
Edition June 2013

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
P

fa
d:

 P
:\F

TS
-B

S
\L

M
S

\s
df

\e
n\

lm
ss

df
e.

vo
r

English

LMS V3.4B
SDF Format

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2013.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U8326-J-Z125-6-76

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
i 2

01
3

 S
ta

nd
 1

1:
30

.4
7

Pf
ad

: P
:\F

TS
-B

S
\L

M
S

\s
df

\e
n\

lm
ss

df
e.

iv
z

Contents

1 Preface . 9

1.1 Brief product description . 9

1.2 Target group . 9

1.3 Summary of contents . 10

1.4 Notational conventions . 11

1.5 Readme file . 12

1.6 Changes since LMS V3.3A . 12

1.7 Software configuration requirements . 14

2 Characteristics of LMS . 15

2.1 Program libraries . 15

2.2 Members . 15

2.3 Delta method . 16

2.4 Input and output stream . 16

2.5 Input and output in S variables (SDF-P) . 20

2.6 Support for program development . 23

2.7 LMS in interactive/batch mode . 24

2.8 Addressing mode . 25

3 Program libraries . 27

3.1 Structure of a library . 28

3.2 Input and output libraries . 29

Contents

 U8326-J-Z125-6-76

3.3 Multiple access to libraries . 29

3.4 Restricting multiple access . 30

4 Members . 31

4.1 Multiple access to members . 32

4.2 Member type definition . 33
4.2.1 Standard types . 33
4.2.2 Derived types . 36

4.3 Convention for member designations . 37
4.3.1 Member designations in statements . 37
4.3.2 Logging the member designations . 38
4.3.3 Multiple selection of member designations . 39
4.3.4 Construction specification for member designations 41

4.4 Member attributes . 43
4.4.1 Attributes assigned by the access method . 43
4.4.2 Attributes that can be assigned by users . 44
4.4.3 Input format for dates . 44

4.5 Relationships between members . 45

4.6 Version management . 48
4.6.1 Version maintenance and storage . 48
4.6.2 Version designations . 50
4.6.3 Version conventions . 53
4.6.3.1 Convention: NONE . 54
4.6.3.2 Convention: STD-SEQUENCE . 54
4.6.3.3 Convention: STD-TREE . 55
4.6.3.4 Convention: MULTI-SEQUENCE . 56

4.7 Member protection/data protection . 57
4.7.1 Access protection for members . 57
4.7.2 Data protection by overwriting . 65
4.7.3 Auditing . 66

5 LMS functions . 67

5.1 Starting/terminating LMS . 67
5.1.1 Starting LMS . 67
5.1.2 Monitoring LMS execution with job variables . 69
5.1.3 Start file . 71

Contents

U8326-J-Z125-6-76

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

AG
 1

99
5

P
fa

d:
 P

:\F
TS

-B
S\

LM
S\

sd
f\e

n\
lm

ss
df

e.
iv

z

5.1.4 Preset options following LMS startup . 73
5.1.5 Terminating the LMS run . 73

5.2 Library assignment . 74

5.3 Processing of members . 83
5.3.1 Adding members to a library . 83
5.3.2 Outputting members to a file . 86
5.3.3 Listing members . 86
5.3.4 Deleting members . 86
5.3.5 Comparing members . 87
5.3.6 Correcting members . 89
5.3.7 Renaming members . 90
5.3.8 Outputting library directories . 90
5.3.9 Storing procedures . 90

5.4 Archiving members using the delta method . 91
5.4.1 Delta as a storage form and organizational aid . 92
5.4.2 Adding delta members . 93
5.4.3 Overview of delta members . 94
5.4.4 Deleting delta members . 95
5.4.5 Locking delta members . 95
5.4.6 Restrictions when using the delta method . 95

5.5 Controlling the LMS run . 96
5.5.1 LMS logging parameters . 96
5.5.2 Controlling log output . 97
5.5.3 Controlling screen overflow . 98
5.5.4 Error handling in interactive and procedure modes 99
5.5.4.1 Spin-off mechanism . 99
5.5.4.2 Statement return code mechanism . 99
5.5.5 User interfaces . 103
5.5.6 Interrupting the LMS run . 103
5.5.7 Using job switches . 104

5.6 PAM key elimination . 105
5.6.1 Library files . 105
5.6.2 Member processing . 105
5.6.3 Summary . 110

5.7 Support for NK4 disks . 111
5.7.1 Adding files with ADD-ELEMENT . 111
5.7.2 Outputting members with EXTRACT-ELEMENT . 111

5.8 Handling alias names (ACS) . 114

Contents

 U8326-J-Z125-6-76

5.9 Using extended character sets in LMS (XHCS) 116
5.9.1 Hardware and software requirements . 117
5.9.2 LMS-specific application of extended character sets 117

5.10 Utilizing LMS functionality from within EDT . 121

5.11 LMS and EDT V17 . 124

6 Support for the software development process 125

6.1 Borrowing mechanism . 126

6.2 make functionality . 127
6.2.1 Actions . 131
6.2.2 Using variables . 131
6.2.3 Selection and construction specifications in make 133
6.2.4 Runtime control during continuation processing 133
6.2.5 TOUCH . 134
6.2.6 make operation . 134

7 Statements . 137

7.1 SDF standard statements for LMS . 137

7.2 Syntax description . 138

7.3 Input rules . 154

7.4 Statement aliases . 155

7.5 Description of the LMS statements . 156
ACTIVATE-USER-EXIT . 158
ADD-ELEMENT . 165
BEGIN-MAKE . 176
make substatements . 182
CALL-EDT . 197
CLOSE-LIBRARY . 199
COMPARE-ELEMENT . 201
COPY-ELEMENT . 213
COPY-LIBRARY . 226
DEACTIVATE-USER-EXIT . 229
DELETE-ELEMENT . 230
EDIT-ELEMENT . 237
EDIT-ELEMENT-ATTRIBUTES . 251
EDIT-ELEMENT-PROTECTION . 254

Contents

U8326-J-Z125-6-76

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

AG
 1

99
5

P
fa

d:
 P

:\F
TS

-B
S\

LM
S\

sd
f\e

n\
lm

ss
df

e.
iv

z

END . 256
EXTRACT-ELEMENT . 257
FIND-ELEMENT . 268
MODIFY-ELEMENT . 277
MODIFY-ELEMENT substatements for member types R, C and L 287
MODIFY-ELEMENT substatements for textual members 300
MODIFY-ELEMENT-ATTRIBUTES . 304
MODIFY-ELEMENT-PROTECTION . 314
MODIFY-LIBRARY-ATTRIBUTES . 324
MODIFY-LMS-DEFAULTS . 330
MODIFY-LOGGING-PARAMETERS . 351
MODIFY-TYPE-ATTRIBUTES . 356
OPEN-LIBRARY . 364
PROVIDE-ELEMENT . 368
REORGANIZE-LIBRARY . 377
RESET-LMS-DEFAULTS . 379
RESET-LOGGING-PARAMETERS . 380
RESET-TYPE-ATTRIBUTES . 381
RETURN-ELEMENT . 382
SHOW-ELEMENT . 392
SHOW-ELEMENT-ATTRIBUTES . 406
SHOW-LIBRARY-ATTRIBUTES . 425
SHOW-LIBRARY-STATUS . 428
SHOW-LMS-DEFAULTS . 430
SHOW-LOGGING-PARAMETERS . 433
SHOW-STATISTICS . 434
SHOW-TYPE-ATTRIBUTES . 438
SHOW-USER-EXITS . 442
WRITE-COMMENT . 443

8 Format of LMS output in S variables . 445

8.1 COMPARE-ELEMENT statement . 445

8.2 FIND-ELEMENT statement . 446

8.3 SHOW-ELEMENT-ATTRIBUTES statement . 447

8.4 SHOW-LIBRARY-ATTRIBUTES statement . 450

8.5 SHOW-STATISTICS statement . 452

Contents

 U8326-J-Z125-6-76

9 Examples . 457

9.1 Adding, correcting and assembling library source programs 457

9.2 Copying members . 462

9.3 Comparing members . 466

9.4 Processing delta members . 471

9.5 Modifying an object module . 474

9.6 Generating SAM/ISAM files . 476

9.8 Branching to a user program while a member is being listed 483

9.9 Granting and displaying protection attributes 487

9.10 Automatic version incrementation with convention NONE 490

9.11 Automatic version incrementation with convention STD-SEQUENCE 492

9.12 Automatic version incrementation with convention STD-TREE 495

9.13 make run . 498

9.14 Using the output in S variables . 505

9.15 Library lists . 506

10 Appendix . 509

10.1 Supplementary information in LMS messages 509

10.2 Messages of the AMCB access routine . 511

10.3 Old LMS subprogram interface . 513

10.4 Migrating old library formats . 516

10.5 Product components . 517

Related publications . 519

Index . 521

U8326-J-Z125-6-76 9

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

1

1 Preface
This manual describes the functions and mode of operation of the Library Maintenance
System (LMS).

1.1 Brief product description

The Library Maintenance System (LMS) creates and manages program libraries and
processes the members they contain.

Program libraries are BS2000/OSD PAM files which are processed using the library access
method PLAM (Program Library Access Method); for this reason they are also known as
PLAM libraries.

The Library Maintenance System (LMS) can also be called by a user program as a
subroutine. This provides the user with convenient facilities for processing LMS libraries
and their contents directly from his main program. This subroutine interface is described in
a separate manual [1].

LMS supports the software development process using the borrowing mechanism and
make functionality.

1.2 Target group

This manual is aimed at BS2000/OSD users who use the Library Maintenance System
(LMS) for managing their files and members.

You should be familiar with BS2000/OSD, in particular with its major commands.

You should also be familiar with the BS2000 command language SDF (System Dialog
Facility) since the user interface, screen layout and operator guidance of LMS are defined
by SDF. Appropriate information can be found in [3].

Summary of contents Preface

10 U8326-J-Z125-6-76

1.3 Summary of contents

This manual covers the following topics:

● Preface
A brief description of the BS2000/OSD product LMS and information on using the
manual

● Characteristics of LMS
An overview of the concepts used in LMS, such as program libraries, members and
member types, and of the input and output capabilities of LMS

● Program libraries
Information about the structure and accessing of program libraries

● Members
A description of the member types and of the applicable convention for the member
designation, notes on multiple selection and the construction specification, a
description of member attributes and the relationships between members, information
about version management and member protection.

● LMS functions
An outline of the facilities provided by LMS

● Support for the software development process
the make functionality and the borrowing mechanism

● Statements
All statements in alphabetical order

● Format of LMS outputs in S variables
Statements in which S variables (system variables) can be generated

● Examples
Selected examples for using LMS

● Compatibility
Notes on BS2000 version dependencies

● Appendix
Information on compatibility and version dependencies (BS2000/OSD-BC, products)

You will find an index and a list of related publications at the back of the manual.

Preface Notational conventions

U8326-J-Z125-6-76 11

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

1

1.4 Notational conventions

i

This symbol indicates that the subsequent, indented paragraph contains important or indis-
pensable information.

Note
The word “Note” before an indented paragraph indicates that the subsequent paragraph
contains important information.

[1]
Numbers enclosed in square brackets are references to the corresponding manual in the
list of related publications at the end of the manual.

[]
Square brackets in SDF syntax examples: the characters within the brackets are optional.

Boldface
In SDF syntax examples, the actual lines concerned are shown in boldface.
The rules as described in the relevant part of the reference section apply for the remaining
syntax examples.

SYNTAX/example
SDF syntax and example inputs/outputs are distinguished via different fonts. Syntax
examples are also enclosed in frames.

Readme file Preface

12 U8326-J-Z125-6-76

1.5 Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000/OSD

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

1.6 Changes since LMS V3.3A

Messages

The “Messages” chapter is no longer included.
You can find the messages on the manual server (URL: http://manuals.ts.fujitsu.com) by
means of an HTML application and on the “BS2000/OSD SoftBooks” DVD.

The main new features are:

● Changes with LMS V3.3B

– The statement OPEN-LIBRARY has been extended by the operand SNAPSET.
From BS2000/OSD-BC V7.0 on, files can be accessed from snapsets.

– As of PLAM V3.4A the CCSN of newly created elements will be derived from the
CCSN of the library file unless the program creating the element doesn't specify a
value of its own.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Changes since LMS V3.3A

U8326-J-Z125-6-76 13

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

1

● Changes with LMS V3.4A

– As of BS2000/OSD-BC V8.0, BS2000 supports the SQ-Series based on Intel X86
processors. Elements generated for this SQ-Series with type L can be displayed
with //SHOW-ELEMENT and updated with //MODIFY-ELEMENT. They are
identified by HSI-CODE: X86.

– LMS calls EDT V17 in compatibility mode by default so that existing procedures run
furthermore without changes. During editing of Unicode elements, EDT switches
over to Unicode mode automatically.

To edit elements with records longer than 255 characters but no Unicode character
set specified please use the following commands after you started editing with LMS
statement //EDIT-ELEMENT respectively EDT:

@MODE OP=UNICODE
@OPEN L=<lib>(<elem>)
@CLOSE

– The statement MODIFY-ELEMENT-ATTRIBUTES has been extended by the new
value *LIBRARY-DEFAULT for the operand CODED-CHARACTER-SET.

– The statement MODIFY-LMS-DEFAULTS has been extended by the new operand
EDT-MODE.

– The statement SHOW-LMS-DEFAULTS has been extended by the new value EDT-
MODE for the DEFAULTS operand.

– The statement CALL-EDT has been extended by the new operand EDT-MODE.

– The statement EDIT-ELEMENT has been extended by the new operand EDT-
MODE.

● Changes with LMS V3.4B

– The new EDIT-ELEMENT-ATTRIBUTES statement starts the guided dialog
mechanism for the MODIFY-ELEMENT-ATTRIBUTES statement.

– The new EDIT-ELEMENT-PROTECTION statement starts the guided dialog
mechanism for the MODIFY-ELEMENT-PROTECTION statement.

Software configuration requirements Preface

14 U8326-J-Z125-6-76

1.7 Software configuration requirements

LMS V3.4B runs on BS2000/OSD-BC V6.0 or later. Additionaly the following is necessary
for selected functions:

– BS2000/OSD-BC as of V7.0, if libraries on snapsets are to be opened. Snapsets are
copies of a pubset on the base of snap units. These snapsets created by the system-
administration can be used as a logical backup of all files on a pubset.

– EDT for editing of text elements and for the output of the LMS log to an EDT work file.
For the editing of Unicode elements EDT V17.0 or later is necessary.

– SDF-P for input from and output to S variables and for full usage of the make functio-
nality

– SECOS data protection with GUARDS and SAT logging of security member accesses

U8326-J-Z125-6-76 15

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

2

2 Characteristics of LMS
This section provides a brief overview of the characteristics of LMS:

– definition of concepts: program library, member and delta method

– input and output capabilities of LMS

– mode of operation of LMS, illustrated by an example

– behavior of LMS in interactive and batch modes

2.1 Program libraries

LMS uses program libraries as the library format. A program library is a file with a
substructure. It contains members and a directory of the stored members. Program libraries
serve to store source programs, macros, object modules, phases (load modules), lists,
procedures, text etc. (see chapter “Program libraries” on page 27 for details).

2.2 Members

A member is a logically coherent data set such as a file, a procedure, an object module or
a source program. Each member can be individually addressed within the library by way of
its member designation. In the context of LMS the terms “member” and “element” are
used synonymously.

The member designation identifies a member and consists of three parts: name, version
and type.

Name: The name component describes the logical contents of the member.

Version: The version component describes the current development state of the
member.

Type: The type component serves to classify the members.

For a description of the member types, see page 33ff.

Delta method/LMS input and output stream Characteristics of LMS

16 U8326-J-Z125-6-76

2.3 Delta method

If the delta method is used, only the differences (deltas) to each preceding version are
stored when a member has several versions. This saves storage space. When such
versions are read, LMS merges these deltas at the appropriate locations so that the
complete member is available to the user. For further information on filing members using
the delta method, see page 91ff.

2.4 Input and output stream

LMS reads all its inputs via the dialog interface SDF. See [3] for details.

Characteristics of LMS LMS input and output stream

U8326-J-Z125-6-76 17

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

2

The following figure illustrates the LMS input and output capabilities:

Figure 1: LMS access options

LMS
Input/output

Data storage

Statement input Data input

Structured output

User
file

EDT work
file x

EAM area System
file

SYSDTA

System
file

SYSSTMT

PLAM
library

User
file

Stream
SYSINF

EDT work
file x

S
variable

EDT
work file 9

PLAM
library

System
file

SYSOUT

System
file

SYSLST

Stream
SYSMSG

Data output Log output

LMS input and output stream Characteristics of LMS

18 U8326-J-Z125-6-76

Output redirection

LMS output is to SYSOUT, unless directed elsewhere. With the LMS statement MODIFY-
LOGGING-PARAMETERS, it is possible to redirect LMS output to the system file SYSLST,
to a user-defined library member or to EDT work file 9, or to switch output off.

Example of an LMS run

The following example shows a short LMS run in order to provide an initial impression of
the way in which LMS operates. To make the example executable, the two files
A.EXAMPLE and A.SOURCE.A must exist under the user ID. The user inputs are indicated
by lowercase letters and bold type, the LMS messages by uppercase letters.

The example contains the following functions:

– start LMS program
– open new library
– add new member A.SOURCE.A to the library
– add new member A.EXAMPLE to the library and simultaneously rename it
– output directory of the library
– terminate LMS program

/show-file-attributes file-name=a.
0000003 :N:$USER.A.EXAMPLE
0000003 :N:$USER.A.SOURCE.A
:N: PUBLIC: 2 FILES. RES= 6, FREE= 4, REL= 0 PAGES
/start-lms —— (1)
//open-library library=lib1,mode=*update —————————————————————————————— (2)
//add-element from-file=a.source.a,to-elem=*lib(type=s) ——————————————— (3)
//modify-logging-parameters logging=*maximum —————————————————————————— (4)
//add-element from-file=a.example,to-elem=*lib(elem=examp,type=d) ————— (5)

INPUT FILE
OUTPUT LIBRARY= :N:$USER.LIB1 ——— (6)

 ADD :N:$USER.A.EXAMPLE AS (D)EXAMP/@(0001)/2012-05-29

Characteristics of LMS LMS input and output stream

U8326-J-Z125-6-76 19

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

2

//show-element-attributes ——— (7)
INPUT LIBRARY= :N:$USER.LIB1 ——— (8)

TYP NAME VER (VAR#) DATE

(D) EXAMP @ (0001) 2011-08-02

1 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS

TYP NAME VER (VAR#) DATE

(S) A.SOURCE.A @ (0001) 2011-08-02

 1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//end ——— (9)

/

(1) LMS is called.

(2) LMS creates LIB1 as a global library. The library is opened with UPDATE, i.e. it is
possible both to read in the library and also to write to the library.
If the library does not yet exist, it will be created.

(3) File A.SOURCE.A is added to the library as an S-type member and is not renamed.

(4) The option for the LMS logging scope is changed to maximum. LMS outputs a
complete log, i.e. not only error messages but also positive acknowledgments.

(5) File A.EXAMPLE is added to the library as a D-type member with the member
designation EXAMP.

(6) Positive acknowledgment: since the logging output scope was changed to
maximum (cf. (4)), LMS confirms the inclusion of file A.EXAMPLE as member
EXAMP.

(7) The directory of program library LIB1 is to be listed.

(8) Directory entry of program library LIB1.

(9) LMS is terminated.

LMS input and output in S variables (SDF-P) Characteristics of LMS

20 U8326-J-Z125-6-76

2.5 Input and output in S variables (SDF-P)

S variables are always replaced automatically at input by the SDF dialog interface (see the
manual “SDF Dialog Interface” [3]), which LMS uses for all inputs.

LMS supports the output of selected data in S variables, which always produces lists of
structures (see the manual “SDF-P” [12]). In the supported statements, output in the
S variable can be switched locally using the operand STRUCTURE-OUTPUT=, apart from
(independent of) the output stream.

Information can be output in S variables with the following statements:

COMPARE-ELEMENT
FIND-ELEMENT
SHOW-ELEMENT-ATTRIBUTES
SHOW-LIBRARY-ATTRIBUTES
SHOW-STATISTICS
SHOW-TYPE-ATTRIBUTES

The variable must be declared as follows:

/DECL-VAR varname(TYPE=*STRUC),MULT-ELEM=*LIST

"varname" is a freely selectable name. The variable can also be output via the SYSINF
stream. In this case, the command /ASSIGN-STREAM STREAM=SYSINF,
TO=*VAR(varname) must be executed before the statement that is to create the variable.

The command /ASSIGN-STREAM STREAM=SYSINF,TO=*DUMMY stops the creation of
variables. LMS checks the SYSINF assignment internally if STRUCTURE-OUTPUT=
*SYSINF applies, and, for reasons of performance, it only produces output in the SYSINF
stream if the SYSINF assignment (direct or via SYSVAR) is not equal to *DUMMY.

Support for MIP variables

Selected LMS messages can be stored in MIP variables (MIP = Message Improvement
Program). MIP variables are S variables in which the MIP product stores messages. The
MIP variables can be evaluated in S procedures in order to control further operation. The
following messages are provided for MIP variables:

LMS0302 ELEMENT (&00) NOT FOUND
(&00): element designation in format

*LIB-ELEM(library,element(version),type)

LMS0303 ELEMENT (&00) NOT IN RANGE OF REFERENCE CONDITION
(&00): element designation (format, see LMS0302)

LMS0310 LMS VERSION '(&00)' STARTED
(&00): LMS version in format dd.dldd d=digit, l=letter

Characteristics of LMS LMS input and output in S variables (SDF-P)

U8326-J-Z125-6-76 21

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

2

LMS0311 LMS VERSION '(&00)' TERMINATED NORMALLY
(&00): LMS version (format, see LMS0310)

LMS0312 LMS VERSION '(&00)' TERMINATED ABNORMALLY
(&00): LMS version (format, see LMS0310)

These messages appear in the message file with the attribute WARRANTY=*YES. The
warranty applies to the message code and the inserts only, and not to the message text.

To be able to use MIP variables in LMS, the user must do the following:

1. Declare the MIP variable as follows:

/DECL-VAR varname(TYPE=*STRUC),MULT-ELEM=*LIST

"varname" is a freely selectable name. The above declaration defines a list of struc-
tures. Each member in the list can hold one message and has the following format (e.g.
the i-th list member):

varname#i.MSG-TEXTcomplete message text
varname#i.MSG-IDmessage code
varname#i.I0insert 0

:
varname#i.In insert n

The number of inserts depends on the message.

2. Enter the command

/ASSIGN-STREAM STREAM=SYSMSG,TO=*VAR(VAR-NAME=varname)

to save the messages to the MIP variable, and the command

/ASSIGN-STREAM STREAM=SYSMSG,TO=*DUMMY

to stop this save process. All commands and statements executed in the meantime (not
only those from LMS) save their guaranteed messages to the MIP variable.

LMS input and output in S variables (SDF-P) Characteristics of LMS

22 U8326-J-Z125-6-76

Examples:

– You want to check whether the LIB library is empty. In this case, LMS issues message
LMS0302. The variable is to be called LMSMIP.

/DECL-VAR LMSMIP(TYPE=*STRUC),MULT-ELEM=*LIST
/START-LMS
//HOLD-PROGRAM
/ASSIGN-STREAM SYSMSG,TO=*VAR(LMSMIP)
/RESUME-PROGRAM
//SHOW-ELEM-ATTR *LIB(LIB),TEXT-OUTPUT=*NONE
//HOLD-PROGRAM
/ASSIGN-STREAM SYSMSG,TO=*DUMMY
/IF (IS-DECLARED('LMSMIP#1.MSG-ID'))
/ IF (LMSMIP#1.MSG-ID='LMS0302')
/ WRITE-TEXT 'Library empty'
/ END-IF
/END-IF
/RESUME-PROGRAM
:
:

– Non-guaranteed LMS messages can be intercepted using the SDF-P built-in function
STMT-SPINOFF [13].

/ASSIGN-SYSDTA TO=*SYSCMD
/BEGIN-BLOCK DATA-INSERTION=YES
/START-LMS
//OPEN-LIB XXX
/A=STMT-SPINOFF()
//STEP
/IF (A EQ 'YES')
// WRITE-COM 'OPEN ERROR'
/ELSE
// SHOW-ELEM-ATTR
/END-IF
//END
/END-BLOCK

Characteristics of LMS Support for program development

U8326-J-Z125-6-76 23

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

2

2.6 Support for program development

LMS supports the process of program development by providing the “borrowing” and
“return” functions for managing members (referred to in this manual as the “borrowing
mechanism”) and by offering an efficient means of updating program systems (referred to
as the “make functionality”).

The borrowing mechanism provides a means of controlling access to members which are
being worked on by two or more developers in a project. The mechanism is intended to
prevent a member (member version) or a sequence of members (“development line”) from
being modified by two or more persons simultaneously. Once the mechanism has been
activated for a library or member, only the user who has been entered as the current holder
of the original version (base version) is allowed to save modifications. When the member is
saved, certain information is added to the member’s new status, including the time stamp
of the return, the user ID of the holder and perhaps a user-specific comment. The
processing status of the member is output as an attribute in the directory and can be used
as a selection criterion.

The make functionality describes the dependencies which exist between library members
(including the DMS files) of a program system and the rules (“actions”) for updating them.
LMS provides users with a number of make substatements, and the standard SDF state-
ments may also be used.

For a given target component (“TARGET-OBJECT”), the make functionality describes the
original components (“FROM-OBJECTs”) on which the target is dependent and the actions
(“ACTIONS”) which must be performed to generate the target component.
These actions may be specified either directly or in the form of “standard” actions. Standard
actions need be declared only once for a given pair of member types (“TARGET-TYPE”,
“FROM-TYPE”). The components can also be referenced in the individual steps of an action
(“text lines”) by means of S variables. Starting with the selected target components, all the
targets are newly generated if the original components of a line have been changed since
the target was last generated. Not just the selected target components, but all the related
original components represent further subtargets which are handled analogously. The
functionality generates a BS2000 procedure which can be started synchronously or
asynchronously. make offers a means of efficiently updating program systems since it
carries out only those actions which are absolutely necessary.

In order to be available for future use, the sequence of make substatements should be
stored in its own member, which is called a “makefile”.

LMS in interactive/batch mode Characteristics of LMS

24 U8326-J-Z125-6-76

2.7 LMS in interactive/batch mode

LMS runs in interactive or batch mode.

The LMS log is output to system file SYSOUT or to the medium defined by means of
MODIFY-LOGGING-PARAMETERS TEXT-OUTPUT= (system file SYSLST, library
member or EDT work file 9). If LMS is to output positive acknowledgments as well as error
messages, the logging scope must be defined using MODIFY-LOGGING-PARAMETERS
LOGGING=*MAXIMUM.

Interactive mode

Since it is also possible to select members by specifying “wildcards”, it is not immediately
apparent which member is currently being processed. A step-by-step approach is therefore
advisable in the case of statements which delete or overwrite member data. This is
controlled by means of a dialog with the user.

In interactive mode, LMS offers an optional inquiry mechanism which allows the user to
control the execution of statements that process members.

The user is asked for each member whether he wishes to process or skip the member or
to abort the statement.

The inquiry mechanism is activated by means of the operand DIALOG-CONTROL =*YES.
The inquiry mechanism is permitted in the ADD-, COPY-, DELETE-, EDIT-, EXTRACT- and
MODIFY-ELEMENT statements and also in the MODIFY-LMS-DEFAULTS statements.

In interactive mode, an inquiry mechanism is activated in the following cases:

– A member cannot be accessed, e.g. because it is locked by another user (temporary
exclusive use of a member, e.g. due to modification).

– A library cannot be accessed, e.g. because the current access rights do not permit
access (temporary exclusive use of a library).

Batch mode

In case a library, member or type should be locked, the user can set the NEXT-ATTEMPT
operand of the MODIFY-LMS-DEFAULTS statement to define the number of open attempts
to be made and the time interval between them. The default setting is that no further
attempts are made.

Characteristics of LMS Addressing mode

U8326-J-Z125-6-76 25

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

2

2.8 Addressing mode

LMS runs in 31-bit addressing mode by default. When called as a main program, LMS is
started directly in 31-bit addressing mode.

When called via subroutine interfaces, LMS switches to 31-bit addressing mode when
needed.

The addressing mode in which a user exit is called is determined by the AMODE attribute
of the activated user routine:

AMODE = 31 / *ANY : 31-bit addressing mode

AMODE = 24 : 24-bit addressing mode

Addressing mode Characteristics of LMS

26 U8326-J-Z125-6-76

U8326-J-Z125-6-76 27

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

3

3 Program libraries
LMS processes PLAM libraries. PLAM libraries are PAM files in BS2000 that are processed
with the library access method PLAM (Program Library Access Method).

A PLAM library contains members and a table of contents or directory of these stored
members. PLAM libraries are used for the storage of source programs, macros, object
modules, phases (load modules), lists, procedures, text etc. They are characterized by the
following:

– all member types can be processed in a single library with standardized statements,

– members with identical names may exist which are distinguished only by their type or
version designation,

– the library can be accessed by several users simultaneously, even in write mode,

– for most data elements (=members) produced during a software development process,
uniform data storage exists with standardized access functions and

– the utility routines and compilers can access this stored data and process the individual
members directly.

Program libraries are also referred to simply as “libraries” in the following:

Structure of a library Program libraries

28 U8326-J-Z125-6-76

3.1 Structure of a library

A library is a file with a substructure. It contains members and a directory (table of contents,
TOC).

A member (also referred to as “element” in examples and messages) is a logically related
set of data, e.g. a procedure, an object module or a source program. Each member of a
library can be referenced individually.

Storing a number of files as members in a library decreases the burden on the file name
catalog since each library has only one catalog entry. Storage space is saved because the
members are always stored in compressed form in the library and, furthermore, may also
be stored as delta members.

Figure 2: Logical structure of a library

Each library has a single entry in the system catalog. The user can define the name and
other file attributes such as the retention period or shareability. Catalog entries and changes
to them are made by the user with the aid of system commands.

Directory

Members

member1

member2

member3

member4

member1 member2 member3 member4

Program libraries Input and output libraries

U8326-J-Z125-6-76 29

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

3

3.2 Input and output libraries

LMS processes a library in the form of an input and/or output library:

An input library is assigned globally by means of the LMS statement OPEN-LIBRARY or
locally by means of the operand ELEMENT=*LIBRARY-ELEMENT(LIBRARY =).

An output library is assigned globally by means of the LMS statement OPEN-LIBRARY or
locally by means of the operand TO-ELEMENT=*LIBRARY-ELEMENT(LIBRARY =).

For further information on global and local libraries, see section “Library assignment” on
page 74.

3.3 Multiple access to libraries

Multiple access to libraries occurs when several users access the same library at the same
time, either in read or in write mode. The accesses can be made from within different tasks
and the tasks can be assigned to different user IDs.

Multiple access to libraries is permitted only for those users who have the appropriate
access right.

A library can be opened by one or more users in write mode as well as in read mode.

Below is a summary of the limiting conditions under which multiple access is possible:

● Libraries on public volume set (PVS)
Unrestricted multiple access is possible, provided

– the necessary access rights have been granted

– access is not via Remote File Access (RFA)

● Libraries on shared public volume set (SPVS)

Unrestricted multiple access is possible, provided

– the necessary access rights have been granted,

– access is not via Remote File Access (RFA), and

– all accessing tasks from the various computers form a HIPLEX cluster.

Restricting multiple access Program libraries

30 U8326-J-Z125-6-76

● Libraries on shared private disk (SPD)
Unrestricted multiple access is possible, provided

– the necessary access rights have been granted,

– access is not via Remote File Access (RFA), and

– all accessing tasks are running on the same computer. If tasks are accessing from
different computers, only read accesses are possible simultaneously. If the library
is being write-accessed by a task, it cannot be accessed by tasks from other
computers.

3.4 Restricting multiple access

The user can restrict the use of multiple access by means of the following commands:

/ADD-FILE-LINK ...,SUPPORT=*DISK(SHARED-UPDATE=*NO)

PLAM libraries are opened by default with SHARED-UPDATE=*YES. An ADD-FILE-
LINK command with SHARED-UPDATE=*NO and the opening of this library with the
specified link name prevents further update accesses.

/SECURE-RESOURCE-ALLOCATION FILE=

The library is reserved exclusively for this task.

/MODIFY-FILE-ATTRIBUTES ...,PROTECTION=

Only users who have the necessary access rights can access the library.

For a description of these commands, see [4].

U8326-J-Z125-6-76 31

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4 Members
A member is a set of logically related data, e.g. a file, procedure, object module or source
program. Each member can be addressed individually in the library by way of its member
designation. The member designation identifies a member and consists of three parts:
name, version and type.

Name: Describes the logical contents of the member.

Version: Describes the current development status of the member.

Type: Classifies the member.

Program libraries may contain any LMS-supported member types.

The program library features permit all data associated with a project, from source program,
through object modules and phases (load modules), compilation procedures and test data
to documentation, to be stored in the appropriate storage units of a library.

Types of storage

The user has a choice of two forms of storage for textual members: members can be stored
as non-delta or delta members. The type of storage is controlled by means of the
STORAGE-FORM operand in the LMS statements ADD-ELEMENT, COPY-ELEMENT,
EDIT-ELEMENT, MODIFY-LMS-DEFAULTS, MODIFY-LIBRARY-ATTRIBUTES, MODIFY-
TYPE-ATTRIBUTES, PROVIDE-ELEMENT and RETURN-ELEMENT.

When the delta method is used, only the differences (deltas) to the previous version are
stored whenever several versions of a member are present. This helps save even more
storage space. When such member versions are read, LMS merges these deltas at the
appropriate locations. The user is thus always offered the complete member. In addition,
hierarchical relationships can be established between members (delta sequence, delta
tree).

Multiple access to members Members

32 U8326-J-Z125-6-76

4.1 Multiple access to members

A non-delta member can be read simultaneously by several users; it can, however, be
written to by one user only. When a non-delta member has been opened for writing, no
other access - including read access - to this member can be performed, but access to other
non-delta members of the library is possible.

A delta member can be read simultaneously by more than one user.

If a delta member is open for writing, then no members in the data tree concerned which
are of the same type and have the same name can be read or written to by other users.

Figure 3: Multiple access to members

As a result of the multiple access options to a library a member may still exist while the
directory is being listed, but be no longer in existence when it is subsequently accessed:
another user has deleted it in the meantime.
A listing of the library’s directory (see the LMS statement SHOW-ELEMENT-ATTRIBUTES)
will therefore only show the current state of the input library.

The user is responsible for the logical coordination of accesses to the library members.

member

member

member

member write access
(single)

read access
(multiple)

write access
(single)

read access
(multiple)

Library Access

Members Member type definition

U8326-J-Z125-6-76 33

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.2 Member type definition

The member type indicates how the contents of the LMS members are to be interpreted.

4.2.1 Standard types

Standard or predefined types are one character long or they begin with $ or SYS:

The maximum record length of stored members is 32 Kbytes (including record header).

EDT processes text members with a maximum record length of 256 bytes.

Type Meaning
$... Reserved
C Phases (load modules)
D Documents
F IFG format masks
H Compiler result information
J Procedures and ENTER jobs
L Link and load modules (LLMs)
M Macros
P Edited data
R Object modules
S Source programs
SYS... Reserved
SYSJ.. Compiled procedures
U IFG user profiles
X Data of any format

Table 1: Standard types

Member type definition Members

34 U8326-J-Z125-6-76

Member type $... - reserved types

Types starting with $ are reserved.

Member type C - phases

A phase generated by the linkage editor TSOSLNK is normally stored in a file. LMS can be
directed to write such a file as a C-type member to a library. Alternatively, the phases
generated by the linkage editor can be stored directly in a library.

Member type D - documents

Type D members are intended for documents.

Member type F - IFG format masks

Members of this type are generated by IFG and stored in libraries.

Member type H - compiler result information

Members of this type are generated by the compilers and the assembler and stored in
libraries.

Member type J - procedures and ENTER jobs

BS2000 procedures and ENTER jobs can be stored in this member type.

Member type L - link and load modules (LLM)

Both the linkage editor BINDER (see [5]) and the compiler store the generated link and load
modules (LLMs) in members of this type.

Member type M - macros

The assembler takes the macro members referenced in the program from the assigned
library.

Member type P - list members

Edited data is referred to as a list member. The first character of the record must be a valid
feed control character; this is checked on output to SYSLST.

Members Member type definition

U8326-J-Z125-6-76 35

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

Member type R - object modules

Object modules generated by the compilers or the assembler are normally stored in the
temporary EAM area.
LMS can be directed to write such object modules as R-type members to the library. Alter-
natively, the object modules generated by the compilers or the assembler can be stored
directly in a library.

These members serve as input to the linkage editors and the dynamic binder loader DBL.

Member type S - source programs

Source programs in libraries can be used as input to compilers and assembler for language
processor runs.

Member type SYS... - reserved types

Types starting with SYS are reserved.

Member type SYSJ.. - compiled procedures

Compiled procedures are stored in this member type. Member types SYSJ and J are
handled identically by LMS.

Member type U - IFG user profiles

Members of this type are generated by IFG and stored in libraries.

Member type X - data of any format

The type X member can accept any data. They are stored in text or PAM members,
depending on the data format.

Textual member types - text members

Textual member types include the types S, M, J, P, D and X, as well as other types derived
from them. Text members are members of these types, provided they contain no block-
oriented records.

PAM members

In the following sections, members with block-oriented records are also referred to as PAM
members (of type X or derivatives of type X) because as a rule they resulted from a file of
type FILE-STRUCTURE=PAM being added as a member.

Member type definition Members

36 U8326-J-Z125-6-76

4.2.2 Derived types

In addition to using the standard types, users can derive their own types (called (user-
defined types). User-defined types are between two and eight characters long and start with
$ or SYS. A redirection mechanism allows user-defined types to be used instead of
standard types in all commands and programs (see section “Library assignment” on
page 74).

Supertype

Each user-defined type can be assigned to a supertype, i.e. a type above it in the type tree,
with MODIFY-TYPE-ATTRIBUTES. LMS then processes the members of a user-defined
type in the same way as it processes the members of its supertype. The supertype itself
can, on the other hand, be a user-defined type. This may result in several type trees being
created, which should each have a standard type at its peak.

Base type

The type at the peak of a type tree is called the base type and should be a standard type.
It defines how the user types derived from it are to be handled by LMS.

Example

D has no supertype and is therefore its own base type.
D1 has D as its supertype and its base type.
D3 has D1 as its supertype and D as its base type.

 D F H J L M P R S U X

D1 D2

C

S1 S2
User-
defined
types

Standard
types

Subtree Subtree

D3 S3

Members Convention for member designations

U8326-J-Z125-6-76 37

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.3 Convention for member designations

Members are identified in libraries by means of a member designation. This is stored in
the directory of the library and can be output using the LMS statement SHOW-ELEMENT-
ATTRIBUTES.

The member designation comprises the following three components:

– member name for the logical contents of the members

– member version for the current status of the members

– member type for classification of the members

4.3.1 Member designations in statements

The member designation, i.e. member name, version and type, in the LMS statements
corresponds to the operands ELEMENT, VERSION and TYPE in the data structure
(LIBRARY-)ELEMENT.

The specification of the version is optional. If no value is specified for the version in a
statement, the member having the highest value is selected by default. If a different version
is to be selected, note that the version specification must be a substructure of the member
name:

 .
 .
 ELEMENT = <composed-name ...>(...)

 <composed-name ...>(...)
 |
 | VERSION =
 |
 | ,BASE =

 ,TYPE =
 .
 .

When LMS is called, the member type has the value *UNDEFINED by default. It must be
defined globally with the MODIFY-LMS-OPTIONS statement, or locally in every statement.

Convention for member designations Members

38 U8326-J-Z125-6-76

Syntax of member designations

The notational conventions used here are described on page 139ff. They are the same for
source and target members.

ELEMENT <composed-name 1..64 with underscore_with wildcards(132)>(...)
The member name may begin with a catalog ID not exceeding four
characters in length.

VERSION <composed-name1..24 with underscore_with wildcards(52)>
For further information on possible version entries, with particular
regard to the use and meaning of keywords, see page 50.
’@’ is not permitted as a version entry since it is used to represent
the version specification ’*UPPER-LIMIT’.

BASE <composed-name 1..24 with underscore_with wildcards>
For further information on possible entries, see page 52ff.

TYPE <alphanum-name 1..8 with wildcards(20)>
Member types which consist of only a single character or which start
with $ or SYS are interpreted as standard types. These are reserved
types and should not be used as user-defined types.
User-defined types are at least two and not more than eight
characters in length.

4.3.2 Logging the member designations

The member designations are logged as follows with each output from LMS:

(type)membername/version[(variantnumber)]/date

The variant number is set to (0001) by default and is incremented by 1 by each write
access.

Members Convention for member designations

U8326-J-Z125-6-76 39

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.3.3 Multiple selection of member designations

If certain members are to be selected in the LMS statements for processing, this can be
done in two ways:

– through the use of “wildcard” specifications in the ELEMENT, VERSION and TYPE
operands.

The “wildcard” syntax is described in the syntax description section on page 138ff.

It is also possible to use the keyword *ALL for an individual asterisk (*) in the operands
ELEMENT, VERSION and TYPE, but not in the EXCEPT-ELEMENT structure.

Negative selection, i.e. exclusion of members, can also be effected through the
EXCEPT-ELEMENT operand as well as with the minus sign. This operand offers more
options than the minus sign.

– through the qualification of attributes, e.g. date and time.

Examples of multiple selection

– Multiple selection

ELEMENT = AB/C*

All members whose names begin with AB, have any character in the
3rd, and a C in the 4th position are selected. The contents from the
5th position are freely selectable.

ELEMENT = <:999>(VERSION=B*)

All members having a name length of up to 3 characters and with a
B in the first position of the version, are selected.

ELEMENT = *(VERSION=*),CREATION-DATE = INTERVAL(FROM=2013-01-01)

All members entered since 1.1.2013 are selected.

ELEMENT = AB*(VERSION=*HIGHEST-EXISTING)

The highest version of all members whose name begins with AB is
selected each time.

– Multiple selection with limiting values

ELEMENT = A*(VERSION = *HIGH), USER-DATE = INTERVAL(TO=12-12-31)

All members of the highest version whose names begin with A and
which have a date earlier than 1.1.2013 are selected.

ELEMENT = AB<:9>(V=107)

All members whose names begin with AB, are up to 3 characters
long and have the version 107 are selected.

Convention for member designations Members

40 U8326-J-Z125-6-76

– Multiple selection with members for exclusion

ELEMENT = -ABC

All members except member ABC are selected.

ELEMENT = A*, EXCEPT-ELEMENT = (ELEMENT = *ANY(VERSION = B*))

All members whose names begin with A and whose versions do not
begin with B are selected.

ELEMENT = *(VERSION = <402:>*), EXCEPT-ELEMENT=(EL=*(V=402))

All members whose version is greater than 402 are selected.

ELEMENT = L<:999>, EXCEPT-ELEMENT = (ELEMENT=*ANY(VERSION=1))

All members whose names begin with L and are up to 4 characters
long, except those having version 1, are selected.

Members Convention for member designations

U8326-J-Z125-6-76 41

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.3.4 Construction specification for member designations

For those LMS statements which permit a second member designation in addition to the
multiple selection, the designation of the second member can be constructed from the
designation of the multiple selection.

Such a construction specification is possible with the following LMS statements:

– ADD-ELEMENT

– COMPARE-ELEMENT

– COPY-ELEMENT

– EDIT-ELEMENT

– EXTRACT-ELEMENT

– MODIFY-ELEMENT

– MODIFY-ELEMENT-ATTRIBUTES

– PROVIDE-ELEMENT

– RETURN-ELEMENT

The construction specification is restricted to the member designation, i.e. to member
name, version and type. This corresponds in the statements to the ELEMENT, VERSION
and TYPE operands in the data structure LIBRARY-ELEMENT. In each case here like-
named operands, which are identified by means of certain wildcard characters (see “Syntax
for construction specification” below), are mapped onto one another:

The syntax is described in section “Syntax description” on page 138ff.

Multiple selection:

ELEMENT =*LIBRARY-ELEMENT(ELEMENT=...(VERSION=..),TYPE=...)

Construction specification:
TO-ELEMENT =*LIBRARY-ELEMENT(ELEMENT=...(VERSION=..),TYPE=...)

Convention for member designations Members

42 U8326-J-Z125-6-76

Notes

– The EXCEPT-ELEMENT operand is ignored for construction specifications.

– If you use a wildcard in the selection specification, you will need to enter at least one
wildcard in the construction specification. Entering *ALL in the selection specification
has the same effect as a single asterisk (*) and thus requires a wildcard in the
construction specification.

*ALL cannot be entered in the construction specification (except in COMPARE-
ELEMENT).
(Example: *ALL → *B* is equivalent to * → *B*)

Members Member attributes

U8326-J-Z125-6-76 43

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.4 Member attributes

All members have certain attributes, regardless of their type. Here a distinction is made
between attributes assigned by the access method and attributes which can be assigned
by the user. The values of these attributes are output when the library directory is output.

4.4.1 Attributes assigned by the access method

The access method records the following member attributes:

CREATION-DATE and CREATION-TIME (1)
MODIFICATION-DATE and MODIFICATION-TIME (2)
ACCESS-DATE and ACCESS-TIME (3)
STORAGE-FORM
SECONDARY-NAME and SECONDARY-ATTRIBUTE
Member size (4)

(1): In the case of delta members, this date is the same for all deltas and refers to the
time at which the initial data was generated.

(2): The MODIFICATION-DATE operand of the MODIFY-ELEMENT-ATTRIBUTES
statement is used to specify whether this time stamp is to be updated.

(3): This time stamp is recorded only if MODIFY-LIBRARY-ATTRIBUTES ...,ACCESS-
DATE=*KEEP has been set for the library.
Only after this setting has taken effect can members have an access date and time.
Except for accesses via Remote File Access (RFA), no write privilege for the library
file is required to have access dates and times recorded. If you wish to have access
dates and times recorded when accessing via RFA but have no write privilege for
the library file, your access request will be rejected.
For libraries on NK disks, PLAM determines the scope of any partial backup. The
backup granulate is a single member. Members for which only the access date has
changed are not included in partial backups. In the event that a backup is restored,
these members are given the time of the last full backup of the library file as an
access date.

(4): In the case of delta members, the size refers to the memory allocation of the whole
delta tree and not to that of the individual versions.

Member attributes Members

44 U8326-J-Z125-6-76

4.4.2 Attributes that can be assigned by users

Users can specify the following attributes in the LMS statements MODIFY-ELEMENT-
ATTRIBUTES or MODIFY-ELEMENT-PROTECTION:

– Organizational attributes:
access rights (PROTECTION)
member status (STATE)

– Content-descriptive attributes:
user date and time (USER-DATE and USER-TIME)
name of a character set (CODED-CHARACTER-SET)

4.4.3 Input format for dates

The input format for dates is:

When the year is entered as two digits, LMS uses a reference year to add the other two
digits for the century :

If YY < 60, LMS precedes YY with 20, i.e. 20YY, and

if YY ≥ 60, LMS precedes YY with 19, i.e. 19YY.

[YY]YY-MM-DD [YY]YY : Year; choice of two-digit or four-digit entry
MM : Month
DD : Day

Members Relationships between members

U8326-J-Z125-6-76 45

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.5 Relationships between members

The following means exist for describing temporal and logical interdependencies, i.e. the
relationship between the members:

Delta tree

A delta tree is a set of members which is formed by the relationship “member-is-successor-
of”.

Naming conventions

Within a branch of a delta tree the members have the same name and type. They are differ-
entiated only by their version.

Reference entries

Reference entries are entries in the secondary directory of the library. They occur when the
user generates reference records (record type 163) in the form <secondary-name>
<secondary-attribute> during writing of a member. The layout of record type 163 is
described in the manual “LMS Subroutine Interface” [1].

The reference entries serve to document the relationship “A particular <secondary-name>
and <secondary-attribute> occurs in the member”. Type-based sorting of the reference
entries permits the query:

“In which member of type TYPE does a particular reference entry occur?”.

This is implemented by means of the following LMS statement:

//SHOW-ELEMENT-ATTRIBUTES *LIB(*STD,*,TYPE=...,SECONDARY-NAME=..,
SECONDARY-ATTRIBUTE=...,)

This relationship is used with modules (type R or L) as the basis for the autolink function
(see [5]); reference entries are for example <name><CSECT> and <name><ENTRY>.

PLAM guarantees the consistency of the relationship; the user is responsible for the gener-
ation and integrity of the relationships.

Relationships between members Members

46 U8326-J-Z125-6-76

Dependencies on member type

LMS has statements

– that are independent of the member type (no relation to the member contents) and

– others that are dependent on the member type.
In the latter case, only a few standard types are permitted and must be used to derive
any user-defined types desired. Members of other types cannot be processed.

The following table shows which member types can be used in the various LMS statements
and what type checks LMS performs during the LMS run:

Only if the conditions specified in the Type check column are true, will the relevant
statement be executed.

Member type
Statement Source Target Type check
SHOW-ELEMENT alphanum-name1..8 -

SHOW-ELEMENT-
ATTRIBUTES

alphanum-name1..8 -

DELETE-ELEMENT alphanum-name1..8 -

MODIFY-ELEMENT-
PROTECTION

alphanum-name1..8 -

FIND-ELEMENT alphanum-name1..8 -

MODIFY-ELEMENT-
ATTRIBUTES

alphanum-name1..8 alphanum-name1..8 BT(q)=:=BT(z)

COPY-ELEMENT alphanum-name1..8 alphanum-name1..8 BT(q)=:=BT(z)

PROVIDE-ELEMENT alphanum-name1..8 alphanum-name1..8 BT(q)=:=BT(z)

RETURN-ELEMENT alphanum-name1..8 alphanum-name1..8 BT(q)=:=BT(z)

COMPARE-ELEMENT alphanum-name1..8 alphanum-name1..8 BT(p)=:=BT(s)

EDIT-ELEMENT S, M, P, D, J, X,
derived type

S, M, P, D, J, X,
derived type

MODIFY-ELEMENT R, C, L
S, M, P, D, J, X,
derived type

R, C, L
S, M, P, D, J, X,
derived type

BT(q)=:=BT(z)
BT(q)=:=BT(z)

MODIFY-LOGGING-
PARAMETERS

- S, M, P, D, J, X,
derived type

Members Relationships between members

U8326-J-Z125-6-76 47

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

ADD-ELEMENT “text“ (I)SAM-f

“blocks“ PAM file
“module“ file,*OMF
“phase“ PAM file

S, M, P, D, J, X,
derived type
X derived type
R
C

EXTRACT-ELEMENT S, M, P, D, J, X,
derived type
X derived type
R
C

(I)SAM file

PAM file
(I)SAM file
PAM file

BT Base type (name of type of the highest node)

BT(q)/BT(z) Base type of source/ target member

BT(p)/BT(s) Base type of the primary or secondary member

Standardtyp One character in length or with $ or SYS at the beginning

Derived type Derived from the counted types;
alphanum 2..8 without $ or SYS at the start

=:= The types to the left and right of this sign are either identical or both are text types.
For type X, text type means that only text members may be involved.

Member type
Statement Source Target Type check

Version management Members

48 U8326-J-Z125-6-76

4.6 Version management

The version of a member is defined in the member designation and identifies the current
state of the member.

The following section describes the possible version designations, provides information on
version maintenance and storage, and deals with version conventions, which is relevant to
automatic version incrementation.

4.6.1 Version maintenance and storage

It is a characteristic of software members that they can be easily modified, and experience
shows that they frequently are modified. Stable and relevant states of a development object
are therefore maintained in the form of members.

Several versions per member type and member name

In libraries, a member is uniquely defined by its type, name and version designation.
Furthermore it is possible to store several versions under one member type and member
name.

If the user does not specify the version to be processed, LMS takes the following actions
as a standard procedure:

– In read mode
that member is sought whose specified name is accompanied by the highest version
designation. The date is ignored.

– In write mode
the actions depend on the statement:

– ADD-ELEMENT and MODIFY-LOGGING-PARAMETERS TEXT-OUTPUT=
The member is generated or overwritten with the highest version X’FF’. LMS
identifies this version by @.

– Other statements
The output member is given the version designation of the input member.

If an identically named member is overwritten, the internal variant number is incre-
mented by 1. This serves as a write counter.

Different states of a development object are stored in different members. Initially, only the
user is aware of the relationships between individual members; they are not established in
the library. Each member is an independent unit in the context of a library.

Members Version management

U8326-J-Z125-6-76 49

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

Delta storage

Members that have been created through modification from a predecessor member
generally differ only minimally from the predecessor. It is therefore sensible to store this set
of members in a more compact form, namely by physically storing only the differences from
the relevant predecessor. This compact storage of the differences produces the delta tree.

All members of a delta tree which have no successor are referred to as “leaves”. Only
leaves can be overwritten.

Delta trees

Only through the use of delta trees can a relationship between the members also be
recorded in the library. The following applies to such members

– on the member designation level

Since the new member was created through modification from another member, it still
belongs to the same class and reflects the same logical content. Both aspects are
recorded in the type and name of the member, i.e. all members of a delta tree have the
same type and name.
The version component of a member designation should reflect the state.

– on the physical level

The relationship between the two members is also to be recorded on the physical level.
Which members are to be interlinked is not determined on the basis of the version
string, however, but is to be derived from user specifications. For this purpose the user
must declare one member as the “predecessor” and one member as the “successor”.

Version management Members

50 U8326-J-Z125-6-76

4.6.2 Version designations

The member versions which are to be processed by LMS are identified in the LMS state-
ments by means of the VERSION and BASE operands. Distinctions are made between the
source version, the target version and the base version of the target version.

Source version

If a member is used as the input for a function, e.g. if it is to be copied or changed, the
member version is then called the source version.

The source version can be specified as follows:

– composed-name
The version specified by composed-name is the source version.

– *UPPER-LIMIT
This entry selects the highest possible version (represented internally by X´FF´).

– *HIGHEST-EXISTING,BASE=*STD
This entry selects the highest existing version of the specified member name.

– *HIGHEST-EXISTING,BASE=composed-name*
This entry selects the highest existing version with the prefix “composed-name”.

Target version

If the member is used as the result of a function, e.g. if it is be written back, the member
version is then called the target version.

The target version can be specified as follows:

– *BY-SOURCE
The source version is also the target version. If *BY-SOURCE is entered and the source
is not a library member, *UPPER-LIMIT will be assumed for the target version.

– composed-name
The version specified by composed-name is the target version. If ’@’ is entered, it will
be rejected.

– *UPPER-LIMIT
This entry selects the highest version (represented internally by X´FF´) as the target
version.

– *INCREMENT
Specifies a base version according to the convention applicable to the type and the
entry made for BASE. An incrementing procedure stipulated by the convention is then
applied to the specified base version to determine the target version.

Members Version management

U8326-J-Z125-6-76 51

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

For the first version of a member, no base version can yet exist. In this case, the default
version dependent on the convention applicable to the type is the target version.

– *HIGHEST-EXISTING
Specifies a base version according to the convention applicable to the type and the
entry made for BASE. This base version is also the target version.

For the first version of a member, no base version can yet exist. In this case, the default
version dependent on the convention applicable to the type is the target version.

Base version for the target version

Except for the first version of a name, a target version is always generated for each base
version. The base version fulfils several functions:

1. If you wish to produce a version with STORAGE-FORM=*DELTA, the base version
determines which version the delta forms.

2. If automatic version incrementation (VERSION =*HIGHEST-EXISTING or
*INCREMENT) is used to determine the target version, it takes the base version as the
point of departure for calculating the target version.

3. In order to generate a version in a scope with active WRITE-CONTROL, a user must
also hold the base version.

The base version for the target version can be specified as follows:

*STD

Depending on the VERSION entry, the existing member versions and the convention
applicable to the type, a base version is specified as the default.

composed-name

The base version is specified by composed-name.

composed-name*

The base version is the highest existing version with the prefix composed-name.

Convention Default version
NONE 001
STD-SEQUENCE EXAMPLE
STD-TREE 001.001
MULTI-SEQUENCE EXAMPLE

Version management Members

52 U8326-J-Z125-6-76

Although the BASE= operand in statements has the data type <composed-name with-
wildcards>, no wildcard characters are permitted in the BASE= entry except for an asterisk
(*) at the end to designate the entry as a prefix.

Summary

The following table provides an overview of how the target version and the base version for
the target version are determined.

BASE VERSION Target version Base version
*STD

composed-name composed-name default base

*INCREMENT *INC (default base) or
default version

default base

*HIGHEST-EXISTING default base
or default version

default base

composed-name1* composed-name2 composed-name2 highest existing with prefix
composed-name1

*INCREMENT *INC (base version) highest existing with prefix
composed-name1

*HIGHEST-EXISTING highest existing with
prefix
composed-name1

highest existing with prefix
composed-name1

composed-name1 composed-name2 composed-name2 composed-name1

*INCREMENT *INC
(composed-name1)

composed-name1

*HIGHEST-EXISTING composed-name1 composed-name1

Members Version management

U8326-J-Z125-6-76 53

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.6.3 Version conventions

Each member version is generated in accordance with a specific convention. Each of the
conventions is valid for a certain member type within a library.

All member types comply with one of the following conventions:

The convention is set by means of the CONVENTION operand of the MODIFY-TYPE-
ATTRIBUTES statement.

It is always possible to set the CONVENTION operand to NONE, but it is not permissible to
switch between either of the other values as long as related members types exist.

The LMS statement SHOW-TYPE-ATTRIBUTES shows which convention is set.

This section deals with the following aspects of each convention:

Default version

is the first version of a name generated through automatic version incrementation.

