLICATION

T_WAPPLICATION

T_WAPPLICATION

T_WAPPLICATION
T_WAPPLICATION
T_WAPPLICATION
T_WAPPLICATION

T_WAPPLICATION
T_WAPPLIMIT

T_WCONNLIMIT
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER

1C 00 03 24
1C 00 04 24
1C 00 06 24
20 00 00 20
2C 00 00 20
30 00 00 20
38 00 00 20
3C 00 00 20
40 00 00 24

40 00 04 24
40 00 05 24
40 00 05 24
40 00 07 24
40 00 08 24
04 00 01 1C
00 00 01 51
00 00 02 51
00 00 03 51
00 00 04 51
00 00 06 51
00 00 08 51
00 00 0B 51
00 00 0C 51

00 00 0D 51

00 00 0E 51

00 00 10 51

00 00 12 51
00 00 13 51
04 00 00 20
18 00 01 20

40 00 00 20
28 00 00 20

24 00 00 20
00 00 00 14
00 00 00 14
00 00 02 08

Route(s) not active
Partner IP address unknown
Connection request to broadcast address
t_conrq not permitted for TSAP
TSAP password invalid
TSAP could not be reopened
TSAP would have been reopened
No access to TSAP via CMX
The specified connection does not permit the sending of
expedited data
Connection data not permitted
Required interface functionality is not supported
Required interface functionality is not supported
The partner' s functionality is not compatible
Level 4 address not available
No storage area available for the data buffer
Event group of another task already open and shareable
Event group already opened by this task
Event group already exclusively opened by another task
Task not attached to the event group
Standard event group not exclusively opened
Standard event group not opened
No local task event group specified
Caller does not have the same user ID as the owner of the
event group
The connection-specific events are not reported to the event
group
The TSAP-specific events are not reported to the event
group
The user ID of the owner of the event group could not be
determined
EVENT_ID of the event group is invalid
The event group cannot be closed as it is still in use
TSAP not opened by this task
TSAP has just been forced to close by the BCAM adminis-
trator
Privileges for opening the TSAP are not available
Local task limits for the number of open TSAPs has been
reached
No further connections allowed for this TSAP
User data length too high
Length of expedited or connection data too high
Incorrect syntax of the NEA TSAP names

C M X
error value

DIAG info Meaning

S-RTC
2 1

M-RTC
2 1

U9583-J-Z125-1-7600 159

Appendix CMX(BS2000) error messages

T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER
T_WPARAMETER

T_WPARAMETER
T_WPARAMETER

T_WPARAMETER

T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WSEQUENCE
T_WTREF

00 00 03 08
00 00 07 08
00 00 0A 08
00 00 13 08
00 00 16 08
00 00 18 08
00 00 1B 08
00 00 1F 08
00 00 20 08
00 00 21 08
00 00 26 08
00 00 27 08
00 00 29 08
00 00 2A 08
00 00 2B 08
00 00 2C 08
00 00 2D 08
00 00 2E 08
00 00 2F 08
00 00 30 08
00 00 33 08
00 00 34 08
00 00 35 08

00 00 36 08
00 00 37 08

00 00 00 28

00 00 00 3C
04 00 02 24
08 00 00 24
0C 00 00 24
14 00 02 24
14 00 00 1C
14 00 00 1C
30 00 00 24
48 00 00 24
60 00 00 24
64 00 00 24
68 00 00 24
04 00 00 24

TSAPOPEN_ID not specified
CONNECTION_ID not specified
LENGTH_OF_USER_BUFFER invalid
User buffer length = 0
Expedited data length = 0
NUMBER_OF_USER_BUFFER not specified
Invalid number of route names
NEA TSAP name not specified
No ISO TSAP name specified
Length of TSAP name not specified
LENGTH_OF_USER_BUFFER_2 invalid
Invalid WAKE_TSN
Partner TSAP name not specified
No ISO partner TSAP name specified
Length of partner TSAP name not specified
No expedited data available
No standard data available
TYPE_OF_INFORMATION invalid
TYPE_OF_TRANSFER_INDICATION invalid
Invalid socket host name
Specified port number is in use
LENGTH_OF_USER_BUFFER_1 invalid
The address information specified contradicts that specified
by the /BCMAP command
LEVEL_3_CONNECTION_USER_DATA incorrect
End system name (parameter specified or defined by the /
BCMAP command) contradicts the IP address specified
t_redrq cannot currently be executed (try again later)
The specified connection does not permit expedited data to
be sent or received
The use of expedited data is not permitted
Connection already exists
Connection being set up
No connection request pending
Wait for DATA_GO_INDICATION
Wait for EXPDATA_GO_INDICATION
TSAP not authorized to set up connections
Connection is not in the data transfer phase (not fully set up)
PORT number already in use
Connection has already been closed down
The specified NEA address is currently being used by
another TSAP
Invalid CONNECTION_ID

