1 Preface

1.1 Brief product description

In most cases, the solving of commercial problems involves processing large amounts of
data. COBOL is particularly well suited to this task. COBOL programs are largely
independent of the particular features of individual hardware systems. The language is laid
down clearly and precisely in an official document issued by the American National
Standards Institute (ANSI) under the title

"American National Standard for Information Systems
- Programming Language COBOL -
ANSI X3.23-1985" and Addendum "ANSI X3.23a-1989, Intrinsic Function Module".

This is a revised version of the 1974 standard. The internal standard functions supported
as of V2.1A of the compiler are described in the above Addendum.

The German standard version DIN 66028-1986 and the international standard version
ISO 1989:1985 correspond to the American National Standard. The Intrinsic Functions by
ANS correspond to the international norm "ISO/IEC 1989 Amendment 1, Intrinsic Function
Module".

For the purpose of description, the ANSI publication divides COBOL into a nucleus and
eleven functional modules, of which five are optional (Report Writer, Communication,
Debug, Segmentation, Intrinsic Functions). Each of these modules in turn contains one or
two functional levels. The lower level of a module is a true subset of the higher level of the
same module.

The COBOLS85 (BS2000) compiler corresponds to the high subset of ANS85 as regards its
language set. The optional Report Writer and Segmentation language modules are also
supported in accordance with the high level of ANS85. The optional Communication and
Debug language modules are not supported. In BS2000, these modules are replaced by
the products UTM and AID, respectively.

U3979-J-72125-6-7600 1

Target group and summary of contents Preface

1.2 Target group and summary of contents

The present manual is aimed at programmers and training personnel. It is intended as a
guide to the writing and maintenance of COBOL programs and as a complement to training
manuals. It is neither a COBOL textbook nor a user guide.

Readers are assumed to have a sound general knowledge of programming and some basic
knowledge of COBOL.

Operation of the compiler and creation of an executable COBOL program are described in
the "COBOLS85 User Guide" [1].

The present manual describes the COBOL language for the Siemens COBOL compiler
COBOLS85 Version 2.3 for the BS2000 operating system.

The manual includes all language elements which may be used when creating COBOL
programs, organized according to function, format, syntax rules, general rules, and
examples:

The function section offers a concise, general description of the individual language
elements. If several formats are involved, the functional differences between them are
explained in brief.

The format section defines the specific arrangement of character strings and separators
required for a valid clause, statement, or compound structure. The occurrence of specific
strings and separators and their order of appearance as shown in the format section are
decisive.

The specific notation used for describing the formats is explained under the heading
"General format".

Where more than one specific arrangement is permitted, the various formats are
designated as "Format 1, Format 2 etc.".

The syntax rules section describes the particular requirements and restrictions for a given
function and offers additional explanations and application guidelines.

General rules describe the use of the language structure within the program context; that
is, as a function of previous and subsequent as well as superior and subordinate structures
and in conjunction with references and cross-references from other language elements
which, strictly speaking, are independent of the described structure. Restrictions on the
order of effects at program runtime are discussed. Generally speaking, these considera-
tions are concerned with those elements which do not appear directly in the format section.

Under Example you will find a concrete example of the language element that has just been
described.

The structure is analogous to that used for the standard COBOL document.

Certain language elements are qualified by a colors*, as follows:

2 U3979-J-Z2125-6-7600

Preface Target group and summary of contents

The "Contents" table gives an overview of the general structure and organization of the ma-
nual.

The "Index" enables rapid access to desired information.

The most important terms and concepts used in this manual are defined in alphabetical
order in the "Glossary".

Other manuals are referred to in the text by their abbreviated titles. The full title of each
publication mentioned is given at the back of the manual under "Related publications".

* The colors were chosen so as to ensure that readers who suffer from color-blindness will nevertheless be able
to distinguish the colored print from normal black print.

U3979-J-72125-6-7600 3

Changes since the last version of the manual Preface

1.3 Changes since the last version of the manual

The following table lists the major technical innovations and changes, together with the
chapters or sections in which they appear.

Less important substantive and editorial changes, updated examples, text revisions, and
formatting changes such as the renumbering of rules, examples and tables are scattered
throughout the manual and are not specifically itemized here.

Chapter/ Topic New [Modified
section
2.3.3,10.1.9 | Special register SORT-EOW X
2.3.7 Completion of Fig. 2-2 X
3.8.3 Extension of VALUE clause [when SET TO FALSE IS...]
3.9.9 Extension of EVALUATE statement X

Extension of SET statement
STRING statement, DELIMITED BY...

7.4.5 Extension of CALL statement format 1 and 2 X
New format 3 -CALL UPON SYSTEM
GOBACK statement

10.1.8,10.2 | MERGE/SORT statement X
10.3 Extension of "century conversion"
11 Compiler directive "Source Fixed" X
12 Functions for working with the "century conversion"

4 U3979-J-Z2125-6-7600

Preface Acknowledgment

1.4 Acknowledgment

The COBOL programming language described in this manual is based on the language
defined in the standard document "American National Standard for Information Systems -
Programming Language - COBOL, X.3.23-1985". In recognition of the efforts made to
develop and standardize COBOL, it is customary to precede a description of COBOL with
the following text:

"Any organization interested in reproducing the COBOL standard and specifications in
whole or in part, using ideas from this document as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such organizations are requested to
reproduce the following acknowledgment paragraphs in their entirety as part of the preface
to any such publication (any organization using a short passage from this document, such
as in a book review, is requested to mention "COBOL" in acknowledgment of the source,
but need not quote the acknowledgment):

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL
Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted materials used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC (R)
| and Il, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translater Form No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL speci-
fications. Such authorization extends to the reproduction and use of COBOL specifications
in programming manuals or similar publications."

U3979-J-72125-6-7600 5

2 Introduction to the COBOL language

2.1 Glossary

This section contains definitions of the terms used to describe the COBOL language in this
manual. These terms do not necessarily have the same meaning for other programming
languages.

The definitions are brief summaries of basic characteristics. For detailed explanations and
syntax rules consult the later chapters of this manual.
Access mode

The manner in which records are to be operated upon within a file.

Actual decimal point

The physical representation, using either of the decimal point characters period (.) or
comma (,), of the decimal point position in a data item.

Alphabetic character

AY Bl Cl D! E! Fl G! H! Il ‘]1 KY Ll Ml N! Ol Pl Ql R! Sl Tl UY V! Wl Xl Yl Z! al b! Cl d! el fl g! h)
ij,k,l,mn0,pq,rstuv,w, XY, zand space.

Alphabet-name

A user-defined word, in the SPECIAL-NAMES paragraph of the Environment Division, that
assigns a name to a specific character set and/or collating sequence.

Alphanumeric character

Any character in the computer’s character set.

U3979-J-72125-6-7600 7

Glossary

Introduction to the COBOL language

Alphanumeric function

A function whose value is composed of a string of one or more characters from the
computer’s character set.

Alternate record key

A key, other than the prime record key, whose contents identify a record within an indexed
file.

Area A

Columns 8 through 11 in the COBOL reference format.

Area B

Columns 12 through 72 in the COBOL reference format.

Argument

An identifier, a literal, or an arithmetic expression that specifies a value to be used in the
evaluation of a function.

Arithmetic expression

An arithmetic expression can be:

— an identifier for a numeric elementary item

— anumeric literal

— two arithmetic expressions separated by an arithmetic operator

— an arithmetic expression enclosed in parentheses.

Arithmetic operator

A single character or a fixed two-character combination which belongs to the following set:

Character Meaning

+ Addition

- Subtraction

* Multiplication
/ Division

*x Exponentiation

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Ascending key

A key upon the values of which data is ordered starting with the lowest value of key up to
the highest value of key in accordance with the rules for comparing data items.

Assumed decimal point

A decimal point position which does not involve the existence of an actual character in a
data item. The assumed decimal point has logical meaning but no physical representation.

At end condition

An at end condition may occur:
1. During execution of a sequential READ statement for a file.

2. During execution of a RETURN statement whenever there is no logical record for the
sort or merge file.

3. During execution of a SEARCH statement whenever the search terminates before any
of the WHEN conditions have been satisfied.

Binary search

A method of searching a table in ascending or descending order for a particular element.
The search takes place by a process of halving the searched area. At each stage of the
search, the middle element is compared to see whether it is greater than, less than, or equal
to the element being sought. This process of halving and comparing continues until the
checked element is identical to the element being sought.

Blank lines
A blank line is one that is filled entirely with blanks in columns 7 through 72 in the COBOL
reference format.

Block

A physical unit of data that is normally composed of one or more logical records or a portion
of a logical record. The size of a block has no direct relationship to the size of the file within
which the block is contained or to the size of the logical record(s) that are either contained
within the block or that overlap the block. The term is synonymous with physical record.

Body group

Generic name for a report group, control heading or control footing.

U3979-J-72125-6-7600 9

Glossary Introduction to the COBOL language
Called program
A program which is the object of a CALL statement and is combined at program run time
with the calling program to produce a run unit.
Calling program
A program which executes a CALL to another program.
Character
The basic indivisible unit of the language.
Character-string
A sequence of contiguous characters which form a COBOL word, a literal, a PICTURE
character-string, or a comment-entry.
Class condition
The class condition establishes whether the contents of a data item are
— completely numeric,
— completely alphabetic,
— completely uppercase,
— completely lowercase, or
— completely made up of characters defined by means of the class-name specified in the
SPECIAL-NAMES paragraph of the Environment Division.
Class-name
A user-defined word specified in the SPECIAL-NAMES paragraph of the Environment
Division and naming a character set defined by the user. The class-name is entered in the
class condition for purposes of checking whether a data item consists entirely of characters
from this character set.
Clause
A clause is an ordered set of consecutive COBOL character strings whose purpose is to
specify an attribute of an entry.
10 U3979-J-2125-6-7600

Introduction to the COBOL language Glossary

COBOL character set

Character Meaning

0to9 Digit
AtoZ,atoz Letter
. Space (blank)
+ Plus sign
- Minus sign (hyphen)
* Asterisk
/ Stroke (virgule, slash)
= Equal sign
$ Currency sign
, Comma (decimal point)
; Semicolon
Period (decimal point)
: Colon
" Quotation mark
(Left parenthesis
) Right parenthesis
>
<

Greater than symbol
Less than symbol

The COBOL character set consists of 77 characters.

It includes 26 uppercase letters, 26 lowercase letters, 10 digits, the space, and 15 special
characters.
COBOL word

see "Word"

Collating sequence

The sequence in which the characters that are acceptable in a computer are ordered for
purposes of sorting, merging and comparing.

Column

A character position within a print line. The columns are numbered from 1, by 1, starting at
the leftmost character position of the print line and extending to the rightmost position of the
print line.

U3979-J-2125-6-7600 11

Glossary

Introduction to the COBOL language

Combined condition

A condition that is the result of connecting two or more conditions with the "AND" or the
"OR" logical operator.

Comment entry

An explanatory entry in the Identification Division of a source program.

Comment line

A source program line containing an asterisk (*) or slash (/) in the indicator area of the line,
i.e. in column 7 of the COBOL reference format.

Any combination of characters from the computer’s character set may appear in areas A
and B. The comment line serves only for documentation in a program.

The asterisk indicates a comment line. A slash indicates a comment line which causes page
advance before the line is printed.

Common program

A contained program in a nested source program, whose name is provided with the
COMMON attribute. Such a program can be called by the directly superordinate program
and also by any "sibling program" or its "descendants".

Compile time

The time at which a COBOL source program is translated, by a COBOL compiler, to a
COBOL object program.

Compiler directing statement

A statement, beginning with a compiler directing verb, that causes the compiler to take a
specific action during compilation. The compiler directing statements are COPY, REPLACE
and USE.

Complex condition

A condition in which one or more logical operators act upon one or more conditions.

Computer-name

A system-name that identifies the computer upon which the program is to be compiled or
run.

12

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Condition

A status of a program at run time for which a truth value can be determined. In this manual,
the term "condition" (condition-1, condition-2, ...) represents either a simple condition or a
combined condition consisting of the syntactically correct combination of simple conditions,
logical operators, and parentheses, for which a truth value can be determined.
Condition-name

A user-defined word assigned to a specific value, set of values, or range of values, within
the complete set of values that a conditional variable may possess; or the user-defined
word assigned to a status of a task switch or a user switch.

Condition-name condition

Causes a conditional variable to be tested to see whether its value matches any of the
values belonging to a condition-name.

Conditional expression

A simple condition or a complex condition specified in an IFF PERFORM, EVALUATE or
SEARCH statement.

Conditional statement

A conditional statement specifies that the truth value of a condition is to be determined and
that the subsequent action of the object program is dependent on this truth value.
Conditional variable

A data item whose value or values is or are assigned a condition-name.

Connective

A reserved word that is used to:

— associate a data-name, paragraph-name, condition-name, or text-name with its quali-
fier

— link two or more operands written in a series

— form conditions (logical connectives); see "Logical operator"

U3979-J-2125-6-7600 13

Glossary

Introduction to the COBOL language

Contiguous items

Items that are described by consecutive entries in the Data Division, and that bear a definite
hierarchic relationship to each other.

Control break

A change in the value of a data item that is referenced in the CONTROL clause.

More generally, a change in the value of a data item that is used to control the hierarchical
structure of a report.

Control break level

The relative position within a control hierarchy at which the most major control break
occurred.

Control data item

A data item, a change in whose contents may produce a control break.

Control data-name

A data-name that appears in a CONTROL clause and refers to a control data item.

Control footing

A report group that is presented at the end of the control group of which it is a member.

Control group

A contiguous set of data assigned to a control data item within the control hierarchy.

For a given control data item, the control group consists of the entire sequence of control
headings, control footings, and their associated report groups.

Control heading

A report group that is presented at the beginning of the control group of which it is a
member.

Control hierarchy

A designated sequence of report subdivisions defined by the positional order of FINAL and
the data-names within a CONTROL clause.

14

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Conversion

The implicit transformation of numeric values from one format to another, or of index values
into table element numbers and vice versa.

— Inthe case of index values (binary numbers) and table element occurrence numbers,
transformation occurs according to the formula:

index value = (occurrence number - 1) * length of table element
Hence, conversion depends on the table used.

— In cases where USAGEs vary from one numeric data item to another.

Counter

A data item used for storing numbers or number representations in a manner that permits
these numbers to be increased or decreased by the value of another number, or to be
changed or reset to zero or to an arbitrary positive or negative value.

Currency symbol

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. If no CURRENCY SIGN clause is present in a COBOL source program, the
currency symbol is identical to the currency sign ($).

Current record

The record which is available in the record area associated with the file.

Current record pointer

A conceptual entity that is used in the selection of the next record.

Data clause

A clause that appears in a data description entry in the Data Division and provides infor-
mation describing a particular attribute of a data item.

Data description entry

An entry in the Data Division that is composed of a level-number followed by a data-name,
if required, and then followed by a set of data clauses, as required.

U3979-J-2125-6-7600 15

Glossary

Introduction to the COBOL language

Data item

A unit of data (excluding literals) defined by a COBOL program or by the rules for function
evaluation.

Data-name

A user-defined word that names a data item described in a data description entry in the
Data Division. When used in the general formats, "data-name" represents a word which
cannot be subscripted, indexed or qualified unless specifically permitted by the rules for that
format.

Debugging line

A debugging line is any line with "D" in its indicator area (column 7 in the COBOL reference
format).

Declaratives

A set of one or more sections, written at the beginning of the Procedure Division, the first
of which is preceded by the key word DECLARATIVES and the last of which is followed by
the key words END DECLARATIVES. A declarative is composed of a section header,
followed by a USE compiler directing sentence, followed by a set of zero, one or more
associated paragraphs.

Declarative sentence

A compiler-directing sentence consisting of a single USE statement terminated by the
separator period.

De-editing

The logical removal of all editing characters from a numeric edited data item in order to
determine that item’s unedited numeric value.

Delimited scope statement

Any statement which includes its explicit scope terminator.

Delimiter

A character or a sequence of contiguous characters that identify the end of a string of
characters and separates that string of characters from the following string of characters. A
delimiter is not part of the string of characters that it delimits.

16

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Descending key

A key upon the values of which data is ordered starting with the highest value of key down
to the lowest value of key, in accordance with the rules for comparing data items.

Direct indexing

With direct indexing, the index used is in the form of a direct subscript.

see "Direct subscripting"

Direct subscripting

With direct subscripting, the subscript is indicated either as an integral literal or as a data-
name described as a numeric elementary item with no character positions to the right of the
assumed decimal point.

Division

A set of zero, one, or more sections or paragraphs, called the division body, that are formed
and combined in accordance with a specific set of rules. There are four (4) divisions in a
COBOL program: Identification, Environment, Data and Procedure.

Division header

A combination of words followed by a period and a space that indicates the beginning of a
division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION

Dynamic access

The method of switching between sequential and random access. This method can be
specified for relative or indexed files only.

U3979-J-2125-6-7600 17

Glossary

Introduction to the COBOL language

Editing character

A single character or a fixed two-character combination belonging to the following set:

Character Meaning

Space

Zero

Plus

Minus

Credit

Debit

Zero suppress

Check protect
Currency sign
Comma (decimal point)
. Period (decimal point)
/ Stroke (virgule, slash)

- g0
w*Nw;UI+OUJ

Elementary item

A data item with no further logical subdivisions.

End program header

A combination of words, followed by a separator period, that indicates the end of a COBOL
source program. The end program header is:

END PROGRAM program-name.

Entry

Any descriptive set of consecutive clauses terminated by a period and written in the Identi-
fication Division, Environment Division, or Data Division of a COBOL source program.
Execution time

The time at which an object program is executed.

Explicit scope terminator

A reserved word which terminates the scope of a particular Procedure Division statement.

Extend mode

The state of a file after execution of an OPEN statement, with the EXTEND phrase
specified, for that file and before the execution of a CLOSE statement for that file.

18

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Extended access

A method of switching to and from sequential and random access. This access method may
only be specified for indexed files.

External data item

A data item which is described as part of an external record in one or more programs of a
run unit and which itself may be referenced from any program in which it is described.
External record

A logical record which is described in one or more programs of a run unit and whose consti-
tuent data items may be referenced from any program in which they are described.
Figurative constant

A compiler generated value referenced through the use of certain reserved words, or a
user-defined constant that may be referenced by user-assigned names.

File

A collection of records.

File clause

A clause that appears as part of any of the following Data Division entries:
File description (FD)

Sort-merge file description (SD)

Report description (RD)

File connector

The storage area which contains information about a file and is used as the linkage between
a file-name and a physical file and between a file-name and its associated record area.
File description entry

An entry in the FILE SECTION of the Data Division that is composed of the level indicator
FD, followed by a file-name, and then followed by a set of file clauses as required.

U3979-J-2125-6-7600 19

Glossary

Introduction to the COBOL language

File-name

A user-defined word that names a file described in a file description entry or a sort-merge
file description entry within the FILE SECTION of the Data Division.

File organization

The permanent logical file structure established at the time that a file is created.

File position indicator

A conceptual entity that contains the value of the current key within the key of reference for
an indexed file, or the record number of the current record for a sequential file, or the
relative record number of the current record for a relative file, or indicates that no next
logical record exists, or that the number of significant digits in the relative record number is
larger than the size of the relative key data item, or that an optional input file is not present,
or that the end condition already exists, or that no valid next record has been established.

Format

A specific arrangement of character-strings and separators within a statement or clause.

Function

A temporary data item whose value is determined by invoking a mechanism provided by
the implementor at the time the function is referenced during the execution of a statement.

Function-identifier

A syntactically correct combination of character-strings and separators that reference a
function. The data item represented by a function is uniquely identified by a function-name
with its arguments, if any. A function-identifier may include a reference-modifier. A function-
identifier that references an alphanumeric function may be specified anywhere in the
general formats that an identifier may be specified, subject to certain restrictions. A
function-identifier that references an integer or numeric function may be referenced
anywhere in the general formats that an arithmetic expression may be specified (see also
section 2.4.4, "Function-identifier").

Function-name

A word that names a mechanism provided by the implementor to determine the value of a
function.

20

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Global name

A name that is declared in only one program but which can be referenced by any program
contained directly or indirectly in this program. Global names can be: condition-names,
data-names, file-names, record-names, report-names as well as certain special registers.

Group item

A data item that is composed of subordinate data items.

High order end

The leftmost character of a string of characters.

I-O mode

The state of a file after execution of an OPEN statement, with the 1-O phrase specified, for
that file and before the execution of a CLOSE statement for that file.

I-O status

A value moved to a two-character data item to inform the COBOL program of the status of
an input-output operation. This value is only moved when the FILE STATUS clause has
been specified in the FILE-CONTROL paragraph.

Identifier

A syntactically correct combination of character-strings and separators that names a data
item, i.e. a combination of a data-name, with the appropriate qualifiers, subscripts, and
reference modifiers, as required for uniqueness of reference. ldentifiers of (intrinsic)
functions are described separately under the term "Function-identifier".

Imperative statement

A statement that either begins with an imperative verb and specifies an unconditional action
to be taken or is a conditional statement that is delimited by its explicit scope terminator
(delimited scope statement). An imperative statement may consist of a sequence of
imperative statements.

U3979-J-2125-6-7600 21

Glossary

Introduction to the COBOL language

Implementor-name

A name taken from the following list:

CONSOLE?) Literal
TERMINAL?) Job variable name
SYSIPT*) TSW-0 to TSW-31
PRINTER, PRINTERO1-PRINTER99 USW-0 to USW-31
SYSOPT?*) COMPILER-INFO
ARGUMENT-NUMBER *) CPU-TIME
ARGUMENT-NAMEY*) PROCESS-INFO
ENVIRONMENT-NAME *) TERMINAL-INFO
ENVIRONMENT-VALUEY*) DATE-ISO4

CO01 to C08; C10, C11

*) ="reserved words" within the Environment Division.
Index

A computer storage area or register, the contents of which represent the identification of a
particular element in a table.
Index data item

A data item in which the value associated with an index-name can be stored.

Index-name

A user-defined word that names an index associated with a specific table.

Indexed data-name

An identifier that is composed of a data-name, followed by one or more index-names
enclosed in parentheses.

Indexed file

A file with indexed organization.

Indexed organization

The permanent logical file structure in which each record is identified by the value of one or
more keys within that record.

22

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Indicator area

Column 7 in the COBOL reference format.

Initial program

A program that is in the initial state whenever it is called within a run unit

Initial state

The state of a program when it is first called within a run unit.

Input file

A file that is opened in the input mode.

Input mode

The state of a file after execution of an OPEN statement, with the INPUT phrase specified,
for that file and before the execution of a CLOSE statement for that file.

Input-output file

A file that is opened in the I-O mode.

Input procedure

A set of statements that is executed each time a record is released to the sort file.

Integer

A numeric literal or a numeric data item that does not include any character positions to the
right of the assumed decimal point.

Where the term "integer" appears in general formats, "integer" must be a numeric literal
which is an integer, and it must be neither signed nor zero unless explicitly allowed by the
rules for that format.

Integer function

A function whose category is numeric and whose definition provides that all digits to the
right of the decimal point in any returned value are always set to zero.

U3979-J-2125-6-7600 23

Glossary

Introduction to the COBOL language

Internal data

The data that is described in a program, excluding all external data items and external files.
Data-items that are defined in the LINKAGE SECTION of a program are treated as internal
data.

Internal data item

A data item that is described in a program of a run unit. An internal data item can have a
global name.

Internal file

A file that can only be accessed by a program of the run unit.

Invalid key condition

A condition occurring at the time of program execution when a particular value for a key of
a relative or indexed file is invalid.

Key

A data item which identifies the location of one or more data items which serve to identify
the ordering of data.

Key of reference

The key, either prime or alternate, currently being used to access records within an indexed
file.

Key word

A reserved word or function-name whose presence is required when the format in which
the word appears is used in a source program.

Level indicator

Two alphabetic characters (FD, RD, SD, DB) that identify a specific type of file.

Level-numbers

A one or two digit number which, in the range 1 through 49, indicates the position of a data
item in the hierarchical structure of a logical record or which, in the case of level-numbers
66, 77 and 88, identifies special properties of a data description entry.

24

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Library-name

A user-defined word that identifies a source program library, which may contain more than
one COBOL text with various names.

Library-text

A sequence of character-strings and/or separators in a COBOL library.

Line

see "Report line"

Line number

An integer that denotes the vertical position of a report line on a page.

Line sequential organization

A sequential file organization derived from the X/Open standard.

Literal

A character-string whose value is implied by the ordered set of characters comprising the
string.

Logical operator

One of the reserved words AND, OR, or NOT.

In the formation of a combined condition, AND and OR can be used as logical connectives.
NOT can be used for logical negation.

Logical record

A data item at the highest level in the hierarchy (level-number 01) which does not occur in
any other record.

Low order end

The rightmost character of a string of characters.

U3979-J-2125-6-7600 25

Glossary

Introduction to the COBOL language

Mass storage

A storage medium on which data may be organized and maintained in both a sequential
and nonsequential manner.

Mass storage file

A collection of records that is assigned to a mass storage medium.

Merge file

A collection of records to be merged by a MERGE statement. The merge file is created and
can be used only by the merge function.

Mnemonic-name

A user-defined word that is associated in the SPECIAL-NAMES paragraph of the
Environment Division with a specified implementor-name.

Native character set

The EBCDIC character set.

Native collating sequence

The collating sequence defined in the EBCDIC character set.

Negated combined condition

The "NOT" logical operator immediately followed by a parenthesized combined condition.

Negated simple condition

The "NOT" logical operator immediately followed by a simple condition.

Nested source program

A COBOL program that contains other programs which in turn can contain further
programs. It accordingly comprises an outer program with one or more programs contained
in it.

26

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Next executable sentence

The next sentence to which control will be transferred after execution of the current
statement is complete.

Next executable statement

The next statement to which control will be transferred after execution of the current
statement is complete.

Next record

The record which logically follows the current record of a file.

Noncontiguous items

Elementary data items, in the WORKING-STORAGE and LINKAGE SECTIONS, which
bear no hierarchic relationship to other data items.

Nonnumeric item

A data item whose description permits its contents to be composed of any combination of
characters taken from the computer’s character set. Certain categories of nonnumeric
items may be formed from more restricted character sets.

Nonnumeric literal

A character-string bounded by quotation marks. The string of characters may include any
character in the computer’s character set. Quotation marks must be doubled (") to be
represented within a nonnumeric literal.

Numeric character

A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric function

A function whose class and category are numeric.

Numeric item

A data item whose value is represented by the digits "0" through "9".

Its sign, if required, must be represented by a permitted form of "+" or "-".

U3979-J-2125-6-7600 27

Glossary

Introduction to the COBOL language

Numeric literal

A literal composed of one or more numeric characters that may also contain either a
decimal point, or an algebraic sign, or both. The decimal point must not be the rightmost
character. The algebraic sign, if present, must be the leftmost character.

Object program

A set or group of executable machine language instructions and other material designed to
interact with data to provide problem solutions. In this context, an object program is
generally the machine language result of the operation of a COBOL compiler on a source
program. Where there is no danger of ambiguity, the word 'program’ alone may be used in
place of the phrase 'object program’.

Object time

The time at which an object program is executed.

Open mode

The state of a file after execution of an OPEN statement for that file and before the
execution of a CLOSE statement for that file.

The precise open mode is specified in the OPEN statement either with INPUT, OUTPUT,
[-O or EXTEND.
Operand

In general, an operand may be defined as "that entity which is operated upon". However, in
this publication, any lowercase word (or words) that appears in a statement, paragraph,
clause or entry format may be considered an operand.

Operational sign
An algebraic sign, associated with a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

Optional file

A file which is declared as being not necessarily present each time the object program is
executed. The object program causes an interrogation for the presence or absence of the
file.

28

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Optional word

A reserved word that is included in a specific format only to improve the readability of the
language and whose presence is optional to the user when the format in which the word
appears is used in a source program.

Output file

A file that is opened in either the output mode or extend mode.

Output mode

The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND
phrase specified, for that file and before the execution of a CLOSE statement for that file.
Output procedure

A set of statements to which control is given during execution of a SORT statement after
the sort function is completed, or during execution of a MERGE statement after the merge
function has selected the next record in merged order.

Padding character

An alphanumeric character used to fill the unused character positions of a physical record.

Page

A vertical division of a report representing a physical separation of report data, the
separation being based on internal reporting requirements and/or external characteristics
of the reporting medium.

Page body

That part of the logical page in which lines can be written and/or spaced.

Page footing

A report group that is presented at the end of a report page and is output prior to a page
advance whenever this is caused by a page advance condition.

Page heading

A report group that is presented at the beginning of a report page and is output immediately
after page advance whenever this is caused by a page advance condition.

U3979-J-2125-6-7600 29

Glossary

Introduction to the COBOL language

Paragraph

In the Procedure Division:

A paragraph-name followed by a period and a space and by zero, one or more sentences.
In the Identification Division and Environment Division:

A paragraph header followed by zero, one, or more entries.

Paragraph header

A reserved word placed above the paragraphs in the Identification and Environment
Divisions for identification purposes.
The permissible paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

1-O-CONTROL.

Paragraph-name

A user-defined word that identifies a paragraph in the Procedure Division. Paragraph-
names must begin in area A.

Phrase

A phrase is an ordered set of one or more consecutive COBOL character-strings that form
a portion of a COBOL procedural statement or of a COBOL clause.

Physical record

see "Block"

30

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Prime record key

A key whose contents uniquely identify a record within an indexed file.

Printable group

A report group that contains at least one print line.

Printable item

A data item, the extent and contents of which are specified by an elementary report entry.
This elementary report entry contains a COLUMN NUMBER clause, a PICTURE clause,
and a SOURCE, SUM or VALUE clause.

Procedure

A paragraph or group of logically successive paragraphs, or a section or group of logically
successive sections, within the Procedure Division.

Procedure-name

A user-defined word which is used to name a paragraph or section in the Procedure
Division. It consists of a paragraph-name (which may be qualified) or a section-name.
Program identification area

Columns 73 through 80 in the COBOL reference format.

Program-name

A user-defined word that identifies a COBOL source program.

Pseudo-text

A sequence of text words, comment lines, or the separator space in a source program or
COBOL library bounded by, but not including, pseudo-text delimiters.

Pseudo-text delimiter

Two contiguous equal sign (=) characters used to delimit pseudo-text.

U3979-J-2125-6-7600 31

Glossary Introduction to the COBOL language

Punctuation character

A character that belongs to the following set:

Character BMeaning

, Comma

; Semicolon

Period

Colon

Quotation mark
Left parenthesis
Right parenthesis
Space

Equal sign

N[~ —~

Qualified data-name

An identifier that is composed of a data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qualifier.

Qualifier

1. A data-name which is used in a reference together with another data-name at a lower
level in the same hierarchy.

2. A section-name which is used in a reference together with a paragraph-name specified
in that section.

3. Alibrary-name which is used in a reference together with a text-name associated with
that library.

Random access

An access mode in which the program-specified value of a key data item identifies the

logical record that is obtained from, deleted from, or placed into a relative or indexed file.

Record

see "Logical record"

Record area

A storage area allocated for the purpose of processing the record described in a record
description entry in the FILE SECTION.

32 U3979-J-2125-6-7600

Introduction to the COBOL language Glossary

Record description entry

The total set of data description entries associated with a particular record.

Record key

A key, either the prime record key or an alternate record key, whose contents identify a
record within an indexed file.

Record name

A user-defined word that names a record described in a record description entry in the Data
Division.

Record number

The ordinal number of a record in the file whose organization is sequential.

Reference format

Standard method for describing a statement format in a COBOL source program.

Reference modification

Definition of a data item through specification of the leftmost character position and the
length of the data item.

Reference-modifier

A syntactically correct combination of character-strings and separators that defines a
unique data item. Reference modifiers consist of a delimiting left parenthesis separator, the
leftmost character position at which the data item begins, a colon separator, the length of
the data item, and a delimiting right parenthesis separator.

Relation

see "Relational operator"

U3979-J-2125-6-7600 33

Glossary Introduction to the COBOL language

Relation character

A character that belongs to the following set:

Character Meaning
> Greater than
< Less than
= Equal to
>= Greater than or equal to
<= Less than or equal to

Relation condition

A condition which can yield a truth value. A relation condition causes two operands to be
compared. Either of these operands may be an identifier, a literal, or an arithmetic
expression.

Relational operator

A reserved word, a relation character, a group of consecutive reserved words, or a group
of consecutive reserved words and relation characters used in the construction of a relation
condition. The permissible operators and their meaning are:

Character Meaning

IS [NOT] GREATER THAN Greater than or not greater than
IS [NOT] >

IS [NOT] LESS THAN Less than or not less than
IS [NOT] <

IS [NOT] EQUAL TO Equal to or not equal to
IS [NOT] =

IS GREATER THAN OR EQUAL TO Greater than or equal to
IS >=

IS LESS THAN OR EQUAL TO Less than or equal to

IS <=

Relative file

A file with relative organization.

Relative indexing

With relative indexing, the name of the table element is followed by an index in the form
(index name +|- integer).

34 U3979-J-2125-6-7600

Introduction to the COBOL language Glossary

Relative key

A key whose contents identify a logical record in a relative file.

Relative organization

The permanent logical file structure in which each record is uniquely identified by an integer
value greater than zero, which specifies the record’s logical ordinal position in the file.
Relative record number

The ordinal number of a record in a file whose organization is relative. This number is
treated as a numeric literal which is an integer.

Relative subscripting

With relative subscripting, the name of the table element is followed by a subscript in the
form

(data—name + integer) or

(data—name — integer).

Report clause

A clause, in the REPORT SECTION of the Data Division, that appears in a report
description entry or a report group description entry.

Report description entry

An entry in the REPORT SECTION of the Data Division that is composed of the level
indicator RD, followed by a report name, followed by a set of report clauses as required.
Report file

An output file whose file description entry contains a report clause. The contents of a report
file consist of records that are written under control of the Report Writer Control System.
Report footing

A report group that is presented only at the end of a report.

Report group
In the REPORT SECTION of the Data Division, a 01-level entry and its subordinate entries.

U3979-J-2125-6-7600 35

Glossary

Introduction to the COBOL language

Report group description entry

An entry in the REPORT SECTION of the Data Division that is composed of the level-
number 01, the optional data-name, a TYPE clause, and an optional set of report clauses.
Report heading

A report group that is presented only at the beginning of a report.

Report line

A division of a page representing one row of horizontal character positions.

Report-name

A user-defined word that names a report described in a report description entry within the
REPORT SECTION of the Data Division.

Report Writer logical record

A record that consists of the Report Writer print line and associated control information
necessary for its selection and vertical positioning.

Reserved word

A COBOL word specified in the list of words which may be used in COBOL source
programs, but which must not appear in the programs as user-defined words or system-
names.

Run unit

A particular set of object programs which function as a unit at object time.

Section

A section comprises a set of paragraphs or clauses. The contents are preceded by a
section header. A section can be empty or contain one or more paragraphs or clauses.

Section header

A combination of words followed by a period and a space that indicates the beginning of a
section in the Environment, Data and Procedure Division. In the Environment and Data
Divisions, a section header is composed of reserved words followed by a period and a
space. The permissible section headers are:

36

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

In the Procedure Division, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a segment-number (optional), followed by a period
and a space.

Section-name

A user-defined word which names a section in the Procedure Division.

Segment-number

A user-defined word which classifies sections in the Procedure Division for purposes of
segmentation. Segment-numbers may contain only the characters "0", "1", ..., "9". A
segment-number may be expressed either as a one or two digit number.

Sentence

A sequence of one or more statements, the last of which is terminated by a period followed
by a space.

Separator

A character used to separate character-strings.

Sequence number area

Columns 1 through 6 in the COBOL reference format.

Sequence of programs

A set of COBOL source programs which are compiled with a single compiler call. Each
source program in the sequence must be terminated with an end program header.

U3979-J-2125-6-7600 37

Glossary

Introduction to the COBOL language

Sequential access

An access mode in which logical records are obtained from or placed into a file in a conse-
cutive predecessor-to-successor sequence determined by the order of records in the file.
Sequential file

A file with sequential organization.

Sequential organization

A permanent logical file structure in which the records are arranged and read in the same
order in which they were created.

Sign condition

The proposition, for which a truth value can be determined, that the algebraic value of a
data item or an arithmetic expression is either less than, greater than, or equal to zero.
Simple condition

Any single condition chosen from the set:
Relation condition

Class condition

Condition-name condition

Switch-status condition

Sign condition

Sort file

A collection of records to be sorted by a SORT statement.

The sort file is created and can be used by the sort function only.

Sort-merge file description entry

An entry in the FILE SECTION of the Data Division that is composed of the level indicator
SD, followed by a file-name, and then followed by a set of file clauses as required.

38

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Source program

A syntactically correct set of COBOL statements beginning at the Identification Division, a
COPY statement or a REPLACE statement. The end of a source program is indicated by
an end program header or by the absence of further source program lines.

Special character

A character that belongs to the following set:

Character | Meaning Character | Meaning
+ Plus sign . Period (decimal point)
- Minus sign : Colon
* Asterisk " Quotation mark
/ Stroke (virgule, slash) (Left parenthesis
= Equal sign) Right parenthesis
$ Currency sign > Greater than symbol
, Comma (decimal point) < Less than symbol
; Semicolon

Special-character word

A reserved word which is an arithmetic operator or a relation character.

Special registers

Compiler generated storage areas whose primary use is to store information produced in
conjunction with the use of specific COBOL features.

Statement

A syntactically valid combination of words and symbols written in the Procedure Division
beginning with a verb.

Subprogram

see "Called program"

Subscript

An integer, a data-name or an arithmetic expression whose value identifies a particular
element in a table or one of the data items subordinate to this element.

A subscript may be the word ALL when the subscripted identifier is used as a function
argument.

U3979-J-2125-6-7600 39

Glossary

Introduction to the COBOL language

Subscripted data-name

An identifier that is composed of a data-name followed by one or more subscripts enclosed
in parentheses.

Sum counter

A signed numeric data item established by a SUM clause in the REPORT SECTION of the
Data Division. The sum counter is used by the Report Writer in connection with summing
operations.

Switch-status condition

A condition which indicates whether a user or task switch has been set to "on" or "off". The
test is positive if the status of the switch corresponds to the setting given in the condition-
name.

Symbolic character

A user-defined word indicating a figurative constant defined by the user.

System name

A COBOL word which is used to communicate with the operating system.

Table

A set of logically consecutive items of data that are defined in the Data Division by means
of the OCCURS clause.

Table element

A data item that belongs to the set of repeated items comprising a table.

Text name

A user-defined word which identifies library text.

40

U3979-J-Z2125-6-7600

Introduction to the COBOL language Glossary

Text-word

A character or sequence of contiguous characters between margin A and margin R in a
COPY library, a source program, or a pseudo-text. Text-words are:

1. Separators, except for: space, pseudo-text delimiters, and the opening and closing
delimiters for nonnumeric literals.

2. Literals including, in the case of nhonnumeric literals, the opening quotation mark and
the closing quotation mark which bound the literal. A string within a nonnumeric literal
is not a separate text-word.

3. Any other sequence of characters delimited by separators, except comment lines and
the word "COPY", bounded by separators.

Truth value

The representation of the result of the evaluation of a condition in terms of one of two

values, "true" or "false".

Unary operator

A plus (+) or a minus (-) sign, which precedes a variable or a left parenthesis in an arith-

metic expression and which has the effect of multiplying the expression by +1 or -1 respec-

tively.

User-defined word

A COBOL word that must be supplied by the user to satisfy the format of a clause or

statement.

Variable

A data item whose value may be changed during execution of the object program. A

variable used in an arithmetic expression must be a numeric elementary item.

Verb

A COBOL word that causes an action to be taken by the COBOL compiler and the object

program.

Word

A character-string of not more than 30 characters which forms a user-defined word, a
system-name, a reserved word, or a function-name.

U3979-J-2125-6-7600 41

COBOL notation Introduction to the COBOL language

2.2 COBOL notation

1. Definition of a format

The specific arrangement of the elements within a clause or statement is referred to as a
"general format". A clause or statement may be composed of various element types.

When more than one specific arrangement is permitted in a clause or statement, the
general format is subdivided into numbered formats. Note that clauses must be written in
the same sequence in which they are specified in the general format. In certain exceptional
cases, departures from this rule are allowed. These cases, however, are identified as such.

The proper use of formats, the necessary application prerequisites, and the restrictions on
their use are expressed in the form of rules.

2. Elements

Clauses or statements may be constructed from the following element types:
— uppercase words

— lowercase words

— uppercase and lowercase words

— level-numbers

— brackets

— braces

— connectives

— special characters

42 U3979-J-2125-6-7600

Introduction to the COBOL language

COBOL notation

3. Words

Notation Meaning

Uppercase A word specially reserved for COBOL.

Uppercase, This word must be specified by the programmer as it is given in the format. It is
underlined a COBOL keyword.