Format

specifies the version-designation format permitted by the convention.

Incrementation procedure

describes the convention’s procedure for determining the target version when
VERSION=*INCREMENT.

Standard base selection

describes the convention’s procedure for determining the base version of the target
version when BASE=*STD.

Checks

describes the convention’s checks as a prerequisite for statement execution.

NONE No restrictions
STD-SEQUENCE Only one main line
STD-TREE Main line with ramifications
MULTI-SEQUENCE Each prefix forms a line

Version management Members

54 U8326-J-Z125-6-76

4.6.3.1 Convention: NONE

Default version: 001

Format: any

Incrementation procedure

The concluding digit group of a version designation is incremented by 1 (if this is not
possible, an error message is output).

Standard base selection

1. When the target version is specified explicitly (composed-name / *UPPER-LIMIT):

a) if the target version exists, it will also be used as the base version;

b) if the target version does not exist, the highest existing version will be used as
the base version.

2. When the target version is not specified explicitly (*HIGHEST-EXISTING /
*INCREMENT), the highest existing version will be used as the base version.

Checks: none

4.6.3.2 Convention: STD-SEQUENCE

Default version: determined by EXAMPLE of MODIFY-TYPE-ATTRIBUTES

Format: [<prefix>]<digit group>

The prefix is a string of any permissible characters ending with a digit. The prefix is the
same for all the versions of a type.

Incrementation procedure

The concluding digit group of a version designation is incremented by 1 (if this is not
possible, an error message is output).

Standard base selection

The highest existing version is used as the base version.

Checks

The target version must be at the same level or higher than the highest existing version.

Members Version management

U8326-J-Z125-6-76 55

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.6.3.3 Convention: STD-TREE

Default version: 001.001

R.L (Release.Level) are versions of the main branch.
R.L.B.S (Release.Level.Branch.Sequence) are versions of side branches.
Leading zeros in the individual digit groups may be omitted if

– no wildcard characters are specified in the version designation and

– the member type is specified explicitly.

Example ’1.1’ may be entered for ’001.001’

Incrementation procedure

The concluding digit group of a version designation is incremented by 1, provided the
base version is a leaf of a branch. Otherwise, a new, higher branch with sequence 1 is
produced.

Standard base selection

1. When the target version is specified explicitly (composed-name / *UPPER-LIMIT):

a) if the target version exists, it will also be used as the base version;

b) If lower versions than the target version exist on the same branch, the highest
of those versions is used as the base version.

c) If a main branch version for the target version exists, that main branch version
is used as the base version.

d) If side branch versions for the target version exist, the highest of those versions
is used as the base version.

e) Otherwise, there is no base version.

2. When the target version is not specified explicitly (*HIGHEST-EXISTING /
*INCREMENT), the highest existing version will be used as the base version.

Checks

Only the data of the highest version in a branch can be changed. Only higher versions
of a given name/type can be added to a branch, or new, or higher side branches added.

Format: R.L[.B.S] R,L,B,S = nnn n = digit

Version management Members

56 U8326-J-Z125-6-76

4.6.3.4 Convention: MULTI-SEQUENCE

Default version: specified using EXAMPLE in //MODIFY-TYPE-ATTRIBUTES.

The prefix is a string of any permissible characters ending with a digit. The prefix is the
same for all the versions of a type.

Incrementation procedure

The concluding digit group of a version designation is incremented by 1 (if this is not
possible, an error message is output).

Standard base selection

1. Ehen the target version is specified explicitly (composed-name / *UPPER-LIMIT),

a) the highest version with the same prefix is the base version, insofar as such a
version exists.

b) the highest version of all the existing versions is the base version.

2. When the target version is specified implicitly (*HIGHEST-EXISTING /
*INCREMENT),

The highest version of all the existing versions is the base version.

Checks

Each prefix forms a subname space. The target version must be higher that the highest
existing version in the same subname space or must form a new subname space.

Notes

– LMS ensures that the structures of version designations match the delta structure.

– If a main branch version is deleted on which a side branch was dependent, it is no
longer possible to copy the entire tree to a type complying with a convention because
there is no longer a suitable base for the side branch concerned.

– Unless it is a blank string, composed-name must end with a period (.) when entered as
BASE=composed-name*. This means that the base is the highest version of a main or
side branch.

Format: [<Prefix>]<digit group>

Members Member protection/data protection

U8326-J-Z125-6-76 57

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

4.7 Member protection/data protection

This section describes the functions used by LMS to support member and data protection.
LMS can apply protection attributes both to members and to libraries.

An AUDIT, i.e. a log of selected events, can also be generated for security documentation
(see [6]).

4.7.1 Access protection for members

Since they are contained in libraries, members enjoy the same degree of protection as the
libraries themselves. It is also possible to give members added protection by making
access rights explicit, instead of implicit.

Member access rights

The rights r, w, x and h are set for individual members and modified by means of the LMS
statement MODIFY-ELEMENT-PROTECTION (see page 314). To display existing authori-
zation settings, use the SHOW-ELEMENT-ATTRIBUTES statement (see page 406).

Administer authorization is set for all the members in a given library with the LMS statement
MODIFY-LIBRARY-ATTRIBUTES (see page 324) and for all the members of a given type
with the statement MODIFY-TYPE-ATTRIBUTES (see page 356). To display existing
administer authorization settings, use the statement SHOW-LIBRARY-ATTRIBUTES (see
page 425) or SHOW-TYPE-ATTRIBUTES (see page 438).
Administer authorization is used to specify the person(s) authorized to create, delete and
rename members within a library or type.

The default setting for administer authorization is NONE, which allows all administration
functions that are allowed by the protection of the library file.

Protection attributes can be modified only by the owner of the library.

r : read
w : write
x : execute
h : hold
a : administer

Member protection/data protection Members

58 U8326-J-Z125-6-76

For each right, one of the following protective mechanisms can be set:

Password protection is linked to BACL protection and so plays no role in GUARD
protection.

Only one mechanism can be active for a given right at any point in time, but different mecha-
nisms can be set for different rights. If the mechanism set for a right is changed, the values
of the previously active mechanism are lost.

If it is unclear on the basis of the active mechanism and the current system environment
whether an access right exists, no access is permitted.

This may occur for the following reasons:

protection by GUARDS, but the GUARDS subsystem is not installed

Possible remedies are:

change the system environment
change the active protection mechanism (option available to library owners only)

The various mechanisms implement protection as follows:

1. NONE - no special protection

- no access check

2. STD - standard protection by BACL

Each of the access rights listed above is assigned by means of protection bits and
possibly by means of passwords to the following groups of users:

The group of selected users can be restricted further by means of passwords.
Passwords are stored in encrypted form in the library. Access to a member protected
by a password is permitted only if the password entered matches the password stored
earlier in the password table (using the BS2000 command ADD-PASSWORD).

The groups of authorized users and the passwords are defined by means of the USER
and PASSWORD operands, respectively, in the LMS statement MODIFY-ELEMENT-
PROTECTION.

NONE: No special protection
STD: Standard protection (BACL) [+ password]
BY-GUARD: Protection through GUARDS

OWNER: Owners of the library file
GROUP: Group of the owner of the library file
OTHERS: All others

Members Member protection/data protection

U8326-J-Z125-6-76 59

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

3. BY-GUARD - protection by GUARDS

Access is determined on the basis of a protection description stored in a guard.

A guard is an independent object of BS2000, which can be created, modified and
deleted using BS2000 commands. The owner of the guard defines both the protection
description and the group of users who may use the guard:

SCOPE = USERID / USER-GROUP / HOST-SYSTEM

(see [6])

The protection description contains conditions which must be satisfied before access is
granted.

These conditions may include:

Date
Time
Weekday
Task privilege
Program loaded

Access is granted only if the library owner is (still) permitted to use the guard and the
conditions specified in GUARDS have been satisfied.

The guard which is to be used to check access requests is specified by the library
owner.

Only GUARD names which were accepted by the GUARDS subsystem may be used.
No check is made to determine whether or not the specified guard even exists. Permis-
sible GUARD names are stored in the library exactly as they were specified.

All GUARD names refer to the catalog ID (CATID) under which the library containing
the GUARD name is cataloged.

GUARD names without USERID refer to the user ID (USERID) under which the library
containing the GUARD name is cataloged.

GUARD names are displayed to everyone who is permitted to read the contents of the
library.

When using GUARDS protection for libraries and members, it is necessary to bear in
mind certain special aspects, for example that it makes sense to protect individual
members of a library only if the library itself is also protected, i.e. is in “PROTECTED
MODE”.

Member protection/data protection Members

60 U8326-J-Z125-6-76

Example

The library LIBR, which contains the member MEMB1, is available under the user ID
USER1. USER2 would like to access MEMB1. USER1 has the guard GUARD1, which
allows access to USER1 and USER2. There are three cases to consider:

1. Only the library LIBR is read-protected by GUARD1

In this case, LIBR is not handled as if it were a file. It is recognized that LIBR is a
library, and the access protection is different than it would be if LIBR were a normal
file. The library is in PROTECTED MODE, so that access is possible only via LMS
or via the COPY-FILE command. A further attempt by USER1 or USER2 to gain
read access (e.g. SHOW-FILE LIBR) will be rejected. It is possible, however, to
access individual members, for example with SHOW-FILE *L(LIBR,MEMB1,S).
If one or more members of LIBR are protected with GUARDS, copying is no longer
possible (see 3 below).

2. Only the members are protected by GUARD1.

This method of protection makes no sense because the library must then have
USER-ACC=*ALL-USERS in order for USER2 to be able to see the library. In this
case, USER2 can copy the entire library and so gain access to all its members,
regardless of what protection is specified for the individual members.

3. The library and its individual members are protected by GUARDS.

This method provides protection for the individual members of a library. All the users
who are to be allowed access to members must be granted corresponding access
rights to the library. In this case, however, this means only that those users can see
the catalog entry and access it with LMS.
Even then it makes sense to protect individual members with GUARDS. The actual
access rights are determined by the lesser of the two access rights, i.e. if a user has
no write access to the entire library, he cannot write a member even if a guard at
member level would allow him to do so.

If libraries are protected with GUARDS but no further protection is defined for the
individual members, users can work with the members in almost the same way as with
files.

Members Member protection/data protection

U8326-J-Z125-6-76 61

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

Initial member protection

The owner of the library file can define initial member protection for the library and/or a
specific member type.

If initial member protection was defined, the protection is entered for new members. If no
initial member protection was defined, members are created without additional protection
and are protected only by the library file protection.

If initial member protection is defined both for the library and for the relevant member type,
only the protection defined for the type is taken into account. If the initial member protection
is changed, the change affects only the protection of members created after that time, i.e.
the protection of existing members remains unchanged.

Member protection/data protection Members

62 U8326-J-Z125-6-76

Overview of protection attributes

Library level:
a: NONE / BACL [+ password] / BY-GUARD

Initial member protection
r: NONE / BACL [+ password] / BY-GUARD
w: NONE / BACL [+ password] / BY-GUARD
x: NONE / BACL [+ password] / BY-GUARD
h: NONE / BACL [+ password] / BY-GUARD

Type level:
a: NONE / BACL [+ password] / BY-GUARD

Initial member protection
r: NONE / BACL [+ password] / BY-GUARD
w: NONE / BACL [+ password] / BY-GUARD
x: NONE / BACL [+ password] / BY-GUARD
h: NONE / BACL [+ password] / BY-GUARD

Member level:
Member protection

r: NONE / BACL [+ password] / BY-GUARD
w: NONE / BACL [+ password] / BY-GUARD
x: NONE / BACL [+ password] / BY-GUARD
h: NONE / BACL [+ password] / BY-GUARD

Members Member protection/data protection

U8326-J-Z125-6-76 63

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

Overview of rights required for LMS actions

The following overview shows which rights are required in order to perform specific LMS
actions, and what conditions must have been satisfied. It is assumed that the library file can
be opened in a suitable way.

The abbreviations used in the overview have the following meanings:

- Action is either not permitted or not possible
* Action may be executed by anyone
, AND operator
/ OR operator
EATTR = (CCSN, USER-DATE/TIME)
STATE Member state set with MODIFY-ELEMENT-ATTRIBUTES.
WRITE-
CONTROL

Value of WRITE-CONTROL in effect in the member scope (see
MODIFY-TYPE-ATTRIBUTES or MODIFY-LIBRARY-ATTRIBUTES)

a: The caller must have administer authorization for the member scope.
The caller can gain administer authorization in one of the following ways:
1. Administer authorization for the relevant member type has been granted,

and the caller belongs to the group of authorized users.
2. Administer authorization has been granted not for the member type, but for

the library, and the caller belongs to the group of authorized users.
3. Neither for the member type, nor for the library has administer authori-

zation been granted:
r: The caller must have read authorization for the member.
w: The caller must have write authorization for the member.
x: The caller must have execute authorization for the member.
h: The caller must have hold authorization for the member.
E: The caller must be the owner of the library.
H: The caller must be entered as the HOLDER of the member.
B: Explicitly or implicitly specified base version.

Member protection/data protection Members

64 U8326-J-Z125-6-76

Notes

– In systems without a group structure, no access is possible through the user circle
“group”. A setting analogous to USER-ACCESS is, however, possible through the user
circles “owner” and “all others”.

– Member protection is meaningful only when the library file is protected against UPAM
accesses. Library files are protected against UPAM accesses if they are protected by
means of a Basic Access Control List (BACL) or GUARDS and have been properly set
up.

Libraries input by a file transfer operation (openFT) are not considered to have been
properly installed until they have been accessed for writing by PLAM.

LMS action Required conditions
 WRITE-CONTROL= DEACTIVATED ACTIVATED
Modify LIBRARY-ATTR E E
Modify TYPE-ATTR E E
Create 1st version a a
Create nth version a H(B) 1

1 The new version is created with the attributes of the base version, i.e. with STATE=*IN-HOLD.

STATE= FREE IN-HOLD FREE IN-HOLD
Show ELEMENT-ATTR * * * *
Delete version a,w - a,w -
Rename version2

2 If a member is to be renamed with the name of another existing member, that member must
be authorized to overwrite.

a,w - - -
Overwrite version w w,H - w,H
Modify EATTR a/w - a/w -
Set STATE=IN-HOLD h - h -
Set STATE=FREE h H/E h H/E
Read version r r r r
Execute version x x x x
Modify ELEMENT-PROT E E E E

Members Member protection/data protection

U8326-J-Z125-6-76 65

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

4

– For libraries that are protected against UPAM accesses, the following restrictions apply:
– they can no longer be included in a library by ADD-ELEMENT
– they can no longer be processed via remote file access (RFA).

For such applications, the BACL protection must be deactivated for the library file. The
library file is then no longer protected against UPAM accesses. It can now be processed
like any other PAM file.

– Libraries which contain protection attributes and are protected against UPAM access
can only be copied by their owner using COPY-FILE.

– GUARD protection is possible, provided, of course, that the GUARDS subsystem is
available.

4.7.2 Data protection by overwriting

Data protection by overwriting means that the user deletes files that are no longer required
by specificallyoverwriting them. The data is physically deleted by this operation, i.e.
overwritten with X’00’. Overwriting of data is controlled locally by the LMS statement
DELETE-ELEMENT or globally in MODIFY-LMS-DEFAULTS, by the DESTROY-DATA
operand in each case.

The DESTROY-DATA operand is on the one hand a member attribute, i.e. overwriting
automatically acts on this member, and on the other hand a processing parameter of the
LMS statement DELETE-ELEMENT. As a processing parameter, DESTROY-DATA causes
all members covered by the statement to be overwritten on deletion.

The data is overwritten with X’00’ if one of the following specifications calls for overwriting:

– class 2 option DESTLEV

– specification for member: value of DESTROY-DATA on last creation or on last write
access to the member

– specification via the DESTROY-DATA operand

Member protection/data protection Members

66 U8326-J-Z125-6-76

4.7.3 Auditing

The access method PLAM used by LMS has an interface with the subsystem SAT (security
audit trail) in the security package SECOS (see [6]). When SAT is active, the following
events can be selected by the security administrator for logging:

– CREATE ELEMENT

– MODIFY ELEMENT

– READ ELEMENT

– EXECUTE ELEMENT

– CLOSE ELEMENT

– DELETE ELEMENT

– RENAME ELEMENT

– CREATE-SECURITY-ATTRIBUTES

– MODIFY-SECURITY-ATTRIBUTES

– DELETE-SECURITY-ATTRIBUTES

U8326-J-Z125-6-76 67

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5 LMS functions
This chapter gives an overview of the LMS functions.

5.1 Starting/terminating LMS

5.1.1 Starting LMS

LMS is called as an autonomous program by the /START-LMS or /LMS command.

Area of application: UTILITIES

VERSION =
Specifies the desired product version.

VERSION = *STD
The version defined by the SELECT-PRODUCT-VERSION command is selected. If no
version has been defined, the system selects the highest possible version.

VERSION = <product-version>
Entry of the selected version.

START-LMS

VERSION = *STD / <product-version>
,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767>

Starting/terminating LMS LMS functions

68 U8326-J-Z125-6-76

MONJV = *NONE / <filename 1..54 without-gen-vers>
Name of the job variable that is to monitor the LMS run. (Facility available only to users of
the software product JV (see [8].)

During LMS execution, the system sets the job variables to the following values:

MONJV = *NONE
No job variable is defined.

CPU-LIMIT = *JOB-REST / <integer 1..32767>
The maximum amount of CPU time (in seconds) which LMS may use for execution. If this
time is exceeded in interactive mode, the user is informed by the system; in batch mode,
the LMS run is terminated.

CPU-LIMIT = *JOB-REST
If the interactive job was started with a time limitation, the value defined at system
generation is used as the time limit for the LMS run. Otherwise, there is no time limit for the
program.

Command return code

Note

If a start file is specified, the command return code can be overwritten by the return
codes entered in the statements in the start file.

Value Meaning/Reason for value assignment
$R LMS running.
$T LMS terminated normally.
$A LMS terminated abnormally.

(SC2) SC1 Maincode Meaning
 0
1
2

32
130

CMD0001
CMD0230
LMS0238
LMS1002
LMS0041

No error
Syntax error
Error while loading LMS
Internal errror
System address space exhausted

LMS functions Starting/terminating LMS

U8326-J-Z125-6-76 69

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.1.2 Monitoring LMS execution with job variables

If LMS is started with /START-LMS MONJV=<name> containing a monitoring job variable, LMS
places a value in the variable when it terminates. MONJV is supplied with a value
independent of the value of the SDF-P /BEGIN-BLOCK command PROPAGATE-STMT-RC
operand.

The MONJV value is composed of a three-byte status indicator and a four-byte return code
indicator. The return code indicator is composed of a one-byte termination code (TC) and
a three-byte program information indicator (PI). LMS sets the status indicator and the termi-
nation code as follows:

Status indicator

Status indicator Return code Remarks
Termination
code (TC)

Program
information (PI)

1 2 3 4 5 6 7 Byte

$T

$A

0
1

2
3

See
below

normal
termination

abnormal
termination

Starting/terminating LMS LMS functions

70 U8326-J-Z125-6-76

Termination code

Program information

Note

If the END statement is used in conjunction with the LMS functionality from EDT, the
considerations on page 121 should be borne in mind.

BC Meaning
0 Normal termination

LMS executed without error
1 Normal termination

Warnings were issued or errors occurred which were less serious than the value set
as MAX-ERROR-WEIGHT (see MODIFY-LMS-DEFAULTS).

2 Abnormal termination
A criterion for abortion as defined with MAX-ERROR-WEIGHT was met
(see MODIFY-LMS-DEFAULTS).

3 Abnormal termination
The error which occurred was so serious that continuing the LMS run was either not
possible or was not worth while. The LMS run was terminated internally.

PI Meaning
000 TC: 0

LMS executed without error
001 TC: 1

Nothing worse than warnings occurred.
002 TC: 1 or 2

Nothing worse than RECOVERABLE-class errors occurred, e.g. it was not possible
to find or to overwrite a member.

003 TC: 1 or 2
Nothing worse than SIGNIFICANT-class errors occurred, i.e. no major errors.

004 TC: 2
Nothing worse than SERIOUS-class errors occurred.

005 TC: 3
The error which occurred was so serious that continuing the LMS run was either not
possible or was not worth while. The LMS run was terminated internally.

LMS functions Starting/terminating LMS

U8326-J-Z125-6-76 71

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.1.3 Start file

Users have the option of creating a SAM or ISAM file which will be processed automatically
when LMS is started. The file may contain any LMS statements desired. The LMS state-
ments which are to be executed automatically when LMS is started may also be stored in
a library member.

SYSDTA must have the value PRIMARY or SYSCMD when LMS is started or the sequence
of start statements will not be executed. After the start file has been processed, SYSDTA is
reset to its original value.

LMS searches for the start file as follows:

1. via the S variable SYSLMSPAR

2. via the link name $LMSPAR

3. under the file name SYSPAR.LMS

4. via the global start file

The system administrator can select any installation location for the global start file. The
logical identification SYSPAR is defined for this global start file in the SYSSII file.

The system administrator informs the installation monitor of the installation file name using
the SET-INSTALLATION-PATH command. If no installation file name is defined for the
global start file, a global start file is sought via the file name $.SYSPAR.LMS.

The names $LMSPAR, SYSLMSPAR, SYSPAR.LMS and the global start file must not be
used except in conjunction with the start file. Using any of these names for other purposes,
for example SYSPAR.LMS as the name of a PLAM library, may lead to errors when LMS
starts. Following output of an error message, the LMS run is continued.

The S variable SYSLMSPAR must contain a valid value of the TO-FILE= operand of the
ASSIGN-SYSDTA command (see the ASSIGN-SYSDTA command in [4]). In other words,
the variable may contain the name of a file or a library member in the form *LIB-
ELEM(LIB=...,ELEM=...,TYPE=...).

The S variable must be declared with SCOPE=TASK if it is to be set in a procedure (e.g.
the LOGON procedure) yet still be accessible outside the procedure for other LMS runs.
Otherwise, the variable need not be declared.

The start file can be switched off with /ADD-FILE-LINK FILE-NAME=*DUMMY,LINK-
NAME=$LMSPAR, provided the sequence of start statements is not referenced using the
variable SYSLMSPAR. If the variable exists but should not cause the sequence of start
statements to be executed, the variable must contain the string *DUMMY.

Starting/terminating LMS LMS functions

72 U8326-J-Z125-6-76

Examples

– The values LOGGING=*MAXIMUM and TYPE=S are to be preset in the SYSPAR.LMS
file.

The start file contains the statements:

//MODIFY-LOGGING-PARAMETERS LOGGING=*MAXIMUM
//MODIFY-LMS-DEFAULTS TYPE=S

Following the /START-LMS call, the above values are set automatically.

– This time, the start statements are to be stored in the START member under type S in
the library X.

The S variable SYSLMSPAR contains:

/SYSLMSPAR=’*LIB-ELEM(LIB=X,ELEM=START,TYPE=S)’

The START member contains the statements:

//MODIFY-LOGGING-PARAMETERS LOGGING=*MAXIMUM
//MODIFY-LMS-DEFAULTS TYPE=S

Following the /START-LMS call, the above values are set automatically.

LMS functions Starting/terminating LMS

U8326-J-Z125-6-76 73

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.1.4 Preset options following LMS startup

Default values come into effect following LMS startup. If values other than these are
required for certain statements, the values can be modified by means of the LMS statement
MODIFY-LMS-DEFAULTS or can be changed locally.

The following table indicates which statements are affected by the default values, or
whether the default values influence the entire LMS run.

If positive acknowledgments are to be logged in addition to error messages, the operand
LOGGING=*MAXIMUM must be set in the MODIFY-LOGGING-PARAMETERS statement.

5.1.5 Terminating the LMS run

The statement END must be specified to terminate LMS .

The END statement has no operands (for further details on the END statement, see
page 256).

END

Library assignment LMS functions

74 U8326-J-Z125-6-76

5.2 Library assignment

Libraries must first be assigned before they can be processed. Only when assignment has
been successfully performed can members be added and/or processed.

In LMS statements, libraries are specified by means of the LIBRARY operand. There are
several ways of assigning a library, all of which ultimately lead directly or indirectly to PLAM
libraries:

1. Via a globally defined library (*STD)

2. Using the direct name of a PLAM library

3. Indirectly via a link name

4. Using a library list ("SYSPLAMALT-" variable)

5. By means of type redirection ("SYSPLAMLIB." variable)

The globally defined library is assigned by means of OPEN-LIBRARY and reset to
undefined by means of CLOSE-LIBRARY. Numbers 2 - 5 of the above options can be used
to define the global library.

Library lists enable alternate libraries to be specified. A library list is a list showing which
libraries are to be searched for a member and in which order. Library lists can only be
accessed in read mode, and are defined by means of a "SYSPLAMALT-" variable (ALT
stands for ALTernate library).

The type redirection mechanism allows a standard member type to be redirected to a user-
defined member type. This enables existing programs which do not allow user-defined
types to nonetheless function with these types. A type redirection is defined by means of a
"SYSPLAMLIB." variable. Type redirection is a central mechanism which can be used in all
commands, independently of LMS.

The LMS statement SHOW-LIBRARY-STATUS provides information on the status of the
libraries to be processed.

Direct name of a PLAM library

The specified file name designates a PLAM library. This specification is often used during
work with LMS. Normally the specified file name does in fact indicate a file, but there are
the following exceptions:

– if the file name begins with "SYSPLAMALT-" and an S variable of the same name exists:
this indicates a library list (see page 77)

– if the file name begins with "SYSPLAMLIB." and an S structure variable of the same
name exists: this indicates a type redirection (see page 80)

LMS functions Library assignment

U8326-J-Z125-6-76 75

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

Indirectly via a link name

The name <link> specified under *LINK designates a link name. As a rule, the name is a
file link name defined via /ADD-FILE-LINK, to which a PLAM library is assigned. However,
the following exception applies:

if an S structure variable SYSPLAMLIB.<link> exists: this indicates a type redirection (see
below).

Examples

1. Assigning a global library with OPEN-LIBRARY

A library is opened as a global library if it is assigned through the LMS statement
OPEN-LIBRARY.

Only one global library is possible per LMS run. If a new global library is opened by a
second OPEN-LIBRARY statement, the first global library is closed by an internal LMS
CLOSE and the new library is considered to be the global library.

A global library may already exist or can be newly created. If a library is newly created,
it must be generated with MODE=*UPDATE.

A global library is normally opened only for reading. If it is to be opened for reading and
writing, the operand MODE=*UPDATE must be set in the OPEN-LIBRARY statement.

In the LMS statements a global library is addressed by LIBRARY=*STD. This value is
the default in these statements so no other explicit library specification is required.

/START-LMS
//WRITE-COMMENT 'Open a global library for reading and writing'
//OPEN-LIBRARY LIBRARY = global-lib, MODE = *UPDATE
 .
 .
//WRITE-COMMENT 'Display directory of the global library'
//SHOW-ELEMENT-ATTRIBUTES
 .
 .

Library assignment LMS functions

76 U8326-J-Z125-6-76

2. Assigning a global library via its link name

A global library can also be assigned by means of its link name. However, when using
the link name, a /ADD-FILE-LINK command must be issued before calling LMS in order
to establish the link with the file name of the library.

3. Assigning local libraries in a statement

By specifying one or more libraries in the data structure *LIBRARY-ELEMENT of the
LIBRARY operand, the libraries are defined locally within the statement. The definition
of the libraries is valid only for that statement.

4. Assigning a local library via its link name

A local library can also be assigned by means of its link name. However, when using
the link name, a /ADD-FILE-LINK command must be issued before calling LMS in order
to establish the link with the file name of the library.

/ADD-FILE-LINK FILE-NAME = global-lib, LINK-NAME = testlib
/START-LMS
//WRITE-COMMENT 'Open a global library via link name'
//OPEN-LIBRARY LIBRARY = *LINK(LINK-NAME = testlib)
 .
 .

/START-LMS
 //WRITE-COMMENT 'Example of assignment of a local library '
 //WRITE-COMMENT ' in the Statement EDIT-ELEMENT '
 .
 //MODIFY-LMS-DEFAULTS TYPE=S
 //EDIT-ELEMENT LIBRARY-ELEMENT(LIBRARY=local-lib,ELEMENT=test)
 .
 .

/ADD-FILE-LINK FILE-NAME = local-lib, LINK-NAME = testlib
/START-LMS .
//WRITE-COMMENT 'Open a local library via link name'
//WRITE-COMMENT ' in the statement EDIT-ELEMENT '
 .
//EDIT-ELEMENT (LIBRARY = *LINK(LINK-NAME = testlib), ELEMENT=test)
 .
 .

LMS functions Library assignment

U8326-J-Z125-6-76 77

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

Assigning a library from a list

Library lists enable alternate libraries to be specified. The order of the alternate libraries in
the list determines the order in which they are searched for members.

When a member is sought in a library list, PLAM processes the list to first of all find a
member with the desired type and name. The libraries in the list are searched in the order
in which they appear until the specified member name with the associated type is found.
This means that if more than one library in the list contains members with the same type
and name, the member is always found in the first of these libraries; this library is called the
hit library.

The version specification for the member determines which member version is selected
from the hit library. So one member version in a library covers all member versions in
libraries named later, and the selection process is easy to follow (see example on page 78)

Library lists can only be accessed in read mode. A library list is defined by means of an S
variable. The variable has the type string and the name begins with 'SYSPLAMALT-' (ALT
stands for ALTernate library). The contents of the variable are set as follows:

SYSPLAMALT-<name> = '(<lib>,<lib>,...)'

If the name of the library list is specified as a file name ":catid:$userid.SYSPLAMALT-",
catalog ID and user ID are ignored. Names beginning with 'SYS' are reserved for future
development. Lowercase letters in the contents of the "SYSPLAMALT-" variable are inter-
preted as uppercase letters.

Library lists have one level, which means that specifications in the library list are always
interpreted as PLAM libraries or type redirections. All libraries in the list must be present.

Note

Library lists can only be accessed in read mode, i.e. if the LIBRARY operand specifies
an output library, no library list is permitted. Wildcards are not allowed in library lists.

i Library lists are only supported by other products if this is explicitly described in the
corresponding manual. Use of library lists with any other products can result in
unpredictable behavior.

<name>: Rest of the variable name
<lib>: Library specification

Library assignment LMS functions

78 U8326-J-Z125-6-76

Example

Library lists allow convenient use of the make functionality for projects in which sources are
administered with the borrowing mechanism. The sources are located in one of the libraries
LIB.LOCAL or $GLOBAL.LIB. The borrowing mechanism is used to copy to and fro
between these two libraries. In the make file, SYSPLAMALT-HUGO is specified directly as
the only source library. The contents of SYSPLAMALT-HUGO determine which libraries are
to be searched.

The contents of the libraries are as follows:

To combine the libraries LIB.LOCAL and $GLOBAL.LIB for the local make run:

/set-variable sysplamalt-hugo = '(lib.local,$global.lib)'

A.C from LIB.LOCAL, and B.C from $GLOBAL.LIB are searched.

With a central make run, SYSPLAMALT-HUGO only receives one library:

/set-variable sysplamalt-hugo = '($global.lib)'

Only sources A.C and B.C from $GLOBAL.LIB which have already been returned are
searched. The statements for make are the same in both cases:

//modify-make-defaults library=sysplamalt-hugo

Validity of global and local libraries

A global library remains valid for the entire LMS run until either a new global library is
opened or the library is closed by an explicit CLOSE-LIBRARY statement.

If a local library is also opened, then this is only valid within this one statement. On termi-
nation of this statement, the global library is valid once again.

The LMS statement SHOW-LIBRARY-STATUS (see page 428) provides information on the
status of the libraries.

LIB.LOCAL $GLOBAL.LIB

(S) A.C/1 (S) A.C/2
(S) B.C/1

LMS functions Library assignment

U8326-J-Z125-6-76 79

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

Working with more than one library

Only one global library can be assigned at a time. It if necessary to work simultaneously
with two libraries, the second library must be locally defined.

If more than one library is assigned globally in the LMS run (by several OPEN-LIBRARY
statements), LMS uses the most recently specified library.

Example

Member xyz, which is contained in library lib1, is copied to the library lib2 which already
exists. lib1 is to be used as the global library and lib2 as the local library. Since the member
type is not yet defined after calling LMS, it is defined as global member type S. The member
is not to be renamed:

 /START-LMS
 .
 .
 //MODIFY-LMS-DEFAULTS TYPE=S
 //OPEN-LIBRARY LIBRARY = lib1
 //COPY-ELEMENT ELEM=*LIB-ELEM(,xyz), TO-ELEM=*LIB-ELEM=(LIBRARY=lib2)
 .
 .

Library assignment LMS functions

80 U8326-J-Z125-6-76

Redirection mechanism

In addition to the standard member types, LMS allows users to work with member types
which they have defined themselves. These user-defined types should be derived from a
standard type and have one or more apt names (e.g. COBSRC, ASSSRC, etc.) defined as
a synonym for the single-character designation of the standard type.
Programs which have not been prepared for user-defined types can nonetheless function
with these members. PLAM offers a redirection mechanism that makes it possible to access
libraries containing user-defined member types. All commands and programs in
BS2000/OSD can use type redirection.

The redirection mechanism is implemented by means of the S variable SYSPLAMLIB,
which is a structure-type variable. Its structure members specify what things are to be
redirected and the destinations to which they are to be redirected.

The name of the structure member specifies what is to be redirected,
while the content of the structure member specifies the destination of the redirection.

The name of the structure member is composed of the link name and the user-defined
member type.

The contents of the structure member consist of:
– the library name and the member type or
– the link name and the member type.

If no member type is specified, the member type indicated by the name of the structure
member is used.

The S variable SYSPLAMLIB, which is written in the form of a variable assignment, has the
following structure:

SYSPLAMLIB.<link>.<utype>=´<libname>(TYPE=<typename> / *SAME)´

or

SYSPLAMLIB.<link>.<utype>=´*LINK(LINK=<linkname>,TYPE=<typename> / *SAME)´

link Link name in the form <structured-name1..8>
utype User-defined member type in the form <alphanum-name1..8>

Generally, a user-defined member type is a synonym for an existing standard
type.

typename Member type in the form <alphanum-name1..8>
If the member type is not specified, typename=utype applies.

libname Library name
linkname Link name in the form <structured-name1..8>
*SAME The member type of the structure member contents is the same as the

member type in the name of the structure member.

LMS functions Library assignment

U8326-J-Z125-6-76 81

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

The content of the S variable is a string containing a library component and a type
component which mirrors the real library environment. TYPE=*SAME in the variable
content means <utype>. The library component must not be a library list.

Access via the S variable SYSPLAMLIB can be effected in two ways:

– specification of a library via the file name SYSPLAMLIB.<link>

– specification via the link name <link>

If SYSPLAMLIB is declared as a variable with SCOPE=VISIBLE or =TASK, the contents of
the structure member are evaluated and redirected into the relevant library.

Example

The object of this example is to compile COBOL sources of the member type COBSRC.
They are located in the library MY.COBLIB, which is specified by the link name SRCLIB.
The copy members should be of the COBCOPY type and also located in the MY.COBLIB
library.

/DECLARE-VARIABLE SYSPLAMLIB(TYPE=*STRUCTURE),SCOPE=*TASK ------------------------ (1)

/SET-VARIABLE SYSPLAMLIB.SRCLIB.S = ´MY.COBLIB(COBSRC)´ -------------------------- (2)
/SET-VARIABLE SYSPLAMLIB.COBLIB.S = ´MY.COBLIB(COBCOPY)´ ------------------------- (3)
/ADD-FILE-LINK FILE-NAME=SYSPLAMLIB.SRCLIB,LINK=SRCLIB --------------------------- (4)
/ADD-FILE-LINK FILE-NAME=SYSPLAMLIB.COBLIB,LINK=COBLIB
/MODIFY-JOB-SWITCHES ON=1
/ASSIGN-SYSDTA *SYSCMD
/ASSIGN-SYSLST #L
/START-EXECUTABLE-PROGRAM COBOL85
COMOPT SOURCE-ELEMENT=LMSCOBS
COMOPT SOURCE-VERSION=399
COMOPT MODULE=MY.COBLIB
COMOPT SYSLST=(DIAG,MAP,SOURCE)
END
/STEP
/MODIFY-JOB-SWITCHES OFF=1
/EXIT-PROC

(1) Declares the central S variables (with SCOPE=TASK).

(2) Sets the redirection;
redirection is effected via the link name SRCLIB or the file name
SYSPLAMLIB.SRCLIB.

For example, when the Cobol compiler accesses the type S, the access is mapped
PLAM-internally to the type COBSRC.

(3) The copy members are mapped on the COBCOPY type as described at (2).

Library assignment LMS functions

82 U8326-J-Z125-6-76

(4) Couples the link name SRCLIB with the real library SYSPLAMLIB.SRCLIB. This is
necessary in the event that programs run a distributed check for the existence of
the library.

After SYSPLAMLIB.SRCLIB.S = ´MY.COBLIB(COBSRC)´ the following situation exists:

Only COBSRC-type members can be accessed, and not all of those present in the library
can be accessed. The members are accessed via member type S, and type S is shown
instead of the “real” type COBSRC in program outputs.

The library MYCOPY contains members with the member type COBCOPY, which are to be
designated with the member type S in an LMS run. To circumvent LMS checks, the library
SYSPLAMLIB.COBLIB must exist.
/DECLARE-VARIABLE SYSPLAMLIB(TYPE=STRUCTURE)
/SET-VARIABLE SYSPLAMLIB.COBLIB.S = ´MYCOPY(COBCOPY)´
/ADD-FILE-LINK SYSPLAMLIB.COBLIB,LINK=COBLIB
/START-LMS
//SHOW-ELEM-ATTR *LIB(SYSPLAMLIB.COBLIB)

Displays all members of the type COBCOPY from MYCOPY. Type S is logged.
//SHOW-ELEM-ATTR *LIB(SYSPLAMLIB.COBLIB,*ALL(*ALL),COBCOPY)

No hits (the type COBCOPY does not exist in the user view).
//SHOW-ELEM-ATTR *LIB(SYSPLAMLIB.COBLIB,*ALL(*ALL),S)

Displays all members of the type COBCOPY from MYCOPY.
//SHOW-ELEM-ATTR (*LINK(COBLIB))

Displays all members of the type COBCOPY from MYCOPY. Type S is logged.
//END

MY.COBLIB

ELEM 2 S

ELEM 3 S

SYSPLAMLIB.SRCLIB

ELEM 1 S

ELEM 2 COBSRC

ELEM 3 COBSRC

ELEM 4 X

LMS functions Processing of members

U8326-J-Z125-6-76 83

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.3 Processing of members

The following sections provide an overview of the possible ways in which members can be
processed with LMS.

LMS permits members to be

– entered in libraries as non-delta and delta members
– output to files
– output to other libraries (copied)
– listed
– deleted
– compared
– renamed
– edited
– corrected
– and can output the library’s directory.

 All of the LMS statements mentioned in this section are described on page 156ff.

5.3.1 Adding members to a library

The following statements add members to the assigned library:

ADD-ELEMENT, COPY-ELEMENT and MODIFY-LOGGING-PARAMETERS.

The WRITE-MODE operand determines whether or not an identically named member in the
output library is overwritten.

ADD-ELEMENT

The ADD-ELEMENT statement (see page 165) adds files, modules from the EAM area and
records from the LMS statement stream to the assigned library as members. If no library is
specified, the library opened by OPEN-LIBRARY is used.

This statement enables the user to additionally define whether the member is stored as a
non-delta member or as a delta member.

The FIXED and UNDEFINED record formats are converted into the VARIABLE record
format; i.e. given a 4-byte record header. Libraries permit files with a RECORD-SIZE of up
to 32 Kbytes (including the record header) to be stored.

If an ISAM file is added, the SOURCE-ATTRIBUTES operand determines whether the file
attributes, the ISAM key and information on ISAM secondary keys are included.

ISAM keys having a length of up to 255 bytes may then be stored.

Processing of members LMS functions

84 U8326-J-Z125-6-76

Members having ISAM keys are suitable only for archiving (see Note).

If the operand SOURCE-ATTRIBUTES=*KEEP is set, it is also possible to include files with
RECORD-FORMAT=*FIXED; if not, only RECORD-FORMAT=*VARIABLE is allowed.

Notes

– The ISAM keys of a source program file should not be included in the member, since
the compiler cannot translate the source program from this member without errors if
ISAM keys are present.

– If system file SYSDTA is assigned to a member which has stored the ISAM key, the
ISAM keys are also read. The ISAM keys must then be removed from the program
which carries out the processing.

Files can be stored under the following member types:

Figure 4: Adding members with ADD-ELEMENT

R

Access type for file

Library

Members of
base type

SAM/ISAM

EAM

PAM

Phase

R

X

S,M,P,D,J,X

C

ADD-ELEMENT

LMS functions Processing of members

U8326-J-Z125-6-76 85

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

COPY-ELEMENT

The COPY-ELEMENT statement (see page 213) copies members from the input library to
the output library, storing them there with different member designations, if desired. This
statement enables the user to additionally define whether the member is stored as a non-
delta member or as a delta member.

Figure 5: Adding members with COPY-ELEMENT

MODIFY-LOGGING-PARAMETERS TEXT-OUTPUT=*LIBRARY-ELEMENT

The statement MODIFY-LOGGING-PARAMETERS TEXT-OUTPUT=*LIBRARY-
ELEMENT (see page 351) includes the LMS log (see page 97) in the member specified by
*LIBRARY-ELEMENT.

Figure 6: Storing the LMS log in a member

COPY-ELEMENT

Library

All valid
member types

Member of a
PLAM
library

LMS log

Library

P (default)

Members of type

MODIFY-LOGGING-
PARAMETERS
 TEXT-OUTPUT= S,M,D,J,X

Processing of members LMS functions

86 U8326-J-Z125-6-76

5.3.2 Outputting members to a file

The members of a library are output to a file by means of the EXTRACT-ELEMENT
statement (see page 257).

Figure 7: Outputting members

5.3.3 Listing members

The listing of members is controlled by the SHOW-ELEMENT statement (see page 392); it
is possible to define the format in which the members are to be output and how much infor-
mation is to be displayed.

5.3.4 Deleting members

The DELETE-ELEMENT statement (see page 230) deletes members in the assigned
library.

A distinction is made between logical and physical deletion:

– Logical deletion
The entries in the directory are deleted and storage space for the member concerned
is released.

– Physical deletion
In addition to logical deletion, the storage space of the corresponding member is
overwritten with binary zeros.

A member of a library is physically deleted if the operand DESTROY-DATA=*YES has been
set, if the member contains a code indicating physical deletion or if the class 2 option
DESTLEV calls for physical deletion.

Delta members are not deleted physically until the last delta member of a delta tree, i.e. the
complete delta tree, has been deleted.

File
EXTRACT-ELEMENT

Member of a PLAM
library

LMS functions Processing of members

U8326-J-Z125-6-76 87

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.3.5 Comparing members

The COMPARE-ELEMENT statement (see page 201) is used to compare members. The
members are compared one record at a time, where the range of the comparison operation
can be defined with the RECORD-PART operand. Comparison statistics are always
produced.

The COMPARE-ELEMENT statement is also executed even if only one of the comparison
members is found in the specified libraries. This allows the counting of records in members.

If two members are compared with one another, LMS uses the terms primary member and
secondary member. The user is free to select the new or the old member as the base
member. LMS always considers the secondary member to be the base for the comparison.
This means that LMS identifies missing records in the secondary member as inserted
records and missing records in the primary member as deleted records.

The differences established can be logged if requested (INFORMATION operand). This log
is referred to as a comparison log. Following the comparison log, the SHOW-STATISTICS
statement can be used to output the comparison statistics in the form of a table showing the
results of the comparison in terms of numbers.

When deciding whether two records match, a distinction is made between formal and
logical comparison.

In formal comparisons all record characters are compared, while in logical comparisons
blanks are ignored.

The results of the two comparison modes (formal and logical) are logged in the same way.

Processing of members LMS functions

88 U8326-J-Z125-6-76

Comparison log

Normally, the compared parts of the records are logged and not the complete records.

In the comparison log the results are based on the comparison of two ranges, the
secondary member being taken as the point of reference.

Comparison statistics

The comparison statistics are displayed by means of the SHOW-STATISTICS statement
(see page 434).

The comparison statistics supply the following information about a comparison:

– total number of records compared in primary and secondary members
– number of records inserted
– number of records deleted
– number of identical records.

In addition the result of the entire comparison is indicated:

S (same) No differences were found during the comparison.

C (changed) Differences were found during the comparison.

I (inserted) The secondary member was not found.

D (deleted) The primary member was not found.

ERR (error) An error occurred during the comparison.

Comparison
result

 Meaning

SAM
 (same)

The compared parts of the two records in the primary and secondary
members match.

DEL
 (deleted)

The record with this comparison range only occurs in the secondary
member.

INS
 (inserted)

The record with this comparison range only occurs in the primary
member.

LMS functions Processing of members

U8326-J-Z125-6-76 89

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.3.6 Correcting members

LMS provides the following two statements for correcting members; the type of the
member(s) requiring correction determines which statement should be used:

– EDIT-ELEMENT corrects text members with EDT
(member types S, M, J, P, D, X or types derived from them)

– MODIFY-ELEMENT corrects object modules, link and load modules, phases and text
members via substatements
(member types R, L, C)
(member types S, M, J, P, D, X or types derived from them)

Correcting with EDIT-ELEMENT

The EDIT-ELEMENT statement (see page 237) calls the editor EDT as a subroutine. The
specified member is then processed using EDT statements. On termination of EDT, the
corrected member is written to the output library. It may contain a new member designation.

Correcting with MODIFY-ELEMENT

The MODIFY-ELEMENT statement (see page 277) corrects object modules, link and load
modules, phases and text members. Correction of these members is controlled by various
substatements. These are read from the statement stream immediately following MODIFY-
ELEMENT up to the END-MODIFY substatement.

The corrected member is then written back to the assigned library. It may receive a new
member designation.

For types R, L and C, you may use the following functions:

– correct text records
– cancel corrections
– delete record types from the input member

For type R only, you may also use the following functions:

– generate REP records
– modify control section attributes
– rename symbols

For text members, you may use the following functions:

– insert records
– delete records

Processing of members LMS functions

90 U8326-J-Z125-6-76

5.3.7 Renaming members

The MODIFY-ELEMENT-ATTRIBUTES statement (see page 304) renames the specified
members of the assigned library. This statement also permits the renaming of members
whose designations do not conform to LMS conventions.

Renaming of delta members is not permitted for audit reasons.

5.3.8 Outputting library directories

The SHOW-ELEMENT-ATTRIBUTES statement (see page 406) logs the directory entries
of the specified members or of the entire library.

The directory is always output sorted on the member type. The remainder of the sort
sequence is determined by the SORT operand. Unless otherwise specified, member desig-
nations are output sorted by type, name, version and date.

To obtain the complete directory of a library, all you have to do is enter the SHOW-
ELEMENT-ATTRIBUTES statement without further operands, provided no individual
member type was specified using the MODIFY-LMS-DEFAULTS statement.

5.3.9 Storing procedures

LMS allows the user to store BS2000 procedures as members in libraries (member type J).

Existing procedure files can be incorporated as members into libraries by means of ADD-
ELEMENT.

Storing procedures in this way, especially where small command files are concerned, saves
storage space. The number of catalog entries is decreased.

Note, however, that any ISAM keys that have been stored (see page 83) must be removed
from the members before the procedure is called.

A library member can also be assigned as the system input file (SYSDTA) by means of the
BS2000 command ASSIGN-SYSDTA (see [4]).

LMS functions Archiving members using the delta method

U8326-J-Z125-6-76 91

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.4 Archiving members using the delta method

Two methods are available for storing multiple versions of one member name in libraries:

– the non-delta storage method

– the delta storage method

The non-delta storage method is used to store exactly one member, i.e. all records of a
member, in its own container (a unit of storage in the library). If another version is added
under this name, all records of this member will also be kept in an individual container. Any
relationship that may exist between these members is unknown to LMS.

Such members are henceforth referred to as non-delta members.

During processing, e.g. reading a non-delta member, LMS can directly access all records
of the member specified and perform the action. This method applies to all member types
and, because of its fast access features, it is particularly suitable for members that are still
being developed or subject to change.

For the text-oriented member types S, M, J, P, D and X or types derived from them, the
delta storage method can be used to store multiple versions of one member. With this
storage-saving method only the temporarily first member is stored in its entirety in its own
container. When other versions of the same member are added, then only the records that
are different from those of the previous member are identified and inserted (comparison of
members). In addition, the link between new version and previous version reveals the
logical relationship between the individual members.

Such members are henceforth referred to as delta members.

During processing, e.g. reading a delta member, the relevant records of the referenced
member are filtered out. This may slow down the entire action if a great number of related
delta members are present. The delta storage method is therefore specially suited for the
efficient and transparent filing of member versions.

Archiving members using the delta method LMS functions

92 U8326-J-Z125-6-76

5.4.1 Delta as a storage form and organizational aid

Delta members can be distinguished from non-delta members not only on account of their
efficient storage form but because of the unique relationship that exists among delta
members.

Storage space is saved due to the delta structure:

– Redundant records of a member with respect to the predecessor member can be
identified and will not be stored again.

– For records to be identified as redundant a formal comparison is made between the
records of the new version and the specified base version.

Unique relationships are established via:

– Unique member names
Delta members that are interrelated have the same member name and thus form a
range of names. For this reason, non-delta members and delta members must have
different member names, which means that

– a non-delta member is created only if no delta member exists that has the same
name,

– a delta member is created only if no non-delta member exists that has the same
name.

All delta members having the same name form exactly one logically structured “delta
tree” which in its simplest form is a “delta sequence”.

One name is associated with exactly one delta tree.

– Unique version designations
When a member is included as a delta member, It is possible to specify which member
is the predecessor member, i.e. which member is to be used as the basis for
comparison. The default is BASE=*STD.

The conventions for member names and version designations that are established when
members are added cannot be subsequently altered, for reasons of auditing and consis-
tency. A new delta tree, if required, may be created by copying and simultaneously
renaming the existing delta tree.

LMS functions Archiving members using the delta method

U8326-J-Z125-6-76 93

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.4.2 Adding delta members

Delta members are included in the assigned library by means of the operand STORAGE-
FORM=*DELTA in the ADD-ELEMENT, COPY-ELEMENT and EDIT-ELEMENT state-
ments.

If LMS is to define the storage form of the new member, STORAGE-FORM=*STD must be
specified. Depending on whether the new name exists, LMS determines whether the new
member is to be included as a non-delta member or a delta member. If the name for the
new member to be added already exists as a delta, then a new delta member will be
created; otherwise a non-delta member is created.

Adding a member to a delta sequence

A delta sequence is a linear delta tree, i.e. a delta tree without branches.

Thus, for example, a member is included in the delta sequence by specifying VERSION =
*INCREMENT and BASE = *STD:
The predecessor is a delta member having the same name and the highest version desig-
nation. The new delta member is appended to the currently highest version. The delta
quantity is established and stored in the container. The version designation of the new delta
member should be higher than the currently highest designation.

If no predecessor exists, the member is created as the first member of a delta sequence.

Example of a delta sequence (the arrows represent the relationships)

ELEM/V1 <-- ELEM/V2 <-- ELEM/V3 ..<-- ELEM/Vn

Archiving members using the delta method LMS functions

94 U8326-J-Z125-6-76

Adding a member to a delta tree

A delta tree can be built by specifying VERSION = <text 1..24> and BASE = <predecessor>:

The predecessor is the delta member having the same name and the specified version
designation. The new delta member can be appended laterally to the specified version. The
relation to the predecessor member is to be obtained from the version designation of the
new delta member.

Example of a delta tree (the arrows represent the relationships)

5.4.3 Overview of delta members

An overview of the existing delta members in a library can be output by means of the
operand INFORMATION = DELTA-STRUCTURE in the SHOW-ELEMENT-ATTRIBUTES
statement. A complete delta tree will then always be listed, regardless of which member has
been specified.

As well as the member designations the internal delta numbers of the members are output
to field DELTA# and the internal numbers of the predecessor members are output to field
BASE#.

The delta number reflects the chronological order in which the members have been
included. Both numbers uniquely describe the chaining of members in a tree; they cannot
be controlled by the user. The user can visibly define the chaining of members by proper
version specification.

ELEM/V2

ELEM/V1

ELEM/V21 ELEM/V22 ELEM/V2n

ELEM/V3

ELEM/V31 ELEM/V311 ... ELEM/V31n

ELEM/V32 ELEM/V321 ... ELEM/V32n

LMS functions Archiving members using the delta method

U8326-J-Z125-6-76 95

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.4.4 Deleting delta members

A distinction should be made between logical and physical deletion:

– Logical deletion

This merely deletes the entry from the directory. The records and the relationship with
the predecessor member remain intact.

– Physical deletion

Controlled by the DESTROY-DATA operand (it must be specified when the member is
included) the storage space allocated to the member is overwritten with binary zeros.
When used for delta members this operand will only become active once the last
member of the delta tree is deleted. Specification of DESTROY-DATA=*YES for a
member suffices to delete the entire container.

5.4.5 Locking delta members

When processing a non-delta member, the specified member will be locked (member =
container).

When processing a delta member, all members stored in the referenced container will be
locked (delta tree = container).

5.4.6 Restrictions when using the delta method

Here are some details that should be considered when archiving members by means of the
delta method:

– Renaming single delta members or an entire delta tree is not possible as this would
disrupt the auditability of an archive or put the consistency of data at risk if a current
action is somehow aborted.

– Overwriting delta members is permitted only if the delta members are leaves of a delta
tree, i.e. have no successor.

Controlling the LMS run LMS functions

96 U8326-J-Z125-6-76

5.5 Controlling the LMS run

The following section describes the facilities provided by LMS for controlling the LMS run.
These include logging parameters, user interfaces, job switches, etc.

5.5.1 LMS logging parameters

LMS logging parameters are global parameters. LMS has the following logging parameters:

All logging parameters have as their default value the keyword *UNCHANGED, i.e. the
current setting is not changed. At the beginning of the LMS run, the logging parameters
have the values immediately following *UNCHANGED but these values can be modified
with the MODIFY-LOGGING-PARAMETERS statement.

Logging parameter Meaning of parameter
LOGGING Scope of message logging
OUTPUT Medium for log output
OUTPUT-LAYOUT Scope and layout of log output

LMS functions Controlling the LMS run

U8326-J-Z125-6-76 97

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.5.2 Controlling log output

The LMS log contains everything output by LMS such as for example the result of the state-
ments, their execution or abnormal termination, the assigned I/O libraries as well as lists
generated, for example, when members are listed or compared.

The log may be written to the system file SYSOUT, SYSLST, to a library member or to work
file 9 of EDT. The output medium is specified by means of the TEXT-OUTPUT operand of
the MODIFY-LOGGING-PARAMETERS statement.

If the log is written to a member, LMS normally creates a P-type member.

If job switch 4 was set when LMS was invoked, the start and end messages of LMS are
suppressed.
Error messages are always output.

The following tables shows which operands in which statements control output of the log:

Statement Operand Function
MODIFY-LOGGING-
PARAMETERS

LOGGING Specifies whether or not positive acknowl-
edgments are to be logged

 TEXT-OUTPUT Specifies the output medium for the log

 OUTPUT-LAYOUT Specifies the output format of the log

 LINES-PER-PAGE Specifies the number of lines on a log page

 LINE-SIZE Specifies the length of the lines

 EXTRA-FORM-FEED Generates a form feed signal when a change
of member occurs

 HEADER-LINES Specifies whether or not headers are to be
output

SHOW-ELEMENT OUTPUT-FORM Specifies the format for a member display

 TEXT-/ MODULE-/ PHASE-/
LLM-INFORMATION

Specifies the scope of information output in
a member display

SHOW-ELEMENT-
ATTRIBUTES

SORT Specifies how the directory is to be sorted

 LAYOUT Specifies the format for the directory log

 INFORMATION Specifies the scope of directory logging

 TEXT-OUTPUT Controls the log output

COMPARE-ELEMENT LAYOUT Specifies the format for the comparison log

 INFORMATION Specifies the scope of comparison logging

 TEXT-OUTPUT Controls the log output

Controlling the LMS run LMS functions

98 U8326-J-Z125-6-76

Positive and negative acknowledgments

If the operand LOGGING=*MAXIMUM is set in the LMS statement MODIFY-LOGGING-
PARAMETERS, the execution of each LMS statement affecting a member will be logged.
If the statement is executed successfully, LMS will issue a positive acknowledgment.

If the statement cannot be executed, LMS will log a negative acknowledgment and, if appli-
cable, a corresponding error message.

You can find the messages on the manual server (URL: http://manuals.ts.fujitsu.com) by
means of an HTML application and on the “BS2000/OSD SoftBooks” DVD.

All positive and negative acknowledgments have the following format:

[NO] statement member[word member][cause]

NO The statement has not been executed.

statement Statement name.

member Member designation or file name (in ADD-ELEMENT and
EXTRACT-ELEMENT).

word Keyword: AS, INTO, WITH.

cause Result: EXISTING, REPLACED, etc.

5.5.3 Controlling screen overflow

LMS does not itself perform any screen overflow control. The system handles this function.
LMS outputs can therefore only be aborted if the program interrupt key (K2) key is pressed
and a SEND-MSG command (see page 337) is subsequently entered and sent.

http://manuals.ts.fujitsu.com

LMS functions Controlling the LMS run

U8326-J-Z125-6-76 99

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.5.4 Error handling in interactive and procedure modes

LMS differentiates between the interactive mode and the procedure mode of execution.

– Interactive mode

In interactive mode, following output of the error message, the prompt // appears,
requesting entry of the next statement.