C M X
error value

DIAG info Meaning

S-RTC
2 1

M-RTC
2 1

160 U9583-J-Z125-1-7600

List of reasons for disconnection Appendix

10.3 List of reasons for disconnection

The reasons for disconnection passed by CMX(BS2000) in reason following the calls
t_disin() and x_disin() are described below. The symbolic values specified here are
numerically defined in <cmx.h>. "Local transport system" stands for the transport system in
the system of the current task, while "partner transport system" stands for the transport
system in the system of the connection partner of the current task.

Reasons given by CMX(BS2000):

Num.
value

Symbolic value Meaning

0 T_USER Disconnection by the communication partner; possibly also due to a
user error on the part of the communication partner

1 T_RTIMEOUT Local disconnection by CMX due to inactivity on the connection as
specified by the parameter t_timeout.

2 T_RADMIN Local disconnection by CMX due to deactivation of the transport
system by administration

3 T_RCCPEND Local disconnection by CMX due to transport system failure

U9583-J-Z125-1-7600 161

Appendix List of reasons for disconnection

Reasons given by the partner transport system:

Num.
value

Symbolic value Meaning

256 T_RUNKNOWN Disconnection by the partner or the transport system; no reason
specified.

257 T_RSAPCONGEST Disconnection by the partner transport system due to a TSAP-
specific bottleneck.

258 T_RSAPNOTATT Disconnection by the partner transport system because the TSAP
addressed is not attached there.

259 T_RUNSAP Disconnection by the partner transport system because the TSAP
addressed is not known there.

261 T_RPERMLOST Disconnection by network administration or by the administration of
the partner transport system

262 T_RSYSERR Error in network.

385 T_RCONGEST Disconnection by the partner CCP due to resource bottleneck.

386 T_RCONNFAIL Disconnection by the partner transport system due to failure in
connection setup. Connection setup may fail e.g. because user data
is too long or expedited data is not permitted.

387 T_RDUPREF Disconnection by the partner transport system because asecond
connection reference was assigned for an NSAP pair (system error).

388 T_RMISREF Disconnection by the partner transport system due to a connection
reference that could not be assigned (system error).

389 T_RPROTERR Disconnection by the partner transport system due to a protocol error
(system error).

391 T_RREFOFLOW Disconnection by the partner transport system due to connection
reference overflow.

392 T_RNOCONN Establishment of the network connection rejected by the partner
transport system.

394 T_RINLNG Disconnection by the partner transport system due to incorrect
header or parameter length (system error).

162 U9583-J-Z125-1-7600

List of reasons for disconnection Appendix

Reasons given by the local transport system:

Num.
value

Symbolic value Meaning

448 T_RLCONGEST Disconnection by the local transport system due to resource
bottleneck.

449 T_RLNOQOS Disconnection by the local transport system because quality of
service can no longer be provided.

451 T_RILLPWD Invalid (connection) password.

452 T_RNETACC Network access refused.

464 T_RLPROTERR Disconnection by the local transport system due to a transport
protocol error (system error).

465 T_RLINTIDU Disconnection by the local transport system because an interface
data unit (TIDU) over the maximum permissible length was received.

466 T_RLNORMFLOW Disconnection by the local transport system due to violation of flow
control rules for normal data (system error).

467 T_RLEXFLOW Disconnection by the local transport system due to violation of the
flow control rules for expedited data (system error).

468 T_RLINSAPID Disconnection by the local transport system because it received an
invalid TSAP ID (system error).

469 T_RLINCEPID Disconnection by the local transport system because it received an
invalid TCEP ID (system error).

470 T_RLINPAR Disconnection by the local transport system due to an illegal
parameter value, e.g. user data too long or expedited data not
permitted.