Uppercase, This word may be specified by the programmer at the location given in the

not underlined

format or it may be omitted. It is an optional COBOL word.

Lowercase

Generic term used to represent COBOL words, literals, picture-strings,

comments, or a complete syntactical unit. It must be entered by the programmer
at the the location given in the format. If more than one generic term of the same
kind occurs in the same format, an appended number or letter is used to
uniquely qualify that term for the descriptions.

Table 2-1: Notation used for COBOL words

An entry consisting of one or more words in uppercase followed by the words "clause" or
"statement” designates a clause or statement described elsewhere in this manual. In
programs, all COBOL words can appear in uppercase and lowercase as well as in
lowercase only.

4. Separators

The separators listed in the following table must be used as specified in the format.

Character [Meaning Character NMeaning
o Space " Quotation marks K
, Comma (Open parentheses
; Semicolon) Close parentheses
Period == Pseudo-text delimiter
Colon

Table 2-2: Separators

D The predefined COBOL quotation mark is the double quote ("). To enable formal accep-
tance by the compiler of old COBOL programs in which the quotation mark is repre-
sented by the single quote or apostrophe (), it is necessary to use a special compiler
option (for details see the relevant section in the "COBOL85 User Guide" [1]).

The rules governing the use of separators are described in section 2.3.2.

U3979-J-2125-6-7600 43

COBOL notation Introduction to the COBOL language

5. Level indicators and level numbers

Level indicators and level numbers which occur in the format must be supplied at the appro-
priate point in the COBOL source program. This manual uses the form 01, 02, ..., 09 to
indicate level numbers 1, 2, ..., 9.

6. Brackets []

A format specification placed in square brackets may be supplied or omitted at the option
of the user. If two or more items are stacked within brackets, one or none of them may be
specified.

7. Braces {}

If two or more items are stacked within braces, one of the enclosed items is required. If
there is only one item, the braces perform only a combining function for a subsequent
ellipsis (repetition symbol).

8. Parentheses ()

Format items appearing within parentheses refer to table item numbers (indices) which
must be specified in order to differentiate the various items in a table.

9. Ellipsis ...

An ellipsis appearing in the text indicates the omission of one or more words when such an
omission does not impair comprehension.

An ellipsis appearing in the format indicates that the immediately preceding unit may, if
desired, be repeated any number of times after it has been specified once. A repeatable
unit is either a single word or a group of words combined by brackets or braces. In the latter
case, the ellipsis immediately follows the closing bracket or brace; the related opening
bracket or brace determines the beginning of the unit to be repeated.

10. Space .

When used in examples and tables, this character refers to a space.

11. Special characters in formats

If the characters '+, '=', '>", '<’, '=", '>=") '<=" appear in a format, they must be entered
whenever the format is used. This applies even if these special characters are not under-
lined.

44

U3979-J-Z2125-6-7600

Introduction to the COBOL language COBOL notation

Example 2-1
(2) (2)
(1) identifier-1 (3)
ADD A
literal-1

(4) (5) (5)
0 {identifier-2 [ROUNDEDT }...

(6) (7)
[ON SIZE ERROR imperative statement-1]

[NOT ON SIZE ERROR imperative statement-2]
LEND—ADD]

(1) COBOL keyword: the indicated form is mandatory.
(2) Braces: one of these options must be chosen.
3) Ellipsis: the preceding entry may be repeated any number of times.

(4) Qualification: an appended number or letter is used to create a unique identification
for an element.

(5) Brackets: one or more of these options may be chosen.
(6) Optional word: the word may be omitted, or specified for the sake of clarity.
(7 Lowercase words: these must be entered by the programmer.

The following language elements are valid ADD statements derived from the above format;
commas and semicolons are included for better readability.

ADD T TO J

ADD I-1, I-2, I-3 TO I-4 ROUNDED

ADD 1 TO I-1, I-2 ROUNDED, I-3

ADD I-1 TO I-2; SIZE ERROR PERFORM ADD-ERR.

U3979-J-2125-6-7600 45

COBOL character set

Language concepts

2.3 Language concepts

2.3.1 COBOL character set

2.3.2

The basic linguistic unit is the character. The COBOL character set consists of 77
characters, including 26 uppercase letters, 26 lowercase letters, 10 digits, the space
character, and 15 special characters.

Character

Meaning

Oto9
AtoZ,atoz

Digit

Letters

Space

Plus

Minus (hyphen)
Asterisk

Slash

Equal sign

Currency sign
Comma (decimal point)
Semicolon

Period (decimal point)
Colon

Quotation mark

Left parenthesis
Right parenthesis
Greater than

Less than

Table 2-3: COBOL character set

When nonnumeric literals, comments or comment lines are used, the character set is
extended to comprise the whole set of characters of the data processing system.

The characters which are permitted for use with each type of string and as separators

(delimiters) are defined in the subsections to follow.

Separators

A separator is a character or two contiguous characters formed according to the following

rules:

1. Aspace is a separator. Anywhere where a space can be used as a separator or as part

of a separator, it is also possible to use more than one space.

46

U3979-J-Z2125-6-7600

Language concepts Separators

2. Commas and semicolons can only be used as separators when they are immediately
followed by a space. They can be used to improve the readability of the program
anywhere where a space could also be used as a separator. A comma, on the other
hand, is not a separator if it is used in a PICTURE character-string.

3. Aperiod can only be used as a separator when immediately followed by a space. It may
only be used to indicate the end of a sentence, or as shown in formats.

4. Left (opening) and right (closing) parentheses are separators. When used outside of
pseudo-text, they must appear as balanced pairs of left and right parentheses used to
delimit subscripts, reference modifiers, arithmetic expressions, conditions or the
repetition factor of a PICTURE symbol.

5. The quotation mark is a separator. An opening quotation mark must be immediately
preceded by a space, a left parenthesis or an opening pseudo-text delimiter. A closing
guotation mark assigned to an opening quotation mark must be immediately followed
by one of the separators space, comma, semicolon, period, right parenthesis or closing
pseudo-text delimiter. These immediately preceding and following separators are not
part of the separator quotation mark.

6. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be
immediately preceded by a space; a closing pseudo-text delimiter must be immediately
followed by one of the separators space, comma, semicolon or period.

Pseudo-text delimiters may only appear in balanced pairs delimiting pseudo-text.

7. A colon is a separator and must be specified when required in the general formats.
8. A space used as a separator may immediately precede all separators unless
a) the reference format rules prohibit it

b) itis followed by the closing quotation mark; in this case, a preceding space is consi-
dered part of the nonnumeric literal and not as a separator.

9. A space used as a separator may immediately follow any separator except the opening
guotation mark. A space following the opening quotation mark is considered part of the
nonnumeric literal and not as a separator.

10. Any character which is part of a PICTURE character-string or of a nonnumeric literal is
not treated as a separator.

11. PICTURE character-strings are delimited exclusively by the separators space, comma,
semicolon and period.

12. The rules governing the formation of separators do not apply to characters contained in
nonnumeric literals, comment-entries or comment lines.

U3979-J-2125-6-7600 47

COBOL words Language concepts

2.3.3 COBOL words

A word consists of 1-30 characters from the following set:
A-Z, a-z, 0-9, — (hyphen)
No distinction is made between uppercase and lowercase letters.

A word may neither begin nor end with a hyphen, must not contain space characters, and
must contain at least one letter.

Words are divided into four categories:

user-defined words

system-names

reserved words

function-names

1. User-defined words

A user-defined word is a COBOL word to be supplied by the programmer according to the
format for a clause or statement. It refers to particular units of data at object time. The
following subsections describe the types of user-defined words employed in COBOL
programs, and state the rules for writing these names.

The 17 types of user-defined words are listed and defined in Table 2-4.

All user-defined words except segment-numbers and level-numbers must be made unique.
Either there must be no other user-defined word in the source program with the same
sequence of characters and punctuation marks, or the word must be qualified.

With the exception of paragraph-name, section-name, level-number, and segment-number,
all user-defined words must contain at least one alphabetic character. Segment-numbers
or level-numbers may be identical to other segment-numbers or level-numbers, or to
paragraph-names and section-names.

alphabet-name | An alphabetical name located in the SPECIAL-NAMES paragraph of the
Environment Division and connected with a character set and/or collating
sequence.

class-name A name entered by the user in the CLASS clause of the SPECIAL-NAMES
paragraph in the Environment Division to define a character set. This class-
name can be referenced in the class condition.

condition-name | The name assigned to a specific value, set of values, or range of values which
an elementary data item may assume (hence, a condition of the data item). A
condition-name is defined by an 88-level entry in the FILE, LINKAGE or
WORKING-STORAGE SECTION.

Table 2-4: COBOL user-defined words

48 U3979-J-2125-6-7600

Language concepts

COBOL words

data-name

A name identifying a data item in the Data Division. A data-name is defined by
its appearance in a data description entry.

A special data-name is an index data-name designating an index data item. An
index data item is a data item whose description contains the USAGE IS INDEX
clause.

file-name

A name assigned to a set of input data or output data.

A file-name is defined by its appearance in the SELECT clause of the FILE
CONTROL paragraph and its use as the name of an FD entry.

A special file-name is a sort-file-name that names a sort-file. A sort-file-name is
defined by its appearance in the SELECT clause of the FILE CONTROL
paragraph and its use to name an SD entry in the FILE SECTION.

index-name

A name of an index for a particular table. An indexname is declared by its occur-
rence in the INDEXED BY phrase of the OCCURS clause.

level-number

A level-number indicates the position of a data item in the hierarchical structure
of a record or indicates special properties of a data description entry.
Level-numbers are defined by their appearance in a data description entry.

library-name

A name of an entry in the COBOL source program library.
The library may contain more than one text with various names.

mnemonic-name

A fixed name, provided the programmer associated it with a particular imple-
mentor-name in the SPECIAL-NAMES paragraph of the Environment Division.

paragraph-name

A paragraph-name is used to name a paragraph in the Procedure Division.
Paragraph-names are written starting at Area A.

program-name

The name used to identify the program. The program-name is defined by its use
in the PROGRAM-ID paragraph of the Identification Division. It may also appear
in a CALL statement of a corresponding calling program.

record-name

The name of a record. A record is declared by a 01-level entry in the FILE
SECTION, LINKAGE SECTION, WORKING-STORAGE SECTION or SUB-
SCHEMA SECTION.

report-name

The name of areport. A report-name is defined by its occurrence in the REPORT
clause of an FD entry; it is used to name an RD entry in the REPORT SECTION.

section-name

A section-name is used to name a section in the Procedure Division. A section-
name is written starting at Area A and is followed by the word SECTION.

symbolic- A name for a figurative constant defined by the user character in the SYMBOLIC-
character CHARACTERS clause of the SPECIAL-NAMES paragraph.
text-name Name of an entry in the COBOL source program library.

The entry is copied from the library by the COPY statement.

Table 2-4: COBOL user-defined words

U3979-J-72125-6-7600

49

System-names/Reserved words COBOL words

2. System-names

A system-name is a COBOL word which is used as an interface with the operating system
environment. System-names are defined by the implementor and may vary from compiler
to compiler. From the programmer’s point of view, the system-names of a specific compiler
are treated as reserved words.

The system names for COBOLS8S5 are:

Computer-name in the SOURCE-COMPUTER and OBJECT-COMPUTER para-
graphs.
Implementor-name in the SPECIAL-NAMES paragraph and the ASSIGN clause.

3. Reserved words

COBOL includes a fixed number of reserved words, the COBOL words.

A reserved word serves a specific purpose and must be used only in the context specified
in the formats; it must not occur in the source program as a user-defined word or system-
name.

A complete list of reserved words is supplied on page 57ff. All reserved words marked with
an asterisk (*) in this list are treated as reserved words only if DML (Data Manipulation
Language) statements are being used for compilation; otherwise they may be employed as
user-defined words. Compilation with DML statements occurs when

is specified in the Data Division of a program (see the "UDS Reference Manual” [6]).
There are three types of reserved words:

— Required words

— Optional words

— Special purpose words

o Required words

A required word is a word whose presence is required when the format in which the
word appears is used in a source program.

Required words are of two types:

50

U3979-J-Z2125-6-7600

COBOL words

Reserved words

Keywords

Within each format, such words are uppercase and underlined. Keywords are only
allowed in the formats indicated. Keywords may be grouped as shown below:

— Verbs such as ADD, READ and CALL.
— Required words which are encountered in statement and entry formats.

— Words which have a specific functional significance, such as NEGATIVE,
SECTION, etc.

Some keywords may be abbreviated (e.g. PIC for PICTURE).
Special character words

These are the arithmetic operators and relation characters (see section 2.1,
"Glossary").

Optional words

Within each format, uppercase words which are not underscored are called "optional

words". These words may be used at the option of the user. The presence or omission
of an optional word has no effect on the meaning of the COBOL statement. However,

an optional word must not be misspelled or replaced with another word.

Special purpose words
There are two types of special purpose words:
— special registers

— figurative constants

Special registers

Special registers are data items in which information produced with the use of certain
COBOL features is stored. The attributes of these registers are predefined, and each
register has a fixed name. Thus, the programmer does not have to define these
registers in the Data Division. The eleven special registers are listed in Table 2-5.

U3979-J-2125-6-7600 51

Reserved words

COBOL words

Register name

Description

U

se

TALLY

5-digit unsigned data item with
COMPUTATIONAL phrase
(see "USAGE clause", page
192)

TALLY may be used wherever a data
item with an integral value can occur.
For example, if the current value of
TALLY is 3, the following statementsare
equivalent:

ADD 3 TO ALPHA.

ADD TALLY TO ALPHA.

LINE-COUNTER
PAGE-COUNTER
PRINT-SWITCH
CBL-CTR

Used by the Report Writer (see
chapter 8, "Report writer").

See chapter 8, "Report writer".

LINAGE-COUNTER

A 4-byte data item containing
an unsigned integer whose
value is less than or equal to
integer-1 or the data item
referenced by dataname-1 in
the LINAGE clause

A LINAGE-COUNTER register is
generated by the compiler for each file
whose file description entry contains a
LINAGE-clause (see "LINAGE clause”,
page 386).

RETURN-CODE

8-digit signed data item with
COMPUTATIONAL and
SYNCHRONIZED phrase
(corresponds to PIC S9(8)
COMP-5 SYNC).

This data item exists only once for each
program system. The user can use this
item to exchange information between
COBOL modules which were compiled
separately but linked into a single object
porgram. This item can also be used to
store the return value of a non-COBOL
subprogram. When a COBOL
subprogram terminates, the contents of
the item can be made available to the
calling non-COBOL program as a
function value. If the contents of the
RETURN-CODE special register are
not O after the execution of STOP RUN,
the operating system is informed that
the program terminated abnormalley.

SORT-RETURN
SORT-FILE-SIZE
SORT-CORE-SIZE
SORT-MODE-SIZE
SORT-EOW

Used by the sort section (see
chapter 10, "Sorting of
records").

See chapter 10, "Sorting of records".

Table 2-5: COBOL special registers

52

U3979-J-72125-6-7600

COBOL words

Reserved words

Figurative constants

The values of figurative constants are produced by the compiler and are indicated by
the reserved words listed in Table 2-6. Figurative constants must not be enclosed in
guotation marks. The singular and plural forms of a figurative constant are equivalent
and may be used optionally.

The figurative constant [ALL] symbolic-character stands for one or more of the
characters specified as the value of symbolic-character in the SYMBOLIC-
CHARACTERS clause of the SPECIAL-NAMES paragraph.

If a figurative constant represents a string of one or more characters, the compiler deter-
mines the length of the string according to the following rules:

1. If afigurative constant is specified in a VALUE clause or associated with another
data item (e.g. moved to or compared with another data item), it is first duplicated
to the right until the resultant string has at least as many character positions as the
other data item.

If this character-string has more character positions than the other data item follo-
wing the duplication operation, the extra positions will be truncated from the right.

Extension or truncation of the character-string of figurative constants takes place
prior to and independently of any application of the JUSTIFIED clause to the other
data item.

2. The character-string always has a length of 1 whenever the figurative constants
ZERO, SPACE, HIGH-VALUE, LOW-VALUE and QUOTE (including their plurals)
are not brought into contact with another data item, particularly whenever they
occur in a DISPLAY, STOP, STRING or UNSTRING statement.

3. If the figurative constant ALL literal is not brought into contact with another data
item, the length of the character-string is equal to the length of literal.

A figurative constant can be used wherever literal occurs in a format, except for the
following cases:

1. Ifliteralis restricted to numeric literals, the only figurative constant allowed is ZERO
(ZEROS, ZEROES).

2. The figurative constant ALL literal cannot be brought into contact with numeric or
numeric-edited data items.

3. Apart from its use in the figurative constant ALL literal, the word ALL has no
function; it serves only to enhance readability.

U3979-J-2125-6-7600 53

Reserved words

COBOL words

If the figurative constants HIGH-VALUE[S] or LOW-VALUE[S] are used in a source
program (except for the ALPHABET clause), the character currently associated with
this constant is dependent on the collating sequence defined for the program and
belonging to the character set (see "OBJECT-COMPUTER paragraph", page 124 and
"SPECIAL-NAMES paragraph”, page 125).

Each reserved word used to assign a value to a figurative constant constitutes a
character-string of its own; if the word ALL is used it constitutes two character-strings.

If alphabet-name-2 is specified in the SYMBOLIC-CHARACTERS clause of the
SPECIAL-NAMES paragraph or in the CODE-SET clause of a data description entry
(see "CODE-SET clause", page 382), the character code type is defined by the
ALPHABET clause.

If the IN phrase is omitted, symbolic-character-1 stands for the character whose
position within the collating sequence of the hardware-specific character set is indicated
by integer-1.

If the IN phrase is used, integer-1 refers to the character set named by alphabet-
name-2.

The internal representation of symbolic-character-1 is identical to that of the corre-
sponding character in the hardware-specific character set.

Table 2-6 lists the figurative constants and indicates the values they represent.

54

U3979-J-Z2125-6-7600

COBOL words

Reserved words

Figurative constant ¢

Lorresponding value

EX

ample

[ALL] ZERO or
[ALL] ZEROS or

[ALL] ZEROES

One or more occurrences of the
character O

(X' FO") or binary zero

(X' 00"), depending on the
description of the data item.

Statement:
MOVE ZEROS TO FIELD.

Contents of FIELD:

If FIELD is a binary item:

X' 00000000

If FIELD is an external decimal
item:

X' FOFOFOFQ' (= C' 0000")

If FIELD is an internal decimal
item: X' 0000000F" .

[ALL] SPACE or

[ALL] SPACES

One or more occurrences of the
character space (X' 40").

Statement:

MOVE SPACE TO FIELD.
Contents of FIELD:
X'40404040'(= C'u.olf)

[ALL] HIGH-VALUE
or

[ALL] HIGH-VALUES

With COLLATING SEQUENCE
unspecified:

One or more occurrences of the
character that has the highest
value in the EBCDIC collating
sequence (X' FF").

Statement:
MOVE HIGH-VALUE TO FIELD.

Contents of FIELD:
X'FFFFFFFF (=C'~~~~")

With COLLATING SEQUENCE
specified:

The character with the highest
position in the program collating
sequence.

Entry in SPECIAL-NAMES
paragraph: ALPHABET ALPHATAB
IS 193 THRU 1, 255 THRU 194.
The highest position belongs to the
character at the 194th position of the
EBCDIC character set, i.e. the
character A. A is assigned to HIGH-
VALUE.

[ALL] LOW-VALUE
or

[ALL] LOW-VALUES

With COLLATING SEQUENCE
unspecified:

One or more occurrences of the
character that has the lowest
value in the EBCDIC collating
sequence (X' 00").

Statement:
MOVE LOW-VALUE TO FIELD.

Contents of FIELD:
X' 00000000’

With COLLATING SEQUENCE
specified:

The character with the lowest
position in the program collating
sequence.

Entry in SPECIAL-NAMES
paragraph: ALPHABET ALPHATAB
IS "0" "1" "2".

The lowest position belongs to the
character 0.

0 is assigned to LOW-VALUE.

Table 2-6: COBOL figurative constants and values

U3979-J-72125-6-7600

55

Reserved words

COBOL words

Figurative constant (

Porresponding value Example "

[ALL] QUOTE
or

[ALL] QUOTES

One or more occurrences of the
quotation mark (X' 7F").

Note:

The word QUOTE (QUOTES)
cannot be used in place of a
guotation mark to enclose a
nonnumeric literal.

Data description entry:

02 FIELD PIC X VALUE QUOTE.
Contents of FIELD:

X'7F or X'7D’, depending on the
current quotation mark (see COBOL
character set, page 46).

ALL literal

One or more occurrences of the
string of characters composing
the literal. The literal must be
nonnumeric.

Statement:

MOVE ALL "A" TO ALPHA.
Contents of ALPHA:

C' AAAA

Statement:

MOVE ALL "12" TO ALPHA.
Contents of ALPHA:
C'1212'

Statement:

MOVE ALL "ABC" TO ALPHA.
Contents of ALPHA:

C' ABCA'

[ALL]

symbolic-character

One or more repetitions of the
character specified as the value
of symbolic-character in the
SYMBOLIC-CHARACTERS
clause of the SPECIAL-NAMES
paragraph.

Description:
SYMBOLIC CO IS 193

Statement:
MOVE ALL CO TO ALPHA.

Contents of ALPHA:
X' cocococo

Table 2-6: COBOL figurative constants and values

) Inthese examples it is assumed that, unless otherwise specified, ALPHA is a 4-byte
area with the data format DISPLAY.

The following table contains all the reserved words.

56

U3979-J-Z2125-6-7600

COBOL words

Reserved words

All words marked with * are treated as reserved words only if DML (Data Manipulation
Language) statements are being used for compilation; otherwise they may be employed as
user-defined words. Compilation with DML statements occurs when SUB-SCHEMA

SECTION is specified.

ACCEPT

ACCESS

ADD

ADVANCING

AFTER

ALL

ALPHABET
ALPHABETIC
ALPHABETIC—-LOWER
ALPHABETIC-UPPER
ALPHANUMERIC
ALPHANUMERIC-EDITED
ALSO

ALTER

ALTERNATE

AND

ANY

ARE

AREA

AREAS
ARGUMENT—-NUMBER
ARGUMENT-VALUE
ASCENDING

ASSIGN

AT

AUTHOR

BEFORE
BEGINNING
BINARY
BLANK
BLOCK
BOTTOM

BY

CALL
CANCEL

*CASE
CBL-CTR

CHARACTER

CHARACTERS

CHECKING

CLASS

CLOCK-UNITS

CLOSE

CODE

CODE-SET

COLLATING

COLUMN

COMMA

COMMIT

COMMON

COMMUNICATION

COMP

COMP-1

COMP-2

COMP-3

COMP-5

COMPUTATIONAL

COMPUTATIONAL-1

COMPUTATIONAL-2

COMPUTATIONAL-3

COMPUTATIONAL-5

COMPUTE

CONFIGURATION
*CONNECT

CONSOLE

CONTAINS

CONTENT

CONTINUE

CONTROL

CONTROLS

CONVERTING

COPY

CORR

CORRESPONDING

COUNT

CREATING

CSP

C0l...C11

CURRENCY

*CURRENT
DATA

*DATABASE-EXCEPTION

DATABASE-KEY

DATABASE-KEY—-LONG

DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DAY-OF-WEEK
*DB
DE
DEBUGGING
DEBUG—CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DECIMAL—-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DETAIL
DISABLE
DISC
*DISCONNECT
DISPLAY
DIVIDE
DIVISION
DOWN
*DUPLICATE
DUPLICATES
DYNAMIC

EBCDIC
EGI
ELSE
EMI
*EMPTY
ENABLE
END

END-ACCEPT
END—-ADD
END-CALL
END-COMPUTE
END-DELETE
END-DISPLAY
END-DIVIDE
END-EVALUATE
END-IF
END-MULTIPLY
END-OF-PAGE
END—-PERFORM
END—-READ
END-RECEIVE
END—-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE
ENDING
ENTER
ENTRY
ENVIRONMENT
ENVIRONMENT-NAME
ENVIRONMENT-VALUE
EQOP
EQUAL
*ERASE
ERROR
ESI
EVALUATE
EVERY
EXCEPTION
*EXCLUSIVE
EXIT
EXTEND
EXTENDED
EXTERNAL

FALSE
FD
*FETCH
FILE
FILE-CONTROL

U3979-J-72125-6-7600

57

Reserved words COBOL words
FILE-LIMITS LABEL OPEN REEL
FILLER LAST OPTTONAL REFERENCE
FINAL LEADING OR REFERENCES

*FIND LEFT ORDER RELATIVE
“FIRsT se orer RELEASE
FOOTING LIMIT OUTPUT EESS&EEER
FOR * IMITED OVERFLOW
*FREE LIMITS *OWNER RENAMES
FROM LINAGE REPEATED
FUNCTION LINAGE-COUNTER PACKED-DECIMAL REPLACE
LINE PADDING REPLACING
GENERATE LINE-COUNTER PAGE REPORT
*GET LINES PAGE-COUNTER REPORTING
GIVING LINKAGE PERFORM REPORTS
GLOBAL LOCK *PERMANENT RERUN
GO LOW-VALUE PF
GOBACK LOW-VALUES PH EE?E?VE
GREATER PIC ARESULT
GROUP *MASK PICTURE
*MATCHING PLUS *RETAINING
HEADING *MEMBER POINTER *RETRIEVAL
HIGH-VALUE *MEMBERS POSITION RETURN
HIGH-VALUES *MEMBERSHIP POSITIVE RETURN-CODE
MEMORY PRINT—-SWITCH REVERSED
1-0 MERGE PRINTING REWIND
1-0—-CONTROL MESSAGE *PRIOR REWRITE
1D MODE PROCEDURE RF
IDENTIFICATION *MODIFY PROCEDURES o
IF MODULES PROCEED
*TGNORING MORE—LABELS PROGRAM RIGHT
N MOVE PROGRAM-1D ROLLBACK
*INCLUDING MULTIPLE *PROTECTED ROUNDED
INDEX MULTIPLY PURGE RUN
INDEXED
P vl QUELE e
sD
INITIALIZE NEXT 888$ES SEARCH
INITIATE NO SECTLON
INPUT NOT SECURITY
INPUT-QUTPUT NUMBER RANDOM
INSPECT NUMERIC RD SEGMENT
INSTALLATION NUMERIC—EDITED READ SEGMENT-LIMIT
INTO *READY SELECT
INVALID OBJECT-COMPUTER *REALM *SELECTIVE
IS *0CCURENCE *REALM=NAME SEND
OCCURS RECEIVE SENTENCE
JUST OF RECORD SEPARATE
JUSTIFIED 8;§TTED RECORDING SEQUENCE
« RECORDS SEQUENTIAL
KEEP ON
KEY *ONLY REDEFINES SET
KEY=YY

U3979-J-Z2125-6-7600

COBOL words

Reserved words

*SET-SELECTION
*SETS

SIGN

SIZE

SORT
SORT-CORE-SIZE
SORT-FILE-SIZE
SORT-MERGE
SORT-MODE-SIZE
SORT-RETURN
SORT-TAPE
SORT-TAPES
*SORTED

SOURCE
SOURCE-COMPUTER
SPACE

SPACES
SPECTAL-NAMES
STANDARD
STANDARD-1
STANDARD-2
START

STATUS

STOP

*STORE
STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3

*SUB—-SCHEMA
SUBTRACT
SUM
SUPPRESS
SYMBOLIC
SYNC
SYNCHRONIZED
SYSIPT
SYSOPT

*SYSTEM

TABLE
TALLY
TALLYING
TAPE
TAPES
*TENANT

TERMINAL
TERMINATE
TEST

TEXT

THAN

THEN
THROUGH
THRU

TIME
TIMES

T0

TOP
TRAILING
TRUE

TRY
TSW-1...TSW-31
TYPE

UNIT
UNITS
UNSTRING
UNTIL

up

*UPDATE
UPON
USAGE
*USAGE-MODE
USE
USING
USW-1...USW-31

VALUE

VALUES

VARYING
*VIA

WHEN

WITH
*WITHIN

WORDS

WORKING-STORAGE

WRITE

ZERO
ZEROES
ZEROS

U3979-J-72125-6-7600

59

Reserved words

COBOL words

Optionally reserved words

If the compiler option

ABSENT
ACTIVE-CLASS
ADDRESS
ALIGNED
ALLOCATE
ALLOW
ARITHMETIC
AS
ATTRIBUTE
AUTO

B—AND

B-NOT

B-OR

B—-XOR
BACKGROUNDBCOLOR
BELL
BINARY-CHAR
BINARY-DOUBLE
BINARY-LONG
BINARY-SHORT
BIT

BLINK

BOOLEAN

CALL-CONVENTION
CENTER
CLASS-ID

CcoL

COLS

COLUMNS
CONSTANT

CRT

CURSOR

CYCLE

DEFAULT

END-INVOKE

EOL

EOS

ERASE
EXCEPTION-OBJECT
EXPANDS

FACTORY
FLOAT-LONG
FLOAT—SHORT

is set, the following words are marked to
indicate new reserved words in the future standard. For the words in italics, this applies
only within a certain context.

LOCALE
LOCALIZE
LOCALE-STORAGE
LOWLIGHT

MANUAL
METHOD
METHOD-ID

NATIONAL

FOREGROUNDCOLORNATIONAL-EDITED

FORMAT
FREED

FULL
FUNCTION-ID

GETV
HIGHLIGHT

IGNORING
INHERITS
IINITIALIZED
INTEGER
INTERFACE
INTERFACE-ID
INTRINSIC
INVOKE

LC-ALL
LC-COLLATE
LC-CTYPE
LC-CURRENCY
LC-MESSAGES
LC-MONETARY
LC-NUMERIC
LC-TIME

1 Previously only DML keyword

NONE
NORMAL
NULL
NUMBERS

OBJECT
ONLY
OPTIONS
OVERRIDE

PARAGRAPH
PRESENT
PREVIOUS
PROGRAM—-POINTER
PROPERTY
PROTOTYPE

RAISE
RAISING
RECURSIVE
RELATION
REPOSITORY
REQUIRED
RESERVED
RETRY
RETURNING

REVERSEVIDEO

SCREEN
SECONDS
SECURE
SELF
SHARING
SIGNED
SOURCES
STANDARD-3
STEP
STRONG
SUPER
SYMBOL

TIMEOUT
TYPEDEF

UCSs-2
UCs4
UNDERLINE
UNIVERSAL
UNLOCK
UNSIGNED
UTF-8
UTF-16

VALID
VALIDATE

YYYYDDD
YYYYMMDD

60

U3979-J-Z2125-6-7600

COBOL words Reserved words

4. Function-names

A function-name is a word that is one of a specified list of words which may be used in
COBOL source programs. The same word, in a different context, may appear in a program
as a user-defined word (see "Function-name" in section 12.1).

U3979-J-2125-6-7600 61

Literals

Language concepts

2.3.4 Literals

A literal is a character-string whose value is determined by the characters of which it is
composed,; alternatively, the string may represent a reserved word which corresponds to a
figurative constant. Literals are either numeric or nonnumeric.

1. Nonnumeric literals

A nonnumeric literal is a character-string consisting of from 1 to 180 characters, enclosed
in quotes. The value of the nonnumeric literal in the object program is the sequence of
individual characters itself, without delimiting quotes. The literal may contain any characters
from the EBCDIC character set, except quotation marks. To represent a quotation mark
within a literal, two contiguous quotation mark characters (") must be used.

Example 2-2

"CHARACTER"
"153.78"
”ADAM " ”BDAM non CDAM”

2. Numeric literals

There are two types of numeric literals: fixed-point literals and
« Numeric fixed-point literals

A fixed-point numeric literal is a string of characters chosen from the following set: the
digits 0-9, the plus sign, the minus sign, and the decimal point.

Fixed-point numeric literals must be formed according to the following rules:
1. The literal may contain 1 to 18 digits.

2. The literal may contain only one sign character. If a sign is used, it must be the
leftmost character of the literal. An unsigned literal is assumed to be positive.

3. The literal may contain only one decimal point. The decimal point may appear
anywhere in the literal, except as the rightmost character. A decimal point
designates an assumed decimal point location. (The assumed decimal point in any
numeric literal or data item is the position where the compiler and the generated
program assume the decimal point to be, though no internal memory position is
reserved for a separate decimal point character.) A literal with no decimal point is
an integer.

The term integer is used to describe a numeric literal which is unsigned and greater
than zero and which has no character positions to the right of the assumed decimal
point.

62

U3979-J-Z2125-6-7600

Language concepts Literals

Example 2-3
(Here, the assumed decimal point is represented by the character V.)
Literal Location of assumed point Internal sign No. of digit positions
assigned
+123 123V + 3
3.765 3V765 + 4
-45.7 45V7 - 3

« Numeric floating-point literals
A numeric floating-point literal must have the following format:
mantissa exponent

The mantissa consists of an optional sign followed by 1 to 16 digits with a decimal point.
The decimal point may be specified anywhere in the mantissa.

The exponent consists of the symbol E, followed by an optional sign and then by one
or more digits (the exponent 0 can be written as 0 or 00).

The literal must not contain blanks. The exponent must be specified immediately to the
right of the mantissa.

The sign is the only optional character in the format. An unsigned mantissa or an
unsigned exponent is interpreted as positive.

The value of the literal is the product of the mantissa and the power of 10 given by the
exponent.

The absolute value of a number represented by a floating-point literal must not exceed
7.2%10.

Example 2-4
+1.5F-2=1.5%1072

U3979-J-2125-6-7600 63

Character-string/Comment-entry Language concepts

2.3.5 PICTURE character-string
A PICTURE character-string consists of certain combinations of characters from the
COBOL character set, which are used as symbols (see PICTURE clause, page 164).

Any punctuation character within a PICTURE character-string is not interpreted as a
punctuation character but rather as a symbol used in that PICTURE character-string.

2.3.7 Concept of computer-independent data description

To make data as computer-independent as possible, the characteristics and properties of
the data are described in terms of a standard data format rather than a machine-oriented
format. This standard data format is derived from general data processing applications and
uses the decimal system to represent numbers (regardless of how the computer system
represents numbers internally), and all remaining characters of the COBOL character set
to specify nonnumeric data items.

1. Concept of logical record and file

The logical characteristics of a record or a file differ from the way in which the data is physi-
cally stored in the computer.

« Physical aspects of a file

The physical aspects of a file are determined by the way in which the data is stored on
the input or output medium. They include such features as:

— the grouping of logical records, taking into account the physical limitations of the
storage medium.

— the manner in which a file may be identified.

« Conceptual characteristics of a file

The conceptual characteristics of a file are determined by the structures which the user
specifies by data definitions. The input-output statements in a COBOL program refer to
logical records.

It is extremely important to distinguish between a physical record and a logical record.

64 U3979-J-2125-6-7600

Language concepts Level concept

— A physical record (or block) is a unit of information whose size and recording
mode provide for optimum data storage on an input or output medium for a parti-
cular computer installation. The size of a physical record is machine-dependent and
bears no direct relationship to the size of the logical file information.

— Alogical record (or simply record) is a group of related data which can be uniquely
identified and treated as a unit, and can be read from or written to a file. A block may
contain several records.

The term "record" is not restricted to data stored on an external data medium, but
can be applied to the definition of working storage for data created internally during
program execution.

In this manual, references to "records” always mean to logical records.

2. Level concept

The level concept permits the structuring of a logical record. Data processed by a COBOL
program can be described as elementary items, group items, records and files (for file
description see chapters 4 through 6).

« Elementary items

An elementary item is the smallest unit of data bearing a name, i.e. it is not divisible into
further elementary items. An elementary item is described with a PICTURE clause
(except in the case of description with COMP-1, COMP-2, or index data items).

The length of an elementary item must not exceed 65535 bytes.
e Group items

Several elementary items combined form a group item. Thus, a number of elementary
items may be addressed simultaneously under the name of the group item. Each group
consists of an elementary item or a series of elementary items. Groups, in turn, may be
combined to form two or more group items. Consequently, an elementary item may
belong to more than one group item (see Figure 2-1, Figure 2-2). The name of a group
item must not be described with the PICTURE clause.

« Records

A record is a data item which is not subordinate to another data item. It consists of one
or more group items with one or more elementary items, or it is itself an elementary
item. The description of a record must start in Area A.

e Level-numbers

Data is divided into various levels. These levels are indicated by means of level-
numbers. The numbers 01 to 49 are allowed as level-numbers. In addition, there are
special level-numbers: 66, 77, and 88. In a source program, every level-number must
be given a separate entry.

U3979-J-2125-6-7600 65

Level concept

Language concepts

Since a record represents the largest organizational unit, level-numbers for records
start at 01. Hierarchically subordinate items are assigned numerically higher level-
numbers (from 02 to 49). The level-number of a subordinate data item must be greater
than that of a higher-ranking data item by one or more units. Once an elementary item
has been described, only those level-numbers which have already appeared in the
record description entry are permitted.

Example 2-5
right: wrong:
01 DATA RECORD. 01 DATA RECORD.
05 GROUP-ITEM-1. 05 GROUP-ITEM-1.
10 ELEMENTARY-ITEM-11 ... 10 ELEMENTARY-ITEM-11 ...
10 ELEMENTARY-ITEM-12 ... 10 ELEMENTARY-ITEM-12 ...
10 ELEMENTARY-ITEM-13 ... 10 ELEMENTARY-ITEM-13 ...
05 GROUP-ITEM-2. 03 GROUP-ITEM-2.
10 ELEMENTARY-ITEM-21 ... 10 ELEMENTARY-ITEM-21 ...
10 ELEMENTARY-ITEM-22 ... 10 ELEMENTARY-ITEM-22 ...

There are three types of data for which no level concept exists. These are assigned the
level numbers 66, 77, and 88:

— Level number 66 is given to the names of data items described with the RENAMES
clause (see "RENAMES clause”, page 183).

— Level number 77 is given to structure-independent data items of the WORKING-
STORAGE SECTION or LINKAGE SECTION (see "Level number", page 143).

— Level number 88 is given to the explanation of condition-names (see "VALUE
clause”, page 202).

Level numbers 01 and 77 must be located in Area A of the source program; all other
level numbers may begin in Area A or Area B.

For further rules see under "Level number" (page 146).

66

U3979-J-Z2125-6-7600

Language concepts Level concept

01 RECORD-A

05 GROUP-ITEM-1 05 ELEMENTARY-ITEM-6

02 GROUP-ITEM-2

—

08 ELEMENTARY-ITEM-3

07 GROUP-ITEM-4

08 GROUP-ITEM-3 08 ELEMENTARY-ITEM-4 08 ELEMENTARY-ITEM-5

10 ELEMENTARY-ITEM-1 10 ELEMENTARY-ITEM-2

Fig. 2-1: Relationship between group items and elementary items in a record

01 RECORD-A.
05 GROUP-ITEM-1.
07 GROUP-ITEM-2.
08 GROUP-ITEM-3.
10 ELEMENTARY-ITEM-1...
10 ELEMENTARY-ITEM-2...
08 ELEMENTARY-ITEM-3...
07 GROUP-ITEM-4.
08 ELEMENTARY-ITEM-4...
08 ELEMENTARY-ITEM-5...
05 ELEMENTARY-ITEM-6...

Fig. 2-2: Group items and elementary items in a record

Figure 2-1 shows the structure of a sample record; Figure 2-2 demonstrates how to use
level numbers to represent this structure in the record description entry. In this example,
GROUP-ITEM-3 and ELEMENTARY-ITEM-3 are a subordinate part of GROUP-ITEM-2;
similarly, GROUP-ITEM-2 and GROUP-ITEM-4 are a subordinate part of GROUP-ITEM-1.

U3979-J-2125-6-7600 67

Data classes/Data categories Language concepts

3. Data classes

The five categories of data items (see "PICTURE clause") are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and numeric items, the classes and
categories are synonymous. The alphanumeric class includes the categories "alphanu-
meric edited”, "numeric edited" and "alphanumeric" (without editing).

Each elementary item fits into one of the classes and also into one of the categories.

Group items are always classified as alphanumeric at object time, regardless of the class
of the elementary items subordinate to them.

Table 2-7 below illustrates the relationship between the classes and categories of data
items.

Level of item Class Catagory
alphabetic alphabetic
numeric numeric

elementary

numeric edited
alphanumeric alphanumeric edited
alphanumeric

alphabetic
numeric

group alphanumeric numeric edited
alphabetic edited
alphanumeric

Table 2-7: Classes and categories of elementary and group items

4. Data categories

The following subsections describe the data items in the various categories, as shown
above under "Data classes". The category of a data item is determined by the type of the
PICTURE and USAGE clauses which are present in the description element (for further
details see "PICTURE clause", page 164 and "USAGE clause", page 192).

If the data item is a function, it is class and category alphanumeric or numeric (see chapter
12, "Intrinsic functions").

o Alphabetic data items

An alphabetic data item is a data item whose contents, if represented in standard
format, can be any combination of the 52 uppercase and lowercase letters of the
alphabet, plus the space character. Each alphabetic character is stored in its own byte
in working storage.