– Procedure mode

LMS supports two error handling mechanisms in procedure mode. A spin-off
mechanism and a statement return code mechanism. The setting of the PROPAGATE-
STMT-RC operand in the /BEGIN-BLOCK command determines which of the two is
effective.

5.5.4.1 Spin-off mechanism

The spin-off mechanism is effective for LMS statements by default, i.e. a jump is made to
the next //STEP- or //END statement when an error occurs. If the jump is to //END, LMS
terminates with TERM UNIT=STEP, MODE=ABNORMAL. The spin-off is then propagated
to the next command. The user can decide which errors cause LMS to trigger the spin-off
mechanism. It controls this via the MAX-ERROR-WEIGHT operand (see //MODIFY-LMS-
DEFAULTS).

Note

If an error occurs during substatement processing which causes the main application to
terminate, a main statement is always expected after a specified //STEP statement.

5.5.4.2 Statement return code mechanism

LMS supports statement return codes analogous to the command return codes (see [4]).
The statement return code allows the user to react as necessary to specific conditions after
each LMS statement.

Structure of the statement return codes

The statement return code has three parts:

Maincode: Message code; the meaning can be retrieved with /HELP-MSG-
INFORMATION.

Subcode1: Error class (decimal); indicates the gravity of the error.
Subcode2: Supplementary information (decimal); e.g. subcode2 = 2 in conjunction with

subcode1 = 0 indicates a warning.

Controlling the LMS run LMS functions

100 U8326-J-Z125-6-76

Controlling the output of statement return codes

The output of statement return codes is activated with the command:

 /BEGIN-BLOCK PROGRAM-INPUT=*MIXED-WITH-CMD(-
 / PROPAGATE-STMT-RC=*TO-CMD-RC)

The statement return codes can then be evaluated in S procedures with SDF-P means (see
the SDF-P manual "Programming in the Command Language" [12]). The SDF-P built-in
functions MAINCODE() or MC(), SUBCODE1() or SC1() and SUBCODE2() or SC2() can
be used for evaluation.

Error handling at the command level is triggered when statement return codes are output,
i.e. a jump to the next /IF-CMD-ERROR, /IF-BLOCK-ERROR or /STEP command.

The error handling is triggered if subcode1 of the statement return code is not equal to 0.
This is the case with all error messages. The setting of MAX-ERROR-WEIGHT has no
effect.

The statement return code can be saved with the /SAVE-RETURNCODE command.
/IF-CMD-ERROR implicitly executes the /SAVE-RETURNCODE command.

Note

With maincodes LMS1002, LMS1003 and LMS1004, the true error must be taken from
the LMS protocol, if this is present. Maincode LMS1003 after a statement with a
wildcard entry may mean that several errors have occurred.

LMS functions Controlling the LMS run

U8326-J-Z125-6-76 101

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

The following possible statement return codes are defined for LMS.

(SC2) SC1 Maincode Meaning

1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2

32
64
64
64
64
64
64
64
64
64
64
64
64
64

CMD0001
LMS0036
LMS0053
LMS0064
LMS0071
LMS0084
LMS0095
LMS0102
LMS0129
LMS0151
LMS0163
LMS0199
LMS0201
LMS0274
LMS0286
LMS0712
LMS0714
LMS0721
CMD0230
LMS0238
LMS1002
LMS0020
LMS0035
LMS0093
LMS0211
LMS0213
LMS0214
LMS0301
LMS0302
LMS0303
LMS0304
LMS0509
LMS0510
LMS1003

No error
Library not assigned
Member and file attributes different
GCCSN macro error; no CCS name specified
XHCS not loaded
VTSUCB macro error
Input records missing
Incomplete module in EAM file
Statement aborted by user
Input or output medium set to standard
At least one record truncated
Record length invalid with fixed record format
Only the comparison area is logged
Block control value changed
File attributes not modified
Touch not possible
Touch not possible on empty file
The specified target is already current
Syntax error
Error while loading LMS
Internal error
Target member or target file does not exist
Member protection not transferrable to file
Protocol member already exists
Library already exists
Name exists as delta member
Name exists as full member
File not found
Member not found
Member not in the range of the reference condition
Type not found
Target member or target file already exists
Base not found
Error during batch (wildcard) processing with at least one member
or file

Controlling the LMS run LMS functions

102 U8326-J-Z125-6-76

(SC2) : Subcode2 = 0 is represented by blanks

The possible return codes are shown again in the descriptions of the separate LMS state-
ments.

Example

Search for member A in LIB1 or LIB2 :

/BEGIN-BLOCK PROGRAM-INPUT=*MIXED-WITH-CMD(-
/ PROPAGATE-STMT-RC=*TO-CMD-RC)
/START-LMS
//SHOW-ELEM-ATTR *LIB(LIB = LIB1, ELEM = A, TYP = S),TEXT-OUT=*NONE
/IF-CMD-ERROR
// SHOW-ELEM-ATTR *LIB(LIB = LIB2, ELEM = A, TYP = S),TEXT-OUT=*NONE
/ IF-CMD-ERROR
/ SET-VAR LIB = 'none'
/ ELSE
/ SET-VAR LIB = 'LIB2'
/ END-IF
/ELSE
/ SET-VAR LIB = 'LIB1'
/END-IF
/WR-TEXT 'Member A is in the &LIB library'
//END
/END-BLOCK

(SC2) SC1 Maincode Meaning
 64
64
64
64
64
64
64
64

130
130
130
130
130

LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0081
LMS0411
LMS0412
LMS0413

Other error
Only the leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrowing status prevents member access
Function violates the version automation
Version does not comply with the valid convention
Increase causes version overflow
System address space exhausted
No further storage space for SYSLST file
Library locked
Member locked
Type locked

LMS functions Controlling the LMS run

U8326-J-Z125-6-76 103

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.5.5 User interfaces

LMS enables the user to branch to a user program during the listing or comparison of
members.

This subroutine can perform the following actions prior to the processing of a member
record:

– manipulate the current member record

– insert own records before the current member record, or at the end of the member

– exclude the current member record from processing

For details, see the LMS statement ACTIVATE-USER-EXIT, page 158ff.

5.5.6 Interrupting the LMS run

The LMS run can be interrupted by the user or by the program.

User interrupt

The user can interrupt the LMS run by pressing a program interrupt key (e.g. K2).

Continuation of the LMS run can be controlled by the /SEND-MSG command, which may
optionally be supplied with an input text. This input text is subsequently interpreted by LMS
during interrupt handling. The current function is informed of the type of termination and
terminates in the desired way. The possible inputs are described under the DIALOG-
CONTROL operand of the MODIFY-LMS-DEFAULTS statement (see page 330).

Further program systems, such as EDT, can be invoked under LMS. These systems may
have their own STXIT routines. LMS always sets up its own STXIT management block.

If different systems use different STXIT routines, then the associated management blocks
in those systems are linked with those of LMS, or vice versa.

When an event occurs, all the STXIT routines associated with this event are activated, i.e.
in addition to the LMS routines the routines of other systems are also executed. This means
that the LMS routines are activated even if the interrupt event does not occur in LMS.

A good example of this is the SEND-MSG command. The SEND-MSG command can be
used to send messages to LMS and to all other STXIT routines that handle this event.

Controlling the LMS run LMS functions

104 U8326-J-Z125-6-76

Note

The SEND-MSG command is handled by all associated STXIT routines of the entire
program system, i.e. it can lead to problems if individual program elements react differ-
ently to the same message. The program is generally continued in the subsystem in
which the event occurred.

LMS interrupt caused by errors

Error handling is also controlled by means of the STXIT routine.

In the case of program termination, line loss, or specification of /START-EXECUTABLE-
PROGRAM, /LOAD-EXECUTABLE-PROGRAM, /CANCEL-JOB, /LOGOFF, /CANCEL-
PROGRAM, /ABEND, /EXIT-JOB, a check is performed to ensure that the libraries remain
consistent.

The following applies to all program termination conditions:

– All STXIT routines in LMS are deactivated in order to prevent any incorrect continuation
of processing by SEND-MSG.

– LMS simulates an END. This causes all open libraries to be closed.

If any libraries are still open at program termination time, these will be closed.

5.5.7 Using job switches

The user can influence the LMS run by means of BS2000 job switches. They must be set
by the system command /MODIFY-JOB-SWITCHES ON=(no,...) before LMS is loaded.

The following job switch affects the LMS run:

Job switch 4:

When job switch 4 is set, the start and end messages for LMS are suppressed.

Job switches are only interrogated on initialization; any subsequent setting and resetting
has no effect for LMS.

LMS functions PAM key elimination

U8326-J-Z125-6-76 105

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.6 PAM key elimination

New disk formats, particularly the non-key (NK) format, have been introduced to increase
the net storage capacity and the effective data transfer rate. The NK disk is formatted
without PAM key (non-key disk). In order to be able to use the NK disk, the K files must be
converted to NK files (PAM key elimination).

Several different disk file formats exist for SAM, ISAM and UPAM files: the previous format
tied to the PAM key (K format) and the non-PAM key formats (NK2 and NK4 formats).
The file format is defined by the BLKCTRL value. BLKCTRL can assume the value
PAMKEY, DATA, DATA2K, DATA4K or NO. For details on the file formats, please refer to [9].

5.6.1 Library files

The distinction between K and NK format is primarily related to DMS. This distinction is
reflected in the following ways in the internal file organization of the PLAM library:

The PAM key is not required. With regard to files, however, there is a difference which is
represented by the BLKCTRL file attribute.

PLAM libraries need not be converted with PAMCONV when migrating between the K and
the NK environments.

5.6.2 Member processing

The following diagram provides an overview of the situations which may arise when trans-
ferring data between the file and library members.
For members, logical information units are listed; for files, the BLKCTR value is given.

The arrows indicate the transfer direction.

PAM key elimination LMS functions

106 U8326-J-Z125-6-76

Figure 8: Transfer of information between the file and library members

Member

(blocked)
Attribute

Member

(blocked)
Attribute

Member

(variable)

[Attr. record]

Member

(blocked)

Descript.Pamkeys

K-SAM
K-ISAM K phaseK-UPAM

NK-SAM
NK-ISAM NK phaseNK-UPAM

BLKCTRL=NO
NK-UPAM

BLKCTRL=DATA

KEY:=X‘00..00‘

PAM keys

(1)

(1) 12 bytes in block are overwritten

LIBRARY

FILE

FILE

recordsrecords records records

are lost

 recordrecord
[Attr. record]

LMS functions PAM key elimination

U8326-J-Z125-6-76 107

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

Use of the ADD-ELEMENT statement

The ADD-ELEMENT statement is used to store file contents in members as follows:

Note the following details:

– SAM/ISAM files:

When SAM and ISAM files are added, the BLKCTRL value is also stored if SOURCE-
ATTRIBUTES=*KEEP has been set, i.e. the original file block structure determined by
the BLKCTRL value is documented in the attribute record.

The individual records are read using the SAM/ISAM logical access method and written
unchanged to the member as variable-format records.
The member structure generated is independent of the original BLKCTRL attribute.

– PAM files

When PAM files are added, the BLKCTRL value, too, is always stored. The blocks of
the file are read using the UPAM access method and stored unchanged as blocks in the
member. If PAM keys are specified, i.e. BLKCTRL=PAMKEY, these PAM keys are
stored in the member.
The generated member thus retains the block structure determined by the BLKCTRL
value.

– Phases

When phases are added, the BLKCTRL value is not stored. The corresponding format
specification is stored on file in the phase information. In the PLAM library, K phases
and NK phases have the same format. The PAM key information is stored in
descriptors.

1) Storage can be controlled via the SOURCE-ATTRIBUTES operand

 ADD file>member
File type BLKCTRL entry in

attribute record
 PAM key
 storage

 File on SAM/ISAM — 1)

 NK disk SAM/ISAM from the catalog no

 UPAM from the catalog no

 File on SAM/ISAM — 1)

 PK disk SAM/ISAM from the catalog no

 UPAM from the catalog for BLKCTRL=PAMKEY

PAM key elimination LMS functions

108 U8326-J-Z125-6-76

Use of the EXTRACT-ELEMENT statement

The EXTRACT-ELEMENT statement is used to output the contents of members to files.
The BLKCTRL value is determined via the following hierarchy:

1. The specification in the catalog entry or ADD-FILE-LINK command.

2. BLKCTRL value stored for the member. This is relevant only for files which were origi-
nally PAM files.

3. Setting of the CLASS2 option BLKCTRL: PAMKEY or NONKEY. This can be displayed
by means of the SHOW-SYSTEM-PARAMETERS command.

4. Disk attribute K or NK

If no catalog entry exists and the BLKCTRL value has not been stored, the class 2 option
and the disk attribute determine the BLKCTRL value:

If the class 2 option BLKCTRL has been set to PAMKEY, LMS lets the system define the
BLKCTRL value, i.e. BLKCTRL = <not specified>.

If the class 2 option BLKCTRL has been set to NONKEY, LMS sets BLKCTRL = DATA for
SAM and ISAM files and BLKCTRL = NO for PAM files.

Note the following details:

– ISAM files

Variable-length member records are written using the ISAM logical access method. The
BLKCTRL value of the file is determined according to the algorithm described above; in
this case, however, point 2) above does not apply, as the BLKCTRL value stored for the
member is used for documentation purposes only and is ignored.

K NK

PAMKEY DATA
 NO

PAMKEY

K NK

 DATA DATA
 NO

NONKEY

 NO

CLASS2 option

DIsk

BLKCTRL

attribute

BLKCTRL

LMS functions PAM key elimination

U8326-J-Z125-6-76 109

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

– SAM files

If BLKCTRL=DATA is specified, a DMS error occurs if records in the member are longer
than 32 Kbytes - 16 bytes. In the K environment, these records may have a length of up
to 32 Kbytes - 4 bytes. When selecting records, LMS passes those which are too long
to DMS without checking them.

The BLKCTRL value is determined in the same way as for ISAM files.

– PAM files (type X members)

In the NK environment, the PAM keys are lost. Phases tied to the PAM key can then no
longer be loaded. In addition, when BLKCTRL=DATA is specified, the first 12 bytes of
each logical block are overwritten by the system. In both cases LMS issues a warning.
In the case of phases and PLAM files, no warning is issued.

– Phases (type C members)

Phases are handled in a special way.
In addition to the old phase format (K phase), there is a new PAM-key-free phase format
(NK phase) for files.

PAM key elimination LMS functions

110 U8326-J-Z125-6-76

5.6.3 Summary

– SAM/ISAM files

It is always possible to add and select files. Any BLKCTRL values stored are used for
documentation purposes only.

The internal file format is always determined by the SAM/ISAM access method. This
method also converts records to the internal block format of the file.

– UPAM files

Neither the UPAM access method nor LMS can be used for the automatic conversion
of data, since this would result in a loss of data.

The user has ultimate control.

1) The value BLKCTRL=PAMKEY is not possible.
2) The selection process must be controlled by the user, e.g. by specifying a link name in the statement.

 File type BLKCTRL entry generated / stored
in the attribute recordU P A M

PAMKEY DATA NO —

File located on NK disk
1)
2)

ADD
EXTRACT

ADD
EXTRACT

 —
EXTRACT

File located on K disk
ADD
EXTRACT

ADD
EXTRACT

ADD
EXTRACT

 —
EXTRACT

LMS functions Support for NK4 disks

U8326-J-Z125-6-76 111

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.7 Support for NK4 disks

In BS2000 there are two formats of PLAM libraries supported by LMS:

– the 2K-oriented format (NK2 PLAM file)

– the 4K-oriented format (NK4 PLAM file)

The COPY-LIBRARY statement converts from one format to the other (cf. example under
COPY-LIBRARY, page 226). The user determines the appropriate format in the BS2000
command ADD-FILE-LINK and the BUFFER-LENGTH= operand:

NK2 PLAM file: BUFFER-LENGTH=STD(SIZE=1)
NK4 PLAM file: BUFFER-LENGTH=STD(SIZE=2)

LMS supports both library formats. It also supports NK4 disks with the ADD-ELEMENT and
EXTRACT-ELEMENT statements.

5.7.1 Adding files with ADD-ELEMENT

Using ADD-ELEMENT, files of any BUFFER-LENGTH can be added to a PLAM library.

5.7.2 Outputting members with EXTRACT-ELEMENT

Here it is necessary to distinguish between members with or without an attribute record:

Member with attribute record

The member has an attribute record with the original BUFFER-LENGTH specification. This
occurs if the operand SOURCE-ATTRIBUTES=*KEEP in the ADD-ELEMENT statement
was specified or if the member was an original UPAM file, e.g. a PLAM library.

For the output of these members, the following points should be borne in mind:

– A BUFFER-LENGTH value is explicitly preset for the target file, either through an entry
in the task file table (TFT) via the ADD-FILE-LINK command, or directly in the catalog
entry. In this case, the preset value is always used. When the value is transferred, the
following problems may occur:

– SAM/ISAM file:
The member records are too long for the preset BUFFER-LENGTH. A DMS error is
then output.

– UPAM file:
When creating UPAM files, LMS fills up a logical block (except for the last one) with
2K units and only then outputs it with UPAM .

Support for NK4 disks LMS functions

112 U8326-J-Z125-6-76

When BLOCK-CONTROL-INFORMATION=WITHIN-DATA-BLOCK, every logical block
(BUFFER-LENGTH) begins with a 12-btye block control field (CF). If the preset
BUFFER-LENGTH does not correspond to the stored value, data can be overwritten
with the CF by the BS2000 Data Management System (DMS). The file is then unusable.

When BLOCK-CONTROL-INFORMATION=NO, however, unusable information may
likewise be generated if the BUFFER-LENGTH is changed (e.g. PLAM files).

In order to avoid these situations, LMS issues a warning if the specified BUFFER-
LENGTH differs from the stored entry. However, LMS always attempts to generate the
file.

– A BUFFER-LENGTH value is not explicitly preset or known for the target file. In this
case, the value from the attribute record is used.

If the value n in STD(SIZE=n) is odd, LMS increments it to (n+1).

Member without an attribute record

When working with members which have not attribute record, bear in mind the following:

– If a BUFFER-LENGTH value is explicitly preset for the target file, LMS treats these
members as members with an attribute record (see above).

When phases are being created, BUFFER-LENGTH specifications other than
STD(SIZE=1) or STD(SIZE=2) lead to errors.

– If a BUFFER-LENGTH value for the target file is not explicitly preset or known, LMS
determines it as follows:

– The BUFFER-LENGTH for phases is obtained from the current environment, i.e.
BUFFER-LENGTH=STD(SIZE=1) for NK2 disks and STD(SIZE=2) for NK4 disks.
The phases do not differ in terms of content.

– Otherwise, the BUFFER-LENGTH is calculated from the maximum record length.

LMS functions Support for NK4 disks

U8326-J-Z125-6-76 113

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

Recommendations for converting files from K/NK2 to NK4 disks

When converting files from an K/NK2 disk to an NK4 disk via a library, bear in mind the
following recommendations:

1. “Actions” on the NK2 disk:

Extract all “critical” members of the library as files. Critical members are “PAM”
members under type X, which, as a file, have one of the following characteristics:

– BUFFER-LENGTH = STD(SIZE=n), where n is odd

– PAM key phases

– 2K-oriented PLAM files

2. Using PAMCONV, convert all files with an odd BUFFER-LENGTH (except PLAM files)
into NK4 files.

3. Using LMSCONV via type C, convert all PAM key phases to NK4 phases. The
conversion only works if it is carried out on a K disk.

4. Using the LMS statement COPY-LIBRARY, convert NK2 PLAM files into NK4 PLAM
files.

5. Using the LMS statement ADD-ELEMENT, add the NK4 files to an NK4 PLAM file and
transfer that file to the NK4 disk.

Notes

– An NK4 library on a key disk can, for example, be converted to an NK4 disk via the
BS2000 command COPY-FILE (see [4]) or by means of the BS2000 products FILE-
TRANSFER (see [14]) and ARCHIVE (see [2]). The relevant operands for handling the
BLOCK-CONTROL values can be found in the respective manuals.

– An NK2 PLAM file under type X cannot be converted into the NK4 PLAM format using
EXTRACT-ELEMENT.

Handling alias names (ACS) LMS functions

114 U8326-J-Z125-6-76

5.8 Handling alias names (ACS)

This section describes the effects of ACS on LMS. ACS (Alias Catalog Service) is a
BS2000/OSD subsystem which is used to manage alias names for files. An alias name is
an arbitrary file name which the user can employ instead of the files’s real name.

Prerequisites

The ACS subsystem must have been started by the system administrator.

An alias catalog in which alias names are unambiguously assigned to real file names must
have been generated for the current task.

If a task-specific alias catalog exists, a name specified by the caller of a function accessing
a file’s catalog entry will be assumed to be an alias name at first. Only when a name cannot
be found in the alias catalog of the task is it then considered to be a real name.
If the specified name is defined as an alias name, it is replaced by the real file name with
which it is associated.

Alias names with catalog and user identifiers may cause problems. For more information
on working with alias names and on managing the alias catalog, see the section on “ACS”
in the manual “Introductory Guide to DMS” [9].

Handling alias names in LMS

LMS replaces an alias name with the complete member name or file name in accordance
with the catalog entry in the following cases:

Adding files

If a file is added as a member using ADD-ELEMENT, LMS always uses the complete file
name for the construction of the member name.

LMS functions Handling alias names (ACS)

U8326-J-Z125-6-76 115

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

Example

The following LMS statement generates the member S/FILE.X/001:

//ADD-ELEMENT FROM-FILE=X,TO-ELEM=*LIB(,ELEM=*BY-SOURCE(VERSION=001),TYPE=S)

Outputting members

If a member is output to a file using EXTRACT-ELEMENT, LMS always uses the complete
member name for the construction of the file name.

Example

The following LMS statement generates the file FILE.X:

//EXTRACT-ELEMENT ELEM=*LIB(,ELEM=X,TYPE=S),TO-FILE=*BY-SOURCE

Logging file names

LMS always logs the complete, converted file name.

Alias name File name
X FILE.X

Alias name File name
X FILE.X

Using extended character sets in LMS (XHCS) LMS functions

116 U8326-J-Z125-6-76

5.9 Using extended character sets in LMS (XHCS)

Computer systems (hosts) and data display terminals each operate with one character set,
i.e. a set of letters, digits and characters used to form words and other basic components
of a language.

By extending the character set, country-specific characters such as umlauts (German) and
accents (French) can also be offered within a particular character set.

A coded character set (CCS) is the unique representation of the characters in a character
set in binary form. The content of a coded character set and its rules, such as sorting order
and conversion guidelines, are defined by international standards.

Example In the coded character set EBCDIC.DF.03-DRV (German reference
version), the character “ä” is represented by the byte X’FB’, and in
EBCDIC.DF.04-1 by X’43’.

Every coded character set (also called simply “code”) is identified by its unique name
(coded character set name, CCSN).

Example The code EBCDIC.DF.03-IRV (international reference version) is referred to
as “EDF03IRV”.

The appendix at the end of the “XHCS” manual [15] provides a list of all existing codes.

In BS2000, character sets are provided by the software product XHCS. By default, these
include:

– 7-bit character sets such as, for example. ISO646 (international 7-bit character set,
ASCII), EDF03IRV (international reference version, EBCDIC), EDF03DRV (German
reference version, EBCDIC).

– 8-bit character sets such as, for example. ISO88591 (Latin Alphabet No.1, ASCII),
EDF041
(Latin Alphabet No.1, EBCDIC), EDF04DRV (extension of EDF03DRV) etc.

– The 3 Unicode character sets UTF16, UTF8 and UTFE.

LMS functions Using extended character sets in LMS (XHCS)

U8326-J-Z125-6-76 117

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.9.1 Hardware and software requirements

In order to use extended codes for LMS, the following prerequisites must be met:

– software product XHCS (optional subsystem XHCS-SYS)

– software component VTSU

The software product XHCS (eXtended Host Code Support) is required for generating
extended codes in the host and for transmitting data between the host and the data display
terminal. A detailed description of the principles and functions of XHCS as well as a list of
code tables and names of standard codes are provided in the “XHCS” manual ([15]).

As hardware, it is necessary to have 8-bit data display terminals in order to input and output
extended character sets.
You can use the software component VTSU to test data display terminals for 8-bit capability.

5.9.2 LMS-specific application of extended character sets

LMS supports the use of special (national) character sets, so each member can be
assigned a character set through allocation of a coded character set name (CCSN). This is
passed on to interfaces and taken into account in outputs.

If XHCS is not offered at the relevant interface, the default “no code” is always used.

To also enable selection via wildcards in the MODIFY-ELEMENT-ATTRIBUTES and
SHOW-ELEMENT-ATTRIBUTES statements, the overlaying of “name” with <filename 1..20
without-cat-id-user-id-generation-version with-wildcards> is offered.

LMS itself does not require a specific character set and does not evaluate the default setting
of the user ID. Internal LMS sort processes, e.g. of the member designations, take place
independently of the selected CCS.

A character set can be assigned to every member in a PLAM library, and LMS always
transfers the source member’s CCSN to the target member. The CCSN is a descriptive
attribute and is output together with the directory.

As of PLAM V3.4A the CCSN of newly created elements will be derived from the CCSN of
the library file unless the program creating the element doesn't specify a value of its own.

Using extended character sets in LMS (XHCS) LMS functions

118 U8326-J-Z125-6-76

Setting CCSNs implicitly

CCSNs are set implicitly during the processing of members in the following cases:

– Adding members with ADD-ELEMENT
If a member is added using the LMS statement ADD-ELEMENT, the catalog attribute
CCS for the member is also transferred. However, the CCSN is not stored in the
attribute record (record type 164) to avoid inconsistencies. The layout of record type
164 is described in the “LMS Subroutine Interface” manual [1].

If a module from the EAM file is added using ADD-ELEMENT, it receives the “no code”
attribute.

– Adding members from SYSDTA
If a member from the system file SYSDTA is added, the selected character set is deter-
mined, and the name of that character set is assigned to the member as an attribute.

– Processing members with EDT
Extended character sets are supported by EDT. When calling EDT, LMS passes the
CCSN of the relevant member to EDT and then writes the member back with the value
selected in EDT. If the input member is not specified, “no code” will be assumed as the
input CCSN.

With EDT V17.0 the CCSN of an element newly created with EDIT-ELEMENT is the
value determined by /MODIFY-TERMINAL-OPTIONS.

With EDT V16.6B this behaviour can be achieved by using the optional Rep A0538001.
Without this Rep the value of the CCSN is *NONE.

Elements with ISO character set can't be extracted as ISAM files with EBCDIC ISAM
keys.

– Copying members
When members are copied with the LMS statement COPY-ELEMENT, LMS always
assigns the CCSN of the source member to the target member.

– Storing members with WRITE-MODE=*EXTEND
If a member is written back with WRITE-MODE=*EXTEND, LMS checks the CCSNs of
the source and the target. If they do not match, processing is aborted and error
message LMS0277 is issued.

Setting CCSNs explicitly

To set a CCSN explicitly, use the LMS statement MODIFY-ELEMENT-ATTRIBUTES. LMS
does not check whether the specified CCSN is authorized in the system.

LMS functions Using extended character sets in LMS (XHCS)

U8326-J-Z125-6-76 119

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

Logging CCSNs

The LMS statement SHOW-ELEMENT-ATTRIBUTES with the operand
INFORMATION=*MAXIMUM outputs the assignment of character sets to the members. In
the case of members having the “no code” CCSN, this attribute is not displayed in the
directory.

Example

The character set EDF03IRV is assigned to the TEST member by the LMS statement
MODIFY-ELEMENT-ATTRIBUTES and is stored under the new name TEST1. The member
attributes are then output with SHOW-ELEMENT-ATTRIBUTES.

//MOD-ELEM-ATTR (LIB=TESTLIB,ELEM=TEST,TYPE=S), -
// NEW-ATT=PAR(ELEM=TEST1;CODED-CHAR-SET=EDF03IRV)
OUTPUT LIBRARY= :X:$USERID.TESTLIB
 MODIFY (S)TEST/001(001)2012-06-22 AS (S)TEST1/001(0001)/2012-06-22
//SHOW-ELEM-ATTR (ELEM=TEST1),INFORMATION=*MAXIMUM
INPUT LIBRARY= :X:$USERID.TESTLIB
TYPE = S
NAME = TEST1
VERSION = 001 VARIANT = 0001
USER-DATE = 2012-06-22 CRE-DATE = 2012-06-24 MOD-DATE = 2012-06-24
USER-TIME = 13:07:37 CRE-TIME = 14:38:12 MOD-TIME = 14:41:40
STORAGE = FULL COD-CH-SET = EDF03IRV
STATE = FREE
ELEM-SIZE = 1
 1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS

Using extended character sets in LMS (XHCS) LMS functions

120 U8326-J-Z125-6-76

Evaluating and transferring CCSNs

The CCSN is evaluated when members are output.

– Outputting members to file
The file is given the CCSN of the member.

– Outputting members to SYSOUT
When member records are output to SYSOUT (also in edited form) by means of the
SHOW-ELEMENT statement, the CCS of the relevant member is used.

If SYSOUT is assigned to a file, the user must explicitly assign the desired character
set to this file using the BS2000 command MODIFY-FILE-ATTRIBUTES.

– Outputting members to SYSLST
When member records are output to SYSLST, the CCSN is not evaluated.

If SYSLST is assigned to a file, the user must explicitly assign the desired character set
to this file using the BS2000 command MODIFY-FILE-ATTRIBUTES.

– Outputting members to a library member
If member output is redirected to a library member by means of the LMS statement
MODIFY-LOGGING-PARAMETERS, the member receives the “no code” CCSN.
Nonetheless, this member can be assigned a character set explicitly with the LMS
statement MODIFY-ELEMENT-ATTRIBUTES.

– Outputting the directory
When the directory or other member information generated by LMS is output, the “no
code” CCSN is always assumed.

LMS functions Utilizing LMS functionality from within EDT

U8326-J-Z125-6-76 121

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

5.10 Utilizing LMS functionality from within EDT

By means of the @USE statement, EDT offers users the option of defining an external
statement routine which can be called up as a subprogram via a user escape character also
defined using @USE. This makes user-specified statements available in EDT.

In order to utilize LMS statements and thus the functionality of LMS from within EDT, the
@USE statement must be specified in the EDT command line in the following form:

@USE COM[MAND]= ’usersymb’ (LMSEDT,$.SYSLNK.LMS.034)

with the external statement form: usersymb LMS statement

A detailed description of the @USE statement is provided in the “EDT” manual [10].

Please note that the maximum length of an LMS statement entered in the EDT command
line is only 256 bytes.

When an LMS statement is entered, it is analyzed and executed by the SDF command
processor, which then returns the user to the EDT command line. Lowercase letters are
converted to uppercase prior to analysis.

Notes

– The LMS statements CALL-EDT, EDIT-ELEMENT and BEGIN-MAKE are not
supported in the EDT command line.

– External statement routines do not support any LMS start files.

– LMS functionality can be utilized from within EDT
– if EDT is called up as a main program or
– if EDT is called up as a subprogram in the main program LMS using one of the LMS

statements //CALL-EDT or //EDIT-ELEMENT.

– If LMS is the main program, using LMS functionality within EDT causes no new LMS
run to be started, i.e. the LMS settings from the current run remain in effect.

– If EDT is running in Unicode mode e.g. after /START-EDTU (as of EDT V17) then entry
LMSEDU is to be used instead of LMSEDT in EDT-statement @USE. If entry LMSEDT
is used in Unicode mode then an element created by ADD-ELEMENT gets CCSN
*NONE even though the character set in EDT set by CODENAME is not *NONE (e.g.
UTF16).

Utilizing LMS functionality from within EDT LMS functions

122 U8326-J-Z125-6-76

The effects of the LMS statements EXTRACT-ELEMENT, ADD-ELEMENT and END are
somewhat altered when they are used from within EDT.

The LMS statement is entered in the EDT command line:

– EXTRACT-ELEMENT

usersymbEXTRACT-ELEMENT ELEMENT = ... ,
 TO-FILE = *STD

The member records of the specified member are appended to the end of the current
EDT work file.

– ADD-ELEMENT

usersymbADD-ELEMENT FROM-FILE=*STD ,
 TO-ELEMENT = ...

The data records are written from the current EDT work file into the specified member.

– END

usersymbEND

– EDT was called as a main program:

The subprogram LMS called via @USE is terminated, i.e. all libraries still open are
closed. The user is returned to the EDT command line.

– LMS was called as a main program:

In interactive mode, the user is asked:

LMS0409 TERMINATE LMS? REPLY (Y=YES, N=NO)

Y: The main program LMS is terminated.
N: The main program LMS is not terminated.

Extension of LMS statements

MODIFY-LOGGING-PARAMETERS ... ,
 TEXT-OUTPUT = *EDT (WRITE-MODE=*UNCHANGED)

LMS log output is written to EDT work file 9; the WRITE-MODE operand refers to the
contents of work file 9.

LMS functions Utilizing LMS functionality from within EDT

U8326-J-Z125-6-76 123

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

5

Example

/START-EDT —— (1)

.
.

(1) EDT is invoked.

(2) LMS is defined as an external statement routine with the user escape character
"period".

(3) The member xmpl.mem1 of type=s is read into EDT work file 0 from the xmpl.lib
library.

(4) The member is renamed and written back into the same library from EDT work file 0.

1.00
2.00

22.00
23.00
@USE COM='.'(LMSEDT,$.SYSLNK.LMS.034) 0000.00:001(0)
LTG TAST -- (2)

1.00 Member contents of xmpl.mem1
2.00

22.00
23.00
.extract-elem (lib=xmpl.lib,elem=xmpl.mem1,type=s) 0000.00:001(0)
LTG TAST

--(3)

1.00 Modified member contents of xmpl.mem1
2.00

22.00
23.00
.add-elem *std,(lib=xmpl.lib,elem=xmpl.mem2,type=s) 0000.00:001(0)
LTG TAST

--(4)

LMS and EDT V17 LMS functions

124 U8326-J-Z125-6-76

5.11 LMS and EDT V17

LMS by default calls EDT V17 in compatibility mode so that existing procedures run
furthermore without changes. During editing of Unicode elements, EDT switches over to
Unicode mode automatically.

To edit elements with records longer than 255 characters but no Unicode character set
specified please use one of the following LMS statements to call EDT in Unicode mode:

//CALL-EDT EDT-MODE=*UNICODE

or

//EDIT-ELEMENT ...,EDT-MODE=*UNICODE

Alternatively you can set the Unicode mode as default for EDT calls:

//MODIFY-LMS-DEFAULTS EDT-MODE=*UNICODE

U8326-J-Z125-6-76 125

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

6

6 Support for the software development process
Some terms which are used in the following sections are defined below to facilitate under-
standing:

program system

A program system is a logical grouping of software components, for example the
components of a software project.

component

A component contains data which belongs together. One example of a component is a
library member that contains text.

derived component

A derived component is one which is generated from other components through
automatic processing, for example a compilation listing.

source (component)

A source component is one which was not generated from any other component. As a
rule, sources are components which are developed manually, for example the source
texts of programs, macros or documents.

current

A program system may be referred to as being “current” if it includes all the recent
updates of the sources from which it is generated.

dependency

A component is dependent on the components from which it is derived.

Borrowing mechanism Support for the software development process

126 U8326-J-Z125-6-76

6.1 Borrowing mechanism

With its borrowing mechanism, LMS affords a means of monitoring and controlling the
development of components by two or more developers at the same time. First, it is
necessary to activate WRITE-CONTROL for a given library or a type with the MODIFY-
LIBRARY-ATTRIBUTES or MODIFY-TYPE-ATTRIBUTES statement. This ensures that a
member can be written only if the user explicitly or implicitly holds the base version. Under
the STD-SEQ convention, the holder of the highest version also has the entire version
space reserved. Under the STD-TREE convention, the holder of the highest version of a
branch has the entire branch reserved. Under the MULTI-SEQ convention, the holder of
the highest version of a subname space reserves the entire subname space.

Borrowing member versions

First, the user obtains a member by means of the PROVIDE-ELEMENT statement. This
changes the status of the member from FREE to IN-HOLD and makes a copy of the
member available. It is then no longer possible to issue a PROVIDE-ELEMENT statement
for that member.

It is also possible to mark a member as held by explicitly setting its status with the MODIFY-
ELEMENT-ATTRIBUTES statement. In this case, no copy is made available, but can be
obtained later using the COPY-ELEMENT statement.

Returning members

To return a member, use the RETURN-ELEMENT statement. If BASE=*STD is specified,
the member version held by the user is determined. If the user holds multiple versions, the
base must be specified explicitly. The member is then again available for holding by other
users; the hold flag is deleted. When you return a member, you can return a comment along
with it. If WRITE-CONTROL has been activated, the HOLDER, DATE and TIME of return
are automatically recorded. You can view these members using EDIT-ELEMENT.

Cancelling reservations

With the MODIFY-ELEMENT-ATTRIBUTES statement, you can cancel a reservation for a
held member, for example if it has become unnecessary to return the member.

Granting hold rights

The owner of the library can specify who has hold authorization for each member using
MODIFY-ELEMENT-PROTECTION; only the person(s) thus authorized can hold the
member.

Support for the software development process make functionality

U8326-J-Z125-6-76 127

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

6

6.2 make functionality

make functionality is designed to facilitate the integration of program systems and intended
for use in small to medium-scale software projects where integration is to be handled
without extensive administrative.

A program system consists of components such as macros, “includes”, source programs,
object modules, main modules, phases, etc. A component is referred to as being dependent
if it is generated from other components.

If changes are made in the program system, only the dependent components need to be
regenerated to ensure that the program system is up to date. Frequently, changes affect
two or more levels.

Example

An object module is generated from a source program and the macros used, and a main
module from a series of object modules.

1. If a source program is changed, it is necessary to generate (compile) the corre-
sponding object module again.

2. The main module containing that object module must then also be regenerated.

3. Then the phase containing that object module must be regenerated.

The make functionality can be used to integrate a program system in such as way that,
when changes are made in the source programs, only the program-system components
affected by the modifications have to be regenerated .

For the make run, it is necessary to consider the following questions:

– Which component is dependent on which other component?

– What are the rules according to which the dependent components are generated?

This information is stored in the make substatements (see the next page), where the rules
(referred to as “actions” in the following sections) are also defined (see page 131).

The components which can be processed with the make functionality are library members
and files. A dependent component must be generated again if it is older than any of the
components on which it is dependent. Depending on the component involved, the time of
the most recent modification is considered to be:

– the MODIFICATION-DATE/TIME in the case of library members

– the LAST-CHANGE-DATE in the case of files.

The time of the modification is indicated in local time.

make functionality Support for the software development process

128 U8326-J-Z125-6-76

Starting make

To start the make functionality, you use the BEGIN-MAKE statement, in which you specify
the target component (TARGET) and generate a procedure that regulates continuation
processing. The system expects the BEGIN-MAKE statement to be followed by make
substatements.

make substatements: describing dependencies and defining actions

The substatements specify the dependencies existing among the components and define
actions. The actions describe how a target component is to be generated from the source
components and are stored in the procedure specified in the BEGIN-MAKE statement.

The following substatements are available for make:

Terminating make

The make substatement END-MAKE concludes the sequence of make substatements and
initiates continuation processing. Generally, the continuation processing generates and
executes a procedure.

MODIFY-MAKE-DEFAULTS Modifies make-internal presettings.
SET-STD-ACTION Specifies dependencies between individual objects by

defining standard actions which use components of one
member type to generate components of a different
member type.

SET-DEPENDENCY Specifies the dependencies which exist between the
individual components. Can also be used to define non-
standard actions which are to be executed at a later
point in time if the target component is not current. Large
numbers of objects can be read in in SET-DEPEN-
DENCY via S variables.

SET-PREPROCESSING Defines the actions that are to be included at the
beginning of the generated procedure.

SET-POSTPROCESSING Defines the actions that are to be included at the end of
the generated procedure.

Support for the software development process make functionality

U8326-J-Z125-6-76 129

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

6

Schematic diagram of make processing

There are two ways to “update” a program system:
– by generating the updated versions of the outmoded components
– by “touch”, i.e. by updating only the modification time of the outmoded components (see

page 134).

figure 9 shows a schematic diagram of make processing.

The diagram depicts a program system and its components, in which the source compo-
nents S1 and S2 are used to generate the target component T1.

If the source component S1 is modified, the component dependent on it (target component
T1) must be generated again. This means that the make run must be called with the target
component T1. The make run describes two things: first, which components are dependent
on source component S1, and second, the actions which are required to generate the
dependent component.

After the make run has concluded, the procedure which was generated during the run and
which contains those actions will be executed. Since the dependent component T1 has a
modification time which is earlier than that of the component S1, the T1 component is
updated according to the actions contained in the procedure.

In figure 9, the numbers in parentheses have the following meanings:

(1) Component T1 is dependent on components S1 and S2. Component S1 is then
modified. The make run is called with the target component T1 in LMS.

(2) In the make substatements composing the make run (BEGIN-MAKE through END-
MAKE), it is specified that component T1 is dependent on component S1. The state-
ments also define the actions required to generate T1 from S1.
The actions required to update the program system are collected in the procedure
specified in the BEGIN-MAKE statement.

(3) After the make run has concluded (after input of the END-MAKE statement), the
procedure is executed.

(4) “Touch” updates the components’ modification times to the latest status without
modifying their contents.

(5) The updated program system with the newly generated T1 component.

make functionality Support for the software development process

130 U8326-J-Z125-6-76

Figure 9: Overview of make processing

 A1

(4)

(3)

Program system with its
components

 Z1

updated program system with
its components

(1)

(5)

 Z1

 Procedure

 A2

 A2 A1

 make run in LMS

(2)
// BEGIN-MAKE TARGET=Z1
//<make substatement>
//END-MAKE

Support for the software development process make functionality

U8326-J-Z125-6-76 131

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

6

6.2.1 Actions

Actions describe how a target component is generated from the source components.

Actions are text lines which are specified in the make substatements SET-DEPENDENCY
or SET-STD-ACTION. These text lines are transferred unchanged into the procedure
specified in the BEGIN-MAKE statement.
Each action has its own line in the procedure. This makes it possible to specify two or more
lines (actions) for a single component. Users formulating make statements must
themselves take care of continuation lines within actions.

In the SET-STD-ACTION substatement, you can specify standard actions which use
source components of a specific type to generate target components of a different type.
These standard actions can be referenced in the SET-DEPENDENCY statement.

6.2.2 Using variables

In order to exploit the full scope of make functionality, it is necessary to have S variables,
which in turn means that SDF-P must be available (see [12]).

S variables generated by make (make S variables) can be used in actions. These variables
contain information both on the dependent components which are to be generated and the
components from which they are to be generated. make inserts the required make S
variable assignments into the procedure before the actions.

All of the S variables specified in the make substatements are replaced during the make
run, which is made possible by the SDF input language.

You can prevent the S variables from being replaced during the make run by entering the
ampersand (&) twice, instead of once, when you specify the actions.

Large quantities of data intended for components can be read in via S variables in the SET-
DEPENDENCY statement.

There are two categories of variables that are not to be generated until the generated
procedure is executed:

– normal S variables which are supplied and used (in actions) by the user,

– make S variables which are supplied and used in actions by make.

The names of make S variables are defined in the MODIFY-MAKE-DEFAULTS
substatement. If make S variables are accessed in the course of actions, the actions must
be processed by SDF.

make functionality Support for the software development process

132 U8326-J-Z125-6-76

Users may define the following make S variables:

– Name of the current target (CURRENT-TARGET-VAR)
(see make substatement MODIFY-MAKE-DEFAULTS)

– List of all predecessor components (FROM-OBJECTS-VAR)
(see make substatement MODIFY-MAKE-DEFAULTS)

– List of all predecessor components which have been modified more recently than the
target (MODIFIED-OBJECTS-VAR)
(see make substatement MODIFY-MAKE-DEFAULTS).

The value for CURRENT-TARGET-VAR is a variable in the output format of LMS (see
chapter “Format of LMS output in S variables” on page 445). The values for FROM-
OBJECTS-VAR and MODIFIED-OBJECTS-VAR are lists of such variables. The sequence
of the variables in these lists corresponds to the sequence of the variables specified in the
SET-DEPENDENCY statement.

For library members, the following structure elements are supplied (variable name VAR):

If the S variable is supplied with a value for a file, the variable VAR.LIB receives the
complete file name, and the variables VAR.ELEM, VAR.VERSION and VAR.TYPE receive
empty strings. The representation of *NONE contains only empty strings.

You supply the S variables with values by inserting commands in the generated procedure,
making use of the auxiliary variable SYSLMSMAKE.

Declarations are also made by inserting commands in the generated procedure. Declara-
tions made in the substatement for preprocessing are not overwritten.

&(VAR.LIB) STRING
&(VAR.ELEM) STRING
&(VAR.VERSION) STRING
&(VAR.TYPE) STRING

Support for the software development process make functionality

U8326-J-Z125-6-76 133

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

6

6.2.3 Selection and construction specifications in make

Selection and construction specifications result in the processing of multiple components.

Selection specifications in make

With the selection specification, you can reference target components. Patterns in the
selection specification can be used to form source components (see the description of
construction specifications below). Selection specifications refer to target components
which are known to make and which are generated gradually through the specified depen-
dencies during the make run.

Selection specifications apply to these components only, not to the contents of libraries.
Selection specifications may be made for ELEMENT, TYPE and library name.

Construction specifications in make

Construction specifications can be used to form designations of source components from
target components, where ELEMENT corresponds to ELEMENT and TYPE to TYPE. The
file names specified correspond to one another and to ELEMENT.

If multiple target and source components are specified, the selection and construction
processes are executed for all combinations of those components. The file names specified
correspond to one another and to ELEMENT.

The LMS restriction that at least one placeholder of the selection specification must occur
in the construction specification does not apply here.

6.2.4 Runtime control during continuation processing

Global runtime control for make is effected by means of the statements MODIFY-MAKE-
DEFAULTS and BEGIN-MAKE.

The output of the log for continuation processing can be controlled with BS2000
commands. Either of the SDF-P commands MODIFY-PROCEDURE-OPTIONS or
MODIFY-PROCEDURE-TEST-OPTIONS, which control logging, can be specified as the
first command under ACTION (in SET-PREPOCESSING for the entire procedure).

The response to errors is controlled by means of the SUPPRESS-ERRORS operand of the
make substatement SET-DEPENDENCY. If SUPPRESS-ERRORS=*NONE and a
command return code is set following execution of the actions specified by the dependency
definition, execution of the procedure generated by make is aborted (see [12]). This corre-
sponds to the conventional spin-off mechanism. In this way, the response to errors can be
controlled separately for each dependency definition.

make functionality Support for the software development process

134 U8326-J-Z125-6-76

Error situations are reset if STEP commands are inserted in the generated procedure. In
this case, no program may be loaded at the end of the actions.

Case-specific error handling may be implemented by inserting the appropriate commands
in the actions.

6.2.5 TOUCH

As an alternative to generating and executing a procedure, you can “touch” the components
(SUCCESS-PROCESSING=*TOUCH in the BEGIN-MAKE statement), which causes them
to be given an updated modification time. In this case, no procedure is generated. Following
END-MAKE, the time stamps of the components are updated, but their contents remain
unchanged.

6.2.6 make operation

In order to determine where dependencies exist, a graph describing the entire program
system is constructed, taking as its starting point the component specified as the target
component in the BEGIN-MAKE statement. The graph is then elaborated by evaluating the
existing dependencies (make substatement SET-DEPENDENCY).

Dependencies have the following structure:

(target-object1, target-object 2),(from-object1, from-object2,...),
(action1,...)

where this notation signifies:
– that the target objects are dependent on the source components (from-objects) and
– that the actions describe how a target component is to be generated.

A target object is not current if any of the associated source components (from-objects)
have a more recent modification time, or the target component is not available.

The dependency represented above is equivalent to the following:

target-object1, (from-object1, from-object2,...), (action1,...)

target-object2, (from-object1, from-object2,...), (action1,...)

At first, the graph consists solely of the target of the make run, but is then gradually elabo-
rated with the aid of the dependencies. If a component in the graph is a target component
and has as yet no successor, the associated source components are appended to that
node.

Support for the software development process make functionality

U8326-J-Z125-6-76 135

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

6

The graph is finished when make has applied all of the existing dependencies. The compo-
nents of the graph which have no source components (from-objects) are the sources of the
program system. They must exist in full form in order to generate the target of the make run.
All the sources for a target component must exist (not just the modified components), or the
make run will be aborted and an error message issued.

For each target component, only one uniquely specified action may exist. Otherwise, the
make run will be aborted and an error message issued.

Taking the sources as starting points, make evaluates the relations between the target
components and the source components in regard to their modification times. If it deter-
mines that a target component is not current, make initiates the action required to update it.

Example

This example shows how the make functionality works when wildcards are used. The
library where the components are located is the preset library.

The phase member PROG (member type C) is generated from the object modules
PART1 and PART2 (both of member type R). These objects are compiled from sources
of type S with the suffix “.COB”. The actions are merely mentioned.

The dependencies (library members in the format (,NAME,TYPE)):
(1) TARGET-OBJECT1 = *LIB-ELEM(,PROG,C), -
 (FROM-OBJECT1=*LIB-ELEM(,PART1,R), FROM-OBJECT2=*LIB-ELEM(,PART2,R)), -
 ACTION1 = ’LINK PROG’
(2) TARGET-OBJECT2 = *LIB-ELEM(,*,R) , -
 FROM-OBJECT = *LIB-ELEM(,**.COB,S), -
 ACTION2 = ’COMPILE’

If it is to be generated in the make run, the component *LIB-ELEM (,PROG,C) is the start
node of the graph.

The graph can be elaborated only with dependency (1). The result:

 *LIB-ELEM(,PROG,C)

 *LIB-ELEM(,PART2,R) *LIB-ELEM(,PART1,R)

 *LIB-ELEM(,PROG,C)

make functionality Support for the software development process

136 U8326-J-Z125-6-76

As a make selection specification, the target component of dependency (2) corre-
sponds to *LIB-ELEM(,PART1,R), which supplies the associated source components
as the result of the construction *LIB-ELEM(,PART1.COB,S). In the graph, the latter is
appended to *LIB-ELEM(,PART,R).

In the same way, (,PART2.COB,S) is appended to (,PART2,R).

*LIB-ELEM(,PART1.COB,S) and *LIB-ELEM(,PART2.COB,S) are the sources required
for the generation of *LIB-ELEM(,PROG,C) and must be available in full form.

 *LIB-ELEM(,PART2,R)

 *LIB-ELEM(,PART1.COB,S)

 *LIB-ELEM(,PROG,C)

 *LIB-ELEM(,PART1,R)

 *LIB-ELEM(,PROG,C)

 *LIB-ELEM(,PART1.COB,S) *LIB-ELEM(,PART2.COB,S)

 *LIB-ELEM(,PART1,R) *LIB-ELEM(,PART2,R)

 *LIB-ELEM(,PROG,C)

 *LIB-ELEM(,PART1.COB,S) *LIB-ELEM(,PART2.COB,S)

 *LIB-ELEM(,PART1,R) *LIB-ELEM(,PART2,R)

U8326-J-Z125-6-76 137

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

7 Statements
This chapter describes the statements that can be entered during the LMS run. The
description of the LMS statements follows the overview of SDF standard statements and
the syntax description of the SDF user interface. In order to avoid ambiguity, it is advisable
to write “//” in front of all statements in procedures.

7.1 SDF standard statements for LMS

The following SDF standard statements may be specified during the LMS run.

The SDF standard statements (except for END) are not described in the present manual.
A description may be found in [3].

Statement Function
END Terminate the LMS run

EXECUTE-SYSTEM-CMD Execute a system command

HELP-MSG-INFORMATION Output system message text to SYSOUT
HOLD-PROGRAM Interrupt a program

MODIFY-SDF-OPTIONS Modify the SDF options

REMARK Provide comments for programs

RESET-INPUT-DEFAULTS Reset task-specific default values
RESTORE-SDF-INPUT Redisplay the last input

SHOW-INPUT-DEFAULTS Display task-specific default values
SHOW-INPUT-HISTORY Output contents of the input buffer

SHOW-SDF-OPTIONS Display the SDF options

SHOW-STMT Display the syntax of a statement
STEP Define a restart point

WRITE-TEXT Output text to SYSOUT

Syntax description Statements

138 U8326-J-Z125-6-76

7.2 Syntax description

This syntax description is valid for SDF V4.7. The syntax of the SDF command/statement
language is explained in the following three tables.

Metasyntax

The meanings of the special characters and the notation used to describe command and
statement formats are explained in table 2.

Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific set of values. The number of data types is limited to those described in table 3.

The description of the data types is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described in table 3 are explained in
the relevant operand descriptions.

Suffixes for data types

Data type suffixes define additional rules for data type input. They contain a length or
interval specification and can be used to limit the set of values (suffix begins with without),
extend it (suffix begins with with), or declare a particular task mandatory (suffix begins with
mandatory). The following short forms are used in this manual for data type suffixes:

case-sensitive case-sens
cat-id cat
completion compl
correction-state corr
digits dig
generation gen
lower-case low
manual-release man
odd-possible odd
path-completion path-compl
separators sep
special-characters spec
temporary-file temp-file
underscore under
user-id user
version vers
wildcard-constr wild-constr
wildcards wild

Statements Syntax description

U8326-J-Z125-6-76 139

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

The description of the ‘integer’ data type in table 4 contains a number of items in italics
which are not part of the syntax. They are only used to make the table easier to read. For
special data types that are checked by the implementation, table 4 contains suffixes printed
in italics (see the special suffix) which are not part of the syntax.

The description of the data type suffixes is valid for the entire set of commands/statements.
Therefore only deviations (if any) from the attributes described here are explained in the
relevant operand descriptions table 4.

Metasyntax

Convention Meaning Examples
UPPERCASE Uppercase letters denote

keywords (command, statement or
operand names, keyword values)
and constant operand values.
Keyword values begin with *.

HELP-SDF

SCREEN-STEPS = *NO

UPPERCASE

in boldface
Uppercase letters printed in
boldface denote guaranteed or
suggested abbreviations of
keywords.

GUIDANCE-MODE = *YES

= The equals sign connects an
operand name with the associated
operand values.

GUIDANCE-MODE = *NO

< > Angle brackets denote variables
whose range of values is described
by data types and suffixes (see 3
and 4).

SYNTAX-FILE = <filename 1..54>

Underscoring Underscoring denotes the default
value of an operand.

GUIDANCE-MODE = *NO

/ A slash serves to separate
alternative operand values.

NEXT-FIELD = *NO / *YES

(…) Parentheses denote operand
values that initiate a structure.

,UNGUIDED-DIALOG = *YES (...) / *NO

[] Square brackets denote operand
values which introduce a structure
and are optional. The subsequent
structure can be specified without
the initiating operand value.

SELECT = [*BY-ATTRIBUTES](...)

Table 2: Metasyntax (part 1 of 2)

Syntax description Statements

140 U8326-J-Z125-6-76

Indentation Indentation indicates that the
operand is dependent on a higher-
ranking operand.

,GUIDED-DIALOG = *YES (...)

*YES(...)
⏐ SCREEN-STEPS = *NO /
⏐ *YES

⏐
⏐

A vertical bar identifies related
operands within a structure. Its
length marks the beginning and
end of a structure. A structure may
contain further structures. The
number of vertical bars preceding
an operand corresponds to the
depth of the structure.

SUPPORT = *TAPE(...)

 *TAPE(...)

⏐ VOLUME = *ANY(...)
⏐⏐ *ANY(...)
⏐⏐ ⏐ ...

, A comma precedes further
operands at the same structure
level.

GUIDANCE-MODE = *NO / *YES

,SDF-COMMANDS = *NO / *YES

list-poss(n): The entry “list-poss” signifies that a
list of operand values can be given
at this point. If (n) is present, it
means that the list must not have
more than n elements. A list of
more than one element must be
enclosed in parentheses.

list-poss: *SAM / *ISAM

list-poss(40): <structured-name 1..30>

list-poss(256): *OMF / *SYSLST(...) /
<filename 1..54>

Alias: The name that follows represents a
guaranteed alias (abbreviation) for
the command or statement name.

HELP-SDF Alias: HPSDF

Convention Meaning Examples

Table 2: Metasyntax (part 2 of 2)

Statements Syntax description

U8326-J-Z125-6-76 141

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Data types

Data type Character set Special rules
alphanum-name A…Z

0…9
$, #, @

cat-id A…Z
0…9

Not more than 4 characters; must not begin with
the string PUB

command-rest freely selectable
composed-name A…Z

0…9
$, #, @
$, #, @
hyphen
period

Alphanumeric string that can be split into
multiple substrings by means of a period or
hyphen.
If a file name can also be specified, the string
may begin with a catalog ID in the form :cat:
(see data type filename).

c-string EBCDIC character Must be enclosed within single quotes;
 the letter C may be prefixed; any single quotes
occurring within the string must be entered
twice.

date 0…9
Structure identifier:
hyphen

Input format: yyyy-mm-dd

yyyy: year; optionally 2 or 4 digits
mm: month
dd: day

device A…Z
0…9
hyphen

Character string, max. 8 characters in length,
corresponding to a device available in the
system. In guided dialog, SDF displays the valid
operand values. For notes on possible devices,
see the relevant operand description.

fixed +, -
0…9
period

Input format: [sign][digits].[digits]

[sign]: + or -
[digits]: 0...9

must contain at least one digit, but may contain
up to 10 characters (0...9, period) apart from the
sign.

Table 3: Data types (part 1 of 6)

Syntax description Statements

142 U8326-J-Z125-6-76

filename A…Z
0…9
$, #, @
hyphen
period

Input format:

[:cat:][$user.]

:cat:
optional entry of the catalog identifier;
character set limited to A...Z and 0...9;
maximum of 4 characters; must be enclosed
in colons;
default value is the catalog identifier
assigned to the user ID, as specified in the
user catalog.