480 T_RLNOPERM Connection setup prevented by the administration of the local
transport system.

481 T_RLPERMLOST Disconnection by the administration of the local transport system.

482 T_RLNOCONN Connection could not be set up by the local transport system
because no network connection available.

483 T_RLCONNLOST Disconnection by the local transport system transport due to loss of
the network connection.

484 T_RLNORESP Connection could not be set up by the local transport system
because the partner does not respond to CONRQ.

485 T_RLIDLETRAF Disconnection by the local transport system due to loss of the
connection (Idle Traffic Timeout).

486 T_RLRESYNC Disconnection by the local transport system because resynchroni-
zation was unsuccessful (more than 10 repetitions).

487 T_RLEXLOST Disconnection by the local transport system because the expedited
data channel is defective (more than 3 repetitions).

U9583-J-Z125-1-7600 163

Glossary
Active partner

The communication partner that sets up a connection to another TS application.

Address
see TRANSDATA address and TRANSPORT ADDRESS.

Application
see TS application.

ASCII
International character set for DP systems based on a 7 bit code (ISO 7 bit
code).

CCITT
Organization of public network operators and PTTs based in Geneva.

Communication method
An access method that uses the transport services defined in the OSI Reference
Model.

Communication partner
A TS application that maintains a virtual connection to another TS application and
exchanges data with it.

Connection, virtual
An association between two communication partners which allows them to
exchange data with each other.

Data unit
The set of characters that can be sent in one go with the t_datarq() call or
received in one go with t_datain().

DCAM application
A TS application in BS2000 which uses the DCAM access method.

164 U9583-J-Z125-1-7600

Glossary

EBCDIC
EBCDIC is an extended 8-bit version of BCD code which is used on BS2000
mainframes, TRANSDATA communication computers, and IBM-compatible
systems.

ETSDU
Expedited data unit.

GLOBAL NAME
Name of a TS application which uniquely identifies it in the network. The TS appli-
cation is registered in the TS directory under its GLOBAL NAME.

ISO Reference Model
Model for communication in open systems. It is described in ISO standard 7498
and comprises 7 layers.

KOGS
Special language used for describing network configurations.

LOCAL NAME
Property of a TS application in the TS directory associated with the GLOBAL
NAME. The LOCAL NAME must be specified when attaching to CMX(BS2000).

Message
A logically related set of data which is to be sent to communication partner.

Partner
see communication partner.

Passive partner
The communication partner who does not set up a connection itself but is
addressed by another communication partner.

Processor
Network-wide addressable entity in a host or communication system which
provides the functionality of the transport service.

Processor name
A part of the TRANSDATA address. The processor name is specified in the form:
processor number/region number

TIDU
Data unit

U9583-J-Z125-1-7600 165

Glossary

TRANSPORT ADDRESS
Property of a TS application in the TS directory associated with the GLOBAL
NAME. The TRANSPORT ADDRESS must be specified when setting up a
connection to a communication partner. The value of this property is the
transport address required by CMX(BS2000).

Transport Layer
Fourth layer in the OSI Reference Model; described in ISO standard 8072.

Transport Name Service in SINIX and SINIX-ODT
Service in CMX(SINIX) for managing transport system-specific properties of
TS applications.

Transport reference
A number which uniquely identifies a connection within a TS application.

Transport system
The bottom four layers of the OSI Reference Model.

TSAP
Used by a TS application to access the transport system.

TS application
Transport service application:
A TS application is an application that uses the services of the transport system.
It consists of programs that can set up a virtual connection to another TS appli-
cation in order to exchange data with it.

TSDU
Message.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9583-J-Z125-1-7600 167

Abbreviations
ASCII American Standard Code for Information Interchange

CMX Communication Method in SINIX

BCAM Basic Communication Access Method im BS2000

CCITT Comite Consultatif International Telegraphique et Telephonique

DCAM Data Communication Access Method

EBCDIC Extended Binary Coded Decimal Interchange Code

EMDS Emulation display terminal

EOF End of File

EOS End of String

ETSDU Expedited Transport Service Data Unit

FT File Transfer

ICMX Interface to Communication Method in SINIX and SINIX Open Desktop

ISO International Organization for Standardization

KOGS Configuration-oriented generator language

LAN Local Area Network

NEA Network architecture for TRANSDATA systems

OSI Open Systems Interconnection

PDN Program system for telecommunication and network control

168 U9583-J-Z125-1-7600

Abbreviations

TCEP Transport Connection Endpoint

TIDU Transport Interface Data Unit

TS Transport Service

TSAP Transport Service Access Point

TSDU Transport Service Data Unit

WAN Wide Area Network

U9583-J-Z125-1-7600 169

Related publications
In Germany, ISO standards can be obtained from:

DIN Deutsches Institut für Normung
Burggrafenstr. 4-10, Postfach 1107
D - 1000 Berlin 30

ISO 8072-1986
Information processing systems - Open Systems
Interconnection - Transport service definition

ISO 8073-1986
Information processing systems - Open Systems
Interconnection - Connection oriented transport protocol specification

ISO 7498-1984
Information processing systems - Open Systems

Interconnection - Basic Reference Model

Please apply to your local office for ordering the manuals.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9583-J-Z125-1-7600 171

Index
A
active connection setup 28
address directory 12
addresses

list of 12
TS application 52

addressing 13
application program 15

compiling 18
link 18
structure of 16

asynchronous event processing 25, 55
attaching to CMX(BS2000) 27, 56, 73
attaching/detaching at ICMX, example 30
awakening a task 132

B
BCAM return codes 154, 157
BCMAP command 12

C
called TS application 28, 32, 57
calling TS application 28, 32, 57
checking errors 26
CMX error values 153
CMX(BS2000) 1
CMX(BS2000) calls, order of 16
CMX(BS2000) error messages

complete list of 151
decoding, (ICMX) 116
decoding, ICMX 124
in plain text 116, 124

CMX(BS2000)- return value 151
CMX(BS2000), program interfaces 6
cmx.h 16
communication connection-oriented 52

172 U9583-J-Z125-1-7600

Index

communication phase 16, 62
compile application program 18
connection 54

closing down 7, 35
closing down, ICMX 57, 100
disconnecting 7
establishing 7, 31
establishing, ICMX 57, 76
establishing/closing down, ICMX example 36
inactive time, ICMX 84
redirecting 7, 21, 28, 40, 57
redirecting, ICMX 121
redirecting, ICMX example 41
requesting, ICMX 82
task 20

connection indication 57
accepting 32
receiving, ICMX 79

connection module 6
connection redirection, accepting, ICMX 118
connection request 32

confirming, ICMX 86
ICMX 57
rejecting 33
rejecting, ICMX 100

connection setup
active 28
passive 28

connection-oriented communication 52
conventions ICMX 71

D
data

excess length in TIDU 45
exchanging 43
exchanging, ICMX 59
receiving 44
receiving, ICMX 90, 126
sending 44
sending, ICMX 92, 129

data flow
releasing 49
releasing, ICMX 89
stopping 49

U9583-J-Z125-1-7600 173

Index

stopping, ICMX 94
data indication

blocking 49
blocking, ICMX 94
ICMX 59

data structure
LOCAL NAME 53
TRANSPORT ADDRESS 53

data transmission 8
data unit 43
detaching from CMX(BS2000) 29, 56, 96
diagnostic codes 157
diagnostic information 26
disconnect indication, accepting, ICMX 97
disconnection

ICMX 57
reason for 97

disconnection reason
decoding 117, 125
in plain text 117

E
error handling 23
error handling ICMX 53
error information 26
error messages

complete list of 151
decoding, ICMX 116, 124
in plain text, ICMX 53

errors
check ICMX 53
checking 26
checking, ICMX 102

ETSDU 43, 59
event 23, 54

fetching function, ICMX 56
querying, ICMX 103
waiting for, ICMX 103

event processing 23
asynchronous 25, 55
synchronous 24
synchronous, ICMX 54

expedited data 43, 59
agreeing on 34

174 U9583-J-Z125-1-7600

Index

agreeing on, ICMX 77, 80, 84, 87
exchanging 47
reading piecemeal 48
receiving, ICMX 134
remaining 48
sending and receiving 8
sending, ICMX 136

expedited data flow
releasing 49
releasing, ICMX 89, 133
stopping 49
stopping, ICMX 138

expedited data indication
blocking 49
blocking, ICMX 138

expedited data unit 43, 59
Expedited Transport Service Data Unit (ETSDU) 43

F
finite-state automata ICMX 62
flow control 8, 49, 59
function calls

ICMX 72
order of 16

function, optional 9
functions for communication 7

G
GLOBAL NAME 12

ascertain ICMX 53, 113

H
header file 16

I
ICMX 51

function calls 72
overview 7

inactive time for connection, ICMX 84
information service ICMX 61
ISO 8072 51

U9583-J-Z125-1-7600 175

Index

L
length

of a data unit 43
of a message 43, 59
of a TIDU, querying, ICMX 115
of data remaining in TIDU 45