The PICTURE character-string for alphabetic items contains only the symbol A.
The data format of alphabetic items is always DISPLAY.

68

U3979-J-Z2125-6-7600

Language concepts Data classes/Data categories

e Numeric items

There are two types of numeric data items, fixed-point items and
For the internal representation of numeric items, see Table 3-5, page 200.

Fixed-point data items

A fixed-point data item is a numeric data item in which the operational decimal point is
assumed to be present in every value or to be maintained at a fixed position relative to
the beginning or end of the storage area reserved for the data item. The contents of a
fixed-point data item must be comprised of the digits 0 through 9, provided the SIGN
clause is not specified. If the SIGN clause is specified, the contents may contain a +, —
or other representations of the sign in addition to the above-mentioned digits. If the
picture-string contains an S for a fixed-point data item, the contents of the data item are
treated as positive or negative, depending on the operational sign. If the picture-string
does not contain an S, the contents of the data item are treated as an absolute value.
treated as an absolute value.

Picture-strings for fixed-point items may contain the symbolic characters 9, P, S and V
only.

COBOL recognizes three types of fixed-point numbers:

external decimal (USAGE IS DISPLAY)

binary (USAGE IS COMPUTATIONAL or or
USAGE IS BINARY)

internal decimal (USAGE IS or USAGE IS PACKED
DECIMAL)

The differences between these three types are described under "USAGE clause" (page
192).

U3979-J-2125-6-7600 69

Data classes/Data categories Language concepts

Alphanumeric items

An alphanumeric item is one whose contents, when represented in standard data
format, are any characters from the EBCDIC set.

Its picture-string is restricted to combinations of the symbols A, X, and 9. The item is
treated as if its picture-string contained all X’s.

A picture-string which contains all A’s or all 9's does not define an alphanumeric item.

The data format of an alphanumeric item is always DISPLAY.

Numeric edited items

A numeric edited item describes the editing of a numeric value. When a numeric edited
item is a receiving item for a MOVE, the data coming into the item is edited according
to the picture-string specified.

The picture-string of a numeric edited item is restricted to certain combinations of the
symbols B, / (slash), P, V, Z, 0 (zero), 9, , (comma), . (decimal point), *, +, —, CR, DB
and $ (currency sign). The allowable combinations are determined from editing rules
and the order or precedence of symbols (see the "PICTURE clause”, page 164). The
maximum number of digits that may be represented in a picture-string for a numeric
edited item is 18.

Data is stored one character per byte. The contents of a character position that repre-
sents a digit must be one of the numerals 0 through 9.

The data format of a numeric edited data item is always DISPLAY.

70

U3979-J-Z2125-6-7600

Language concepts Data classes/Data categories

Alphanumeric edited items

An alphanumeric edited item describes the editing of an alphanumeric value. When an
alphanumeric edited item is a receiving item for a MOVE statement, the data being
moved into the item is edited according to the PICTURE character-string specified for
the item.

The picture-string of an alphanumeric edited item is restricted to certain combinations
of the following characters: A, / (slash), X, 9, 0 (zero), and B (see "PICTURE clause",
page 164).

The contents of an alphanumeric edited item, when represented in standard data
format, are allowable characters chosen from the EBCDIC character set.

The data format of an alphanumeric edited item is always DISPLAY.

5. Algebraic signs

There are two categories of algebraic signs:

operational signs, which are associated with signed numeric items and signed numeric
literals to specify their algebraic properties

editing signs, which occur e.g. in edited reports in order to indicate the sign of a data
item.

Editing signs are inserted in a data item by means of the sign control character of the
relevant picture-string (see "PICTURE clause”, page 164).

U3979-J-2125-6-7600 71

Alignment of data Language concepts

6. Alignment of data

The alignment of data within elementary data items depends on the category of the
receiving item. The alignment within group items is the same as for alphanumeric receiving
items.

Numeric data items

If the receiving item is described as a numeric item, the data being sent is aligned on
the decimal point and is moved to the character positions of the receiving item. If the
data being sent is shorter than the receiving item, the unused character positions are
filled with zeros. If the data being sent is longer than the receiving item, it is truncated
from the left or right as appropriate.

If an assumed decimal point is not supplied explicitly, the receiving item is treated as if
it had an assumed decimal point immediately following its rightmost character;
alignment and moving are as described above.

Numeric edited data items

If the receiving item is a numeric edited item, alignment and moving of the data being
sent take place as in the case of numeric receiving items; leading zeros can be replaced
by other characters through special editing specifications.

Alphanumeric, alphanumeric edited, and alphabetic data items

If the receiving item is alphanumeric (other than numeric edited), alphanumeric edited,
or alphabetic, then the data being sent is moved from left to right into the character
positions of the receiving item. If the data being sent is shorter than the receiving item,
the unused character positions are filled with spaces. If the data being sent is longer
than the receiving item, the excess characters of the data being sent are truncated.

If the JUSTIFIED clause is specified for the receiving item, refer to the description of the
"JUSTIFIED clause" (page 153).

Data item alignment for accelerated program execution

Particular data (in arithmetic or subscripting operations) can be processed more rapidly
if the data is aligned on natural boundaries (halfword, word, doubleword).

The object program requires additional machine instructions for accessing and storing
data if parts of two or more data items occur between two adjacent natural boundaries
or if certain natural boundaries divide a single item.

Data items whose alignment on these natural boundaries is such that they do not
require additional machine instructions, are defined as "synchronized".

The user has two means of achieving this form of alignment:
— using the SYNCHRONIZED clause (see "SYNCHRONIZED clause", page 189),

— suitably organizing the data, allowing for the natural boundaries.
See the next section for details.

72

U3979-J-Z2125-6-7600

Language concepts Alignment of data

2.3.8 Implementor-dependent representation and alignment of data

1. Data formats

Standard data format

The standard format used to store data items with USAGE DISPLAY in internal memory
is as follows:

Each character position (as specified by the picture-string) is represented by one
byte.

Each character is internally represented by the appropriate code from the EBCDIC
character set.

The EBCDIC character set is described in section 2.9 (page 108).

Other data formats

The internal representations of internal decimal, binary and
data formats are described under "USAGE clause".

2. Alignment by insertion of slack bytes

There are two types of slack bytes:

Intra-record slack bytes (slack bytes within records) are unused character positions
which precede every aligned data item in the record.

Inter-record slack bytes (slack bytes between records) are unused character positions
which are inserted between blocked logical records.

Intra-record slack bytes

For an output file or in the WORKING-STORAGE section, the compiler inserts slack
bytes within records to ensure that all aligned data items are justified on the appropriate
boundaries. For an input file or in the LINKAGE section, the compiler expects any
required slack bytes to be present in order to ensure proper alignment of a data item
declared as SYNCHRONIZED.

Since it is very important for the user to know the length of a record in a file, the
algorithm that the compiler uses to determine whether slack bytes are required and, if
they are required, how many slack bytes are to be added, is described as follows:

The number of occupied bytes in all elementary data items which precede a data item
in a record is computed, including any slack bytes previously added.

U3979-J-2125-6-7600 73

Alignment of data Language concepts

This sum is to be divided by m, where:

m=2 for COMPUTATIONAL or or BINARY data items with
a length of 4 digits or less;
m=4 for COMPUTATIONAL or or BINARY data items with

a length of 9 digits or less;

m=4 for index data items.

If the remainder r of this division is equal to zero, no slack bytes are required. If the
remainder is unequal to zero, the number of slack bytes to be added is equal to m —r.

These slack bytes are added to each record immediately following the elementary item
that precedes the BINARY, COMPUTATIONAL,

or INDEX data item. They are declared as though they
were a data item with a level number equal to that of the data item immediately
preceding the aligned data item, and must be included in the size of the group where
they are contained.

Example 2-6

Slack bytes within records

01 A.
02 B PICTURE X(5).
0z C.

03 D PICTURE XX.
[03 slack byte PICTURE X. Inserted by the compiler.]
03 E PICTURE S9(6) COMP SYNCHRONIZED.

Slack bytes are also added by the compiler when a group item is described with an
OCCURS clause and contains an aligned data item defined with USAGE as BINARY,
COMPUTATIONAL,

or INDEX. To decide whether to add slack bytes, the following steps are performed:

— The compiler calculates the size of the group including all intra-record slack bytes
required.

— This sum is divided by the largest m required by any elementary item within the
group.

— If the remainder r of this division is equal to zero, no slack bytes will be needed. If r
is unequal to zero, m-r slack bytes must be added.

74

U3979-J-Z2125-6-7600

Language concepts Alignment of data

Insertion of slack bytes takes place at the end of each occurrence of the group item
which contains the OCCURS clause, in order to ensure that all occurrences of table
items begin at the same kind of boundary. In example 2-7, all occurrences of D begin
one byte beyond a double-word boundary.

Example 2-7
Occurrences of slack bytes in tables

01 A.

02 B PICTURE X.

02 C OCCURS 10 TIMES.
03 D PICTURE X.
[03 slack bytes PICTURE XX. Inserted by the compiler.]
03 E PICTURE S9(4)Vv99 COMP SYNC.
03 F PICTURE S9(4) COMP SYNC.
03 G PICTURE X(b5).
[03 slack bytes PICTURE XX. Inserted by the compiler.]

If aligned data items defined as BINARY, COMPUTATIONAL,

or INDEX follow an entry with an OCCURS
DEPENDING clause, then slack bytes are added on the basis of the item which is
repeated with the maximum number. If the length of this item is not divisible by the m
required by the data, then only certain values of the data-name used in the
DEPENDING phrase produce a correct alignment of the items. The programmer should
be aware of this situation and try to avoid it. These values are ones in which the length
of the data item, multiplied by the number of occurrences plus the number of slack bytes
calculated on the basis of the maximum number of occurrences, is divisible by m with
no remainder.

U3979-J-2125-6-7600 75

Alignment of data Language concepts

Example 2-8
Occurrences of slack bytes in tables with the DEPENDING phrase

01 A.
02 B PICTURE 99.
02 C PICTURE X OCCURS 50 TO 99 TIMES
DEPENDING ON B.
[02 slack bytes PICTURE X. Inserted by the compiler.]
02 D PICTURE S99 COMP SYNC.

In this example, when references to D are required, B is restricted to odd values.

01 A.
02 B PICTURE 999.
02 C PICTURE XX OCCURS 20 TO 99 TIMES
DEPENDING ON B.
[02 slack bytes PICTURE X. Inserted by the compiler.]
05 D PICTURE S99 COMP SYNC.

In this example, all values of B provide correct references to D.

« Inter-record slack bytes

When records that contain aligned data items are to be blocked, the programmer must
ensure that all records following the first record in the input-output storage area are
properly boundary-aligned. This is only necessary, however, in cases where data is to
be processed blockwise (locate mode). COBOLS5 does not use this mode.

76 U3979-J-2125-6-7600

References

Qualification

2.4

241

Uniqueness of references

Qualification

Function

Every user-defined name explicitly referenced in a COBOL source program must be
unigue. A name is unigue when there is no other name consisting of the same sequence of
characters and hyphens, or the name occurs in a hierarchy of names, so that it can be
referenced unambiguously. This occurs by specifying one or more names on a higher level
of the hierarchy. The higher levels are called qualifiers, and the process that causes the
name to be unique is called qualification. A name must be qualified sufficiently to be unique;
however, it is not absolutely necessary to specify all levels of the hierarchy. Within the Data
Division, all data names used for qualification purposes must be given a level number or a
level identifier. Thus, two identical data names cannot be subordinate elements of a single
group item, unless they can be uniquely qualified. In the Procedure Division, two identical
paragraph names are only allowed to occur in the same section if they are not referenced.
If a paragraph name is referenced, it must be unique, i.e. it must be qualified when it occurs
in more than one section.

In the qualification hierarchy, the names belonging to a level identifier are the most
important, followed by the names belonging to level 01, then those belonging to level 02 to
49. A section name is the only qualifier available for paragraph names. The uppermost
name in the hierarchy must be unique, and cannot be qualified. Subscripted or indexed data
names and conditional variables, as well as procedure names and data names, can be
made unique by means of qualification. The name of a conditional variable can be used as
a qualifier for each of its condition names.

Format 1

—
=
—
=

} data_name_z}. ; H

} file—-name

o]

R
i
=

—
i

—
=

condition—name

5

U3979-J-2125-6-7600 77

Qualification

References

Format 2

—
=

paragraph—name { } section—name

5

Format 3
IN
text—name Tibrary—name
OF
Format 4
IN
LINAGE-COUNTER file—-name
OF

Format 5

{PAGECOUNTER} {I

LINE-COUNTER F

} report—-name

Format 6

—
=

—
=
—

data—-name-2 {{ } reportname}

———
(-}
aal

0F
data—-name-1

—
=

|

} report—-name

o
=

Syntax rules

1. Each qualifier must be of a successively higher level and within the same hierarchy as
the name it qualifies.

2. The same name must not appear on more than one level of the hierarchy.

3. A data name must not be subscripted or indexed when used as a qualifier.

78

U3979-J-Z2125-6-7600

References

Qualification

General rules

1.

A data-name or a condition-name, if assigned to more than one data item within the
source program, must be qualified whenever it is referenced in the Procedure,
Environment or Data Division (except in the REDEFINES clause, where qualification is
not needed and may be used).

A paragraph-name is only allowed to occur more than once within a section if it is not
referenced. If it is referenced, it is only allowed to occur once within a section, or must
be qualified when it occurs in more than one section. When a paragraph-name is
qualified by a section-name, the word SECTION must not be used. A paragraph-name,
when referenced from within the same section, need not be qualified.

A name may be qualified even when qualification is not required,; if uniqgueness may be
ensured by more than one combination of qualifiers, then each such combination is
permitted. The total set of the qualifiers for a given data-name must not be identical to
a subset of qualifiers for another data-name.

If more than one COBOL library is available to the compiler at compile time, then every
time text-name is referenced it must be qualified by library-name.

If data-name is qualified in a contained or containing program of a nested program, the
same data-name must not be used for a unit of data (record or data item) that is
declared as external or global in one of the group of nested programs.

U3979-J-2125-6-7600 79

Subscripting References

2.4.2 Subscripting

Function

Subscripts are used when an individual element is to be accessed within a table (see
OCCURS clause, page 155).

Format 1

describes subscripting without qualification.

data—-name
({subscript-1...)
condition—name

Format 2

data—name IN IN
data—name-1 data—name-2| ... ({subscript-1}...)
condition—name F

-

Describes subscripting with qualification.

For the explanation of and rules for qualification see "Qualification" (page 77).

Syntax rules for both formats

1. data-name is the name of the table element. Its data description entry must either
contain an OCCURS clause, or it must be subordinate to a data item which contains an
OCCURS clause.

2. subscript-1... may be represented by

an integer literal

a data-name with a positive integer as its value

relative subscripting

the word ALL.

The data-name itself may be qualified but not indexed. ALL may be specified only if the
subscripted identifier is specified as a function argument.

80

U3979-J-Z2125-6-7600

References

Subscripting

One subscript must be specified for each OCCURS clause which is subordinate to data-
name. Since a table may have up to seven dimensions, references to an element in a
table may require up to seven subscripts.

The subscript is enclosed in parentheses. The left parenthesis immediately follows the
spaces after the name of the table element (data-name). When more than one subscript
appears within a set of parentheses, these subscripts may be separated either by
commas followed by at least one space, or by spaces only.

In the case of relative subscripting, the operational signs between data-name and
integer must also be delimited by spaces.

The subscript, or set of subscripts, identifies the table element which is to be
referenced. A data-name to which one or more subscripts have been added is called a
subscripted data-name or identifier.

When more than one subscript is used, they are entered proceeding from the outermost
to the innermost table.

General rule for both formats

The subscript may contain a plus sign. The lowest valid subscript is 1. Consequently,
neither zero nor negative numbers are permitted for subscripting. The highest allowable
subscript value, in any particular case, is the maximum number of occurrences of the
item, as specified in the OCCURS clause.

U3979-J-2125-6-7600 81

Indexing

References

2.4.3

Indexing

Function

Indices are used when an individual element is to be accessed within a table (see OCCURS
clause, page 155).

Format 1

Describes indexing without qualification:

data—name-1 +
({index-1 integer|}...)
condition—-name -

Format 2

Describes indexing with qualification:

data—name-1 IN IN
data—name-2 [file—-name-117...

condition—name OF F

+
({index-1 {{ } 1nteger}}...)

For a description of qualification with associated rules see "Qualification" (page 77).

Syntax rules for both formats

1. data-name-1 is the name of a table element.

If a data-name-1 is used with an index-name, then the data description entry of data-
name-1 must either itself contain an OCCURS clause with an INDEXED BY phrase, or
data-name-1 must be subordinate to a group item containing an OCCURS clause with
an INDEXED BY phrase.

For example, the reference
TOTAL (INDEXA, INDEXB),

implies that TOTAL belongs to a structure with two levels of OCCURS clauses, each
with an INDEXED BY phrase specified.

82

U3979-J-Z2125-6-7600

References Indexing

2. Theindex is enclosed in parentheses. The left parenthesis immediately follows the
space after the name of the table element (data-name). When more than one index-
name appears within a set of parentheses, these index-names may be separated either
by commas followed by at least one space, or by spaces only.

3. When the + integer or — integer phrase is used, the + and — characters must be
preceded and followed by spaces.

4. Index-names are written proceeding from the outermost to the innermost table.

5. The lowest valid occurrence number for index-name is 1; the highest s, in any particular
case, the maximum number of occurrences of the item. This maximum number is
defined in the OCCURS clause. This same rule also applies to relative indexing.

6. Referencing a table element, or an item within a table element, does not change the
index-name associated with this table.

7. The use of relative indexing will not change the values of indices in the object program.

General rules for both formats

1. The values of indices may be stored without conversion (SET statement) in data items
defined with the USAGE IS INDEX clause. These data items are then called index data
items (see "USAGE clause", page 192 and "SET statement”, page 334).

2. Anindex may be modified only by a SET, SEARCH or PERFORM statement (see the
descriptions of these statements).

U3979-J-2125-6-7600 83

Function-identifier References

2.4.4 Function-identifier

A function-identifier is a syntactically correct combination of character-strings and
separators that uniquely references the data item resulting from the evaulation of a function.

Format

FUNCTION function—-name—1 [({argument-1}...)] [reference-modifier]

Syntax rules

1. argument-1 must be an identifier, a literal, or an arithmetic expression. Specific rules

governing the number, class, and category of argument-1 are given in the definition of
each function (see chapter 12, "Intrinsic functions").

A reference-modifier may be specified only for functions of the category alphanumeric.

A function-identifier which references an alphanumeric function may be specified
anywhere in the general formats that an identifier is permitted and where the rules
associated with the general formats do not specifically prohibit reference to functions,
except as follows:

a) as a receiving operand of any statement,

b) where the rules associated with the general formats require the data item being re-
fernced to have particular characteristics (such as class and category, usage, size,
sign, and permissible values) and the evaluation of the function according to its de-
finition and the particular arguments specified would not have these characteristics.

A function-identifier which references an integer or numeric function may be used only
in an arithmetic expression.

General rules

1. The class and other characteristics of the function being referenced are determined by

the function definition.

At the time reference is made to a function, its arguments are evaluated individually in
the order specified in the list of arguments, from left to right. An argument being
evaluated may itself be a function-identifier or may be an expression containing
function-identifiers. There is no restriction preventing the function referenced in
evaluating an argument from being the same function as that for which the argument is
specified.

84

U3979-J-Z2125-6-7600

References

Reference modification

245

Reference modification

Function

Reference modification defines a data item through specification of the position of the
leftmost character and the length of the data item.

Format

data—name-1
(Teftmost—-char-position: [lengthl)
FUNCTION function—-name—1 [({argument-1}...)]

data-name-1 and FUNCTION function-name-1 are not part of the reference-modifier. They
are included here for the sake of clarity.

Syntax rules

1. data-name-1 must reference a data item that is described with USAGE IS DISPLAY.
2. leftmost-character-position and length must be arithmetic expressions.

3. Unless otherwise specified, reference modification may be used wherever an alphanu-
meric identifier is permitted.

4. data-name-1 may be qualified or subscripted.

The function referenced by function-name-1 and its arguments (if any) must be an
alphanumeric function.

General rules

1. Each character of data-name-1 or function-name-1 is assigned an ordinal number that
is incremented stepwise by one from the leftmost position to the rightmost position. The
number one is assigned to the leftmost position. If the data description entry for data-
name-1 contains a SIGN IS SEPARATE clause, an ordinal number is likewise assigned
to the sign position in this data item.

2. Ifdata-name-1is described as numeric, numeric edited, alphanumeric or alphanumeric
edited, it is operated upon for the purposes of reference modification as if it were
redefined as an alphanumeric data item of the same size.

3. If data-name-1 is subscripted and ALL is specified for a subscript, the reference-
modifier refers to each of the implicitly referenced table elements.

U3979-J-2125-6-7600 85

Reference modification References

4. Reference modification creates a unique data item that forms a subset of the data item
referenced by data-name-1 or function-name-1. This unique data item is defined as
follows:

a) leftmost-character-position specifies the character position of data-name-1 at which
the subfield is to begin.
leftmost-character-position must give a positive nonzero integer value that is less
than or equal to the number of character positions of data-name-1 or function-
name-1 and its arguments (if any).

b) length denotes the length of the unique data item. length must give a positive non-
zero integer value.

c) The sum of leftmost-character-position and length minus 1 must not exceed the
number of characters of the data item referenced by data-name-1 or function-
name-1. If "length” is not specified, the unique data item extends from the position
denoted by leftmost-character-position to the last character (inclusive) of the data
item referenced by data-name-1 or function-name-1.

5. The unique data item is considered to be an elementary item without a JUSTIFIED
clause. If function-name-1 is specified, the data item has "alphanumeric"” class and
category. If data-name-1 is specified, it has the same category and class as the data

item referenced by data-name-1, except that the categories "numeric”, "numeric edited"
and "alphanumeric edited" are considered to be alphanumeric category and class.

Example 2-9

A data item CARREG contains a 10-character car registration, the last 6 characters of
which are to be transferred to a subitem SHORTREG:

Program extract:
01 CARREG PIC X(10).
01 SHORTREG PIC X(6).

MOVE CARREG (5:6) TO SHORTREG.

The "5" within the parentheses specifies that the MOVE operation is to take effect starting
at the fifth character; the colon is the required separator; the "6" specifies that six characters
are to be transferred to the item SHORTREG.

86

U3979-J-Z2125-6-7600

References

Identifier

2.4.6

2.4.7

Identifier

Identifier is a term used to reflect that a data name, if not unique in a program, must be
followed by a syntactically correct combination of qualifiers, subscripts or indices necessary
to ensure uniqueness.

Format 1

FUNCTION function—-name—1 [({argument-1}...)] [reference-modifier]

Format 2

IN IN file—name-1
data—name-1 data—name-2| ...
OF OF report—-name—1

[({subscript} ...)] [reference-modifier]

Condition-name

If referenced explicitly, a condition-name must be unigue or be made unique by means of
gualification and/or subscripting. This is not necessary if the uniqueness of the reference is
guaranteed by the naming conventions for the scope themselves.

If qualification is used in order to render a condition-name unique, the associated condi-
tional variable can be used as the first qualifier. Also, in the case of qualification, the
hierarchy of names that are assigned to the conditional variable must be used in order to
render a condition-name unique.

If the reference to a conditional variable necessitates subscripting, the same combination
of subscripts is required when referencing one of its condition-names.

With regard to the qualification and subscripting of condition-names, the same format and
restrictions are applicable as for the identifiers except that data-name-1 is replaced by
condition-name-1.

In the general format in the following sections, "condition-name-n" always refers to a
condition-name that, depending on the requirements, is qualified or subscripted.

U3979-J-2125-6-7600 87

Table handling Language concept

2.5 Table handling

Atable is a series of data items of equal length. These items are the table elements, or table
items. They all have an identical structure and are stored contiguously. The entire table
itself also forms a data item in COBOL terms.

Problems arising during the processing of large amounts of identically structured data can
often be solved more satisfactorily by putting this data into tabular form. This allows an
effective interpretation and meaningful representation of the information involved.

The homogeneous structure of the individual table elements makes their relationship to one
another readily apparent.

The individual table element occupies an easily determined physical location relative to the
base of the table, i.e. to the start of the table in working storage. Thus every element can
be referenced relative to the beginning of the table and does not need to be assigned a
unigue data-name. A table element is accessed with the aid of a table element number, or
occurrence number (see "Subscripting”, page 92 and "Indexing", page 94).

In addition, it is possible to determine the associated occurrence number for any given
value of a table element (see "SEARCH statement", page 325).

The number of table elements in a table may be variable at object time (see example 3-19,
page 162).

88

U3979-J-Z2125-6-7600

Language concept Table handling

2.5.1 Table definition

Atable element is indicated in the data description entry by specifying the OCCURS clause.
This clause defines how many elements the table contains. The name and description of
the table item apply to each recurrence thereof. In the case of multi-dimensional tables,
each dimension in the hierarchical structure must be given an OCCURS clause.

Example 2-10

01 TABLEL.
02 TABLE-ELEMENT PIC XXX OCCURS 20 TIMES.

The data item TABLE1 comprises 20 data items of identical length. These items are given
the name TABLE-ELEMENT:

TABLE1: 1. TABLE-ELEMENT (1) PIC XXX.
2. TABLE-ELEMENT (2) PIC XXX.
20. TABLE-ELEMENT (20) PIC XXX.

One-dimensional tables

The OCCURS clause is entered in the data description entry of the table element.

Example 2-11
01 TABLEZ2.
02 TABLE-ELEMENT OCCURS 2 TIMES.
03 ELEMENT-ITEM-1 PIC X(4).
03 ELEMENT-ITEM-2 PIC X(4).

TABLE2? is the name of the table.
TABLE-ELEMENT is the element which occurs twice within the one-dimensional TABLEZ2.

ELEMENT-ITEM-1 and ELEMENT-ITEM-2 are elements which are subordinate to TABLE-
ELEMENT.

Multi-dimensional tables

When a data item is subordinate to a table-element within a two-dimensional table and
contains an OCCURS clause, then this data item is an element within a three-dimensional
table.

Up to seven dimensions are allowed for a single table.

U3979-J-2125-6-7600 89

Table handling Language concept

Example 2-12

01 TABLES3.
02 BLK OCCURS 2 TIMES.
03 RECORD OCCURS 2 TIMES.
04 ITEM OCCURS 2 TIMES PIC X(10).

BLK is an element which occurs twice within a one-dimensional table.

RECORD is an element in a two-dimensional table. It occurs twice within each occurrence

of BLK.
ITEM is an element in a three-dimensional table. It occurs twice within each occurrence of
RECORD.
TABLE BLK (1) RECORD (1, 1) ITEM (1, 1, 1)
ITEM (1, 1, 2)
RECORD (1, 2) ITEM (1, 2, 1)
ITEM (1, 2, 2)
BLK (2) RECORD (2, 1) ITEM (2,1, 1)
ITEM (2, 1, 2)
RECORD (2, 2) ITEM (2, 2, 1)
ITEM (2, 2, 2)

Fig. 2-3 Schematic representation of TABLE

Initial values of table elements

A VALUE clause must not appear in a record description entry with an OCCURS clause, or
in any record description entry subordinate to that entry. However, for the definition of
condition-names, the VALUE clause is allowed and required here as well.

Initial values may be assigned to a table in the WORKING-STORAGE SECTION by using
the VALUE clause.

90 U3979-J-2125-6-7600

Language concept

Table handling

Example 2-13

WORKING—-STORAGE SECTION.
Fxxkxxx 1. VALUE ON GROUP—-LEVEL ***xxx

01 WOCHE VALUE
"MONTAG DIENSTAG MITTWOCH DONNERSTAG
"FREITAG ~ SAMSTAG SONNTAG "
02 TAG PIC X(10) OCCURS 7 TIMES.

Fxxkxkxx 2. REPEATED VALUE WITH OCCURS ***x**x*

01 WEEK.
02 WDAY PIC X(10) OCCURS 7 TIMES VALUE FROM (1)
"MONDAY" "TUESDAY" "WEDNESDAY" "THURSDAY"
"FRIDAY" "SATURDAY" "SUNDAY".

*xk*k*xx 3. REPEATED VALUE SUBORDINATE TO OCCURS *#***xx

01 UGE.
02 FILLER OCCURS 7 TIMES.
03 DAG PIC X(10) VALUE FROM (1)
"MANDAG" "TISDAG" "ONSDAG" "TORSDAG"
"FREDAG" "LOERDAG" "SOENDAG".

References to table elements

All the elements within a table have the same data-name. To identify individual occurrences
of table elements, occurrence numbers (indexes) enclosed in parentheses are appended

to the data-name.

Example 2-14

01 TABLE4.
02 ELEMENT OCCURS 10 TIMES.

MOVE ELEMENT OF TABLE4 (8) TO ...

Here the eighth table element is accessed.
An occurrence number must be supplied for each dimension.

There are two technigues for referencing table elements:

— subscripting
— indexing

U3979-J-72125-6-7600

91

Subscripting Table handling

2.5.2 Subscripting

One method of specifying occurrence numbers is to append one or more subscripts to the
data-name. A subscript is an integer whose value represents the occurrence number of a
table element or one of the items subordinate to that table element. The subscript may be
represented

— by an integer literal

— by a data-name defined as a numeric elementary data item without any character posi-
tions to the right of the assumed decimal point

— by an arithmetic expression that is neither a direct nor a relative subscript.

In either case, the subscript must be enclosed in parentheses and must be written
immediately following any qualification for the name of the table element. The referenced
table element must have appended to it as many subscripts as the associated table has
dimensions. A subscript must therefore be supplied for each OCCURS clause, including the
OCCURS clause which contains the data-name within the defined hierarchy.

In example 2-12 (three-dimensional table), the following are required:

— one subscript for references to BLK

— two subscripts for references to RECORD

— three subscripts for references to ITEM.

Subscripts are written proceeding from the outermost to the innermost table.
Thus, for example,

ITEM (1, 2, 2)

identifies the second element ITEM

within the second element RECORD

within the first element BLK.

A reference to a data item must not be subscripted unless the data item is a table element,
or unless it is an item or condition-name within a table element.

There are three forms of subscripting:
— direct subscripting

— relative subscripting

92 U3979-J-2125-6-7600

Table handling Subscripting

Direct subscripting

With direct subscripting, the subscript is specified either by an integer literal or by a data-
name. The data-name must be defined as a numeric elementary item with no character
positions to the right of the assumed decimal point. In the preceding example, direct
subscripting was used.

Relative subscripting

If the name of the table element is followed by a subscript in the form:
(data—name + integer-1),

then the occurrence number required to complete the reference is calculated from the value
of data-name at object time, plus integer-1.

If it takes the form:
(data—name - integer-2),
the occurrence number is obtained by subtracting integer-2 from data-name.

Relative subscripting is treated in the same manner as relative indexing. For further details
see "Indexing" (page 94).

U3979-J-2125-6-7600 93

Indexing

Table handling

2.5.3

Indexing
Another technique for referencing table elements is indexing. Indexing is made possible by
supplying the INDEXED BY phrase in the OCCURS clause.

The index does not require its own data description entry. At object time, the value of an
index is a binary value representing a displacement from the beginning of the table. The
value of this binary number is calculated from the number and length of the table element
as follows:

binary value of index = (occurrence number — 1) * length of table element

The value of an index may only be set using the SET, SEARCH or PERFORM statement.
The initial value is undefined and must be set explicitly.

There are two forms of indexing:
— direct indexing

— relative indexing

Direct indexing

Direct indexing obtains when an index is used in the manner of a direct subscript.

Example 2-15

01 TABLEL.
02 TABLE-A PIC XX OCCURS 10 TIMES INDEXED BY INDEX-A.
02 TABLE-B PIC X(3) OCCURS 5 TIMES INDEXED BY INDEX-B.

SET INDEX-A TO 7.

MOVE "X7" TO TABLE-A (INDEX-A).

Two tables are defined here:

— TABLE-A with 10 elements, each 2 bytes long
— TABLE-B with 5 elements, each 3 bytes long

INDEX-A is declared for TABLE-A and INDEX-B is declared for TABLE-B by means of the
INDEXED BY phrase. Indices may only be used with the corresponding elementary item,
e.g. TABLE-A(INDEX-A) or TABLE-B(INDEX-B).

The SET statement sets the index to a value that points to the seventh element of
TABLE-A. The displacement from the start of the table, i.e. the internal binary contents of
INDEX-A, is (7-1) * 2 = 12. Thus, the MOVE statement transfers X7 to the seventh table
element.

94

U3979-J-Z2125-6-7600

Table handling Indexing

Relative indexing

When the name of a table element is followed by an index in the form
(index + integer-1),

then the required occurrence number is calculated from the value of index-name at object
time, plus integer-1.

If the form
(index - integer-2),

is used, then the new occurrence number is obtained by subtracting integer-2 from the
corresponding current occurrence number.

The use of relative indexing will not change the values of the index-names in the object
program.
Permissible value ranges for indices

As specified in the standard, the value of an index should correspond to a valid occurrence
number of the associated table.

U3979-J-2125-6-7600 95

Indexing and subscripting compared Table handling

254

Indexing and subscripting compared

Availability of occurrence numbers for the user
Subscripting:

The occurrence number is immediately available.
Indexing:

The occurrence number is available only if preceded by a SET, SEARCH or PERFORM
statement. It is calculated as follows:

value of index divided by length of table element plus 1.
References to table elements
Subscripting:

At object time, the address of the table element must be calculated anew each time from
subscripts (except in the case of literal subscripts), i.e. subscripted data items cannot be
referenced as quickly as data items outside the table.

Indexing:

When indexing is used, references to a table element are faster than subscripting using
identifiers, since the displacement from the start of the table is already stored in the index.

Changing the index
Subscripting:

Changing a subscript in the form of a data-name (using MOVE, ADD etc.) is faster than
changing an index-name using SET, since the SET statement requires that the occurrence
number must first be converted to the displacement from the start of the table. This applies
when the index is not being set up or down by a fixed integer value.

Indexing:

It is faster to change an index using PERFORM or SEARCH statements than to change a
subscript.

Validity

Subscripting:

A subscript can also be used for other table elements.
Indexing:

An index may only be used with its associated table element (except in SET, PERFORM
and SEARCH statements).

96

U3979-J-Z2125-6-7600

Language concepts

Statements and sentences

2.6 Statements and sentences

There are four types of statements:

conditional statements
compiler-directing statements
imperative statements
delimited scope statements

There are three types of sentences:

— conditional sentences
— compiler-directing sentences
— imperative sentences

2.6.1 Conditional statements and conditional sentences

o A conditional statement is used to determine the truth value of a condition and to
specify the subsequent action in the object program on the basis of this value.

Conditional statements include:

IF, EVALUATE, SEARCH and RETURN statements;
READ statements which contain the (NOT) AT END or (NOT) INVALID KEY phrase;

WRITE statements which contain the (NOT) INVALID KEY or (NOT) END-OF-
PAGE phrase;

START, REWRITE or DELETE statements which contain the (NOT) INVALID KEY
phrase;

ADD, COMPUTE, DIVIDE, MULTIPLY or SUBTRACT statements which contain the
(NOT) ON SIZE ERROR phrase;

STRING and UNSTRING statements which contain the (NOT) ON OVERFLOW
phrase;

CALL statements which contain the ON OVERFLOW or (NOT) ON EXCEPTION
phrase.

ACCEPT or DISPLAY statements which contain the (NOT) ON EXCEPTION
phrase.

« A conditional sentence is a conditional statement which may optionally be preceded
by an imperative statement and which is terminated by a period followed immediately
by a space.

U3979-J-72125-6-7600

97

Statements and sentences Language concepts

2.6.2 Compiler-directing statements and compiler-directing sentences

A compiler-directing statement consists of one of the compiler-directing verbs COPY,
REPLACE or USE and its operands.

A compiler-directing statement causes the compiler to perform certain actions during
compilation.

A compiler-directing sentence is a single compiler-directing statement which is termi-
nated by a period followed immediately by a space.

2.6.3 Imperative statements and imperative sentences

An imperative statement causes a specific action to be carried out in the object
program.

An imperative statement is a statement which begins with an imperative verb and
specifies that an action is to be executed unconditionally or a conditional statement
which is delimited by its explicit scope terminator.

An imperative statement may consist of a sequence of imperative statements, each
separated from the next by a COBOL separator. The imperative statements are:

ACCEPT (7) DISPLAY (7) MOVE START (2)
ADD (1) DIVIDE (1) MULTIPLY (1) STOP

EXIT OPEN STRING (3)
CALL (6) GENERATE PERFORM SUBTRACT (1)
CANCEL GO TO READ (4) TERMINATE
CLOSE INITIALIZE RELEASE UNSTRING (3)
COMPUTE (1) INITIATE REWRITE (2) WRITE (5)
CONTINUE INSPECT SET
DELETE (2) MERGE SORT

(1) without the (NOT) ON SIZE ERROR phrase

(2) without the (NOT) INVALID KEY phrase

(3) without the (NOT) ON OVERFLOW phrase

(4) without the (NOT) AT END or (NOT) INVALID KEY phrase

(5) without the (NOT) INVALID KEY or (NOT) END-OF-PAGE phrase
(6) without the ON OVERFLOW or (NOT) ON EXCEPTION phrase
(7) without the (NOT) ON EXCEPTION phrase

98

U3979-J-Z2125-6-7600

Language concepts Statements and sentences

2.6.4

2.6.5

« Whenever "imperative-statement” occurs in the general format of statements, it also
refers to a sequence of imperative statements terminated either by a period or by a
phrase which in turn includes an imperative statement. For example, the statement

DIVIDE A INTO B.
is an imperative statement, as is also
DIVIDE A INTO B ON SIZE ERROR PERFORM DIV-FEHLER.

« Animperative sentence is an imperative statement which is terminated by a period
followed immediately by a space.

Delimited scope statements

A delimited scope statement is any statement which includes an explicit scope terminator.

Scope of statements (scope terminators)

Scope terminators delimit the scope of certain Procedure Division statements.
Statements which include their explicit scope terminators are termed delimited scope state-
ments.

The scope of statements which are contained within other statements (nested) may also be
implicitly terminated.

When statements are nested within other statements, a separator period which terminates
the sentence also implicitly terminates all nested statements.

Whenever any statement is contained within another statement, the next phrase of the
containing statement following the contained statement terminates the scope of any unter-
minated contained statement.

When a delimited scope statement is nested within another delimited scope statement with
the same verb, each explicit scope terminator terminates the statement begun by the most
recently preceding, and as yet unterminated, occurrence of that verb.

When statements are nested within other statements which allow optional conditional
phrases, any optional conditional phrase encountered is considered to be the next phrase
of the nearest preceding unterminated statement with which that phrase is permitted to be
associated according to the general format and the syntax rules for that statement, but with
which no such phrase has already been associated.

An unterminated statement is one which has not been previously terminated either explicitly
or implicitly.

U3979-J-2125-6-7600 99

Statements and sentences

Language concepts

In addition to the separator period (implicit scope terminator), the following explicit scope
terminators can be used to support structured programming:

END-DIVIDE
END-ADD END-EVALUATE
END-CALL END-IF
END-COMPUTE END-MULTIPLY
END-DELETE END-PERFORM

END-READ

END-RECEIVE END-SUBTRACT
END-RETURN END-UNSTRING
END-REWRITE END-WRITE
END-SEARCH

END-START

END-STRING

Explicit scope terminators are reserved COBOL words.

2.6.6 Categories of statements

Arithmetic statements

ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

Conditional statements

ADD (SIZE ERROR)

CALL (OVERFLOW or EXCEPTION)
COMPUTE (SIZE ERROR)

DELETE (INVALID KEY)

DIVIDE (SIZE ERROR)
EVALUATE

GO TO (DEPENDING ON)

IF

MULTIPLY (SIZE ERROR)
PERFORM (UNTIL)

READ (AT END or INVALID KEY)
RETURN (AT END)

REWRITE (INVALID KEY)
SEARCH

START (INVALID KEY)

STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW)
WRITE (INVALID KEY or END-OF-PAGE

100

U3979-J-Z2125-6-7600

Language concepts

Statements and sentences

Data processing statements

ACCEPT (DATE, DAY, DAY-OF-WEEK or TIME)
INITIALIZE

INSPECT

MOVE

SET (TO TRUE)

STRING

UNSTRING

Input/output statements

ACCEPT (identifier)
CLOSE

DELETE

DISPLAY

OPEN

READ

REWRITE

START

STOP (literal)
WRITE

End statement

STOP

Report Writer statements

GENERATE
INITIATE
TERMINATE

Program communication statements

CALL
CANCEL

EXIT PROGRAM

Procedure control statements

CALL
EXIT

GO TO
PERFORM

Sort statements

MERGE
RELEASE
RETURN
SORT

Table handling statements

SEARCH
SET

Compiler-directing statements

COPY
REPLACE
USE

U3979-J-72125-6-7600

101

Reference format Language concepts

2.7 Reference format

2.7.1 General description

The standardized reference format for writing COBOL source programs can be described
in terms of a line consisting of 80 character positions. The compiler only accepts COBOL
source programs written in the reference format and generates a listing of the source
program in the same format. A line is divided as follows:

Margin L Margin C Margin A Margin B Margin R
1]2]3|afs]e|7|8]o]wo|n]|12][13]. |7 | .|
Sequence number area Area A Area B

Indicator area

Margin L
is located to the left of the leftmost character position in a line.