$user.
optional entry of the user ID;
character set is A…Z, 0…9, $, #, @;
maximum of 8 characters; first character
cannot be a digit; $ and period are
mandatory; default value is the user's own
ID.

$. (special case)
system default ID

file
file or job variable name;
may be split into a number of partial names
using a period as a delimiter:
name1[.name2[...]]
namei does not contain a period and must
not begin or end with a hyphen;
file can have a maximum length of 41
characters; it must not begin with a $ and
must include at least one character from the
range A...Z.

Data type Character set Special rules

Table 3: Data types (part 2 of 6)

file
file(no)
group

group
(*abs)
(+rel)
(-rel)

Statements Syntax description

U8326-J-Z125-6-76 143

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

filename
(contd.)

#file (special case)
@file (special case)

or @ used as the first character indicates
temporary files or job variables, depending
on system generation.

file(no)
tape file name no:
version number;
character set is A...Z, 0...9, $, #, @.
Parentheses must be specified.

group
name of a file generation group
(character set: as for “file”)

group

(*abs)
absolute generation number (1-9999);
* and parentheses must be specified.

(+rel)
(-rel)

relative generation number (0-99);
sign and parentheses must be specified.

integer 0…9, +, - + or -, if specified, must be the first character.
name A…Z

0…9
$, #, @

Must not begin with 0...9.

Data type Character set Special rules

Table 3: Data types (part 3 of 6)

(*abs)
(+rel)
(-rel)

Syntax description Statements

144 U8326-J-Z125-6-76

partial-filename A…Z
0…9
$, #, @
$, #, @
hyphen

Input format: [:cat:][$user.][partname.]

:cat: see filename
$user. see filename

partname
optional entry of the initial part of a name
common to a number of files or file
generation groups in the form:
name1.[name2.[...]]
namei (see filename).
The final character of “partname” must be a
period.
At least one of the parts :cat:, $user. or
partname must be specified.

posix-filename A...Z
0...9
special characters

String with a length of up to 255 characters;
consists of either one or two periods or of alpha-
numeric characters and special characters. The
special characters must be escaped with a
preceding \ (backslash); the / is not allowed.
Must be enclosed within single quotes if alter-
native data types are permitted, separators are
used, or the first character is a ?, ! or ^.
A distinction is made between uppercase and
lowercase.

posix-pathname A...Z
0...9
special characters
structure identifier:
slash

Input format: [/]part1/.../partn
where parti is a posix-filename; max. 1023
characters;
max. 1023 characters;
must be enclosed within single quotes if
alternative data types are permitted, separators
are used, or the first character is a ?, ! or ^.

Data type Character set Special rules

Table 3: Data types (part 4 of 6)

Statements Syntax description

U8326-J-Z125-6-76 145

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

product-version A…Z
0…9
period
single quote

Input format:

where m, n, s and o are all digits and a is a letter.
where m, n, s and o are all digits and a is a letter.
Whether the release and/or correction status
may/must be specified depends on the suffixes
to the data type (see suffixes without-corr,
without-man, mandatory-man and mandatory-
corr in table 4).
product-version may be enclosed within single
quotes (possibly with a preceding C). The
specification of the version may begin with the
letter V.

structured-name A…Z
0…9
$, #, @
$, #, @

Alphanumeric string which may comprise a
number of substrings separated by a hyphen.
First character: A...Z or $, #, @

text freely selectable For the input format, see the relevant operand
descriptions.

time 0…9
structure identifier:
colon

Time-of-day entry:

Input format:

hh: hours
mm: minutes
ss: seconds

vsn a) A…Z
0…9

a) Input format: pvsid.sequence-no
max. 6 characters
pvsid: 2-4 characters; PUB must

not be entered
sequence-no: 1-3 characters

b) A…Z
0…9
$, #, @

b) Max. 6 characters;
PUB may be prefixed, but must not be
followed by $, #, @.

Data type Character set Special rules

Table 3: Data types (part 5 of 6)

[[C]’][V][m]m.naso[’]

correction status
release status

hh:mm:ss
hh:mm
hh

Leading zeros may be
omitted

Syntax description Statements

146 U8326-J-Z125-6-76

x-string Hexadecimal:
00…FF

Must be enclosed in single quotes;
must be prefixed by the letter X.
There may be an odd number of characters.

x-text Hexadecimal:
00…FF

Must not be enclosed in single quotes; the letter
X must not be prefixed. There may be an odd
number of characters.

Data type Character set Special rules

Table 3: Data types (part 6 of 6)

Statements Syntax description

U8326-J-Z125-6-76 147

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Suffixes for data types

Suffix Meaning
x..y unit With data type “integer”: interval specification

x minimum value permitted for “integer”. x is an (optionally signed)
integer.

y maximum value permitted for “integer”. y is an (optionally signed)
integer.

unit with “integer” only: additional units. The following units may be
specified:
days byte
hours 2Kbyte
minutes 4Kbyte
seconds Mbyte
milliseconds

x..y special With the other data types: length specification
For data types date, device, product-version and time the length
specification is not displayed.
x minimum length for the operand value; x is an integer.
y maximum length for the operand value; y is an integer.
x=y the length of the operand value must be precisely x.
special Specification of a suffix for describing a special data type that is

checked by the implementation. special can be preceded by other
suffixes. The following units may be specified:
arithm-expr arithmetic expression (SDF-P)
bool-expr logical expression (SDF-P)
string-expr string expression (SDF-P)
expr freely selectable expression (SDF-P)
cond-expr conditional expression (JV)
symbol CSECT or entry name (BLS)

with Extends the specification options for a data type.
-compl When specifying the data type “date”, SDF expands two-digit year

specifications in the form yy-mm-dd to:
20jj-mm-dd if yy< 60
19jj-mm-dd if yyÏ 60

-low Uppercase and lowercase letters are differentiated.
-path-
compl

For specifications for the data type “filename”, SDF adds the catalog and/or
user ID if these have not been specified.

Table 4: Data type suffixes (part 1 of 7)

Syntax description Statements

148 U8326-J-Z125-6-76

with (contd.)
-under Permits underscores (_) for the data type “name”.
-wild(n) Parts of names may be replaced by the following wildcards.

n denotes the maximum input length when using wildcards. Due to the
introduction of the data types posix-filename and posix-pathname, SDF now
accepts wildcards from the UNIX world (referred to below as POSIX
wildcards) in addition to the usual BS2000 wildcards. However, as not all
commands support POSIX wildcards, their use for data types other than
posix-filename and posix-pathname can lead to semantic errors.
Only POSIX wildcards or only BS2000 wildcards should be used within a
search pattern. Only POSIX wildcards are allowed for the data types posix-
filename and posix-pathname. If a pattern can be matched more than once
in a string, the first match is used.
BS2000
wildcards

Meaning

* Replaces an arbitrary (even empty) character string. An *
appearing at the first position must be duplicated if it is
followed by other characters and if the entered string does not
include at least one further wildcard.

Terminating
period

Partially-qualified entry of a name.
Corresponds implicitly to the string “./*”, i.e. at least one other
character follows the period.

/ Replaces any single character.
<sx:sy> Replaces a string that meets the following conditions:

a) If sx is shorter than or exactly as long as sy:
– It is at least as long as sx and no longer than sy
– In the alphabetic collating sequence it lies in the range

from sx to sy
– sx may be empty (=1 character with the lowest coding)

b) If sx is longer than sy:
– It is at least as long as sy and no longer than sx
– In the alphabetic collating sequence it lies in the range

from sx to a string which begins with sy and is filled
with characters of the highest possible coding to the
length of sx

– sy may be empty (=1 character with the highest
coding)

Suffix Meaning

Table 4: Data type suffixes (part 2 of 7)

Statements Syntax description

U8326-J-Z125-6-76 149

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

with-wild(n)
(contd.)

<s1,…> Replaces all strings that match any of the character
combinations specified by s. s may also be an empty string.
Any such string may also be a range specification “sx:sy” (see
page 148).

-s Replaces all strings that do not match the specified string s.
The minus sign may only appear at the beginning of string s.
Within the data types filename or partial-filename the negated
string -s can be used exactly once, i.e. -s can replace one of
the three name components: cat, user or file.

Wildcards are not permitted in generation and version specifications for file
names. Only system administration may use wildcards in user IDs.
Wildcards cannot be used to replace the delimiters in name components cat
(colon) and user ($ and period).
POSIX
wildcards

Meaning

* Replaces an arbitrary (even empty) character string. An *
appearing at the first position must be duplicated if it is
followed by other characters and if the entered string does not
include at least one further wildcard.

? Replaces any single character; not permitted as the first
character outside single quotes.

[cx-cy] Replaces any single character from the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters.

[s] Replaces exactly one character from string s.
The expressions [cx-cy] and [s] can be combined into
[s1cx-cys2]

[!cx-cy] Replaces exactly one character not in the range defined by cx
and cy, including the limits of the range. cx and cy must be
normal characters.
The expressions [!cx-cy] and [!s] can be combined into
[!s1cx-cys2]

[!s] Replaces exactly one character not contained in string s. The
expressions [!s] and [!cx-cy] can be combined into [!s1cx-cys2]

Suffix Meaning

Table 4: Data type suffixes (part 3 of 7)

Syntax description Statements

150 U8326-J-Z125-6-76

-under
-wild-
constr(n)

Specification of a constructor (string) that defines how new names are to be
constructed from a previously specified selector (i.e. a selection string with
wildcards). See also with-wild. n denotes the maximum input length when
using wildcards.
The constructor may consist of constant strings and patterns. A pattern
(character) is replaced by the string that was selected by the corresponding
pattern in the selector.
The following wildcards may be used in constructors:
Wildcard Meaning
* Corresponds to the string selected by the wildcard * in the

selector.
Terminating
period

Corresponds to the partially-qualified specification of a name
in the selector;
corresponds to the string selected by the terminating period in
the selector.

/ or ? Corresponds to the character selected by the / or ? wildcard
in the selector.

<n> Corresponds to the string selected by the n-th wildcard in the
selector, where n is an integer.

Allocation of wildcards to corresponding wildcards in the selector:
All wildcards in the selector are numbered from left to right in ascending
order (global index).
Identical wildcards in the selector are additionally numbered from left to right
in ascending order (wildcard-specific index).
Wildcards can be specified in the constructor by one of two mutually
exclusive methods:
1. Wildcards can be specified via the global index: <n>

2. The same wildcard may be specified as in the selector; substitution
occurs on the basis of the wildcard-specific index.
For example:the second “/” corresponds to the string selected by the
second “/” in the selector

Suffix Meaning

Table 4: Data type suffixes (part 4 of 7)

Statements Syntax description

U8326-J-Z125-6-76 151

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

with-wild-
constr(n)

(contd.)

The following rules must be observed when specifying a constructor:

– The constructor can only contain wildcards of the selector.

– If the string selected by the wildcard <...> or [...] is to be used in the
constructor, the index notation must be selected.

– The index notation must be selected if the string identified by a wildcard
in the selector is to be used more than once in the constructor.
For example: if the selector “A/” is specified, the constructor “A<n><n>”
must be specified instead of “A//”.

– The wildcard * can also be an empty string. Note that if multiple asterisks
appear in sequence (even with further wildcards), only the last asterisk
can be a non-empty string, e.g. for “****” or “*//*”.

– Valid names must be produced by the constructor. This must be taken
into account when specifying both the constructor and the selector.

– Depending on the constructor, identical names may be constructed from
different names selected by the selector. For example:
“A/*” selects the names “A1” and “A2”; the constructor “B*” generates the
same new name “B” in both cases.
To prevent this from occurring, all wildcards of the selector should be
used at least once in the constructor.

– If the constructor ends with a period, the selector must also end with a
period. The string selected by the period at the end of the selector
cannot be specified by the global index in the constructor specification.

Suffix Meaning

Table 4: Data type suffixes (part 5 of 7)

Syntax description Statements

152 U8326-J-Z125-6-76

with-wild-
constr(n)

Examples:

without Restricts the specification options for a data type.
-cat Specification of a catalog ID is not permitted.
-corr Input format: [[C]’][V][m]m.na[’]

Specifications for the data type product-version must not include the
correction status.

-dig The file type name does not permit digits.
-gen Specification of a file generation or file generation group is not permitted.
-man Input format: [[C]’][V][m]m.n[’]

Specifications for the data type product-version must not include either
release or correction status.

-odd The data type x-text permits only an even number of characters.
-sep With the data type “text”, specification of the following separators is not

permitted: ; = () < > Ë (i.e. semicolon, equals sign, left and right parentheses,
greater than, less than, and blank).

-spec The file type name does not permit any special characters.

Suffix Meaning

Table 4: Data type suffixes (part 6 of 7)

Selector Selection Constructor New name
A//* AB1

AB2
A.B.C

D<3><2> D1
D2
D.CB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<3>.XY<2> G.A.D.XYA
G.A.D.XYB
G.B.F.XYA
G.B.F.XYB

C.<A:C>/<D,F> C.AAD
C.ABD
C.BAF
C.BBF

G.<1>.<2>.XY<2> G.A.A.XYA
G.A.B.XYB
G.B.A.XYA
G.B.B.XYB

A//B ACDB
ACEB
AC.B
A.CB

G/XY/ GCXYD
GCXYE
GCXY. 1
G.XYC

1 The period at the end of the name may violate naming conventions (e.g. for fully-qualified
file names).

Statements Syntax description

U8326-J-Z125-6-76 153

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

without
(contd.)

-temp-
file

Specification of a temporary file is not permitted (see #file or @file under
filename).

-user Specification of a user ID is not permitted.
-vers Specification of the version (see “file(no)”) is not permitted for tape files.
-wild The file types posix-filename and posix-pathname must not contain a pattern

(character).
mandatory Certain specifications are necessary for a data type.

-corr Input format: [[C]'][V][m]m.naso[']
Specifications for the data type product-version must include the correction
status and therefore also the release status.

-man Input format: [[C]'][V][m]m.na[so][']
Specifications for the data type product-version must include the release
status. Specification of the correction status is optional if this is not prohibited
by the use of the suffix without-corr.

-quotes Specifications for the data types posix-filename and posix-pathname must
be enclosed in single quotes.

case-
sensitive

When specifications are made for the data types command-rest and text, a
distinction is made between uppercase and lowercase. This also applies for
specifications which are not enclosed in single quotes.

Suffix Meaning

Table 4: Data type suffixes (part 7 of 7)

Input rules Statements

154 U8326-J-Z125-6-76

7.3 Input rules

The LMS statements are read via the SDF user interface and processed by the command
processor SDF (System Dialog Facility). Different forms of guided or unguided dialog exist
with the facility to request help menus for the statements. See also [3].

Continuation lines

It is also possible for statements to extend over more than one record. Splitting is governed

by the BS2000 command language conventions. A hyphen (-) is used as the separator

character. Statement lines may be up to 32763 characters long.

Abbreviation options

When entering LMS statements it is permissible to abbreviate statement names, operand
names and keywords.

The following rules then apply:

It is possible in each case to abbreviate from right to left so long as uniqueness is maintained.
This applies both to the name as a whole and to subnames (beginning with a hyphen) and
allows for the possibility of the subname being omitted entirely.

The guaranteed abbreviation options for all statements, operands and operand values are
indicated in the syntax descriptions of the statements by boldface print. It is however
possible to abbreviate beyond these (so long as uniqueness is maintained within a
structure).

In order to avoid ambiguity resulting from functional extensions in future versions and to
ensure readability for other users, abbreviations should be avoided in procedures.

Positional operands

SDF allows the optional specification of operands as keyword operands or positional
operands. However, the possibility of an operand position changing in a subsequent version
cannot be completely ruled out. It is therefore advisable to avoid using positional operands
in procedures.

Statements Statement aliases

U8326-J-Z125-6-76 155

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

7.4 Statement aliases

The following table shows the aliases of some of the most frequently used statements.
These names cannot be abbreviated further.

Statement Alias
COPY-ELEMENT CP / CPE

COPY-LIBRARY CPL

EDIT-ELEMENT EDE

EDIT-ELEMENT-ATTRIBUTES EDEA

EDIT-ELEMENT-PROTECTION EDEP

MODIFY-ELEMENT MDE

MODIFY-ELEMENT-ATTRIBUTES MD / MDEA

MODIFY-ELEMENT-PROTECTION MDEP

MODIFY-LIBRARY-ATTRIBUTES MDLA

MODIFY-LMS-DEFAULTS MDD / MDLMSD

MODIFY-LOGGING-PARAMETERS MDLGP

MODIFY-TYPE-ATTRIBUTES MDTA

RESET-LMS-DEFAULTS RSD / RSLMSD

RESET-LOGGING-PARAMETERS RSLGP

RESET-TYPE-ATTRIBUTES RSTA

SHOW-ELEMENT SHE

SHOW-ELEMENT-ATTRIBUTES SH / SHEA

SHOW-LIBRARY-ATTRIBUTES SHLA

SHOW-LIBRARY-STATUS SHLS

SHOW-LMS-DEFAULTS SHD / SHLMSD

SHOW-LOGGING-PARAMETERS SHLGP

SHOW-STATISTICS SHST

SHOW-TYPE-ATTRIBUTES SHTA

SHOW-USER-EXITS SHUE

Table 5: Statement aliases

Description of the LMS statements Statements

156 U8326-J-Z125-6-76

7.5 Description of the LMS statements

This section contains a tabular overview of the LMS statements followed by a description
of all the statements in alphabetical order, organized as follows:

– statement name and function

– description of function

– representation of format

– description of operands

– required access rights

– notes

– examples

The substatements for the statement MODIFY-ELEMENT are described in alphabetical
order by name following the statement (page 287ff) since together they constitute a logical
unit.

The same is true of the make substatements, which are described following the BEGIN-
MAKE statement starting on page 182.

The *LMS-DEFAULT keyword is no longer described in the individual statements. It
generally signifies the value set with the MODIFY-LMS-DEFAULTS statement.

The following additionally applies for the member type:
The type specification *LMS-DEFAULT leads to an error if neither a global nor a library-
specific default type is set.

Overview

Statement Function
ACTIVATE-USER-EXIT Activate a user exit

ADD-ELEMENT Add files to libraries as members

BEGIN-MAKE Initiates make substatements

CALL-EDT Call up EDT

CLOSE-LIBRARY Close a library

COMPARE-ELEMENT Compare members

COPY-ELEMENT Copy members

COPY-LIBRARY Copy libraries

DEACTIVATE-USER-EXIT Deactivate a user exit

Statements Description of the LMS statements

U8326-J-Z125-6-76 157

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

DELETE-ELEMENT Delete members

EDIT-ELEMENT Edit members using EDT

EDIT-ELEMENT-ATTRIBUTES Start guided dialog for MODIFY-ELEMENT-
ATTRIBUTES

EDIT-ELEMENT-PROTECTION Start guided dialog for MODIFY-ELEMENT-
PROTECTION

END Terminate the LMS run

EXTRACT-ELEMENT Store members in files

FIND-ELEMENT Find member in records using wildcards

MODIFY-ELEMENT Modify members using substatements

MODIFY-ELEMENT-ATTRIBUTES Modify member attributes

MODIFY-ELEMENT-PROTECTION Modify the member protection

MODIFY-LIBRARY-ATTRIBUTES Modify the library attributes

MODIFY-LMS-DEFAULTS Modify the LMS default values

MODIFY-LOGGING-PARAMETERS Modify the LMS logging parameters

MODIFY-TYPE-ATTRIBUTES Modify the type attributes

OPEN-LIBRARY Open a library

PROVIDE-ELEMENT Reserve members

REORGANIZE-LIBRARY Reorganize a library

RESET-LMS-DEFAULTS Reset the LMS defaults

RESET-LOGGING-PARAMETERS Reset the LMS logging parameters

RESET-TYPE-ATTRIBUTES Reset the type attributes

RETURN-ELEMENT Cancel reservation of deleted members

SHOW-ELEMENT List the contents of a member

SHOW-ELEMENT-ATTRIBUTES List the directory of a library

SHOW-LIBRARY-ATTRIBUTES List the library attributes

SHOW-LIBRARY-STATUS Display the assigned libraries

SHOW-LMS-DEFAULTS Output the current LMS default values

SHOW-LOGGING-PARAMETERS Output the current LMS logging parameters

SHOW-STATISTICS List statistics

SHOW-TYPE-ATTRIBUTES List the type attributes

SHOW-USER-EXITS Display the active user exits

WRITE-COMMENT Write comments

Statement Function

ACTIVATE-USER-EXIT LMS statements

158 U8326-J-Z125-6-76

ACTIVATE-USER-EXIT

This statement readies the user exits for the SHOW-ELEMENT or COMPARE-ELEMENT
function.

ACTIVATE-USER-EXIT permits LMS to branch to a user routine prior to processing a
member record.

Before LMS processes the member record, the following actions are possible:

– update the current member record

– insert records via the user routine

– exclude the current member record from processing

The user routine is informed of start and end of member so as to enable the user to insert
records before the first and after the last member record.

For COMPARE-ELEMENT, two user exits are provided: one for the primary member and
one for the secondary member. The user exits for SHOW-ELEMENT and COMPARE-
ELEMENT can be defined simultaneously.

If several ACTIVATE-USER-EXIT statements with the same user exit are defined, the last
one specified applies.

The activated user exits can be deactivated again by means of the DEACTIVATE-USER-
EXIT statement.

The ACTIVATE-USER-EXIT statement requires specification of the function for which the
user exit is to be activated, and of the entry point of the user program. All other parameters
are preset, i.e. the user program is normally dynamically linked from the TASKLIB library.

ACTIVATE-USER-EXIT

FUNCTION = *SHOW-ELEMENT / *COMPARE-ELEMENT(...)

*COMPARE-ELEMENT(...)
 ⏐ ELEMENT = *PRIMARY / *SECONDARY

,ENTRY = <name 1..8>

,LIBRARY = *TASKLIB / *OMF / <filename 1..54>

,INTERFACE-VERSION = *V1 / *V2

LMS statements ACTIVATE-USER-EXIT

U8326-J-Z125-6-76 159

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

FUNCTION = *SHOW-ELEMENT / *COMPARE-ELEMENT(...)
Defines the LMS statement for which the user exit is to be activated.

FUNCTION = *SHOW-ELEMENT
User exit for the SHOW-ELEMENT function. Valid for all text member types R, F, H, U and
member types derived from them.

FUNCTION = *COMPARE-ELEMENT
User exit for the COMPARE-ELEMENT function. Valid for all text member types R, F, H, U
and member types derived from them.

ELEMENT = *PRIMARY / *SECONDARY
If the user exit is activated for the COMPARE-ELEMENT statement, it is also necessary
to specify whether the member is a primary member or a secondary member.

ENTRY = <name 1..8>
Name up to 8 characters in length of the entry point of the user routine. The name must not
commence with the character string ’LMS’.

LIBRARY = *TASKLIB / *OMF / <filename 1..54>
Source containing the user module.

LIBRARY = *TASKLIB
The desired module is dynamically linked from the TASKLIB (see “Dynamically loading the
user program” on page 160).

LIBRARY = *OMF
The desired module is dynamically linked from *OMF.

LIBRARY = <filename 1..54>
The desired module is dynamically linked from the specified library.

INTERFACE-VERSION = *V1 / *V2
Two interface versions exist. For reasons of compatibility the values BOE, REC and EOE
are offered as standard. When specifying V2, the interface is expanded by the values
C’BOS’ (beginning of statement) and C’EOS’ (end of statement). The user program is thus
informed of the beginning and end of the statement.

ACTIVATE-USER-EXIT LMS statements

160 U8326-J-Z125-6-76

Statement return code

Required access rights

The user program is linked in dynamically, which means that the access rights depend on
the behavior of the BIND macro.

Dynamically loading the user program

The user program is always loaded into user-own class 6 memory. If the specification of a
library is omitted under LIBRARY, the user program will first be sought in a private TASKLIB
(assigned with /SET-TASKLIB LIBRARY=library), if present, and then in the system
TASKLIB ($TASKLIB). If LIBRARY = *OMF or a file is specified but the user program is not
found there, the user program is sought in the library assigned with LINK=BLSLIB or in the
libraries assigned with LINK= BLSLIBnn (00 ≤ nn ≤ 99), with ascending number “nn”.

User exit interface

– Register conventions

When the user program is called, LMS will take account of the following register
conventions:

– Structure of the parameter list

The parameter list consists of 5 words:

DC A(job description)
DC A(response description)
DC A(record to be transferred)
DC A(library name)
DC A(member designation)

(SC2) SC1 Maincode Meaning
0
1

32
64

130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041

No error
Syntax error
Internal error
Other error
System address space exhausted

Register 1: Address of a parameter list
Register 13: Address of the save area (18 words)
Register 14: Return address
Register 15: Address of entry point

LMS statements ACTIVATE-USER-EXIT

U8326-J-Z125-6-76 161

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

The first two addresses are provided by LMS. This means that the user can only supply
the response description to the address that is specified by LMS. The record address
can be supplied by both LMS and the user.

1st word: Job description

The job description for the user subroutine consists of 3 bytes and can have the
following contents:

If the expanded interface has been selected, the job description can have the following
contents:

2nd word: Response description

The response description issued by the user subroutine consists of 3 bytes and may
have the following contents:

C’BOE’ Beginning of member (element)
C’REC’ Record ready to be processed
C’EOE’ End of member (element)

C’BOS’ Beginning of statement
C’BOE’ Beginning of member (element)
C’REC’ Record ready to be processed
C’EOE’ End of member (element)
C’EOS’ End of statement

C’CON’ LMS processes the record whose address is in the parameter list on
return from the user program, and then submits the next member record
or EOE.

C’DEL’ LMS bypasses the last submitted member record and branches back to
the user subroutine at the next member record or at EOE.

C’INS’ LMS first processes the record submitted by the user, and then returns to
the user subroutine at the member record submitted previously or at EOE.
This is repeated until the user responds with DEL or CON. This means
that, if LMS submits record i, the records returned with INS are processed
before record i.

ACTIVATE-USER-EXIT LMS statements

162 U8326-J-Z125-6-76

The following job responses are possible:

If the response is incorrect, the LMS function is aborted and an error message is issued.

The diagram below illustrates the communication between LMS and the user
subroutine.

3rd word: Record

This contains the address of the record that is passed by LMS to the user subroutine.
When the user subroutine returns with the response CON or DEL, the same record
address may be used. If the user wants to insert records, he must use a record buffer
he has defined himself.
The records exchanged between LMS and the user subroutine start with a 4-byte
record length field.
In order to list P-type members with SHOW-ELEMENT, the 5th byte must be a valid
feed control character.

4th word: Library name

This word contains the address of the library name of the library currently being
processed by LMS. The library name starts with a two-byte record length field.

5th word: Member designation

This word contains the address of the member designation of the member currently
being processed by LMS. The member designation has the following format: two-byte
record length field, followed by
(type)membername/version[(variantnumber)]/date

Job Response
BOS Irrelevant
BOE Irrelevant
REC CON, DEL, INS
EOE CON, INS
EOS Irrelevant

LMS statements ACTIVATE-USER-EXIT

U8326-J-Z125-6-76 163

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Figure 10: Communication between LMS and user programs

USER
PROGRAM

USER
PROGRAM

End of mem-
ber reached

Auftrag=EOE

USER
PROGRAM

Job=REC

End of member CON

INS

INS CON DEL

Action in LMS Action in user program

Read
record

Process
inserted record

Process
record

Process
record

 Job=BOEBeginning of
member

ACTIVATE-USER-EXIT LMS statements

164 U8326-J-Z125-6-76

For an executable example involving a user exit, see page 483.

Examples

– Minimum specification for the statement ACTIVATE-USER-EXIT.
The user program “module1” is readied as a user exit for the SHOW-ELEMENT
function.

//activate-user-exit function=*show-element, entry=module1

– The desired user program is contained in the *OMF library.

//activate-user-exit function=*show-element, entry=module1,library=*omf

LMS statements ADD-ELEMENT

U8326-J-Z125-6-76 165

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ADD-ELEMENT

ADD-ELEMENT adds files as non-delta members or delta members to a library. The
member data is read from SYSDTA as standard. It can, however, also be read from an
explicitly specified file or *OMF. However, if the statement is entered in the command line
of EDT, the member data is automatically read from the current EDT work file.

The files are always added as a member to a library without a prefix, i.e. with catalog ID or
user ID, unless the user has explicitly specified a prefix in the construction specification.

Files cataloged with RECORD-FORMAT=*UNDEFINED can also be incorporated in
libraries. Files having RECORD-FORMAT=*FIXED can only be stored using SOURCE-
ATTRIBUTES=*KEEP.
The record formats FIXED and UNDEFINED are converted into the VARIABLE record
format, i.e. are given a 4-byte record header. The record length, including record header,
must not exceed 32 Kbytes.
File generation groups can only be incorporated using link names and a valid LMS member
designation.

In the case of the ADD-ELEMENT statement, LMS adopts the catalog attribute CCS of the
file as a member attribute. If the data is read from SYSDTA, the member generated is given
the CCS name set for SYSDTA as an attribute. If the data is read from *OMF, the member
is assigned “no code”. If the data is read from an EDT work file, the member generated is
given the currently set CCS name of EDT as an attribute.

ADD-ELEMENT LMS statements

166 U8326-J-Z125-6-76

ADD-ELEMENT

FROM-FILE = *STD / *SYSDTA(...) / *ALL / <filename 1..80 without-vers with-wild> / *LINK(...) / *OMF

*SYSDTA(...)
 ⏐ END = ´*END´ / <c-string 1..8>

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,TO-ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / *LINK(...) / <filename 1..54 without-vers>
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ *BY-SOURCE(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / <alphanum-name 1..8>
⏐ ⏐ ,USER-DATE = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,STORAGE-FORM = *LMS-DEFAULT / *STD / *FULL / *DELTA

,ELEMENT-ATTRIBUTES = *LMS-DEFAULT / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ SOURCE-ATTRIBUTES = *LMS-DEFAULT / *STD / *IGNORE / *KEEP

,DELETE-SOURCE = *LMS-DEFAULT / *NO / *YES

,PROTECTION = *LMS-DEFAULT / *STD / *BY-SOURCE

,WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR

LMS statements ADD-ELEMENT

U8326-J-Z125-6-76 167

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

FROM-FILE = *STD / *SYSDTA(...) / *ALL / <filename 1..80 without-vers with-wild>/
*LINK(..) / *OMF
Specifies the file to be added to the library as a member.

FROM-FILE = *STD
Data records are read from the default file, i.e. the system file SYSDTA. If the statement is
entered from the EDT command line, however, the default file from which the data records
are read is the current EDT work file.
Permissible member types:
– for non-delta members: S, M, P, J, D, X or types derived from them
– for delta members: analogous

FROM-FILE = *SYSDTA(...)
The records are read with RDATA from system file SYSDTA. The records must directly
follow the ADD-ELEMENT statement.
Permissible member types:
– for non-delta members: S, M, P, J, D, X, R or types derived from them
– for delta members: S, M, P, J, D, X or types derived from them

END = '*END' / <c-string 1..8>
End criterion for the input. The sequence of records must be concluded with ’*END’ or
a self-defined end criterion (see example, page 175). If the input data contains no end
criterion, reading continues to EOF.

Note

If records are read from the system file SYSDTA, they must not begin with “/”. The
reason for this is that the RDATA macro interprets such records as commands and
thus passes the return code for EOF. Therefore it is not possible to pass system
commands as records.

FROM-FILE = *ALL
LMS attempts to incorporate all files of the ID into the library. If an error occurs in a file, this
file is skipped and the process continues with the next one.

FROM-FILE = <filename 1..80 without-vers with-wild>
The data is read from the specified file.
Permissible member types:
– for non-delta members: S, M, P, J, D, X, R or types derived from them
– for delta members: S, M, P, J, D, X or types derived from them

Files of the PAM type can be stored only as non-delta members under the member type X
or member types derived from it.

FROM-FILE = *LINK(...)
The data is read from the file specified via the link name.

LINK-NAME = <structured-name 1..8>
Link name referencing the file.

ADD-ELEMENT LMS statements

168 U8326-J-Z125-6-76

FROM-FILE = *OMF
Applies only to R-type members.
The data is read from the OMF file. All modules from the OMF file are incorporated. If the
EAM area contains more than one module of the same name, LMS adds the last module
processed to the library.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the destination and name under which the member is to be added.

LIBRARY = *STD / *LINK(...) / <filename 1..54 without-vers>
Specifies the library to which the member is to be added.

LIBRARY = *STD
The library opened globally by OPEN-LIBRARY.

LIBRARY = *LINK(...)
The library assigned via a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

LIBRARY = <filename 1..54 without-vers>
Name of the library to which the file is to be added as a member.

ELEMENT = *BY-SOURCE(...) /
<composed-name 1..132 with-under with-wildcard-constr>(...)
Name that the new member to be added is to receive. A construction specification
refers to the file name.

ELEMENT = *BY-SOURCE(...)
The member name corresponds to the file name, or to the module name in the case of
*OMF.

VERSION = *LMS-DEFAULT / *HIGHEST-EXISTING / *INCREMENT /
*UPPER-LIMIT / <composed-name 1..24 with-under>
Version that the new member to be added is to receive.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, the highest version
appropriate to BASE among the existing members of the same type and name is
overwritten; otherwise a default version is generated.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated (see also page 55).

LMS statements ADD-ELEMENT

U8326-J-Z125-6-76 169

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

VERSION = <composed-name 1..24 with-under>
The text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. If the BASE operand is entered in the form
<composed-name 1..23>*, it will be interpreted as a prefix.
For further information on the effects of BASE, see page 50.

ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
Specifies the name under which the member is stored.

VERSION = *LMS-DEFAULT / *HIGHEST-EXISTING / *INCREMENT /
*UPPER-LIMIT / <composed-name 1..24 with-under>
Version that the new member to be added is to receive.
For description of operands, see above.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

TYPE = *LMS-DEFAULT / <alphanum-name 1..8>
Type that the new member to be added is to receive.

USER-DATE = *TODAY / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *TODAY
The current date is given.

USER-DATE = <date 8..10 with-compl>
The date must be entered in the form [YY]YY-MM-DD.

STORAGE-FORM = *LMS-DEFAULT / *STD / *FULL / *DELTA
Storage form for the new member to be added. The storage form must not contradict
the settings made by means of the MODIFY-TYPE-ATTRIBUTES or MODIFY-
LIBRARY-ATTRIBUTES statements, and all members of a given type and name must
have the same storage form.

STORAGE-FORM = *STD
The member is generated in accordance with the storage form required for the member
scope. Contradictory requirements result in errors. If nothing special is required, full
storage is selected.

STORAGE-FORM = *FULL
The new member is generated as a non-delta member (if this is not possible, an error
message is issued).

ADD-ELEMENT LMS statements

170 U8326-J-Z125-6-76

STORAGE-FORM = DELTA
The member is generated as a delta member (if this is not possible, an error message
is issued). This entry is permissible for member types: S, P, D, J, M, X and members
types derived from them.

ELEMENT-ATTRIBUTES = *LMS-DEFAULT / *PARAMETERS(...)
Determines whether the file characteristics and also the ISAM key are incorporated into the
output member.

ELEMENT-ATTRIBUTES = *PARAMETERS(...)

SOURCE-ATTRIBUTES = *LMS-DEFAULT / *STD/ *IGNORE / *KEEP
Stores file attributes. This operand has no effect if the data is read from SYSDTA, *OMF
or an EDT work file. Original attributes are not stored.
If the data is read from a file of the type UPAM, this entry has no effect; it is always as
though *KEEP had been specified.

SOURCE-ATTRIBUTES = *STD

No file attributes are stored. In the case of ISAM files, it is only possible to include in the
member ISAM files using KEY-POSITION = 5, KEY-LENGTH <= 16 and RECORD-
FORMAT = VARIABLE. A warning will be issued stating that the ISAM keys were not
included.

SOURCE-ATTRIBUTES = *IGNORE
The same as for SOURCE-ATTRIBUTES = *STD, but no warning is issued.

SOURCE-ATTRIBUTES = *KEEP
The following file attributes are stored unchanged in the new member being added:
ACCESS-METHOD, RECORD-FORMAT, RECORD-SIZE, BUFFER-LENGTH,
PERFORMANCE, USAGE, ACCESS and USER-ACCESS. If ACCESS-
METHOD=ISAM, LMS also stores the PADDING-FACTOR, LOGICAL-FLAG-LENGTH,
VALUE-FLAG-LENGTH, PROPAGATE-VALUE-FLAG, the ISAM keys and information
on ISAM secondary keys.

DELETE-SOURCE = *LMS-DEFAULT / *NO / *YES
Here, the user can specify whether the original file is to be retained or deleted. This operand
has no effect if the data is read from SYSDTA, *OMF or an EDT work file.

DELETE-SOURCE=*NO
The original file will not be deleted.

DELETE-SOURCE=*YES
The original file will be deleted.

LMS statements ADD-ELEMENT

U8326-J-Z125-6-76 171

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

PROTECTION= *LMS-DEFAULT / *STD / *BY-SOURCE
Member protection for the member being added. This operand has no effect if the data is
read from SYSDTA, *OMF or an EDT work file.

PROTECTION=*STD
If the member already exists, its member protection remains unchanged. If the member
does not yet exist and initial member protection has been specified for the library and/or the
member type, the member will receive that protection.

PROTECTION=*BY-SOURCE
The member is provided member protection according to the file protection attributes of the
access mechanism activated for the file. ADD-ELEMENT is rejected with an error message
if the file is protected by the access mechanism Access Control List (ACL).

WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY
Overwriting of a member having the same name. If the member does not exist under this
name, it will be created as a new member.
If the member to be stored is a delta member, it is necessary to ensure that the member is
a leaf of the delta tree. Only leaves of a delta tree may be overwritten.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
A member will only be overwritten if a member having the same name is already present.
Otherwise ADD-ELEMENT will be rejected with an error message.

WRITE-MODE = *EXTEND
A member will however only be extended if no ISAM keys are stored in the member and the
file attributes stored in the member match the attributes of the file, except for the file name.
Otherwise ADD-ELEMENT will be rejected with an error message.
EXTEND is not permitted for delta members or when input is from SYSDTA.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new
member.

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement.

ADD-ELEMENT LMS statements

172 U8326-J-Z125-6-76

Statement return code

Required access rights

For FROM-FILE: read authorization for the file

If more than one file is affected by the statement, files without read authorization are
excluded from the statement.

For TO-ELEMENT: read and write authorization for LIBRARY administer authorization
where the specified member designation is new. Otherwise, only write authorization for the
member existing under the specified member designation (administer authorization no
longer required).

For STORAGE-FORM=*DELTA, read authorization must be granted for the member
defined by BASE.

(SC2) SC1 Maincode Meaning

2
2
2
2
2

 0
0
0
0
0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0064
LMS0071
LMS0095
LMS0102
LMS0129
CMD0230
LMS1002
LMS0020
LMS0213
LMS0214
LMS0301
LMS0509
LMS0510
LMS1003
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
GCCSN macro error; no CCS name specified
XHCS not loaded
Input records missing
Incomplete module in EAM file
Statement aborted by user
Syntax error
Internal error
Target member or target file does not exist
Name exists as delta member
Name exists as full member
File not found
Target member or target file already exists
Base not found
Error during wildcard processing with at least one member or file
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

LMS statements ADD-ELEMENT

U8326-J-Z125-6-76 173

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

If WRITE-CONTROL is active and a base version exists, the USERID of the user must be
entered as the HOLDER of the member specified by BASE. Only if write authorization has
been granted can a new version be generated or this base version overwritten. In this case,
administer authorization is no longer required.

If PROTECTION=*BY-SOURCE is specified, only the owner of the library can use this
functionality. The library owner must also have ownership of the file which is to be added
as a member.

Notes

– When adding a file to a library, it is the creation date of the member and not that of the
file which applies.

– If SOURCE-ATTRIBUTES=*KEEP is specified, the following should be noted:
Should any ISAM keys be present, this can impair subsequent processing such as
language processing and /CALL-PROCEDURE. This parameter value is particularly
suited to archiving.

– When creating a member, be sure to observe the convention applicable to the member
type.

– When temporary files with wildcards are being added, no construction specification of
the target member name is permitted, i.e. only ELEM = *BY-SOURCE is permitted.

– When temporary files are being added with ELEM = *BY-SOURCE, the member
receives the internal file name. This member cannot be output to a file again under
another task without explicit specification of a file name.

– If WRITE-CONTROL is active in the output library, the access method adds a comment
(record type 2) to the member which is to be written. The comment logs the HOLDER,
DATE and TIME of the process. The record is written as the first record of the record
type. If, in addition, the member is written to the base of a different version (i.e. not the
first version under a name), the member attributes STATE and HOLDER and all the
rights of the base version are adopted for the new version. The CCSN is adopted from
the source file. The USER-DATE is determined anew.

– If PROTECTION=*BY-SOURCE is specified, bear in mind the following:

The BACL, GUARDS and standard access control mechanisms can include the data
protection attributes of the access protection mechanism activated for a file in corre-
sponding member proctection.

ADD-ELEMENT LMS statements

174 U8326-J-Z125-6-76

If the access protection mechanism activated for the file includes the access rights
(read, write, execute), the member receives the following, corresponding protection
mechanism:

Existing file passwords are not included in the corresponding member protection.
When files are added to existing members, any existing member protection settings for
the access rights (read, write, execute) are lost.

The hold right is handled in the same way as when PROTECTION=STD, i.e. if the
member already exists, its member protection remains unchanged in regard to the hold
right. If the member does not yet exist and initial protection regarding the hold right has
been specified for the library or the member type, the member receives that setting.

Examples

– Adding a member

The member “testelem” is added to library LIB1 under the same name. The type speci-
fication must be specified explicitly here in the ADD-ELEMENT statement since the type
is preset to *NONE as standard.

/show-file-attributes
TESTELEM
.
//start-lms
//open-library lib1,*update
//add-element from-file=testelem,to-elem=*lib(type=d)
.
.

Protection mechanism of file Protection mechanism of member
Standard access control
(ACCESS / USER-ACCESS)

Protection by BACL
(without password)

BACL Protection by BACL
 (without password)

GUARDS 1

1 Special case:
If one of the access rights for the file has a value of NONE (no access possible) in the GUARDS
protection mechanism, the corresponding right for the member is set to BACL protection with
USER=NONE (no access possible).

Protection by GUARD

LMS statements ADD-ELEMENT

U8326-J-Z125-6-76 175

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

– Reading from SYSDTA and definition of the end criterion

/start-lms --- (1)

//open-library lib1,*update -- (2)
//modify-lms-defaults (type=d) --- (3)
//add-element *sysdta(end=c'stop'),to-element=*lib(element=letter.a) --------- (4)
* Dear... -- (5)
.
.
.
*STOP -- (6)
//end -- (7)

(1) LMS is started.

(2) The library with the name lib1 is opened for reading and writing.

(3) The LMS default value *NONE for the type specification is changed to “D” in the
member type specification. This setting applies to the entire LMS run unless a
new MODIFY-LMS-DEFAULTS statement affecting this member type is issued
or the type is changed locally in a statement.

(4) Records are to be read in from SYSDTA, where the word STOP is defined as
the end criterion. The records are to be stored under the member name letter.a
in the library lib1 opened by OPEN-LIBRARY. The member type need no longer
be specified.

(5) Text input. The text ’Dear ...’ is stored exactly as keyed.

(6) The addition of records is terminated by specifying stop.

(7) LMS is terminated.

BEGIN-MAKE LMS statements

176 U8326-J-Z125-6-76

BEGIN-MAKE

The BEGIN-MAKE statement initiates a sequence of make substatements. A sequence of
make substatements is concluded by the END-MAKE statement.

The BEGIN-MAKE statement can be used to specify the following:

– the target which is to be generated with the make run,

– the type of make processing (required) or all actions to be performed and

– the continuation processing.

If a procedure is being executed at the same time, LMS terminates it.

BEGIN-MAKE

TARGET = *FIRST-TARGET / <filename 1..54 without-vers> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = <alphanum-name 1..8>

,SELECT = *MODIFIED / *ALL

,SUCCESS-PROCESSING = *INCLUDE-PROCEDURE / *CALL-PROCEDURE / *ENTER-PROCEDURE /
 *CREATE-PROCEDURE / *TOUCH

(part 1 of 2)

LMS statements BEGIN-MAKE

U8326-J-Z125-6-76 177

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

TARGET = *FIRST-TARGET / <filename 1..54 without-vers> /
*LIBRARY-ELEMENT(...)
The target to be generated.

TARGET = *FIRST-TARGET
The first target (library member or file) among the dependency definitions is the target of
the entire make run.

TARGET = <filename 1..54 without-vers>
The target is a file. The initial value for the default library in MODIFY-MAKE-DEFAULTS is
*NONE.

TARGET = *LIBRARY-ELEMENT(...)
The target is located in a library member. A target library specified here is the initial value
for the default library MODIFY-MAKE-DEFAULTS.

LIBRARY = <filename 1..54 without-vers> / *LINK(...)
Library of the target member.

LIBRARY = <filename 1..54 without-vers>
Library of the target member.

LIBRARY = *LINK(...)
Library of the target member.

LINK-NAME = <structured-name 1..8>
Link name of the library of the target member.

ELEMENT = <composed-name 1..64 with-under>(...)
Name of the target member.

,PROCEDURE = SYSPRC.LMS.MAKE / <filename 1..54 without-vers> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *BY-TARGET / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *INCREMENT / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ,TYPE = J / <alphanum-name 1..8>

,PROCEDURE-PARAMETERS = *NO / <text 1..1800 with-low>

(part 2 of 2)

BEGIN-MAKE LMS statements

178 U8326-J-Z125-6-76

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under>
Version of the target member.

VERSION = *HIGHEST-EXISTING
The highest existing version is taken as the target.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is taken as the target.

VERSION = <composed-name 1..24 with-under>
The text specified here is interpreted as a version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Specifies the base of the target member.

TYPE = <alphanum-name 1..8>
Type of the target member.

SELECT = *MODIFIED / *ALL
Components which are used for the generation of targets.

SELECT = *MODIFIED
Modified components (=components of more recent date) are to be used.

SELECT = *ALL
All components are to be used. It is simulated that all components that lead to the target are
not current.

SUCCESS-PROCESSING = *INCLUDE-PROCEDURE / *CALL-PROCEDURE /
*ENTER-PROCEDURE / *CREATE-PROCEDURE / *TOUCH
Type of continuation processing. At the end of the make run (END-MAKE statement), the
processing specified here is initiated. If the target in TARGET is current, the continuation
processing is not initiated.

SUCCESS-PROCESSING = *INCLUDE-PROCEDURE
The procedure specified for PROCEDURE is generated and executed synchronously,
using the current variables.

SUCCESS-PROCESSING = *CALL-PROCEDURE
The procedure specified for PROCEDURE is generated and executed synchronously,
using a new variable environment.

SUCCESS-PROCESSING = *ENTER-PROCEDURE
The procedure specified for PROCEDURE is generated and executed asynchronously,
using a new variable environment.

LMS statements BEGIN-MAKE

U8326-J-Z125-6-76 179

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SUCCESS-PROCESSING = *CREATE-PROCEDURE
The procedure is merely generated.

SUCCESS-PROCESSING = *TOUCH
Touches the components of the programming system which have to be generated, i.e. gives
each of them a new modification time as a time stamp. The entire program system, up to
and including TARGET, is then current. No procedure is generated. Files which are to be
handled with *TOUCH must be neither empty nor protected against UPAM accesses.

PROCEDURE = SYSPRC.LMS.MAKE / <filename 1..54 without-vers> /
*LIBRARY-ELEMENT(...)
Procedure that is generated by make and may be started when make terminates.

PROCEDURE = *LIBRARY-ELEMENT(...)
The procedure file that is generated is a member of a library.

LIBRARY = *BY-TARGET / <filename 1..54 without-vers> / *LINK(...)
Library in which the procedure is stored.

LIBRARY = *BY-TARGET
The library is that of TARGET.

LIBRARY = <filename 1..54 without-vers>
Library of the procedure member.

LIBRARY = *LINK(...)
Library of the procedure member.

LINK-NAME = <structured-name 1..8>
Link name of the library of the procedure member.

ELEMENT = <composed-name 1..64 with-under>(...)
Name of the procedure member.

VERSION = *HIGHEST-EXISTING / *INCREMENT / *UPPER-LIMIT /
<composed-name 1..24 with-under>
Version of the procedure member.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, the highest version
appropriate to BASE among the existing members of the same type and name is
overwritten; otherwise a default version is generated.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

BEGIN-MAKE LMS statements

180 U8326-J-Z125-6-76

VERSION = <composed-name 1..24 with-under>
The text specified here is interpreted as a version designation.

TYPE = J / <alphanum-name 1..8>
Type of the procedure member.

PROCEDURE-PARAMETERS = *NO / <text 1..1800 with-low>
Parameters supplied to the procedure when it is called. These parameters correspond to
the PROCEDURE-PARAMETERS operands of CALL-PROCEDURE, ENTER-
PROCEDURE and INCLUDE-PROCEDURE, and are passed along unchanged.

PROCEDURE-PARAMETERS = *NO
No procedure parameters.

PROCEDURE-PARAMETERS = <text 1..1800 with-low>
Procedure parameters which are to be passed unchanged.

Statement return code

Note

A generated procedure member which is not of the highest version can be executed
only if SDF-P is available in the system (and only with CALL-PROCEDURE and
INCLUDE-PROCEDURE).

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

LMS statements BEGIN-MAKE

U8326-J-Z125-6-76 181

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Example

The part of a procedure shown below generates the target from the parameter TARGET
with the aid of the definitions in the file MAKEFILE if the target is not current. The make
substatements are located in the MAKEFILE file. The procedure, which is generated by
default, is then executed, and LMS is then terminated.

...
/START-LMS
/BEGIN-BLOCK DATA-INSERTION=YES
//BEGIN-MAKE TARGET=&(TARGET), "MAKE CALL"
//MODIFY-MAKE-DEFAULTS LIBRARY=MYLIB "DEFAULT SETTINGS”
/INCLUDE-PROCEDURE NAME=MAKEFILE "CALL OF MAKEFILE"
/END-BLOCK
//END-MAKE "END OF MAKE"
...

The framework of the procedure and the file MAKEFILE are shown in the example of make
functionality on page 498.

make substatements LMS statements

182 U8326-J-Z125-6-76

make substatements

Generally, the make substatements result in a procedure containing all the actions required
for the generation of the specified target.

Overview of make substatements

Note

Standard SDF statements may also be used as make substatements.

END-MAKE Concludes the make substatements
MODIFY-MAKE-DEFAULTS Specifies global parameters
SET-DEPENDENCY Specifies dependencies between components
SET-POSTPROCESSING Specifies actions to be performed before the generated

procedure is executed
SET-PREPROCESSING Specifies actions to be performed after the generated

procedure is executed
SET-STD-ACTION Specifies standard actions which process one member

type to generate a different one

make substatements END-MAKE

U8326-J-Z125-6-76 183

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

END-MAKE

END-MAKE signifies the end of the sequence of make substatements. The procedure
generated by the make substatements is not actually processed until after the END-MAKE
statement occurs.

If, in BEGIN-MAKE, synchronous execution of the generated procedure was specified for
SUCCESS-PROCESSING (*INCLUDE-PROCEDURE, *CALL-PROCEDURE), LMS is
terminated.

Statement return code

END-MAKE

(SC2) SC1 Maincode Meaning

2
2
2

 0
0
0
0
1

32
64

130

CMD0001
LMS0712
LMS0714
LMS0721
CMD0230
LMS1002
LMS1004
LMS0041

No error
Touch not possible
Touch not possible on empty file
The specified target is already current
Syntax error
Internal error
Other error
System address space exhausted

MODIFY-MAKE-DEFAULTS make substatements

184 U8326-J-Z125-6-76

MODIFY-MAKE-DEFAULTS

The MODIFY-MAKE-DEFAULTS statement is used for global control of the make run.
Values can be changed again and again with MODIFY-MAKE-DEFAULTS. The modified
values are valid for the subsequent statements.

The MODIFY-MAKE-DEFAULTS operands ...-VAR define the make S variables, which are
set anew before each action.

The variables are declared through LMS. User declarations in the preprocessing section
are not overwritten.

LIBRARY = *UNCHANGED / *NONE / <filename 1..54 without-vers> / *LINK(...)
Default library.
Library which is to be used for *MAKE-DEFAULT for library members. The initial value is
the library that was specified for TARGET in the BEGIN-MAKE statement (when the target
is a file, the value is *NONE).

LIBRARY = *NONE
No default library. Use of the default library in subsequent statements results in errors.

LIBRARY = <filename 1..54 without-vers>
Specification of a default library.

LIBRARY = *LINK(...)
Specification of a default library.

LINK-NAME = <structured-name 1..8>
Link name of the default library.

MODIFY-MAKE-DEFAULTS

LIBRARY = *UNCHANGED / *NONE / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,CURRENT-TARGET-VAR = *UNCHANGED / *NONE / <structured-name 1..20>

,FROM-OBJECTS-VAR = *UNCHANGED / *NONE / <structured-name 1..20>

,MODIFIED-OBJECTS-VAR = *UNCHANGED / *NONE / <structured-name 1..20>

,SUPPRESS-ERRORS = *UNCHANGED / *NONE / *ALL

make substatements MODIFY-MAKE-DEFAULTS

U8326-J-Z125-6-76 185

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

CURRENT-TARGET-VAR = *UNCHANGED / *NONE / <structured-name 1..20>
S structure variable to which the current target is assigned.

CURRENT-TARGET-VAR = *NONE
The current target is not to be assigned to an S structure variable.

CURRENT-TARGET-VAR = <structured-name 1..20>
The current target is to be assigned to the specified S structure variable.

FROM-OBJECTS-VAR = *UNCHANGED / *NONE / <structured-name 1..20>
S list variable to which all the source components for the current target are assigned.

FROM-OBJECTS-VAR = *NONE
The source components are not to be assigned to an S list variable.

FROM-OBJECTS-VAR = <structured-name 1..20>
The source components are to be assigned to the specified S list variable.

MODIFIED-OBJECTS-VAR = *UNCHANGED / *NONE / <structured-name 1..20>
S list variable to which newer source components are assigned. These are all of the source
components which are newer than the current target or all of the components if BEGIN-
MAKE SELECT=*ALL was specified.

MODIFIED-OBJECTS-VAR = *NONE
The newer components are not to be assigned to an S list variable.

MODIFIED-OBJECTS-VAR = <structured-name 1..20>
The newer source components are to be assigned to the specified S list variable.

SUPPRESS-ERRORS = *UNCHANGED / *NONE / *ALL
Default for error suppression during actions.

SUPPRESS-ERRORS = *NONE
Errors result in the generated procedure being aborted (spin-off).

SUPPRESS-ERRORS = *ALL
Errors occurring during the action are suppressed, i.e. do not result in the generated
procedure being aborted. In the case of lists of actions, errors are suppressed only at the
end. The procedure resumes after the action(s) related to that dependency.

MODIFY-MAKE-DEFAULTS make substatements

186 U8326-J-Z125-6-76

Statement return code

Example

The make S variables and the standard library are to be redefined for the rest of the make
run. The variable CURT is in each case to contain the target processed, and the variable
ALLOBJ all of the source components.

//MODIFY-MAKE-DEFAULTS LIBRARY =BSPLIB,-
 CURRENT-TARGET-VAR=CURT,FROM-OBJECTS-VAR=ALLOBJ

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

make substatements SET-DEPENDENCY

U8326-J-Z125-6-76 187

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SET-DEPENDENCY

The SET-DEPENDENCY statement is used to define the dependencies between objects.

SET-DEPENDENCY

TARGET-OBJECT = *VARIABLE(...) / list-poss(2000): *LIBRARY-ELEMENT(...) /
<filename 1..54 without-vers with-wild(80)>

*VARIABLE(...)
 ⏐ VARIABLE-NAME = <composed-name 1..255>

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *MAKE-DEFAULT / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = <alphanum-name 1..8 with-wild(20)>

,FROM-OBJECT = *NONE / *VARIABLE(...) / list-poss(2000): *LIBRARY-ELEMENT(...) /
<filename 1..54 without-vers with-wild-constr>

*VARIABLE(...)
 ⏐ NAME = <composed-name 1..255>

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *MAKE-DEFAULT / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ <composed-name 1..132 with-under with-wildcard-constr>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = <alphanum-name 1..20 with-wild-constr>

,ACTION = *STD / list-poss(2000): <c-string 1..1800 with-low>

,SUPPRESS-ERRORS = *MAKE-DEFAULT / *NONE / *ALL

SET-DEPENDENCY make substatements

188 U8326-J-Z125-6-76

TARGET-OBJECT = *VARIABLE(...) / list-poss(2000): *LIBRARY-ELEMENT(...) /
<filename 1..54 without-vers with-wild(80)>
Target component.
Target of the dependency definition. Wildcards are corresponding to the specifications for
the FROM-OBJECT operand (see also page 133, “Selection specifications in make”).

TARGET-OBJECT = *VARIABLE (...)
The target objects are listed in an S list variable.
The individual list members must be available in the format of LMS. The version *HIGHEST-
EXISTING is represented by *HIGH-EXIST.

VARIABLE-NAME = <composed-name 1..255>
Name of the S list variable.

TARGET-OBJECT = list-poss(2000): *LIBRARY-ELEMENT(...)
The target component is a library member and must be entered explicitly.

LIBRARY = *MAKE-DEFAULT / <filename 1..54 without-vers> / *LINK(...)
Library of the target member.

LIBRARY = *MAKE-DEFAULT
The library defined as the default by means of the make substatement MODIFY-MAKE-
DEFAULTS.