library module 6
link application program 18
list of addresses 12
LOCAL NAME 27

ascertain ICMX 53
ascertaining, ICMX 111
data structure 53
structure of 13

M
message 43, 59

read piecemeal 59

N
name of TS application 12
name part, GLOBAL NAME 12
name service 148
names

structure of 12
TS application 52

network address 13
normal data 59

receiving 44
receiving, ICMX 90, 126
sending 44
sending, ICMX 92, 129

normal data flow
releasing 49
releasing, ICMX 89
stopping 49
stopping, ICMX 94

normal data indication
blocking 49
blocking, ICMX 94

O
optional function 9
optional parameters 9

176 U9583-J-Z125-1-7600

Index

P
parameter passing 17
parameters, optional 9
passive connection setup 28
phase of communication 62
plain text

CMX(BS2000) error messages 124
disconnection reason 125
error messages ICMX 53

plain text form
of CMX(BS2000) error messages 116
of disconnection reason 117

program examples 141
program interface ICMX 51
program interfaces, CMX(BS2000) 6
programming notes ICMX 69
property of TS application 12

R
remaining expedited data 48
request information from CMX(BS2000) 8
return value structure 151

S
sample program

attaching/detaching 30
establishing/closing down a connection 36
redirecting a connection 41
transmitting data 46
transmitting data via ICMX 46

SINIX task -> task 19
state

of a TS application 16
of TS application, ICMX 62

state transitions 16
ICMX 64

storage allocating 17
structure of a TS application 15
subsystem 6
synchronous event processing 24
synchronous event processing ICMX 54
system option 9
system options, support 68

U9583-J-Z125-1-7600 177

Index

T
t_attach 73
T_CONCF 55

accepting 76
t_concf 76
T_CONIN 55

receiving 79
t_conin 79
t_conrq 82
t_conrs 86
T_DATAGO 55
t_datago 89
T_DATAIN 55

accepting 126
t_datain 90
t_DATAIN receiving 90
t_datarq 92
t_datastop 94
T_DATGO 55
T_DATIN 55
t_detach 96
T_DISIN 55

accepting 97
t_disin 97
t_disrq 100
T_ERROR 56
t_error 102
t_event 103
t_getaddr 109
t_getloc 111
t_getname 113
t_info 115
t_myname 53
T_NOEVENT 55
t_partaddr 53
t_perror 116
t_preason 117
T_REDIN 55
t_redin 118
t_REDIN accepting 118
t_redrq 121
t_strerror 124
t_strreason 125
T_SYS_EVENT 56

178 U9583-J-Z125-1-7600

Index

t_vdatain 126
t_vdatarq 129
t_wake 132
t_xdatgo 133
t_xdatin 134
T_XDATIN accepting 134
t_xdatrq 136
t_xdatstop 138
task 54

connection 20
of TS application 19

task attaching ICMX 73
TCEP 56
TIDU 43, 44, 59

querying length, ICMX 115
Transport access system 3
TRANSPORT ADDRESS 32

ascertain, ICMX 53
ascertaining, ICMX 109
data structure 53
structure of 13

Transport Connection Endpoint (TCEP) 56
Transport Interface Data Unit (TIDU) 43, 59
transport reference 20

ICMX 52
transport service 56
Transport Service - ISO 8072 51
Transport Service Access Point 13, 52, 56
Transport Service applications 1
Transport Service Data Unit (TSDU) 43
TS application 3, 54

attaching 27
attaching ICMX 73
called 28, 32, 57
calling 28, 32, 57
characteristics 11
detaching 29
detaching, ICMX 96
name of 12
properties of 12
state of 16
structure of 15
task of 19

TS applications 1

U9583-J-Z125-1-7600 179

Index

TS directory 12
TS event -> events 23
TSAP 13, 52, 56
TSDU 43

break down 44
T-selector 13

U
user data

at connection close-down 35
at connection close-down, ICMX 97, 100
at connection redirection, ICMX 118, 121
at connection setup 32
at connection setup, ICMX 76, 79, 83, 86

user option 9
user reference

for attaching, ICMX 74
for connection 119
of connection 84, 88

Y
YDCMXLNK module 18

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U9583-J-Z125-1-7600 181

Contents
1 Preface . 1
1.1 Brief product description of CMX(BS2000) . 1
1.2 Target group . 1
1.3 Summary of contents . 2