Margin C
is located between the sixth and seventh character position in a line.

Margin A
is located between the seventh and eight character position in a line.

Margin B
is located between the eleventh and twelfth character positions in a line.

Margin R
is located to the right of the rightmost character position in a line.

Sequence number area
contains six character positions (columns 1 to 6) located between Margin L and Margin C.

Indicator area
the seventh character position in a line.

Area A
contains the character positions 8 through 11 and is located between Margin A and
Margin B.

Area B
contains the character positions 12 through 72. It begins at the first character position to the
right of Margin B and ends at the character position to the left of Margin R.

102

U3979-J-Z2125-6-7600

Language concepts Reference format

2.7.2 Rules for using the reference format

COBOL programs are written in a standardized format. The rules governing the use of
spaces take precedence over all other rules in this manual that govern the insertion or
omission of spaces.

e Sequence number area (columns 1-6)
This field may be used to label lines of a COBOL source program.

The content of the sequence number area is defined by the user and may consist of any
character in the computer’s character set. The sequence number area can contain a
character-string or individual characters.

« Indicator area (column 7)
This field is used to designate continuation, comment, and debugging lines.

A hyphen (-) in this field signifies that this is a continuation line , i.e. the previous line
is being continued (see "Continuation of lines" further below). The absence of a hyphen
in the indicator field is taken to indicate that the last character in area B (see below) of
the previous line is followed by one space character.

An asterisk (*) supplied in this field indicates a comment line (see "Comment line"
further below).

A slash (/) in this field indicates a special kind of comment line, which causes a form
feed to be carried out in the source program listing before this line is printed.

A letter D in this field designates a debugging line (see "Debugging"”, page 353).

o AreaA (columns 8-11)

This area is reserved for the beginning of the headers of the four COBOL program
divisions, of the section headers and paragraph headings, for level indicators, and for
certain level numbers (see Table 2-8, page 105).

o AreaB (columns 12-72)

This area is the main field for entries of a COBOL source program. It is used to hold all
those clauses and statements which do not have to begin in area A (see Table 2-8, page
105).

U3979-J-2125-6-7600 103

Reference format Language concepts

o Continuation of lines

A sentence or entry requiring more than one line may be continued on subsequent lines
in area B. The first line is called a continued line , the following lines are called conti-

nuation lines . If a sentence or entry spans more than two lines then all lines, except

the first and last, are both continued and continuation lines.

A word, PICTURE character-string, or literal may be continued in the next line. If this
occurs, the following apply:

— Continuation of nonnumeric literals
If a nonnumeric literal is continued on the next line, a hyphen should be entered in
the indicator area (column 7) of the continuation line. The continuation may follow
anywhere in area B (from column 12), immediately preceded by a quotation mark.
All blanks located at the end of the continued line or following the quotation mark of
the continuation line are regarded as part of the literal.

— Continuation of words and numeric literals
If a word or a numeric literal is continued on the next line, a hyphen must be entered
in the indicator area (column 7) of the continuation line in order to show that the first
non-blank character in area B of the continuation line is the immediate successor of
the last non-blank character of the continued line, i.e. without any intervening
space.

e Blank lines

A blank line is a line that contains only spaces in columns 7 through 72. A blank line
may appear anywhere in the source program, except immediately preceding a continu-
ation line.

104 U3979-J-2125-6-7600

Language concepts

Reference format

Program divisions, sections, paragraphs and description entries

Item

Convention for the placement of items

DIVISION header

Must be written starting at margin A (i.e. in column 8) and
must appear on a line by itself.

SECTION header

Must be written starting at margin A; no other text except
USE and COPY statements as well as segment numbers
may appear on the same line.

Paragraph name

Must start at margin A.

Statements/clauses

Statements or clauses of a paragraph must be written
within area B. The first sentence of a paragraph may
begin on the line which contains the paragraph-name or
on a new line.

Level indicators, file, sort-file and
report description entry

The level indicators FD, SD and RD must be written
starting at margin A; they must be followed, on the same
line, starting at margin B, by the related file-name, sort-
name or report-name and the associated explanatory
information, if any.

Level numbers and file description
entries

Level numbers 01 and 77 must be written starting at
margin A; all other level numbers may begin anywhere in
area A or B.

The data description entries which are associated with a
particular level number must begin in area B of the same
line which contains that level number.

End program header

This must begin in area A.

Table 2-8: COBOL margin conventions

Declaratives

The keyword DECLARATIVES and the keywords END DECLARATIVES which
(respectively) open and close the declaratives section of the Procedure Division must
each appear on a separate line. Both must be written starting in area A, and both must
be terminated by a period followed by a space.

Comment lines

Explanatory comments may be included anywhere in the COBOL source program in
the form of comment lines by setting an asterisk or a slash in the indicator area (column
7). Any combination of characters from the character set of the data processing system
(EBCDIC) may be used in areas A or B of these lines. The contents of the comment
lines will be produced on the source program listing (at the top of a new page if a slash
has been entered in the indicator area) and have no effect on the program.

U3979-J-72125-6-7600

105

Reference format Language concepts

« Debugging lines

Debugging lines may appear anywhere in the COBOL source program, following the
OBJECT-COMPUTER paragraph. They are indicated by a "D" in the indicator area (see
"Debugging", page 353).

e« Pseudo-text

The pseudo-text, which consists of character-strings and delimiters, may begin in area
A or area B. If indicator area of a line following the opening pseudo-text delimiter
contains a hyphen, area A must be left empty; text words are continued in accordance
with the normal rules for continuation of lines (see above).

« End program header

The end program header must begin in area A.

106 U3979-J-2125-6-7600

Language concepts Processing a COBOL program

2.8 Processing a COBOL program

The COBOL compiler, with the aid of a linkage editor, generates an executable program
from a COBOL source program. This executable program is also called an object program
or object module .

The linkage editor links the modules generated by the compiler with the necessary runtime
subroutines and, if applicable, with further compiler-generated modules.

The runtime subroutines , which are supplied as modules, are used for performing special
COBOL functions such as input-output operations.

The interactive debugging aid AID is available for symbolic and hardware-oriented testing
of COBOL programs.

U3979-J-2125-6-7600 107

EBCDIC character set Language concepts

2.9 EBCDIC character set

Siemens Nixdorf reference version of the 8-bit code

Decimal Hexadecimal BCDIC Printer graphics

0 00 0000 0000 (LOW-VALUE)

64 40 0100 0000 (space)

74 4A 0100 1010 c (cents)

75 4B 0100 1011 . (period)

76 4C 0100 1100 < (less than)

77 4D 0100 1101 ((left parenthesis)
78 4E 0100 1110 + (plus)

79 4F 0100 1111 | (vertical)

80 50 0101 0000 & (ampersand)

90 5A 0101 1010 I (exclamation mark)
91 5B 0101 1011 $ (dollar sign)

92 5C 0101 1100 * (asterisk)

93 5D 0101 1101) (right parenthesis)
94 5E 0101 1110 ;. (semicolon)

95 5F 0101 1111 ? (logical NOT)

96 60 0110 0000 - (minus)

97 61 0110 0001 [(slash)

98 62 0110 0010 § (paragraph symbol)
99 63 01100011 [(left square bracket)
100 64 0110 0100] (right square bracket)
103 67 01100111 3 (special German character)
106 6A 0110 1010 A (logical AND)

107 6B 0110 1011 , (comma)

108 6C 0110 1100 % (percent)

109 6D 01101101 _ (underline)

110 6E 0110 1110 > (greater than)

111 6F 01101111 ? (question mark)
122 7A 0111 1010 : (colon)

123 7B 01111011 # (number sign)

124 7C 0111 1100 @ (commercial at)
125 7D 01111101 ' (apostrophe)

126 7E 0111 1110 = (equals)

127 7F 0111 1111 " (quote)

108 U3979-J-2125-6-7600

Language concepts

EBCDIC character set

Decimal Hexadecimal FBCDIC Printer graphics
129 81 1000 0001 a
130 82 1000 0010 b
131 83 1000 0011 c
132 84 1000 0100 d
133 85 1000 0101 e
134 86 1000 0110 f
135 87 1000 0111 g
136 88 1000 1000 h
137 89 1000 1001 i
138 8A 1000 1010

139 8B 1000 1011 A
140 8C 1000 1100]
141 8D 1000 1101 U
145 91 1001 0001 j
146 92 1001 0010 k
147 93 1001 0011 I
148 94 1001 0100 m
149 95 1001 0101 n
150 96 1001 0110 o]
151 97 1001 0111 p
152 98 1001 1000 q
153 99 1001 1001 r
162 A2 1010 0010 S
163 A3 1010 0011 t
164 A4 1010 0100 u
165 A5 1010 0101 v
166 A6 1010 0110 w
167 A7 10100111 X
168 A8 1010 1000 y
169 A9 1010 1001 z
170 AA 1010 1010

171 AB 1010 1011 a
172 AC 1010 1100 o]
173 AD 10101101 u
192 (60] 1100 0000 {
193 C1 1100 0001 A
194 C2 1100 0010 B
195 C3 1100 0011 C
196 Cc4 1100 0100 D
197 C5 1100 0101 E
198 C6 1100 0110 F
199 C7 1100 0111 G

U3979-J-72125-6-7600

109

EBCDIC character set

Language concepts

Decimal Hexadecimal FBCDIC Printer graphics
200 Cc8 1100 1000 H
201 c9 1100 1001 |
208 DO 1101 0000 }
209 D1 1101 0001 J
210 D2 1101 0010 K
211 D3 1101 0011 L
212 D4 1101 0100 M
213 D5 1101 0101 N
214 D6 1101 0110 (0]
215 D7 1101 0111 P
216 D8 1101 1000 Q
217 D9 1101 1001 R
226 E2 1110 0010 S
227 E3 1110 0011 T
228 E4 1110 0100 U
229 E5 1110 0101 \%
230 E6 1110 0110 W
231 E7 1110 0111 X
232 E8 1110 1000 Y
233 E9 1110 1001 Z
240 FO 1111 0000 0
241 F1 1111 0001 1
242 F2 1111 0010 2
243 F3 1111 0011 3
244 F4 1111 0100 4
245 F5 1111 0101 5
246 F6 1111 0110 6
247 F7 1111 0111 7
248 F8 1111 1000 8
249 F9 1111 1001 9
255 FF 1111 1111 ~ (tilde) (HIGH-VALUE)

110

U3979-J-Z2125-6-7600

3 Basic elements of a COBOL source program

3.1 General description

A COBOL source program is a syntactically correct set of COBOL statements.

With the exception of the COPY and REPLACE statements and the end program header,
all statements, entries, paragraphs and sections of a COBOL source program are grouped
into four divisions which are specified in the following sequence:

1. Identification Division
2. Environment Division
3. Data Division

4. Procedure Division

The end of a COBOL source program is indicated either by the end program header or by
the absence of further source program lines.

The beginning of a division in a source program is indicated by the related program division
header. The end of a division is indicated by

— the division header of a succeeding division in the program or
— the end program header or
— the absence of further source lines.

All separately compiled source programs in a sequence of source programs, except for the
last source program in the sequence, must be terminated by an end program ENTRY.
Although a COBOL source program may have an unlimited number of lines, the compiler
will only number these lines uniquely up to a value of 65536.

U3979-J-2125-6-7600 111

Structure of a COBOL program COBOL source program

3.2 Structure of a COBOL program

The following overall format shows, in detail, the general structure of a COBOL program.

IDENTIFICATION DIVISION.
1D DIVISION.

[PROGRAM—=ID. program—-name.

[AUTHOR. comment—entr

[NSTALL ON. comment—entry |
DATE-WRITTEN. comment—entry |
DATE-COMPILED. |comment—entry |
SECURITY. comment—entry |

~ ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
[SOURCE=COMPUTER. C[entry.]]
[OBJECT-COMPUTER. C[entry.1]]
| [SPECTAL=NAMES. Lentry.]]

[INPUT-QUTPUT SECTION.
FILE-CONTROL. {entry.}...
| | CI=0-CONTROL. fentry.]...]

DATA DIVISION.
FILE SECTION.
{ file—description—entry. {record-description—entry. }...

sort-file-description—entry. {record-description-entry. }...
report—file—description—entry.

WORKING=STORAGE SECTION.]
{77—1eve]—description—entry. }

record-description—entry.

LINKAGE SECTION.
{771eve1descriptionentry. }

record-description—entry.

REPORT SECTION.

L report-file-description—entry. {report-group-description-entry. }...J...

PROCEDURE DIVISION [USING {data-name-1}...1].
DECLARATIVES.
{section—-name SECTION [segment-number].
USE statement.
[paragraph—-name.
[sentencel...l...}...
END DECLARATIVES.

{section-name SECTION [segment-number
[paragraph—-name.
[sentencel...J...}...]

L END PROGRAM program-name.]

112 U3979-J-2125-6-7600

COBOL source program Nested source program

3.3 Structure of a nested source program

The format and sequence of the divisions that constitute a nested COBOL source program
are discussed below.

The organization of a nested source program is discussed in detail in chapter 7, "Inter-
program communciation".

Format

identification-division
Lenvironment—division]
[data—-division]
[procedure—divisionl
[nested—source—-programl...

[Lend—-program—header]

Syntax rules

1. The end program header must be present if:

a) the COBOL source program contains one or more nested COBOL source
programs, or if

b) the COBOL source program is contained within another COBOL source program.

General rules

1. The beginning of a division is indicated by the appropriate division header. The end of
a division is identified by one of the following:

a) the division header of a succeeding division in this program.

b) an Identification Division header which indicates the start of another source
program.

¢) the end program header.

U3979-J-2125-6-7600 113

Sequence of programs COBOL source program

3.4 Sequence of programs

It is possible, in one compiler run, to compile several complete source programs which are
stored sequentially in a file or a library member. For this, each source program within the
sequence of programs must be terminated with an end program header. The last source
program of the sequence of programs does not need to be terminated with an end program
header.

{ IDENTIFICATION DIVISION.

PROGRAM—ID. program—name-1.

[ENVIRONMENT DIVISION. environment—-division—content]

[DATA DIVISION. data—-division—content]

[PROCEDURE DIVISION. procedure—division—-content]

END PROGRAM program—name—-1. }...

114 U3979-J-2125-6-7600

COBOL source program End program header

3.5 End program header

Function

The end program header indicates the end of the COBOL source program.

Format

END PROGRAM program—name.

Syntax rules

1. The program-name must comply with the rules for forming user-defined words.

2. The specified program-name must be identical to the program-name declared in a
preceding PROGRAM-ID paragraph of the source program.

General rules

1. Ifthe next source statement after the program terminated by the END PROGRAM entry
is a COBOL statement, then this must be the Identification Division of a program which
is to be compiled separately from the program terminated by the end program header.

2. Only one space is permitted between END and PROGRAM.

3. program-name must be specified in the same line as END PROGRAM.

U3979-J-2125-6-7600 115

Identification Division COBOL source program

3.6 ldentification Division

3.6.1 General description

Every COBOL program begins with the Identification Division. This division identifies the
program by specifying the program-name.

In addition the user may specify the following: the date the program was written, the date
the program is compiled, and other descriptive information explaining the purpose of the
program.

3.6.2 Structure

General format

Margin indication

i
|

{ DENTIFICATION DIVISION.}

PROGRAM—=ID. program—name.

The Identification Division must begin with the reserved words IDENTIFICATION DIVISION
or ID DIVISION, followed by a separator period. This subheading must be followed by the
PROGRAM-ID paragraph, which sets down the name of the program.

All paragraphs following the PROGRAM-ID paragraph are optional. In Standard COBOL,
any of these paragraphs included in the COBOL program must be presented in the order
shown.

116 U3979-J-2125-6-7600

COBOL source program Identification Division

Every ldentification Division paragraph except the PROGRAM-ID paragraph contains
comment entries. A comment entry can be any combination of characters from the EBCDIC
character set. The continuation of comment lines by the use of a hyphen in the indicator
area is not permitted; however, the comment entry may extend over two or more lines.

U3979-J-2125-6-7600 117

PROGRAM-ID Identification Division

3.6.3 Paragraphs

PROGRAM-ID paragraph

Function

The PROGRAM-ID paragraph provides the name by which a program is identified.

Format

PROGRAM—-ID. program—name [program—attributel.

Syntax rules

1. The program-name must be a user-defined word. It must begin with a letter and the 8th
character must not be a hyphen.
A program name should not begin with the letter "I" to avoid conflict with names of
COBOLS8S5 runtime modules.

2. The operating system uses only the first eight characters of program-name for
identifying the module. Therefore, these characters should be unique for every name in
a particular module/program library.

3. The program attributes (INITIAL clause, COMMON clause) are described in chapter 7,
"Inter-program communication".

118 U3979-J-2125-6-7600

Identification Division DATE-COMPILED

DATE-COMPILED paragraph

Function

The DATE-COMPILED paragraph causes the compilation date to be inserted in the source
program listing.

Format

DATE-COMPILED. [comment—-entryl...

Syntax rules

1. Acomment-entry may consist of any combination of the machine-specific character set.

2. The whole comment-entry is replaced with the current date (including the century).
Any comment-entry lines within the DATE-COMPILED paragraph are left intact.

U3979-J-2125-6-7600 119

Environment Division COBOL source program

3.7 Environment Division

3.7.1 General description

The Environment Division provides a standard method for describing those aspects of a
data processing problem which depend on the physical characteristics of a given computer
installation. This division can be used to define the equipment configuration of the data
processing system on which the program is to be compiled and executed. It also provides
an opportunity for specifying input/output control, specific machine characteristics, and
control techniques.

The Environment Division is optional in a COBOL source program.
The Environment Division consists of two optional sections:

1. CONFIGURATION SECTION

2. INPUT-OUTPUT SECTION.

The CONFIGURATION SECTION deals with the characteristics of the computers used for
compiling and executing the program (source computer and object computer, respectively).

This section is divided into three paragraphs:

1. the SOURCE-COMPUTER paragraph, which describes the equipment configuration of
the data processing system on which the source program is to be compiled

2. the OBJECT-COMPUTER paragraph, which describes the equipment configuration of
the data processing system on which the object program is to be executed

3. the SPECIAL-NAMES paragraph, which (among other things) relates the implementor-
names used by the compiler to the mnemonic-names used in the source program.

The INPUT-OUTPUT SECTION deals with the required information for controlling the trans-
mission of data between external devices and the object program.

This section is divided into two paragraphs:

1. the FILE-CONTROL paragraph, which names the files and assigns them to external
devices

2. the I-O-CONTROL paragraph, which describes special control techniques to be used
in the object program.

The INPUT-OUTPUT SECTION is discussed in chapters 4 through 6, which deal with file
processing.

120

U3979-J-Z2125-6-7600

COBOL source program Environment Division

General format

Margin indication

i
i

CONFIGURATION SECTION.

NVIRONMENT DIVISION.

[SOURCE-COMPUTER. [source—computer—entry [debugging—-model. 1]
[OBJECT-COMPUTER. [object—computer—entry. 1]
[SPECIAL-NAMES. [special-names—entry.]1]

FILE-CONTROL. {file—control—-entry.}...

INPUT-QUTPUT SECTION.
[I-0—-CONTROL. [input—output-control-entry.1]

The Environment Division is optional.

U3979-J-2125-6-7600 121

CONFIGURATION SECTION Environment Division

3.7.2 CONFIGURATION SECTION

Function

The CONFIGURATION SECTION makes up part of the Environment Division of a source
program and provides a means to do the following:

— describe the computer configuration on which the program is to be compiled or execu-
ted

— declare a currency sign

— choose the decimal point

— specify symbolic names for characters

— relate implementor-names to user-specified mnemonic-names

— relate alphabet-names to character sets or collating sequences

— relate class-names to user-defined sets of characters

Format

A Margin indication

|
|

CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source—computer—entry [debugging—mode].]]
[OBJECT-COMPUTER. [object—computer—entry.1]
[SPECIAL-=NAMES. [special-names—entry.1]

Syntax rules

1. The CONFIGURATION SECTION and its associated paragraphs are optional.

2. If this paragraph is specified, the sequence indicated must be observed.

122 U3979-J-2125-6-7600

Environment Division SOURCE-COMPUTER

SOURCE-COMPUTER paragraph

Function

The SOURCE-COMPUTER paragraph identifies the data processing system on which the
source program is to be compiled; it may also be used to specify debugging aids.

Margin indication

OURCE-COMPUTER. [computer—name [WITH DEBUGGING MODE]J. 1]

Syntax rule

computer-name must be a user-defined COBOL word.

General rules

1. All clauses of this paragraph apply to the program in which they are explicitly or impli-
citly specified.

2. When the paragraph is not specified, or if it is specified but the computer-name is not,
the computer upon which the source program is being compiled is the source computer.

3. Ifthe WITH DEBUGGING MODE clause is specified, all debugging lines are compiled
as specified in the rules described in section 3.10 (page 353ff).

4. If the WITH DEBUGGING MODE clause is not specified in a program, any debugging
lines are compiled as if they were comment lines.

U3979-J-2125-6-7600 123

OBJECT-COMPUTER Environment Division

OBJECT-COMPUTER paragraph

Function

The OBJECT-COMPUTER paragraph describes the data processing system on which the
program is to be executed.

B Margin indication

BJECT-COMPUTER. [computer—name

[PROGRAM COLLATING SEQUENCE IS alphabet-name].]

Syntax rules

1. computer-name and the are used for documentation purposes
only and are treated as comments.

2. computer-name must be a user-defined COBOL word.

3. Ifthe PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence
associated with alphabet-name (see "SPECIAL-NAMES paragraph”, page 125) is used
to determine the truth value of any nonnumeric comparisons:

a) explicitly specified in relation conditions
b) explicitly specified in condition-name condition

c) implicitly specified by the presence of a CONTROL clause in a report description
entry (see "CONTROL clause”, page 579).

4. Ifthe PROGRAM COLLATING SEQUENCE clause is not specified, the native collating
sequence is used (EBCDIC).

5. The PROGRAM COLLATING SEQUENCE clause is also applied to any nhonnumeric
merge or sort keys unless the COLLATING SEQUENCE phrase of the respective
MERGE or SORT statement is specified (see "MERGE statement”, page 655 and
"SORT statement”, page 663).

For examples of the use of the PROGRAM COLLATING SEQUENCE and ALPHABET
clauses see "SPECIAL-NAMES paragraph” (page 125).

124

U3979-J-Z2125-6-7600

Environment Division SPECIAL-NAMES

SPECIAL-NAMES paragraph

Function

The SPECIAL-NAMES paragraph provides a means of

1. relating system-names to mnemonic-names specified by the user

2. relating alphabet-names to character sets and/or collating sequences

3. defining symbolic names for characters

4. relating class-names to character sets

5. supplying a character which is to be used as the currency sign in picture-strings

6. exchanging the functions of the comma and the decimal point in picture-strings and in
numeric literals.

Format

A B Margin indication

||

SPECIAL-NAMES.

[IS mnemonic-name—-1[ON STATUS IS condition—-name-1[QFF STATUS IS condition-name-21]
implementor—|IS mnemonic—name—2[0FF STATUS IS condition—name-2[0ON STATUS IS condition—-name—-11]
name

ON STATUS IS condition—name-1[QFF STATUS IS condition—-name-2
FF STATUS IS condition—-name-2[0ON STATUS IS condition-name-1

[STANDARD-1
STANDARD=2
NATIVE
EBCDIC
ALPHABET alphabet-name-1 IS THROUGH
Titeral-1 literal-2
THRI
{ALSQ Titeral=3}...
I
SYMBOLIC CHARACTERS {(symbo]icfcharacterfl’.,.{ }{1nteger71’... }.‘. [IN alphabet-name-21]|...
ARE
[THROUGH
CLASS class—name IS {literal-4 Titeral-5 P I
THRU

[CURRENCY SIGN IS Tliteral-6]

| CDECIMAL-POINT IS COMMAJ.]

U3979-J-2125-6-7600 125

SPECIAL-NAMES Environment Division

General rule

The individual clauses of the SPECIAL-NAMES paragraph must, if they are used, be
specified in the order given in the format.

The individual clauses of the SPECIAL-NAMES paragraph are described below.

Implementor-name

Syntax rules

1. implementor-name is a system-name and must be a name from the left column of the
following table.

Implementor-names and their meanings:

Implementor-name Meaning

CONSOLE System or main console or subconsole
TERMINAL The user' s data display unit

SYSIPT System logical input file

PRINTER System logical printer file
PRINTERO1-PRINTER99

SYSOPT System logical output file

C01 to C08 Skip to channel 1 through 8

Cl0to C11 Skip to channel 10 or 11
JV-job-variable-name Job variable describing the link name of a job variable (see below)
TSW-0 to TSW-31 Task switches

USW-0 to USW-31 User switches

COMPILER-INFO Compiler information

CPU-TIME, Operating system information
PROCESS-INFO,

TERMINAL-INFO

DATE-ISO4

Table 3-1: Implementor-names and their meanings

2. job-variable-name indicates a BS2000 job variable. It is a COBOL word of up to 7
characters and is used to form the link name *job-variable-name and for accessing the
job variable (see example 3-1).

126 U3979-J-2125-6-7600

Environment Division SPECIAL-NAMES

General rules

1. If implementor-name is a user or task switch, at least one condition-name must be
associated with it. The status of the switches is described under "Condition-names",
and can be interrogated by testing the condition-name (see "Switch-status conditions"”,
page 222).

The status of a switch may be altered by using a format 3 SET statement (see "SET
statement", page 338).

2. CO01 through C08, C10 and C11 will not be supported in the next version of the
COBOLS85 compiler.
If CO1 through C08, C10 or C11 is specified as implementor-name, the associated
mnemonic-name may be used only in a WRITE statement with ADVANCING phrase.

Example 3-1
Use of job variables:

IDENTIFICATION DIVISION.
PROGRAM—ID. JVTEST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECTAL-NAMES.
JV=Jv1l IS JOB-VAR-1.
PROCEDURE DIVISION.
M SECTION.
M-PAR.
DISPLAY "xyz" UPON JOB-VAR-1.
STOP RUN.

Prior to the program call:
/SET=JV-LINK LINK-NAME=*JV1,JV-NAME=JVITEST

U3979-J-2125-6-7600 127

SPECIAL-NAMES Environment Division

ALPHABET clause

Syntax rules

1.

2.

3.
4,

If the literal phrase is specified in the ALPHABET clause, any given character for literal-
1, literal-2 etc. which is referenced by alphabet-name in the PROGRAM COLLATING
SEQUENCE clause (see "OBJECT-COMPUTER paragraph”, page 124) or in the
COLLATING SEQUENCE phrase of the SORT or MERGE statement (page 663 and
page 655 respectively) may be used once only (see examples 3-10 and 3-11).

The following rules apply to literal-1, ..., literal-11:
a) Ifthe literals are numeric, they must be unsigned integers with a value from 1 to 256.

b) If the literals are nonnumeric and associated with the THROUGH, THRU or ALSO
phrase, each literal must be one character long.

c) The literals must not specify a symbolic-character figurative constant. Literal-6 must
not be a figurative constant.

The words THROUGH and THRU are equivalent.
The NATIVE and EBCDIC phrases mean the same thing in BS2000.

General rules

1.

The ALPHABET clause provides a means for relating a name to a particular character
set and/or collating sequence. When referenced in the PROGRAM COLLATING
SEQUENCE clause (see "OBJECT-COMPUTER paragraph”, page 124) or the
COLLATING SEQUENCE phrase of a SORT or MERGE statement (page 663 and page
655 respectively) alphabet-name specifies a collating sequence. When alphabet-name-
1is referenced in the SYMBOLIC-CHARACTERS clause or in a CODE-SET clause of
a file description entry (for sequentially organized files), the ALPHABET clause
specifies a character set.

a) If the STANDARD-1 phrase is specified, the character set or collating sequence is
that defined in the American National Standard Code for Information Interchange
(ASCII), X3.4-1968.

b) If the STANDARD-2 phrase is specified, the character set identified is the Interna-
tional Reference Version of the ISO 7-bit code, as defined in International Standard
646, "7-Bit Coded Character Set for Information Processing Interchange”. Each
character of the standard character set is associated with a corresponding
character from the native character set.

c) If the NATIVE or EBCDIC phrase is specified, the native character set or native
collating sequence is used (EBCDIC).

128

U3979-J-Z2125-6-7600

Environment Division

SPECIAL-NAMES

d) If the literal phrase of the ALPHABET clause is specified, the alphabet-name must
not be referenced in a CODE-SET clause (see "CODE-SET clause”, page 382).

The value of the literal specifies the ordinal number of a character (beginning
with 1) within the native character set, if the literal is numeric. This value must
not exceed the number of characters in the native character set (256).

The value of the literal specifies the actual character within the native character
set, if the literal is nonnumeric. If the value of the nonnumeric literal contains
multiple characters, each character in the literal is inserted into the collating
sequence in the order specified (see example 3-2).

The order in which the literals appear in the ALPHABET clause specifies, in
ascending sequence, the ordinal number of the character within the collating
sequence being specified (see example 3-3).

Any characters within the native collating sequence which are not explicitly
specified in the literal phrase assume a position, in the collating sequence being
specified, greater than any of the explicitly specified characters. The relative
order within the set of these unspecified characters is unchanged from the
native collating sequence.

If the THROUGH/THRU phrase is specified, the set of contiguous characters in
the native character set beginning with the character specified by the value of
literal-1, and ending with the character specified by the value of literal-2, is
assigned a successive ascending position in the collating sequence being
specified. In addition, the set of contiguous characters specified by a given
THROUGH/THRU phrase may contain characters of the native character set in
either ascending or descending sequence (see example 3-4).

If the ALSO phrase is specified, the characters of the native character set
specified by the value of literal-1 and literal-3 are assigned to the same ordinal
position in the collating sequence being specified or in the character set (see
example 3-5).

If alphabet-name-1 is referenced in a SYMBOLIC CHARACTERS clause, only
literal-1 is used to represent the character in the native character set.

2. The character that has the highest ordinal position in the program collating sequence
specified is associated with the figurative constant HIGH-VALUE. If more than one
character has the highest position in the program collating sequence, the last character
specified is associated with the figurative constant HIGH-VALUE (see examples 3-6
and 3-7).

3. The character that has the lowest ordinal position in the program collating sequence
specified is associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position in the program collating sequence, the first character
specified is associated with the figurative constant LOW-VALUE (see examples 3-8 and

3-9).

U3979-J-72125-6-7600

129

SPECIAL-NAMES Environment Division

Example 3-2
ALPHABET ALPHATAB IS "AJKCDF".

First character is A
Second character is J

Sixth character is F

Example 3-3
ALPHABET ALPHATAB IS "A" 'C" "D" "Z".

First character in the collating sequence is "A"
Second character in the collating sequence is "C"
Third character in the collating sequence is "D"
Fourth character in the collating sequence is "Z"

Example 3-4
ALPHABET ALPHATAB IS "A" THRU "I".

First character is A
Second character is B
Third character is C

Eighth character is H
Ninth character is |

Example 3-5
ALPHABET ALPHATAB IS "A" ALSO "B" ALSO "C" ALSO '"D".

The characters A, B, C, and D will be associated with the lowest ordinal positions in the
collating sequence.

Example 3-6
ALPHABET ALPHATAB IS 193 THRU 1, 255 THRU 194.

The highest ordinal position in the collating sequence is occupied by the character which
appears in the 194th position of the native character set, i.e. the character A.

A is associated with the figurative constant HIGH-VALUE.

130

U3979-J-Z2125-6-7600

Environment Division SPECIAL-NAMES

Example 3-7
ALPHABET ALPHATAB IS 193 THRU 1, 255 THRU 197, "A" ALSO "B" ALSO "C".

Positions 1 through 193 of the collating sequence are associated with the characters which
appear at positions 193 to 1 of the native character set.

Positions 194 through 253 of the collating sequence are associated with the characters
which appear at positions 255 to 197 of the native character set.

Position 254 is assigned the characters A, B, C; with this all characters in the native
character set are associated with a position in the collating sequence. The highest-order
position (254) is occupied by the characters A, B, C. Being the character specified last, C
is associated with the figurative constant HIGH-VALUE.

Example 3-8

ALPHABET ALPHATAB IS "O" "1" "2".

The lowest ordinal character in the collating sequence is 0. Hence 0 is associated with the
figurative constant LOW-VALUE.

Example 3-9

ALPHABET ALPHATAB IS "A" ALSO "B" ALSO "'C".

The lowest ordinal position in the collating sequence is occupied by the characters A, B, C.
The character A, which was specified first, is associated with the figurative constant LOW-
VALUE.

U3979-J-2125-6-7600 131

SPECIAL-NAMES Environment Division

Example 3-10

PROGRAM COLLATING SEQUENCE and ALPHABET clauses:

IDENTIFICATION DIVISION.
PROGRAM-ID. ABC.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER.

PROGRAM COLLATING SEQUENCE IS ALPHATAB.
SPECIAL-NAMES.

TERMINAL IS T

ALPHABET ALPHATAB IS "X"' "y" "z".
DATA DIVISION.
WORKING—-STORAGE SECTION.
77 ITEM-1 PIC X(3) VALUE "ABC".
77 ITEM-2 PIC X(3) VALUE "XYZ".
PROCEDURE DIVISION.

MAIN.
IF ITEM-1 > ITEM-2
THEN
DISPLAY "Collating sequence ok" UPON T
END-IF
STOP RUN.

With the definition of the alphabet-name ALPHATAB in the SPECIAL-NAMES paragraph,
the character X was assigned to the first position in the collating sequence, Y to the second
and Z to the third.

All remaining characters of the native character set are assigned a position in the collating
sequence implicitly, since their positions in the collating sequence are higher than those of
the specified characters X, Y, Z and their order in the collating sequence was taken from
the native character set without alteration.

Positions 1 through 231 in the native character set correspond to positions 4 through 234
in the collating sequence.

Positions 235 through 256 in the native character set correspond to positions 235 through
256 in the collating sequence.

Thus, A occupies position 197, B position 198, and C position 199.
Hence, the relation ITEM-1 > ITEM-2 is true.

132 U3979-J-2125-6-7600

Environment Division SPECIAL-NAMES

Example 3-11

PROGRAM COLLATING SEQUENCE and ALPHABET clauses:

IDENTIFICATION DIVISION.
PROGRAM=ID. ALPH.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER.
PROGRAM COLLATING SEQUENCE IS ALPHA.
SPECTAL-NAMES.
TERMINAL IS T
ALPHABET ALPHA 1 THRU 247, 251 THRU 256
"7" ALSO "8" ALSO "9".
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ITEM-1 PIC X(3) VALUE HIGH-VALUE.
77 ITEM-2 PIC X(3) VALUE "789".
PROCEDURE DIVISION.
P1 SECTION.
COMPARISON.
IF ITEM-1 = ITEM-2
THEN
DISPLAY "First relation ok" UPON T
ELSE
DISPLAY "First relation not ok" UPON T
END-IF
IF ITEM-2 = HIGH-VALUE
THEN
DISPLAY "Second relation ok" UPON T
ELSE
DISPLAY "Second relation not ok" UPON T
END-IF.
FINISH-PAR.
STOP RUN.

Characters less than 7 remain as in native collating sequence. Characters greater than 9
are then appended, thereby becoming less than 7.

The characters 7, 8, 9 are set at the highest ordinal position, with 9, being the last character
specified, corresponding to "HIGH-VALUE".

Result:

First relation OK
Second relation OK

U3979-J-2125-6-7600 133

SPECIAL-NAMES Environment Division

SYMBOLIC CHARACTERS clause

Syntax rules

1.

No symbolic name for a character may be used more than once in the SYMBOLIC
CHARACTERS clause.

The relationship between each separate symbolic name and its corresponding integer
results from the sequence within the SYMBOLIC CHARACTERS clause: symbolic-
character-1 is paired with integer-1, symbolic-character-2 with integer-2, and so on.

An integer must be specified for each symbolic name which is specified.

The position specified within the collating sequence by integer-1 must exist in the native
character set. If IN is specified, the position must exist in the character set named by
alphabet-name-2.

The internal representation of symbolic-character is identical to that of the corre-
sponding character in the native character set or in the character set specified with
alphabet-name-2.

symbolic-character is a figurative constant.

Example 3-12

IDENTIFICATION DIVISION.
PROGRAM—-ID. SYMCHAR.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECTAL-NAMES.

TERMINAL IS T
SYMBOLIC CHARACTERS HEX-0A IS 11.

DATA DIVISION.
WORKING—-STORAGE SECTION.
01 PRINT-RECD.

02 CNTRLBYTE PIC X.
02 PRINT—-LINE PIC X(132).

PROCEDURE DIVISION.
MAIN SECTION.

P1.

MOVE HEX-OA TO CNTRLBYTE.
DISPLAY CNTRLBYTE UPON T.
STOP RUN.

The symbolic name HEX-0A is assigned to the eleventh character of the EBCDIC character
set (this character corresponds to the hexadecimal value 0A).

The MOVE statement uses this symbolic name in order to move the hexadecimal value OA
into the control byte.

134

U3979-J-Z2125-6-7600

Environment Division SPECIAL-NAMES

CLASS clause

Syntax rules

1. The CLASS clause enables the user to associate a name with the character set defined
in this clause. This class-name may be referenced in a class condition only. Characters
specified by the values of literal-4, literal-5, ... form the exclusive character set named
by class-name.

The value of each literal specifies:
a) The ordinal number of a character in the native character set, if the literal is numeric.

b) The actual character in the native character set, if the literal is nonnumeric. If the
value of this nonnumeric literal contains more than one character, each of these
characters is included in the character set named by class-name.

2. If THROUGH is specified, the contiguous characters in the native character set
beginning with literal-4 and ending with literal-5 are included in the special character set
identified by class-name. The THROUGH phrase may be used to specify this charac-
terstring in either ascending or descending order.

Example 3-13

SPECIAL-NAMES.
CLASS HEXADECIMAL-CHARACTERS
194 THRU 199, 241 THRU 250.

194 through 199 corresponds to the letters A through F
241 through 250 corresponds to the digits 0 through 9

U3979-J-2125-6-7600 135

SPECIAL-NAMES Environment Division

CURRENCY SIGN clause

Syntax rules

1. When used in the CURRENCY SIGN clause, literal-6 is limited to a single character,
which must not be one of the following:

— digits O through 9
— uppercase letters A, B, C,D, P R, S, V, X, Z, or the space
— lowercase letters a - z
— special characters
* (asterisk)
+ (plus)
- (minus)
, (comma)
(period)
(colon)
; (semicolon)
((left parenthesis)

) (right parenthesis)

(quotation mark)
(slash)

(equal sign)

~

2. Ifthe CURRENCY SIGN clause is not present, only the currency sign $ may be used
as the currency symbol in a PICTURE string.

136 U3979-J-2125-6-7600

Environment Division SPECIAL-NAMES

DECIMAL-POINT IS COMMA clause

Syntax rule

The DECIMAL-POINT IS COMMA clause means that the functions of comma and

period are exchanged in the character-string of the PICTURE clause and in numeric
literals.

General rule

The DECIMAL-POINT IS COMMA clause is used to exchange the functions of the
decimal point and the comma in numeric literals and in picture-strings. When this clause
is used, the decimal point required in a numeric literal or in a picture-string must be
represented by a comma. The decimal point, in turn, must be used for the function
normally performed by the comma.

U3979-J-2125-6-7600 137

Data Division COBOL source program

3.8 Data Division

3.8.1 General description

Two types of data are processed by a COBOL program:
1. data stored on some external medium
2. data generated internally during program execution.

The first type of data is combined into records in files; the second type of data must be
declared by the user as records or subordinate data items.

To ensure maximum independence of data from its specific representation on external
volumes and in data processing systems, the properties or contents of data are described
with respect to a standard data format rather than a system-oriented format. This format is
adapted to the general application of data processing and uses decimal numbers for repre-
senting numbers and the rest of the COBOL character set for representing nonnumeric
characters.

The data description method used allows a distinction to be made between the physical and
system-dependent properties on the one hand, and conceptual characteristics on the other.

Physical and certain system-specific properties of data on an external medium are defined
in a COBOL source program in order that efficient use may be made of special techniques.

1. The term "physical properties of data" refers to
a) the grouping of logical records within the physical boundaries of the external volume
b) the recording mode in which the data is stored on the external volume.