LIBRARY = <filename 1..54 without-vers>
Library of the target member.

LIBRARY = *LINK(...)
Library of the target member.

LINK-NAME = <structured-name 1..8>
Link name of the library of the target member.

ELEMENT = <composed-name 1..64 with-under with-wild(132)>(...)
Name of the target member (for wildcards, see page 133, “Selection specifications in
make”).

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under>
Version of the target member.

VERSION = *HIGHEST-EXISTING
The highest existing version is overwritten. If no such version exists, LMS generates
an analogous default version.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

VERSION = <composed-name 1..24 with-under>
The text specified here is interpreted as the version designation.

make substatements SET-DEPENDENCY

U8326-J-Z125-6-76 189

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member.

TYPE = <alphanum-name 1..8 with-wild(20)>
Type of the target member.

TARGET-OBJECT = <filename 1..54 without-vers with-wild(80)>
Target of the dependency definition (for wildcards, see page 133, “Selection specifications
in make”).

FROM-OBJECT = *NONE / *VARIABLE(...) / list-poss(2000): *LIBRARY-ELEMENT(...) /
<filename 1..54 without-vers with-wild-constr>
Source component of the dependency definition. The wildcards are corresponding to the
specifications for the TARGET-OBJECT operand (for wildcards, see page 133,
“Construction specifications in make”).

FROM-OBJECT = *NONE
There are no source components. The target component is never current.

FROM-OBJECT = *VARIABLE (...)
The required source objects are listed in an S list variable. The individual list members must
be available in the LMS format. The version *HIGHEST-EXISTING is represented by
*HIGH-EXIST.

NAME = <composed-name 1..255>
Name of the S list variable.

FROM-OBJECT = list-poss(2000): *LIBRARY-ELEMENT(...)
The source components are library members.

LIBRARY = *MAKE-DEFAULT / <filename 1..54 without-vers> / *LINK(...)
Library of the source member.

LIBRARY = *MAKE-DEFAULT
The library defined as the default by means of the make substatement MODIFY-MAKE-
DEFAULTS.

LIBRARY = <filename 1..54 without-vers>
Library of the source member.

LIBRARY = *LINK(...)
Library of the source member.

LINK-NAME = <structured-name 1..8>
Link name of the library of the source member.

ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
Name of the source member ((for wildcards, see page 133, “Construction specifications
in make”).

SET-DEPENDENCY make substatements

190 U8326-J-Z125-6-76

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under>
Version of the source member.

VERSION = *HIGHEST-EXISTING
The highest existing version is selected.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is selected.

VERSION = <composed-name 1..24 with-under>
The text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the source member.

TYPE = <alphanum-name 1..20 with-wild-constr>
Type of the source member.

FROM-OBJECT = list-poss(2000): <filename 1..54 without-vers with-wild-constr>
Source component of the dependency definition (for wildcards, see page 133,
“Construction specifications in make”).

ACTION = *STD / list-poss(2000): <c-string 1..1800 with-low>
Action performed in order to generate the target component.

ACTION = *STD
Executes the action specified in the make substatement SET-STD-ACTION for the
combination of the source and the target types. If lists are specified for TARGET-OBJECT
or FROM-OBJECT, the type of the first member in the list is taken in each case to determine
the standard action. No standard actions can be specified for files.

ACTION = list-poss(2000): <c-string 1..1800 with-low>
One or more actions that generate the target components from the source components.
Each action has its own line in the procedure generated by BEGIN-MAKE.

SUPPRESS-ERRORS = *MAKE-DEFAULT / *NONE / *ALL
Suppression of errors occurring during the execution of actions.

SUPPRESS-ERRORS = *MAKE-DEFAULT
The default for error suppression set by means of MODIFY-MAKE-DEFAULTS.

SUPPRESS-ERRORS = *NONE
Errors result in the generated procedure being aborted (spin-off).

make substatements SET-DEPENDENCY

U8326-J-Z125-6-76 191

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SUPPRESS-ERRORS = *ALL
Errors occurring during execution of the action are suppressed, i.e. do not result in the
generated procedure being aborted. In the case of lists of actions, errors are suppressed
only at the end. The procedure resumes after the action(s) related to that dependency.

Statement return code

Notes

– The first target of the first dependency definition can be specified as the overall target
of the make run (presetting) under the name *FIRST-TARGET in the BEGIN-MAKE
statement.

– At the end of the action, no program is to be loaded.

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

SET-DEPENDENCY make substatements

192 U8326-J-Z125-6-76

Example

The phase (load module) PROG in the standard library consists of the object modules
PART1 and PART2. PROG is generated using the procedure *LIB(BSPLIB,LINK). The
object modules (member type R) are also generated from sources of the same names (type
S) using the procedure *LIB(BSPLIB,COMPILE). The selection specification in make
LIB(,,R) acts on the type-R members present in the program system, i.e. PART1 and
PART2. The modules are to be generated from sources of the same names. The variable
ALLOBJ contains all of the source components, and the variable CURT (short for “current
target”) in each case the target produced.

//SET-DEPENDENCY TARGET-OBJECT=PROG, -
// FROM-OBJECT=(*LIB(,TEIL1,R),*LIB(,TEIL2,R)), -
// ACTION='/CALL-PROCEDURE *LIB(BSPLIB,LINK),(OBJVAR=ALLOBJ)'
//SET-DEPENDENCY -
// TARGET-OBJECT=*LIB(,*,R),-
// FROM-OBJECT=(*LIB(,*,S),*LIB(,GLOBALDATA,M),*LIB(,HEADERS,M)),-
// ACTION='/CALL-PROCEDURE *LIB(BSPLIB,COMPILE),(&&(CURT.ELEM))'

In abbreviated form similar to the UNIX make:

//SET-DEPENDENCY PROG, (*LIB(,TEIL1,R),*LIB(,TEIL2,R)), -
// ´/CALL-PROCEDURE *LIB(BSPLIB,LINK),(OBJVAR=ALLOBJ)´
//SET-DEPENDENCY *LIB(,*,R), *LIB(,*,S),-
// ´/CALL-PROCEDURE *LIB(BSPLIB,COMPILE),(&&(CURT.ELEM))´

make substatements SET-POSTPROCESSING

U8326-J-Z125-6-76 193

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SET-POSTPROCESSING

The SET-POSTPROCESSING statement is used to specify the actions that conclude the
generated procedure. The SET-POSTPROCESSING statement must occur only once in
any sequence of make statements.

ACTION = list-poss(2000): <c-string 1..1800 with-low>
The specified actions are incorporated as the final actions in the generated procedure.

Statement return code

Note

The actions are not executed if the target of the make run is current.

Example

The command /CALL-PROCEDURE *LIB(BSPLIB,STOP) is to be executed at the end of
the generated procedure.

//SET-POSTPROCESSING ACTION='/CALL-PROCEDURE *LIB(BSPLIB,STOP)'

SET-POSTPROCESSING

ACTION = list-poss(2000): <c-string 1..1800 with-low>

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

SET-PREPROCESSING make substatements

194 U8326-J-Z125-6-76

SET-PREPROCESSING

The SET-PREPROCESSING statement is used to specify the actions that are to be
executed at the beginning of the generated procedure. The SET-PREPROCESSING
statement must occur only once in any sequence of make statements.

ACTION = list-poss(2000): <c-string 1..1800 with-low>
The specified actions are incorporated as the first actions in the generated procedure.

SUPPRESS-ERRORS = *MAKE-DEFAULT / *NONE / *ALL
Default for error suppression during actions.

SUPPRESS-ERRORS = *MAKE-DEFAULT
The default for error suppression set by means of MODIFY-MAKE-DEFAULTS.

SUPPRESS-ERRORS = *NONE
Errors result in the generated procedure being aborted (spin-off).

SUPPRESS-ERRORS = *ALL
Errors occurring during execution of the action are suppressed, i.e. do not result in the
generated procedure being aborted. In the case of lists of actions, errors are suppressed
only at the end. The procedure resumes after the action(s) related to that dependency.

Statement return code

Note

The actions are not executed if the target of the make run is current.

Example

The command /CALL-PROCEDURE *LIB(BSPLIB,INIT) is to be executed at the beginning
of the generated procedure.

//SET-PREPROCESSING ACTION='/CALL-PROCEDURE *LIB(BSPLIB,INIT)'

SET-PREPROCESSING

ACTION = list-poss(2000): <c-string 1..1800 with-low>

SUPPRESS-ERRORS = *MAKE-DEFAULT / *NONE / *ALL

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

make substatements SET-STD-ACTION

U8326-J-Z125-6-76 195

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SET-STD-ACTION

The SET-STD-ACTION statement is used to specify standard actions which process source
components of one type to generate a target components of another type. These standard
actions can then be referenced in the SET-DEPENDENCY statement.

The SET-STD-ACTION statement has effect only for dependencies between library
members and must be specified only once for each combination of source type and target
type. Files cannot be assigned to standard actions because they have no type.

TARGET-TYPE = <alphanum-name 1..8>
Type of the target component.

FROM-TYPE = <alphanum-name 1..8>
Type of the source component.

ACTION = list-poss(2000): <c-string 1..1800 with-low>
Standard action for generating components of the target type from components of the
source type.

Statement return code

Note

No program should be loaded at the end of the action.

SET-STD-ACTION

TARGET-TYPE = <alphanum-name 1..8>

,FROM-TYPE = <alphanum-name 1..8>

,ACTION = list-poss(2000): <c-string 1..1800 with-low>

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

SET-STD-ACTION make substatements

196 U8326-J-Z125-6-76

Example

A SET-DEPENDENCY statement with no explicit action is to process type-S members to
generate type-R members with the aid of the specified standard actions.

//SET-STD-ACTION -
// TARGET-TYPE=R,FROM-TYPE=S,-
// ACTION='/CALL-PROCEDURE *LIB(BSPLIB,COMPILE,(&&(CURT.ELEM))'
//SET-DEPENDENCY -
// TARGET-OBJECT=*LIB(,*,R),FROM-OBJECT=*LIB(,*,S)

In abbreviated form similar to the UNIX make (//SET-STD-ACTION is equivalent to using
the suffixes of the UNIX make):

//SET-STD-ACTION R,S,-
// '/CALL-PROCEDURE *LIB(BSPLIB,COMPILE),(&&(CURT.ELEM))'
//SET-DEPENDENCY *LIB(,*,R), *LIB(,*,S)

LMS statements CALL-EDT

U8326-J-Z125-6-76 197

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

CALL-EDT

The CALL-EDT statement calls up the editor EDT and opens work file 0.

LMS supports EDT versions as of V16.2A (see [10]).

For the editing of Unicode members EDT V17.0 or higher is necessary (see [11]).

Terminating EDT:

EDT can be terminated with RETURN or HALT, and the EDT data (files in virtual memory,
variables, etc.) will be retained. Only the occurrence of a serious EDT error will cause this
data to be lost and an LMS message to be issued.

EDT-MODE = *LMS-DEFAULT / *COMPATIBLE / *UNICODE
Specifies the mode that EDT is to be called in.

EDT-MODE = *COMPATIBLE
EDT is called in compatibility mode.

EDT-MODE = *UNICODE
EDT is called in Unicode mode.

EDITOR-COMMANDS = *NONE / <c-string 1..251> / *LOWER-CASE(...)
No sequence of editor commands is specified.

EDITOR-COMMANDS = <c-string 1..251>
Sequence of editor commands which are to be executed after EDT is called. In the entry,
the commands must be separated from one another by a semicolon (;). With the exception
of EDIT and RETURN, it is possible to specify any commands which are permitted both in
F mode and in L mode of EDT. The EDIT command is permitted only in the form EDIT
ONLY. It should be noted that the HALT command in a sequence of EDT commands causes
EDT to terminate and so also causes the EDT data to be released (files in virtual memory,
variables, etc.).
Lowercase letters are converted to uppercase.

CALL-EDT

EDT-MODE = *LMS-DEFAULT / *COMPATIBLE / *UNICODE

,EDITOR-COMMANDS = *NONE / <c-string 1..251> / *LOWER-CASE(...)

*LOWER-CASE(...)
 ⏐ EDITOR-COMMANDS = <c-string 1..251 with-low>

CALL-EDT LMS statements

198 U8326-J-Z125-6-76

EDITOR-COMMANDS = *LOWER-CASE(...)
Lowercase letters are not converted to uppercase.

EDITOR-COMMANDS = <c-string 1..251 with-low>
Sequence of editor commands as described above, except that lowercase letters are
not converted to uppercase.

Statement return code

Notes

After CALL-EDT, files or members can be opened and read into EDT work areas with
the EDT OPEN F= or OPEN L= statement. These objects also remain locked after a
return is made to LMS via HALT or RETURN. The OPEN indicator is only reset when
LMS is terminated. However, if the CLOSE command is issued before HALT, the
member or file is written and closed. Another task can then access it without terminating
LMS.

If an EDT-MODE is specified explicitly in the CALL-EDT statement, but EDT cannot
start in the specified mode, the statement is aborted and the message LMS0297 is
output.

If no EDT-MODE is specified explicitly in the CALL-EDT statement, EDT starts in the
default EDT mode, but can switch modes by itself if necessary. The default EDT mode
is COMPATIBLE at the beginning of the LMS run and can be changed by the MODIFY-
LMS-DEFAULTS statement.

(SC2) SC1 Maincode Meaning
 0
1

32
64
64

130

CMD0001
CMD0230
LMS1002
LMS0297
LMS1004
LMS0041

No error
Syntax error
Internal error
Change of operation mode not possible
Other error
System address space exhausted

LMS statements CLOSE-LIBRARY

U8326-J-Z125-6-76 199

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

CLOSE-LIBRARY

This statement closes the specified library/libraries.

If the LMS output is held in a library member, then the associated library will not be closed
and an error message is issued.

If this statement is specified without parameters, all open libraries are closed.

LIBRARY = *ALL / *STD/ <filename 1..54 without-vers> / *LINK(...)
Specifies the library or libraries to be closed.

LIBRARY = *ALL
All open libraries are closed.

LIBRARY = *STD
The library opened by OPEN-LIBRARY is closed.

LIBRARY = <filename 1..54 without-vers>
Name of the library to be closed.

LIBRARY = *LINK(...)
The library assigned via a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to the LMS run.

CLOSE-LIBRARY

LIBRARY = *ALL / *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

CLOSE-LIBRARY LMS statements

200 U8326-J-Z125-6-76

Statement return code

Examples

– All open libraries are closed.

//CLOSE-LIBRARY

– The library that was assigned via the link name lib2 is closed.

//CLOSE-LIBRARY LIBRARY=*LINK(LINK-NAME=LIB2)

(SC2) SC1 Maincode Meaning

1
 0
0
1

32
64

130

CMD0001
LMS0036
CMD0230
LMS1002
LMS1004
LMS0041

No error
Library not assigned
Syntax error
Internal error
Other error
System address space exhausted

LMS statements COMPARE-ELEMENT

U8326-J-Z125-6-76 201

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

COMPARE-ELEMENT

COMPARE-ELEMENT permits text members to be compared one record at a time, where
the scope of the comparison operation can be defined with the RECORD-PART operand.
The differences established are listed in a comparison log and in the comparison statistics.
The members may be located in different libraries.

The COMPARE-ELEMENT statement is also executed even if only one of the comparison
members is found in the specified libraries. This allows the counting of records in members.

If two members are compared with one another, LMS uses the terms primary member and
secondary member. The user is free to select the new or the old member as the base
member. LMS always considers the secondary member to be the base for the comparison.
This means that LMS identifies missing records in the secondary member as inserted
records and missing records in the primary member as deleted records.

The primary and secondary member base types may differ if text members are compared.

The COMPARE-PARAMETERS operand is used to define the type of comparison (formal
or logical) and control logging (scope and format).

COMPARE-ELEMENT always produces comparison statistics in the internal memory C0.
After execution of the statement, C0 is added to memory C1. Memory C0 is reinitialized
before each COMPARE-ELEMENT statement. These memories can be output by means
of the SHOW-STATISTICS statement.

ACTIVATE-USER-EXIT permits the member records to be accessed via a user program
prior to the actual comparison.

COMPARE-ELEMENT LMS statements

202 U8326-J-Z125-6-76

COMPARE-ELEMENT

PRIMARY-ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 1 of 3)

LMS statements COMPARE-ELEMENT

U8326-J-Z125-6-76 203

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

,SECONDARY-ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>

(part 2 of 3)

COMPARE-ELEMENT LMS statements

204 U8326-J-Z125-6-76

⏐ ⏐ ,ELEMENT = *BY-SOURCE (...) / *ALL(...) /
⏐ <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ *BY-SOURCE(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *BY-SOURCE / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *BY-SOURCE / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *BY-SOURCE / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *BY-SOURCE / *LMS-DEFAULT / *ALL / <alphanum-name 1..20 with-wild-constr>

,COMPARE-PARAMETERS = *LMS-DEFAULT / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ RECORD-PART = *LMS-DEFAULT / *ALL / *PART(...)
⏐ ⏐ *PART(...)
⏐ ⏐ ⏐ START = *LMS-DEFAULT / <integer 1..32764>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *LMS-DEFAULT / *REST / <integer 1..32764>
⏐ ⏐ ,SPACES = *LMS-DEFAULT / *STD / *IGNORED / *RELEVANT
⏐ ⏐ ,INFORMATION = *LMS-DEFAULT / *MEDIUM / *MINIMUM / *MAXIMUM / *SUMMARY / *STATISTICS
⏐ ⏐ ⏐ / *NONE
⏐ ⏐ ,LAYOUT = *LMS-DEFAULT / *COMPATIBLE / *COMPRESSED
⏐ ⏐ ,JOIN-ELEMENT-SETS = *LMS-DEFAULT / *NO / *YES

,TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) / *EDT(...)

*SYSLST(...)
⏐ SYSLST-NUMBER = *STD / <INTEGER 1..99>

*EDT(...)
⏐ WRITE-MODE = *EXTEND / *REPLACE

,STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)

<composed-name 1..255>>(...)
 ⏐ WRITE-MODE = *REPLACE / *EXTEND

(part 3 of 3)

LMS statements COMPARE-ELEMENT

U8326-J-Z125-6-76 205

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

PRIMARY-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the first comparison member (primary member).

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the primary member.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the primary member.

LIBRARY = *LINK(..)
The library assigned via a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to the LMS run.

ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
All members of the library or the name of the member used as the primary member are
compared.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the primary member.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is used as the
primary member.

VERSION = *ALL
All versions are taken into account in the comparison.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is used as the primary member.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member that is used as the primary member.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
All types are taken into account in the comparison.

COMPARE-ELEMENT LMS statements

206 U8326-J-Z125-6-76

TYPE = <alphanum-name 1..8 with-wild(20)>
Type of the primary member.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The primary member has any date.

USER-DATE = *TODAY
The member with the current date is used as the primary member.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is used as the
primary member.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are used as primary members.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see USER-DATE above.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see USER-
DATE above.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded, i.e. all members selected by ELEMENT are used as primary
members.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are not to be used as primary members. A member is excluded
when all the fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify the
member as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY, then
all members will be excluded.
For a description of the operands, see *LIBRARY-ELEMENT.

LMS statements COMPARE-ELEMENT

U8326-J-Z125-6-76 207

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SECONDARY-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the second comparison member (secondary member). The member selected
here is used as the base for the comparison.

LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the secondary member.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = *BY-SOURCE
The secondary member is contained in the same library as the primary member.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the secondary member.

LIBRARY = *LINK(..)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to the LMS run.

ELEMENT = *BY-SOURCE(...) / *ALL(...) /
<composed-name 1..132 with-under with-wild-constr>(...)
Name of the member to be used as the secondary member.

VERSION = *HIGHEST-EXISTING / *BY-SOURCE / *ALL / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version of the secondary member.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is used as the
secondary member.

VERSION = *BY-SOURCE
The version of the secondary member is the same as the version of the primary
member, or X’FF’ if this does not exist.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is used as the secondary member.

VERSION = <composed-name 1..52 with-under with-wild-constr>
Explicitly specifies the version of the member that is used as the secondary
member.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the secondary member. For further information concerning
specification of the base, see page 50.

COMPARE-ELEMENT LMS statements

208 U8326-J-Z125-6-76

 ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
Name of the member to be used as the secondary member.

VERSION = *HIGHEST-EXISTING / *BY-SOURCE / *ALL / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version of the secondary member.
For description of the operands, see above.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

TYPE = *BY-SOURCE / *LMS-DEFAULT / *ALL /
<alphanum-name 1..20 with-wild-constr>
Type of the secondary member.

TYPE = *BY-SOURCE
The secondary member has the same type as the primary member.

COMPARE-PARAMETERS = *LMS-DEFAULT / *PARAMETERS(...)
Defines the comparison parameters. Also used to specify the type of comparison (formal or
logical) and the scope and format of logging.

RECORD-PART = *LMS-DEFAULT / *ALL / *PART(...)
Defines the comparison area in the record.

RECORD-PART = *ALL
The entire record is compared.

RECORD-PART = *PART(...)
Area specification for the part of the record to be compared.

START = <integer 1..32764>
Starting point of the area containing the part of the record to be compared. If no
value is entered, the record is compared starting at the beginning.

LENGTH = *REST / <integer 1..32764>
Length of the area in the record to be compared. If no value is entered, the record
is compared starting at the beginning.

SPACES = *LMS-DEFAULT / *STD / *IGNORED / *RELEVANT
Handling of space characters in the record.

SPACES = *STD
Has the same effect as *IGNORED for text members, otherwise as *RELEVANT.

SPACES = *IGNORED
Logical comparison. The comparison fields are compared one character at a time;
spaces are ignored.

LMS statements COMPARE-ELEMENT

U8326-J-Z125-6-76 209

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SPACES = RELEVANT
Formal comparison. The comparison fields are first checked for matching length. If
the lengths match, the fields are compared in their entirety. If the lengths differ, the
records are logged as being non-matching.

INFORMATION = *LMS-DEFAULT / *MEDIUM / *MINIMUM / *MAXIMUM /
*SUMMARY / *STATISTICS / *NONE
Scope of logging.

INFORMATION = *MEDIUM
Standard comparison log. The comparison range of non-matching records is logged
in its entirety. With matching records, only range specifications (record numbers)
are logged. The comparison statistics are output.

INFORMATION = *MINIMUM
Minimum comparison log. For matching and non-matching records, only range
specifications (record numbers) are logged. The comparison statistics are output.

INFORMATION = *MAXIMUM
Detailed comparison log.
All records are logged.
The comparison statistics are output.

INFORMATION = *SUMMARY
No comparison log. Only the comparison statistics are output.

INFORMATION = *STATISTICS
No comparison log. The comparison statistics are output in compressed form. The
output is designed for lines with a length of 132.

INFORMATION = *NONE
No logging (no comparison log, no comparison statistics).
*NONE is meaningful only when the SHOW-STATISTICS statement is used.

LAYOUT = *LMS-DEFAULT / *COMPATIBLE / *COMPRESSED
Logging format.

LAYOUT = *COMPATIBLE
The comparison log is output in standard format. This format is compatible with
earlier LMS versions.

LAYOUT = *COMPRESSED
The comparison log is output in a compressed format.

JOIN-ELEMENT-SETS = *LMS-DEFAULT / *NO / *YES
Defines the member set to be compared.

JOIN-ELEMENT-SETS = *NO
Only the primary members and the secondary members determined through
construction are used for the comparison.

COMPARE-ELEMENT LMS statements

210 U8326-J-Z125-6-76

JOIN-ELEMENT-SETS = *YES
All primary and secondary members are used for the comparison.

TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST (...) /
*EDT (...)
Controls the log output.

TEXT-OUTPUT = *LOGGING-PARAMETERS
The log is output to the output medium specified with MODIFY-LOGGING-PARAMETERS
TEXT-OUTPUT=.

TEXT-OUTPUT = *NONE
The log output is suppressed, apart from error messages.

TEXT-OUTPUT = *SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Determines the SYSLST file to which the output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLST01 through SYSLST99
is used.

TEXT-OUTPUT = *EDT(...)
Output is to the work file 9 of EDT. If an error occurs during log output, then the system
switches to the default output stream (SYSOUT).

WRITE-MODE = *EXTEND / *REPLACE
Write mode of the output in relation to the contents of work file 9.

WRITE-MODE = *EXTEND
If data exists in work file 9, the output will be added to this data. If there is no data in the
file, the output will be written at the beginning of the file.

WRITE-MODE = *REPLACE
The output will be written at the beginning of work file 9. Any data that is already in the
file will be replaced.

LMS statements COMPARE-ELEMENT

U8326-J-Z125-6-76 211

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)
Structured output.

STRUCTURE-OUTPUT = *SYSINF
The structured output is placed in the SYSINF stream assigned by /ASSIGN-STREAM (see
the “SDF-P“ manual [12]).

STRUCTURE-OUTPUT = *NONE
No structured output.

STRUCTURE-OUTPUT = <composed-name 1..255>(...)
Specifies the S variable in which the structured output is to be placed. This variable must
have been declared as a dynamic list variable.
(Command: DECLARE-VARIABLE NAME=...(TYPE=*STRUCTURE),MULTIPLE-ELEMENTS=*LIST)

WRITE-MODE = *REPLACE / *EXTEND
Specifies whether the list variable is to be overwritten or extended.

WRITE-MODE = *REPLACE
Overwrites the old contents of the list variable.

WRITE-MODE = *EXTEND
Appends the new list members to the existing list.

Statement return code

(SC2) SC1 Maincode Meaning

2
2
2

 0
0
0
0
1

32
64
64
64
64

130
130

CMD0001
LMS0129
LMS0201
LMS0313
CMD0230
LMS1002
LMS0302
LMS1003
LMS1004
PLA0229
LMS0041
LMS0412

No error
Statement aborted by user
Only the comparison range is logged
Overflow in statistic counter
Syntax error
Internal error
Member not found
Error during wildcard processing with at least one member or file
Other error
No access right for the member
System address space exhausted
Member locked

COMPARE-ELEMENT LMS statements

212 U8326-J-Z125-6-76

Notes

– The INFORMATION operand has no influence on the structured output.

– A list member is generated for each comparison of two members. The individual
variable members are described in chapter “Format of LMS output in S variables” on
page 445.

– In the comparison statistics, the maximum value for element-count fields is 99,999. For
line-count fields, it is 999,999,999. If the 9-digit limit overflows, the message LMS0313
will be shown and the affected counters will continue counting modulo 109.

Required access rights

Example

The members “TEST1” from libraries BIBU and PLIB are compared. The comparison area
comprises the 5th through 30th bytes of the member record.

/ADD-FILE-LINK FILE=BIBU;LINK-NAME=LIB%
/START-LMS
//OPEN-LIBRARY LIBRARY=PLIB
//COMPARE-ELEMENT PRIMARY-ELEMENT=*LIB-ELEM(ELEM-TEST1,TYPE=S),-

SECONDARY-ELEMENT=*LIB-ELEM(LIB=*LINK=LIB5)),-
COMPARE-PARAMETERS=*PARAMETERS(INFORMATION=*MAXIMUM,-
RECORD-PART=*PART(START=5;LENGTH=26))

...
//END

For PRIMARY-ELEMENT: Read authorization for LIBRARY and ELEMENT
For SECONDARY-ELEMENT: Read authorization for LIBRARY and ELEMENT

LMS statements COPY-ELEMENT

U8326-J-Z125-6-76 213

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

COPY-ELEMENT

COPY-ELEMENT copies members and libraries one to one. The copied members may
receive new member designations. The source and target member base types may differ if
text members are copied.
The following copy options are available:

– copying one or more members in the same library

– copying one or more members to a different library

– copying a complete library (see example on page 225)

The copied members can be stored as either non-delta or delta members. If the input library
and the output library are the same when copying delta members, the copied delta
members must be given new member names. Leaves of delta trees may be overwritten.

The source member can be deleted after copying using DELETE-SOURCE = *YES, thus
allowing you to move a member.

Copy with structure (STORAGE-FORM = *BY-SOURCE)

When this format is used, LMS recognizes the form in which members are stored in the
PLAM libraries. Correspondingly, delta trees are copied as delta trees and all other
members are copied to the output file as non-delta members.

Notes

– If the copying process is aborted, the copied part of a delta tree is retained.

– VERSION, BASE and all date operands must be set to their default values. The
complete name range, i.e. as version=*, is always copied.

– Specification of library lists causes errors.

Example

Members A/1 and A/2 are maintained in the library. The statement “Copy member
A to B” causes member B/2 to be generated when STORAGE-FORM=*STD is
specified, and members B/1 and B/2 when STORAGE-FORM=*BY-SOURCE is
specified.

COPY-ELEMENT LMS statements

214 U8326-J-Z125-6-76

Overwriting the target name range (WRITE-MODE=*SUBSTITUTE)

Specifying WRITE-MODE=*SUBSTITUTE makes the copied member the only member in
the target library with its type and name. Before copying the member into the target library,
LMS deletes all members having the same type and name as the target member. This
means that all user specifications in TO-ELEMENT (such as VERSION = *INCREMENT)
are applied only to the empty target name range. If, for example, *INCREMENT is specified,
the default version is generated.

Restrictions

1. The STORAGE-FORM= operand must not have the value *BY-SOURCE.

2. The input library must not be the same as the output library.

If an error occurs during deletion of the target name range (because, for example, a
member is write-protected), the COPY-ELEMENT statement is aborted.

COPY-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐

(part 1 of 3)

LMS statements COPY-ELEMENT

U8326-J-Z125-6-76 215

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐

(part 2 of 3)

COPY-ELEMENT LMS statements

216 U8326-J-Z125-6-76

⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

,TO-ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ *BY-SOURCE(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..20 with-wild-constr>
⏐ ⏐ ,USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,STORAGE-FORM = *LMS-DEFAULT / *BY-SOURCE / *STD / *FULL / *DELTA

,PROTECTION = *LMS-DEFAULT / *STD / *BY-SOURCE

,DELETE-SOURCE = *NO / *YES

,WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *EXTEND / *SUBSTITUTE / *ANY

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR

(part 3 of 3)

LMS statements COPY-ELEMENT

U8326-J-Z125-6-76 217

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the members to be copied.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library from which the members are to be copied.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *ALL (...) / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be copied.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be copied.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is copied.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is copied.

VERSION = <composed-name 1..24 with-under with-wild(52)>
The text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be copied.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be copied has any date.

COPY-ELEMENT LMS statements

218 U8326-J-Z125-6-76

USER-DATE = *TODAY
The member with the current date is copied.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is copied.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are copied.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the
USER-DATE operand of this statement.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded from copying.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are to be excluded from copying. A member is excluded
when all the fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify
the member as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY,
then all members will be excluded.
For a description of the operands, see the *LIBRARY-ELEMENT operand of this
statement.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the destination and name under which the member is to be added.

LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)
Specifies the new library name or library to which the member is to be added.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = *BY-SOURCE
The member is copied to the library which contains the member being copied.

LMS statements COPY-ELEMENT

U8326-J-Z125-6-76 219

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

LIBRARY = <filename 1..54 without-vers>
Name of the library to which the file is to be added as a member. If the library does not
yet exist, it will be created.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *BY-SOURCE(...) /
<composed-name 1..132 with-under with-wild-constr>(...)
Name that the new member to be added is to receive.

ELEMENT = *BY-SOURCE(...)
The new name is the same as the old name.

VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version that the new member to be added is to receive.

VERSION = *BY-SOURCE
The new member receives the same version as the original member. If the original
member has no version specification, the new member receives X’FF’ as the
version specification.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, this overwrites the highest
existing version with reference to BASE among the members of the same type and
name; otherwise a default version is generated.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated (see also section “Version conventions” on page 53).

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

VERSION = <composed-name 1..52 with-under with-wild-constr>
The new member receives the version specified here.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
Name of the new member to be added. It can also be entered using wildcards.

COPY-ELEMENT LMS statements

220 U8326-J-Z125-6-76

VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version that the new member to be added is to receive.
For description of operands, see above.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..20 with-wild-constr>
Type that the new member to be added is to receive.

TYPE = *BY-SOURCE
The new member receives the same type designation as the original member.

USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *BY-SOURCE
The new member receives the same date as the original member.

USER-DATE = *TODAY
The current date is given.

USER-DATE = <date 8..10 with-compl>
The date must be entered in the form [YY]YY-MM-DD.

STORAGE-FORM = *LMS-DEFAULT / *BY-SOURCE / *STD / *FULL / *DELTA
Storage form for the member being created. The storage form must not contradict the
settings made by means of the MODIFY-TYPE-ATTRIBUTES or MODIFY-LIBRARY-
ATTRIBUTES statements, and all members of a given type and name must have the
same storage form.

STORAGE-FORM = *BY-SOURCE
VERSION, BASE and all date operands must be set to their default values. The
complete name range, i.e. as version=*, is always copied.
The member being added is copied with the same structure, i.e. delta trees are again
stored as such and full members are copied as full members. If delta trees are copied
with the same structure, the target name must not yet exist in the target type (i.e.
WRITE-MODE has no effect).

STORAGE-FORM = *STD
The member is generated in accordance with the storage form required for the member
scope. Contradictory requirements result in errors. If nothing special is required, full
storage is selected.

LMS statements COPY-ELEMENT

U8326-J-Z125-6-76 221

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

STORAGE-FORM = *FULL
The new member is generated as a full member (if this is not possible, an error
message is issued).

STORAGE-FORM = *DELTA
The new member is generated as a delta member (if this is not possible, an error
message is issued). This entry is permissible for member types: S, P, D, J, M, X and
members types derived from them.

PROTECTION = *LMS-DEFAULT / *STD / *BY-SOURCE
Member protection for the copied member.

PROTECTION = *STD
If the member already exists, the member protection remains unchanged. If the member
does not yet exist and if an initial member protection is defined for the library or type of
member, then the copied member will receive this protection.

PROTECTION = *BY-SOURCE
The copied member receives the same protection as the original member.

DELETE-SOURCE = *NO / *YES
Here the user can specify whether the source member is to be kept, or whether it is to be
deleted.

DELETE-SOURCE = *NO
The source member is not deleted.

DELETE-SOURCE = *YES
The source member is deleted.

WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *EXTEND / *SUBSTITUTE /
*ANY
Overwriting of a member having the same name. If the member does not exist under this
name, it will be created as a new member.
If the member to be stored is a delta member, it is necessary to ensure that the member is
a leaf of the delta tree. Only leaves of a delta tree may be overwritten.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The target member must already exist and is then replaced.

WRITE-MODE = *EXTEND
The target member is extended if it already exists. Otherwise, it will be created as a new
member. *EXTEND is not permitted for delta members,

COPY-ELEMENT LMS statements

222 U8326-J-Z125-6-76

WRITE-MODE = *SUBSTITUTE
All members having the same type and name as the source member are deleted from the
target library. The source member is then copied into the library.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new
member.

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the DIALOG-CONTROL operand of the
MODIFY-LMS-DEFAULTS statement.

Statement return code

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0020
LMS0213
LMS0214
LMS0302
LMS0509
LMS0510
LMS1003
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Target member or target file does not exist
Name exists as delta member
Name exists as full member
Member not found
Target member or target file already exists
Base not found
Error during wildcard processing with at least one member or file
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

LMS statements COPY-ELEMENT

U8326-J-Z125-6-76 223

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Required access rights

For LIBRARY-ELEMENT: read authorization for LIBRARY and ELEMENT

If more than one member is affected by the statement, members without read authorization
are excluded from the statement.

When copying deltas with STORAGE-FORM=*BY-SOURCE, the delta tree will only be
copied if read authorization exists for all its members.

For TO-ELEMENT: Read and write authorization for LIBRARY

Administer authorization where the specified member designation is new. Otherwise, only
write authorization for the member existing under the specified member designation
(administer authorization no longer required).

For STORAGE-FORM=*DELTA, read authorization must be granted for the member
defined by BASE.

If WRITE-CONTROL is active and a base version exists, the USERID of the user must be
entered as the HOLDER of the member specified by BASE. Only if write authorization has
been granted can a new version be generated or this base version overwritten. In this case,
administer authorization is no longer required.

If PROTECTION=*BY-SOURCE is specified, only the owner of the library file can use this
functionality.

Notes

– When creating a member, be sure to observe the convention applicable to the type of
member involved. Especially when the target type has the convention STD-TREE,
problems can occur if the source side contains side branch versions whose main
branch version is deleted. In this case, the affected side branches cannot be copied;
LMS does issue an error message, however.

– Exception: copying a complete delta tree with STORAGE-FORM=*BY-SOURCE is
always possible.

– STATE and HOLDER of the source member are not applied to the target member even
with PROTECTION=*BY-SOURCE.

– If WRITE-CONTROL is active in the output library, the access method adds a comment
(record type 2) to the member which is to be written. The comment logs the HOLDER,
DATE and TIME of the process. The record is written as the first record of the record
type. Any existing comment records are copied after this first record. If, in addition, the
member is written to the base of a different version (i.e. not the first version under a
name), the member attributes STATE and HOLDER and all the rights of the base
version are applied to the new version. The CCSN is adopted from the source file. The
USER-DATE is determined anew.

COPY-ELEMENT LMS statements

224 U8326-J-Z125-6-76

Examples with WRITE-MODE=*SUBSTITUTE

– Input library X contains the S-type member A/1. Output library Y contains the S-type
member A/2.

//COPY-ELEM ELEMENT= *LIB(LIB=X,ELEM=A,TYPE=S),-
 TO ELEMENT= *LIB(LIB=Y),WRITE-MODE=*SUBSTITUTE

Following this statement, member A/1 is the only member of type S and name A existing
in the output library. Member A/2 has been deleted.

– All the members of a product version are located in input library X. These members are
to be copied into an existing output library Y in such a way that, after the copying
process is concluded, Y contains only the copied product version and no other version.
This can be done with the following statement.

//COPY-ELEM ELEMENT= *LIB(LIB=X,ELEM=*,TYPE=*),-
 TO ELEMENT= *LIB(LIB=Y),WRITE-MODE=*SUBSTITUTE

LMS statements COPY-ELEMENT

U8326-J-Z125-6-76 225

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Example of how to copy an entire library

Library lib1 is copied in its entirety and is given the name lib2. By specifying ’*’ for member
and type, no knowledge is required of the members contained, i.e. all members are copied
one to one to the newly created library lib2.

/START-LMS
//OPEN-LIBRARY LIB1
//SHOW-ELEMENT-ATTRIBUTES
 INPUT LIBRARY= :1OSQ:$USER.LIB1
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(D) LETTER.A @ (0001) 2011-04-12 TESTELEM @ (0001) 2011-04-12
 2 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE
(S) TEST3 @ (0001) 2011-04-12
 1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
--
 3 ELEMENT(S) IN THIS TABLE OF CONTENTS
//COPY-ELEMENT (,ELEM=*,TYPE=*),TO-ELEM=*LIB(LIBRARY=LIB2)
//SHOW-LIBRARY-STATUS
 STATUS FILENAME MODE LINK DEF-TYPE
OPEN :1OSQ:$USER.LIB2
OPEN :1OSQ:$USER.LIB1 READ
//SHOW-ELEMENT-ATTRIBUTES *LIB(LIBRARY=LIB2)
 INPUT LIBRARY= :N:$USER.LIB2
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(D) LETTER.A @ (0001) 2011-04-12 TESTELEM @ (0001) 2011-04-12
 2 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE
(S) TEST3 @ (0001) 2011-04-12
 1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
--
 3 ELEMENT(S) IN THIS TABLE OF CONTENTS
//END

COPY-LIBRARY LMS statements

226 U8326-J-Z125-6-76

COPY-LIBRARY

The COPY-LIBRARY statement copies a library in its entirety, i.e. together with all its library,
type and member attributes. The target library must either have FILE-STRUCTURE=NONE
or not yet exist. The target library is given the library format corresponding to its value for
BUFFER-LENGTH. The statement is thus suitable for converting a library format.

The file protection attributes of the source library can be applied to the target library. The
statement is thus also suitable for reorganizing libraries. The target library is logically
identical to the original and occupies only the minimum required disk space.

If an error occurs during processing of the COPY-LIBRARY statement (e.g. insufficient disk
space), the target library is not complete.

LIBRARY = <filename 1..54 without-vers> / *LINK(...)
Specifies the library which is to be copied.

LIBRARY = <filename 1..54 without-vers>
Copies the library with the specified name.

LIBRARY = *LINK(...)
Copies the library assigned by means of a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library, which was declared with a /ADD-FILE-LINK command.

COPY-LIBRARY

LIBRARY = <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,TO-LIBRARY = <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,FILE-ATTRIBUTES = *STD / *BY-SOURCE

LMS statements COPY-LIBRARY

U8326-J-Z125-6-76 227

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

TO-LIBRARY = <filename 1..54 without-vers> / *LINK(...)
Specifies the target library.

TO-LIBRARY = <filename 1..54 without-vers>
Generates a library with the specified name.

TO-LIBRARY = *LINK(...)
Generates the library assigned by means of a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library, which was declared with a /ADD-FILE-LINK command.

FILE-ATTRIBUTES = *STD / *BY-SOURCE
Attributes of the target library file.

FILE-ATTRIBUTES = *STD
The file attributes of the target library are not changed. New files will be generated with the
default values defined by the file management system.

FILE-ATTRIBUTES = *BY-SOURCE
The file protection attributes of the source library are applied to the target library (analogous
to /COPY-FILE ..,PROTECTION=*SAME).

Statement return code

Required access rights

For LIBRARY: read authorization
For TO-LIBRARY: read and write authorization

Ownership of LIBRARY and LIBRARY are not protected against TU-UPAM accesses or
there are no protection attributes at library, type and member level.

Note

Library lists are not permitted.

(SC2) SC1 Maincode Meaning
 0
1

32
64

130
130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041
LMS0411

No error
Syntax error
Internal error
Other error
System address space exhausted
Library locked

COPY-LIBRARY LMS statements

228 U8326-J-Z125-6-76

Examples

– Copying a library to an NK4 pubset

/start-lms
//copy-library library=lib,to-library=:nk4:lib
//end

– Creating the NK4 library format in advance

/add-file-link file-name=nk4.lib,link-name=nk4,buffer-length=*std(2)
/start-lms
//copy-library library=nk2lib,to-library=*link(nk4)
//end

– Reorganizing a library with buffer

/delete-file file-name=tolib
/start-lms
//copy-library library=lib,to-library=tolib,file-attributes=*by-source
//end
/copy-file from-file=tolib,to-file=lib
/delete-file file-name=tolib

LMS statements DEACTIVATE-USER-EXIT

U8326-J-Z125-6-76 229

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

DEACTIVATE-USER-EXIT

The DEACTIVATE-USER-EXIT statement deactivates the user exits that were activated by
ACTIVATE-USER-EXIT. The user exits are no longer used with the next corresponding
SHOW-ELEMENT or COMPARE-ELEMENT. However, the user routine is not yet unloaded
since it may be required elsewhere. This means that in the case of the next ACTIVATE-
USER-EXIT with the same entry point, the user program does not need to be linked in
again.

The DEACTIVATE-USER-EXIT statement requires specification of the function for which
the user exit is to be deactivated.

FUNCTION = *SHOW-ELEMENT / *COMPARE-ELEMENT(...)
Defines the LMS statement for which the user exit is to be deactivated.

FUNCTION = *SHOW-ELEMENT
Deactivate user exit for the SHOW-ELEMENT function.

FUNCTION = *COMPARE-ELEMENT(...)
Deactivate user exit for the COMPARE-ELEMENT function.

ELEMENT = *PRIMARY / *SECONDARY
If the user exit is deactivated for the COMPARE-ELEMENT statement, it is still
necessary to define whether the member is a primary or secondary member.

Statement return code

Required access rights

No access rights are necessary.

DEACTIVATE-USER-EXIT

FUNCTION = *SHOW-ELEMENT / *COMPARE-ELEMENT(...)

*COMPARE-ELEMENT(...)
 ⏐ ELEMENT = *PRIMARY / *SECONDARY

(SC2) SC1 Maincode Meaning
 0
1

32
64

130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041

No error
Syntax error
Internal error
Other error
System address space exhausted

DELETE-ELEMENT LMS statements

230 U8326-J-Z125-6-76

DELETE-ELEMENT

The DELETE-ELEMENT statement deletes the specified members in the assigned library
(logical deletion). The directory entries are thereby deleted and storage space is released.

A member of a library is deleted physically

– if the member contains a code for physical deletion

– if the operand DESTROY=*YES has been set

– if the class 2 option DESTLEV requires it.

Delta members are not physically deleted until the last delta member of a delta tree, i.e. the
complete delta tree, is deleted.

The statement is executed only if a library has been specified explicitly in the statement or
the library specified under OPEN-LIBRARY has been opened with MODE=*UPDATE.

The DELETE-ELEMENT statement is permitted for all member types.

LMS statements DELETE-ELEMENT

U8326-J-Z125-6-76 231

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

DELETE-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 1 of 2)

DELETE-ELEMENT LMS statements

232 U8326-J-Z125-6-76

⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

,DESTROY-DATA = *LMS-DEFAULT / *NO / *YES

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES

(part 2 of 2)

LMS statements DELETE-ELEMENT

U8326-J-Z125-6-76 233

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the member to be deleted.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library from which the member is to be deleted.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library from which the member is to be deleted.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be deleted.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be deleted.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is deleted.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is deleted.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be deleted.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be deleted.

USER-DATE = *ANY /*TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be deleted has any date.

DELETE-ELEMENT LMS statements

234 U8326-J-Z125-6-76

USER-DATE = *TODAY
The member with the current date is deleted.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is deleted.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are deleted.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the
USER-DATE operand of this statement.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded from deletion.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are to be excluded from deletion. A member is excluded
when all the fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify
the member as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY,
then all members will be excluded.
For a description of the operands, see the LIBRARY-ELEMENT operand of this
statement.

DESTROY-DATA = *LMS-DEFAULT / *NO / *YES
Deletes the data for all members defined by *LIBRARY-ELEMENT.

DESTROY-DATA = *NO
A member of a library is deleted physically only if it contains a flag for physical deletion or
the class 2 option DESTLEV requires it.

DESTROY-DATA = *YES
Following logical deletion, the data, if present, is deleted physically, i.e. overwritten with
X’00’.

LMS statements DELETE-ELEMENT

U8326-J-Z125-6-76 235

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement, where the value *ERROR which might have been set there has the same effect
as *NO. Likewise, the value *ERROR which may have been set for DIALOG-CONTROL=
in the /SEND-MSG message command has the same effect as *NO with DELETE-
ELEMENT.

Statement return code

Required access rights

Read and write authorization for LIBRARY
Administer authorization and write authorization for ELEMENT.

Notes

– With each UPDATE to a delta tree the delta structure is reorganized, i.e. records no
longer required are deleted and the storage space no longer required is released.

– Deleting a main branch version having the convention STD-TREE on which side branch
versions are dependent can lead to problems in subsequent copying.

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0302
LMS1003
LMS1004
PLA0229
PLA0233
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Member does not exist
Error during wildcard processing with at least one member or file
Other error
No access right for the member
Borrow status prevents member access
System address space exhausted
Library locked
Member locked
Type locked

DELETE-ELEMENT LMS statements

236 U8326-J-Z125-6-76

Example

Member TEST3 is deleted from library LIB1.

/START-LMS
//OPEN-LIBRARY LIBL,MODE=*UPDATE
//SHOW-ELEMENT-ATTRIBUTES
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(D) LETTER.A @ (0001) 2012-04-12 TESTELEM @ (0001) 2012-04-12
 2 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE
(S) TEST3 @ (0001) 2012-04-12
 1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
--
 3 ELEMENT(S) IN THIS TABLE OF CONTENTS
//DELETE-ELEMENT *LIB(ELEM=TEST§,TYPE=S)
//SHOW-ELEMENT-ATTRIBUTES
INPUT LIBRARY= :1OSQ:$USER.LIB1
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(D) LETTER.A @ (0001) 2012-04-12 TESTELEM @ (0001) 2012-04-12
 2 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//END

LMS statements EDIT-ELEMENT

U8326-J-Z125-6-76 237

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EDIT-ELEMENT

The EDIT-ELEMENT statement calls the file editor EDT in order to create, correct or view
text member (see also [10] and [11]).

The source and target base types may differ.

Creating and correcting text members

The EDIT-ELEMENT statement calls EDT and reads the specified member from the
assigned library into work file 0. The contents of work file 0 are deleted beforehand. When
EDT is terminated, the corrected or newly generated member is written to the assigned
library.

LMS supports EDT versions higher than V16.2A.

As of EDT V16.4A, XHCS is supported. When it is called, LMS passes the coded-character-
set name of the relevant member to EDT and writes the member back with the value set in
EDT. If no input member is specified, “no code” is assumed as the input CCSN.

In the case of EDT-versions < V16.4A, the CCSN of the input member is entered as the
CCSN of the target member. If no input member is specified, the target member is given the
CCSN “no code”.

Editing is not possible if RECORD-FORMAT=FIXED, KEY-POSITION > 5 or KEY-LENGTH
> 8 has been stored in the attribute record (record type 164) of the input member.

For the editing of Unicode members EDT V17.0 or higher is necessary.

Scratch file

When EDT is called, LMS generates a scratch file with the link name EDTISAM if the
member contains ISAM keys.

Name of the scratch file:

S.LMS.TSNnnnn.date.time-of-day.member

where “member” can be up to 9 characters long. Member names exceeding this limit are
truncated after the first 9 characters. If the “member” suffix would result in an illegal BS2000
file name (e.g. ’.’ as the ninth character), LMS forms a scratch file name without the member
name:

EDIT-ELEMENT LMS statements

238 U8326-J-Z125-6-76

Editor run

– LMS passes the member records on to EDT. The member is then available in virtual
memory.

– If ISAM keys are stored in the member, the line number displayed by EDT gives the first
six digits of the ISAM keys.

– The member being processed is locked to other users.

Termination of the EDT run

RETURN from work file 0:

If not empty, work file 0 is added as a member to the output library. The EDT data (files
in virtual memory, variables, etc.) remains intact. This data is released only in the case
of a severe EDT error.

HALT from work file 0:

The following query is issued:

LMS0420: EDITED ELEMENT (type)membername/version[(variantnumber)]/date TO
BE ADDED? REPLY (Y=YES, N=NO or R=RETURN TO EDITOR)?

The response determines whether the current work file is added as a member or
returned to EDT. The EDT data remains intact. This data is released only in case of a
severe EDT error.

HALT/RETURN from work file ≠ 0:

The following query is issued:

LMS0420: EDITED ELEMENT (type)membername/version[(variantnumber)]/date TO
BE ADDED? REPLY (Y=YES, N=NO or R=RETURN TO EDITOR)?

If ’N’ is entered, the member is not added. If the reply is ’Y’, the following dialog is then
conducted with the user:

LMS0421: WORKFILE TO BE ADDED (0 = WORKFILE(0),.., N = NONE)

If the reply is ’N’, LMS returns to the EDT work file currently being processed.

LMS statements EDIT-ELEMENT

U8326-J-Z125-6-76 239

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EDT in batch mode

@RETURN:

The corrected member is added from work file 0 to the output library, provided that the
output library is not empty.

@HALT:

The corrected member is not added to the output library.

Displaying information from EDT on the member being edited

RETURN ? / HALT ?

EDT displays the names of the target library and the target member, along with the
version and type of the member being edited in work file 0. EDT also displays part of
the member which was edited. Editing then resumes.
If ELEMENT=*NONE or TO-ELEMENT=*NONE are specified, RETURN ? and HALT ?
have no effect.

EDIT-ELEMENT

ELEMENT = *NONE / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / <alphanum-name 1..8>

(part 1 of 3)

EDIT-ELEMENT LMS statements

240 U8326-J-Z125-6-76

⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 2 of 3)

LMS statements EDIT-ELEMENT

U8326-J-Z125-6-76 241

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

,TO-ELEMENT = *LIBRARY-ELEMENT(...) / *NONE

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ *BY-SOURCE(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..8>
⏐ ⏐ ,USER-DATE = *TODAY / *BY-SOURCE / <date 8..10 with-compl>
⏐ ⏐ ,STORAGE-FORM = *LMS-DEFAULT / *STD / *FULL / *DELTA

,EDT-MODE = *STD / *COMPATIBLE / *UNICODE

,EDITOR-COMMANDS = *NONE / <c-string 1..251> / *LOWER-CASE(...)

*LOWER-CASE(...)
 ⏐ EDITOR-COMMANDS = <c-string 1..251 with-low>

,INFORMATION = *TEXT / list-poss(2): *TEXT / *COMMENT

,WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR

(part 3 of 3)

EDIT-ELEMENT LMS statements

242 U8326-J-Z125-6-76

ELEMENT = *NONE / *LIBRARY-ELEMENT(...)
Specifies the member to be edited.

ELEMENT = *NONE
No input member is specified. The member to be edited is created as a new member, or
overwritten with new data.

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library from which the member is to be edited.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library from which the member is to be taken.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be edited.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be edited.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is used.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is edited.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be edited.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / <alphanum-name 1..8>
Type of the member to be edited.

LMS statements EDIT-ELEMENT

U8326-J-Z125-6-76 243

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be edited has any date.

USER-DATE = *TODAY
The member with the current date is edited.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is edited.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are edited.

FROM = 1900-01-01 / <date 8..10> with-compl
Beginning of interval.

TO = *TODAY / <date 8..10> with-compl
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the
USER-DATE operand of this statement.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded from editing.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are not to be excluded from editing. A member is excluded
when all the fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify
the member as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY,
then all members will be excluded.
For a description of the operands, see *LIBRARY-ELEMENT.

TO-ELEMENT = *LIBRARY-ELEMENT(...) / *NONE
Specifies the destination to which and the name under which the member is to be written
back.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

EDIT-ELEMENT LMS statements

244 U8326-J-Z125-6-76

LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)
Specifies the library to which the member is to be added.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = *BY-SOURCE
The member is added to the library from which it was taken.

LIBRARY = <filename 1..54 without-vers>
Name of the library to which the file is to be added as a member. If the library does not
yet exist, it will be created.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *BY-SOURCE(...) /
<composed-name 1..132 with-under with-wild-constr>(...)
Name that the new member to be added is to receive.

ELEMENT = *BY-SOURCE(...)
The new name is the same as the old name.

VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version that the new member to be added is to receive.

VERSION = *BY-SOURCE
The new member receives the same version as the original member. If the original
member has no version specification, the new member receives X’FF’ as the
version specification.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, this overwrites the highest
existing version with reference to BASE among the members of the same type and
name; otherwise a default version is generated.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated (see also page 50).

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

LMS statements EDIT-ELEMENT

U8326-J-Z125-6-76 245

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

VERSION = <composed-name 1..52 with-under with-wild-constr>
The text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
Name of the new member to be added. It can also be entered using wildcards.

VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version that the new member to be added is to receive.
For description of operands, see above.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..8>
Type that the new member to be added is to receive.

TYPE = *BY-SOURCE
The new member receives the same type designation as the original member.

USER-DATE = *TODAY / *BY-SOURCE / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *TODAY
The current date is given.

USER-DATE = *BY-SOURCE
The new member is given the same as the source member.

USER-DATE = <date 8..10 with-compl>
The date must be entered in the form [YY]YY-MM-DD.

STORAGE-FORM = *LMS-DEFAULT / *STD / *FULL / *DELTA
Storage form for the member being added. The storage form must not contradict the
settings made by means of the MODIFY-TYPE-ATTRIBUTES or MODIFY-LIBRARY-
ATTRIBUTES statements, and all members of a given type and name must have the
same storage form.

STORAGE-FORM = *STD
The member is generated in accordance with the storage form required for the member
scope. Contradictory requirements result in errors. If nothing is specified, full storage is
selected.

EDIT-ELEMENT LMS statements

246 U8326-J-Z125-6-76

STORAGE-FORM = *FULL
The new member is generated as a full member (if this is not possible, an error
message is issued).

STORAGE-FORM = *DELTA
The new member is generated as a delta member (if this is not possible, an error
message is issued). This entry is permissible for member types: S, P, D, J, M, X and
members types derived from them.

TO-ELEMENT = *NONE
The edited member is not written back.

EDT-MODE = *STD / *COMPATIBLE / *UNICODE
Specifies the mode that EDT is to be called in.

EDT-MODE = *STD
EDT is called in the mode specified by the MODIFY-LMS-DEFAULTS statement, but is
allowed to switch modes if necessary.

EDT-MODE = *COMPATIBLE
EDT is called in compatibility mode.

EDT-MODE = *UNICODE
EDT is called in Unicode mode.

EDITOR-COMMANDS = *NONE / <c-string 1..251> / *LOWER-CASE(...)
Specifies a sequence of editor commands.

EDITOR-COMMANDS = *NONE
No sequence of editor commands is specified.

EDITOR-COMMANDS = <c-string 1..251>
Sequence of editor commands which are to be executed after EDT is called. In the entry,
the commands must be separated from one another by a semicolon (;). With the exception
of EDIT and RETURN, it is possible to specify any commands which are permitted both in
F mode and in L mode of EDT. The EDIT command is permitted only in the form EDIT
ONLY. It should be noted that the HALT command in a sequence of EDT commands causes
EDT to terminate and so also causes the EDT data to be released (files in virtual memory,
variables, etc.).
Following execution of this sequence of EDT commands, the generated or edited member
is written back directly.
Lowercase letters are converted to uppercase.

LMS statements EDIT-ELEMENT

U8326-J-Z125-6-76 247

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EDITOR-COMMANDS = *LOWER-CASE(...)
Lowercase letters are not converted to uppercase.

EDITOR-COMMANDS = <c-string 1..251 with-low>
Sequence of editor commands as described above, except that lowercase letters are
not converted to uppercase.