2 The CMX(BS2000) transport access system . 3
2.1 Communication between TS applications . 4
2.2 The CMX(BS2000) program interfaces - an overview . 6
2.2.1 CMX(BS2000) functions for communication (ICMX) . 7
2.2.2 System and user options . 9

3 TS applications . 11
3.1 Names and addresses of TS applications . 12
3.1.1 The GLOBAL NAME of a TS application . 12
3.1.2 The properties LOCAL NAME and TRANSPORT ADDRESS . 13
3.2 Structure of a TS application . 15
3.3 Compiling and linking TS application programs . 18
3.4 TS applications, tasks, connections . 19
3.4.1 TS applications and tasks . 19
3.4.2 Connections and tasks . 20

4 Event processing and error handling . 23
4.1 Event processing . 23
4.2 Error handling . 26

5 Attaching to/detaching from CMX(BS2000) . 27
5.1 Attaching to CMX(BS2000) . 27
5.2 Detaching from CMX(BS2000) . 29
5.3 Examples of attaching and detaching a task . 30

6 Managing connections . 31
6.1 Establishing a connection . 31
6.2 Closing down a connection . 35
6.3 Example of setting up and closing down a connection with ICMX 36
6.4 Redirecting connections . 40
6.5 Example of redirecting a connection . 41

182 U9583-J-Z125-1-7600

Contents

7 Transmitting data . 43
7.1 Sending and receiving normal data . 44
7.2 Examples of transmitting normal data . 46
7.3 Sending and receiving expedited data . 47
7.4 Flow control of normal and expedited data . 49

8 The ICMX program interface . 51
8.1 Overview of the program interface . 51
8.2 States of TS applications and permissible state transitions . 62
8.2.1 Explanations of the possible state transitions . 66
8.3 System options and message length . 68
8.4 Programming notes . 69
8.5 Conventions . 71
8.6 ICMX function calls . 72

t_attach
Attach a task to CMX(BS2000) (attach task) . 73
t_concf
Establish connection (connect confirmation) . 76
t_conin
Receive connection request (connect indication) . 79
t_conrq
Request connection (connection request) . 82
t_conrs
Respond to connection request (connection response) . 86
t_datago
Release the flow of data (data go) . 89
t_datain
Receive data (data indication) . 90
t_datarq
Send data (data request) . 92
t_datastop
Stop the flow of data (data stop) . 94
t_detach
Detach a task from a TS application (detach task) . 96
t_disin
Accept disconnection (disconnection indication) . 97
t_disrq
Close down connection (disconnection request) . 100
t_error
Error diagnosis (error) . 102
t_event
Await or query event (event) . 103
t_getaddr
Query TRANSPORT ADDRESS (get address) . 109

U9583-J-Z125-1-7600 183

Contents

t_getloc
Query LOCAL NAME (get local name) . 111
t_getname
Query GLOBAL NAME (get name) . 113
t_info
Query information on CMX(BS2000) (information) . 115
t_perror
Output CMX(BS2000) error message in decoded form . 116
t_preason
Decode and output reasons for disconnection . 117
t_redin
Accept redirected connection (redirection indication) . 118
t_redrq
Redirect connection (redirection request) . 121
t_strerror
Decode CMX(BS2000) error message . 124
t_strreason
Decode reasons for disconnection . 125
t_vdatain
Receive data (data indication) . 126
t_vdatarq
Send data (data request) . 129
t_wake()
Awakening a task from t_event . 132
t_xdatgo
Release the flow of expedited data (expedited data go) . 133
t_xdatin
Receive expedited data (expedited data indication) . 134
t_xdatrq
Send expedited data (expedited data request) . 136
t_xdatstop
Block the flow of expedited data (expedited data stop) . 138

9 Program examples . 141

10 Appendix . 149
10.1 Comparison of CMX(BS2000) with CMX(SINIX) . 149
10.2 CMX(BS2000) error messages . 151

Format of CMX(BS2000) return values . 151
CMX error values . 153
Allocation of the BCAM return codes to the CMX error values 154
Meaning of the diagnostic codes . 157

10.3 List of reasons for disconnection . 160

184 U9583-J-Z125-1-7600

Contents

Glossary . 163

Abbreviations . 167

Related publications . 169

Index . 171

U9583-J-Z125-1-7600 185

CMX (BS2000) V1.0A

Communication Method in BS2000

Target group

Programmers of transport service (TS) applications

Contents

CMX (BS2000) offers application programs a uniform interface to the transport services.
You can use CMX (BS2000) to create application programs which can communicate with
other applications independently of the transport system.