2. The term "system-dependent properties of data" refers to the description under which
a file is identified on some external medium.

Most of these properties are described in chapters 4, 5 and 6 under the different types of
file organization.

The conceptual characteristics of data on an external volume pertain to the logical units of
data, the logical records, and are not associated with any physical or system-specific
properties.

These characteristics are described:
for files: in chapters 4, 5 and 6;

for records: in the Data Division record description entries.

138

U3979-J-Z2125-6-7600

COBOL source program Data Division

A data description in a COBOL program is separate from the declaration of execution
procedures. This permits the programmer a great number of options for modifying a data
description entry without any change to the procedures which are related to that entry.
Therefore, to a certain extent, the procedures of a COBOL program may be seen as data-
independent.

Structure

The Data Division is one of the divisions of a source program. It is divided into five sections
as follows:

1. FILE SECTION,
see chapters 4 to 6, "File organization”

2. WORKING-STORAGE SECTION

3. LINKAGE SECTION,
see chapter 7, "Inter-program communication”

4. REPORT SECTION,
see chapter 8, "Report Writer"

All data which is, or is meant to be, stored on external media must first be described in the
FILE SECTION before it can be processed by a COBOL program.

Information intended for internal use must be described in the WORKING-STORAGE
SECTION:

Information transmitted from one program to another must be described in the LINKAGE
SECTION.

The contents and appearance of all listings created by the Report Writer must be described
in the REPORT SECTION.

The following pages present the general format for the sections of the Data Division and
define the order in which they should be entered in the source program.

U3979-J-2125-6-7600 139

Data Division COBOL source program

General format

Margin indication

i
-

[FILE SECTION.
file—-description—-entry.{record-description—entry}..
sort—file-description—entry.{record—-description—entry}...
| L[report=file-description-entry.

A DIVISION.

WORKING—=STORAGE SECTION.
77—1eve]—description—entry.}

| L[record—description—entry.

__LINKAGE SECTION.
771eve1descriptionentry.}

| L[record—description-entry.

[REPORT SECTION.
|[report-description—-entry. {report—group—description—entry.}...]

140 U3979-J-2125-6-7600

Data Division WORKING-STORAGE SECTION

3.8.2 WORKING-STORAGE SECTION

Function

The WORKING-STORAGE SECTION describes records and structurally noncontiguous
data items (refer to "General format") which are not part of external files.

Margin indication

i
£

{77—1 evel—-description—entry.

ORKING—STORAGE SECTION.

record—-description—entry.

U3979-J-2125-6-7600 141

Data description entry Data Division

Data description entry

General description

Data description entry is the general term for the description of every single data item in
the Data Division; the entry is composed of the level number, followed by a data-name (if
necessary) and several data clauses.

The record description entry is used to define all data description entries which are
associated with a particular record; that is, the record description entry describes all
properties of that record.

Multiply-defined 01- and 77-level record description entries are not treated as errors
provided they are not used in the Procedure Division.

The concept of level is contained in the structure of a logical record. This concept arises
from the need of assigning names to the parts of a record in order to access them. Once a
record has been thus subdivided, the subdivision can be carried further to permit even more
detailed data references.

A'report group” is to the REPORT SECTION what a "record" is to other sections of the Data
Division. The report group description entry describes all data description entries
associated with a particular report group. Within a report group description entry, a
distinction is made between the first and the subsequent data description entries (see
chapter 8, "Report writer").

Those components of a record which are not further subdivided are called elementary
items ; a record thus either consists of a sequence of elementary items or is itself an
elementary item.

An elementary item may be at the most 65535 bytes long.

In order to reference a number of elementary items at one time, these items are arranged
into "groups" or "group items" . These groups may in turn be arranged into sets of two or
more groups. Consequently, an elementary item may belong to more than one group.

The word "data item" is used in those cases where there is no need to distinguish between
elementary and group items.

142 U3979-J-2125-6-7600

Data Division Data description entry

Organization of the entries of the Data Division

Table 3-2 shows the permitted level numbers and their associated Data Division entries.

Level-number Use

01 Record description entries
02-49 Data description entries describing subdivisions of a record
77 Description entries for independent or noncontiguous data items which are not

subdivisions of other items and are not themselves subdivided

66 Elementary items or group items described by the RENAMES clause for the
purpose of regrouping data items (see "RENAMES clause”, page 183)

88 Condition-name entries to specify condition-names associated with particular
values of a conditional variable (see "VALUE clause", page 202)

Table 3-2: Summary of level numbers

Level numbers are used in structuring a logical record so that subdivisions of the record
may be referenced. Once a record has been subdivided, this structuring may be carried
further to permit even more detailed data references.

The level numbers 01 and 77 must be written starting in area A, followed by their associated
data names and appropriate descriptive information. All other level numbers may begin
either at margin A or margin B, followed, from margin B, by associated data names and
appropriate descriptive information.

Consecutive data description entries may have the same format as the first such entry or
may be intended according to their level numbers. While indentation is helpful for documen-
tation purposes, it does not affect the compiler.

For further rules, refer to "Clauses for data description" (page 148).

U3979-J-2125-6-7600 143

Data description entry Data Division

Data description entry formats

Function

A data description entry describes the attributes of a single data item.

Format 1

A

Margin indication

|

level—number {

data—-name
FILLER

CREDEFINES clausel
[BLANK WHEN ZERO clausel]

CEXTERNAL clausel]
[GLOBAL clause]
CJUSTIFIED clausel
LOCCURS clausel
CPICTURE clausel]
[SIGN clausel
[SYNCHRONIZED clause]
LUSAGE clausel

CVALUE clausel

Syntax rules

1.

level-number may be any number from 01 through 49 or 77.

Descriptions of level 77 specify data items that are not hierarchically related and are not
subdivided into smaller parts.

The clauses may be written in any order, except for FILLER and the data-name phrase,
and also the REDEFINES clause. When used, these must be written as shown in the
format. In the following discussion, the clauses appear in alphabetical order. The
EXTERNAL and GLOBAL clauses are described in chapter 7, "Inter-program commu-
nication".

The PICTURE clause must be specified for every elementary item except index data
items and internal floating-point data items.

The OCCURS clause must not be specified in a data description entry that has a level-
number of 01, 66, 77 or 88.

144

U3979-J-Z2125-6-7600

Data Division Data description entry

Example 3-14

for the structure of a record with description of group items

01 RECORD. Logical record
02 REF-NO PIC ... ——— Elementary item
02 CUSTMR-NO PIC ... ——— Elementary item
02 ADDRESS. Group item
03 FIRST-NAME PIC ... — Elementary item Group item
03 LAST-NAME PIC ... —— Elementary item
03 STATE PIC ... ——— Elementary item Group item
03 CITY. Group item
04 ZIP-CODE PIC ... — Elementary item Group item
04 CITY PIC ... —— Elementary item
03 STREET PIC ... ———— Elementary item
02 ART-NO PIC ... ——— Elementary item
02 PRICE. Group item
03 DOMES PIC ... ———— Elementary item } Group item
03 FORGN PIC ... —— Elementary item

The group item contains no information on data class or size of item. Definitions (e.g.
REDEFINES, OCCURS) can, however, follow the group item name. The entry ends with a
period.

Format 2

THROUGH
66 data—name—-1 RENAMES data—-name-2 data—name-3]|.

THRU

For syntax rules and general rules, see the "RENAMES clause" (page 183).

Format 3

VALUE IS THROUGH
88 condition—name Titeral-1 lTiteral-2 ...
THRU

For syntax rules and general rules, see format 2 of the "VALUE clause" (page 204).

U3979-J-2125-6-7600 145

Level number

Data Division

Level number

Function

The level number indicates the position of a data item within the hierarchical structure of a
logical record (see chapter 2, "Glossary"). It also identifies entries for data items within the
WORKING-STORAGE and LINKAGE SECTIONSs, as well as for condition-names and data-
items in the RENAMES clause.

Format

lTevel—-number

Syntax rules

1.

The level number is a special numeric literal consisting of one to two digits. A level
number which is less than 10 may be written either as a single digit or with a leading
zero.

Level numbers 01 and 77 must be entered starting at margin A. All other level numbers
may begin in area A or area B.

Data description entries subordinate to an FD or SD entry must have level numbers with
the values 01 to 49, 66, or 88.

Data description entries subordinate to an RD entry may have the level numbers 01 and
02 only.

Data description entries in the WORKING-STORAGE or LINKAGE SECTION must
have level numbers with the values 01 to 49, 77, 66, or 88.

The first element in every data description entry must be a level number.

General rules

1.

Level number 01 identifies the first entry of each record description or report group
description.

Special level numbers are assigned to certain kinds of entries for which there is no real
concept of hierarchy. These numbers include:

Level number 66 is used to identify renaming entries. It may be used only as described
in the RENAMES clause.

Level number 77 is used to identify structurally noncontiguous data items in the
WORKING-STORAGE and LINKAGE SECTIONSs. It may be used only as described
under "77-level description entry".

146

U3979-J-Z2125-6-7600

Data Division

Level number

Level number 88 refers to entries which define condition-names associated with a
conditional variable. It may be used only as described in format 2 of the VALUE clause.

3. Multiple level-01 entries which are subordinate to a given level indicator (except RD)
represent implicit redefinitions of the same area.

Example 3-15

01 ADDRESS.
02 NAME.
03 FIRST-NAME
03 LAST-NAME
02 STREET ADDRESS.
03 ZIP-CODE.
04 DIGIT-1
04 DIGIT-2
04 DIGIT-3
04 DIGIT-4
04 DIGIT-5
03 CITY
03 STREET
03 HOUSE-NUMBER

The statement

MOVE ADDRESS TO...
will move the entire group.
The statement

MOVE NAME TO...

will move the first and last names etc.

PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(18).
X(20).

O O O O

X(19).
X(16).

XXX.

U3979-J-72125-6-7600

147

BLANK WHEN ZERO clause Data Division

3.8.3 Clauses for data description

BLANK WHEN ZERO clause

Function

The BLANK WHEN ZERO clause specifies that an item is to be set to blanks when its value
is zero.

Format

Syntax rules

1. The BLANK WHEN ZERO clause may be specified only at the elementary level for
numeric-edited or numeric items.

2. The numeric or numeric edited data description entry to which the BLANK WHEN
ZERO clause applies must be described, either implicitly or explicitly, as USAGE IS
DISPLAY.

General rules

1. When the BLANK WHEN ZERO clause is used, the item will contain only blanks if the
value of the item is zero.

2. When the BLANK WHEN ZERO clause is used for numeric data items, the category of
the item is considered to be numeric-edited.

3. If the BLANK WHEN ZERO clause and the PICTURE clause with asterisk (*) (for zero
suppression) are used simultaneously in a data description entry, the zero suppression
editing function overrides the function of the BLANK WHEN ZERO clause (see
"PICTURE clause", page 164).

148 U3979-J-2125-6-7600

Data Division BLANK WHEN ZERO clause

Example 3-16

IDENTIFICATION DIVISION.
PROGRAM—-ID. BWHENZ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECTAL-NAMES.
TERMINAL IS T.
DATA DIVISION.
WORKING—-STORAGE SECTION.
01 PURCHASE-EXAMPLE.
02 PURCHASE PICTURE $Z.99 BLANK WHEN ZERO.
PROCEDURE DIVISION.
MAIN SECTION.
P1.
MOVE ZERO TO PURCHASE.
DISPLAY PURCHASE UPON T.
STOP RUN.

Value of PURCHASE after the MOVE statement:

uuuuu (5 spaces)

U3979-J-2125-6-7600 149

DYNAMIC clause Data Division

DYNAMIC clause

Function

The DYNAMIC clause enables the dynamic provision of memory in a scope defined by the
user.

Format

01 data—name IS DYNAMIC.

(level-number and data-name are not part of the DYNAMIC clause; they are specified here
simply to improve clarity)
Syntax rules

1. The DYNAMIC clause may only be specified in level-01 record description entries in the
WORKING-STORAGE SECTION.

2. If the DYNAMIC clause is specified for a data item, no other clause may be specified
for this data item.
General rule

The data item to which the DYNAMIC cause is applied is set up in main memory at
object time and begins on a 4-Kbyte boundary.

150

U3979-J-2125-6-7600

Data Division Data-name/FILLER clause

Data-name or FILLER clause

Function

A data-name specifies the data being described. The reserved word FILLER specifies an
elementary or group item which is never referenced explicitly and therefore need not be
given a name.

Format

data—name
lTevel—-number
FILLER

(The level number is not part of the data-name or FILLER clause; it is shown here merely
for purposes of clarity.)

Syntax rules

1. data-name must be formed according to the rules for user-defined words.

2. Inthe FILE, WORKING-STORAGE and LINKAGE SECTIONS, the first word in a data
description entry following the level number must be a data-name or the reserved word
FILLER.

3. The reserved word FILLER is used to give a name to an elementary item or group item
which is never referenced in the program, and therefore does not require a data-name.
A FILLER data item cannot be referenced directly.

4. If the data-name or FILLER entry is omitted, FILLER is assumed.

General rule

All referenced 01- and 77-level entries in the WORKING-STORAGE and LINKAGE
SECTIONs must, if they are to be referenced, be given unique data-names, since
neither type of entry can be qualified. A subordinate data-name need not be unique if it
can be qualified in a manner which makes it unique.

U3979-J-2125-6-7600 151

Data-name/FILLER clause Data Division

Example 3-17

01 REC.
02 FIRST-NUMBER PICTURE 9(8).
02 SECOND-NUMBER PICTURE 9(12).
02 FILLER PICTURE X(60).

Here, a record is identified by the data-name RECORD, and its first two fields are identified
by the data-names FIRST-NUMBER and SECOND-NUMBER. Since the third field is not
referenced in the program, its level number is followed by the reserved word FILLER.

152 U3979-J-2125-6-7600

Data Division JUSTIFIED clause

JUSTIFIED clause

Function

The JUSTIFIED clause permits nonnumeric data to be aligned within a nonnumeric
receiving item in an alternative manner to the standard.

Format
{JUSTIFIED}
RIGHT

JUST
Syntax rules
1. JUST is the abbreviation of JUSTIFIED.
2. The JUSTIFIED clause can be specified for elementary items only.
3. The JUSTIFIED clause cannot be specified for numeric or edited data items.
4. The JUSTIFIED clause must not be specified for data items with level number 66 or 88.
5. The JUSTIFIED clause must not be specified for an index data item.
6. The JUSTIFIED clause must not be specified for a receiving item of a STRING

statement (see "STRING statement”, page 341).

General rules

1. If the JUSTIFIED clause is specified for the receiving item, and the sending item is
longer than the receiving item, the data is aligned at the rightmost character position,
and the leftmost characters of the sending item are truncated.

If the JUSTIFIED clause is specified for the receiving item, and the receiving item is
longer than the sending item, the data is aligned at the rightmost character position, and
the leftmost character positions of the receiving item are filled with blanks.

2. When the JUSTIFIED clause is omitted, the standard rules for data alignment within an
elementary item are applicable (see under "Alignment", page 72).

U3979-J-2125-6-7600 153

JUSTIFIED clause Data Division

Example 3-18
Normal alignment (without JUSTIFIED):

Sending item smaller than Receiving item

Alslc (alele] | |

Sending item larger than or equal to Receiving item
lalBlc] [| (AlBfe] | |

Alignment when JUSTIFIED clause is specified:

Sending item smaller than Receiving item
AlB] Ll [ale] |
Sending item larger than Receiving item

Alslc Blc

154 U3979-J-2125-6-7600

Data Division OCCURS clause

OCCURS clause

Function

The OCCURS clause is used to define tables. It specifies how many elements a table is to
have, i.e. how often a data item is to recur. All elements have the same format. The size of
the table may be variable. Furthermore, indices can be supplied.

Format 1 specifies the exact number of occurrences of a data item.

Format 2 specifies a variable number of occurrences of a given data item, ranging
between a maximum and a minimum number of occurrences.

Format 1

OCCURS integer—2 TIMES
ASCENDING
DESCENDING

} KEY IS data-name-1 [data—-name-2]...]|...

[INDEXED BY {index-1}...1

Syntax rules for format 1

1. integer-2 represents the exact number of occurrences.
2. integer-2 must be greater than 0.

3. data-name-1 may either be the subject of the OCCURS clause (in which case data-
name-2,... must not be specified), or it must be subordinate to the group item referenced
by the OCCURS clause.

4. data-name-2,... must be subordinate to the group item referenced by the OCCURS
clause..

5. If data-name-1 does not match the subject of the OCCURS clause, the following rules
apply:
a) data-name-1, data-name-2,... must be subordinate to the group item referenced by
the OCCURS clause.

b) data-name-1, data-name-2,... must not be described with an OCCURS clause.
Furthermore, they must not be subordinate to an entry which contains an OCCURS
clause.

c) data-name-1, data-name-2,... may be qualified with OF or IN (see "Qualification",
page 77).

U3979-J-2125-6-7600 155

OCCURS clause Data Division

10.

11.

12.

13.

data-name-1, data-name-2,... are subject to the following additional rules:
a) Upto 12 key fields may be specified for a given table element.

b) The sum of the lengths of all key fields associated with a table element must not
exceed 256.

c) The key fields may have the data formats DISPLAY, BINARY, COMPUTATIONAL,
or PACKED-DECIMAL.

index-1... must be unique words in the program; otherwise, the indices specified by the
INDEXED BY phrase are not defined in the program. Up to 12 index-names may be
specified.

The OCCURS clause must not be specified in a data description entry that:
a) has a level number of 01, 66, 77 or 88, or

b) describes an item whose size is variable (the size of an item is variable if the data
description entry of any item subordinate to it contains an OCCURS clause with the
DEPENDING phrase).

The ASCENDING/DESCENDING KEY phrase defines whether the elements in the
table are to be arranged in ascending or descending order, according to the values
contained in data-name-1, data-name-2, etc. The data-names must be listed in
descending order of significance.

The user is responsible for seeing that the table elements are sorted properly (this order
is presupposed in the SEARCH ALL statement).

The INDEXED BY phrase indicates that indexing may be used to reference the data-
name which is the subject of the OCCURS clause, or any entry subordinate to that data-
name. The storage allocation and format for indices are automatically defined by the
compiler.

Each index contains a binary value that represents a displacement from the beginning
of the table, corresponding to an occurrence number. The value is calculated as the
occurrence number minus one, multiplied by the length of the entry that is indexed by
the index-name (see "Indexing", page 94).

Except for the OCCURS clause itself, all data description clauses associated with the
item whose description contains that OCCURS clause apply to each occurrence of the
item described.

When a computational elementary item (i.e. an item whose USAGE is BINARY,
COMPUTATIONAL,

) is an element in a table and is defined with the SYNCHRONIZED clause, the
compiler adds any necessary slack bytes for each occurrence of the item (see
"SYNCHRONIZED clause”, page 189).

156

U3979-J-Z2125-6-7600

Data Division OCCURS clause

General rules for format 1

1. The subject of an OCCURS clause must be indexed whenever it is referenced in a
statement other than a SEARCH statement.

If the subject is the name of a group item, then all data-names belonging to the group
must be indexed whenever they are used as operands.

An indexed data-name references one particular table element. When used in a
SEARCH statement, the data-name refers to the entire table.

2. The ASCENDING/DESCENDING phrase in conjunction with the INDEXED BY phrase
is used in the execution of a SEARCH ALL statement (see "SEARCH statement”, page
325).

3. Before an index-name may be used as an index, it must be initialized (using a SET,
SEARCH ALL or PERFORM statement with VARYING phrase).

U3979-J-2125-6-7600 157

OCCURS clause Data Division

Format 2

OCCURS [integer—1 T01 integer—2 TIMES DEPENDING ON data—-name-1

HASCENDING

KEY IS data—-name-2 [data-name-3]...[...
DESCENDING

[INDEXED BY {index-1}...]

Syntax rules for format 2

o o M w DN PRE

10.

11.

12.

integer-1 must be a positive integer or 0.

integer-2 must be greater than 0.

When used together, integer-1 must be less than integer-2.
data-name-1 must be defined as a positive integer numeric data item.
data-name-1 may be qualified (see "Qualification", page 77).

data-name-1 must not be indexed, i.e. it must not be a table element or an item within
a table element.

If data-name-1 appears in the same record as the table whose occurrences it controls,
it must appear before the variable portion of that record. In other words, the data item
defined by data-name-1 must precede the record portion described by the OCCURS

clause with the DEPENDING ON phrase.

The current value of data-name-1 at object time must not exceed that of integer-2,
which specifies the maximum number of occurrences.

When used in the DEPENDING ON phrase of the OCCURS clause for a data area of
variable length, data-name-1 must be supplied with a value before this area is used in
a MOVE operation as a sending or receiving item. The same data-name-1 may be used
by the sending and receiving items (see example 3-19).

data-name-2 may either be the subject of the OCCURS clause (in which case data-
name-3,... must not be specified) or it must be subordinate to the group item referenced
by the OCCURS clause.

data-name-3 must be subordinate to the group item referenced by the OCCURS
clause.

If the OCCURS clause is specified in a data description entry included in a record
description entry containing the EXTERNAL clause, data-name-1, if specified, must
reference a data item possessing the external attribute which is described in the same
Data Division.

158

U3979-J-Z2125-6-7600

Data Division

OCCURS clause

13.

14.

15.

16.

17.

18.

19.

20.

If data-name-2 does not match the subject of the OCCURS clause the following rules
apply:

a) data-name-2, data-name-3,... must be subordinate to the group item referenced by
the OCCURS clause.

b) data-name-2, data-name-3,... must not be described with an OCCURS clause.
Furthermore, they must not be subordinate to an entry which contains an OCCURS
clause other than the one discussed here.

c) data-name-2, data-name-3,... may be qualified with OF or IN (see "Qualification",
page 77).

data-name-2, data-name-3,... are subject to the following rules:
a) Upto 12 key fields may be specified for a given table element.

b) The sum of the lengths of all key fields associated with a table element must not
exceed 256.

c) The key fields may have the following data format:
DISPLAY, BINARY, COMPUTATIONAL,
or PACKED-DECIMAL.

index-1... must be unique words in the program; otherwise, the indices specified by the
INDEXED BY phrase are not defined in the program. Up to 12 index-names may be
specified.

The OCCURS clause must not be specified in a data description entry that:
a) has a level number of 01, 66, 77 or 88, or

b) describes an item whose size is variable (the size of an item is variable if the data
description entry of any item subordinate to it contains an OCCURS clause with the
DEPENDING phrase).

A data description entry containing an OCCURS clause with the DEPENDING ON
phrase may only be followed, within that record description, by data description entries
which are subordinate to it.

The DEPENDING ON phrase specifies that the data item described by the OCCURS
clause has a variable number of occurrences. The number of occurrences is controlled
at object time by the value of data-name-1.

integer-1 and integer-2 specify the minimum and maximum number of occurrences,
respectively. The value of the data item referenced by data-name-1 must range
between integer-1 and integer-2.

If the value of data-name-1 is reduced at object time, the contents of the data items with
occurrence numbers greater than the new value of data-name-1 are undefined.

U3979-J-2125-6-7600 159

OCCURS clause Data Division

21. When reference is made to a group item to which an entry with an OCCURS

22.

23.

24,

25.

26.

27.

DEPENDING ON clause is subordinate, the part of the table area used in the operation
is determined as follows:

a) Ifthe dataitem referenced by data-name-1 is outside the group, only that part of the
table area that is specified by the value of the data item referenced by data-name-
1 at the start of the operation will be used.

b) If the data item referenced by data-name-1 is included in the same group and the
group data item is referenced as a sending item, only that part of the table area that
is specified by the value of the data item referenced by data-name-1 at the start of
the operation will be used in the operation. If the group is a receiving item, the
maximum length of the group will be used.

If, within a record description entry, a data area follows data items with the DEPENDING
ON phrase, but is not subordinate to those items, then its position depends on the
current values of data-name-1 in the preceding DEPENDING ON phrases.

If the value of data-name-1 is changed (i.e. change of table length), the position of these
data areas are shifted accordingly. However, their original contents are not shifted (see
example 3-20).

The ASCENDING/DESCENDING KEY phrase defines whether the elements in the
table are to be arranged in ascending or descending order, according to the values
contained in data-name-2, data-name-3, etc. The data-names must be listed in
descending order of significance.

The user is responsible for seeing that the table elements are sorted properly (this order
is presupposed in the SEARCH ALL statement).

The INDEXED BY phrase indicates that indexing may be used to reference the data-
name which is the subject of the OCCURS clause, or any entry subordinate to that data-
name. The storage allocation and format for indices are automatically defined by the
compiler.

Each index contains a binary value that represents a displacement from the beginning
of the table, corresponding to an occurrence number. The value is calculated as the
occurrence number minus one, multiplied by the length of the entry that is indexed by
the index-name (see "Indexing", page 94).

Except for the OCCURS clause itself, all data description clauses associated with the
item whose description contains that OCCURS clause apply to each occurrence of the
item described.

When a computational elementary item (i.e. an item whose USAGE is BINARY,
COMPUTATIONAL,

) is an element in a table and is defined with the SYNCHRONIZED clause, the
compiler adds any necessary slack bytes for each occurrence of the item (see
"SYNCHRONIZED clause”, page 189).

160

U3979-J-Z2125-6-7600

Data Division OCCURS clause

28. Any entry that contains an OCCURS clause with the DEPENDING ON phrase, or has
a subordinate entry with an OCCURS... DEPENDING ON clause, must not contain a
REDEFINES clause.

29. Records are variable-length when format 2 is specified in a record description entry and
the associated file description entry contains the RECORD clause with VARYING
phrase.

If DEPENDING ON is not specified in the RECORD clause, the contents of the data
item referenced by data-name-1 in the OCCURS clause must be set to the number of
occurrences to be written before the execution of any RELEASE, REWRITE or WRITE
statement.

General rules for format 2

1. The subject of an OCCURS clause must be indexed whenever it is referenced in a
statement other than a SEARCH statement.

If the subject is the name of a group item, then all data-names belonging to the group
must be indexed whenever they are used as operands.

An indexed data-name references one particular table element. When used in a
SEARCH statement, the data-name refers to the entire table.

2. The ASCENDING/DESCENDING phrase in conjunction with the INDEXED BY phrase
is used in the execution of a SEARCH ALL statement (see "SEARCH statement”, page
325).

3. Before an index-name may be used as an index, it must be initialized (using a SET,
SEARCH ALL or PERFORM statement with VARYING phrase).

U3979-J-2125-6-7600 161

OCCURS clause Data Division

Example 3-19

Supplying a value to data-name-1 in OCCURS DEPENDING ON, using a MOVE operation.
Given the following data definition:

WORKING-STORAGE SECTION.
01 ITEM-A.
02 COUNTER-A PIC 9.
02 DATA-A.
03 CHARACTER-A PIC X OCCURS 1 TO 9
DEPENDING ON COUNTER-A.
01 ITEM-B.
02 COUNTER-B PIC 9.
02 DATA-B.
03 CHARACTER-B PIC X OCCURS 1 TO 9
DEPENDING ON COUNTER-B.

The following MOVE operations are to be performed:
Case a) Sending item longer than receiving item

MOVE 6 TO COUNTER-A,
MOVE 3 TO COUNTER-B,
MOVE ITEM-A TO ITEM-B.

Contents following MOVE operation:

A-FELD: 6ABCDEF
B-FELD: 6ABCDEF

MOVE DATA-A TO DATA-B would result in:

A-FELD: 6ABCDEF
B-FELD: 3ABC

Case b) Sending item shorter than receiving item (contents of both items as they were
before case a)

MOVE 3 TO COUNTER-A,
MOVE 6 TO COUNTER-B,
MOVE ITEM-A TO ITEM-B.

Contents following MOVE operation:

A-FELD: 3ABC
B-FELD: 3ABC

MOVE DATA-A TO DATA-B would result in:

A-FELD: 3ABC
B-FELD: 6ABC...

The MOVE operations proceed according to the rules for alphanumeric moves (see "MOVE
statement”, page 294).

162

U3979-J-Z2125-6-7600

Data Division OCCURS clause

Example 3-20

OCCURS DEPENDING ON data—name-1
Given the following data definition:

WORKING-STORAGE SECTION.
01 DATA-RECORD.
02 TABLEL.
03 LEN PIC 9.
03 TAB-ELEM PIC X OCCURS 1 TO 9
DEPENDING ON LEN.

02 ITEM PIC X.

If the current value of LEN is 9, the following starting position of the items results:

DATA-RECORD | TABLE LEN 9
ELEM (1) A

B

H

ELEM (9) |

ITEM J

After MOVE 1 TO LEN
the length of the table and hence the position of ITEM is changed:

DATA-RECORD | TABLE LEN 1
ELEM (1) A
ITEM B

currently unused portion
of DATA-RECORD H

The data item LEN now has the value 1; the data item ITEM has the value B.

U3979-J-2125-6-7600 163

PICTURE clause Data Division

PICTURE clause

Function

The PICTURE clause describes the general characteristics and editing requirements of an
elementary data item.

Format

PICTURE
IS character—-string
PIC

Syntax rules

1. PIC is the abbreviation of PICTURE.

2. A character-string consists of certain allowable combinations of the characters in the
COBOL character set. These combinations determine the category of data to which an
elementary item belongs.

3. There are 18 characters or symbols that may be used in a character-string: A, comma
(), X,9,P, Z,* B, 0, +, minus (-), currency symbol ($), slash (/), S, V, period (.), credit
(CR), and debit (DB). The functions of each character and symbol are described below
under "Summary of characters and symbols in the PICTURE character-string".

4. The characters S, V, ., CR, and DB may appear only once in a PICTURE clause.

5. An integer enclosed in parentheses can follow the symbols A, comma (,), X, 9, P, Z, *,
$, B, slash (/), 0, minus (=), and plus (+), to indicate the number of consecutive occur-
rences of the symbol. The number in parentheses must be at least 1 and must not
exceed 131071.

6. Atleast one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, —, or CS 1
must be present in a character-string.

7. The maximum number of characters allowed in a character-string is 30. This does not
limit the number of characters in the represented area, which may be much more than
30.

8. The allowable combinations of symbols used in a character-string are shown in Table

3-3.

An X at an intersection means that, in a character-string, the "second symbol" specified
in the header line of the associated column may be located at any position to the right
of the "first symbol" located at the start of the row. The leftmost column and uppermost

164

U3979-J-Z2125-6-7600

Data Division

PICTURE clause

row for each symbol represent its use to the left of the decimal point position (). The
rightmost column and lowermost row for each symbol represent its use to the right of

the decimal point position (r).

Second symbol
Non-floating insertion symbols Floating insertion symbols Other symbols
+[+|CR Z|Z |+ |+ A
BlOo| /], —|=|pB|wWzZV | *|*|-|-|wzD|wzD|9|X|S|V|P|P
First I |r I {r|l|r I r I |r
symbol
X[X | X|X]|X Xl X X | X[X|[X] X X [X| X X | X
0 X[X | X|X]|X Xl X X | X[X[X] X X [X|X X | X
Non- X[X | X|X]|X Xl X X | X[X[X] X X [X|X X | X
float.
inser- , XX | X[X|[X] |X] X X|X|[X[X] X | X |X X | X
tion X | X[X[X X| X X X X | X
sym-
oAk +or— | I [X|X|X][X]|X X | X|X X | X [X X | X|X
+or— | r
CR /DB
wzb X[X | X|X]|X Xl X X | X[XX X X| X[X
Zor* I [X[X | X|X][X Xl X X | X X X | X
Zor* r | X | X|X|X Xl X X
Float.
inser- | +or— | 1 [X|X]|X]|X]|X X | X X X | X
tion +or— | r | X|X|X]|X X
sym- 1 Flx x [x [xx] [x| x x x| x x | x
bols wz
wzb rlX|X|[X][x X | X X
9 X[X | X|X]|X Xl X X| X X | X
Other AorX X[X|X X | X
sym- S X X|X|X
bols
\% X[X|X|X Xl X X X X | X X
P I Xl X X | X
P r | X | X|X|X Xl X X X X | X X
Table 3-3 Precedence of symbols used in the PICTURE clause
1) CS is the abbreviation for the currency symbol.
U3979-J-2125-6-7600 165

PICTURE clause Data Division

10.

11.

The number of characters specified in the character-string is used to determine the size
of the item. However, the actual internal storage requirements are determined by the
combination of the PICTURE and USAGE clauses (see "USAGE clause", page 192).

Five data categories may be described with the PICTURE clause:

alphabetic
alphanumeric
numeric
alphanumeric edited
numeric edited

There are two general methods of performing editing in the PICTURE clause: by
insertion, or by suppression and replacement.

Four types of insertion editing are available:

simple insertion
special insertion
fixed insertion

floating insertion

Two types of suppression and replacement editing are available:

zero suppression and replacement with spaces
zero suppression and replacement with asterisks (*).

General rules

1.
2.

The PICTURE clause is permitted only for elementary items.

The PICTURE clause must be specified for all elementary items, except for index data
items and

166

U3979-J-Z2125-6-7600

Data Division

PICTURE clause

Summary of characters and symbols in a PICTURE character-string

The characters and symbols that are permitted in a character-string have the following
meaning:

A

Each A in the character-string represents a character position that may contain only
a letter or a space.

Each B in the character-string represents a character position into which a space
character will be inserted. Each space is counted in the size of the item.

P is the scaling position character. It represents a numeric digit position; however,
storage space is never reserved for it, and it is always treated as if it contained a
zero. P (or a group of Ps) indicates the location of an assumed decimal point (to the
left of the Ps if Ps are the leftmost characters of the character-string, and to the right
of the Ps if the Ps are the rightmost characters of the character-string). The
maximum number of digit positions in the scaling position character for numeric and
numeric-edited items is 18.

The character V (see below) may be specified or omitted. When specified, it must
be inserted in the position of the assumed decimal point, to the left or to the right of
the P or Ps specified. The scaling character P is not counted in the size of the data
item. But the scaling characters are counted in determining the maximum number
of digit positions (18) in numeric-edited or numeric data items. The scaling
character P and the insertion character . (period) must not be specified at the same
time in a character-string.

The character S indicates the presence but not the location or mode of represen-
tation of an operational sign. If used, it must be the leftmost character of the
character-string. The S is not counted in the size of the item unless the entry is
subject to a SIGN clause which specifies the SEPARATE CHARACTER phrase.

The character V indicates the position of an assumed decimal point. Since a
numeric item cannot contain a printed decimal point, an assumed decimal point
simply provides the compiler with information about the scaling alignment of items
involved in computations. Storage is never reserved for the character V; therefore,
V is not counted in the size of the item. If the assumed decimal point is the rightmost
character in the character-string, the character V need not be supplied.

Each X in the character-string represents a character position which may contain
any allowable character from the EBCDIC set.

Each Z in the character-string represents a leading numeric character position. If
such a character position contains a zero, then the zero is replaced by a space.
Each Z is counted in the size of the item.

Each 9 in the character-string represents a character position that contains a
numeral and is counted in the size of the data item.

U3979-J-72125-6-7600

167

PICTURE clause

Data Division

CR
DB

Each zero in the character-string represents a character position into which the
numeral zero will be inserted. Each zero is counted in the size of the item.

Each slash (/) in the character-string represents a character position into which a
slash will be inserted. Each slash is counted in the size of the item.

Each comma (,) in the character-string represents a character position into which a
comma is inserted. Each comma is counted in the size of the data item.

A period (.) in the character-string is an editing symbol and represents the decimal
point used for alignment of the data item. Additionally, it represents a character
position into which a period is inserted. The period is counted in the size of the data
item.

Note

In a given program, the functions of the period and the comma are exchanged
if the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph of the Environment Division. The rules for the period then apply to
the comma, and vice versa, whenever they appear in a PICTURE character-
string.

These symbols are used as editing sign control symbols. When used, each repre-
sents the character position into which the editing sign control will be placed. These
symbols are mutually exclusive in any one character-string, and each character
used in the symbol is counted in determining the size of the data item.

Editing sign control symbols produce different results for positive and negative data
items, depending on the value (see "Rules for fixed insertion editing”, page 174).

This symbol is a check protection symbol. Each asterisk (*) in the character-string
represents a leading numeric character position into which an asterisk will be
placed if that position contains a zero. Each asterisk (*) is counted in the size of the
item.

If the asterisk is used together with the BLANK WHEN ZERO clause in a data
description entry, the print editing routine cancels the effect of the BLANK WHEN
ZERO clause since it suppresses any zeros.

The currency symbol ($) in the character-string represents a character position into
which a currency sign is to be placed. The currency symbol in a character-string is
represented either by the symbol $ or by the single character specified in the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the Environment
Division. The currency symbol is counted in the size of the item.

168

U3979-J-Z2125-6-7600

Data Division PICTURE clause

Alphabetic data items

Syntax rules

1. Only the symbol A is allowed in the character-string of an alphabetic item.

2. Any combination of the 52 letters of the alphabet and the space may be specified as the
contents of an alphabetic data item.

Example 3-21
Picture Value
PICTURE AAA NEW

Alphanumeric data items

Syntax rules

1. The character-string for an alphanumeric data item is restricted to certain combinations
of the following symbols: A, X, 9.

An alphanumeric item is treated as if its character-string contained all Xs, with each X
representing one character position.

2. A character-string that contains all As or 9s does not define an alphanumeric item.

Example 3-22

The alphanumeric value AB1234 could be represented by any of the following character-
strings:

PICTURE XXXXXX
PICTURE AAXXXX
PICTURE AA9999
PICTURE A(2)X(4)

U3979-J-2125-6-7600 169

PICTURE clause Data Division

Numeric data items

There are two types of numeric data items: fixed-point items and floating-point items.

Fixed-point items

There are three types of fixed-point items: external decimal, binary, and internal decimal
(see "USAGE clause", page 192).

Syntax rules

1. The character-string for a fixed-point data item may contain any permissible combi-
nation of the following symbols: 9, V, P, S.

2. It can contain from one up to and including 18 digit positions.

3. If the symbol S has not been specified, a data item may contain a combination of the
digits 0 through 9.

4. If the symbol S has been specified, the data item may contain, in addition to the above
digits, a "+", "—" or other representation of an arithmetic sign (see "SIGN clause", page
185).

Example 3-23

Valid combinations for fixed-point items:

PICTURE 9999
PICTURE S99
PICTURE S99V9
PICTURE PPP999
PICTURE S999PPP

Example 3-24

Let 8735 be the contents of a data item.
For PICTURE P(4)9(4), the arithmetic value of this item is .00008735.
For PICTURE 9(4)P(2), the arithmetic value of this item is 873500.

The arithmetic value is used for all operations except DISPLAY.

170

U3979-J-Z2125-6-7600

Data Division PICTURE clause

Floating-point data items

There are two types of floating-point data items: internal and external floating-point items
(see "USAGE clause", page 192).

Syntax rules

1. The character-string for an external floating-point item has the following format:

+ +
{ }manti ssaE{ }exponent

where the following rules are to be observed for the elements of the character-string:

A positive or negative sign must be written immediately in front of the mantissa and the
exponent in the character-string.

+ indicates that a plus sign is to represent positive values and a minus sign is to
represent negative values.

- indicates that a blank is to represent positive values and a minus sign is to re-
present negative values.

mantissa

The mantissa is the decimal part of the number after the decimal point; it consists of 1
to 18 '9’s (each 9 representing a numeric character) and a leading, embedded, or
trailing decimal point (.) or V. The decimal point indicates an actual (printed) decimal
point, and the V indicates an assumed decimal point; these two characters are mutually
exclusive.

E

immediately follows the mantissa and indicates that an exponent follows.

exponent

The exponent immediately follows the second sign and consists of two consecutive 9s.

2. The PICTURE clause must not be specified for an internal floating-point item.

Example 3-25 External floating-point item:

PICTURE -9V99E-99
PICTURE +9999.99E+99
PICTURE -9(16)VE+99
PICTURE +9(16).E-99

U3979-J-2125-6-7600 171

PICTURE clause Data Division

Alphanumeric edited data items

Syntax rules

1. The character-string for an alphanumeric edited data item is restricted to certain combi-
nations of the following symbols: A, X, 9, 0, B, / (slash).

2. An alphanumeric edited character-string must contain at least one A or X, and at least
one B or 0 or / (slash).

3. Characters from the computer’s character set are allowed provided that the contents
are represented in standard data format.

4. Only one type of editing is performed on alphanumeric edited data items: simple
insertion editing using the characters zero (0), slash (/) and space (B) (see rules for
simple insertion editing, page 173).

Example 3-26
Picture Value
PICTURE BAAAB NEWL

Numeric edited data items

Syntax rules

1. The character-string for a numeric edited data item is restricted to certain combinations
of the following symbols:
B,/ (slash), P V, Z, 0, 9, , (comma), . (period), *, +, -, CR, DB, $.

2. The character-string must contain at least one of the symbols:
0, B,/ (slash), Z, *, +, , (comma), . (period), —, CR, DB or $.