Example of an EDT command

EDITOR-COM = ´ON&C´´A´´TO´´B´´´

Example of an EDT command without conversion of lowercase letters

EDITOR-COM = (´(LOWER ON;ON&C´´a´´TO´´b´´´)

INFORMATION = *TEXT / list-poss(2): *TEXT / *COMMENT
The section of the member which is to be edited.

INFORMATION = *TEXT
The text itself, i.e. record type 1, is to be edited.

INFORMATION = *COMMENT
The separately stored comment, i.e. record type 2, is to be edited.

WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY
Overwriting of a member having the same name.
If the source member is the same as the target member, the WRITE-MODE operand is
ignored.
If the member to be stored is a delta member, it is necessary to ensure that the member is
a leaf of the delta tree. Only leaves of a delta tree may be overwritten.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The target member must already exist and is replaced.

WRITE-MODE = *EXTEND
The target member is extended if it already exists. Otherwise it will be created as a new
member. *EXTEND is not permitted for delta members,

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new
member.

EDIT-ELEMENT LMS statements

248 U8326-J-Z125-6-76

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement.

Statement return code

Required access rights

For LIBRARY-ELEMENT: read authorization for LIBRARY and ELEMENT

If more than one member is affected by the statement, members without read authorization
are excluded from the statement.

For TO-ELEMENT: read and write authorization for LIBRARY

Administer authorization where the specified member designation is new. Otherwise, only
write authorization for the member existing under the specified member designation
(administer authorization no longer required).

(SC2) SC1 Maincode Meaning

2
2

 0
0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
LMS0163
CMD0230
LMS1002
LMS0020
LMS0213
LMS0214
LMS0302
LMS0509
LMS0510
LMS1003
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
At least one record truncated
Syntax error
Internal error
Target member or target file does not exist
Name exists as delta member
Name exists as full member
Member not found
Target member or target file already exists
Base not found
Error during wildcard processing with at least one member or file
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

LMS statements EDIT-ELEMENT

U8326-J-Z125-6-76 249

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

For STORAGE-FORM=*DELTA, read authorization must be granted for the member
defined by BASE.

If WRITE-CONTROL is active and a base version exists, the user ID of the user must be
entered as the HOLDER of the member specified by BASE. Only if write authorization has
been granted can a new version be generated or this base version overwritten. In this case,
administer authorization is no longer required.

Notes

– See note under CALL-EDT.

– When creating a member, be sure to take into account the convention applicable to the
member type.

– Specifying a list for INFORMATION results in each of the list entries being edited in work
file 0, i.e. the individual sections of the member are edited one after the other. The EDT
run continues until the last selected section has been edited and a decision has been
made as to whether the edited member (all of the selected sections) is to be added to
the library.

– If WRITE-CONTROL is active in the output library, the access method adds a comment
(record type 2) to the member which is to be written. The comment logs the HOLDER,
DATE and TIME of the operation. The record is written as the first record of the record
type. Any existing comment records or those which have been edited by means of
INFORMATION *COMMENT are copied after it. If, in addition, the member is written to
the base of a different version (i.e. not the first version under a name), the member attri-
butes STATE and HOLDER and all the rights of the base version are adopted for the
new version. The CCSN is adopted from the source file. The USER-DATE is deter-
mined anew.

– If an EDT-MODE is specified explicitly in the EDIT-ELEMENT statement, but EDT
cannot start in the specified mode, the statement is aborted and the message LMS0297
is output.

– If no EDT-MODE is specified explicitly in the EDIT-ELEMENT statement, EDT starts in
the default EDT mode, but can switch modes by itself if necessary. The default EDT
mode is COMPATIBLE at the beginning of the LMS run and can be changed by the
MODIFY-LMS-DEFAULTS statement.

EDIT-ELEMENT LMS statements

250 U8326-J-Z125-6-76

Examples

The member test4 is to be edited with EDT:

//edit-elem *lib(elem=test4,type=s)

The member test4 is to be edited with EDT, whereby the string 'old_word' becomes the
string ’new_word’:

//edit-elem *lib(elem=test4,type=s),ed-com=*low-case('on 1-10
c''old_word''t''new_word''')

The member test4 is to be viewed with EDT but not written back:

//edit-elem (elem=test4,type=s),to-elem=*none

In the library LIBCCSN, the member UTFE is in the character set UTFE.
The member LONG-LINES is in the standard 7-bit character set EDF03IRV, but has lines
that are longer than 256 characters. The default EDT mode is COMPATIBLE.

//modify-lms-defaults edt-mode=*compatible
//open-lib libccsn,*upd
//edit-elem (libccsn,utfe,s),edt-mode=*compatible
% LMS0297 CHANGE OF EDT OPERATING MODE NOT POSSIBLE ——————————————————— (1)
//edit-elem (libccsn,utfe,s) ————————————————————— (2)

//edit-elem (libccsn,long-lines,s),edt-mode=*unicode —————————————————— (3)

(1) EDT fails to start because Unicode character sets are not supported in compatibility
mode.

(2) EDT automatically switches to Unicode mode

(3) Unicode mode is specified explicitly

1.00 LINE 1
2.00 LINE 2

22.00
23.00
ret 0000.00:00001(00)
LTG TAST

1.00 LINE 1
2.00 very long line ... longer than 256 characters

22.00
23.00
ret 0000.00:00001(00)
LTG TAST

LMS statements EDIT-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 251

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EDIT-ELEMENT-ATTRIBUTES

The EDIT-ELEMENT-ATTRIBUTES statement starts the guided dialog mechanism for the
MODIFY-ELEMENT-ATTRIBUTES statement. Where technically possible and helpful, the
predefined default operand values are each replaced by values currently applicable to the
specified element.

EDIT-ELEMENT-ATTRIBUTES

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / <alphanum-name 1..8>

EDIT-ELEMENT-ATTRIBUTES LMS statements

252 U8326-J-Z125-6-76

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the member.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

LIBRARY = *LINK(..)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = <composed-name 1..64 with-under>(...)
Name of the member whose attributes are to be modified.

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under>
Version of the member.

VERSION = *HIGHEST-EXISTING
The attributes of the member with the highest existing version are modified.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ of the member in the library under the specified
TYPE and name is used.

VERSION = <composed-name 1..24 with-under>
Explicitly specifies the version of the member.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
Type of the member.

LMS statements EDIT-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 253

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Statement return code

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0020
LMS0213
LMS0214
LMS0302
LMS0303
LMS0509
LMS0510
LMS1003
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Target member or target file does not exist
Name exists as delta member
Name exists as full member
Member not found
Member outside reference condition range
Target member or target file already exists
Base not found
Error during wildcard processing with at least one member or file
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

EDIT-ELEMENT-PROTECTION LMS statements

254 U8326-J-Z125-6-76

EDIT-ELEMENT-PROTECTION

The EDIT-ELEMENT-PROTECTION statement starts the guided dialog mechanism for the
MODIFY-ELEMENT-PROTECTION statement. Where technically possible and helpful, the
predefined default operand values are each replaced by values currently applicable to the
specified element.

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the member.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

EDIT-ELEMENT-PROTECTION

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / <alphanum-name 1..8>

LMS statements EDIT-ELEMENT-PROTECTION

U8326-J-Z125-6-76 255

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = <composed-name 1..64 with-under>(...)
Name of the member whose protection attributes are to be modified.

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under>
Version of the member.

VERSION = *HIGHEST-EXISTING
The protection attributes of the member with the highest existing version are
modified.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ of the member in the library under the specified
TYPE and name is used.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / <alphanum-name 1..8>
Type of the member.

Statement return code

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0302
LMS0303
LMS1003
LMS1004
PLA0229
PLA0233
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Member not found
Member outside reference condition range
Error during wildcard processing with at least one member or file
Other error
No access right for the member
Borrow status prevents member access
System address space exhausted
Library locked
Member locked
Type locked

END LMS statements

256 U8326-J-Z125-6-76

END

END terminates the LMS program. All libraries that are still open are closed.

The END statement has no operands.

Statement return code

END

(SC2) SC1 Maincode Meaning
 0

64
CMD0001
CMD0205

LMS terminated normally
LMS terminated abnormally

LMS statements EXTRACT-ELEMENT

U8326-J-Z125-6-76 257

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EXTRACT-ELEMENT

The EXTRACT-ELEMENT statement outputs library members to files, unless the user
specifies otherwise. If the statement is entered in the EDT command line, the member data
is written to the current EDT work file by default.

LMS creates the files in accordance with

– the entry in the task file table (TFT), if the file has been assigned via the link name,

– the stored file attributes and the FILE-ATTRIBUTES operand and

– the catalog entry.

The files can have RECORD-FORMAT=UNDEFINED and arbitrary BUFFER-LENGTH and
RECORD-SIZE values. However, the maximum record length of 32 Kbytes (including the
record header) must not be exceeded.

If the ISAM keys of an ISAM file have been included in the member, the ISAM keys are also
output when EXTRACT-ELEMENT is issued.

If information on ISAM secondary keys was stored when the file was added, the secondary
keys are recreated. If some or all of the secondary keys cannot be recreated, the file is
generated without those keys.

The EXTRACT-ELEMENT statement is permitted for the member types S, M, R, J, P, D, X,
C and member types derived from them.

C-type members, PAM files under type X and types derived from them are generated as
PAM files.

The generated file contains the CCS name of the source member as its CCS catalog
attribute. If the member data is written to an EDT work file, the EXTRACT-ELEMENT
statement is permitted only for textual member types or types derived from them, whereby
the CCSN of each member is passed to EDT.

Note

Valid member names are not always permitted as file names.

EXTRACT-ELEMENT LMS statements

258 U8326-J-Z125-6-76

Generating ISAM files

When members are output to ISAM files, LMS generates the ISAM keys as follows:

– If the ISAM keys are also added when an ISAM file is included as a library member, LMS
generates the ISAM file with those ISAM keys which have been stored.

– If no ISAM keys have been stored in the input member, an ISAM file with KEY-
POSITION = 5 and KEY-LENGTH = 8 is created. LMS then normally generates ISAM
keys with an initial value of 1000 and an increment of 1000. If the member is too large
for this increment (more than 100,000 records), the increment will be calculated from
the number of records.

Notes

– R-type members are output up to the END record. Any records which come afterwards
are ignored.

– Correction journal records (TXTP) are not included in the output in the case of C-type
members.

– RECORD-SIZE is supplied with values only with RECORD-FORMAT=FIXED; with
RECORD-FORMAT=VARIABLE, the value is 0.

LMS statements EXTRACT-ELEMENT

U8326-J-Z125-6-76 259

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EXTRACT-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 1 of 3)

EXTRACT-ELEMENT LMS statements

260 U8326-J-Z125-6-76

⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 2 of 3)

LMS statements EXTRACT-ELEMENT

U8326-J-Z125-6-76 261

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(..)
Specifies the library containing the member.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

LIBRARY = *LINK(..)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *ALL / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be extracted from the library and included in a file.

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be output.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is used.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is output.

,TO-FILE = *STD / *BY-SOURCE / <filename 1..54 without-gen-vers with-wild-constr> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,FILE-ATTRIBUTES = *BY-ELEMENT / *BY-CATALOG / *LMS-DEFAULT / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ ACCESS-METHOD = *LMS-DEFAULT / *ISAM / *SAM

,INFORMATION = *TEXT / list-poss(2): *TEXT / *COMMENT

,PROTECTION = *LMS-DEFAULT / *STD / *BY-SOURCE

,WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR

(part 3 of 3)

EXTRACT-ELEMENT LMS statements

262 U8326-J-Z125-6-76

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be output.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be output.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be output has any date.

USER-DATE = *TODAY
The member with the current date is output.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is output.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are output.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the
USER-DATE operand of this statement.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded.

LMS statements EXTRACT-ELEMENT

U8326-J-Z125-6-76 263

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are not to be output. A member is excluded when all the
fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify the member
as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY, then all
members will be excluded.
For a description of the operands, see the LIBRARY-ELEMENT operand of this
statement.

TO-FILE = *STD / *BY-SOURCE /
<filename 1..54 without-gen-vers with-wild-constr> / *LINK(...)
Name of the target file. A construction specification references the member name.

TO-FILE = *STD
Unless otherwise specified, the member data is output to a file which is given the same
name as the member. However, if the EXTRACT-ELEMENT statement comes from the
EDT command line, the data is written by default to the current EDT work file.

TO-FILE = *BY-SOURCE
The file name is the same as the member name.

TO-FILE = *LINK(...)
The member is output to the file that was assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library which was declared with a /ADD-FILE-LINK command before
LMS was called and which must be known to LMS.

FILE-ATTRIBUTES = *BY-ELEMENT / *BY-CATALOG / *LMS-DEFAULT /
*PARAMETERS(...)
File attributes that are defined when the file is created. This operand has no effect if the
member data is written to the current EDT work file. LMS defines the file attributes in
accordance with the following hierarchy:

1. LINK entry

2. file attributes stored in the member

3. catalog entry

4. LMS default values

The following specifications take effect only when TO-FILE=*LINK has not been specified.

FILE-ATTRIBUTES = *BY-ELEMENT
The file attributes stored in the member take priority.

EXTRACT-ELEMENT LMS statements

264 U8326-J-Z125-6-76

FILE-ATTRIBUTES = *BY-CATALOG
The attributes stored in the catalog entry take priority. If there is no catalog entry, specifying
*BY-CATALOG has the same effect as *BY-ELEMENT.

FILE-ATTRIBUTES = *PARAMETERS(...)

ACCESS-METHOD = *LMS-DEFAULT / *ISAM / *SAM
Specifies the access method ISAM or SAM for the target file.

INFORMATION = *TEXT / list-poss(2): *TEXT / *COMMENT
The section of the member which is to be processed.

INFORMATION = *TEXT
The text itself, i.e. record type 1, is to be output.

INFORMATION = *COMMENT
The separately stored comment, i.e. record type 2, is to be output.

PROTECTION = *LMS-DEFAULT / *STD / *BY-SOURCE
Setting and activation of an access protection mechanism for the file created; this protection
corresponds to the member protection in effect for the member. This operand has no effect
if the member data is written to the current EDT work file.

PROTECTION = *STD
The member protection in effect for the member is not taken into account in setting the
access protection mechanism for the file which is created.

PROTECTION = *BY-SOURCE
The file created is provided with an access protection mechanism corresponding to the
member protection which is in effect for the member.

Note

With PROTECTION=*BY-SOURCE, the file is provided with the BACL access
protection mechanism, even if it offers no additional protection to the member’s access
rights (read, write, execute).
If desired, the values of the ACCESS and USER-ACCESS file attributes (record type
164), which may have been stored in the member (see FILE-ATTRIBUTES), can be
used to set the values of the default access control mechanism, regardless of the entry
in the PROTECTION operand.

LMS statements EXTRACT-ELEMENT

U8326-J-Z125-6-76 265

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY
Overwriting of a file having the same name. If the file does not exist under this name, it will
be created as a new file. If the member data is written to the current EDT work file, this
operand has no effect, i.e. if the current work file already contains data, the member data is
appended to it, and if the current work file is empty, the member data is written at the
beginning.

WRITE-MODE = *CREATE
The new file must not yet exist and is created as a new file.

WRITE-MODE = *REPLACE
The file must already exist and is replaced.

WRITE-MODE = *EXTEND
The file is extended if it already exists. Otherwise, it will be created as a new file.

WRITE-MODE = *ANY
The file is replaced if it already exists. Otherwise it will be created as a new file.

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement.

EXTRACT-ELEMENT LMS statements

266 U8326-J-Z125-6-76

Statement return code

Required access rights

For LIBRARY-ELEMENT: read authorization for LIBRARY and ELEMENT

If more than one member is affected by the statement, members without read authorization
are excluded from the statement.

For TO-FILE: read and write authorization for the file

With PROTECTION=*BY-SOURCE, members can be output as files only for the user’s own
ID, and only the owner of the library file can use this functionality.

(SC2) SC1 Maincode Meaning

2
2
2
2
2

 0
0
0
0
0
0
1

32
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0053
LMS0129
LMS0199
LMS0274
LMS0286
CMD0230
LMS1002
LMS0020
LMS0035
LMS0302
LMS0509
LMS1003
LMS1004
PLA0229
LMS0041
LMS0411
LMS0412
LMS0413

No error
Member and file attributes different
Statement aborted by user
Record length invalid with fixed record format
Block control value changed
File attributes not modified
Syntax error
Internal error
Target member or target file does not exist
Member protection not transferrable to file
Member not found
Target member or target file already exists
Error during wildcard processing with at least one member or file
Other error
No access right for the member
System address space exhausted
Library locked
Member locked
Type locked

LMS statements EXTRACT-ELEMENT

U8326-J-Z125-6-76 267

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Note

If PROTECTION=*BY-SOURCE is specified, bear in mind the following:

This functionality is rejected if GUARD protection is set for one or more types of access
(read, write, execute) to the member and no special protection or BACL protection
deviating from USER=NONE is set for at least one type of access (r, w, x).

Existing passwords in member protection are not taken into account.

When PROTECTION=*BY-SOURCE is specified and members are output to existing
files provided with additional protection by the protection attributes of a password, these
attributes are set to NONE (any existing password is deleted).

Examples

– Member ELEM1 is output via EXTRACT-ELEMENT to file TEST with the specified file
attributes.

/ADD-FILE-LINK FILE-NAME=TEST,LINK-NAME=OUT,ACCESS-METHOD=*SAM,-
/ RECORD-FORMAT=*VARIABLE
/START-LMS
//MOD-LOGG-PAR LOGG=*MAX
//OPEN-LIBRARY LIBRARY=LIBIN
//EXTRACT-ELEMENT *LIB(LIBIN,ELEM1,S),TO-FILE=*LINK(LINK-NAME-OUT)
INPUT LIBRARY= :1OSQ:$USER.LIBIN
OUTPUT FILE
 EXTRACT (S)ELEM1/@(0001)/2011-03-27 AS :1OSQ:$USER.TEST
 , REPLACED EMPTY FILE

– If all the members in a library are to be output by name, the following statement must
be specified:

//EXTRACT-ELEMENT *LIB(ELEM=*ALL,TYPE=*ALL)
INPUT LIBRARY= :1OSQ:$USER.LIBIN
OUTPUT FILE
 EXTRACT (S)ELEM1/@(0001)/2011-03-27 AS :1OSQ:$USER.ELEM1
 EXTRACT (S)EXT.FILE.1/@(0001)/2011-03-27 AS :1OSQ:$USER.EXT.FILE.1
 EXTRACT (S)EXT.FILE.2/@(0001)/2011-03-27 AS :1OSQ:$USER.EXT.FILE.2
 EXTRACT (S)EXT.FILE.3/@(0001)/2011-03-27 AS :1OSQ:$USER.EXT.FILE.3
 EXTRACT (S)EXT.FILE.4/@(0001)/2011-03-27 AS :1OSQ:$USER.EXT.FILE.4
 EXTRACT (S)EXT.FILE.5/@(0001)/2011-03-27 AS :1OSQ:$USER.EXT.FILE.5
//END

FIND-ELEMENT LMS statements

268 U8326-J-Z125-6-76

FIND-ELEMENT

The FIND-ELEMENT statement uses a specified search string to search for textual
members in the member records, and logs the members it finds, optionally with or without
the hit records.

FIND-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8> / <filename 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 1 of 3)

LMS statements FIND-ELEMENT

U8326-J-Z125-6-76 269

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 2 of 3)

FIND-ELEMENT LMS statements

270 U8326-J-Z125-6-76

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the member to be searched.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library to be searched.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library from which the member is to be taken.

LIBRARY = *LINK(..)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = *ALL (...)/ <composed-name 1..64 with-under with-wild(132)>(...)
Specifies the member to be searched.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be searched.

,PATTERN = <c-string 1..256> / *LOWER-CASE(...)

*LOWER-CASE(...)
⏐ PATTERN = <c-string 1..256 with-low>

,SHOW-RECORDS = *YES (...) / *NO

*YES(...)
 ⏐ RECORD-NUMBER = *NO / *YES

,INFORMATION = *STD / *ALL / list-poss(2): *TEXT / *COMMENT

TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) / *EDT(...)

*SYSLST(...)
⏐ SYSLST-NUMBER = *STD / <INTEGER 1..99>

*EDT(...)
⏐ WRITE-MODE = *EXTEND / *REPLACE

,STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)

<composed-name 1..255>(...)
 ⏐ WRITE-MODE = *REPLACE / *EXTEND

(part 3 of 3)

LMS statements FIND-ELEMENT

U8326-J-Z125-6-76 271

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is used.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is searched.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be searched.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be searched.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be searched has any date.

USER-DATE = *TODAY
The member with the current date is searched.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is searched.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are searched.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification of the member. For a description of the operands, see the
USER-DATE operand of this statement.

FIND-ELEMENT LMS statements

272 U8326-J-Z125-6-76

EXCEPT-ELEMENT =*NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded from the search.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are to be excluded from the search. A member is excluded
when all the fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify the
member as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY, then
all members will be excluded.
For a description of the operands, see *LIBRARY-ELEMENT.

PATTERN = <c-string 1..256> / *LOWER-CASE(...)
Character string (regular expression) on which the search is based (see the „C Library
Functions (BS2000/OSD) for POSIX Applications“ manual [16]). The use of upper and
lower case characters is ignored.

PATTERN = *LOWER-CASE(...)
No conversion of lower case characters.

PATTERN = <c-string 1..256 with-low>
Character string as described above, but in this case the use of upper and lower case
characters is distinguished.

SHOW-RECORDS = *YES(...) / *NO
Specifies whether the hit records are shown or not.

SHOW-RECORDS = *YES(...)
The hit records are shown. Every member found is output in a header, followed by the
records in which it was found (similar to the SHOW-ELEMENT output). The number of
records found and the number of records searched are also displayed for each member.
Finally, the number of members found and the number of members searched are output.

RECORD-NUMBER = *NO / *YES
Specifies whether or not the record numbers are output.

RECORD-NUMBER = *NO
No record numbers are output.

RECORD-NUMBER = *YES
The record numbers are also output.

SHOW-RECORDS = *NO
The hit records are not shown. The members found are output as with SHOW-ELEMENT-
ATTRIBUTES ... INFORMATION=*MEDIUM. The number of members found and the
number of members searched are also output.

LMS statements FIND-ELEMENT

U8326-J-Z125-6-76 273

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

INFORMATION = *STD / *ALL / list-poss(2): *TEXT / *COMMENT
The section of the member which is to be searched.

INFORMATION = *STD
Has the same effect as *TEXT for text members, otherwise as *ALL.

INFORMATION = *ALL
The whole member, i.e. record types 1-159 and 164, is searched.

INFORMATION = *TEXT
The text itself, i.e. record type 1, is searched.

INFORMATION = *COMMENT
The separately stored comment, i.e. record type 2, is searched.

TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) /
*EDT(...)
Controls the log output.

TEXT-OUTPUT = *LOGGING-PARAMETERS
The log is output to the output medium specified using
 //MODIFY-LOGGING-PARAMETERS, TEXT-OUTPUT=.

TEXT-OUTPUT = *NONE
The log output is suppressed, except for any error messages.

TEXT-OUTPUT = *SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Determines the SYSLST file to which output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLST01 through SYSLST99
is used.

TEXT-OUTPUT = *EDT(...)
The output is written to work file 9 of EDT. In the event of a error during log output, the
system switches to the default log stream (SYSOUT).

WRITE-MODE = *EXTEND / *REPLACE
Write mode of the output in relation to the contents of work file 9.

FIND-ELEMENT LMS statements

274 U8326-J-Z125-6-76

WRITE-MODE = *EXTEND
If data exists in work file 9, the output is added to this data. If not, then the oputput will
be written starting at the beginning of the work file.

WRITE-MODE = *REPLACE
Output is written at the beginning of work file 9. Any data already contained in the work
file will be replaced.

STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)
Structured output of the members found.

STRUCTURE-OUTPUT = *SYSINF
The structured output is placed in the SYSINF stream assigned by /ASSIGN-STREAM (see
the “SDF-P“ manual [12]).

STRUCTURE-OUTPUT = *NONE
There is no structured output.

STRUCTURE-OUTPUT = <composed-name 1..255>(...)
Specifies the S variable in which the structured output is to be placed. This variable must
be declared as a dynamic list variable.
(Command: /DECLARE-VARIABLE NAME=...(TYPE =*STRUCTURE),MULTIPLE-ELEMENTS
=*LIST)

WRITE-MODE = *REPLACE / *EXTEND
Specifies whether the list variable is to be overwritten or extended.

WRITE-MODE = *REPLACE
The existing contents of the list variable are overwritten.

WRITE-MODE = *EXTEND
The new list members are appended to the existing list.

LMS statements FIND-ELEMENT

U8326-J-Z125-6-76 275

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Statement return code

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0302
LMS1003
LMS1004
PLA0229
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Member not found
Error during wildcard processing with at least one member or file
Other error
No access right for the member
System address space exhausted
Library locked
Member locked
Type locked

FIND-ELEMENT LMS statements

276 U8326-J-Z125-6-76

Required access rights

For ELEMENT: read authorization for LIBRARY and ELEMENT

If more than one member is affected by the statement, members without read authorization
are excluded from the statement.

Examples

– The members of library X are to be searched for the string “abc”.

//FIND-ELEMENT *LIB(LIB=X,ELEM=*,TYPE=S),PATTERN='abc',SHOW-RECORDS=*YES
INPUT LIBRARY= :1OSQ:$USER.X
INPUT ELEMENT= (S)FIND/@(0001)/2012-10-09
 abc is in this record.
This is a record with abcdefg.
 2 OUT OF 127 RECORD(S) FOUND
INPUT LIBRARY= :1OSQ:$USER.X
 1 OUT OF 2 (S)-ELEMENT(S) FOUND
//FIND-ELEMENT *LIB(LIB=X,ELEM=*,TYPE=S),PATTERN='abc', -
SHOW-RECORDS=*YES(,RECORD-NUMBER=*YES)
INPUT LIBRARY= :1OSQ:$USER.X
INPUT ELEMENT= (S)FIND/@(0001)/2012-10-09
 #7 > abc is in this record.
 #123 >This is a record with abcdefg.
 2 OUT OF 127 RECORD(S) FOUND
INPUT LIBRARY= :1OSQ:$USER.X
 1 OUT OF 2 (S)-ELEMENT(S) FOUND
//FIND-ELEMENT *LIB(LIB=X,ELEM=*,TYPE=S),PATTERN='abc',SHOW-RECORDS=*NO
INPUT LIBRARY= :1OSQ:$USER.X
TYP NAME VER (VAR#) DATE
(S) FIND @ (0001) 2012-10-09
 1 OUT OF 2 (S)-ELEMENT(S) FOUND

– L-type member LLM from library X is to be searched for the string ’SYSLNK’ and 5
characters in front of the hit, together with all characters after the hit, are to be displayed
(one screen line maximum).

//FIND-ELEMENT *LIB(LIB=X,ELEM=LLM,TYPE=L),PATTERN=’.....SYSLNK.*’
INPUT LIBRARY= :1SOSQ:$USER.X

INPUT ELEMENT= (L)LLM/@(0001)/2012-10-09
RECORD-TYPE: 160
 $.SYSLNK.LMS.034
MSLMSSYSLNK.LMS
 2 OUT OF 7 RECORD(S) FOUND
INPUT LIBRARY= :1OSQ:$USER.X
 1 OUT OF 1 (L)-ELEMENT(S) FOUND

LMS statements MODIFY-ELEMENT

U8326-J-Z125-6-76 277

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

MODIFY-ELEMENT

The MODIFY-ELEMENT statement initiates the modification of members. The modifica-
tions themselves are controlled by way of MODIFY-ELEMENT substatements (see
page 287).

MODIFY-ELEMENT selects the members to be modified. The source and target base types
may differ if text members are modified.

Once the MODIFY-ELEMENT statement has been sent, LMS expects a substatement as
the next statement. If another statement is entered instead of a substatement, an error
message is issued.

MODIFY-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / <alphanum-name 1..8>

(part 1 of 3)

MODIFY-ELEMENT LMS statements

278 U8326-J-Z125-6-76

⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 2 of 3)

LMS statements MODIFY-ELEMENT

U8326-J-Z125-6-76 279

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

,TO-ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ *BY-SOURCE(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..132 with-under with-wildcard-constr>(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..8>
⏐ ⏐ ,USER-DATE = *TODAY / *BY-SOURCE / <date 8..10 with-compl>

,TEXT-PARAMETERS = *NONE / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ INPUT-RECORD-ID = *NONE / *RECORD-PART(...)
⏐ ⏐ *RECORD-PART(...)
⏐ ⏐ ⏐ START = <integer 1..251>
⏐ ⏐ ⏐ ⏐ ,LENGTH = <integer 1..16>

,WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *ANY

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR

(part 3 of 3)

MODIFY-ELEMENT LMS statements

280 U8326-J-Z125-6-76

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD/ <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the member to be modified.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member to be modified.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
Specifies the member to be modified.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be modified.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is modified.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is modified.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be modified.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / <alphanum 1..8>
Type of the member to be modified.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be modified has any date.

LMS statements MODIFY-ELEMENT

U8326-J-Z125-6-76 281

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

USER-DATE = *TODAY
The member with the current date is modified.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is modified.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are modified.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the
USER-DATE operand of this statement.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded from correction.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are to be excluded from modification. A member is
excluded when all the fields of the EXCEPT-ELEMENT structure that are not set to
*ANY identify the member as a hit. If all the fields of the EXCEPT-ELEMENT structure
are set to *ANY, then all members will be excluded.
For a description of the operands, see the *LIBRARY-ELEMENT operand of this
statement.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the destination to which and the name under which the corrected member is to be
written back.

LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)
Specifies the library to which the corrected member is to be written back.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = *BY-SOURCE
The corrected member is written back to the original library.

MODIFY-ELEMENT LMS statements

282 U8326-J-Z125-6-76

LIBRARY = <filename 1..54 without-vers>
Name of the library to which the corrected member is to be added.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *BY-SOURCE(...) /
<composed-name 1..132 with-under with-wild-constr>(...)
Name that the corrected member is to receive.

ELEMENT = *BY-SOURCE(...)
The new name is the same as the old name.

VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version that the corrected member is to receive.

VERSION = *BY-SOURCE
The corrected member receives the same version as the original member. If the
original member has no version specification, the corrected member receives X’FF’
as the version specification.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, this overwrites the highest
existing version with reference to BASE among the members of the same type and
name; otherwise a default version is generated.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

VERSION = <composed-name 1..52 with-under with-wild-constr>
The text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

LMS statements MODIFY-ELEMENT

U8326-J-Z125-6-76 283

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
Name of the corrected member. It can also be entered using wildcards.

VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version that the corrected member is to receive.
For a description of the operands, see above.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

TYPE = *BY-SOURCE /*LMS-DEFAULT / <alphanum-name 1..8>
Type that the corrected member is to receive.

TYPE = *BY-SOURCE
The corrected member receives the same type designation as the original member.

USER-DATE = *TODAY / *BY-SOURCE / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *TODAY
The current date is given.

USER-DATE = *BY-SOURCE
The new member is given the same date as the source member.

USER-DATE = <date 8..10 with-compl>
The date must be entered in the form [YY]YY-MM-DD.

TEXT-PARAMETERS = *NONE / *PARAMETERS(...)
Specifies parameters for textual members.

TEXT-PARAMETERS = *NONE
No parameters are specified for textual members.

TEXT-PARAMETERS = *PARAMETERS(...)
Specifies parameters for textual members.

INPUT-RECORD-ID = *NONE / *RECORD-PART(...)
Specifies the location of the record ID (see substatements for textual members on
page 287) in the input record.

INPUT-RECORD-ID = *NONE
No location is specified for the record ID of the input record.

MODIFY-ELEMENT LMS statements

284 U8326-J-Z125-6-76

INPUT-RECORD-ID = *RECORD-PART(...)
Specifies the beginning and length of the record ID area, where
beginning + length ≤ 252

START = <integer 1..251>
Specifies the first character in the record ID to indicate the beginning of the record
ID area.

LENGTH = <integer 1..16>
Specifies the length of the record ID.

WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *ANY
Overwriting of a member having the same name. If the member does not exist under this
name, it will be created as a new member.
If the source member is the same as the target member, this operand is ignored.

WRITE-MODE = *CREATE
The name of the corrected member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The corrected member must already exist and is replaced.

WRITE-MODE = *ANY
The corrected member is replaced if it already exists. Otherwise it will be created as a new
member.

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement on page 330.

LMS statements MODIFY-ELEMENT

U8326-J-Z125-6-76 285

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Statement return code

Required access rights

For ELEMENT: read authorization for LIBRARY and ELEMENT
If more than one member is affected by the statement, members without read authorization
are excluded from the statement.

For TO-ELEMENT: read and write authorization for LIBRARY
Administer authorization where the specified member designation is new. Otherwise, only
write authorization for the member existing under the specified member designation
(administer authorization no longer required).

If WRITE-CONTROL is active and a base version exists, the USERID of the user must be
entered as the HOLDER of the member specified by BASE. Only if write authorization has
been granted can a new version be generated or this base version overwritten. In this case,
administer authorization is no longer required.

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0020
LMS0213
LMS0214
LMS0302
LMS0509
LMS0510
LMS1003
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Target member or target file does not exist
Name exists as delta member
Name exists as full member
Member not found
Target member or target file already exists
Base not found
Error during wildcard processing with at least one member or file
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

MODIFY-ELEMENT LMS statements

286 U8326-J-Z125-6-76

Notes

– When creating a member, be sure to take into account the convention applicable to the
member type.

– If WRITE-CONTROL is active in the output library, the access method adds a comment
(record type 2) to the member which is to be written. The comment logs the HOLDER,
DATE and TIME of the operation. The record is written as the first record of the record
type. Any comment records which already exist or have been edited by means of
INFORMATION=*COMMENT are copied after it. If, in addition, the member is written to
the base of a different version (i.e. not the first version under a name), the member attri-
butes STATE and HOLDER and all the rights of the base version are adopted for the
new version. The CCSN is adopted from the source file. The USER-DATE is deter-
mined anew.

MODIFY-ELEMENT substatements MODIFY-ELEMENT

U8326-J-Z125-6-76 287

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

MODIFY-ELEMENT substatements for member types R, C and L

These substatements are valid for members of the R, C and L base types and must directly
follow the MODIFY-ELEMENT statement. They are read from the statement stream until the
END-MODIFY substatement is encountered.

The MODIFY-ELEMENT substatements make modifications to object modules, phases and
link and load modules (LLM).

LMS initially collects these substatements and executes them only after the END-MODIFY
substatement has been entered.

Overview of MODIFY-ELEMENT substatements

These substatements are dependent on the selected member type and are permitted only
for members of types R, C or L.

Note

The SDF standard statements (see page 137) are also permitted as MODIFY-
ELEMENT substatements.

MODIFY-ELEMENT statement Member type Function
ADD-REP-RECORD R Generate REP records

ADD-TEXT-MODIFICATION R,C,L Modify text records

DELETE-RECORD-TYPE R,C,L Delete record types

END-MODIFY R,C,L Terminate modifications

MODIFY-CSECT-ATTRIBUTES R Modify CSET attributes

MODIFY-MODIFICATION-
DEFAULTS

R,C,L Define global parameters in the MODIFY-
ELEMENT statement

REMOVE-MODIFICATION R,C,L Cancel corrections

RENAME-SYMBOLS R Rename CSECTs, ENTRYs, EXTRNs and
COMMONs

ADD-REP-RECORD MODIFY-ELEMENT substatements

288 U8326-J-Z125-6-76

ADD-REP-RECORD

The MODIFY-ELEMENT substatement ADD-REP-RECORD adds REP records to the
object module. These REP records are evaluated by the dynamic binder loader (DBL).

ADD-REP-RECORD is permitted only for object modules (R-type members).

ADDRESS = <x-string 1..8>(...)
Specifies the address at which the member selected by MODIFY-ELEMENT is to be
modified.

BASE-ADDRESS = *MODIFICATION-DEFAULT / <x-string 1..8>
Base address. BASE-ADDRESS is added to ADDRESS. The resulting correction
address must, in the case of prelinked modules, relate to the prelinked module (and not
to the CSECT).

NEW-CONTENTS = <x-string 1..100> / <c-string 1..50 with-low>
Replacement text specified in character or hexadecimal form.
If the text is specified in character form, it must not exceed 50 characters in length. An
apostrophe in the text must be duplicated.
If the text is specified in hexadecimal form, it must not exceed 100 characters in length.

Statement return code

ADD-REP-RECORD

ADDRESS = <x-string 1..8>(...)

<x-string 1..8>(...)
 ⏐ BASE-ADDRESS = *MODIFICATION-DEFAULT / <x-string 1..8>

,NEW-CONTENTS = <x-string 1..100> / <c-string 1..50 with-low>

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

MODIFY-ELEMENT substatements ADD-TEXT-MODIFICATION

U8326-J-Z125-6-76 289

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ADD-TEXT-MODIFICATION

The MODIFY-ELEMENT substatement ADD-TEXT-MODIFICATION corrects text records
of an object module and phases. This substatement generates a correction journal record
(TXTP record) that contains the original contents of the text area.
With the MODIFY-MODIFICATION-DEFAULTS statement, you can specify that no
correction journal record is to be created. Corrections without a correction journal record
cannot be reversed by the REMOVE-MODIFICATION substatement.

This substatement may be used for members of types R, C and L.

ADDRESS = <x-string 1..8>(...)
Specifies the address at which the member selected by MODIFY-ELEMENT is to be
modified.

BASE-ADDRESS = *MODIFICATION-DEFAULT / <x-string 1..8>
Base address.

The base address is added to ADDRESS. The resulting correction address is as
follows:

ADD-TEXT-MODIFICATION

ADDRESS = <x-string 1..8>(...)

<x-string 1..8>(...)
 ⏐ BASE-ADDRESS = *MODIFICATION-DEFAULT / <x-string 1..8>

,NEW-CONTENTS = <x-string 1..100>(...) / <c-string 1..50 with-low>(...)

<x-string 1..100>(...)
 ⏐ OLD-CONTENTS = *ANY / <x-string 1..100> / <c-string 1..50 with-low>

<c-string 1..50 with-low>(...)
 ⏐ OLD-CONTENTS = *ANY / <x-string 1..100> / <c-string 1..50 with-low>

,MODIFICATION-ID = *MODIFICATION-DEFAULT / *SPACES / <c-string 1..12 with-low>

For ... Relative to:
modules start of CSECT

(the desired CSECT is specified via the MODIFY-MODIFICATION-
DEFAULTS substatement)

phases start of phase
LLMs start of CSECT if a CSECT has been specified

ADD-TEXT-MODIFICATION MODIFY-ELEMENT substatements

290 U8326-J-Z125-6-76

NEW-CONTENTS = <x-string 1..100>(...) / <c-string 1..50 with-low>(...)
Replacement text specified in character or hexadecimal form.

OLD-CONTENTS = *ANY / <x-string 1..100> / <c-string 1..50 with-low>
Original text of the member. The original text must always be specified the same length
as the replacement text.

MODIFICATION-ID = *MODIFICATION-DEFAULT / *SPACES / <c-string 1..12 with-low>
Identification which is held in the correction journal record (TXTP record). If SPACES is
specified, blanks are used as the identification.
Only 8 characters are allowed for member types R and C.

Statement return code

 start of sub-LLM if a sub-LLM has been specified (the desired sub-LLM
is specified via the MODIFY-MODIFICATION-DEFAULTS
substatement)

 start of slice if a slice has been specified (the desired slice is specified
via the MODIFY-MODIFICATION-DEFAULTS substatement)

 start of LLM if nothing has been specified and the LLM only consists of
one slice.
If the LLM consists of more than one slice, you must specify a CSECT,
a sub-LLM or a slice.

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

For ... Relative to:

MODIFY-ELEMENT substatements DELETE-RECORD-TYPE

U8326-J-Z125-6-76 291

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

DELETE-RECORD-TYPE

The MODIFY-ELEMENT substatement DELETE-RECORD-TYPE excludes the following
record types from the input member:

– ISD records (applies only to R-type members)
– LSD records (applies only to R-type members)
– REP records (applies only to R-type members)
– INCLUDE records (applies only to R-type members)
– TXTP records (applies only to R-, C- and L-type members)
– DSDD records (applies only to R-type members)

This substatement may be used for members of types R, C and L.

TYPE = *TXTP(...) / list-poss(5): *ISD / *LSD / *REP / *DSDD / *INCLUDE
Defines the record type that is not to be transferred from the input member to the output
member.

MODIFICATION-ID = *ALL / *SPACES / <c-string 1..12 with-low>
Only those TXTP records with the specified identification are deleted.
For member types R and C, only 8 characters are allowed.
This identification applies only to this DELETE-RECORD-TYPE.

Statement return code

Note

Deleted record types cannot be retrieved.

DELETE-RECORD-TYPE

TYPE = *TXTP(...) / list-poss(5): *ISD / *LSD / *REP / *DSDD / *INCLUDE

*TXTP(...)
 ⏐ MODIFICATION-ID = *ALL / *SPACES / <c-string 1..12 with-low>

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

END-MODIFY MODIFY-ELEMENT substatements

292 U8326-J-Z125-6-76

END-MODIFY

END-MODIFY concludes the sequence of MODIFY-ELEMENT substatements. LMS then
checks all the statements for executability and executes the statement string.

This substatement has no operands.

Statement return code

END-MODIFY

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64

130

CMD0001
LMS0129
CMD0230
LMS1002
LMS1003
LMS1004
LMS0041

No error
Statement aborted by user
Syntax error
Internal error
Error during wildcard processing with at least one member or file
Other error
System address space exhausted

MODIFY-ELEMENT substatements MODIFY-CSECT-ATTRIBUTES

U8326-J-Z125-6-76 293

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

MODIFY-CSECT-ATTRIBUTES

The MODIFY-ELEMENT substatement MODIFY-CSECT-ATTRIBUTES modifies CSECT
attributes.

This substatement must be used for object modules (R-type members) only.

At the beginning of the MODIFY-ELEMENT statement, the operands are preset to the value
immediately following *UNCHANGED.

NAME = *ALL / <c-string 1..8 with-low> / <text 1..8>
Name of the CSECT whose attributes are to be modified. All CSECTs or a specific CSECT
can be specified.

VISIBLE = *UNCHANGED / *YES / *NO
Masking (visibility) of CSECTs.

VISIBLE = *YES
The specified control sections are not masked (see [4]).
A secondary name record is created for these sections, and the names are entered in the
directory of secondary names.

VISIBLE = *NO
The specified control sections are masked. No secondary name record is created for these
sections, and the names are not entered in the directory of secondary names. Any
secondary name record which may exist is deleted.

If all control sections of an object module are masked, a library member without a
secondary name entry is created. This object module can be located via the primary name
only.

The module name can, however, be derived from the initial control section name with the
aid of all ESD records, since masked control sections are also used in this case.

MODIFY-CSECT-ATTRIBUTES

NAME = *ALL / <c-string 1..8 with-low> / <text 1..8>

,VISIBLE = *UNCHANGED / *YES / *NO

,READ-ONLY = *UNCHANGED / *YES / *NO

,PAGE-ALIGNMENT = *UNCHANGED / *YES / *NO

,RESIDENCY-MODE = *UNCHANGED / 24 / *ANY

,ADDRESSING-MODE = *UNCHANGED / 24 / 31 / *ANY

MODIFY-CSECT-ATTRIBUTES MODIFY-ELEMENT substatements

294 U8326-J-Z125-6-76

Note

The linkage editor cannot process object modules which only have masked control
sections, e.g. when an object module is excluded with the autolink function.
The VISIBLE operand can also be used on ENTRYs.

READ-ONLY = *UNCHANGED / *YES / *NO
Write protection.

READ-ONLY = *YES
Indicates that only read access to the specified control sections is permitted while the
program is executing.

READ-ONLY = *NO
Enables write access to the specified control sections even while the program is executing.

PAGE-ALIGNMENT = *UNCHANGED / *YES / *NO
Page alignment.

PAGE-ALIGNMENT = *YES
Indicates that the specified control sections are to be aligned on a page boundary, i.e. the
load address should be a multiple of decimal 4096 or hexadecimal 1000.

PAGE-ALIGNMENT = *NO
Does not take page boundaries into account. The control sections always start at the next
doubleword address produced during the linkage process.

RESIDENCY-MODE = *UNCHANGED / 24 / *ANY
Load mode.

RESIDENCY-MODE = 24
Indicates that the specified control sections are to be loaded to the address area below the
16-Mbyte limit.

RESIDENCY-MODE = *ANY
No limitation exists.

MODIFY-ELEMENT substatements MODIFY-CSECT-ATTRIBUTES

U8326-J-Z125-6-76 295

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ADDRESSING-MODE = *UNCHANGED / 24 / 31 / *ANY
Execution mode.

ADDRESSING-MODE = 24
Indicates that the specified control sections are to be executable in 24-bit mode.

ADDRESSING-MODE = 31
Indicates that the specified control sections are to be executable in 31-bit mode.

ADDRESSING-MODE = *ANY
Any execution mode.

Statement return code

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

MODIFY-MODIFICATION-DEFAULTS MODIFY-ELEMENT substatements

296 U8326-J-Z125-6-76

MODIFY-MODIFICATION-DEFAULTS

The MODIFY-ELEMENT substatement MODIFY-MODIFICATION-DEFAULTS defines the
global default values within the MODIFY-ELEMENT statement.

This substatement may be used for members of types R, C and L.

At the beginning of the MODIFY-ELEMENT statement, the operands are preset to the value
immediately following *UNCHANGED.

CSECT-NAME = *UNCHANGED / *NONE / <c-string 1..32 with-low> / <text 1..32>
Name of the CSECT to be corrected (relevant only for types R and L).

CSECT-NAME = *NONE
If no CSECT name is specified, in the case of R-type modules the first CSECT name is
used.

PHASE-SEGMENT = *UNCHANGED / *ROOT / <name 1..8>
Specifies the phase segment to be corrected. If no segment is specified, the first segment
(*ROOT) is used.

MODIFY-MODIFICATION-DEFAULTS

CSECT-NAME = *UNCHANGED / *NONE / <c-string 1..32 with-low> / <text 1..32>

,PHASE-SEGMENT = *UNCHANGED / *ROOT / <name 1..8>

,LLM-PART = *UNCHANGED / *NONE / *SLICE(...) / *SUB-LLM(...)

*SLICE(...)
 ⏐ NAME = <structured-name 1..32>

*SUB-LLM(...)
 ⏐ PATH-NAME = <c-string 1..255 with-low> / <text 1..255>

,MODIFICATION-LOGGING = *UNCHANGED / *YES(...) / *NO

*YES(...)
 ⏐ MODIFICATION-ID = *UNCHANGED / *SPACES / <c-string 1..12 with-low>

,BASE-ADDRESS = *UNCHANGED / <x-string 1..8>

MODIFY-ELEMENT substatements MODIFY-MODIFICATION-DEFAULTS

U8326-J-Z125-6-76 297

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

LLM-PART = *UNCHANGED / *NONE / *SLICE(...) / *SUB-LLM(...)
If no LLM part is specified, the entire LLM is used.

LLM-PART = *SLICE(...)
Specifies the slice to be corrected.

NAME = <structured-name 1..32>
Name of the slice to be corrected.

LLM-PART = *SUB-LLM(...)
Specifies the sub-LLM to be corrected.

PATH-NAME = <c-string 1..255 with-low> / <text 1..255>
The sub-LLM to be corrected is determined by way of its path name.

MODIFICATION-LOGGING = *UNCHANGED / *YES(...) / *NO
Defines TXTP record generation.

MODIFICATION-LOGGING = *YES(...)
TXTP records are to be generated.

MODIFICATION-ID = *UNCHANGED / *SPACES / <c-string 1..12 with-low>
Identification which is held in the correction journal record (TXTP record). If SPACES is
specified, blanks are used as the identification.
For member types R and C, only 8 characters are allowed.

MODIFICATION-LOGGING = *NO
No TXTP records are to be generated.

BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
Hexadecimal specification of the base address. At the beginning of the MODIFY-ELEMENT
statement, base address 0 is set.

Statement return code

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

REMOVE-MODIFICATION MODIFY-ELEMENT substatements

298 U8326-J-Z125-6-76

REMOVE-MODIFICATION

The MODIFY-ELEMENT substatement REMOVE-MODIFICATION cancels corrections
from a previous correction run under the following preconditions:

A correction journal record was created with the MODIFY-ELEMENT substatement ADD-
TEXT-MODIFICATION, i.e. the operand MODIFICATION-LOGGING = *YES (see
page 297) was set.

This substatement may be used only for members of types R, C and L.

MODIFICATION-ID = *ALL / *SPACES / <c-string 1..12 with-low>
For member types R and C, only 8 characters are allowed.
Only those corrections with the specified identification are cancelled. If an identification is
specified, it is necessary that correction journal records for it exist. If no identification (*ALL)
is specified, all corrections for which a correction journal record exists are cancelled.

Statement return code

REMOVE-MODIFICATION

MODIFICATION-ID = *ALL / *SPACES / <c-string 1..8 with-low>

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

MODIFY-ELEMENT substatements RENAME-SYMBOLS

U8326-J-Z125-6-76 299

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

RENAME-SYMBOLS

The MODIFY-ELEMENT substatement RENAME-SYMBOLS changes the name of a
CSECT, ENTRY, COMMON, EXTRN, WXTRN or a V constant. Each renaming results in a
modification of the ESD records. LMS checks for the uniqueness of names within all ESD
records, rejecting a new name if that name already exists.

In LSD records, no renaming occurs. This is why, following a change in the CSECT name,
AID can no longer be used for symbolic testing (see [13]). If testing is run near machine
level, the new names must be used in any AID qualifications.

The MODIFY-ELEMENT substatement RENAME-SYMBOLS may be used only for object
modules (R-type members).

SYMBOL-NAME = <text 1..8>
Defines the symbol name to be renamed.

SYMBOL-TYPE = *CSECT / *ENTRY / *COMMON / *EXTRN / *VCON / *WXTRN
Defines the type of symbol whose name is to be changed.

NEW-NAME = <text 1..8>
New symbol name.
The name should satisfy the BINDER conventions for the special data type <symbol>
(see [4]). LMS does not check for this convention, however.

Statement return code

Note

Masked (invisible) CSECT/ENTRY names can also be renamed.

RENAME-SYMBOLS

SYMBOL-NAME = <text 1..8>

,SYMBOL-TYPE = *CSECT / *ENTRY / “COMMON / *EXTRN / *VCON / *WXTRN

,NEW-NAME = <text 1..8>

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

MODIFY-ELEMENT MODIFY-ELEMENT substatements

300 U8326-J-Z125-6-76

MODIFY-ELEMENT substatements for textual members

These substatements make changes to text members. They are read from the statement
stream until the MODIFY-ELEMENT substatement END-MODIFY is encountered.

Overview of MODIFY-ELEMENT substatements

These substatements may be used only for textual members.

Notes

– Standard SDF statements are also permitted as MODIFY-ELEMENT substatements
(see page 137).

– Only member records with lengths ≤ 251 are processed. Longer records will be
truncated. In this case, LMS issues a warning.

Definition of record identification for textual members

Record identification may be a record number or a record ID.

Record numbers and record IDs may be mixed within substatements. In substatements and
data records, they must always be specified in ascending order.
If an error is detected in interactive mode, the correction must be terminated with END-
MODIFY and then restarted. After an ADD-RECORD substatement, an *END must also be
entered.

MODIFY-ELEMENT substatement Function
ADD-RECORD Inserts records

END-MODIFY Concludes the modifications

REMOVE-RECORD Removes records

Record
number:

The record number indicates the relative position of the member record in
relation to the beginning of the member. If the record number specified is
greater than the member’s highest record number, the changes continue
after the last member record, i.e. records are appended to the member.

Record ID: The location and length of the record ID are specified by means of the
INPUT-RECORD-ID operand (see the MODIFY-ELEMENT statement).
This is why it is not permissible to specify a record ID in substatements
except when INPUT-RECORD-ID has a value other than *NONE. If
specified, a record ID must have the length declared in INPUT-RECORD-
ID. Only leading zeros may be omitted.
If the record ID does not occur in the input member, the changes are
inserted in front of the first record with a higher record ID.

MODIFY-ELEMENT substatements ADD-RECORD

U8326-J-Z125-6-76 301

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ADD-RECORD

The MODIFY-ELEMENT substatement ADD-RECORD inserts the records following the
statement at the specified position. The records to be inserted must be concluded by an
*END record.

RECORD-ID = *NONE / <integer 0..99999999> / <c-string 1..16 with-low>
Specifies the data record to be added.

RECORD-ID = *NONE
If the INPUT-RECORD-ID operand of the MODIFY-ELEMENT statement is set to a value
other than *NONE, the data records following the ADD-RECORD substatement are
inserted in the member being modified in accordance with their record IDs.
If a specified record ID designates a record which already exists, the data record is written
over the existing record. If no record with the specified record ID yet exists, the data record
is inserted in front of the first record with a higher record ID. If INPUT-RECORD-ID=*NONE
is set or no record ID is specified for a data record, the record is inserted at the current
position.

RECORD-ID = <integer 0..99999999> / <c-string 1..16 with-low>
Specifies the member position after which the data records following the statement are to
be inserted. If the specified record number or record ID does not exist, the data records are
each inserted in front of the first record with a higher record number/record ID.

Statement return code

ADD-RECORD

RECORD-ID = *NONE / <integer 0..99999999> / <c-string 1..16 with-low>

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

END-MODIFY MODIFY-ELEMENT substatements

302 U8326-J-Z125-6-76

END-MODIFY

Each sequence of MODIFY-ELEMENT substatements is concluded by an END-MODIFY
substatement.

This substatement has no operands.

Statement return code

END-MODIFY

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64

130

CMD0001
LMS0129
CMD0230
LMS1002
LMS1003
LMS1004
LMS0041

No error
Statement aborted by user
Syntax error
Internal error
Error during wildcard processing with at least one member or file
Other error
System address space exhausted

MODIFY-ELEMENT substatements REMOVE-RECORD

U8326-J-Z125-6-76 303

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

REMOVE-RECORD

The MODIFY-ELEMENT substatement REMOVE-RECORD deletes the specified record or
record area from the member.

RECORD-ID = <integer 0..99999999> / <c-string 1..16 with-low> / *RANGE(...)
Record number or record ID of the record to be deleted.

RECORD-ID = *RANGE(...)
Specifies the record area to be deleted.

FROM = <integer 0..99999999> / <c-string 1..16 with-low>
Specifies the first record number or record ID of the area which is to be deleted.

TO = <integer 0..99999999> / <c-string 1..16 with-low>
Specifies the last record number or record ID of the area which is to be deleted.

Statement return code

REMOVE-RECORD

RECORD-ID = <integer 0..99999999> / <c-string 1..16 with-low> / *RANGE(...)

*RANGE(...)
 ⏐ FROM = <integer 0..99999999> / <c-string 1..16 with.low>
⏐ ,TO = <integer 0..99999999> / <c-string 1..16 with.low>

(SC2) SC1 Maincode Meaning
0
1

CMD0001
CMD0230

No error
Syntax error

MODIFY-ELEMENT-ATTRIBUTES LMS statements

304 U8326-J-Z125-6-76

MODIFY-ELEMENT-ATTRIBUTES

This statement can be used to modify the member name, version, user date, CCS name
and/or member state. The statement may be used for all member types.

The source and target member base types may differ if text members are processed.

It is not permitted to change a member designation for delta members or when WRITE-
CONTROL is active.

MODIFY-ELEMENT-ATTRIBUTES

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>

LMS statements MODIFY-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 305

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CODED-CHARACTER-SET = *ANY / *NONE / <name 1..8 with-wild(20)>
⏐ ⏐ ,STATE = *ANY / *FREE / *IN-HOLD(...)
⏐ ⏐ *IN-HOLD(...)
⏐ ⏐ ⏐ HOLDER = *ANY / <name 1..8 with-wild(20)>
⏐ ⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>

MODIFY-ELEMENT-ATTRIBUTES LMS statements

306 U8326-J-Z125-6-76

⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

,NEW-ATTRIBUTES = PARAMETERS (...)

*PARAMETERS(...)
 ⏐ ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ *BY-SOURCE(...)
⏐ ⏐ ⏐ VERSION = *BY-SOURCE / *LMS-DEFAULT / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ ⏐ VERSION = *BY-SOURCE / *LMS-DEFAULT / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..52 with-under with-wild-constr>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..20 with-wild-constr>
⏐ ⏐ ,USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *BY-SOURCE / *SYSTEM-DATE
⏐ ⏐ ,CODED-CHARACTER-SET = *BY-SOURCE / *LIBRARY-DEFAULT / *NONE / <name 1..8>
⏐ ⏐ ,STATE = *BY-SOURCE / *FREE / *IN-HOLD

,WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *ANY

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR

LMS statements MODIFY-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 307

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the member.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

LIBRARY = *LINK(..)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *ALL (...)/ <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member whose attributes are to be modified.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member.

VERSION = *HIGHEST-EXISTING
The attributes of the member with the highest existing version are modified.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ of the member in the library under the specified
TYPE and name is used.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member has any date.

MODIFY-ELEMENT-ATTRIBUTES LMS statements

308 U8326-J-Z125-6-76

USER-DATE = *TODAY
The member with the current date is used.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is used.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are used.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the
USER-DATE operand of this statement.

CODED-CHARACTER-SET = *ANY / *NONE / <name 1..8 with-wild(20)>
Character set assigned to the member.

CODED-CHARACTER-SET = *ANY
Selects members without regard to their assigned character set.

CODED-CHARACTER-SET = *NONE
Selects members which have not been assigned a character set.

CODED-CHARACTER-SET = <name 1..8> / <composed-name 1..8 with-wild(20)>
Selects the members to which the specified character set has been assigned.