Edition: September 1992

File: CMX.PDF

BS2000 is registered trademarks of Siemens Nixdorf Informationssyteme AG.

Copyright © Siemens Nixdorf Informationssysteme AG, 1997.

All rights, including rights of translation, reproduction by printing, copying or similar
methods, even of parts, are reserved.

Offenders will be liable for damages. All rights, including rights created by patent grant or
registration of a utility model or design, are reserved.

Delivery subject to availability; right of technical modifications reserved.

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Brief product description of CMX(BS2000)
	Target group
	Summary of contents

	The CMX(BS2000) transport access system
	Communication between TS applications
	The CMX(BS2000) program interfaces - an overvi...
	CMX(BS2000) functions for communication (ICM...
	System and user options

	TS applications
	Names and addresses of TS applications
	The GLOBAL NAME of a TS application
	The properties LOCAL NAME and TRANSPORT ADDR...

	Structure of a TS application
	Compiling and linking TS application programs
	TS applications, tasks, connections
	TS applications and tasks
	Connections and tasks

	Event processing and error handling
	Event processing
	Error handling

	Attaching to/detaching from CMX(BS2000)
	Attaching to CMX(BS2000)
	Detaching from CMX(BS2000)
	Examples of attaching and detaching a task

	Managing connections
	Establishing a connection
	Closing down a connection
	Example of setting up and closing down a conne...
	Redirecting connections
	Example of redirecting a connection

	Transmitting data
	Sending and receiving normal data
	Examples of transmitting normal data
	Sending and receiving expedited data
	Flow control of normal and expedited data

	The ICMX program interface
	Overview of the program interface
	States of TS applications and permissible stat...
	Explanations of the possible state transitio...

	System options and message length
	Programming notes
	Conventions
	ICMX function calls
	t_attach Attach a task to CMX(BS2000) (attach task...
	t_concf Establish connection (connect confirmation...
	t_conin Receive connection request (connect indica...
	t_conrq Request connection (connection request)
	t_conrs Respond to connection request (connection ...
	t_datago Release the flow of data (data go)
	t_datain Receive data (data indication)
	t_datarq Send data (data request)
	t_datastop Stop the flow of data (data stop)
	t_detach Detach a task from a TS application (deta...
	t_disin Accept disconnection (disconnection indica...
	t_disrq Close down connection (disconnection reque...
	t_error Error diagnosis (error)
	t_event Await or query event (event)
	t_getaddr Query TRANSPORT ADDRESS (get address)
	t_getloc Query LOCAL NAME (get local name)
	t_getname Query GLOBAL NAME (get name)
	t_info Query information on CMX(BS2000) (informati...
	t_perror Output CMX(BS2000) error message in decod...
	t_preason Decode and output reasons for disconnect...
	t_redin Accept redirected connection (redirection ...
	t_redrq Redirect connection (redirection request)
	t_strerror Decode CMX(BS2000) error message
	t_strreason Decode reasons for disconnection
	t_vdatain Receive data (data indication)
	t_vdatarq Send data (data request)
	t_wake() Awakening a task from t_event
	t_xdatgo Release the flow of expedited data (exped...
	t_xdatin Receive expedited data (expedited data in...
	t_xdatrq Send expedited data (expedited data reque...
	t_xdatstop Block the flow of expedited data (exped...

	Program examples
	Appendix
	Comparison of CMX(BS2000) with CMX(SINIX)
	CMX(BS2000) error messages
	Format of CMX(BS2000) return values
	CMX error values
	Allocation of the BCAM return codes to the CMX err...
	Meaning of the diagnostic codes

	List of reasons for disconnection

	Glossary
	Abbreviations
	Related publications
	Index
	A - C
	D
	E
	F - I
	L - O
	P - S
	T
	U - Y