The maximum number of digit positions in the character-string is 18.
4. The maximum length of a numeric edited data item is 127 characters.

Allowable combinations of these characters are governed by the editing rules and the
symbol precedence rules (see following syntax rules and Table 3-3, page 166).

172 U3979-J-2125-6-7600

Data Division

PICTURE clause

Simple insertion editing

Syntax rules

1.

In simple insertion editing, the following insertion characters are used: , (comma), B
(space), 0 (zero), and / (slash).

2. Theinsertion characters are counted in the size of the item, and represent the positions
within the item into which they will be inserted.

Example 3-27

Category of data PICTURE string Data being moved Edited result
receiving item

Numeric edited 999,999 54321 054,321
99B99B99 654321 65.43.21
99B99B0O0O 654321 43.21.00
99/99/99 654321 65/43/21

Alphanumeric XXBXXX 123AA 12.3AA

edited 000X (5) A5CD3 000A5CD3

XX/ XX CDO5 CD/05

Special insertion editing

Syntax rules

1.

Special insertion editing is performed by using the period (.) as an insertion character.

In addition to being used as the insertion character, the period is also used as the
decimal point for alignment purposes.

The assumed decimal point (represented by the character V) and the actual (printed)
decimal point cannot be used in the same character-string.

Special insertion editing may be used on numeric edited data items only.

As a result of special insertion editing, the insertion character (decimal point) appears
in the item in the same position as shown in the character-string; thus, the insertion
character is the actual decimal point. The actual decimal point is counted in the size of
the item.

U3979-J-2125-6-7600 173

PICTURE clause Data Division

Example 3-28

PICTURE string of receiving Data being moved " Edited result
item

999.99 123&4 123.40
999.99 12&34 012.34
999.99 1&234 001.23
999.99 &1234 000.12

*) & designates the position of the assumed decimal point, which does not appear in the MOVE operation.

Fixed insertion editing

Syntax rules

1. The editing symbols used for fixed insertion editing are: + (plus), — (minus), CR (credit),
DB (debit), and $ (currency symbol).

2. Only one currency symbol and only one of the editing sign control symbols (+, —, CR,
DB) may be used in a given character-string.

3. The currency symbol may be preceded only by a plus or a minus symbol; otherwise, it
must be the leftmost character.

4. The symbols CR or DB, when specified, must be either the leftmost or the rightmost
character.

5. The plus or minus symbol, when specified, must be either the leftmost or the rightmost
character.

6. Fixed insertion editing results in the editing character occupying the same character
position in the edited item as in the character-string.

7. The symbols CR or DB, when used, represent two character positions which are
counted in the size of the data item. All fixed insertion editing characters are counted in
the size of the data item.

8. Editing sign control symbols produce the results listed in Table 3-4, depending on the

value of the data item.

174

U3979-J-Z2125-6-7600

Data Division PICTURE clause

Editing symbol in PICTURE Data item positive or zero Data item negative
character-string

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Table 3-4: Editing sign control symbols and their results

Example 3-29

PICTURE string of receiving item | Data being moved K Edited result
+999.99 +123&45 +123.45
+999.99 -123&45 -123.45
-999.99 +123&45 123.45
-999.99 -123&45 -123.45
$999.99CR +123&45 $123.45
$999.99CR -123&45 $123.45CR
$999.99DB +123&45 $123.45
$999.99DB -123&45 $123.45DB

*) & designates the position of the assumed decimal point, which does not appear in the MOVE operation.

Floating insertion editing

Syntax rules

1. Infloating insertion editing, the currency symbol ($) and the editing sign control symbols
(+ and -) are used as insertion characters. These characters are mutually exclusive as
floating insertion characters in the same character-string.

Floating insertion editing is indicated in a character-string by the use of a sequence of
at least two of the allowable insertion characters to represent the leftmost numeric
character positions into which the insertion characters can be floated. Any of the simple
insertion characters (, B 0 /) embedded in the sequence of floating insertion characters
or to the immediate right of this sequence are part of this floating string.

2. Only two types of floating insertion editing may be specified in a character-string.:

— Some or all of the leading numeric character positions to the left of the decimal point
may be represented by insertion characters.

— All of the numeric character positions of the character-string may be represented by
insertion characters.

U3979-J-2125-6-7600 175

PICTURE clause

Data Division

3. The result of floating insertion editing depends on the representation in the character-

string:

— Ifthe insertion characters are specified only to the left of the decimal point, a single
insertion character is placed into the character position which immediately prece-
des the decimal point, or the first non-zero digit to the left of the character-string,
and which is located inside the data represented by the insertion symbol string. The
character positions preceding the insertion character are replaced with spaces.

— If each of the numeric character positions in the character-string is represented by
the insertion character, the result depends on the value of the data item concerned.
If the value is zero, the entire data will contain spaces. If the value of the item is not
zero, the result is the same as that occurring when the insertion characters are spe-
cified only to the left of the decimal point.

Every floating insertion character is counted in the size of the data item.

To avoid truncation of character positions, the programmer must form the character-

string for the receiving item according to the following rule:

— The minimum size of the character-string must equal the number of nonfloating in-
sertion characters which are used for editing in the receiving item, plus one floating

insertion character.

Example 3-30

Receiving area PICTURE

Data being moved”

Edited result

$$$%$.99
$$$%$.99
$$$%$.99
$,$$$.99
$,$$%$.99
$,$$%$.99
+,+++.99
+,+++.++
$,$$$.99
-—.99
$$.$$$.99
+,+++,999.99

+,4+++

123&12
3&12
&12
123&12
3&12
&12
123&12
123&12
-123&12
-123&12
1234&56
-123456&78
000&00

$123.12
$3.12

$.12
$123.12
$3.12

$.12
+123.12
+123.12
$123.12
$123.12
$1,234.56
-123,456.78
(Leerzeichen)

") & designates the position of the assumed decimal point which does not appear in the MOVE operation.

176

U3979-J-Z2125-6-7600

Data Division

PICTURE clause

Zero suppression and replacement editing

Syntax rules

1.

Suppression of leading zeroes in numeric character positions is indicated by the use of
the alphabetic character Z or the character * (asterisk) as suppression symbols in a
PICTURE character-string. These characters are mutually exclusive in the same
character-string. If Z is used, the replacement character is a space. If * is used, the
replacement character is a space. If * is used, the replacement character is * (asterisk).

Zero suppression and replacement editing in a character-string is achieved by using a
string of one or more of the permissible symbols (* or Z) to represent leading numeric
character positions which are to be filled with the replacement characters when the
associated character positions in the data contain zeros. Any of the simple insertion
characters (, B 0 /) embedded in the string of symbols or to the immediate right of the
string are part of the string; each of these simple insertion characters works like an * or
a Z, until a non-zero character is encountered. The simple insertion characters (, B0/
) and fixed insertion characters ($ + —) to the left of the suppression string are not
subject to the rules for zero suppression and replacement.

Two types of zero suppression editing may be used in a character-string.

— Some or all of the leading numeric character positions to the left of the decimal point
may be represented by suppression symbols.

— All of the numeric character positions in the character-string may be represented by
suppression symbols.

The result of zero suppression and replacement editing depends on the representation
in the character-string:

— If the suppression symbols appear only to the left of the decimal point, any leading
zero in the data which corresponds to a suppression symbol in the string is replaced
by the replacement character. Suppression terminates at the first non-zero digit in
the data represented by the suppression symbol string or at the decimal point.

— If all numeric character positions in the character-string are represented by sup-
pression symbols and the value of the data item is not zero, the result is the same
as if the suppression characters were only to the left of the decimal point. If the va-
lue is zero and the suppression symbol is Z, the entire data item is replaced by spa-
ces. If the value is zero and the suppression symbol is *, all characters in the data
item, except for the decimal point, are replaced by asterisks; in this case, zero sup-
pression editing overrides the BLANK WHEN ZERO clause, if the latter is specified.

Each suppression character is included in the size of the data item.

U3979-J-2125-6-7600 177

PICTURE clause

Data Division

Example 3-31

Receiving area PICTURE

Data being moved”

Editing result

27277.77

*kkk kk

2777.99
k% QQ
27272.77

Gk x4k x*BDB

$BB**** ** Q9BBCR

0000&00
0000&00
0000&00
0000&00
+135&00
-2135&00
-2135&00

(spaces)
****_**
.00
****_OO
135.00
$%2,135.00.DB
$..**21,35.00..CR

") & designates the position of the assumed decimal point which does not appear in the MOVE operation.

178

U3979-J-Z2125-6-7600

Data Division REDEFINES clause

REDEFINES clause

Function

The REDEFINES clause allows the programmer to define different data description entries
for the same area of computer storage.

Format

data—name-1
lTevel—-number REDEFINES data—-name-2

FILLER

(The level number, data-name-1 and FILLER are not part of the REDEFINES clause, and
are shown here only for clarity.)

Syntax rules

1. The REDEFINES clause, when used, must immediately follow data-name-1.

2. The level numbers of data-name-1 and data-name-2 must be identical, but must not be
66 or 88.

3. The length of the data item of data-name-1 must be less than or equal to the length of
the data item of data-name-2, if the associated level-number is not equal to 01. There
is no such restriction in effect at level 01.

4. Data-name-2 may be but not indexed or subscripted.

The data description entry for data-name-2 must not contain an OCCURS clause;
however, data-name-2 may be subordinate to a data item which contains an OCCURS
clause. In this case, the reference to data-name-2 in the REDEFINES clause must not
be indexed or subscripted. A data item that is subordinate to data-name-2 may contain
an OCCURS clause without the DEPENDING ON phrase (see "OCCURS clause").

6. Data-name-1 or any data item subordinate to data-name-1 may contain an OCCURS
clause without the DEPENDING ON phrase. If data-name-1 contains an OCCURS
clause, the size of data-name-1 is calculated by multiplying the length of one table
element by the number of occurrences of the table element.

7. The REDEFINES clause must not appear in 01-level entries in the FILE SECTION
(implicit redefinition is provided there automatically at 01-level).

8. Multiple redefinitions of the storage area are permitted but must all refer to the data-
name supplied in the original definition.

U3979-J-2125-6-7600 179

REDEFINES clause Data Division

9.

Except for condition-name entries, the entries giving a new description of a storage area
must not contain a VALUE clause.

10. No entries having level numbers numerically lower than that of data-name-1 and data-

name-2 may occur between the descriptions of data-name-2 and data-name-1.

11. The REDEFINES clause may be specified for an item subordinate to a redefined item,

or for a data item which is subordinate to an item containing a REDEFINES clause.

General rules

1.

Data-name-1 is the name of the data area associated with the redefinition. Data-name-
2 is the name of the original definition of the data area to be redefined.

Redefinition starts at data-name-2 and ends when a level number less than or equal to
that of data-name-2 is encountered.

When an area is redefined, all descriptions of that area remain in effect. For example,
if A and B are two separate data items sharing the same storage area, the procedure
statements MOVE ALPHA TO A or MOVE BETA TO B could be executed at any point
in the program. In the first case, ALPHA would be moved to A and would take the form
specified by the description of A. In the second case, BETA would be moved to the
same physical area and would take the form specified by the description of B. If both
MOVE statements were executed successively in the order specified, the value BETA
would overlay the value ALPHA; however, redefinition of an area does not erase any
data and does not supersede a previous description.

Moving a data item from A to B when B is a redefinition of A amounts to moving an item
to itself, and the result of such a move is unpredictable. The same is true of the opposite
type of move; that is, moving A to B when A redefines B.

The use of data items defined by the PICTURE and USAGE clauses within an area can
be redefined. Altering the use of an area by the REDEFINES clause does not, however,
change any existing data.

When the SYNCHRONIZED clause is specified in a data entry that is redefining a
previous data entry, the user should ensure that the area being redefined begins on the
proper boundary: halfword, fullword, or doubleword.

180

U3979-J-Z2125-6-7600

Data Division REDEFINES clause

Example 3-32

02 ALPHA.

03 A-1 PICTURE X(3).

03 A-2 PICTURE X(2).
02 BETA REDEFINES ALPHA PICTURE 9(5).
02 GAMMA.

BETA is data-name-1; ALPHA is data-name-2. BETA redefines the area assigned to
ALPHA (that is, the area occupied by A-1 and A-2). Redefinition starts at BETA and ends
at the next level number 02 (the number preceding GAMMA).

Example 3-33

(Multiple redefinitions)

02 ALPHA PICTURE 9(3).
02 BETA REDEFINES ALPHA PICTURE X(3).
02 GAMMA REDEFINES ALPHA PICTURE A(3).

Example 3-34

01 SAMPLE-AREA-1.
02 FIRST-DEFINITION PICTURE 99 VALUE 12.
02 SECOND-DEFINITION REDEFINES FIRST-DEFINITION
USAGE COMPUTATIONAL PICTURE S9(4).

In this example, FIRST-DEFINITION is a 2-byte unsigned external decimal number with the
value 12. This means that the contents of the two bytes in hexadecimal is X’F1F2'.
SECOND-DEFINITION is also a number, and occupies the same two bytes; but it does not
have the value 12. The data in these two bytes (X'F1F2’) is unchanged by the redefinition;
and, since SECOND-DEFINITION is a signed, binary number, this data has the value
-3598.

Example 3-35

01 SAMPLE-AREA-2.
02 FIRST-DEFINITION.

03 ALPHA PICTURE X(3).
03 BETA PICTURE X(5).
03 GAMMA REDEFINES BETA PICTURE 9(5).
03 FILLER PICTURE X(10).

02 SECOND-DEFINITION REDEFINES FIRST-DEFINITION PICTURE X(18).

In this example, one of the items subordinate to FIRST-DEFINITION is redefined: GAMMA
REDEFINES BETA. This is permitted, and is not blocked by the fact that FIRST-
DEFINITION is itself later redefined by SECOND-DEFINITION.

U3979-J-2125-6-7600 181

REDEFINES clause Data Division

Example 3-36

01 SAMPLE-AREA-3.
02 FIRST-DEFINITION PICTURE S9(7).
02 SECOND-DEFINITION REDEFINES FIRST-DEFINITION.
03 A-1 PICTURE A.
03 N-1 REDEFINES A-1 PICTURE 9.
03 FILLER PICTURE X(6).

In this example, one of the data items subordinate to SECOND-DEFINITION is redefined,;
N-1 REDEFINES A-1. This is permitted, and is not blocked by the fact that SECOND-
DEFINITION itself is a redefinition.

182 U3979-J-2125-6-7600

Data Division RENAMES clause

RENAMES clause

Function

The RENAMES clause permits alternative, possibly overlapping, groupings of elementary
data items. This clause assigns a new name to an item or items established by a record
description. Unlike REDEFINES, the RENAMES clause does not redefine existing data
descriptions but merely allows data to be accessed and/or grouped under alternative
names while maintaining the previously defined data descriptions.

Format

THRU

66 data—name—1 RENAMES data—name-2
THROUGH

} data—name-3 }

(The level number 66 and data-name-1 are not part of the RENAMES clause, and are
shown only to improve clarity.)

Syntax rules

1. All entries of the RENAMES clause which refer to data items within a given logical
record must immediately follow the last data description entry of the associated record
description entry.

2. data-name-2 must precede data-name-3 in the record description. After each redefi-
nition, the beginning point of the area described by data-name-3 must logically follow
the beginning point of the area defined by data-name-2.

3. data-name-2 and data-name-3 must be the names of elementary items or groups of
elementary data items in the associated logical record, and cannot be the same data-
name.

4. The beginning of the area defined by data-name-3 must not lie to the left of the
beginning of the area defined by data-name-2. The end of the area defined by data-
name-3 must lie to the right of the end of the area defined by data-name-2. Hence,
data-name-3 cannot be subordinate to data-name-2.

5. None of the data items within the area of data-name-2 and data-name-3, when
specified, may have a variable size as described in the OCCURS clause (see
"OCCURS clause" with DEPENDING ON phrase).

6. data-name-1 cannot be used as a qualifier and can be qualified only by the names of
the associated 01-level, SD, or FD entries.

7. data-name-2 and data-name-3 may be qualified.

U3979-J-2125-6-7600 183

RENAMES clause Data Division

10.

11.

12.

Neither data-name-2 nor data-name-3 may contain an OCCURS clause in its data
description entry, nor may it be subordinate to a data item which contains an OCCURS
clause in its data description entry.

The RENAMES clause may neither refer to another 66-level entry nor to a 77-level, 88-
level, or 01-level entry.

data-name-1 specifies an alternative definition for one or more data items.
data-name-2 or data-name-3 specifies the data item(s) to be renamed.

When data-name-3 is specified, data-name-1 is a group item that includes all

elementary items:

— starting with data-name-2 (if this is an elementary data item); or starting with the first
elementary item within data-name-2 (if this is a group item).

— concluding with data-name-3 (if this is an elementary data item); or concluding with
the last elementary item within data-name-3 (if this is a group item).

If data-name-3 is not specified, then data-name-2 may be either a group item or an
elementary item. If data-name-2 is a group item, data-name-1 is treated as a group
item; if data-name-2 is an elementary item, data-name-1 is treated as an elementary
data item.

General rule

More than one RENAMES clause may be written for the same logical record.

Example 3-37

The following example shows how a RENAMES clause may be used in an actual program:

01

INPUT-RECORD.
02 ARTICLE-I.

03 ARTICLE-NO PIC 99.

03 PRICE PIC 9999.
02 ARTICLE-2.

03 ARTICLE-NO PIC 99.

03 PRICE PIC 9999.
02 ARTICLE-3.

03 ARTICLE-NO PIC 99.

03 PRICE PIC 9999.

66 ART-ONE RENAMES ARTICLE-1.
66 ART-TWO RENAMES ARTICLE-1 THRU ARTICLE-2.
66 ART-THREE RENAMES ARTICLE-1 THRU ARTICLE-3.

In this case, each reference to ART-ONE would access group item ARTICLE-1; each
reference to ART-TWO, the group items ARTICLE-1 and ARTICLE-2; each reference to
ART-THREE, the group items ARTICLE-1, ARTICLE-2 and ARTICLE-3.

184

U3979-J-Z2125-6-7600

Data Division

SIGN clause

SIGN clause

Function

The SIGN clause specifies the position and the mode of representation of the operational
sign for numeric data items.

Format

[SIGN IS] {

LEADING
[SEPARATE CHARACTER]
TRAILING

Syntax rules

1.

The SIGN clause may be specified only for a numeric data description entry whose
PICTURE contains the character S, or a group item containing at least one such
numeric data description entry.

The numeric data description entries to which the SIGN clause applies must be
described, explicitly or implicitly, as USAGE IS DISPLAY.

If a SIGN clause is specified for either a group item or an elementary numeric item
subordinate to a group item for which a SIGN clause is also specified, the SIGN clause
of the subordinate group or numeric data item takes precedence for that item.

If the CODE-SET clause is specified, any signed numeric data description entries must
be described with the SIGN IS SEPARATE clause.

The SIGN clause specifies the position and the mode of representation of the opera-
tional sign. If entered for a group item, it applies to each numeric data description entry
subordinate to that group. The SIGN clause applies only to numeric data description
entries whose PICTURE contains the character S; the S indicates the presence, but not
the mode of representation, of the operational sign.

A numeric data description entry whose PICTURE contains the character S, but to
which no SIGN clause applies, has an operational sign, but neither the representation
nor, necessarily, the position of the operational sign is specified by the character S. (For
representation of the operational sign see "USAGE clause", page 192.)

U3979-J-2125-6-7600 185

SIGN clause Data Division

General rules

1. If the SEPARATE CHARACTER phrase is not present, then:

a) The letter Sin a PICTURE character-string is not counted in determining the size of
the item.

b) The operational sign will be presumed to be associated with the leading (or, respec-
tively, trailing) digit position of the elementary numeric data item. The TRAILING
phrase is taken as this compiler’s default value.

c) Forthe compiler, the operational sign is the half-byte C for positive and the half-byte
D for negative.

2. If the SEPARATE CHARACTER phrase is present, then:

a) The letter Sin a PICTURE character-string is counted in determining the size of the
item.

b) The operational sign will be presumed to be the leading (or, respectively, trailing)
character position of the elementary numeric data item; this character position is not
a digit position.

c) The operational signs for positive and negative are the standard data format
characters + and —, respectively.

3. Every numeric data description entry whose PICTURE character-string contains the
character S is a signed numeric data description entry. If a SIGN clause applies to such
an entry and conversion is necessary for purposes of computation or comparisons,
conversion takes place automatically.

186 U3979-J-2125-6-7600

Data Division SIGN clause

Example 3-38

IDENTIFICATION DIVISION.
PROGRAM-ID. SIGNEXPL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
TERMINAL IS T.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 FIELD1 PIC S999 SIGN IS LEADING SEPARATE.
01 GROUP1 USAGE IS DISPLAY.
02 FIELDZ PIC S9(5) SIGN IS TRAILING SEPARATE.
02 FIELD3 PIC X(15).
02 FIELD4 PIC S99 SIGN IS LEADING.
01 FIELD5 PIC S9(9) SIGN IS TRAILING.

PROCEDURE DIVISION.

MAIN SECTION.

P1.
MOVE ZEROES TO FIELDI1,FIELD2,FIELD3,FIELD4,FIELDS.
MOVE 3 TO FIELD4.
MOVE —2 TO FIELD5.
MOVE FIELD4 TO FIELDZ.
MOVE FIELD2 TO FIELD3.
MOVE FIELDS TO FIELD4.
DISPLAY "Fieldl " FIELD1 UPON
DISPLAY "Field2 " FIELDZ UPON
DISPLAY "Field3 " FIELD3 UPON
DISPLAY "Field4 FIELD4 UPON
DISPLAY "Fieldb5 " FIELD5 UPON
STOP RUN.

—

The contents of all fields after each MOVE statement are shown below.
After the first MOVE statement: :

FIELD1 decimal | +| 0] o0

hexadecimal | 4E | FO | FO | FO |

FIELD2 decimal | 0 |0 |o|o| o]+]|

hexadecimal| Fo | FO | Fo | Fo | Fo | 4E |

FIELD3 decimal | 0| o |o|o|o|o|o|o|o|o]o|o]|o|o]o]

hexadecimal|FO|FO|FO|FO|F0|FO|FO|FO|FO|FO|FO|FO|FO|FO|FO|

U3979-J-2125-6-7600 187

SIGN clause Data Division

FIELD4 decimal ot| o
hexadecimal | CO | FO
FIELDS decimal | 0 |o] oo |o|o] oo o]

hexadecimal| FO | FO | FO | FO | FO | FO | FO | FO | co|

After the second MOVE statement:

FIELD4 decimal + | 3
hexadecimal | CO | F3

After the third MOVE statement:

FIELDS decimal | 0 | o] oo |o]o]o|o]|2]

hexadecimal| FO | FO | FO | FO | FO | FO | FO | FO | D2|

After the fourth MOVE statement:

FIELD2 decimal | 0 |0 |o|o|3]+]

hexadecimal| Fo | FO | FO | Fo | F3 | 4E |

After the fifth MOVE statement:

FELD3 decimal | o |ofolol|s| | | | | | | | | | |

hexadecimal|FO|FO|F0|FO|F3|40|40|40|40|40|40|40|40|40|40|

After the sixth MOVE statement:

FIELD4 decimal 0| 2

hexadecimal | DO | F2

188 U3979-J-2125-6-7600

Data Division SYNCHRONIZED clause

SYNCHRONIZED clause

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on a natural
boundary of the computer memory to ensure efficiency during the performance of arithmetic
operations on the item.

As an extension to standard COBOL, the compiler described in this publication allows the
SYNCHRONIZED clause to be specified at group level; this has the effect of aligning the
elementary items subordinate to the group.

Format

SYNCHRONIZED LEFT
RIGHT

SYNC

Syntax rules

1. SYNC is the abbreviation of SYNCHRONIZED.
2. LEFT and RIGHT are treated as comments.

3. When items are boundary-aligned because of the presence of a SYNCHRONIZED
clause, it is sometimes necessary for the compiler to insert slack bytes. Slack bytes are
unused character positions inserted into a record immediately ahead of an item
requiring boundary alignment. Such slack bytes are included in the length of the group
item containing the aligned item.

4. The actual boundary at which a synchronized item is placed depends on the phrase
specified in the USAGE clause for the item.

If the SYNCHRONIZED clause is specified, the following actions are carried out:
For a data item with USAGE COMPUTATIONAL, or BINARY:

a) For the area S9 through S9(4) in the PICTURE clause, the data item is aligned on
a halfword boundary (multiple of 2).

b) For the area S9(5) through S9(18) in the PICTURE clause, the data item is aligned
on a fullword boundary (multiple of 4).

For a data item with USAGE IS COMPUTATIONAL-1, the item is aligned on a fullword
boundary.

For a data item with USAGE IS COMPUTATIONAL-2, the item is aligned on a
doubleword boundary (multiple of 8).

U3979-J-2125-6-7600 189

SYNCHRONIZED clause Data Division

For an index data item, the item is aligned on a fullword boundary.

For a data item with USAGE DISPLAY, or or PACKED-DECIMAL,
the SYNCHRONIZED clause is treated as a comment, as no alignment is necessary in
these cases.

If the SYNCHRONIZED clause is omitted for binary data items or internal floating-point
items, no slack bytes are generated. However, if arithmetic operations are performed
on these items, the compiler will generate the statements necessary to move these
items to auxiliary items which are properly aligned for the arithmetic operation.

If the SYNCHRONIZED clause is specified for a group item, then all elementary items
with USAGE COMPUTATIONAL, , BINARY,

or INDEX will be aligned as if the
SYNCHRONIZED clause had been specified in the data description entries of these
items.

General rules

1.

Standard COBOL permits specification of the SYNCHRONIZED clause for elementary
data items only.

When the SYNCHRONIZED clause is specified within a table (described by the
OCCURS clause), each table element will be aligned. (This process is described under
"Alignment by insertion of slack bytes".)

When specifying the SYNCHRONIZED clause in conjunction with a REDEFINES
clause, the programmer must ensure that the element being redefined is aligned (see
example 3-39).

The SYNCHRONIZED clause does not alter the length of an elementary data item.
Each unused internal memory location (slack bytes) is included in the size of the group
to which the elementary item is subordinate, and must be allowed for an internal
memory allocation if the group item was the object of a REDEFINES clause (see
example 3-40).

All record descriptions (01-level entries) in all sections of the Data Division begin at
doubleword boundaries.

When blocking records that contain elementary items with the SYNCHRONIZED clause
specified, the user must add the necessary slack bytes to ensure proper alignment after
the first record within the block. (This process is described under "Alignment by
insertion of slack bytes").

190

U3979-J-Z2125-6-7600

Data Division SYNCHRONIZED clause

7. For the purpose of aligning elementary items with USAGE COMPUTATIONAL,

, BINARY, , Specified
in the LINKAGE section, all 01-level elementary items are assumed to be aligned on
doubleword boundaries. Consequently, the user must ensure that these operands are
appropriately aligned in the USING phrase when he writes a CALL statement.

Example 3-39

In the following example, A has to be aligned on a fullword boundary:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) USAGE BINARY SYNC.

Example 3-40

01 RECORD.
02 A.
03 G PICTURE X(5).
03 H PICTURE S9(9) SYNC USAGE BINARY.
02 B REDEFINES A.
03 I PICTURE X(12).

Here, elementary item G occupies 5 bytes, and elementary item H occupies 4 bytes. The
SYNCHRONIZED and USAGE clauses indicate that the elementary data item H is aligned
on fullword boundary; elementary item H is therefore preceded by 3 slack bytes. As data

item A as a whole occupies 12 bytes, the subject of the REDEFINES clause (data item B)
must also occupy 12 bytes.

U3979-J-2125-6-7600 191

USAGE clause Data Division

USAGE clause

Function

The USAGE clause specifies the format in which an elementary item is represented in the
computer’s internal storage.

Format
BINARY
COMPUTATIONAL
COMP
LUSAGE IS]
DISPLAY
INDEX
PACKED-DECIMAL
Syntax rules

1. COMPis the abbreviation for COMPUTATIONAL.

2. If the USAGE clause is not specified for an elementary item, or for a group item, the
usage is implicitly DISPLAY.

3. For a description of the various categories of data see chapter 2.

General rules

1. The USAGE clause may be written at any data description level. If it is specified at
group level, it applies to each elementary data item of the group.

2. The USAGE of an elementary item must not conflict with the USAGE of the group item
to which the elementary item belongs.

3. An elementary item described with USAGE BINARY, COMPUTATIONAL,
or
PACKED DECIMAL represents a value for use in arithmetic operations and must

192

U3979-J-Z2125-6-7600

Data Division

USAGE clause

5.

therefore be numeric. If any of these phrases is specified for a group item, it refers only
to the elementary items of that group; the group item itself must not be used in arith-
metic operations.

The USAGE clause does not affect the use of the data item, although the specifications
for some statements in the Procedure Division may restrict the USAGE clause of the
operands referred to.

The internal representation of the numeric data items is shown in Table 3-5.

DISPLAY phrase

Syntax rules

1.

The type of elementary item for which the DISPLAY phrase is written is defined by the
character-string in the PICTURE clause.

External decimal data items are described below under general rule 1,
under general rule 2. In addition, all data items are also described
under "PICTURE clause" (page 164).

The DISPLAY phrase specifies that the data item is to be stored in standard data
format; that is, in character form, with one character per 8-bit byte. Each character
position of the data item is represented by one byte, as specified in the appropriate
character-string of the PICTURE clause.

General rules

1.

External decimal data items are internally represented as follows:

Each digit of a number is represented by a single byte. The four high-order bits of each
byte are the zone portion. The zone portion of the low-order or high-order byte
(depending on the SIGN clause) represents the sign of the number, assuming that a
sign exists. The four low-order bits contain the value of the digit.

The maximum length of an external decimal item is 18 digits.

U3979-J-2125-6-7600 193

USAGE clause

Data Division

Example 3-41
Data formats for USAGE IS DISPLAY
Data category Value |PICTURE Internal representation*)
description
alphabetic ABCD AAAA. Cl |C2 |C3 |C4
alphanumeric AlB2 XXXX. Cl [F1 |C2 |F2
alphanumeric 123AB | XXBXXX. |F1 |F2 [40 [F3 |c1 |c2 |
edited
numeric 54321 99,999 |F5 |[F4 [6B |F3 |[F2 |F1 |
edited
numeric
external decimal | +1234 9999 F1 |[F2 |[F3 |F4
+6879 S9999 F6 |[F8 [F7 [C9
-6879 S9999 F6 |F8 [F7 [D9
" Each box represents one byte.

194

U3979-J-Z2125-6-7600

Data Division USAGE clause

BINARY phrase or COMPUTATIONAL phrase or

Syntax rules

1. These phrases specify binary data items.

2. The PICTURE clause of a binary data item must contain no other characters but 9s, the
operational sign S, the assumed decimal point V, and one or more Ps (see "PICTURE
clause", page 164).

3. The data items are stored in a halfword, fullword, or doubleword, and are aligned only
if the SYNCHRONIZED clause was specified.

4. If a data item described with USAGE IS BINARY is used as a receiving data item, a
check is made to determine whether the value to be transferred to this data item
exceeds the maximum possible value indicated by the PICTURE character-string. If this
is the case, the value is made to conform by truncation.

If a receiving data item is described with USAGE IS COMPUTATIONAL or
, this check and any subsequent truncation which may be required is not
performed.

General rules

1. The storage requirements for binary items vary depending on the number of decimal
digits specified in the PICTURE clause, as follows:

Decimal digits in Bytes required in Alignment
the PICTURE clause computer storage
1-4 2 halfword
5-9 4 fullword
10-18 8 fullword

2. The leftmost bit of a binary data item is the operational sign. The remaining bits
represent the value.

For examples of the BINARY, COMPUTATIONAL or phrases see Ta-
ble 3-5 (page 200), "Internal representation of numeric data items".

U3979-J-2125-6-7600 195

USAGE clause Data Division

COMPUTATIONAL-1 phrase

Syntax rules

1. This phrase specifies internal floating-point items, which are equivalent to external
floating-point items in terms of capacity and application (see "Data categories", page
68).

2. For a COMPUTATIONAL-1 data item, the PICTURE clause is prohibited.

3. The COMPUTATIONAL-1 phrase indicates that a data item is stored in single-precision
floating-point format.

4. A COMPUTATIONAL-1 data item has a length of 4 bytes and is aligned on a fullword
boundary if the SYNCHRONIZED clause is specified.

General rules

1. A COMPUTATIONAL-1 data item is represented in storage as follows:

S ‘ Characteristic Mantissa

0 1 7 8 31

Here, S is the sign of the mantissa.
Characteristic = exponent + 32

2. Aninternal single-precision floating-point item permits representation with a precision
of six decimal digits.

3. The following applies to the value that may be represented in a COMPUTATIONAL-1
data item:

value = 0 or the absolute value of it may range from 5.4 * 1079 to 7.2 * 107°.

For examples of the COMPUTATIONAL-1 phrase see Table 3-5, "Internal representation of
numeric data items" (page 200).

196 U3979-J-Z125-6-7600

Data Division USAGE clause

COMPUTATIONAL-2 phrase

Syntax rules

1. This phrase specifies internal floating-point items, which are equivalent to external
floating-point items in terms of capacity and application (see "Data categories", page
68).

2. For a COMPUTATIONAL-2 item, the PICTURE clause is prohibited.

3. The COMPUTATIONAL-2 phrase indicates that a data item is to be stored in double-
precision floating-point format.

4. A COMPUTATIONAL-2 item has a length of 8 bytes and is aligned on a doubleword
boundary if the SYNCHRONIZED clause is specified.
General rules

1. A COMPUTATIONAL-2 data item is represented in storage as follows:

S ‘ Characteristic Mantissa

0 1 7 8 63
bits

Here, S is the sign of the mantissa.
Characteristic = exponent + 64

2. Adouble-precision internal floating-point item permits representation with a precision of
15 decimal digits.

3. The following applies to the value that may be represented in a COMPUTATIONAL-2
data item:

value = 0 or the absolute value of it may range from 5.4 * 1079 to 7.2 * 107°.

For examples of the COMPUTATIONAL-2 phrase see Table 3-5, "Internal representation of
numeric data items" (page 200).

U3979-J-2125-6-7600 197

USAGE clause Data Division

or PACKED-DECIMAL phrase

Syntax rules

1. The and PACKED-DECIMAL phrases are identical in meaning.

2. The phrases indicate that the data item is stored in internal decimal format (i.e. in
packed form).

3. The PICTURE clause of a or PACKED-DECIMAL item may
contain no characters other than 9s, the operation sign S, the assumed decimal point
V, and one or more Ps (see "PICTURE clause", page 164).

General rule

Internal decimal data items are represented by 2 digits per byte; the sign is contained
in the four low-order bits of the low-value byte.

For internal decimal data items whose PICTURE clause contains no S, the represen-
tation of the absolute value corresponds to the number.

For examples of the or PACKED-DECIMAL phrases see Table 3-5,
"Internal representation of numeric data items" (page 200).

198

U3979-J-Z2125-6-7600

Data Division

USAGE clause

Format PICTURE USAGE and Value in Value in internal Bytes Conversion Alignment
clause SIGN phrase | external representation ¥ | required for arithmetic if SYNC
represen- operation is specified
tation Alignment
External 9999 DISPLAY 1234 F1F2F3F4 1 byte/digit Yes, in order to
decimal conform to
(zoned) format of other
operands or
or
PACKED-
DECIMAL
59999 +1234 F1F2F3C4Y?
59999 -1234 F1F2F3D4Y2)
S9999 DISPLAY 1234+ F1F2F3C4
SIGN
TRAILING 1234~ F1F2F3D4
S9999 DISPLAY 1234+ F1F2F3F44E + 1 byte
SIGN for
TRAILING 1234- F1F2F3F460 sign
SEPARATE
S9999 DISPLAY +1234 C1F2F3F4
SIGN
LEADING -1234 D1F2F3F4
S9999 DISPLAY +1234 4EF1F2F3F4 + 1 byte
SIGN for
LEADING -1234 60F1F2F3F4 sign
SEPARATE
Internal 9999 +1234 01234F2 2 digits per | No, except None
decimal or byte, except | when other
(packed) 9999 PACKED- -1234 01234F? for low-order | operand is
DECIMAL byte which binary and
contains a conversion to
$9999 +1234 01234C? digit and the | binarywould be
sign more advan-
S9999 -1234 01234D? tageous.
Table 3-5 Internal representation of numeric data items
U3979-J-2125-6-7600 199

USAGE clause

Data Division

Format |PICTURE USAGE and | Value in Value in internal Bytes Conversion Alignment
clause SIGN phrase | external representation % required for arithmetic | if SYNC
representa- operation is specified
tion alignment
Binary | S9999 BINARY +1234 04D2 2 bytes for | No, except
or 1-4 digits | when used in
COMP mixed-form
or 4 bytes for | computations
5-9 digits | to maintain
common
8 bytes for | formats, or if
10-18 or
digits PACKED-
DECIMAL
would be more
advantageous.
$9999 -1234 FB2E 2 Halfword®

Table 3-5 Internal representation of numeric data items

1)

2)

3)

4)

One byte per digit, except for the low-order byte which contains the sign in the first halfbyte and

the last digit in the second halfbyte.

Mode of sign representation:

F = non-printable plus sign (treated as an absolute value)
C = internal equivalent of plus sign

D = internal equivalent of minus sign.

See rules for binary data items.

Each box represents one byte.

200

U3979-J-Z2125-6-7600

Data Division USAGE clause

INDEX phrase

Syntax rule

An elementary item described with USAGE IS INDEX is called an index data item. This
is a data item (not necessarily associated with any table) which may be used to save
values of index-names for future reference. An index data item is assigned the value of
an index by the SET statement. The value of an index data item is not an occurrence
number.

General rules

1. The USAGE clause with INDEX phrase may be written at any level. If a group item is
described with USAGE IS INDEX, the elementary items in the group are all index data
items; the group itself is not an index data item.

2. Anindex data item can be referenced directly only in a SEARCH statement, in a SET
statement, in a relation condition, in the USING phrase of the Procedure Division
header, or in the USING phrase of a CALL statement.

An index data item cannot be a conditional variable.

4. Anindex data item may be part of a group which is referenced in a MOVE statement or
an input/output statement. When such statements are executed, however, the contents
of the index data item are not converted.

5. SYNCHRONIZED, JUSTIFIED, PICTURE, BLANK WHEN ZERO or VALUE clauses
cannot be used to describe group items or elementary items described with USAGE IS
INDEX.

Example 3-42

02 ALPHA PICTURE X(9) OCCURS 5 INDEXED BY A-NAME.
77 A-INDEX USAGE IS INDEX.
SET A-NAME TO 3.

SET A-INDEX TO A-NAME.

Here the index data item A-INDEX is set to the current value of the index-name A-NAME,
i.e. the occurrence number (3) minus 1, multiplied by the length of the entry (9) = 18.

U3979-J-2125-6-7600 201

VALUE clause Data Division

VALUE clause

Function

The VALUE clause defines the initial value of a data item in the WORKING-STORAGE
SECTION, the value of a printable data item of the REPORT SECTION, or the value or
range of values associated with a condition-name.

Format 1 of the VALUE clause is specified to define the initial value of a data item in
the WORKING-STORAGE SECTION or the value of a printable data item
in the REPORT SECTION.

Format 2 of the VALUE clause is specified to define the value or range of values
associated with a condition-name.

In the FILE SECTION and in the LINKAGE SECTION the value clause may be used only
in connection with level-number 88 (format 2 of the VALUE clause).

Format 1

LVALUE IS Titerall

Syntax rules for format 1

1. The literal specified can be replaced by a figurative constant.

2. A numeric literal must have a size which is within the number of positions specified by
the PICTURE clause, and must not have a value which would require truncation of non-
zero digits.

A nonnumeric literal must not exceed the size specified in the PICTURE clause.

4. A signed numeric literal must be associated with a PICTURE clause which provides a
signed numeric character-string.

5. Ifthe VALUE clause is used in an entry at the group level, the literal must be a figurative
constant or a nonnumeric literal; here, the group area will be initialized without conside-
ration for the individual elementary or group items contained within the group. The
VALUE clause cannot be stated at the subordinate levels within the group.

202 U3979-J-2125-6-7600

Data Division VALUE clause

6. The VALUE clause must not be specified for a group item containing subordinate items
with descriptions that include JUSTIFIED, SYNCHRONIZED or USAGE (other than
USAGE IS DISPLAY).

General rules for format 1

1. The VALUE clause is prohibited for

2. If a VALUE clause is specified in a data description entry of a data item which is
associated with a variable-length data item, the initialization of the data item behaves
as if the value of the data item referenced by the DEPENDING ON phrase in the
OCCURS clause specified for the variable-length data item had the maximum possible
value. A data item is associated with a variable-length data item in any of the following
cases:

a) Itis a group data item which contains a variable-length data item.
b) Itis a variable-length data item.
c) lItis a data item that is subordinate to a variable-length data item.