STATE = *ANY / *FREE / *IN-HOLD(...)
State assigned to the member.

STATE = *ANY
Selects members without regard to their respective STATEs.

STATE = *FREE
Selects only members with STATE=FREE

STATE = *IN-HOLD(...)
Selects only members with STATE=IN-HOLD.

HOLDER = *ANY / <name1..8 with-wild(20)>
HOLDER assigned to the member.

HOLDER = *ANY
Selects members without regard to their respective HOLDERs.

LMS statements MODIFY-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 309

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

HOLDER = <name 1..8> / <composed-name 1..8 with-wild(20)>
Selects only members which are assigned a HOLDER matching the pattern.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members whose attributes are to be excluded from modification. A
member is excluded when all the fields of the EXCEPT-ELEMENT structure that are not
set to *ANY identify the member as a hit. If all the fields of the EXCEPT-ELEMENT
structure are set to *ANY, then all members will be excluded.
For a description of the operands, see the *LIBRARY-ELEMENT operand of this
statement.

NEW-ATTRIBUTES = *PARAMETERS(...)
Specifies the attributes that the target member is to receive.

ELEMENT = *BY-SOURCE(...) /
<composed-name 1..132 with-under with-wild-constr>(...)
New name that the member is to receive.

ELEMENT = *BY-SOURCE(...)
The new name is the same as the old name. The member is not renamed.

VERSION = *BY-SOURCE / *LMS-DEFAULT / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version that the member is to receive. Only the version is renamed, not the
member.

VERSION = *BY-SOURCE
The new member receives the same version as the original member.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, this overwrites the highest
existing version with reference to BASE among the members of the same type and
name; otherwise a default version is generated.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated (see also page 55).

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

MODIFY-ELEMENT-ATTRIBUTES LMS statements

310 U8326-J-Z125-6-76

VERSION = <composed-name 1..52 with-under with-wild-constr>
The text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
The new name of the member can also be entered using wildcards.

VERSION = *BY-SOURCE / *LMS-DEFAULT / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wild-constr>
Version that the member to be renamed is to receive. For description of operands,
see above.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..20 with-wild-constr>
Type which the member being renamed is to receive.

TYPE = *BY-SOURCE
The member to be renamed receives the same type designation as the original
member.

USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *BY-SOURCE
The member to be renamed receives the same date as the original member.

USER-DATE = *TODAY
The current date is given.

USER-DATE = <date 8..10 with-compl>
The date must be entered in the form [YY]YY-MM-DD.

MODIFICATION-DATE = *BY-SOURCE / *SYSTEM-DATE
Controls updating of the modification date.

MODIFICATION-DATE = *BY-SOURCE
The modification date is not to be updated.

MODIFICATION-DATE = *SYSTEM-DATE
Updates the modification date.

CODED-CHARACTER-SET = *BY-SOURCE / *LIBRARY-DEFAULT / *NONE /
<name 1..8>
Character set assigned to the member.

LMS statements MODIFY-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 311

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

CODED-CHARACTER-SET = *BY-SOURCE
The member is assigned the character set of the source member.

CODED-CHARACTER-SET = *LIBRARY-DEFAULT
The member is assigned the character set of the library containing the member.

CODED-CHARACTER-SET = *NONE
No character set is assigned to the member.

CODED-CHARACTER-SET = <name 1..8>
Specifies the character set which is to be assigned to the member.

STATE = *BY-SOURCE / *FREE / *IN-HOLD
State assigned to the member.

STATE = *BY-SOURCE
Leaves the state of the member unchanged.

STATE = *FREE
The new state of the member is FREE. Only the HOLDER and the owner of the library
are permitted to change the state to FREE.

STATE = *IN-HOLD
The new state of the member is IN-HOLD. The USERID of the person who changed the
state from FREE to IN-HOLD is entered as the HOLDER. If the state was already IN-
HOLD, the statement is rejected. Only persons with hold authorization can be
HOLDERs.

WRITE-MODE =
Overwriting of a member having the same name. If the member does not exist under this
name, it will be created as a new member. If the type, name and version of the member
remain unchanged, WRITE-MODE has the same effect as WRITE-MODE=*ANY.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The target member must already exist and is replaced.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new
member.

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

MODIFY-ELEMENT-ATTRIBUTES LMS statements

312 U8326-J-Z125-6-76

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement.

Statement return code

Required access rights

Read and write authorization for LIBRARY

Administer authorization is also required in order to change the member designation.

If an existing member designation is to be changed, the person making the change must
have write authorization for the member which will be overwritten in the process.

Hold authorization is required in order to change a member’s state from FREE to IN-HOLD.
Only the member’s HOLDER or the library owner are permitted to change the state of the
member back to FREE.

Other attributes may be changed by persons having administer authorization or write autho-
rization for the member involved, but not if STATE=*IN-HOLD is specified and WRITE-
CONTROL is activated.

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0020
LMS0213
LMS0214
LMS0302
LMS0509
LMS0510
LMS1003
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Target member or target file does not exist
Name exists as delta member
Name exists as full member
Member not found
Target member or target file already exists
Base not found
Error during wildcard processing with at least one member or file
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

LMS statements MODIFY-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 313

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Notes

– When creating a member, be sure to take into account the convention applicable to the
member type.

– If WRITE-CONTROL is activated, changes to member designations will not be allowed.
This prevents members from being generated or overwritten without it also being
documented when changes were made, and by whom.

Examples

The following examples assume that the member type is already preset.

– Modifying the member name from OLD to NEW:

//modify-element-attributes *lib(library=lib,elem=old), -
new-attr=*par(elem=new)

– Modifying the version designation of the member “old” from V1 to V2:

//modify-element-attributes *lib(library=lib,elem=old(version=v1)), -
new-attr=*par(*by-source(version=v2))

MODIFY-ELEMENT-PROTECTION LMS statements

314 U8326-J-Z125-6-76

MODIFY-ELEMENT-PROTECTION

This statement modifies the protection for the specified members of the assigned library.
The statement is permissible for all member types.

*UNCHANGED means that the respective member protection attributes remain
unchanged.

MODIFY-ELEMENT-PROTECTION

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 1 of 4)

LMS statements MODIFY-ELEMENT-PROTECTION

U8326-J-Z125-6-76 315

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,PROTECTION = *ANY / *NONE / *PARAMETERS(...)
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ READ = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ ⏐ ⏐ GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
⏐ ⏐ ⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ ⏐ USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,PASSWORD = *ANY / *YES / *NO
⏐ ⏐ ⏐ ⏐ ,WRITE = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ ⏐ ⏐ GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
⏐ ⏐ ⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ ⏐ USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,PASSWORD = *ANY / *YES / *NO
⏐ ⏐ ⏐ ⏐ ,EXEC = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ ⏐ ⏐ GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
⏐ ⏐ ⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ ⏐ USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,PASSWORD = *ANY / *YES / *NO

(part 2 of 4)

MODIFY-ELEMENT-PROTECTION LMS statements

316 U8326-J-Z125-6-76

⏐ ⏐ ,HOLD = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ ⏐ ⏐ GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
⏐ ⏐ ⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ ⏐ USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,PASSWORD = *ANY / *YES / *NO
⏐ ⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 3 of 4)

LMS statements MODIFY-ELEMENT-PROTECTION

U8326-J-Z125-6-76 317

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

,NEW-PROTECTION = *UNCHANGED / *NONE / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ READ = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>
⏐ ⏐ ,WRITE = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>
⏐ ⏐ ,EXEC = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>
⏐ ⏐ ,HOLD = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES

(part 4 of 4)

MODIFY-ELEMENT-PROTECTION LMS statements

318 U8326-J-Z125-6-76

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the member.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *ALL / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member whose protection attributes are to be modified.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member.

VERSION = *HIGHEST-EXISTING
The protection attributes of the member with the highest existing version are
modified.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ of the member in the library under the specified
TYPE and name is used.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*. For further information
concerning specification of the base, see page 50.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member has any date.

LMS statements MODIFY-ELEMENT-PROTECTION

U8326-J-Z125-6-76 319

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

USER-DATE = *TODAY
The member with the current date is used.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is used.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are used.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the
USER-DATE operand of this statement.

PROTECTION = *ANY / *NONE / *PARAMETERS(...)
Member protection for the selected members.

PROTECTION = *ANY
The members have any member protection.

PROTECTION = *NONE
The members have no additional member protection.

PROTECTION = *PARAMETERS(...)
Specifies the protection with which the members to be selected are provided.

READ = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Read protection setting assigned to the member.

READ = *ANY
Selects members without regard to their respective read protection settings.

READ = *NONE
Selects only members which have no read protection.

READ = *BY-GUARD(...)
Selects only members which have GUARD read protection.

GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
Selects only members which have read protection by a GUARD-NAME
matching the pattern.

MODIFY-ELEMENT-PROTECTION LMS statements

320 U8326-J-Z125-6-76

READ = *PARAMETERS(...)
Selects only members which have read protection by BACL and/or password.

USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
The read-authorized user group which is assigned to the member.

USER = *ANY
Selects members without regard to their respective read-authorized user
groups.

USER = *NONE
Selects only members for which no read authorization has been granted.

USER = *OWNER
Selects only members for which the owner of the library file has read
authorization.

USER = *GROUP
Selects only members for which the library file owner’s group has read
authorization.

USER = *OTHERS
Selects only members for which OTHERS read authorization has been granted.

PASSWORD = *ANY / *YES / *NO
Read password assigned to the member.

PASSWORD = *ANY
Selects members without regard to their respective passwords.

PASSWORD = YES
Selects only members which are protected by a read password.

PASSWORD = *NO
Selects only members which are not protected by a read password.

WRITE = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Write authorization. Selects only members for which this authorization has been
granted in the specified manner.
The operands are analogous to those described above for READ.

EXEC = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Execute authorization. Selects only members for which this authorization has been
granted in the specified manner.
The operands are analogous to those described above for READ.

HOLD = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Hold authorization. Selects only members for which this authorization has been
granted in the specified manner.
The operands are analogous to those described above for READ.

LMS statements MODIFY-ELEMENT-PROTECTION

U8326-J-Z125-6-76 321

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members whose protection attributes are to be excluded from
modification. A member is excluded when all the fields of the EXCEPT-ELEMENT
structure that are not set to *ANY identify the member as a hit. If all the fields of the
EXCEPT-ELEMENT structure are set to *ANY, then all members will be excluded.
For a description of the operands, see the *LIBRARY-ELEMENT operand of this
statement.

NEW-PROTECTION = *UNCHANGED / *NONE / *PARAMETERS(...)
New member protection for the selected members.

NEW-PROTECTION = *NONE
The member receives no new or additional protection. It is protected only by the protection
for the library file.

NEW-PROTECTION = *PARAMETERS(...)
Specifies which protection should now apply for the member.

READ = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
New read protection granted for the member.

READ = *NONE
No further access restriction is provided.

READ = *BY-GUARD(...)
Specifies the read guard.

GUARD-NAME = <filename 1..18 without-cat-gen-vers>
Name of the guard.

READ = *PARAMETERS(...)
Modifies the user circles for the read authorization.

USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP /
*OTHERS
The circle of those with read authorization is explicitly listed.

USER = *NONE
None may access in the specified manner.

USER = *ALL
All may access in the specified manner (full listing).

MODIFY-ELEMENT-PROTECTION LMS statements

322 U8326-J-Z125-6-76

USER = *OWNER
The owner of the library file may access.

USER = *GROUP
Those belonging to the group of the owner of the library file may access.

USER = *OTHERS
All others may access.

PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
<x-string 1..8> / <integer -2147483648..2147483647>
The circle of authorized persons is further restricted. In addition to the necessary
access right, the correct password is required. Specifying 0 or X’00000000’ does
not result in any change of the last value.
Specifying *SECRET or ̂ allows the desired password to be entered invisibly. If the
“secret” value is entered as a c-string, it must be enclosed in apostrophes. If it is
entered as an x-string, it must similarly be enclosed in apostrophes and also be
prefixed by an X.

WRITE = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
New write authorization granted for the member.
The description of the operands is analogous to that for READ (see page 321).

EXEC = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
New execute authorization granted for the member.
The description of the operands is analogous to that for READ (see page 321).

HOLD = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
New hold authorization granted for the member.
The operands are analogous to those described for READ (see page 321).

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement, where the value *ERROR which might have been set there has the same effect
as *NO. Likewise, the value *ERROR which may have been set for DIALOG-CONTROL=
in the /SEND-MSG message command has the same effect as *NO with MODIFY-
ELEMENT-PROTECTION.

Note

The *ERROR value, which may perhaps have been set in the MODIFY-LMS-
DEFAULTS statement, has the same effect as *NO.

LMS statements MODIFY-ELEMENT-PROTECTION

U8326-J-Z125-6-76 323

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Statement return code

Required access rights

Read and write authorization for LIBRARY

Protection attributes can only be modified by the owner of the library file.

Examples

– In addition to the read authorization, the group is also given the write authorization for
all members to which the group previously only had read access.

//modify-element-protection -
// *lib(elem=*,type=*,protection=(read=(user=*group))),-
// new-protection=(write=(user=*group))

When specifying new-protection there is no need to redefine the read authorization.
The previous setting (UNCHANGED) for the read authorization still applies.

– Entry of this password is to be made non-visible.

//modify-element-protection *lib(elem=test,type=s), -
// new-protection=(exec=(user=*group,password=*secret))

%ENTER SECRET OPERAND (NEW-PROTECTION=:EXEC=:PASSWORD):

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0302
LMS1003
LMS1004
PLA0229
PLA0233
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Member not found
Error during wildcard processing with at least one member or file
Other error
No access right for the member
Borrow status prevents member access
System address space exhausted
Library locked
Member locked
Type locked

MODIFY-LIBRARY-ATTRIBUTES LMS statements

324 U8326-J-Z125-6-76

MODIFY-LIBRARY-ATTRIBUTES

This statement modifies the attributes of the specified library. These attributes are:

– protection attributes,
– the preferred storage form and
– the recording of the access date

*UNCHANGED means that the respective library attributes remain unchanged.

MODIFY-LIBRARY-ATTRIBUTES

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,STORAGE-FORM = *UNCHANGED / *NONE / *STD / *FULL / *DELTA

,WRITE-CONTROL = *UNCHANGED / *NONE / *DEACTIVATE / *ACTIVATE

,ACCESS-DATE = *UNCHANGED / *NONE / *KEEP

,ADMINISTRATION = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)

*BY-GUARD(...)
 ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>

*PARAMETERS(...)
 ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ <x-string 1..8> / <integer -2147483648..2147483647>

,INIT-ELEM-PROTECTION = *UNCHANGED / *NONE / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ READ = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>

(part 1 of 2)

LMS statements MODIFY-LIBRARY-ATTRIBUTES

U8326-J-Z125-6-76 325

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library whose protection attributes are to be modified.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library whose protection attributes are to be modified.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

⏐ ,WRITE = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>
⏐ ⏐ ,EXEC = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>
⏐ ⏐ ,HOLD = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>

(part 2 of 2)

MODIFY-LIBRARY-ATTRIBUTES LMS statements

326 U8326-J-Z125-6-76

STORAGE-FORM = *UNCHANGED / *NONE / *STD / *FULL / *DELTA
Permissible storage form for members of the library, provided that nothing different is
required for the member type by MODIFY-TYPE-ATTRIBUTES. Also, all members of the
same type and name must have the same storage form.

STORAGE-FORM = *NONE
Same effect as STD.

STORAGE-FORM = *STD
Both full storage and delta storage are permitted.

STORAGE-FORM = *FULL
Only full storage is permitted.

STORAGE-FORM = *DELTA
Only delta storage is permitted.

WRITE-CONTROL = *UNCHANGED / *NONE / *DEACTIVATE / *ACTIVATE
Attribute for controlling additional checks.

WRITE-CONTROL = *NONE
No additional checks are performed when generating or overwriting versions.

WRITE-CONTROL = *DEACTIVATE
No additional checks are performed when generating or overwriting versions.

WRITE-CONTROL = *ACTIVATE
A version can be written only

– if the USERID of the user wanting to write it is entered as the HOLDER in the relevant
base version and

– if either a new version is generated or the base version is overwritten.

For the first version of a name, no base yet exists; it can be generated only by persons with
ADMIN authorization. Whenever versions are generated or overwritten, LMS automatically
adds a type-2 record documenting the HOLDER=author and the DATE and TIME of the
operation. In addition, the STATE and HOLDER attributes and all rights are applied to the
new version, provided the current statement does not require different values.

ACCESS-DATE = *UNCHANGED / *NONE / *KEEP
Attribute for recording the access date.

ACCESS-DATE = *NONE
No access dates for the members are recorded in the library.

ACCESS-DATE = *KEEP
Access dates for members are recorded in the library. Only after this point in time can a
member have an access date and time.

LMS statements MODIFY-LIBRARY-ATTRIBUTES

U8326-J-Z125-6-76 327

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ADMINISTRATION = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Administer authorization. The circle of those with administer authorization for the library is
specified explicitly. Only these persons may create, delete and rename members.

ADMINISTRATION = *NONE
No administer authorization is granted.

ADMINISTRATION = *BY-GUARD(...)
The administer authorization of the specified library is controlled by means of a guard.

GUARD-NAME = <filename 1..18 without-cat-gen-vers>
Name of the guard.

ADMINISTRATION = *PARAMETERS(...)
Specifies the user circle and, where applicable, a password for management of the
specified library.

USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP /
*OTHERS
The circle of those with management authorization is explicitly listed.

USER = *NONE
None may manage (empty list).

USER = *ALL
All may manage (full listing).

USER = *OWNER
Only the owner of the library file may manage it.

USER = *GROUP
Those belonging to the group of the owner of the library file may manage.

USER = *OTHERS
All others may manage.

PASSWORD =*UNCHANGED / *SECRET / *NONE / <c-string 1..4> / <x-string 1..8> /
<integer -2147483648..2147483647>
The circle of authorized persons is further restricted. In addition to the necessary
access right, the correct password is required. Specifying 0 or X’00000000’ does not
result in any change of the last value.
Specifying *SECRET or ^ allows the desired password to be entered invisibly. If the
“secret” value is entered as a c-string, it must be enclosed in apostrophes. If it is entered
as an x-string, it must similarly be enclosed in apostrophes and also be prefixed by
an X.

MODIFY-LIBRARY-ATTRIBUTES LMS statements

328 U8326-J-Z125-6-76

INIT-ELEM-PROTECTION = *UNCHANGED / *NONE / *PARAMETERS(...)

INIT-ELEM-PROTECTION = *NONE
No initial protection for the members contained in the library is defined.

INIT-ELEM-PROTECTION = *PARAMETERS(...)
Specifies the protection rights that the newly created members are to receive.

READ = *UNCHANGED /*NONE / *BY-GUARD(...) / *PARAMETERS(...)
An initial read authorization is explicitly specified.

READ = *NONE
No further access restriction is provided.

READ = *BY-GUARD(...)
Specifies the read guard.

GUARD-NAME = <filename 1..18 without-cat-gen-vers>
Name of the guard.

READ = *PARAMETERS(...)
Specifies the user circles for the read authorization.

USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP /
*OTHERS
The circle of those with read authorization is explicitly listed.

USER = *NONE
None may access in the specified manner.

USER = *ALL
All may access in the specified manner (full listing).

USER = *OWNER
The owner of the library file may access.

USER = *GROUP
Those belonging to the group of the owner of the library file may access.

USER = *OTHERS
All others may access.

PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
<x-string 1..8> / <integer -2147483648..2147483647>
The circle of authorized persons is further restricted. In addition to the necessary
access right, the correct password is required.
Specifying 0 or X’00000000’ does not result in any change of the last value.
Specifying *SECRET or ̂ allows the desired password to be entered invisibly. If the
“secret” value is entered as a c-string, it must be enclosed in apostrophes. If it is
entered as an x-string, it must similarly be enclosed in apostrophes and also be
prefixed by an X.

LMS statements MODIFY-LIBRARY-ATTRIBUTES

U8326-J-Z125-6-76 329

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

WRITE = *UNCHANGED /*NONE / *BY-GUARD(...) / *PARAMETERS(...)
An initial write authorization is explicitly defined.
The description of the operands is analogous to that for READ

EXEC = *UNCHANGED /*NONE / *BY-GUARD(...) / *PARAMETERS(...)
An initial execute authorization is explicitly defined.
The description of the operands is analogous to that for READ

HOLD = *UNCHANGED /*NONE / *BY-GUARD(...) / *PARAMETERS(...)
Grants the hold authorization for the member.
The operands are analogous to those described for READ.

Statement return code

Required access rights

Read and write authorization for LIBRARY

Only the owner of the library file can modify attributes of the library.

(SC2) SC1 Maincode Meaning
 0
1

32
64

130
130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041
LMS0411

No error
Syntax error
Internal error
Other error
System address space exhausted
Library locked

MODIFY-LMS-DEFAULTS LMS statements

330 U8326-J-Z125-6-76

MODIFY-LMS-DEFAULTS

The MODIFY-LMS-DEFAULTS statement allows modification of the default values. If an
explicit value is used locally in an LMS statement, this value will take priority over the
default.

The reference in the LMS statements to the values set here is the specification of *LMS-
DEFAULT.

At the beginning of the LMS run the values immediately following *UNCHANGED are valid.
If one of these values is changed by the MODIFY-LMS-DEFAULTS statement, this new
setting becomes the current setting. This remains valid for the LMS run (*UNCHANGED)
until a new MODIFY-LMS-DEFAULTS statement for this value or RESET-LMS-DEFAULTS
is issued.

MODIFY-LMS-DEFAULTS

ELEMENT-ATTRIBUTES = *UNCHANGED / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ TYPE = *UNCHANGED / *NONE / <alphanum-name 1..8>
⏐ ⏐ ,ELEMENT-VERSION = *UNCHANGED / *ALL / *HIGHEST-EXISTING
⏐ ⏐ ,TO-ELEMENT-VERSION = *UNCHANGED / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT
⏐ ⏐ ,STORAGE-FORM = *UNCHANGED / *STD / *FULL / *DELTA
⏐ ⏐ ,SOURCE-ATTRIBUTES = *UNCHANGED / *STD / *IGNORE / *KEEP

,FILE-ATTRIBUTES = *UNCHANGED / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ ACCESS-METHOD = *UNCHANGED / *ISAM / *SAM

,DESTROY-DATA = *UNCHANGED / *NO / *YES / *BY-SOURCE

,WRITE-MODE = *UNCHANGED / *CREATE / *REPLACE / *EXTEND / *ANY

,DIALOG-CONTROL = *UNCHANGED / *NO / *YES / *ERROR

(part 1 of 5)

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 331

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

,INFORMATION = *UNCHANGED / *MEDIUM / *MINIMUM / *MAXIMUM /

*SUMMARY / *DELTA-STRUCTURE / *PARAMETERS(...)

*PARAMETERS(...)
⏐ GENERAL = *UNCHANGED / *NO / *YES
⏐⏐ ,HISTORY = *UNCHANGED / *NO / *YES
⏐⏐ ,SECURITY = *UNCHANGED / *NO / *YES

,LAYOUT = *UNCHANGED / *VARIABLE / *FIXED

,SORT = *UNCHANGED / *BY-NAME / *BY-VERSION / *BY-USER-DATE / *BY-CREATION-DATE /
*BY-MODIFICATION-DATE / *BY-ACCESS-DATE / *BY-ELEMENT-SIZE / *BY-SECONDARY-NAME

,OUTPUT-FORM = *UNCHANGED / *STD / *CHARACTER / *HEXADECIMAL / *DUMP

,DELETE-SOURCE = *UNCHANGED / *NO / *YES

,PROTECTION = *UNCHANGED / *STD / *BY-SOURCE

,MAX-ERROR-WEIGHT = *UNCHANGED / *SERIOUS / *SIGNIFICANT / *RECOVERABLE

,EDT-MODE = *UNCHANGED / *COMPATIBLE / *UNICODE

,NEXT-ATTEMPT = *UNCHANGED / *NO / *YES(...)

*YES(...)
 ⏐ NUMBER-OF-ATTEMPTS = *UNCHANGED / <integer 1..2147483647>
⏐ ⏐ ,PERIOD = *UNCHANGED / <integer 1..21599>

,COMPARE-PARAMETERS = *UNCHANGED / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ RECORD-PART = *UNCHANGED / *ALL / *PART(...)
⏐ ⏐ *PART(...)
⏐ ⏐ ⏐ START = *UNCHANGED / <integer 1..32764>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *UNCHANGED / *REST / <integer 1..32764>
⏐ ⏐ ,SPACES = *UNCHANGED / *STD / *IGNORED / *RELEVANT
⏐ ⏐ ,INFORMATION = *UNCHANGED / *MEDIUM / *MINIMUM / *MAXIMUM / *SUMMARY / *STATISTICS
⏐ / *NONE
⏐ ⏐ ,LAYOUT = *UNCHANGED / *COMPATIBLE / *COMPRESSED
⏐ ⏐ ,JOIN-ELEMENT-SETS = *UNCHANGED / *NO / *YES

(part 2 of 5)

MODIFY-LMS-DEFAULTS LMS statements

332 U8326-J-Z125-6-76

,TEXT-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *FILE-ATTRIBUTES / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ INFORMATION = *UNCHANGED / *ALL / list-poss(2): *TEXT / *COMMENT
⏐ ⏐ ,RECORD-RANGE = *UNCHANGED / *ALL / *RANGE(...)
⏐ ⏐ *RANGE(...)
⏐ ⏐ ⏐ FROM = *UNCHANGED / <integer 1..2147483647>
⏐ ⏐ ⏐ ⏐ ,TO = *UNCHANGED / *LAST / <integer 1..2147483647>
⏐ ⏐ ,RECORD-PART = *UNCHANGED / *ALL / *PART(...)
⏐ ⏐ *PART(...)
⏐ ⏐ ⏐ START = *UNCHANGED / <integer 1..262144>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *UNCHANGED / *REST / <integer 1..262144>
⏐ ⏐ ,RECORD-NUMBER = *UNCHANGED / *BY-OUTPUT / *YES / *NO

,MODULE-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) /
⏐ list-poss(9): *ESD / *ISD / *LSD / *RLD / *REP / *INCLUDE / *DSDD / *REF / *END
⏐ *TXT(...)
⏐ ⏐ ⏐ CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>
⏐ ⏐ ⏐ ⏐ ,ADDRESS = *UNCHANGED (...) / <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ *UNCHANGED(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> / <x-string 1..8>
⏐ ⏐ *TXTP(...)
⏐ ⏐ ⏐ MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..8 with-low> / *RANGE(...)
⏐ ⏐ ⏐ ⏐ *RANGE(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = *UNCHANGED / *LOWEST / <c-string 1..8 with-low>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *UNCHANGED / *HIGHEST / <c-string 1..8 with-low>
⏐ ⏐ ⏐

(part 3 of 5)

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 333

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

,PHASE-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ SEGMENT = *UNCHANGED / *ALL / *ROOT / <name 1..8>
⏐ ⏐ ,INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) /
⏐ list-poss(4): *ESD / *ISD / *LSD / *RLD
⏐ *TXT(...)
⏐ ⏐ ⏐ ADDRESS = *UNCHANGED (...) / <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ *UNCHANGED(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> / <x-string 1..8>
⏐ ⏐ *TXTP(...)
⏐ ⏐ ⏐ MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..8 with-low> / *RANGE(...)
⏐ ⏐ ⏐ ⏐ *RANGE(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = *UNCHANGED / *LOWEST / <c-string 1..8 with-low>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *UNCHANGED / *HIGHEST / <c-string 1..8 with-low>

,LLM-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ LLM-PART = *UNCHANGED / *ALL / *SLICE(...) / *SUB-LLM(...)
⏐ ⏐ *SLICE(...)
⏐ ⏐ ⏐ NAME = *UNCHANGED / <structured-name 1..32>
⏐ ⏐ *SUB-LLM(...)
⏐ ⏐ ⏐ PATH-NAME = *UNCHANGED / <c-string 1..255 with-low> / <text 1..255>
⏐ ⏐ ,INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / *LOGICAL(...) / *PHYSICAL / *REF /
⏐ list-poss(4): *RELOCATION / *ESVD / *ESVR / *LRLD
⏐ *TXT(...)
⏐ ⏐ ⏐ CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>

(part 4 of 5)

MODIFY-LMS-DEFAULTS LMS statements

334 U8326-J-Z125-6-76

ELEMENT-ATTRIBUTES = *UNCHANGED / *PARAMETERS(...)
Defines the member type, member version, storage form and file attributes.

TYPE = *UNCHANGED / *NONE / <alphanum-name 1..8>
Defines the member type.

TYPE = *NONE
No global member type is defined, i.e. the type specifications must be made locally in
statements if the library specified in the statement has no library-specific default type.

TYPE = <alphanum-name 1..8>
The name specified here is used as the type in the statements if the library specified in
the statement has no library-specific default type. Otherwise, this library-specific default
type replaces the local *LMS-DEFAULT in the statement.

ELEMENT-VERSION = *UNCHANGED / *ALL / *HIGHEST-EXISTING
Defines the member version for SHOW-ELEMENT-ATTRIBUTES.

ELEMENT-VERSION = *ALL
All versions of a member are output.

ELEMENT-VERSION = *HIGHEST-EXISTING
Only the highest existing version of a member with reference to BASE is output.

⏐ ⏐ ,ADDRESS = *UNCHANGED (...) / <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ *UNCHANGED(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> / <x-string 1..8>
⏐ ⏐ *TXTP(...)
⏐ ⏐ ⏐ CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..12 with-low> / *RANGE(...)
⏐ ⏐ ⏐ ⏐ *RANGE(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = *UNCHANGED / *LOWEST / <c-string 1..12 with-low>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *UNCHANGED / *HIGHEST / <c-string 1..12 with-low>
⏐ ⏐ *LOGICAL(...)
⏐ ⏐ ⏐ LEVEL = *UNCHANGED / *ALL / *NEXT

(part 5 of 5)

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 335

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

TO-ELEMENT-VERSION = *UNCHANGED / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT
Defines the version of the target member.

TO-ELEMENT-VERSION = *BY-SOURCE
The target member receives the same version as the source member.

TO-ELEMENT-VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, this overwrites the highest
existing version with reference to BASE among the members of the same type and
name; otherwise a default version is generated.

TO-ELEMENT-VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a default
version is generated.

STORAGE-FORM = *UNCHANGED / *STD / *FULL / *DELTA
Storage form for the member being added. The storage form must not contradict the
settings made by means of the MODIFY-TYPE-ATTRIBUTES or MODIFY-LIBRARY-
ATTRIBUTES statements, and all members of a given type and name must have the
same storage form.

STORAGE-FORM = *STD
The member is generated in accordance with the storage form required for the member
scope. Contradictory requirements result in errors. If nothing is specified, full storage is
selected.

STORAGE-FORM = *FULL
The new member is generated as a full member (if this is not possible, an error
message is issued).

STORAGE-FORM = *DELTA
The new member is generated as a delta member (if this is not possible, an error
message is issued). This entry is permissible for member types: S, P, D, J, M, X and
members types derived from them.

SOURCE-ATTRIBUTES = *UNCHANGED / *STD/ *IGNORE / *KEEP
Evaluated only for the ADD-ELEMENT statement.

SOURCE-ATTRIBUTES = *STD
No file attributes and no ISAM key are stored. For ISAM files, a warning is output stating
that the ISAM keys were not stored.

SOURCE-ATTRIBUTES = *IGNORE
As for SOURCE-ATTRIBUTES = *STD, but no warning is output.

MODIFY-LMS-DEFAULTS LMS statements

336 U8326-J-Z125-6-76

SOURCE-ATTRIBUTES = *KEEP
The following file attributes are stored unchanged in the member being added:
ACCESS-METHOD, RECORD-FORMAT, RECORD-SIZE, BUFFER-LENGTH,
PERFORMANCE, USAGE, ACCESS and USER-ACCESS.
If ACCESS-METHOD=ISAM, then PADDING-FACTOR, LOGICAL-FLAG-LENGTH,
VALUE-FLAG-LENGTH, PROPAGATE-VALUE-FLAG, the ISAM keys and information
on ISAM secondary keys are also stored.

FILE-ATTRIBUTES = *UNCHANGED / *PARAMETERS(...)
File attributes that are defined on file creation.

ACCESS-METHOD = *UNCHANGED / *ISAM / *SAM
Defines the file access method.

ACCESS-METHOD = *ISAM
Creates an ISAM file.

ACCESS-METHOD = *SAM
Creates a SAM file.

DESTROY-DATA = *UNCHANGED / *NO / *YES / *BY-SOURCE
Determines whether the data is physically deleted, i.e. overwritten with X’00’.

DESTROY-DATA = *NO
A member of a library is deleted physically only if it contains a flag for physical deletion or
the class 2 option DESTLEV requires it.

DESTROY-DATA = *YES
After logical deletion the data, if present, is physically deleted.

DESTROY-DATA = *BY-SOURCE
The code for overwriting the data is taken from the source member or the source file and
assigned to the target member or the target file. If no source exists, *BY-SOURCE then has
the same effect as DESTROY-DATA=*NO.

WRITE-MODE = *UNCHANGED / *CREATE / *REPLACE / *EXTEND / *ANY
Overwriting of a member having the same name. If the member does not exist under this
name, it will be created as a new member.
If the member to be stored is a delta member, it is necessary to ensure that the member is
a leaf of the delta tree. Only leaves of a delta tree may be overwritten.
If the value selected for WRITE-MODE is not possible for a particular statement, the setting
WRITE-MODE=*CREATE applies.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 337

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

WRITE-MODE = *REPLACE
The target member must already exist and is replaced.

WRITE-MODE = *EXTEND
The target member is extended if it already exists. Otherwise it will be created as a new
member.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new
member.

DIALOG-CONTROL = *UNCHANGED/ *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement. (This operand has no effect in procedures or in batch mode.)

DIALOG-CONTROL = *NO
All members are processed without dialog queries.

DIALOG-CONTROL = *YES
LMS inquires as to how it should act for each member, e.g. whether the member is to be
processed, skipped or the statement terminated.

DIALOG-CONTROL = *ERROR
If a recoverable error occurs during member processing, e.g. a member being overwritten,
the user is asked how LMS should act.
The user has the following intervention options, where applicable:
YES The member is to be processed.
NO The member is not to be processed.
ALL The statement is to be completed without a dialog.
TERMINATE The statement is to be terminated.

After pressing the K2 key and entering “/SEND-MSG”, the user has the option of changing
the value of the DIALOG-CONTROL operand. If LMS is in the midst of member processing,
the user can control further processing as follows with the /SEND-MSG command shown
below:

/SEND-MSG PROG,´[N-I / N-E / C][,DIALOG-CONTROL= NO / YES / ERROR]´

SEND-MSG PROG, NEXT-INPUT (N-I)
The current statement is aborted; LMS reads in another statement as soon as it is active
again. Entering an unknown text or omitting the text has the same effect as NEXT-INPUT.

SEND-MSG PROG, NEXT-ELEMENT (N-E)
Processing of the current member in the current statement in aborted; LMS continues
processing with the next member if there is one. If there is none, NEXT-ELEMENT has the
same effect as NEXT-INPUT.

MODIFY-LMS-DEFAULTS LMS statements

338 U8326-J-Z125-6-76

SEND-MSG PROG, CONTINUE (C)
LMS processing continues normally.

Note

The value set with /SEND-MSG for DIALOG-CONTROL applies only to the current
statement.

INFORMATION = *UNCHANGED / *MEDIUM / *MINIMUM / *MAXIMUM / *SUMMARY /
*DELTA-STRUCTURE / *PARAMETERS(...)
Specifies the scope of the directory to be output.

INFORMATION = *MEDIUM
Outputs the type, name, version, variant number and, depending on the SORT operand,
the date or size of the selected member.

INFORMATION = *MINIMUM
Outputs only type, name and version of the selected member.

INFORMATION = *MAXIMUM
Outputs the complete information on the selected member.

INFORMATION = *SUMMARY
Outputs only the number of selected members per type.

INFORMATION = *DELTA-STRUCTURE
Outputs the relation “predecessor - successor” for delta members.
In addition to the member designation, this outputs the internal delta number (DELTA#,
which reflects the chronological order) and the corresponding number of the base (BASE#).
These internal delta numbers are unique within their tree and describe the concatenation
of members in the tree (apart and distinct from the user’s own, external version
designation). Tree output is always sorted according to DELTA#, i.e. the operand SORT
(see below) has no effect within a tree. Different trees are separated from one another by
a line.
In the case of full members, the DELTA# and BASE# output fields are empty.

C,NO The member is to be processed but without activating the dialog.
N-E/N-I,NO Member processing or the statement is to be terminated but without

activating the dialog.
C,YES/ERROR The member is to be processed and the dialog subsequently activated.
N-E/N-I,
YES/ERROR

Member processing or the statement is to be terminated and the dialog
subsequently activated.

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 339

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

INFORMATION = *PARAMETERS(...)
Additional outputs

GENERAL = *UNCHANGED / *NO / *YES
Defines whether, in addition to the type, name, version and variant number, a general
information block is to be output comprising the storage format, status, member size
and, if applicable, the character set and HOLDER of the selected member.

HISTORY = *UNCHANGED / *NO / *YES
Defines whether, in addition to the type, name, version and variant number, a HISTORY
block is to be output comprising the user date/time, creation date/time, modification
date/time and, if applicable, the access date/time of the selected member.

SECURITY = *UNCHANGED / *NO / *YES
Defines whether, in addition to the type, name, version and variant number, a
SECURITY block for the selected member is to be output, if additional member
protection has been granted for an access or borrowing right.

LAYOUT = *UNCHANGED / *VARIABLE / *FIXED
Specifies the format of the directory to be output.

LAYOUT = *VARIABLE
The number of print columns is determined by the longest member designation within the
member type. With output to the screen and no special sorting, the layout is oriented to the
longest member designation in the output buffer, where subsequent outputs within a
member type only change if longer member designations occur.

LAYOUT = *FIXED
The directory is printed in a single column in a fixed format. Here, column is meant to signify
the list of entries, one below the other, in the directory.

SORT = *UNCHANGED / *BY-NAME / *BY-VERSION / *BY-USER-DATE /
*BY-CREATION-DATE / *BY-MODIFICATION-DATE / *BY-ACCESS-DATE /
*BY-ELEMENT-SIZE / *BY-SECONDARY-NAME
Sort criterion for the directory entries of the selected members. Type is always used as the
first sort criterion.

SORT = *BY-NAME
Sorts the directory entries of the selected members according to the following criteria in the
order specified: type, name and version.

SORT = *BY-VERSION
Sorts the directory entries of the selected members according to the following criteria in the
order specified: type, version and name.

MODIFY-LMS-DEFAULTS LMS statements

340 U8326-J-Z125-6-76

SORT = *BY-USER-DATE
Sorts the directory entries of the selected members according to the following criteria in the
order specified: type, user date, name and version.

SORT = *BY-CREATION-DATE
Sorts the directory entries of the selected members according to the following criteria in the
order specified: type, creation date, name and version.

SORT = *BY-MODIFICATION-DATE
Sorts the directory entries of the selected members according to the following criteria in the
order specified: type, modification date, name and version.

SORT = *BY-ACCESS-DATE
Sorts the directory entries of the selected members according to the following criteria in the
order specified: type, access date, name and version.

SORT = *BY-ELEMENT-SIZE
Sorts the directory entries of the selected members according to the following criteria in the
order specified: type, member size, name and version.

SORT = *BY-SECONDARY-NAME
Sorts the directory entries of the selected members according to the following criteria in the
order specified: type, secondary name, secondary attribute, name and version.

Note

For more information, see the SHOW-ELEMENT-ATTRIBUTES statement.

OUTPUT-FORM = *UNCHANGED / *STD / *CHARACTER / *HEXADECIMAL / *DUMP
Specifies the format for the output.

OUTPUT-FORM = *STD
The format is selected according to the member type. For text members this operand works
in the same way as for OUTPUT-FORM = *CHARACTER.

OUTPUT-FORM = *CHARACTER
The output is in alphanumerical form.

OUTPUT-FORM = *HEXADECIMAL
The output is displayed in mixed alphanumerical/hexadecimal form, with the
alphanumerical form above and the hexadecimal form below.

OUTPUT-FORM = *DUMP
The output is displayed in mixed alphanumerical/hexadecimal form, with the two forms
displayed side by side
For member types S, P, D, J and M, this operand has an effect like *HEXADECIMAL.

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 341

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

DELETE-SOURCE = *UNCHANGED / *NO / *YES
Specifies whether the source file is to be kept (default *NO) or deleted (parameter *YES).
This operand has no effect if the data is read from *OMF.

PROTECTION = *UNCHANGED / *STD / *BY-SOURCE
Member protection for a member or file protection for a file.

PROTECTION = *STD
In the case of member protection:
If the member already exists, its member protection remains unchanged. If the member
does not yet exist and initial member protection has been defined for the relevant library or
the member type, the member is given the protection specified here.
In the case of file protection:
The member protection in effect is not taken into account in the file protection given to the
file being generated.

PROTECTION = *BY-SOURCE
Specifies that protection equivalent to the source’s is to be applied. There are three possible
cases:
A member being copied is given the same protection as the source member.
A member being added is given member protection corresponding to the file protection
attributes of the source file’s access protection mechanism.
A file being generated is assigned an access protection mechanism corresponding to the
member protection in effect for the source member.

MAX-ERROR-WEIGHT = *UNCHANGED / *SERIOUS / *SIGNIFICANT /
*RECOVERABLE
Specifies the errors which are to cause LMS to trigger the spin-off mechanism.

MAX-ERROR-WEIGHT = *SERIOUS
The spin-off mechanism is to be triggered in the event of serious errors, i.e. errors which
make it pointless to continue processing the statement.

MAX-ERROR-WEIGHT = *SIGNIFICANT
The spin-off mechanism is to be triggered as with *SERIOUS, but also in the event of other
errors (except when a member cannot be found or overwritten).

MAX-ERROR-WEIGHT = *RECOVERABLE
The spin-off mechanism is to be triggered in the event of any error.

EDT-MODE = *UNCHANGED / *COMPATIBLE / *UNICODE
Specifies the mode that EDT is to be called in.

EDT-MODE = *COMPATIBLE
EDT is called in compatibility mode.

EDT-MODE = *UNICODE
EDT is called in Unicode mode.

MODIFY-LMS-DEFAULTS LMS statements

342 U8326-J-Z125-6-76

NEXT-ATTEMPT = *UNCHANGED / *NO / *YES(...)
Controls further attempts to open a source when a file, type, or member lock is encountered
in a procedure or in batch mode.

NEXT-ATTEMPT = *NO
Specifies that no further attempts are to be made to open the source.

NEXT-ATTEMPT = *YES(...)
Specifies that further attempts are to be made to open the source.

NUMBER-OF-ATTEMPTS = *UNCHANGED / <integer 1..2147483647>
Number of further attempts to be made (default is 9).

PERIOD = *UNCHANGED / <integer 1..21599>
Wait time, in seconds, between attempts (default is 6).

COMPARE-PARAMETERS = *UNCHANGED / *PARAMETERS(...)
Specifies the comparison parameters, the type of comparison (formal or logical) and the
scope and format of logging.

RECORD-PART = *UNCHANGED / *ALL / *PART(...)
Defines the record area to be compared.

RECORD-PART = *ALL
The entire record is compared.

RECORD-PART = *PART(...)
Area specification for the part of the record to be compared.

START = *UNCHANGED / <integer 1..32764>
Starting point of the area containing the part of the record to be compared. If no
value is entered, the record is compared starting at the beginning.

LENGTH = *UNCHANGED / *REST / <integer 1..32764>
Length of the area in the record to be compared. If no value is entered, the record
is compared starting at the beginning.

SPACES = *UNCHANGED / *STD / *IGNORED / *RELEVANT
Handling of space characters in the record.

SPACES = *STD
As *IGNORED for text members, otherwise as *RELEVANT.

SPACES = *IGNORED
Logical comparison. The comparison fields are compared one character at a time;
spaces are ignored.

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 343

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SPACES = *RELEVANT
Formal comparison. The comparison fields are first checked for matching length. If the
lengths match, the fields are compared in their entirety. If the lengths differ, the records
are logged as being non-matching.

INFORMATION = *UNCHANGED / *MEDIUM / *MINIMUM / *MAXIMUM /
*SUMMARY / *STATISTICS/ *NONE
Scope of logging.

INFORMATION = *MEDIUM
Standard comparison log. The comparison range of non-matching records is logged in
its entirety. With matching records, only range specifications (record numbers) are
logged. The comparison statistics are output.

INFORMATION = *MINIMUM
Minimum comparison log.
For matching and non-matching records, only range specifications (record numbers)
are logged. The comparison statistics are output.

INFORMATION = *MAXIMUM
Detailed comparison log.
All records are logged.
The comparison statistics are output.

INFORMATION = *SUMMARY
No comparison log. Only the comparison statistics are output.

INFORMATION = *STATISTICS
No comparison log. The comparison statistics are output in compressed format.

INFORMATION = *NONE
No logging (no comparison log, no comparison statistics).
*NONE is expedient only when the SHOW-STATISTICS statement is used.

LAYOUT = *UNCHANGED / *COMPATIBLE / *COMPRESSED
Logging format.

LAYOUT = *COMPATIBLE
The comparison log is output in standard format. This format is compatible with earlier
LMS versions.

LAYOUT = *COMPRESSED
The comparison log is output in a compressed format.

MODIFY-LMS-DEFAULTS LMS statements

344 U8326-J-Z125-6-76

JOIN-ELEMENT-SETS = *UNCHANGED / *NO / *YES
Defines the member set to be compared.

JOIN-ELEMENT-SETS = *NO
Only the primary members and the secondary members determined through
construction are used for the comparison.

JOIN-ELEMENT-SETS = *YES
All primary and secondary members are used for the comparison.

TEXT-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *FILE-ATTRIBUTES /
*PARAMETERS(...)
Specifies the scope of information to be output for all members except members of types
R, C and L. For PAM members, all entries except *FILE-ATTRIBUTES have an effect like
*ALL.

TEXT-INFORMATION = *ALL
Outputs everything.

TEXT-INFORMATION = *STATISTICS
Outputs the number of records per record type and their total.

TEXT-INFORMATION = *FILE-ATTRIBUTES
Outputs only the stored file attributes.

TEXT-INFORMATION = *PARAMETERS(...)
Specifies the section of the member which is to be output.

INFORMATION = *UNCHANGED / *ALL / list-poss(2): *TEXT / *COMMENT
The member section to be output

INFORMATION = *ALL
Everything is output.

INFORMATION = *TEXT
Outputs the text itself, i.e. record type 1.

INFORMATION = *COMMENT
Outputs the separately stored comment, i.e. record type 2.

RECORD-RANGE = *UNCHANGED / *ALL / *RANGE(...)
The section of the member to be processed.

RECORD-RANGE = *ALL
All records are processed.

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 345

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

RECORD-RANGE = *RANGE(...)
Specifies the range of record numbers which is to be processed. The record numbers
refer not to a record type, but to the section of the member designated by means of
INFORMATION=. Within this section, the records are numbered consecutively from 1
through n.

FROM = *UNCHANGED / <integer 1..2147483647>
Specifies the first record number to indicate the beginning of the section. If nothing
is specified, record number 1 is assumed.

TO = *UNCHANGED / *LAST / <integer 1..2147483647>
Specifies the last record number to indicate the end of the section. If nothing is
specified, the last record number is used.

RECORD-PART = *UNCHANGED / *ALL / *PART(...)
Specifies the part of the record to be processed.

RECORD-PART = *ALL
Processes the entire record.

RECORD-PART = *PART(...)
Specifies the part of the record to be processed. If the default values are not changed,
the entire record is processed.

START = *UNCHANGED / <integer 1..262144>
Specifies the first character in the record to indicate the beginning of the section. If
nothing is specified, the first character is assumed to be the beginning.

LENGTH = *UNCHANGED / *REST / <integer 1..262144>
Specifies the length of the section. If nothing is specified, the rest of the record is
taken as the length. LENGTH = 0 means that only the record headers are output

RECORD-NUMBER = *UNCHANGED / *BY-OUTPUT / *YES / *NO
Controls the output of the record numbers.

RECORD-NUMBER = *BY-OUTPUT
Record numbers will be output in all cases except when the output is directed to
SYSOUT.

RECORD-NUMBER = *YES
Record numbers will also be output via SYSOUT.

RECORD-NUMBER = *NO
No record numbers are to be output.

MODULE-INFORMATION = *UNCHANGED /*ALL / *STATISTICS / *PARAMETERS(...)
Specifies the scope of information to be output for object modules (type-R members).

MODIFY-LMS-DEFAULTS LMS statements

346 U8326-J-Z125-6-76

MODULE-INFORMATION = *ALL
Outputs everything.

MODULE-INFORMATION = *STATISTICS
Outputs the names, lengths and addresses of the CSECTS, as well as the overall length of
the module.

MODULE-INFORMATION = *PARAMETERS(...)
Specifies whether all or only selected record types are to be output.

INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / list-poss(9): *ESD /
*ISD / *LSD / *RLD / *REP / *INCLUDE / *DSDD / *REF / *END
The record types listed here may be selected.

INFORMATION = *TXT(...)
Selects text records.

CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>
The text records can be limited to those from a CSECT.

ADDRESS = *UNCHANGED(...) / <x-string 1..8>(...)
Start address of the text.

BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
The base address specified here is added to the start address.

LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> / <x-string 1..8>
Length of the text.

INFORMATION = *TXTP(...)
Outputs TXTP records.

MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..8 with-low> /
*RANGE(...)
Selects TXTP records using the specified identification.

MODIFICATION-ID = *RANGE(...)
Selects multiple TXTP records in a range.

FROM = *UNCHANGED / *LOWEST / <c-string 1..8 with-low>
Specifies the beginning of the range. If nothing is specified, the lowest
identification for the TXTP records is used.

TO = *UNCHANGED / *HIGHEST / <c-string 1..8 with-low>
Specifies the end of the range. If nothing is specified, the highest identification
for the TXTP records is used.

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 347

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

PHASE-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)
Specifies the scope of information to be output for phases (type-C members).

PHASE-INFORMATION = *ALL
Outputs everything.

PHASE-INFORMATION = *STATISTICS
Outputs the name, length and address of the segment, as well as its overall length.

PHASE-INFORMATION = *PARAMETERS(...)
Specifies whether all or only selected record types are to be output.

SEGMENT = *UNCHANGED / *ALL / *ROOT / <name 1..8>
The phase segment which is selected.

INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / list-poss(4): *ESD /
*ISD / *LSD / *RLD
The record types listed here may be selected.

INFORMATION = *TXT(...)
Selects text records

ADDRESS = *UNCHANGED(...) / <x-string 1..8>(...)
Start address of the text.

BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
The base address specified here is added to the start address.

LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> / <x-string 1..8>
Length of the text.

INFORMATION = *TXTP(...)
Outputs TXTP records.

MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..8 with-low> /
*RANGE(...)
Selects TXTP records using the specified identification.

MODIFICATION-ID = *RANGE(...)
Selects multiple TXTP records in a range.

FROM = *UNCHANGED / *LOWEST / <c-string 1..8 with-low>
Specifies the beginning of the range. If nothing is specified, the lowest
identification for the TXTP records is used.

TO = *UNCHANGED / *HIGHEST / <c-string 1..8 with-low>
Specifies the end of the range. If nothing is specified, the highest identification
for the TXTP records is used.

MODIFY-LMS-DEFAULTS LMS statements

348 U8326-J-Z125-6-76

LLM-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)
Specifies the scope of information to be output for link and load modules (type-L members).

LLM-INFORMATION = *ALL
Outputs everything.

LLM-INFORMATION = *STATISTICS
Outputs general information about the link and load module (name, copyright, etc.).

LLM-INFORMATION = *PARAMETERS(...)
Specifies whether all or only selected record types are to be output.

LLM-PART = *UNCHANGED / *ALL / *SLICE(...) / *SUB-LLM(...)
Specifies the part of the LLM which is to be selected.

LLM-PART = *SLICE(...)
Specifies the slice to be output.

NAME = *UNCHANGED / <structured-name 1..32>
Name of the slice to be output.

LLM-PART = *SUB-LLM(...)
Specifies the SUB-LLM to be output.

PATH-NAME = *UNCHANGED / <c-string 1..255 with-low> / <text 1..255>
Specifies the SUB-LLM to be output by means of its path name.

INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / *LOGICAL(...) /
*PHYSICAL / *REF / list-poss(4): *RELOCATION / *ESVD / *ESVR / *LRLD
The record types listed here may be selected.

INFORMATION = *TXT(...)
Selects text records.

CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>
The text records can be limited to those from a CSECT.

ADDRESS = *UNCHANGED(...) / <x-string 1..8>(...)
Start address of the text.

BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
The base address specified here is added to the start address.

LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> / <x-string 1..8>
Length of the text.

INFORMATION = *TXTP(...)
Outputs TXTP records.

CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>
The TXTP records can be limited to those from a CSECT.

LMS statements MODIFY-LMS-DEFAULTS

U8326-J-Z125-6-76 349

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..12 with-low> /
*RANGE(...)
Selects TXTP records using the specified identification.

MODIFICATION-ID = *RANGE(...)
Selects multiple TXTP records in a range.

FROM = *UNCHANGED / *LOWEST / <c-string 1..12 with-low>
Specifies the beginning of the range. If nothing is specified, the lowest
identification for the TXTP records is used.

TO = *UNCHANGED / *HIGHEST / <c-string 1..12 with-low>
Specifies the end of the range. If nothing is specified, the highest identification
for the TXTP records is used.

INFORMATION = *LOGICAL(...)
Outputs the logical structure of the LLM.

LEVEL = *UNCHANGED / *ALL / *NEXT
Specifies whether all or only the next substructure is to be output. The default is all.

INFORMATION = *PHYSICAL
Outputs the physical structure of the LLM.

Statement return code

(SC2) SC1 Maincode Meaning
 0
1

32
64

130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041

No error
Syntax error
Internal error
Other error
System address space exhausted

MODIFY-LMS-DEFAULTS LMS statements

350 U8326-J-Z125-6-76

Example

The file TEST1 is to be added as a type D member to library LIB3.
The default setting for the member type is changed to the desired value by means of the
MODIFY-LMS-DEFAULTS statement. In this way it is no longer necessary to specify the
member type for each of the subsequent ADD-ELEMENT statements. In order that LMS
may report successful addition of the files, the MODIFY-LOGGING-PARAMETERS
statement is used to set the scope of logging to the complete LMS log.

/START-LMS
//OPEN-LIBRARY LIB3,*UPDATE
//MODIFY-LMS-DEFAULTS TYPE=D
//MODIFY-LOGGING-PARAMETERS LOGGING=*MAXIMUM
//ADD-ELEMENT TEST1
INPUT FILE
OUTPUT LIBRARY= :1OSQ:$USER.LIB3
 ADD :1OSQ:$USER.TEST1 AS (D)TEST1/@(0001)/2012-11-12
//END

The library LIBCCSN contains an element LONGR in EDF03IRV code with records longer
than 256 bytes. In order to edit these long records with EDT, EDT must be called in
Unicode-mode.
Therefore the default setting for the EDT operating mode (COMPATIBLE) is changed to the
desired Unicode mode by means of the MODIFY-LMS-DEFAULTS statement.
Now the EDIT-ELEMENT statement calls EDT in Unicode mode, which allows to edit long
records, and reads the LONGR element into work file 0.

//START-LMS
//MOD-LMS-DEF EDT-MODE=*UNICODE
//OPEN-LIB LIBCCSN, *UPD
//EDIT-ELEM (,LONGR,S)
//END

LMS statements MODIFY-LOGGING-PARAMETERS

U8326-J-Z125-6-76 351

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

MODIFY-LOGGING-PARAMETERS

The MODIFY-LOGGING-PARAMETERS statement modifies the global settings for the
editor, logging scope, output medium and logging format.

If one of these values is changed by the MODIFY-LOGGING-PARAMETERS statement,
this new setting becomes the current setting. This remains valid for the LMS run
(*UNCHANGED) until a new MODIFY-LOGGING-PARAMETERS statement for this value
or RESET-LOGGING-PARAMETERS is issued.

At the beginning of the LMS run, the values immediately following *UNCHANGED are valid.
The default or current values can be output with the appropriate SHOW statement..

MODIFY-LOGGING-PARAMETERS

LOGGING = *UNCHANGED / *MINIMUM / *MAXIMUM

,TEXT-OUTPUT = UNCHANGED / *SYSOUT / *SYSLST(...) / *NONE / *EDT(...) / *LIBRARY-ELEMENT(...)

*SYSLST(...)
 ⏐ SYSLST-NUMBER = *STD / <integer 1..99>

*EDT(...)
 ⏐ WRITE-MODE = *UNCHANGED / *EXTEND / *REPLACE

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = P / <alphanum-name 1..8>
⏐ ⏐ ,WRITE-MODE = *UNCHANGED / *CREATE / *REPLACE / *EXTEND / *ANY

(part 1 of 2)

MODIFY-LOGGING-PARAMETERS LMS statements

352 U8326-J-Z125-6-76

LOGGING = *UNCHANGED / *MINIMUM / *MAXIMUM
Defines the scope of LMS logging.

LOGGING = *MINIMUM
Only error messages and negative acknowledgments are output.

LOGGING = *MAXIMUM
A complete LMS log is output.

TEXT-OUTPUT = *UNCHANGED / *SYSOUT / *SYSLST(...) / *NONE / *EDT(...) /
*LIBRARY-ELEMENT(...)
This parameter defines the output medium. If the medium is changed or if WRITE-
MODE=*EXTEND is entered, page numbering always begins with 1.

TEXT-OUTPUT = *SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Denotes the SYSLST file to which the output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLST01 through SYSLST99
is used.