3. The VALUE clause must not conflict with other clauses in the data description of an item
or in the data description within the hierarchy of an item. The following rules are appli-
cable:

If the category of the item being described is numeric, the literal in the VALUE clause
must be a numeric literal. If the data item is defined in the WORKING-STORAGE
SECTION, the value is aligned in the data item according to the standard alignment
rules.

If the category of the item being described is alphabetic, alphanumeric, alphanumeric
edited or numeric edited, the literal in the VALUE clause must be nonnumeric. The
literal is aligned in the data item as if the data item had been described as alphanu-
meric. Initialization of a data item is not affected by any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

4. AVALUE clause specified in a data description entry that contains an OCCURS clause
or in an entry that is subordinate to a data description entry that contains an OCCURS
clause causes every occurrence of the associated data item to be assigned the
specified initial value.

5. Inthe WORKING-STORAGE SECTION, the VALUE clause may be used to specify the
initial value of any data item; in this case, the clause causes the item to be initialized to
the specified value at the start of program execution. If the VALUE clause is not
specified in the description of a data item, the initial value of that item is undefined.

6. Format 1 of the VALUE clause must not be specified in the FILE SECTION and
LINKAGE SECTION.

U3979-J-2125-6-7600 203

VALUE clause

Data Division

Example 3-43 (for format 1)

77 FIELD PICTURE IS AA VALUE IS "AA".
Here the value of FIELD is initialized to AA.

Format 2

VALUE IS THRU
Titeral-1 Titeral-2
VALUES ARE THROUGH

1

Syntax rules for format 2

1.

A format 2 VALUE clause may be used only in connection with condition-names (level-
number 88).

Level number 88 applies to declarations of condition-names which are associated with
a conditional variable; these declarations are called condition-name declarations. A
conditional variable is a data item which is followed by one or more condition-name
declarations. A condition-name assigns a name to a value or a range of values which a
conditional variable may assume at run time. A condition-name can then be "true" or
"false" during program execution. A condition-name is not a data item and requires no
storage space (see the description of the use of condition-names under the heading
"Condition-name conditions”, page 219).

The specified literals may be replaced by figurative constants.

All numeric literals must have a length which is within the number of positions specified
by the PICTURE clause for the related elementary item (conditional variable), and must
not have a value which would require truncation of non-zero digits.

Nonnumeric literals must not exceed the size specified in the PICTURE clause for the
related elementary item (conditional variable).

A signed numeric literal must be associated with a PICTURE clause which provides a
signed numeric character-string.

When the THRU/THROUGH phrase is used, the literal preceding THRU/THROUGH
must be less than the literal which follows it.

The THRU/THROUGH phrase assigns a range of values to the specified condition-
name.

204

U3979-J-Z2125-6-7600

Data Division VALUE clause

General rules for format 2

1. The VALUE clause is prohibited for external floating-point data items.

2. The VALUE clause must not be specified for items whose size, whether explicitly or
implicitly, is variable.

3. The VALUE clause must not conflict with other clauses in the data description of an item
or in the data description within the hierarchy of an item. The following rules are appli-
cable:

4. If the category of the item being described is numeric, all literals in the VALUE clause
must be numeric literals. If the condition-name is defined in the WORKING-STORAGE
SECTION, the value is aligned in the data item according to the standard alignment
rules.

5. If the category of the item being described is alphabetic or alphanumeric, all literals in
the VALUE clause must be nonnumeric literals. The value is aligned in the data item as
if the data item had been described as alphanumeric.

6. Format 2 of the VALUE clause is only allowed in the FILE, WORKING-STORAGE and
LINKAGE SECTIONSs. It must not be specified in the REPORT SECTION.

Example 3-44 (for format 2)

02 CITIES PICTURE 9.
88 BERLIN VALUE 1.
88 HAMBURG VALUE 2.
88 MUNICH VALUE 3.
88 COLOGNE VALUE 4.

Here, CITIES is the conditional variable, and BERLIN, HAMBURG, MUNICH, and
COLOGNE are the condition-names. If a statement IF MUNICH GO TO TEST-C were
written in the Procedure Division, then the value of the conditional variable CITIES would
be compared to the value 3; this statement would be equivalent to the statement

IF CITIES IS EQUAL TO 3 GO TO TEST-C.

Example 3-45 (for format 2)

02 AGE PICTURE 99.
88 TWENTIES VALUE 20 THRU 29.
88 THIRTIES VALUE 30 THRU 39.

U3979-J-2125-6-7600 205

VALUE clause Data Division

If the statement IF TWENTIES... were to be written in the Procedure Division, the value of
the conditional variable AGE would be compared to the values 20, 21, ... and 29. This
statement would be equivalent to the statement IF AGE NOT LESS THAN 20 AND NOT
GREATER THAN 29...

Example 3-46 (for format 2)

02 NAME-OF-DAY PICTURE X(3).
88 BEGINNING-WEEK VALUE "MON" "TUE" "WED".
88 END-OF-WEEK VALUE "THRU" "FRI".
88 WEEKEND VALUE "SAT" "SUN".

If the statement IF BEGINNING-OF-WEEK... were to be written in the Procedure Division,
the conditional variable NAME-OF-DAY would be compared with "MON", "TUE" and
"WED". This statement would be equivalent to IF NAME-OF-DAY IS EQUAL TO "MON" OR
"TUE" OR "WED".

Format 3
VALUE IS
[FROM ({subscript-1}...)]
VALUES ARE
integer—1 TIMES
{1iteral-2}... |REPEATED
TO END

Syntax rules for format 3

1. Format 3 of the VALUE clause must be used only in connection with Working-Storage
table elements.

2. All numeric literals in a VALUE clause of an item must have a value which is within the
range of values indicated by the associated PICTURE clause, and must not have a
value which would require truncation of non-zero digits.

3. Nonnumeric literals in a VALUE clause of an item must not exceed the size indicated
by the associated PICTURE clause.

4. Ifthe VALUE clause is used in an entry at the group level, the literal must be a figurative
constant or a nonnumeric literal, and the group area is initialized without consideration
for the individual elementary or group items contained within this group. The VALUE
clause must not be stated at the subordinate levels within this group.

5. The VALUE clause must not be specified for a group item containing items subordinate
to it with descriptions including JUSTIFIED or USAGE (other than USAGE IS
DISPLAY).

206

U3979-J-72125-6-7600

Data Division VALUE clause

6. When format 3 is specified, the data description entry must contain an OCCURS clause
or be subordinate to a data description entry that contains an OCCURS clause.

7. Subscript-1 must be a numeric literal that is an integer. If all subscripts have the value
1, no subscripts need be specified; otherwise, all subscripts required to reference an
individual element in a table must be specified.

8. The number of table elements to be initialized is determined as follows:
a) Ifinteger-1 is not specified, it is the number of repetitions of literal-2.
b) If integer-1 is specified, it is the number of repetitions of literal-2 times integer-1.

The number of table elements to be initialized must not exceed the maximum number
of occurrences in the table from the point of reference to the end of the table.

9. If multiple format 3 VALUE clauses are specified in an entry:
a) The TO END phrase may be specified only once.

b) A given table element may be referenced only once.

General rules

1. All formats of the VALUE clause can be used in one table.

2. Within the same data description entry, if more than one VALUE clause references the
same table element, the value defined by the last specified VALUE clause in the data
description entry is assigned to the table element.

3. Aformat 3 VALUE clause initializes a table element to the value of literal-2. The table
element initialized is identified by subscript-1. Consecutive table elements are initia-
lized, in turn, to the successive occurrences of the value of literal-2. Consecutive table
elements are referenced by augmenting by 1 the subscript that represents the least
inclusive dimension of the table. When any reference to a subscript, prior to augmenting
it, is equal to the maximum number of occurrences specified by its corresponding
OCCURS clause, that subscript is set to 1 and the subscript for the next most inclusive
dimension of the table is augmented by 1.

4. If the REPEATED phrase is specified, all occurrences of literal-2 are reused, in the
order specified.
If the TO END phrase is specified, this reuse occurs until the end of the table is reached.
If the integer-1 TIMES phrase is specified, the occurrences of literal-2 are reused, in the
order specified, integer-1 times.
If the REPEATED phrase is not specified, the occurrences of literal-2 are used, in the
order specified, only once.

5. If a VALUE clause is specified in a data description entry of a data item which is
associated with a variable-occurrence data item, the initialization of the data item
behaves as if the value of the data item referenced by the DEPENDING ON phrase in

U3979-J-2125-6-7600 207

VALUE clause Data Division

the OCCURS clause specified for the variable-occurrence data item is set to the
maximum number of occurrences as specified by that OCCURS clause. A data item is
associated with a variable-occurrence data item in any of the following cases:

a) Itis a group data item which contains a variable-occurrence data item.
b) Itis a variable-occurrence data item.
c) lItis a data item that is subordinate to a variable-occurrence data item.

6. The VALUE clause must not conflict with other clauses in the data description of the
item or in the data description within the hierarchy of the item. The following rules apply:

If the category of the item is numeric, all literals in the VALUE clause must be numeric.
If the literal defines the value of a data item in the WORKING-STORAGE SECTION, the
literal is aligned in the data item according to the standard alignment rules.

If the category of the item is alphabetic or alphanumeric, all literals in the VALUE clause
must be nonnumeric literals. The literal is aligned in the data item as if the data item had
been described as alphanumeric.

A data item is initialized regardless of whether a BLANK WHEN ZERO or JUSTIFIED
clause was specified.

Example 3-47

IDENTIFICATION DIVISION.
PROGRAM-1D. TAB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

TERMINAL 1S T.
DATA DIVISION.
*khk k)
WORKING-STORAGE SECTION.
01 FIELDI.
02 A OCCURS 20.
03 B OCCURS 4.

49 PIC X(01)
VALUE FROM (5 2) IS "1" "2" "3
REPEATED 4.
*
01 FIELD2.
02 Z PIC 99.

02 A OCCURS 1 TO 78 DEPENDING ON Z.
49 PIC X VALUE "x".

01 FIELDS3.
02 A OCCURS 20
VALUE FROM (1) IS "ab" "c"
REPEATED 10 TIMES.
03 B OCCURS 4.

49 PIC X.

PROCEDURE DIVISION.

MAIN SECTION.

208

U3979-J-2125-6-7600

Data Division VALUE clause

P1.
MOVE 78 TO Z.
DISPLAY FIELD1 UPON T.
DISPLAY FIELDZ2 UPON T.
DISPLAY FIELD3 UPON T.
STOP RUN.

This results in the following field assignments:
FIELD1: B(5,2)="1" B(6,1)="1" B(7,1) = "2" B(8,1) = "3"
B(5,3)="2" B(6,2)="2"
B(54)="3" B(6,3)="3"
B(6,4) ="1"

All other table elements are not assigned.
FIELD2: 78 times "X"

FIELD3: A(l) ="ab.." A(2) ="Co..
A(3) ="ab.." A(4) ="c..."
A(19) = "ab.." A(20) = "o

U3979-J-2125-6-7600 209

Procedure Division COBOL source program

3.9 Procedure Division

3.9.1 General description

The Procedure Division contains the specific instructions for solving a given data
processing problem. COBOL instructions are written in the form of statements.

A statement is a syntactically valid combination of words and symbols, beginning with a
COBOL verb.

Example of a statement:
MOVE A TO B

Several statements may be combined into a sentence, groups of sentences into
paragraphs, and one or more paragraphs into a section.

Normally, a COBOL statement refers to user-defined data or procedures by means of data-
names or procedure-names. References to user-defined words must be unique (see under
"Qualification", page 77).

A logical subset of the program, consisting of one or more successive paragraphs or one
or more successive sections of the Procedure Division, is called a "procedure”. A
procedure-name is a word which is used for referring to a paragraph or a section; it consists
of a paragraph-name (which may be qualified by a section-name) or a section-name.

There are two types of procedures in the Procedure Division:

« Declaratives, which cannot be executed within the normal sequence of statements in
the Procedure Division.

« Nondeclarative procedures that contain statements for normal execution when there
are no special exceptional conditions.

The execution of the program begins with the first Procedure Division statement following
the declaratives. Statements are then executed in the order in which they are presented for
compilation, except where the rules for a given statement indicate some other order.

210 U3979-J-2125-6-7600

COBOL source program Procedure Division

Structure

General format

Format 1

Margin indication

!
£

DECLARATIVES.
{section—-name SECTION.
USE statement.
[paragraph—-name.
[sentencel...l...}...
END DECLARATIVES.

ROCEDURE DIVISION [USING {data—name-1}... 1.

{section—-name SECTION

[paragraph—-name.
[sentencel...l...}...

Format 2

Margin indication

!
i

{paragraph—name.
[sentencel...}...

ROCEDURE DIVISION [USING {data—name-1}... 1.

General rules

1. The Procedure Division must begin with the header PROCEDURE DIVISION, followed
by a period and a space, unless Program Communication is being used. In this case,
the Procedure Division header in a called program may optionally include the USING
phrase preceding the period (see chapter 7, "Inter-program communication™).

2. The Procedure Division header is followed, optionally, by the declarative portion
containing declarative procedures, which is followed, in its turn, by nondeclarative
procedures. Each of these procedures consists of statements, sentences, paragraphs,
and/or sections in a syntactically valid format.

The end of the Procedure Division (and the physical end of the source program) is the
point in a COBOL source program which is not followed by any further procedures and
statements.

U3979-J-2125-6-7600 211

Procedure Division COBOL source program

For a description of the declarative subdivision, see "Declarative subdivision of the
Procedure Division" (page 213).

If sections are used within the Procedure Division, format 1 must be applied. Otherwise,
format 2 may be used.

A section consists of a section header followed either by zero, one, or more successive
paragraphs. (The section header consists of a section-name, followed by the word
SECTION and a period;

.) A section can
end in one of three ways: immediately before the next section-name; at the end of the
Procedure Division; or in the declaratives subdivision of the Procedure Division
immediately before the next section or at the keywords END DECLARATIVES.

Multiple definitions of section-names, or of paragraph-names within a section, will not
be treated as errors by the compiler as long as they are not referenced.

Paragraph-names and section-names must not be more than 30 characters in length.

A paragraph consists of a paragraph-name followed by a period and a space, followed
by zero, one or more successive sentences. A paragraph ends immediately before the
next paragraph-name or section-name, or at the end of the Procedure Division, or, in
the declaratives portion of the Procedure Division, immediately before the next
paragraph-name or section-name, or at the keywords END DECLARATIVES.

If one paragraph is in a section, then all of the paragraphs must be in sections.

A sentence consists of one or more statements, optionally separated by semicolons,
spaces, or commas, and is terminated by a period, followed by spaces.

A statement consists of a syntactically valid combination of words and symbols, and
must begin with a COBOL word.

212

U3979-J-Z2125-6-7600

Procedure Division DECLARATIVES

3.9.2 DECLARATIVES

Function

The DECLARATIVES subdivision is an optional portion of the Procedure Division. It
contains a group of procedures, called declarative procedures, which are not executed
within the normal sequence of statements in the Procedure Division but only when a parti-
cular condition occurs.

Declarative procedures are used for performing the following functions:
— input/output label handling
— handling of input/output errors

— special Report Writer functions.

Format (General format in the Procedure Division)
T Margin indication
PROCEDURE DIVISION [USING {data—name-1t... 1.
DECLARATIVES.

{section—-name SECTION.
USE statement.
[paragraph—-name.
[sentencel...J]...}...
END DECLARATIVES.
{section—-name SECTION
[paragraph—-name.
[sentencel...J]...}...

Syntax rules

1. Declarative procedures must be placed at the beginning of the Procedure Division,
preceded by the keyword DECLARATIVES and followed by a period and a space.
Declarative procedures are terminated by the keyword END DECLARATIVES, followed
by a period and a space.

2. As indicated in the general format of the Procedure Division, the DECLARATIVES
subdivision must be divided into sections. These sections are called declarative
sections. Each declarative section contains a group of related procedures, and is
preceded by a section header, immediately followed by a USE statement with subse-
guent period and space.

U3979-J-2125-6-7600 213

DECLARATIVES Procedure Division

3. The USE statement defines the type of declarative procedures according to the three
functions listed above. The formats of the USE statement are described in detail starting
on page 411 ("Sequential file organization": Formats 1 and 2), page 473 ("Relative file
organization”: Format) and page 626 ("Report Writer": USE BEFORE REPORTING
statement).

4. The USE statement itself is never executed; rather, it defines the conditions for
executing the declarative procedures specified in the associated section.

214 U3979-J-2125-6-7600

PROCEDURE DIVISION Arithmetic expressions

3.9.3 Arithmetic expressions

Function

Arithmetic expressions allow the user to combine arithmetic operations.

Format

An arithmetic expression may be one of the following:
a) An identifier of a numeric elementary item.

b) A numeric literal.

c) Two arithmetic expressions separated by an arithmetic operator or an arithmetic ex-
pression enclosed in parentheses.

Any arithmetic expression may be preceded by a unary plus (+) or a unary minus (-).

Arithmetic operators

The following operators may be used in arithmetic expressions:

Binary arithmetic operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
ok Exponentiation

Unary arithmetic operator Meaning

+ The effect of multiplication by the numeric literal +1

- The effect of multiplication by the numeric literal -1

As defined by the standard, a binary arithmetic operator must always be preceded and
followed by a space.

U3979-J-2125-6-7600 215

Arithmetic expressions PROCEDURE DIVISION

A unary + must be followed by a space, if it is before an unsigned literal.
A unary — always must be followed by a space.

Rules for the formation and evaluation of expressions

1.

An arithmetic expression may begin only with a left parenthesis, a unary +, a unary —,
an identifier, or a literal; and it may end only with a right parenthesis or a variable
(identifier or literal).

There must be a one-to-one correspondence between left and right parentheses in an
arithmetic expression.

Table 3-6 shows the permissible combinations of operators, variables and parentheses
in arithmetic expressions.

Second symbol
) bol identifier, literal arithmetic unary ()
First symbo operator operator
identifier, literal - P — - P
arithmetic operator P - =] P -
unary operator P - - P -
(P - P P -
) - P - - P

Table 3-6 Valid symbol combinations in arithmetic expressions

P indicates that the two symbols may appear consecutively (permissible pair).
- indicates that the two symbols must not appear consecutively (invalid pair).

Parentheses may be used in arithmetic expressions in order to indicate the order in
which the elements are to be evaluated.

Expressions within parentheses are evaluated first. When nested parentheses are
used, evaluation proceeds from the innermost to the outermost set of parentheses.

When no parentheses are used, or parenthesized expressions are at the same level of
inclusiveness, the following hierarchical order of execution is implied:

a) Unary plus or minus(evaluated first)

b) Exponentiation

¢) Multiplication and division

d) Addition and subtraction(evaluated last)

If consecutive operations of the same hierarchical level occur, they are evaluated from
left to right.

216

U3979-J-Z2125-6-7600

PROCEDURE DIVISION

Arithmetic expressions

General rules

1. Parentheses are used either to eliminate ambiguities in logic where consecutive opera-
tions of the same hierarchical level appear, or to modify the normal hierarchical

sequence of execution.

2. Arithmetic expressions are used in arithmetic and conditional statements.

Example 3-48

Expression:
Evaluation:

Example 3-49

Expression:
Evaluation:

A+(B-C)*D
1. B - C (denote result by x)

2.x*D (denote result by y)
3. A+y (final result)

A+(B/C)+(D**E)*F)-G

B/C (denote result by z)

D ** E (denote result by x)
x*F (denote result by y)

z+y (denote result by a)

A+a (denote result by b)

b-G (final result)

oukrwnpE

U3979-J-72125-6-7600

217

Conditions PROCEDURE DIVISION

3.9.4 Conditions

General description

A condition enables the program to select between two alternative paths of execution,
depending upon the truth value of a test. There are two categories of conditions: simple
conditions and complex conditions.

Simple conditions:

a) Condition-name condition
b) Class condition

¢) Switch-status condition
d) Condition-name condition
e) Sign condition

Each of these conditions may be enclosed in parentheses.

Complex conditions:

Complex conditions are formed by combining simple conditions and/or complex conditions
with the logical operators AND and OR or by negating these conditions with the logical
operator NOT.

218 U3979-J-2125-6-7600

PROCEDURE DIVISION Condition-name condition

Condition-name condition

Function

The condition-name condition causes a conditional variable to be tested to determine
whether or not its value is equal to one of the values associated with a specified condition-
name. (See VALUE clause for additional information, page 202.)

Format

condition—-name

Syntax rules

1. condition-name specifies the condition-name to be used in the test.

2. If a condition-name is associated with a single value, then the related test is true, only
if the value corresponding to the condition-name equals the value of its associated
conditional variable.

3. If the condition-name is associated with one or more ranges of values, then the condi-
tional variable is tested to determine whether or not its value falls in the range, including
the end values.

4. The condition-name condition is a shorthand form of the relation condition (see
example).

See also "SET statement”, format 4 (page 338).

Example 3-50

02 PAY-CLASS PICTURE 9.
88 HOURLY VALUE 1.
88 WEEKLY VALUE 2.
88 MONTHLY VALUE 3.

IF HOURLY GO TO HOUR—PROCEDURE.

Here, PAY-CLASS is a conditional variable, and HOURLY, WEEKLY, and MONTHLY are
condition-names. If the current value of PAY-CLASS is 1, the result of the test in the IF
statement is true. Otherwise, the result is false.

As noted above, the condition-name is a shorthand form of the relation condition. The
following statement, which contains a relation condition, is equivalent to the above IF
statement:

IF PAY-CLASS = 1 GO TO HOUR-PROCEDURE.

U3979-J-2125-6-7600 219

Class condition PROCEDURE DIVISION

Class condition

Function

The class condition determines whether an operand is numeric, alphabetic, alphabetic-
lower, alphabetic-upper, or whether it contains only characters from a character set
specified with class-name in the CLASS clause of the SPECIAL-NAMES paragraph of the
Environment Division.

Format

NUMERIC
ALPHABETIC
identifier IS [NOT] <ALPHABETIC—LOWER
ALPHABETIC-UPPER
class—name

Syntax rules

1. identifier must be a data item described implicitly or explicitly with USAGE IS DISPLAY
or or PACKED-DECIMAL.

2. identifier specifies the data item to be tested.

3. NUMERIC, ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER and class-
name (possibly negated by NOT) indicate which characteristic is to be tested.

4. identifier is treated as numeric when its contents consist of a combination of the digits
0 through 9 (with or without sign).

5. identifier is treated as alphabetic when its contents consist of any combination of the
characters A through Z and/or a through z and the space character.

6. identifier is treated as alphabetic-lower when its contents consist of a combination of
the lowercase letters a through z and the space character.

7. identifier is treated as alphabetic-upper when its contents consist of a combination of
the uppercase letters A through Z and the space character.

8. identifier corresponds to class-name when its contents consist solely of a combination
of those characters which were defined by means of class-name in the SPECIAL-
NAMES paragraph.

220

U3979-J-Z2125-6-7600

PROCEDURE DIVISION

Class condition

9. identifier cannot be tested as numeric if it is defined in the data description entry as an

alphabetic data item.

If no operational sign (PIC 9 or PIC XX) has been defined in the character-string of an
identifier described with USAGE IS DISPLAY, identifier is determined to be numeric only
if its contents consist of the digits 0-9. If the character-string does not contain an opera-
tional sign (PIC 9), but does contain the data format COMP-3 or PACKED-DECIMAL,

identifier is determined to be numeric only if its contents are numeric and there is a non-
printable plus sign (represented by F).

If the character-string contains an operational sign definition (PIC S9), identifier is deter-
mined to be numeric only if its contents are numeric and a valid operational sign is
present (represented by C, D, or F). This is the case when identifier is described either
with USAGE IS DISPLAY or with USAGE COMP-3 or PACKED-DECIMAL.

10. An identifier cannot be tested as alphabetic, alphabetic-lower, or alphabetic-upper, or
for conformance to class-name, if it is defined as numeric in the data description entry.

11. Table 3-7 lists all permissible formats of the class condition.

Type of identifier

Tests allowed

Alphabetic

ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER,

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER,

class-name

NOT class-name

Alphanumeric or
alphanumeric-edited or
numeric-edited

ALPHABETIC
ALPHABETIC-LOWER,

NOT ALPHABETIC
NOT ALPHABETIC-LOWER,

ALPHABETIC-UPPER

NOT ALPHABETIC-UPPER

or group item NUMERIC NOT NUMERIC
class-name NOT class-name
Numeric NUMERIC NOT NUMERIC

Table 3-7: Valid formats of the class condition

U3979-J-72125-6-7600

221

Switch-status condition PROCEDURE DIVISION

Switch-status condition

Function

The switch-status condition tests the setting of an implementor-defined user or task switch.
The implementor-name and the ON or OFF value associated with the condition must
appear in the SPECIAL-NAMES paragraph of the Environment Division.

Format

condition—-name

Syntax rules

1. Theresult of the testis true if the switch is set to the position corresponding to condition-
name.

2. The status of a switch can be changed by means of a format 3 SET statement (see
"SET statement", format 3, page 338).

222

U3979-J-Z2125-6-7600

PROCEDURE DIVISION Relation condition

Relation condition

Function

A relation condition causes a comparison of two operands, each of which may be an
identifier, a literal, or an arithmetic expression.

Format
identifier-1 identifier-2
literal-1 literal-2
relational-operator
arithmetic—expression-1 arithmetic—expression-2
index—1 index—2
Syntax rules

1. The first operand of a relational condition is called the subject of the condition, and the
second operand is called the object of the condition. The operands must be written
according to the following rules:

a) The subject and object must not both be literals.

b) The subject and object must have the same data format, except when two numeric
operands are compared.

2. Relational-operator must be one of the operators listed in Table 3-8. It must be
preceded and followed by a space.

Operator Meaning

IS [NOT] GREATER THAN [Not] greater than

IS [NOT] >

IS [NOT] LESS THAN [Not] less than

IS [NOT] <

IS [NOT] EQUAL TO [Not] equal to

IS [NOT] =

IS GREATER THAN OR EQUAL TO Greater than or equal to
IS>=

IS LESS THAN OR EQUAL TO Less than or equal to
IS <=

Table 3-8: Relational operators

The special symbols <, > and = are not underlined in could be mistaken for other
symbols.

U3979-J-2125-6-7600 223

Relation condition PROCEDURE DIVISION

The relational operator specifies the type of comparison to be made in a relation test.

The following rules describe comparisons between numeric operands, comparisons
between nonnumeric operands, and comparisons between indexnames and/or index
data items. In compare operations, a group item is treated as a nonnumeric data item.

Comparison of numeric operands

When two numeric operands are compared, their algebraic values are compared; their
lengths (that is, the number of digits they contain) are not significant.

Unsigned numeric operands are considered to be positive for purposes of comparison.
Zero is considered to be a unique value, regardless of sign.

Comparison of two numeric operands is permitted, regardless of the data formats in
their respective USAGE clauses.

Example 3-51

-50 is less than +5
+75 is greater than +5
-100 is less than -10
-0 is equal to +0

Comparison of nonnumeric operands

When two nonnumeric operands are compared, or when a numeric operand is
compared with a nonnumeric operand, the comparison is made with respect to the
binary collating sequence of the PROGRAM COLLATING (see "OBJECT-COMPUTER
paragraph”, page 124).

If one of the operands is numeric, it must be an integer data item or integer literal.
Furthermore:

a) If the nonnumeric operand is an elementary item or a nonnumeric literal, the
numeric operand will be treated as if it had been transferred to an alphanumeric
elementary item equal in size to the numeric item, and as if the contents of this
alphanumeric elementary item had been compared with the nonnumeric operand
(see "MOVE statement", page 294 and "PICTURE clause", page 167).

b) Ifthe nonnumeric operand is a group item , the numeric operand will be treated as
if it had been transferred to a group item equal in size to the numeric data item, and
as if the contents of this group item had then been compared with the nonnumeric
operand (see "MOVE statement”, page 294, and "PICTURE clause", page 167).

224

U3979-J-Z2125-6-7600

PROCEDURE DIVISION Relation condition

c) A numeric operand which is not an integer cannot be compared with a nonnumeric
operand.

Another important factor in a nonnumeric comparison is the length of the operands. The
size of an operand is equal to the total number of characters within it. There are two
cases to consider: the comparison of operands of equal size, and the comparison of
operands of unequal size.

a) Comparison of operands of equal size

If the operands are of equal size, the comparison proceeds as follows: The program
compares characters in corresponding character positions, starting at the high-
order (that is, leftmost) end, and continuing until it encounters two unequal
characters or until it reaches the low-order end of the operands.

If the object program encounters a pair of unequal characters, it determines which
character has a higher position in the collating sequence. The operand containing
the higher character is considered to be the greater operand.

If all pairs of corresponding characters are equal, the operands are considered to
be equal.

Example 3-52

In the following examples the binary collating sequence of the EBCDIC character
set is assumed, i.e. either PROGRAM COLLATING SEQUENCE has been omitted
or PROGRAM COLLATING SEQUENCE IS NATIVE has been specified.

Relationship Reason

"123" IS GREATER 1 (the 1st character in the 1st operand) is greater than A (the
THAN "ABC" 1st character in the 2nd operand).

"SMYTH" IS GREATER Y (the 3rd character in the 1st operand) is greater than | (the
THAN "SMITH" 3rd character in the 2nd operand).

"ABC" IS EQUAL to "ABC" | All characters compare equally.

U3979-J-2125-6-7600 225

Relation condition

PROCEDURE DIVISION

b) Comparison of operands of unequal size

c)

If the operands are of unequal size, comparison proceeds as though the shorter
operand were extended on the right by sufficient spaces to make the operands of

equal size.

Example 3-53

Relationship Reason

"CAR" IS GREATER | C (the 1st character of the 1st operand) is greater than A (the 1st

THEN "AUTO" character of the 2nd operand).

"SMITH" is less than | SMITH is space-filled as follows: SMITH...

"SMITHY" The space (sixth character in first operand) is less than Y (sixth
character in second operand).

Comparisons involving index-names and/or index data items.

The allowable relation tests involving indices and/or index data items, as well as the
data items compared in each case, are listed below (for a summary of all relation
tests permitted, see "Conditions", page 218).

1.

Two indices:
The occurrence numbers corresponding to the two indices are compared.

One index and one integer (the integer may be a numeric data item or a numeric
literal):

The integer is treated as an occurrence number, and is compared with the oc-
currence number corresponding to the index.

One index data item and one index or other index data item:
The current values of the items (i.e. the displacements from the beginning of the
table) are compared.

The result of a comparison of an index data item with any data item or literal not
specified above will be undefined.

226

U3979-J-Z2125-6-7600

PROCEDURE DIVISION

Relation condition

First operand

Index

Second operand

Index data item

Data-name
(integer only)

Numeric literal
(integer only)

Index Compare occur- | Comparewithout | Compare occur- Compare occur-
rence number conversion rence number with | rence number with
numeric integer of | literal
data-name
Index data item | Compare without | Comparewithout | lllegal lllegal
conversion conversion
Data-name Compare occur- | lllegal Compare numbers | Compare numbers
(integer only) | rence number with
numeric integer of
data-name
Numeric literal | Compare occur- | lllegal Compare numbers | lllegal
(integer only) | rence number with
literal

Table 3-9: Validity of comparisons using indices and index data items

U3979-J-72125-6-7600

227

Relation condition PROCEDURE DIVISION

7. Allowable comparisons

All allowable comparisons are shown in Table 3-10.

Second operand

. GR |AL [AN |ANE|NE |FC? |zR |ED |BI |ID IN |IDI
First operand NNL | NL
Group element (GR) NN [NN |NN [NN |[NN |NN |NN |NN [NN |NN
Alphabetic (AL) NN [NN |NN [NN |[NN |NN |NN
Alphanumeric (AN) NN [NN (NN |NN |NN [NN NN | NN
Alphanumeric edited
(ANE) NN [NN |NN [NN [NN |NN |[NN |NN
Numeric edited (NE) NN [NN |[NN [NN [NN |NN |[NN |NN

Figurative constant
(FC) @ and nonnumeric
literal (NNL) NN |NN |NN [NN [NN NN

Figurative constant
ZERO (ZR) and numeric

literal (NL) NN NN [NN [NN NU |NU |NU IN®
External decimal (ED) NN NN [NN [NN [NN |NU [NU [NU |NU IN®
Binary (BI) NN NU [NU [NU |NU IN
Internal decimal (ID) NN NU |NU |NU |NU IN®
Index name (IN) IN® | IN® | IN® | INY T |ID
Index data item (IDI) ID |ID

Table 3-10: Permissible comparisons between operands?

D) Function values used in table

NN = Comparison as described for nonnumeric operands

NU = Comparison as described for numeric operands

Tl = Comparison as described for two index-names

(see "Table handling”, page 88ff)

IN = Comparison as described for index-name and numeric integer
(see "Table handling”, page 88ff)

ID = Comparison as described for index data item and index-name
or other index data items (see "Table handling”, page 88ff).

2) FC includes all figurative constants except ZERO.

3) Valid only if the numeric item is an integer.

228 U3979-J-2125-6-7600

PROCEDURE DIVISION Sign condition

Sign condition

Function

The sign condition determines whether or not the algebraic value of a numeric operand
(that is, an item described as numeric) is less than, greater than, or equal to zero.

Format
identifier POSITIVE
IS [NOT] JNEGATIVE
arithmetic—expression ZERQ

Syntax rules
1. identifier or arithmetic-expression identifies the operand to be tested.
2. POSITIVE, NEGATIVE or ZERO specifies the test to be made.

3. Anoperand is positive if its value is greater than zero, negative if its value is less than
zero, and zero if its value is equal to zero.

U3979-J-2125-6-7600 229

Complex conditions PROCEDURE DIVISION

Complex conditions

Function

A complex condition consists of a combination of two or more simple conditions.

Format

>

ND

>

ND

condition { } [NOT] condition H } [NOT1] condition}

B]
0
=

Syntax rules

1. condition specifies a simple condition.

2. Parentheses may be used within a complex condition to improve readability or to modify
the normal hierarchical sequence of execution.

3. The simple conditions within a complex condition are separated from each other by
logical operators, according to the specified rules. The logical operators must be
preceded by a space and followed by a space.

4. A complex condition may comprise up to 60 simple conditions.

Table 3-11 lists the logical operators and their meanings.

Operator Meaning Example
OR Logical inclusive Or The expression A OR B is true if Aiis true, or B is
(either or both) true, or both A and B are true.
AND Logical conjunction (both) The expression A AND B is true only if both A and
B are true.
NOT Logical negation The expression "NOT" A is true only if A is false.

Table 3-11: Logical operators

230

U3979-J-Z2125-6-7600

PROCEDURE DIVISION Complex conditions

6. The ways in which conditions and logical operators may be combined are shown in

Table 3-12.
Second symbol
First symbol simple-condition OR AND NOT ()
simple-condition - =) p - _ p
OR P - - P p _
AND P - - P p _
NOT P - - -) _
(P - - P P -
) - P P - - P

Table 3-12: Valid symbol pairs of conditions and logical operatorsl)

D' Pindicates that the two symbols may be used as a pair.

7. Rules of precedence for evaluation of expressions

The evaluation of complex conditions starts with the innermost pair of parentheses and
proceeds through to the outermost pair of parentheses.

If the order of evaluation is not determined by parentheses, the expression is evaluated
according to the following precedence (hierarchical levels):

— Arithmetic expressions

— Relational operators

— NOT conditions

— AND and its associated conditions are evaluated from left to right.

— OR and its associated conditions are evaluated last, also proceeding from left to
right.

— If consecutive expressions have the same hierarchical level, they are evaluated
from left to right.

Example 3-54

Consider this expression:

A IS NOT GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE

This expression is evaluated as if the following parentheses had been supplied:

(A IS NOT GREATER THAN B) OR (((A+B) IS EQUAL TO C) AND (D IS POSITIVE)).

U3979-J-2125-6-7600 231

Complex conditions

PROCEDURE DIVISION

Example 3-55

Table 3-13 shows some of the relationships between logical operators and simple

conditions.

Operands Value of A D) True False True False
Value of BV True True False False

Combinations NOT A False True False True
A AND B True False False False
AORB True True True False
NOT (A AND B) False True True True
NOT A AND B False True False False
NOT (A OR B) False False False True
NOT AOR B True True False True

Table 3-13: Use of logical operators

1

A and B represent simple conditions.

232

U3979-J-Z2125-6-7600

PROCEDURE DIVISION Implied subjects and relational operators

Implied subjects and relational operators

Function

When a complex condition is written without parentheses, any relation condition except the
first may be abbreviated as follows:

« the subject of the relation condition may be omitted.

« the subject and relational operator of the relation condition may be omitted.

Format of implied subject

>

ND

...subject relational-operator object { } [NOT] relational-operator object...

|o
20

Format of implied subject and relational operator

AND
...subject relational—-operator object { } [NOT] object...

OR

Syntax rules

1. Within a sequence of relation conditions, both forms of abbreviation may be used. The
effect of using such abbreviations is the same as if the omitted subject were replaced
by the most recently stated subject, or the omitted relational-operator were replaced by
the most recently stated relational-operator.

2. NOT in an abbreviated complex condition is interpreted as follows:

a) If the word NOT is followed by one of the relational operators
GREATER, >, LESS, <, EQUAL, =,
then NOT is considered as part of the relevant relational operator.

b) If the word NOT is followed by one of the other relational operators, then NOT is
considered as a logical operator to negate the relevant relation condition.

3. A NOT appearing in front of a left parenthesis remains in effect up to the associated
right parenthesis (see example 3-60).

U3979-J-2125-6-7600 233

Implied subjects and relational operators PROCEDURE DIVISION

Example 3-56

Implied subjects
IFX=YOR>WOR<?Z
is equivalent to
IFX=YOR>WORX<?Z

In this example, the implied subject is the most recently stated subject, i.e. X.

Example 3-57

Implied subjects and relational operators
IF X=YORZORMW

is equivalent to
IFX=YORX=ZORX-=W

In this example, the implied subject is the most recently stated subject, i.e. X; and the
implied relational operator is the most recently stated operator, i.e. =.

Example 3-58

Implied subject, and implied subject with relational operator
X =Y AND > Z OR A

is equivalent to

X =Y AND X > Z OR X > A

Here, since X is the only stated subject, it is substituted in both simple conditions. The most
recently stated operator, >, is substituted in the third simple condition.

Example 3-59

A > B AND NOT > C OR D

is equivalent to

A > B AND NOT A > C OR NOT A > D

or

((A > B) AND (A NOT > C)) OR (A NOT > D)

234

U3979-J-Z2125-6-7600

PROCEDURE DIVISION Implied subjects and relational operators

Example 3-60

A NOT = "A" AND NOT ("B" OR NOT "C")

is equivalent to

A NOT = "A" AND NOT (A NOT = "B" OR NOT A NOT = "C")
or

A NOT = "A" AND A = "B" AND A NOT = "C"

or

A= "B".

U3979-J-2125-6-7600 235

Arithmetic statements PROCEDURE DIVISION

3.9.5 Arithmetic statements

Syntax rules

1. Allidentifiers used in arithmetic statements must be defined as numeric data in the Data
Division.

2. All literals used in arithmetic statements must be numeric. They may be floating-point
literals.

The maximum size of any operand (identifier or literal) is 18 decimal digits.

4. The maximum size of all results after decimal point alignment is 18 decimal digits.

5. When several operands occurring in an arithmetic statement are "overlapped" in a
hypothetical data item, aligned on their decimal points, then the maximum size of the
data item required (i.e. the composite of operands) is 18 decimal digits (see "ADD
statement", page 251 and "SUBTRACT statement", page 345).

6. A maximum of 100 operands may be supplied in one arithmetic statement or arithmetic
expression. The number of right and left parentheses () must not exceed 250.

7. The format of any data item involved in computations (for example, an addend, a
subtrahend, or a multiplier) cannot contain editing symbols. Operational signs and
implied decimal points are not considered to be editing symbols.

8. Identifiers which are used only to receive the result of an arithmetic statement (for
example, the identifier used with the GIVING phrase) may be numeric-edited items (see
"GIVING phrase”, page 241).

9. Condition-names cannot appear as operands.

General rules

1.

3.

The operands need not have the same data description; any necessary conversion and
decimal point alignment is supplied throughout the calculation (see "MOVE statement”,
Rules for numeric moves, page 299).

If the sending or receiving items of an arithmetic statement, or of an INSPECT, MOVE,
SET, STRING or UNSTRING statement, share the same storage area (that is, if the
operands overlap), the result of the execution of such a statement is undefined.

The results are also undefined if the identifiers contain any data other than numeric data
at object time.
Note

If the input operands for an arithmetic statement do not contain valid numeric data,
a data error will occur at object time.

236

U3979-J-Z2125-6-7600

PROCEDURE DIVISION Arithmetic statements

4. The following rules apply to evaluation of exponentiation in an arithmetic expression:

a) Ifthe value of an expression to be raised to a power is zero, the exponent must have
a value greater than zero. Otherwise, the size error condition exists.

b) If the evaluation yields both a positive and a negative real number, the value
returned as the result is the positive number.

c) If no real number exists as the result of the evaluation, the size error condition
exists.

5. In evaluating arithmetic statements, the compiler generates a number of arithmetic
operations. Depending on the relationship between the various operands, the compiler
will generate one or more intermediate result items. These intermediate resultitems are
retained until required for solving the final result of that statement.

Table 3-14 shows the number of the integer and decimal digits which are stored in the
result item according to the operation executed. From this table, it is possible to
determine the optimum operand size for the desired precision to be achieved in the
statement. On the basis of the decimal places contained in each operand, and by
reference to the formulae supplied in the table, the programmer may determine the
exact number of positions which the compiler will make available to the result item.
However, the result placed in the result item is aligned on the decimal point. Hence
decimal point alignment is likewise important in determining the precision of the result.

Other considerations affecting the results of arithmetic operations are (see also Table

3-14):

a) If the ROUNDED phrase is specified, then the value of Fd (decimal places in the
result) will be Fd+1.

b) In all additions or subtractions where an operand has a USAGE declared as
COMPUTATIONAL or BINARY, or as or PACKED-DECIMAL,
"I (the calculated number of integer places) is increased by 1.

If one of the operands has a USAGE declared as COMPUTATIONAL or
, then special rules apply that cannot be shown in Table 3-14.

U3979-J-2125-6-7600 237

Arithmetic statements

PROCEDURE DIVISION

Statement | Operation Decimal places | Integer places in If i+d > 30 digits
type in intermediate mtermedl_ate result Decimal Integer
result (d) 0 places places
ADD or MAX (Ad, Bd) | MAX (Ai+1, Bi+1) Fd 30-Fd
SUBTRACT
(H)or()
) . | MULTIPLY (*) Ad+Bd Ai+Bi Fd 30-Fd
Arithmetic - -
DIVIDE (/) MAX (Fd+1,Bd) Bi+Ad Bd-Ad Bi+Ad
EXPONEN- (total digits in final (not (not
TIATION (**) Fd result item) applicable) | applicable)
less Fd
ADD or MAX (Ad, Bd) 30-d
SUBTRACT
IF or (+) or (<)
MULTIPLY (*) Ad+Bd 30-d (not (not
PERFORM applicable) | applicable)
DIVIDE (/) Bd 30-d
EXPONEN- 12 18
TIATION (**)

Table 3-14: Calculating the integer and decimal places in intermediate results

i =
Ai =
Bi =
Fi =
d
Ad =
Bd =
Fd =
MAX=

Calculated integer places

Integer places in first operand

Integer places in second operand

Integer places in final result

Calculated decimal places

Decimal places in first operand

Decimal places in second operand

Decimal places in final result

1

2)

1

2)

The greater value of the specified operands in each case

1 Divisor in division operation

2) Dividend in division operation

238

U3979-J-Z2125-6-7600

PROCEDURE DIVISION CORRESPONDING phrase

3.9.6 Options in arithmetic statements

CORRESPONDING phrase

The CORRESPONDING phrase enables the user to write one statement to perform opera-
tions on several elementary items of the same name in different groups.

1. The word CORRESPONDING may be abbreviated as CORR.

2. All identifiers must refer to group items.

3. The descriptions of the identifiers must not contain data items with level numbers 66,
77, or 88, or the USAGE IS INDEX clause.

4. Pairs of data items correspond if the following conditions exist; all other items are
ignored for the operation:

5. Both data items have the same name and qualification, up to, but not necessarily
including, identifier-1 and identifier-2.

6. None of the data items is declared with FILLER.

7. In case of MOVE CORRESPONDING, at least one of the data items is an elementary
item; both data items are elementary items in case of ADD CORRESPONDING or
SUBTRACT CORRESPONDING.

8. A data item that is subordinate to identifier-1 or identifier-2 and that is defined with a
REDEFINES, OCCURS, or USAGE IS INDEX clause will be ignored; any items which
are subordinate to such items are also ignored. However, identifier-1 or identifier-2 may
be defined with REDEFINES or OCCURS clauses or be subordinate to data items
defined with REDEFINES or OCCURS clauses.

9. The CORRESPONDING phrase cannot be applied to identifiers that are subjected to
reference modification.

Example 3-61

In this example, elementary items in EMPLOYEE-RECORD are subtracted from corre-
sponding items in PAYROLL-CHECK.

Procedure Division statement:

SUBTRACT CORRESPONDING EMPLOYEE-RECORD FROM PAYROLL-CHECK.

U3979-J-2125-6-7600 239

CORRESPONDING phrase

PROCEDURE DIVISION

Data Division entries:

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NUMBER.
03 PLANT—-LOCATION. ..
03 CLOCK-NUMBER.
04 SHIFT-CODE...
04 CONTROL-NUMBER. ..
02 WAGES.
03 HOURS-WORKED. ..
03 PAY-RATE...
02 FICA-RATE...
02 DEDUCTIONS...

01 PAYROLL-CHECK.

02

02

02

02
02

EMPLOYEE-NUMBER.

03 CLOCK-NUMBER. ..
03 FILLER..
DEDUCTIONS.

03 FICA-RATE...

03 WITHHOLDING-TAX...
03 PERSONAL-LOANS. ..
WAGES.

03 HOURS—-WORKED. ..
03 PAY-RATE...
NET-PAY...
EMPLOYEE-NAME.

03 SHIFT-CODE...

According to the rules for the CORRESPONDING phrase, the following subtractions take

place:

1st operand

Pnd operand

HOURS-WORKED OF WAGES OF
EMPLOYEE-RECORD

HOURS—-WORKED OF WAGES OF PAYROLL-CHECK

PAY-RATE OF WAGES OF EMPLOYEE-RECORD

PAY-RATE OF WAGES OF PAYROLL-CHECK

The following items are not subtracted, for the reasons stated:

Item

EMPLOYEE-NUMBER

Item not elementary item in either group

PLANT-LOCATION OF EMPLOYEE-
NUMBER OF EMPLOYEE—-RECORD

Name does not appear under PAYROLL-CHECK

CLOCK-NUMBER OF EMPLOYEE-NUMBER

Item is not elementary in one group

SHIFT-CODE OF CLOCK-NUMBER OF
EMPLOYEE-NUMBER OF EMPLOYEE-RECORD

Qualification is not identical in PAYROLL-CHECK

CONTROL-NUMBER OF CLOCK-NUMBER OF
EMPLOYEE-NUMBER OF EMPLOYEE-RECORD

Name does not appear under PAYROLL-CHECK

WAGES Name is not elementary in either group
TAX—RATE OF EMPLOYEE-RECORD Qualification is not identical in PAYROLL-CHECK
DEDUCTIONS Item not elementary in one group

240

U3979-J-Z2125-6-7600

PROCEDURE DIVISION GIVING phrase

GIVING phrase

Syntax rules

1. The identifier following the word GIVING may be a numeric-edited item since it is not
itself involved in the calculation.

2. When the GIVING phrase is supplied, the result of the arithmetic operation is assigned
to the specified identifier.

3. The result stored in the identifier replaces its previous contents. Therefore, it is not
necessary to reset the identifier to zero.

Example 3-62
ADD A B GIVING C.

The value C is set to the sum of A + B, and A and B are not changed.

U3979-J-2125-6-7600 241

ROUNDED phrase

PROCEDURE DIVISION

ROUNDED phrase

Syntax rules

1. If, after decimal point alignment, the number of places following the decimal point in the
result of an arithmetic operation is greater than the number of decimal places provided
in the resultant identifier, truncation is performed according to the size of this identifier.
If rounding is specified, the absolute value of the last significant digit of the resultant
identifier is incremented by 1 if the most significant digit of those to be truncated is
greater than or equal to 5.

2. Ifrounding is not desired but truncation of excess digits is required, the last digit of the
resultant identifier remains unchanged.

3. When the least significant digits of a resultant identifier are represented by P in the
PICTURE character-string for that identifier, rounding or truncation takes place relative
to the rightmost digit position for which internal storage is allocated (see example).

ROUNDED is assumed for COMPUTATIONAL-1 or COMPUTATIONAL-2 result items,

and need not be specified for them.

Example 3-63
Calculated result) Description of result | Description after rounding | Result without rounding
item
03&2627 PIC 99 03 03
PIC 99.9 03.3 03.2
PIC 99.99 03.26 03.26
PIC 99.999 03.263 03.262
123788&6 PIC S999PPP 124000 123000
1)

& represents the operational decimal point.

242

U3979-J-Z2125-6-7600

PROCEDURE DIVISION ON SIZE ERROR phrase

ON SIZE ERROR phrase

A size error condition exists if, after decimal point alignment, the integer digits in the
computed result exceed the number of places provided for them and thus cause an
overflow.

Syntax rules

1. Violation of the rules for evaluation of exponentiation always terminates the arithmetic
operation and always causes a size error condition (see "Arithmetic statements",
general rule 4, page 236f).

2. The ON SIZE ERROR phrase contains an imperative-statement which specifies what
actions are to be taken in the event of a size error.

3. The size error condition applies only to the final results of an arithmetic operation and
not to intermediate results, except in the case of the MULTIPLY and DIVIDE state-
ments.

4. If the ROUNDED phrase is specified, rounding takes place before the size error check.

If the ON SIZE ERROR phrase is specified and a size error condition exists after the
execution of the arithmetic operations specified by an arithmetic statement, the values
of the affected resultant identifiers remain unchanged from the values they had before
execution of the arithmetic statement. The values of resultant identifiers for which no
size error condition exists are the same as they would have been if the size error
condition had not resulted for any of the resultant identifiers. After completion of the
arithmetic operations, control is transferred to the imperative-statement specified in the
ON SIZE ERROR phrase and execution continues according to the rules for each
statement specified in that imperative-statement. If a procedure branching or condi-
tional statement which causes explicit transfer of control is executed, control is trans-
ferred in accordance with the rules for that statement; otherwise, upon completion of
the execution of the imperative-statement specified in the ON SIZE ERROR phrase,
control is transferred to the end of the arithmetic statement and the NOT ON SIZE
ERROR phrase, if specified, is ignored.

6. If ON SIZE ERROR is not specified and a size error condition exists after the execution
of the arithmetic operations specified by an arithmetic statement, the values of the
affected resultant identifiers are undefined. The values of resultant identifiers for which
no size error condition exists are the same as they would have been if the size error
condition had not resulted for any of the resultant identifiers. After completion of the
arithmetic operations, control is transferred to the end of the arithmetic statement, and
the NOT ON SIZE ERROR phrase, if present, is ignored.

7. If the size error condition does not exist, control is transferred to the end of the arith-
metic statement or to the imperative-statement specified in the NOT ON SIZE ERROR

U3979-J-2125-6-7600 243

ON SIZE ERROR phrase PROCEDURE DIVISION

phrase if it is specified. In the latter case, execution continues according to the rules for
each statement specified in that imperative-statement. If a procedure branching or
conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of the imperative-statement specified in the NOT ON SIZE ERROR
phrase, control is transferred to the end of the arithmetic statement.

8. For an ADD statement with the CORRESPONDING phrase or a SUBTRACT statement
with the CORRESPONDING phrase, if any of the individual operations produces a size
error condition, the imperative-statement specified in the ON SIZE ERROR phrase is
not executed until all of the individual additions or subtractions are completed.

9. Division by zero always causes a size error condition.

Example 3-64

IDENTIFICATION DIVISION.
PROGRAM-ID. SE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECTAL-NAMES.

TERMINAL IS T.
DATA DIVISION.
WORKING—STORAGE SECTION.
77 A PIC 99 VALUE ZERO.
77 B PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
MAIN SECTION.
P1.

MOVE 44 TO A.

MOVE 72 TO B.

ADD A TO B

ON SIZE ERROR

PERFORM PROC-A

END-ADD

STOP RUN.
PROC-A.

DISPLAY "Size error!" UPON T.

DISPLAY A UPON T.

DISPLAY B UPON T.

Current value of A: 44
Current value of B: 72

Calculated result: 116

244 U3979-J-2125-6-7600

PROCEDURE DIVISION Overlapping operands

3.9.7

3.9.8

The result item B is too small to accommodate the calculated result and a size error
condition occurs. Since ON SIZE ERROR is specified, the statement PERFORM PROC-A
is executed. Result item B is unchanged.

Overlapping operands

The following rule applies to all statements:

If a sending and a receiving item in any statement share a part or all of the same storage
areas, yet are not defined by the same data description entry, the result of the execution of
such a statement is undefined. With certain statements, the results will also be undefined if
the sending and receiving items are defined by the same data description entry. Further
information is contained in the rules associated with the individual statements.

Incompatible data

Except for the class condition test, the following applies when a data item is referenced in
the Procedure Division: If the content of a data item is not compatible with the data class
defined for that data item by its PICTURE clause, the result of the operation is undefined.

General rule

Every operation involving a numeric data item which may possibly have nonnumeric
contents (e.g. due to a redefinition of the data item or following a MOVE statement using
a group item as operand) should be preceded by the IF NUMERIC class test. The
operation can only be performed successfully if the class test yields the truth value
TRUE.

U3979-J-2125-6-7600 245

ACCEPT statement PROCEDURE DIVISION

3.9.9 Statements

ACCEPT statement

Function

The ACCEPT statement transfers small amounts of data to a data item. The data is either
read from a system file or made available by the compiler or operating system.

Format 1 reads user input by means of appropriate mnemonic names or supplies
information of the operating system and compiler..

Format 2 supplies date and time specifications of the operating system..

Format 1

ACCEPT didentifier [EROM mnemonic—name]

Syntax rules for format 1

1. identifier can be a group item or an alphabetic, alphanumeric, external decimal or
external floating-point data item.

2. mnemonic-name must be specified in the SPECIAL-NAMES paragraph and be
associated with one of the following implementor-names:

SYSIPT

TERMINAL

CONSOLE

job—variable—name (BS2000 job variable)
COMPILER-INFO

CPU-TIME, PROCESS—INFO, TERMINAL-INFO, DATE-IS04

246

U3979-J-Z2125-6-7600

PROCEDURE DIVISION ACCEPT statement

3. Datais stored aligned to the left in the area indicated by identifier, regardless of the
PICTURE character-string associated with the identifier. Incoming data is not edited,
and no error checking is performed.

The only exception to this is CPU-TIME: the CPU time is moved in accordance with the
rules of the MOVE statement from a field with the description PIC 9(6)V9(4).

4. SYSIPT, TERMINAL, or CONSOLE specifies the system file from which data is to be
read.
SYSIPT refers to the system file of that name.
TERMINAL refers to the system file SYSDTA (normally assigned to the data terminal).
CONSOLE refers to the system console.

5. When entered for a job-variable-name, mnemonic-name references the associated
operating system job variable which is to be read in. If the job variable cannot be read
in for some reason, the runtime system issues an error message, and the program is
then either continued or aborted, as determined by an appropriate compiler directive
(see [1]). In the former case, /* is assumed as the value of identifier.

6. When entered for COMPILER-INFO, CPU-TIME, PROCESS-INFO, or TERMINAL-
INFO, mnemonic-name specifies the information which is to be requested.

COMPILER-INFO refers to information provided by the compiler.

CPU-TIME, PROCESS-INFO, TERMINAL-INFO and DATE-ISO4 refer to information
provided by the operating system.

7. Ifthe FROM phrase is omitted, data is read by default from the logical input file SYSIPT.
Data can also be read from the logical input file SYSDTA by means of an appropriate
compiler directive (see [1]).

8. The execution of ACCEPT statements and the structure of the information provided for
the individual functions are described in the "COBOLS85 User Guide".

General rules for format 1

1. Ifthe system file specified for an ACCEPT statement is the same as one designated for
a READ statement, the results will be unpredictable.

2. An ACCEPT statement for job-variable will be rejected with an error message at object
time if the job variables are not present in the operating system.

U3979-J-2125-6-7600 247

ACCEPT statement PROCEDURE DIVISION

Example 3-65

for format 1

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECTAL-NAMES:
TERMINAL IS T.

PROCEDURE DIVISION.

ACCEPT INPUT-DATA FROM T.

The mnemonic-name T is linked to the implementor-name TERMINAL in the SPECIAL-
NAMES paragraph. The subsequent ACCEPT statement requests data from the system file
SYSDTA, which is assigned to TERMINAL and moves this data to the data item called
INPUT-DATA.

Format 2
DATE
DAY
ACCEPT identifier FROM
DAY—OF-WEEK
TIME

Syntax rules for format 2

1. The data item specified by identifier must not be an alphabetic elementary item.

2. The ACCEPT statement causes the requested information to be moved to the data item
specified by the identifier, in accordance with the rules governing the MOVE statement.
DATE, DAY, DAY-OF-WEEK and TIME are special data items and thus are not
described in the source program.

General rules for format 2

1. DATE is composed of the data elements "year" of century, "month" of year, and "day"
of month. The sequence of these conceptual elementary items is as follows, from left
to right: year, month, day. Thus, for example, April 1, 1996 would be expressed as
960401. DATE, if referenced in a COBOL program, is interpreted as if it had been
described as an unsigned elementary numeric integer data item, six digits in length (PIC

9(6)).

248

U3979-J-Z2125-6-7600

PROCEDURE DIVISION ACCEPT statement

2. DAY is composed of the data elements "year" of century, and "day" of year. The
sequence of these conceptual elementary items is as follows, from left to right: year,
day. Thus, for example, April 1, 1998 would be expressed as 98091. DAY, if referenced
in a COBOL program, is interpreted as if it had been described as an unsigned
elementary numeric integer data item, five digits in length (PIC 9(5)).

3. DAY-OF-WEEK is composed of a single data element whose content represents the
day of the week. If referenced in a COBOL program, DAY-OF-WEEK is interpreted as
if it had been described as an unsigned elementary numeric integer data item with a
length of one digit (PIC 9). In DAY-OF-WEEK, the value 1 represents Monday, 2 repre-
sents Tuesday, ..., 7 represents Sunday.

4. TIME is composed of the data elements "hours”, "minutes”, "seconds" and "hundredths
of a second". TIME is based on the 24-hour clock; thus 2:41 pm, for example, would be
expressed as 14410000. If referenced in a COBOL program, TIME is interpreted as if
it had been described as an unsigned elementary numeric integer data item, 8 digits in
length (PIC 9(8)). The minimum value for TIME is 00000000, the maximum value is
23595900. The last two digits are not supplied by the system, and are therefore always
set to zero.

U3979-J-2125-6-7600 249

ACCEPT statement PROCEDURE DIVISION

Format 4

This suppies (consecutively) the contents of the arguments in the command line.

ACCEPT identifier-2 [FROM mnemonic—-name—4]

ON EXCEPTION imperative—-statement-1
[NOT ON EXCEPTION imperative—statement-21]
END—ACCEPT]

Syntax rules

1. identifier-2 must refer to an alphanumeric elementary item.

2. mnemonic-name-4 must be linked in the SPECIAL-NAMES paragraph with the imple-
mentor-name ARGUMENT-VALUE.

3. NOT ON EXCEPTION can only be specified if ON EXCEPTION is also specified.

Format 5

This supplies the contents of an environment variable or the contents of a specific argument
from the command line. The name of the specified environment variable or the number of
the specified argument in the command line must have been defined before by an appro-
priate DISPLAY statement.

ACCEPT identifier-2 [FROM mnemonic—-name—-6]

ON EXCEPTION imperative—-statement-1
[NOT ON EXCEPTION imperative—statement-21]
LEND—-ACCEPT]

Syntax rules

1. identifier-2 must refer to an alphanumeric elementary item.

2. mnemonic-name-6 must be linked in the SPECIAL-NAMES paragraph with the imple-
mentor-name ARGUMENT-VALUE or ENVIRONMENT-VALUE.

3. NOT ON EXCEPTION can only be specified if ON EXCEPTION is also specified.

Note

A detailed example illustrating access to command lines and environment variables can be
found in chapter 13 of the “COBOL85 User Guide” [1].

250

U3979-J-2125-6-7600

PROCEDURE DIVISION ADD statement

ADD statement

Function

The ADD statement causes two or more numeric operands to be summed and the result to

be stored.

Format 1 of the ADD statement stores the sum in one of the operand items. More than
one addition may be expressed by specifying more than one result item in
the same ADD statement.

Format 2 of the ADD statement stores the sum in a separate result item.

Format 3 of the ADD statement adds the data items of one group item to the corre-
sponding data items of another group item.

Format 1

ADD

identifier-1
... 10 {identifier—2 [ROUNDED]}...
Titeral-1
[ON SIZE ERROR imperative-statement-11]
[NOT ON SIZE ERROR imperative—statement-21]

LEND—ADD]

Syntax rules for format 1

4,

Each identifier must refer to an elementary numeric item.

The composite of operands is determined by using all of the operands in a given
statement and must not contain more than 18 digits (see "Arithmetic statements", page
236).

The values of the operands preceding the word TO are added together and the sum is
added to the current value of identifier-2... The result is stored in identifier-2 ...

END-ADD delimits the scope of the ADD statement.

Additional rules are given under "Options in arithmetic statements” (page 239ff), where the
ROUNDED phrase and the (NOT) ON SIZE ERROR phrase are described.

U3979-J-2125-6-7600 251

ADD statement PROCEDURE DIVISION

Example 3-66
for format 1
Statement PICTURE IS of result item Calculation
ADDA,BTOC,D A+B+CstoredinC
A+ B + D stored in D

ADDA,B,CTOD S9999Vv99 A+ B+ C + D stored in D as SnnnnVnn
ADDA,14TOC 99999 A + 14 + C stored in C as nnnnn; rounded
ROUNDED if necessary
Format 2

identifier-1 identifier-2
ADD ... T0O GIVING {identifier-3 [ROUNDEDI]}...

Titeral-1 literal-2

[ON SIZE ERROR imperative-statement-11]
[NOT ON SIZE ERROR imperative—statement-21]
[END-ADD]

Syntax rules for format 2

1. Eachidentifier preceding the GIVING phrase must refer to an elementary numeric item.

2. identifier-3 may refer either to an elementary numeric item or to an elementary numeric-
edited data item.

3. The composite of operands is determined by using all of the operands in a given
statement, excluding the data items which follow the word GIVING, and must not
contain more than 18 digits (see "Arithmetic statements”, page 236).

4. The values of the operands preceding the word GIVING are added together, and the
sum is stored as the new value of identifier-3.

5. END-ADD delimits the scope of the ADD statement.

Additional rules are given under "Options in arithmetic statements” (page 239ff), where the
GIVING, ROUNDED, and (NOT) ON SIZE ERROR phrases are described.

252 U3979-J-2125-6-7600

PROCEDURE DIVISION ADD statement

Example 3-67

for format 2

Statement PICTURE IS of result item Calculation

ADD A, B, C GIVING D. 9999.99 A+ B + C stored in D as nnnn.nn

ADD A, B, 43.6 GIVING D |99V99 A + B + 43.6 stored in D. If the integer
ON SIZE ERROR result is greater than 2 digits, the size

GO TO O-FLOW error condition occurs and the GO TO
END-ADD. statement specified in the SIZE ERROR
phrase is executed.

Format 3

DD

{CORR

identifier—1 T0 identifier—2 [ROUNDED]
CORRESPONDING

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative—statement-2]

LEND—-ADD]

Syntax rules for format 3

1. Each identifier must refer to a group item.

2. The composite of operands is determined separately for each pair of corresponding
data items, and must not contain more than 18 digits (see "Arithmetic statements"”, page
236).

3. Elementary items within the first operand (identifier-1) are added to the corresponding
elementary items in the second operand (identifier-2 ...). The results are stored in the
items of the second operand.

4. END-ADD delimits the scope of the ADD statement.

Additional rules are given under "Options in arithmetic statements" (page 239ff), where the
CORRESPONDING, ROUNDED, and (NOT) ON SIZE ERROR phrases are described.
Example 3-68

for format 3

Refer to the description of the CORRESPONDING phrase for an example of the use of this
option (page 239).

U3979-J-2125-6-7600 253

ALTER statement PROCEDURE DIVISION

ALTER statement

Function

The ALTER statement modifies one or more GO TO statements, thereby altering a prede-
termined sequence of operations.

Format

ALTER {procedure-name—1 TQ [PROCEED TQJ procedure-name-=2}...

Syntax rules

1. procedure-name-1... must be names of paragraphs which contain only one sentence
consisting of a GO TO statement without the DEPENDING phrase.

2. procedure-name-2... must be paragraph names or section names in the Procedure
Division.

3. During the execution of the program, the ALTER statement modifies the GO TO
statement specified under procedure-name-1... so that subsequent executions of the

modified GO TO statement cause control to be transferred to procedure-name-2... (see
"GO TO statement”, page 278).

General rules

1. A GO TO statement in a section whose segment number is greater than or equal to 50
must not be referenced by an ALTER statement in a section with a different segment
number.

2. A GO TO statement in a section whose segment number is less than 50 may be
referenced by an ALTER statement in any section, even if the GO TO statement thus
referred to is contained in a program segment which has not yet been called for
execution.

254 U3979-J-2125-6-7600

PROCEDURE DIVISION COMPUTE statement

COMPUTE statement

Function

The COMPUTE statement is used to assign the value of a data item, literal, or arithmetic
expression to a data item.

Format

identifier-2
COMPUTE {identifier—1 [ROUNDEDI}... = {literal-1
arithmetic—expression
[ON SIZE ERROR imperative-statement-11]
[NOT ON SIZE ERROR imperative—statement-21]

LEND-COMPUTE]

Syntax rules

1. identifier-1... must refer to an elementary numeric item or an elementary numeric-edited
data item.

2. identifier-2 must refer to an elementary numeric item.

3. The arithmetic-expression specified in the COMPUTE statement permits the use of any
meaningful combination of identifiers (which must satisfy the general rules for data-
names in simple arithmetic operations), literals, and arithmetic operands; if necessary,
they may also be in parentheses (see also "Arithmetic expressions”, page 215).

4. |If identifier-2 or literal-1 is specified, the value of identifier-1 is set equal to the value of
identifier-2 or literal-1.

5. When an arithmetic-expression is used, the value of that arithmetic-expression is first
calculated and then stored as the new value of identifier-1...

6. The COMPUTE statement allows the user to combine arithmetic operations without the
restrictions on the composite of operands and/or receiving data items which are
imposed by the ADD and SUBTRACT statements.

7. Up to 50 data-names may be specified in a COMPUTE statement.
8. END-COMPUTE delimits the scope of the COMPUTE statement.

Additional rules are given under "Options in arithmetic statements” (page 239ff), where the
ROUNDED and (NOT) ON SIZE ERROR phrases are described.

U3979-J-2125-6-7600 255

COMPUTE statement PROCEDURE DIVISION

Example 3-69

Statement Calculation

COMPUTE A = The value of the expression (B + C) / D - E is assigned to A. The prece-
(B+C)/D-E. dence rules for evaluating expressions apply when calculating values.
COMPUTE A = 2. The value 2 is assigned to A.

256

U3979-J-Z2125-6-7600

PROCEDURE DIVISION CONTINUE statement

CONTINUE statement

The CONTINUE statement is a no operation statement. It indicates that no executable
statement is present. Processing is continued with the next executable statement.

Format

CONTINUE

Syntax rule
The CONTINUE statement may be used anywhere a conditional statement or an
imperative-statement may be used.

General rule

The CONTINUE statement has no effect on the execution of the program.

U3979-J-2125-6-7600 257

CONTINUE statement PROCEDURE DIVISION

Example 3-70

IDENTIFICATION DIVISION.
PROGRAM-ID. CONTI.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECTAL-NAMES.
TERMINAL IS T.
DATA DIVISION.
WORKING—STORAGE SECTION.
77 N PIC 9.
77 K PIC 9(3).
77 Z PIC 9(6) VALUE ALL ZERO.
77 E PIC 9(3).
PROCEDURE DIVISION.
PROC SECTION.
INPUT-PAR.
DISPLAY "Enter upper Timit N'" UPON T.
ACCEPT N FROM T.
IF N NUMERIC
THEN
CONTINUE
ELSE
DISPLAY "Incorrect entry" UPON T
PERFORM INPUT—-PAR
END-IF.
COMPUTATION.
PERFORM WITH TEST BEFORE VARYING K FROM 1 BY 1 UNTIL K > N
COMPUTE E = K ** 3
ADD E TO Z
END-PERFORM
DISPLAY "Result = " Z UPON T.
FINISH-PAR.
STOP RUN.

The effect of CONTINUE is to make the IF statement syntactically correct even though the
THEN branch does not contain an executable statement.

Example 3-71

READ INPUT-FILE AT END CONTINUE.

AT END is used in order to avoid program abortion at the end of the file; CONTINUE
specifies the unconditional statement which is required by the statement syntax, even
though nothing is to be done at this point in the program.

258 U3979-J-2125-6-7600

PROCEDURE DIVISION DISPLAY statement

DISPLAY statement

Function

Format 1 is used to output small quantities of data..

Format 1
Titeral-1

DISPLAY ... [UPON mnemonic—name 1 [WITH NO ADVANCING]
identifier-1

Syntax rules

1. literal-1 or identifier-1 serves to specify the operands in the order they are to be output.
If necessary, the contents of the data item specified by "identifier" are converted to
external formats according to the following rules:

Internal decimal and binary items are converted to external decimal data items.
Internal floating-point data items are converted to external floating-point data items.

No other data items require conversion.

If one of the operands is a figurative constant (except ALL literal), it is output with length
1. If one of the operands is the figurative constant ALL literal, the literal is output once.
If literal-1 is numeric, it must be an unsigned integer.

2. mnemonic-name must be specified in the SPECIAL-NAMES paragraph and be
associated with one of the following implementor-names:

CONSOLE, PRINTER, PRINTERO1 - PRINTER99, SYSOPT, TERMINAL, job-variable-
name (BS2000 job variable).

3. The mnemonic-name for SYSOPT, TERMINAL, CONSOLE, PRINTER and
PRINTERO1 - PRINTER99 specifies the system file into which the data is to be written.
SYSOPT specifies the system file with the same name.

TERMINAL specifies the system file SYSOUT.

CONSOLE specifies the system operator console.

PRINTER specifies the system file SYSLST, and PRINTERO1 - PRINTER99 refer to the
system files SYSLSTO1 - SYSLST99.

U3979-J-2125-6-7600 259

DISPLAY statement PROCEDURE DIVISION

4. If the UPON phrase is omitted, the data is written by default to the logical output file
SYSLST. Data can also be written to the logical output file SYSOUT by means of an
appropriate compiler directive (see [1]).

General rules

1. A maximum logical record size is assumed for each device. These sizes are listed in

Table 3-15.

Device Maximum record size

CONSOLE 180 characters

PRINTER 132 characters + 1 control byte

PRINTERO1_PRINTER99

SYSOPT 80 characters: 72 data bytes; bytes 73-80 contain the first 8
bytes of the PROGRAM-ID name.

TERMINAL 8192 characters

Table 3-15: Maximum logical record size for the DISPLAY statement

2. When a DISPLAY statement contains more than one operand, the contents of the
specified operands and literals are displayed adjacent to each other, from left to right.

3. For output to printer, the following entries cause a line feed: DISPLAY, WRITE and
WRITE AFTER ADVANCING. A WRITE statement without ADVANCING phrase and a
WRITE statement with BEFORE ADVANCING phrase causes the printer to space after
printing. Therefore, mixed use of DISPLAY and WRITE statements on the same device
within the same program may cause two or more lines to overprint. Overprinting is not
possible on laser printers.

4. The maximum record length for job variables is 256 characters. If the total number of
characters in the operands exceeds the maximum record length, the record will be
truncated to the maximum length.

5. When ajob variable is used as a monitoring job variable (MONJV), the system protects
the first 128 bytes (system portion) of this job variable against write access. Therefore,
only that portion of a record that begins at position 129 will be written from position 129
of the monitoring job variable. In all other respects, general rule 4 applies for monitoring
job variables.

For further information see the "COBOL85 User Guide" [1].

260 U3979-J-2125-6-7600

PROCEDURE DIVISION DISPLAY statement

Example 3-72

SPECTAL-NAMES.
TERMINAL IS SPECIAL-OUTPUT.

PROCEDURE DIVISION.

DISPLAY OUTPUT-MESSAGE UPON SPECIAL-OUTPUT.

Here, the mnemonic-name SPECIAL-OUTPUT is associated with the implementor-name
TERMINAL in the SPECIAL-NAMES paragraph. The DISPLAY statement writes the current
contents of OUTPUT-MESSAGE on SYSOUT.

Example 3-73
DISPLAY "Hello world".

Since the UPON phrase is omitted, the literal "Hello world" is written to the logical output
device SYSLST. If the compiler directive COMOPT REDIRECT-ACCEPT-DISPLAY=YES
(in SDF: ACCEPT-DISPLAY-ASSGN=*TERMINAL) is specified, the literal is written to the
output file SYSOUT (see [1]).

The following three formats of the DISPLAY statement are extensions from the X/Open
Portability Guide. They allow access to environment variables and command lines. Access
to command lines is meaningful only if the object program is executing in the POSIX sub-
system available as of BS2000/0OSD V2.0. Execution of the COBOL85 compiler and of any
programs generated by it under POSIX is described in the “COBOL85 User Guide” [1].

Format 2

This format sets the number of the argument in the command line which is subsequently
accessed via an ACCEPT statement.

UPON mnemonic—name—3 [END—DISPLAY]

identifier-3
DISPLAY

integer—1

Syntax rules
1. identifier-3 must refer to an elementary item that is described as an unsigned integer.
2. integer-1 must be unsigned.

3. mnemonic-name-3 must be linked in the SPECIAL-NAMES paragraph with the imple-
mentor-name ARGUMENT-NUMBER.

U3979-J-7125-6-7600 261

DISPLAY statement PROCEDURE DIVISION

Format 3

This format sets the name of the environment variable which is subsequently accessed by
an ACCEPT or DISPLAY statement.

Tdenttiffier-4

DISPLAY
Titeral-1

} UPON mnemonic—name—5 [END-DISPLAY]

Syntax rules
1. identifier-4 must refer to an alphanumeric elementary item.
2. literal-1 must be a nonnumeric literal.

3. mnemonic-name-5 must be linked in the SPECIAL-NAMES paragraph with the imple-
mentor-name ENVIRONMENT-NAME.
Format 4

This format writes to the environment variable specified previously in a format-3 DISPLAY
statement.

identifier-2
DISPLAY UPON mnemonic—name—6

Titeral-2

ON EXCEPTION imperative—-statement-1
[NOT ON EXCEPTION imperative—statement-21]
END—DISPLAY]

Syntax rules
1. identifier-2 must refer to an alphanumeric elementary item.
2. literal-2 must be a nonnumeric literal.

3. mnemonic-name-6 must be linked in the SPECIAL-NAMES paragraph with the imple-
mentor-name ENVIRONMENT-VALUE.

4. NOT ON EXCEPTION can only be specified if ON EXCEPTION is also specified.

A detailed example of accessing command lines and environment variables can be found
in chapter 13 of the COBOL User Guide [1].

262

U3979-J-2125-6-7600

PROCEDURE DIVISION DIVIDE statement

DIVIDE statement

Function

The DIVIDE statement is used to divide one numeric operand by another and store the

result.

Format 1 of the DIVIDE statement stores the quotient in the dividend item.

Format 2 of the DIVIDE statement stores the quotient in more than one separate
result item.

Format 3 of the DIVIDE statement uses the GIVING phrase for storing the quotient
and generates the division remainder by means of the REMAINDER
phrase.

Format 1

identifier-1

DIVIDE INTO {identifier—2 [ROUNDEDI}...

literal-1

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative—statement-21]
CEND-DIVIDE]

Syntax rules for format 1

1. Each identifier must refer to an elementary numeric item.

2. The value of identifier-2 is divided by the value of identifier-1 or literal-1. The quotient
then replaces the current value of identifier-2 and so on.

The maximum size of the quotient after decimal point alignment is 18 decimal digits.
4. Division by zero always results in overflow (SIZE ERROR).

In the case of division with ON SIZE ERROR, it is still possible for a DIVIDE-ERROR to
occur since no test is made for quotient overflow (only for division by zero).

6. END-DIVIDE delimits the scope of the DIVIDE statement.

Additional rules are given under "Options in arithmetic expressions" (page 239ff), where the
ROUNDED, (NOT) ON SIZE ERROR, and GIVING phrases are described.

U3979-J-2125-6-7600 263

DIVIDE statement PROCEDURE DIVISION

Example 3-74
for format 1
Statement PICTURE of result item Calculation
DIVIDE A INTO B 9(4)VI(2) B / A stored as nnnnVnn in B
Format 2
identifier-1 INTO identifier-2
DIVIDE
literal-1 BY literal-2

GIVING {identifier—-3 [ROUNDEDI]}...
[ON SIZE ERROR imperative—statement-1]

[NOT ON SIZE ERROR imperative—statement-2]

CEND-DIVIDE]

Syntax rules for format 2

1. identifier-1 or identifier-2 must refer to an elementary data item.

2. identifier-3... may refer to an elementary numeric item or to an elementary numeric-
edited item.

3. When the INTO phrase is used, the value of identifier-2 or literal-2 is divided by the
value of identifier-1 or literal-1; when the BY phrase is used, the value of identifier-1 or
literal-1 is divided by the value of identifier-2 or literal-2. The quotient is stored in
identifier-3... .

4. The maximum size of the quotient after decimal point alignment is 18 decimal digits.
5. Division by zero always results in overflow (SIZE ERROR).

In the case of division with ON SIZE ERROR, it is still possible for a divide error to occur
since no test is made for quotient overflow (only for division by zero).

7. END-DIVIDE delimits the scope of the DIVIDE statement.

Additional rules are given under "Options in arithmetic expressions" (page 239ff), where the
ROUNDED, (NOT) ON SIZE ERROR, and GIVING phrases are described.

264 U3979-J-2125-6-7600

PROCEDURE DIVISION DIVIDE statement

Example 3-75
for format 2
Statement PICTURE IS of resultitem (C): QGalculation
DIVIDE A INTO B S999V99 for C B / A stored in C as nnnVnn after
GIVING C ROUNDED rounding, if necessary
DIVIDE A BY B, 9(5) for C A /B stored in C as nnnnn, in D as nnnn,
GIVING C, D 9(4) for D after rounding the rightmost character,
ROUNDED if necessary.
Format 3
identifier-1 INTO identifier—-2
DIVIDE GIVING identifier—3 [ROUNDED]
Titeral-1 BY Titeral-2

REMAINDER identifier—4

[ON SIZE ERROR imperative-statement-11]

[NOT ON SIZE ERROR imperative—statement-21]
[END-DIVIDE]

Syntax rules for format 3

1. identifier-1 or identifier-2 must refer to an elementary numeric data item.

2. identifier-3 or identifier-4 may refer to an elementary numeric data item or to an
elementary numeric-edited data item.

3. When INTO is used, the value of identifier-2 or literal-2 is divided by the value of
identifier-a or literal-1. When the BY phrase is used, the value of identifier-1 or literal-1
is divided by the value of identifier-2 or literal-2. The quotient is stored in identifier-3.

4. When the REMAINDER phrase is used, the remainder of the division is stored in
identifier-4.
The remainder is calculated by subtracting the product of the quotient and the divisor
from the dividend.
If identifier-3 is defined as an elementary numeric-edited item, then the remainder is
calculated by using an intermediate item for the quotient, containing the value in an
unedited format.
If both the ROUNDED and the REMAINDER phrases are supplied, then the remainder
is calculated by using an intermediate item for the quotient, containing the quotient of
the DIVIDE statement in a truncated rather than rounded format.

U3979-J-2125-6-7600 265

DIVIDE statement PROCEDURE DIVISION

5.

7.
8.
9.

If ON SIZE ERROR is specified, and overflow occurs in the quotient, then the remainder
will not be calculated. In this case, the contents of the data items referenced by
identifier-3 and identifier-4 are therefore unchanged.

If overflow occurs in the remainder, the value of the data item referenced by identifier-
4 is not changed.

The precision of the data item required for the REMAINDER phrase (identifier-4) is
determined by the calculations described above. Appropriate decimal point alignment
and truncation (rather than rounding) are performed as necessary for the contents of
the data item referenced by identifier-4.

The maximum size of the quotient after decimal point alignment is 18 decimal digits.
Division by zero always results in overflow (SIZE ERROR).
END-DIVIDE delimits the scope of the DIVIDE statement.

Additional rules are given under "Options in arithmetic statements" (page 239ff, where the
ROUNDED, (NOT) ON SIZE ERROR, and GIVING phrases are described.

Example 3-76
for format 3
Statement Result item (C) Calculation
PICTURE IS:
DIVIDE A BY B, 9(5) for C A/ B stored in C as nnnnn, the remainder,
GIVING C REMAINDER D 9(2) f