TEXT-OUTPUT = *NONE
Except for error messages, output is suppressed.

TEXT-OUTPUT = *EDT(...)
The output is written to EDT work file 9.
If an error occurs during log output, LMS switches over to the default log stream (SYSOUT).

,OUTPUT-LAYOUT = *UNCHANGED / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ LINES-PER-PAGE = *UNCHANGED / <integer 1..9999>
⏐ ⏐ ,LINE-SIZE = *UNCHANGED / 132 / 80
⏐ ⏐ ,EXTRA-FORM-FEED = *UNCHANGED / *NO / *YES
⏐ ⏐ ,HEADER-LINES = *UNCHANGED / *YES / *NO

(part 2 of 2)

LMS statements MODIFY-LOGGING-PARAMETERS

U8326-J-Z125-6-76 353

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

WRITE-MODE = *UNCHANGED / *EXTEND / *REPLACE
Write mode for the output with regard to the contents of work file 9.

WRITE-MODE = *EXTEND
If data exists in work file 9, the output is added to it. Otherwise, the output is written at
the beginning of the work file.

WRITE-MODE =*REPLACE
Writes the output at the beginning of work file 9. Any data already present in the work
file is overwritten.

TEXT-OUTPUT = *LIBRARY-ELEMENT(...)
The output is stored in a library member.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library in which the output is to be stored. Either the library set globally by
means of OPEN-LIBRARY is used as standard, or the explicitly specified library or the
library assigned via the link name is used.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = <composed-name 1..64 with-under>(...)
Specifies the member in which the output is to be stored.

VERSION = *UPPER-LIMIT / *HIGHEST-EXISTING / *INCREMENT /
<composed-name 1..24 with-under>
Specifies the version that the member is to receive.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, this overwrites the highest
existing version with reference to BASE among the members of the same type and
name; otherwise a default version is generated.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated (see also page 55).

VERSION = <composed-name 1..24 with-under>
The text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. For further information concerning
specification of the base, see page 50.

MODIFY-LOGGING-PARAMETERS LMS statements

354 U8326-J-Z125-6-76

TYPE = P / <alphanum-name 1..8>
Specifies the member type. By default the member in which the output is stored
receives type P for print-edited files.

WRITE-MODE = *UNCHANGED / *CREATE / *REPLACE / *EXTEND / *ANY
Overwriting of a member having the same name. If the member does not exist under
this name, it will be created as a new member.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The target member must already exist and is replaced.

WRITE-MODE = *EXTEND
The target member is extended if it already exists. Otherwise it will be created as a new
member.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new
member.

OUTPUT-LAYOUT = *UNCHANGED / *PARAMETERS(...)
This parameter defines the LMS log format.

LINES-PER-PAGES = *UNCHANGED / <integer 1..9999>
This parameter defines the page length.
Default value: 64 lines

LINE-SIZE = *UNCHANGED / 132 / 80
This parameter defines the line length.

LINE-SIZE = 132
The line is to be 132 characters long.

LINE-SIZE = 80
The line is to be 80 characters long.

EXTRA-FORM-FEED = *UNCHANGED / *NO / *YES
This parameter controls an extra form feed.

EXTRA-FORM-FEED = *NO
A form feed will only occur when the page is full.

EXTRA-FORM-FEED = *YES
A form feed will occur either when the page is full or when a change of statement or
member takes place.

HEADER-LINES = *UNCHANGED / *YES / *NO
This parameter controls the output of headers.

LMS statements MODIFY-LOGGING-PARAMETERS

U8326-J-Z125-6-76 355

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

HEADER-LINES = *YES
Headers containing the library and member designations are output.

HEADER-LINES = *NO
No headers are output.

Statement return code

Required access rights

No access rights are necessary.

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0151
CMD0230
LMS1002
LMS0020
LMS0093
LMS0213
LMS0214
LMS0510
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
Input or output medium set to standard
Syntax error
Internal error
Target member or target file does not exist
Protocol member already exists
Name exists as delta member
Name exists as full member
Base not found
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

MODIFY-TYPE-ATTRIBUTES LMS statements

356 U8326-J-Z125-6-76

MODIFY-TYPE-ATTRIBUTES

This statement can be used to set or modify certain attributes for the specified type:

– the supertype
– the applicable version convention
– the storage form of the members
– additional checks performed when members are generated or overwritten
– the group of persons authorized to generate, delete and rename members
– the initial member protection

At the beginning of the LMS run, the values immediately following *UNCHANGED apply.
The default or current values can be output with the appropriate SHOW statement. .

MODIFY-TYPE-ATTRIBUTES

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,TYPE = *LMS-DEFAULT / <alphanum-name 1..8>

,SUPER-TYPE = *UNCHANGED / *NONE / <alphanum-name 1..8>

,CONVENTION = *UNCHANGED / *NONE / *STD-TREE / *STD-SEQUENCE(...) / *MULTI-SEQUENCE(...)

*STD-SEQUENCE(...)
 ⏐ EXAMPLE = 001 / <composed-name 1..24 with-under>

*MULTI-SEQUENCE(...)
⏐ EXAMPLE = <composed-name 1..24 with-under>

,STORAGE-FORM = *UNCHANGED / *NONE / *STD / *FULL / *DELTA

,WRITE-CONTROL = *UNCHANGED / *NONE / *DEACTIVATE / *ACTIVATE

,ADMINISTRATION = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)

*BY-GUARD(...)
 ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>

*PARAMETERS(...)
 ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ <x-string 1..8> / <integer -2147483648..2147483647>

(part 1 of 2)

LMS statements MODIFY-TYPE-ATTRIBUTES

U8326-J-Z125-6-76 357

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

,INIT-ELEM-PROTECTION = *UNCHANGED / *NONE / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ READ = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>
⏐ ⏐ ,WRITE = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>
⏐ ⏐ ,EXEC = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>
⏐ ,HOLD = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ GUARD-NAME = <filename 1..18 without-cat-gen-vers>
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ,PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
⏐ ⏐ <x-string 1..8> / <integer -2147483648..2147483647>

(part 2 of 2)

MODIFY-TYPE-ATTRIBUTES LMS statements

358 U8326-J-Z125-6-76

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library in which the type attributes are to be defined.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library in which the type attributes are to be defined.

LIBRARY = *LINK(..)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

TYPE = *LMS-DEFAULT / <alphanum-name 1..8>
Member type whose attributes are to be set or modified.

SUPER-TYPE = *UNCHANGED / *NONE / <alphanum-name 1..8>
Name of the superordinate type.

SUPER-TYPE = *NONE
No superordinate type exists.

SUPER-TYPE = <alphanum-name 1..8>
Name of the superordinate type. The resulting graph must contain no cycles (tree).
No SUPER-TYPE can be defined for standard types (those with one-character
designations) and types with designations beginning with $ or SYS. The values R, C and L
are not allowed as SUPER-TYPEs.

CONVENTION = *UNCHANGED / *NONE / *STD-TREE / *STD-SEQUENCE(...) /
*MULTI-SEQUENCE(...)
Version convention which is henceforth to apply to the specified type.

CONVENTION = *NONE
The version convention is removed from the specified type. This can be done at any time.

CONVENTION = *STD-TREE
The version convention *STD-TREE applies to the type concerned. It is not permissible to
specify *STD-TREE if a member exists under the specified type.

CONVENTION = *STD-SEQUENCE(...)
The version convention *STD-SEQUENCE applies to the type concerned. All members of
the type have the same version format, as specified by means of an example.
It is not permissible to specify *STD-SEQUENCE if a member exists under the specified
type.

LMS statements MODIFY-TYPE-ATTRIBUTES

U8326-J-Z125-6-76 359

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

EXAMPLE = 001 / <composed-name 1..24 with-under>
Example for the version format. The format comprises a leading part, possibly empty,
and the maximum-length concluding digit group, which must not be empty. For all
versions under the type concerned, both these parts must have the same length as the
example. The concluding digit group is used for automatic version incrementation.
If no explicit specification is made here, the value “001” is used as the example for the
version format.

CONVENTION = *MULTI-SEQUENCE(...)
The *MULTI-SEQUENCE version convention only applies to the affected type. All
members of the type have the same version format. This is specified using an example.
It is not permissible to specify *MULTI-SEQUENCE if a member exists under the specified
type.

EXAMPLE = <composed-name 1..24 with-under>
Example for the version format. The format comprises a leading part, possibly empty,
and the maximum-length concluding digit group, which must not be empty. For all
versions under the type concerned, both these parts must have the same length as the
example. The concluding digit group is used for automatic version incrementation.

STORAGE-FORM = *UNCHANGED / *NONE / *STD / *FULL / *DELTA
Permissible storage form for members of this type. Also, all members of the same type and
name must have the same storage form.

STORAGE-FORM = *NONE
Both full storage and delta storage are permitted.

STORAGE-FORM = *STD
Both full storage and delta storage are permitted.

STORAGE-FORM = *FULL
Only full storage is permitted.

STORAGE-FORM = *DELTA
Only delta storage is permitted.

WRITE-CONTROL = *UNCHANGED / *NONE / *DEACTIVATE / *ACTIVATE
Attribute for controlling additional checks.

WRITE-CONTROL = *NONE
The WRITE-CONTROL setting for the library applies.

WRITE-CONTROL = *DEACTIVATE
No additional checks are performed when generating or overwriting versions.

WRITE-CONTROL = *ACTIVATE
A version can be written only

MODIFY-TYPE-ATTRIBUTES LMS statements

360 U8326-J-Z125-6-76

– if the USERID of the user wanting to write it is entered as the HOLDER in the relevant
base version and

– if either a new version is generated or the base version is overwritten.

For the first version of a name, no base yet exists; it can be generated only by persons with
ADMIN authorization. Whenever versions are generated or overwritten, LMS automatically
adds a type-2 record documenting the HOLDER=author and the DATE and TIME of the
operation. In addition, the STATE and HOLDER attributes and all rights are applied to the
new version, provided the current statement does not require different values.

ADMINISTRATION = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Administer authorization. The circle of those with administer authorization for this type is
specified explicitly. Only these persons may create, delete and rename members.

ADMINISTRATION = *NONE
No administer authorization is granted for this type. The setting for the library applies.

ADMINISTRATION = *BY-GUARD(...)
The administer authorization for this type is controlled by means of a guard.

GUARD-NAME = <filename 1..18 without-cat-gen-vers>
Name of the guard.

ADMINISTRATION = *PARAMETERS(...)
Specifies the group of authorized users and perhaps a password for the administration of
the specified type.

USER = *UNCHANGED / *NONE / *ALL / list-poss(3): *OWNER / *GROUP /
*OTHERS
The circle of those with administer authorization is explicitly listed.

USER = *NONE
No one has administer authorization.

USER = *ALL
All users have administer authorization (full listing).

USER = *OWNER
Only the owner of the library file has administer authorization.

USER = *GROUP
Those belonging to the group of the owner of the library file have administer
authorization.

USER = *OTHERS
All others have administer authorization.

LMS statements MODIFY-TYPE-ATTRIBUTES

U8326-J-Z125-6-76 361

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

PASSWORD = *UNCHANGED / *SECRET / *NONE / <c-string 1..4> /
<x-string 1..8> / <integer -2147483648..2147483647>
The circle of authorized persons is further restricted. In addition to the necessary
access right, the correct password is required. Specifying 0 or X’00000000’ does not
cause the last value to be changed.
Specifying *SECRET or ^ allows the desired password to be entered invisibly. If the
“secret” value is entered as a c-string, it must be enclosed in apostrophes. If it is entered
as an x-string, it must similarly be enclosed in apostrophes and also be prefixed by
an X.

INIT-ELEM-PROTECTION = *UNCHANGED / *NONE/ *PARAMETERS(...)
Specifies the initial member protection that is to be entered for the members newly created
under the above type.

INIT-ELEM-PROTECTION = *NONE
No initial protection is defined for this member type.

INIT-ELEM-PROTECTION = *PARAMETERS(...)
Specifies the protection rights that the type specified above is to receive.

READ = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
An initial read authorization is explicitly specified.

READ = *NONE
No further access restriction is provided.

READ = *BY-GUARD(...)
Specifies the read guard.

GUARD-NAME = <filename 1..18 without-cat-gen-vers>
Name of the guard.

READ = *PARAMETERS(...)
Specifies the user circles for the read authorization.

USER = *UNCHANGED / *NONE / *ALL/ list-poss(3): *OWNER / *GROUP /
*OTHERS
The circle of those with read authorization is explicitly listed.

USER = *NONE
None may access in the specified manner.

USER = *ALL
All may access in the specified manner (full listing).

USER = *OWNER
The owner of the library file may access.

MODIFY-TYPE-ATTRIBUTES LMS statements

362 U8326-J-Z125-6-76

USER = *GROUP
Those belonging to the group of the owner of the library file may access.

USER = *OTHERS
All others may access.

PASSWORD = *UNCHANGED /*SECRET / *NONE / <c-string 1..4> /
<x-string 1..8> / <integer -2147483648..2147483647>
The circle of authorized persons is further restricted. In addition to the necessary
access right, the correct password is required.
Specifying *SECRET or ̂ allows the desired password to be entered invisibly. If the
“secret” value is entered as a c-string, it must be enclosed in apostrophes. If it is
entered as an x-string, it must similarly be enclosed in apostrophes and also be
prefixed by an X.

WRITE = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
An initial write authorization is explicitly defined.
The operands are analogous to those described for READ, see page 361.

EXEC = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
An initial execute authorization is explicitly defined.
The operands are analogous to those described for READ.

HOLD = *UNCHANGED / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
An initial hold authorization is explicitly defined.
The operands are analogous to those described for READ.

Statement return code

Required access rights

Read and write authorization for LIBRARY

Only the owner of the library file can modify attributes of the type.

Note

The type attributes are retained even if all the members of a given type are deleted.

(SC2) SC1 Maincode Meaning
 0
1

32
64

130
130
130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041
LMS0411
LMS0413

No error
Syntax error
Internal error
Other error
System address space exhausted
Library locked
Type locked

LMS statements MODIFY-TYPE-ATTRIBUTES

U8326-J-Z125-6-76 363

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Example

Three changes are to be made regarding library X.1:

– Only specified types are to be permitted.

– The STD-SEQUENCE convention with version example V001 is to be set for all S-type
members.

– The SUPER-TYPE ´S´ is to be assigned to the user-defined type USER1.

//MODIFY-LIBRARY-ATTRIBUTES LIBRARY=X.1,- "library X"
// ADMIN=*PAR(USER=*NONE) "type-specific setting"
//MODIFY-TYPE-ATTRIBUTES TYPE=S,- "standard type S"
// SUPER-TYPE=*NONE,- "no supertype"
// CONVENTION=*STD-SEQUENCE - "version convention"
// (EXAMPLE=V001),- "default version"
// ADMIN=*PAR(USER=*ALL) "everyone may administer"
//MODIFY-TYPE-ATTRIBUTS TYPE=USER1,- "for user-defined type"
// SUPER-TYPE=S,- "suitable supertype"
// ADMIN=*PAR(USER=*UNCHANGED) "selective setting"
//SHOW-TYPE-ATTRIBUTES TYPE=S
INPUT LIBRARY= :1OSQ:$USER.X.1
TYPE = S
SUPER-TYPE = *NONE
BASE-TYPE = S
CONVENTION = *STD-SEQUENCE
EXAMPLE = V001
INIT-ELEM-P= *NONE
ADMIN-PASS = *NONE ADMIN-USER = *OWNER *GROUP *OTHERS
STORAGE = *NONE WR-CONTROL = *NONE

For another example dealing with member protection and showing how to set type attri-
butes, see page 487.

OPEN-LIBRARY LMS statements

364 U8326-J-Z125-6-76

OPEN-LIBRARY

OPEN-LIBRARY is used to define and open a global library. This is referenced in other
statements by means of LIBRARY = *STD.

If two libraries are required in a statement, then the second library must be specified
explicitly in the statement or via a link name.

Global libraries remain open until they are explicitly closed by means of the CLOSE-
LIBRARY statement or until a new OPEN-LIBRARY statement is issued.

Global libraries are opened for reading as standard. If they are to be opened for reading and
writing, the operand MODE=*UPDATE must be set.

If a new library is set up, it must be generated with MODE=*UPDATE.

LIBRARY = <filename 1..54 without-vers>
The library with the name specified here is set up as a global library and opened.

LIBRARY = *LINK(...)
The library assigned via the link name is set up as a global library and opened.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

MODE = *READ / *UPDATE(...)
Library open mode.

OPEN-LIBRARY

LIBRARY = <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,MODE = *READ / *UPDATE(...)

*UPDATE(...)
 ⏐ STATE = *ANY / *OLD / *NEW

,DEFAULTS = *UNCHANGED / *PARAMETERS (...)

*PARAMETERS(...)
 ⏐ TYPE = *UNCHANGED / *NONE / <alphanum-name 1..8>

,SNAPSET = *NONE / *LATEST / <name 1..1 with-low> / <integer -52..-1>

LMS statements OPEN-LIBRARY

U8326-J-Z125-6-76 365

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

MODE = *READ
The library is opened only for reading. It must already exist.

MODE = *UPDATE(...)
The library is opened for reading and writing.

STATE = *ANY / *OLD/ *NEW
Status of the library to be opened.

STATE = *ANY
The library may exist. If it does not exist, it will be created as a new library.

STATE = *OLD
The library must exist.

STATE = *NEW
The library must not exist. It will be created as a new library.

DEFAULTS = *UNCHANGED / *PARAMETERS(...)
Library-specific defaults for an LMS session.

TYPE = *UNCHANGED
No changes to the library-specific default type. By default, the library is not assigned a
default type.

TYPE = *NONE
The library is not assigned a library-specific default type, or an assigned library-specific
default type is canceled.

TYPE = <alphanum-name 1..8>
Name of the library-specific default type. This replaces the *LMS-DEFAULT type entry
in all statements concerning this library.

SNAPSET = *NONE / *LATEST / <name 1..1 with-low> / <integer -52..-1>
The Operand allows to open libraries on a snapset.

The specification of a snapset is only allowed together with MODE=*READ (Default).
Assignment of snapset libraries in LMS statements is only possible with LIBRARY=*STD.
Other LIBRARY specification always refers to the original pubset. (see Example below)

To open a snapset library, a library with the same name must exist on the original pubset in
order to evaluate some file attributes. Missing libraries can be restored as a whole by
/RESTORE-FILE-FROM-SNAPSET.

Alternatively an empty library can be created by OPEN-LIBRARY library,U.

SNAPSET = *NONE
The library is not located on a snapset.

OPEN-LIBRARY LMS statements

366 U8326-J-Z125-6-76

SNAPSET = *LATEST
The library is located on the latest created snapset.

*LATEST is equivalent to -1.

SNAPSET = <name 1..1 with-low>
The library is located on a snapset with snapset id a-z,A-Z.

Snapsets with capital letters A-Z are supported from BS2000/OSD-BC V8.0 on.

The snapset id of the library can be found out by the commands /LIST-FILE-FROM-
SNAPSET and /SHOW-SNAPSET-CONFIGURATION.

SNAPSET = <integer -52..-1>
The library is located on a snapset in the chronological order of snapset creation with -1 for
the newest snapset.

Statement return code

Required access rights

Note

If the statement is aborted with LMS0024 and PLA0203, this could mean that an old
library format is present. The way to check this and convert it into a PLAM library is
described in the appendix in section “Migrating old library formats” on page 516.

(SC2) SC1 Maincode Meaning
 0
1

32
64
64

130
130

CMD0001
CMD0230
LMS1002
LMS0211
LMS1004
LMS0041
LMS0411

No error
Syntax error
Internal error
Library already exists
Other error
System address space exhausted
Library locked

For MODE=*READ : Read authorization for LIBRARY
For MODE=*UPDATE : Read and write authorization for LIBRARY

LMS statements OPEN-LIBRARY

U8326-J-Z125-6-76 367

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Examples

– Opening an existing library LIB1:

//open-library library=lib1

– Opening an existing library via the link name:

/add-file-link link-name=glob-lib,file-name=lib1
//start-lms
.
.
//open-library library=*link(link-name=glob-lib)

– Creating a new library:

//open-library library=lib1new, mode=*update

– Opening a snapset library:
Library X is located on the original pubset and a snap of X on snapset a.

//open-lib x,snapset=a

The following statement copies the elements from snapset a to the original pubset.

//copy-elem (*std,*,*),(x)

By contrast the following statement only copies the elements within the original pubset.

//copy-elem (x,*,*),(y)

PROVIDE-ELEMENT LMS statements

368 U8326-J-Z125-6-76

PROVIDE-ELEMENT

The PROVIDE-ELEMENT statement reserves members of a source library and makes
copies of these members available in an output library. The source library is to be named
explicitly. If WRITE-CONTROL is activated, the reserved members are protected against
modification by anyone else. If a convention is also set, the entire version space above the
specified version is reserved for the holder.

The source and target member base types may differ if text members are reserved.

PROVIDE-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>

(part 1 of 3)

LMS statements PROVIDE-ELEMENT

U8326-J-Z125-6-76 369

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 2 of 3)

PROVIDE-ELEMENT LMS statements

370 U8326-J-Z125-6-76

⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

,TO-ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ *BY-SOURCE(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..132 with-under with-wildcard-constr>(...)
⏐ ⏐ ⏐ VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING / *INCREMENT /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..20 with-wild-constr>
⏐ ⏐ ,USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,STORAGE-FORM = *LMS-DEFAULT / *STD / *FULL / *DELTA

,WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *ANY

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR

(part 3 of 3)

LMS statements PROVIDE-ELEMENT

U8326-J-Z125-6-76 371

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = *LIBRARY-ELEMENT(...)
Specifications for the desired member designation(s).

LIBRARY = <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the members to be made available.

LIBRARY = <filename 1..54 without-vers>
Name of the library.

LIBRARY = *LINK(...)
The library assigned by means of the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
Names of the members to be made available.

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under>
Version of the members to be made available.

VERSION = *HIGHEST-EXISTING
Makes available the member with the highest existing version with reference to
BASE.

VERSION = *UPPER-LIMIT
Makes available the highest possible version X’FF’ with the specified TYPE and
name in the library.

VERSION = <composed-name 1..24 with-under>
A text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
The type of the members which are to be made available.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
Makes available members without regard to the date.

USER-DATE = *TODAY
Makes available only members with the current date.

PROVIDE-ELEMENT LMS statements

372 U8326-J-Z125-6-76

USER-DATE = <date 8..10 with-compl>
Makes available only members with the specified date.

USER-DATE = *INTERVAL(...)
Makes available only members with a user date which falls within the specified interval.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see
USER-DATE.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members which are to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are to be excluded.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are to be excluded. A member is excluded when all the
fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify the member
as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY, then all
members will be excluded.
For a description of the operands, see the *LIBRARY-ELEMENT operand of this
statement.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies where and under what name the member is to be made available.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library into which the member is to be copied.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library into which the member is to be copied. If the library does not yet
exist, it is created.

LMS statements PROVIDE-ELEMENT

U8326-J-Z125-6-76 373

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

LIBRARY = *LINK(...)
The library assigned by means of the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = *BY-SOURCE (...) /
<composed-name 1..132 with-under with-wildcard-constr>(...)
Name to be given to the target member.

ELEMENT = *BY-SOURCE(...)
The target member is given the same name as the source member.

VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT / <composed-name 1..24 with-under>
Version which the target member is to receive.

VERSION = *BY-SOURCE
The target member is given the same version as the source member.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, this overwrites the highest
existing version with reference to BASE among the members of the same type and
name; otherwise a default version is generated.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

VERSION = <composed-name 1..24 with-under>
The target member receives the version specified here.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member.

ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
Specifies the name which the target member is to receive. The name may also be
entered with wildcards.

VERSION = *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
*INCREMENT / *UPPER-LIMIT / <composed-name 1..24 with-under>
Version which the target member is to receive. For a description of the operands,
see above.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member.

PROVIDE-ELEMENT LMS statements

374 U8326-J-Z125-6-76

TYPE = *BY-SOURCE / *LMS-DEFAULT /
<alphanum-name 1..20 with-wild-constr>
Type which the target member is to receive.

TYPE = *BY-SOURCE
The target member is given the same type designation as the source member.

USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *BY-SOURCE
The new member is given the same date as the source member.

USER-DATE = *TODAY
The current date is given.

USER-DATE = <date 8..10 with-compl>
The date must be entered in the form [YY]YY-MM-DD.

STORAGE-FORM = *LMS-DEFAULT / *STD / *FULL / *DELTA
Storage form for the member being copied. The storage form must not contradict the
settings made by means of the MODIFY-TYPE-ATTRIBUTES or MODIFY-LIBRARY-
ATTRIBUTES statements, and all members of a given type and name must have the
same storage form.

STORAGE-FORM = *STD
The member is generated in accordance with the storage form required for the member
scope. Contradictory requirements result in errors. If nothing is specified, full storage is
selected.

STORAGE-FORM = *FULL
The new member is generated as a full member (if this is not possible, an error
message is issued).

STORAGE-FORM = *DELTA
The new member is generated as a delta member (if this is not possible, an error
message is issued). This entry is permissible for member types S, P, D, J, M, X and
members types derived from them.

WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *ANY
Controls overwriting.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The target member already exists and is replaced.

LMS statements PROVIDE-ELEMENT

U8326-J-Z125-6-76 375

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new
member.

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement.

Statement return code

(SC2) SC1 Maincode Meaning/Guaranteed messages

2
 0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0020
LMS0213
LMS0214
LMS0302
LMS0509
LMS0510
LMS1003
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Target member or target file does not exist
Name exists as delta member
Name exists as full member
Member not found
Target member or target file already exists
Base not found
Error during wildcard processing with at least one member or file
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

PROVIDE-ELEMENT LMS statements

376 U8326-J-Z125-6-76

Required access rights

For ELEMENT: Read authorization for LIBRARY

Read and hold authorization for ELEMENT

For TO-ELEMENT: Read and write authorization for LIBRARY

Administer authorization where the specified member designation is new. Otherwise, only
write authorization for the member existing under the specified member designation
(administer authorization no longer required).

If members are to be stored in delta form, the user must have read authorization for the
member defined by BASE. If WRITE-CONTROL is active and a base version exists, the
USERID of the user must be entered as the HOLDER of the member specified by BASE.
Only if write authorization has been granted can a new version be generated or this base
version overwritten. In this case, administer authorization is no longer required.

Notes

– When creating a member, be sure to take into account the convention applicable to the
member type.
Especially when the target type has the convention STD-TREE, problems can occur if
the source side contains side branch versions whose main branch version is deleted.
In this case, the affected side branches cannot be copied; LMS issues an error
message.

– If WRITE-CONTROL is active in the output library, the access method adds a comment
(record type 2) to the member which is to be written. The comment logs the HOLDER,
DATE and TIME of the process. The record is written as the first record of the record
type. Any comment records which already exist are copied after it. If, in addition, the
member is written to the base of a different version (i.e. not the first version under a
name), the member attributes STATE and HOLDER and all the rights of the base
version are adopted for the new version. The CCSN is adopted from the source file. The
USER-DATE is determined anew.

– The user is entered as the HOLDER of the source member. The source member has
the status 'IN-HOLD', so it is no longer possible to issue a PROVIDE-ELEMENT
statement for that member until it regains the FREE status. This can be implemented
by RETURN-ELEMENT or MODIFY-ELEMENT-ATTRIBUTES.

LMS statements REORGANIZE-LIBRARY

U8326-J-Z125-6-76 377

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

REORGANIZE-LIBRARY

The REORGANIZE-LIBRARY statement reorganizes a library in such a way that as much
as possible of the disk space not used for members is left for the library file, which is then
released. This reduces the amount of disk space required for a library.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library which is to be reorganized.

LIBRARY = *STD
Reorganizes the library which was globally opened by means of OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Reorganizes the library with the name specified here.

LIBRARY = *LINK(...)
Reorganizes the library assigned by means of the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library, which was declared with a /ADD-FILE-LINK command.

Statement return code

Required access rights

Ownership, read and write authorization for LIBRARY.

REORGANIZE-LIBRARY

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

(SC2) SC1 Maincode Meaning
 0
1

32
64

130
130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041
LMS0411

No error
Syntax error
Internal error
Other error
System address space exhausted
Library locked

REORGANIZE-LIBRARY LMS statements

378 U8326-J-Z125-6-76

Notes

– During a reorganization, no other access to the library is permitted (open mode:
SHARUPD=NO). This is why a REORGANIZE-LIBRARY statement is rejected if the
library is already open for a library application, e.g. through another task. If the library
which is to be reorganized was opened earlier in the same LMS run, LMS implicitly
closes the library before the reorganization, unless the LMS log is to be written to that
library. In that case, users must themselves close the library by redirecting the log
stream.

– The disk space which remains reserved, but unused after the reorganization may be as
large as the largest member in the library. If this minimum is not reached, e.g. because
following a system error blocks at the back may already be reserved but are not yet
used, or to minimize the size of the library, use a buffer for copying (COPY-LIBRARY).

LMS statements RESET-LMS-DEFAULTS

U8326-J-Z125-6-76 379

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

RESET-LMS-DEFAULTS

This statement resets the defaults that were set with MODIFY-LMS-DEFAULTS to the
values that applied at the beginning of the LMS run.

The RESET-LMS-DEFAULTS statement has no operands.

Statement return code

RESET-LMS-DEFAULTS

(SC2) SC1 Maincode Meaning
 0
1

32
64

130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041

No error
Syntax error
Internal error
Other error
System address space exhausted

RESET-LOGGING-PARAMETERS LMS statements

380 U8326-J-Z125-6-76

RESET-LOGGING-PARAMETERS

This statement resets the parameters that were set with MODIFY-LOGGING-
PARAMETERS to the values that applied at the beginning of the LMS run.

The RESET-LOGGING-PARAMETERS statement has no operands.

Statement return code

RESET-LOGGING-PARAMETERS

(SC2) SC1 Maincode Meaning
 0
1

32
64

130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041

No error
Syntax error
Internal error
Other error
System address space exhausted

LMS statements RESET-TYPE-ATTRIBUTES

U8326-J-Z125-6-76 381

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

RESET-TYPE-ATTRIBUTES

This statement resets all attributes of the specified type to the default values of the
MODIFY-TYPE-ATTRIBUTES statement.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library in which the type attributes are to be reset.

LIBRARY = *STD
The library opened by means of OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library in which the type attributes are to be reset.

LIBRARY = *LINK(..)
The library assigned by means of the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library which was declared with a /ADD-FILE-LINK command before
LMS was invoked, and which must be known to LMS.

TYPE = <alphanum-name 1..8>
Type of the member whose attributes are to be reset.

Statement return code

RESET-TYPE-ATTRIBUTES

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8> / <filename 1..8>

,TYPE = <alphanum-name 1..8>

(SC2) SC1 Maincode Meaning
 0
1

32
64

130
130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041
LMS0413

No error
Syntax error
Internal error
Other error
System address space exhausted
Type locked

RETURN-ELEMENT LMS statements

382 U8326-J-Z125-6-76

RETURN-ELEMENT

Provided that the user has reserved the base specified for the target version in the output
library, the RETURN-ELEMENT statement copies members of a source library into the
output library, deletes the members from the source library and then releases the reserva-
tions in the output library.

For the first version of a member, no base yet exists. In this case, RETURN-ELEMENT
requires administer authorization.

The source and target member base types may differ if text members are returned.

The access method adds a comment (record type 2) to the member which is to be written.
The comment logs the HOLDER, DATE and TIME of the operation. This record is written
as the first record of its record type and is followed by the comment record containing the
text specified for COMMENT. Any comment records which already existed are copied after
it. If, in addition, the member is written to the base of a different version (i.e. not the first
version under a name), all the rights of the base version are applied to the new version.
STATE is set to FREE for both versions. The CCSN is adopted from the source file. The
USER-DATE is determined anew.

RETURN-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>

(part 1 of 3)

LMS statements RETURN-ELEMENT

U8326-J-Z125-6-76 383

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 2 of 3)

RETURN-ELEMENT LMS statements

384 U8326-J-Z125-6-76

⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

,TO-ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wild-constr>(...)
⏐ ⏐ *BY-SOURCE(...)
⏐ ⏐ ⏐ VERSION = *INCREMENT / *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..132 with-under with-wildcard-constr>(...)
⏐ ⏐ ⏐ VERSION = *INCREMENT / *LMS-DEFAULT / *BY-SOURCE / *HIGHEST-EXISTING /
⏐ ⏐ *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *BY-SOURCE / *LMS-DEFAULT / <alphanum-name 1..20 with-wild-constr>
⏐ ⏐ ,USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,STORAGE-FORM = *LMS-DEFAULT / *STD / *FULL / *DELTA

,COMMENT = *BY-SOURCE / <c-string 1..72 with-low>

,WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *ANY

,DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR

(part 3 of 3)

LMS statements RETURN-ELEMENT

U8326-J-Z125-6-76 385

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = *LIBRARY-ELEMENT(...)
Specifications for the desired member designation(s).

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the relevant members.

LIBRARY = <filename 1..54 without-vers>
Name of the library.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = *LINK(...)
The library assigned by means of the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = *ALL / <composed-name 1..64 with-under with-wild(132)>(...)
Names of the members to be returned.

VERSION = *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under>
Version of the members to be returned.

VERSION = *HIGHEST-EXISTING
Returns the member with the highest existing version with reference to BASE.

VERSION = *UPPER-LIMIT
Returns the highest possible version X’FF’ with the specified TYPE and name in the
library.

VERSION = <composed-name 1..24 with-under>
A text specified here is interpreted as the version designation.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
The type of the members which are to be returned.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
Returns members without regard to this date.

USER-DATE = *TODAY
Returns only members with the current date.

RETURN-ELEMENT LMS statements

386 U8326-J-Z125-6-76

USER-DATE = <date 8..10 with-compl>
Returns only members with the specified date.

USER-DATE = *INTERVAL(...)
Returns only members with a user date which falls within the specified interval.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE
operand of this statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the
USER-DATE operand of this statement.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members which are to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are to be excluded.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are to be excluded. A member is excluded when all the
fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify the member
as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY, then all
members will be excluded.

For a description of the operands, see the *LIBRARY-ELEMENT operand of this
statement.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies where and under what name the member is to be copied.

LIBRARY = <filename 1..54 without-vers> / *LINK(...)
Specifies the library into which the member is to be copied.

LIBRARY = <filename 1..54 without-vers>
Name of the library into which the member is to be copied. If the library does not yet
exist, it is created.

LIBRARY = *LINK(...)
The library assigned by means of the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

LMS statements RETURN-ELEMENT

U8326-J-Z125-6-76 387

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ELEMENT = *BY-SOURCE(...) /
<composed-name 1..132 with-under with-wild-constr>(...)
Name to be given to the target member.

ELEMENT = *BY-SOURCE(...)
The target member is given the same name as the source member.

VERSION = *INCREMENT / *LMS-DEFAULT / *BY-SOURCE /
*HIGHEST-EXISTING / *UPPER-LIMIT / <composed-name 1..24 with-under>
Version which the target member is to receive.

VERSION = *INCREMENT
Depending on the convention applicable for the type, this generates a new, higher
version among existing members having the same type and name; otherwise a
default version is generated.

VERSION = *BY-SOURCE
The target member is given the same version as the source member.

VERSION = *HIGHEST-EXISTING
Depending on the convention applicable for the type, this overwrites the highest
existing version with reference to BASE among the members of the same type and
name; otherwise a default version is generated.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ is generated.

VERSION = <composed-name 1..24 with-under>
The target member receives the version specified here.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member. If BASE=*STD applies, the version held by
the user is the base version (in the event of ambiguity, an error message is issued).

ELEMENT = <composed-name 1..132 with-under with-wild-constr>(...)
Specifies the name which the target member is to receive. The name may also be
entered with wildcards.

VERSION = *INCREMENT / *LMS-DEFAULT / *BY-SOURCE /
*HIGHEST-EXISTING / *UPPER-LIMIT / <composed-name 1..24 with-under>
Version which the target member is to receive. For a description of the operands,
see above.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Defines the base for the target member.

TYPE = *BY-SOURCE / *LMS-DEFAULT /
<alphanum-name 1..20 with-wildcard-constr>
Type which the target member is to receive.

RETURN-ELEMENT LMS statements

388 U8326-J-Z125-6-76

TYPE = *BY-SOURCE
The target member is given the same type designation as the source member.

USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *BY-SOURCE
The new member is given the same date as the source member.

USER-DATE = *TODAY
The current date is given.

USER-DATE = <date 8..10 with-compl>
The date must be entered in the form [YY]YY-MM-DD.

STORAGE-FORM = *LMS-DEFAULT / *STD /*FULL / *DELTA
Storage form for the member being generated. The storage form must not contradict
the settings made by means of the MODIFY-TYPE-ATTRIBUTES or MODIFY-
LIBRARY-ATTRIBUTES statements, and all members of a given type and name must
have the same storage form.

STORAGE-FORM = *STD
The member is generated in accordance with the storage form required for the member
scope. Contradictory requirements result in errors. If nothing is specified, full storage is
selected.

STORAGE-FORM = *FULL
The new member is generated as a full member (if this is not possible, an error
message is issued).

STORAGE-FORM = *DELTA
The new member is generated as a delta member (if this is not possible, an error
message is issued). This entry is permissible for member types S, P, D, J, M, X and
members types derived from them.

COMMENT = *BY-SOURCE / <c-string1..72 with-low>
For the specification of a comment text.

COMMENT = *BY-SOURCE
Adopts the comment text from the source member.

COMMENT = <c-string 1..72 with-low>
Comment text which is to be inserted in the target member. The comment text of the source
is also retained.

WRITE-MODE = *LMS-DEFAULT / *CREATE / *REPLACE / *ANY
Controls overwriting.

LMS statements RETURN-ELEMENT

U8326-J-Z125-6-76 389

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

WRITE-MODE = *CREATE
The new member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The new member already exists and is replaced.

WRITE-MODE = *ANY
The new member is replaced if it already exists. Otherwise it will be created as a new
member.

DIALOG-CONTROL = *LMS-DEFAULT / *NO / *YES / *ERROR
This operand determines whether or not a dialog is to be conducted with the user during
execution of a statement.

For more detailed information on dialog control, see the MODIFY-LMS-DEFAULTS
statement.

RETURN-ELEMENT LMS statements

390 U8326-J-Z125-6-76

Statement return code

Required access rights

For ELEMENT: Read authorization for LIBRARY and ELEMENT

For TO-ELEMENT: Read and write authorization for LIBRARY

Administer authorization where the specified member designation is new. Otherwise, only
write authorization for the member existing under the specified member designation
(administer authorization no longer required).

If members are to be stored in delta form, the user must have read authorization for the
member defined by BASE.

If WRITE-CONTROL is active and a base version exists, the USERID of the user must be
entered as the HOLDER of the member specified by BASE. Only if write authorization has
been granted can a new version be generated or this base version overwritten. In this case,
administer authorization is no longer required.

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

130
130
130
130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0020
LMS0213
LMS0214
LMS0302
LMS0509
LMS0510
LMS1003
LMS1004
PLA0223
PLA0224
PLA0229
PLA0233
PLA0475
PLA0476
PLA0478
LMS0041
LMS0411
LMS0412
LMS0413

No error
Statement aborted by user
Syntax error
Internal error
Target member or target file does not exist
Name exists as delta member
Name exists as full member
Member not found
Target member or target file already exists
Base not found
Error during wildcard processing with at least one member or file
Other error
Only leaves of a delta tree can be overwritten
Storage form not allowed
No access right for the member
Borrow status prevents member access
Function violates version automation
Version does not match applicable convention
Increase causes version overflow
System address space exhausted
Library locked
Member locked
Type locked

LMS statements RETURN-ELEMENT

U8326-J-Z125-6-76 391

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Note

When creating a member, be sure to take into account the convention applicable to the
member type. Especially when the target type has the convention STD-TREE,
problems can occur if the source side contains side branch versions whose main
branch version is deleted. In this case, the affected side branches cannot be copied;
LMS issues an error message.

SHOW-ELEMENT LMS statements

392 U8326-J-Z125-6-76

SHOW-ELEMENT

SHOW-ELEMENT displays the contents of a specified member, depending on its type. The
contents of text-oriented members, modules, phases and link and load modules (LLM) can
be output. The representation format of the output is controlled by the OUTPUT-FORM
operand. The meaning of the attributes with modules and link and load modules is
explained in [4].

The statement is permissible for all member types. User-defined types are handled
according to their respective base type. If the base type is unknown to LMS, only the TEXT-
INFORMATION and OUTPUT-FORM operands are effective.

SHOW-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 1 of 5)

LMS statements SHOW-ELEMENT

U8326-J-Z125-6-76 393

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 2 of 5)

SHOW-ELEMENT LMS statements

394 U8326-J-Z125-6-76

,TEXT-INFORMATION = *LMS-DEFAULT / *ALL / *STATISTICS / *FILE-ATTRIBUTES / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ INFORMATION = *LMS-DEFAULT / *ALL / list-poss(2): *TEXT / *COMMENT
⏐ ⏐ ,RECORD-RANGE = *LMS-DEFAULT / *ALL / *RANGE(...)
⏐ ⏐ *RANGE(...)
⏐ ⏐ ⏐ FROM = *LMS-DEFAULT / <integer 1..2147483647>
⏐ ⏐ ⏐ ⏐ ,TO = *LMS-DEFAULT / *LAST / <integer 1..2147483647>
⏐ ⏐ ,RECORD-PART = *LMS-DEFAULT / *ALL / *PART(...)
⏐ ⏐ *PART(...)
⏐ ⏐ ⏐ START = *LMS-DEFAULT / <integer 1..262144>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *LMS-DEFAULT / *REST / <integer 0..262144>
⏐ ⏐ ,RECORD-NUMBER = *LMS-DEFAULT / *BY-OUTPUT / *YES / *NO

,MODULE-INFORMATION = *LMS-DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ INFORMATION = *LMS-DEFAULT / *ALL / *TXT(...) / *TXTP(...) /
⏐ list-poss(9): *ESD / *ISD / *LSD / *RLD / *REP / *INCLUDE / *DSDD / *REF / *END
⏐ ⏐ *TXT(...)
⏐ ⏐ ⏐ CSECT-NAME = *LMS-DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
⏐ ⏐ ⏐ ⏐ ,ADDRESS = *LMS-DEFAULT (...) / <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ *LMS-DEFAULT(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *LMS-DEFAULT / *REST / <integer 1..2147483647> / <x-string 1..8>
⏐ ⏐ *TXTP(...)
⏐ ⏐ ⏐ MODIFICATION-ID = *LMS-DEFAULT / *ALL / <c-string 1..8 with-low> / *RANGE(...)
⏐ ⏐ ⏐ ⏐ *RANGE(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = *LMS-DEFAULT / *LOWEST / <c-string 1..8 with-low>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *LMS-DEFAULT / *HIGHEST / <c-string 1..8 with-low>

(part 3 of 5)

LMS statements SHOW-ELEMENT

U8326-J-Z125-6-76 395

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

,PHASE-INFORMATION = *LMS-DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ SEGMENT = *LMS-DEFAULT / *ALL / *ROOT / <name 1..8>
⏐ ⏐ ,INFORMATION = *LMS-DEFAULT / *ALL / *TXT(...) / *TXTP(...) /
⏐ list-poss(4): *ESD / *ISD / *LSD / *RLD
⏐ ⏐ *TXT(...)
⏐ ⏐ ⏐ ADDRESS = *LMS-DEFAULT (...) / <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ *LMS-DEFAULT(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *LMS-DEFAULT / *REST / <integer 1..2147483647> / <x-string 1..8>
⏐ ⏐ *TXTP(...)
⏐ ⏐ ⏐ MODIFICATION-ID = *LMS-DEFAULT / *ALL / <c-string 1..8 with-low> / *RANGE(...)
⏐ ⏐ ⏐ ⏐ *RANGE(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = *LMS-DEFAULT / *LOWEST / <c-string 1..8 with-low>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *LMS-DEFAULT / *HIGHEST / <c-string 1..8 with-low>

,LLM-INFORMATION = *LMS-DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)

*PARAMETERS(...)
 ⏐ LLM-PART = *LMS-DEFAULT / *ALL / *SLICE(...) / *SUB-LLM(...)
⏐ ⏐ *SLICE(...)
⏐ ⏐ ⏐ NAME = *LMS-DEFAULT / <structured-name 1..32>
⏐ ⏐ *SUB-LLM(...)
⏐ ⏐ ⏐ PATH-NAME = *LMS-DEFAULT / <c-string 1..255 with-low> / <text 1..255>
⏐ ⏐ ,INFORMATION = *LMS-DEFAULT / *ALL / *TXT(...) / *TXTP(...) / *LOGICAL(...) / *PHYSICAL /
⏐ *REF / list-poss(4): / *RELOCATION / *ESVD / *ESVR / *LRLD
⏐ ⏐ *TXT(...)
⏐ ⏐ ⏐ CSECT-NAME = *LMS-DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>

(part 4 of 5)

SHOW-ELEMENT LMS statements

396 U8326-J-Z125-6-76

ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the member.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

⏐ ⏐ ⏐ ⏐ ,ADDRESS = *LMS-DEFAULT (...) / <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ *LMS-DEFAULT(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ <x-string 1..8>(...)
⏐ ⏐ ⏐ ⏐ ⏐ BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
⏐ ⏐ ⏐ ⏐ ,LENGTH = *LMS-DEFAULT / *REST / <integer 1..2147483647> / <x-string 1..8>
⏐ ⏐ *TXTP(...)
⏐ ⏐ ⏐ CSECT-NAME = *LMS-DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-ID = *LMS-DEFAULT / *ALL / <c-string 1..12 with-low> / *RANGE(...)
⏐ ⏐ ⏐ ⏐ *RANGE(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = *LMS-DEFAULT / *LOWEST / <c-string 1..12 with-low>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *LMS-DEFAULT / *HIGHEST / <c-string 1..12 with-low>
⏐ ⏐ *LOGICAL(...)
⏐ ⏐ ⏐ LEVEL = *LMS-DEFAULT / *ALL / *NEXT

,OUTPUT-FORM = *LMS-DEFAULT / *STD / *CHARACTER / *HEXADECIMAL / *DUMP

,TEXT-OUTPUT = *LOGGING-PARAMETERS / *SYSOUT / *SYSLST(...) / *EDT(...)

*SYSLST(...)
⏐ SYSLST-NUMBER = *STD / <INTEGER 1..99>

*EDT(...)
⏐ WRITE-MODE = *EXTEND / *REPLACE

(part 5 of 5)

LMS statements SHOW-ELEMENT

U8326-J-Z125-6-76 397

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

ELEMENT = *ALL / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be displayed.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be output.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version with reference to BASE is output.

VERSION = *UPPER-LIMIT
The highest possible version X’FF’ in the library under the specified TYPE and
name is displayed.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be displayed.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be output.

USER-DATE = *ANY / *TODAY / <date8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be output has any date.

USER-DATE = *TODAY
The member with the current date is displayed.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is displayed.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are displayed.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

SHOW-ELEMENT LMS statements

398 U8326-J-Z125-6-76

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see USER-DATE.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see
USER-DATE.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded from correction.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members that are not to be displayed. A member is excluded when all the
fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify the member
as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY, then all
members will be excluded.
For a description of the operands, see the *LIBRARY-ELEMENT operand of this
statement.

TEXT-INFORMATION = *LMS-DEFAULT / *ALL / *STATISTICS / *FILE-ATTRIBUTES /
*PARAMETERS(...)
Defines the information scope for all members except member types R, C and L. For PAM
members, all specifications apart from *FILE-ATTRIBUTES have the same effect as *ALL.

TEXT-INFORMATION = *ALL
Everything is output.

TEXT-INFORMATION = *STATISTICS
The number of records per record type and the total number of records are output. For each
record type, the total of all record lengths (without record length fields) is output, as is the
total record length across all record types.

TEXT-INFORMATION = *FILE-ATTRIBUTES
Only the stored file attributes are output.

TEXT-INFORMATION = *PARAMETERS(...)
Defines a member extract to be output.

INFORMATION = *LMS-DEFAULT / *ALL / list-poss(2): *TEXT / *COMMENT
The member section to be output.

INFORMATION = *ALL
Everything is output.

LMS statements SHOW-ELEMENT

U8326-J-Z125-6-76 399

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

INFORMATION = *TEXT
Outputs the text itself, i.e. record type 1.

INFORMATION = *COMMENT
Outputs the separately stored comment, i.e. record type 2.

RECORD-RANGE = *LMS-DEFAULT / *ALL / *RANGE(...)
The section of the member to be processed.

RECORD-RANGE = *ALL
All records are processed.

RECORD-RANGE = *RANGE(...)
Specifies the range of record numbers which is to be processed. The record numbers
refer not to a record type, but to the section of the member designated by means of
INFORMATION=. Within this section, the records are numbered consecutively from 1
through n.

FROM = *LMS-DEFAULT / <integer 1..2147483647>
Beginning of the range, specified by the first record number. Record number 1 is the
default value.

TO = *LMS-DEFAULT / *LAST / <integer 1..2147483647>
End of the range, specified by the last record number. The last record number is
used as the default value.

RECORD-PART = *LMS-DEFAULT / *ALL / *PART(...)
Specifies the part of the record to be processed.

RECORD-PART = *ALL
Processes the entire record.

RECORD-PART = *PART(...)
Specifies the part of the record to be processed. If the default values are not changed,
the entire record is processed.

START = *LMS-DEFAULT / <integer 1..262144>
Beginning of the record part, specified by the first character in the record. The first
character is used as the default value.

LENGTH = *LMS-DEFAULT / *REST / <integer 0..262144>
Length of the record part. The remainder of the record is used as the default value.

RECORD-NUMBER = *LMS-DEFAULT / *BY-OUTPUT / *YES / *NO
Specifies output of the record numbers.

RECORD-NUMBER = *BY-OUTPUT
Only if the output is directed to SYSOUT will no record numbers be output. With any
other output medium, the record numbers are included in the output.

SHOW-ELEMENT LMS statements

400 U8326-J-Z125-6-76

RECORD-NUMBER = *YES
The record numbers are also output to SYSOUT.

RECORD-NUMBER = *NO
No record numbers are included in the output.

MODULE-INFORMATION = *LMS-DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)
Defines the information scope for object modules (R-type members).

MODULE-INFORMATION = *ALL
Everything is output.

MODULE-INFORMATION = *STATISTICS
The name, length and address of the CSECTS and also the overall length of the module
are output.

MODULE-INFORMATION = *PARAMETERS(...)
This parameter determines whether all record types or only selected record types are
output.

INFORMATION = *LMS-DEFAULT / *ALL / *TXT(...) / *TXTP(...) / list-poss(9): *ESD /
*ISD / *LSD / *RLD / *REP / *INCLUDE / *DSDD / *REF / *END
The record types listed here can be selected.

INFORMATION = *TXT(...)
Text records are selected.

CSECT-NAME = *LMS-DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
The text records can be restricted to one CSECT.

ADDRESS = *LMS-DEFAULT / <x-string 1..8>(...)
Start address of the text. The default setting is X‘00000000‘.

BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
The base address specified here is added to the start address. The default
setting is X‘00000000‘.

LENGTH = *LMS-DEFAULT / *REST / <integer 1..2147483647> / <x-string 1..8>
Length of the text.

 INFORMATION = *TXTP(...)
TXTP records are output.

MODIFICATION-ID = *LMS-DEFAULT / *ALL / <c-string 1..8 with-low> /
*RANGE(...)
Those TXTP records with the specified identification are selected.

LMS statements SHOW-ELEMENT

U8326-J-Z125-6-76 401

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM = *LMS-DEFAULT / *LOWEST / <c-string 1..8 with-low>
The beginning of the range is by default the lowest identification for the TXTP
records, otherwise the value entered here.

TO = *LMS-DEFAULT / *HIGHEST / <c-string 1..8 with-low>
The end of the range is by default the highest identification for the TXTP
records, otherwise the value entered here.

PHASE-INFORMATION = *LMS-DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)
Defines the information scope for phases (C-type members).

PHASE-INFORMATION = *ALL
Everything is output.

PHASE-INFORMATION = *STATISTICS
The name, length and address of the segment and also the overall length of the segment
are output.

PHASE-INFORMATION = *PARAMETERS(...)
This parameter determines whether all record types or only selected record types are
output.

SEGMENT = *LMS-DEFAULT / *ALL / *ROOT / <name 1..8>
Phase segment that is selected.

INFORMATION = *LMS-DEFAULT / *ALL / *TXT(...) / *TXTP(...) /
list-poss(4): *ESD / *ISD / *LSD / *RLD
The record types listed here can be selected.

INFORMATION = *TXT(...)
Text records are selected.

ADDRESS = *LMS-DEFAULT(...) / <x-string 1..8>(...)
Start address of the text.

BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
The base address specified here is added to the start address.

LENGTH = *LMS-DEFAULT / *REST / <integer 1..2147483647> / <x-string 1..8>
Length of the text.

INFORMATION = *TXTP(...)
TXTP records are output.

MODIFICATION-ID = *LMS-DEFAULT / *ALL / <c-string 1..8 with-low> /
*RANGE(...)
Those TXTP records with the specified identification are selected.

SHOW-ELEMENT LMS statements

402 U8326-J-Z125-6-76

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM = *LMS-DEFAULT / *LOWEST / <c-string 1..8 with-low>
The beginning of the range is by default the lowest identification for the TXTP
records, otherwise the value entered here.

TO = *LMS-DEFAULT / *HIGHEST / <c-string 1..8 with-low>
The end of the range is by default the highest identification for the TXTP
records, otherwise the value entered here.

LLM-INFORMATION = *LMS-DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)
Defines the information scope for link and load modules (L-type members).

LLM-INFORMATION = *ALL
Everything is output.

LLM-INFORMATION = *STATISTICS
General information on the link and load module (name, copyright, ...) is output.

LLM-INFORMATION = *PARAMETERS(...)
This parameter determines whether all record types or only selected record types are
output.

LLM-PART = *LMS-DEFAULT / *ALL / *SLICE(...) / *SUB-LLM(...)
Specifies the LLM part to be selected. By default the entire LLM is selected.

LLM-PART = *SLICE(...)
Specifies the slice to be output.

NAME = *LMS-DEFAULT / <structured-name 1..32>
Name of the slice to be output.

LLM-PART = *SUB-LLM(...)
Specifies the sub-LLM to be output.

PATH-NAME = *LMS-DEFAULT / <c-string 1..255 with-low> / <text 1..255>
The sub-LLM to be output is determined by way of its path name.

INFORMATION = *LMS-DEFAULT / *ALL / *TXT(...) / *TXTP(...) / *LOGICAL(...) /
*PHYSICAL / *REF / list-poss(4): *RELOCATION/ *ESVD / *ESVR / *LRLD
The record types listed here can be selected.

INFORMATION = *TXT(...)
Text records are selected.

CSECT-NAME = *LMS-DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
The text records can be restricted to one CSECT.

LMS statements SHOW-ELEMENT

U8326-J-Z125-6-76 403

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

ADDRESS = *LMS-DEFAULT(...) / <x-string 1..8>(...)
Start address of the text.

BASE-ADDRESS = *LMS-DEFAULT / <x-string 1..8>
The base address specified here is added to the start address.

LENGTH = *LMS-DEFAULT / *REST / <integer 1..2147483647> / <x-string 1..8>
Length of the text.

INFORMATION = *TXTP(...)
TXTP records are output.

CSECT-NAME = *LMS-DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
The TXTP records can be restricted to one CSECT.

MODIFICATION-ID = *LMS-DEFAULT / *ALL / <c-string 1..12 with-low> /
*RANGE(...)
Those TXTP records with the specified identification are selected.

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM = *LMS-DEFAULT / *LOWEST / <c-string 1..12 with-low>
The beginning of the range is by default the lowest identification for the TXTP
records, otherwise the value entered here.

TO = *LMS-DEFAULT / *HIGHEST / <c-string 1..12 with-low>
The end of the range is by default the highest identification for the TXTP
records, otherwise the value entered here.

INFORMATION = *LOGICAL(...)
Outputs the logical structure of the LLM.

LEVEL = *LMS-DEFAULT / *ALL / *NEXT
Outputs all substructures by default; otherwise, only the next substructure.

INFORMATION = *PHYSICAL
Outputs the physical structure of the LLM.

OUTPUT-FORM = *LMS-DEFAULT / *STD / *CHARACTER / *HEXADECIMAL / *DUMP
Specifies the form of representation for the output.

OUTPUT-FORM = *STD
The form of representation is selected dependent on the member type. For text members
this operand works in the same way as for OUTPUT-FORM = *CHARACTER.

OUTPUT-FORM = *CHARACTER
The output is in alphanumeric form.

SHOW-ELEMENT LMS statements

404 U8326-J-Z125-6-76

OUTPUT-FORM = *HEXADECIMAL
The output is in alphanumeric and hexadecimal form, one above the other.

OUTPUT-FORM = *DUMP
The output is in alphanumeric and hexadecimal form, side by side. For member types S, P,
D, J and M, this operand has the same effect as OUTPUT-FORM=*HEXADECIMAL.

TEXT-OUTPUT = *LOGGING-PARAMETERS / *SYSOUT / *SYSLST(...) / *EDT(...)
Controls the log output.

TEXT-OUTPUT = *LOGGING-PARAMETERS
The log is output to the output medium specified with //MODIFY-LOGGING-
PARAMETERS, TEXT-OUTPUT=.

TEXT-OUTPUT = *SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Determines the SYSLST file to which the output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLST01 through SYSLST99
is used.

TEXT-OUTPUT = *EDT(...)
Output is to the work file 9 of EDT. If an error occurs during log output, then the system
switches to the default output stream (SYSOUT).

WRITE-MODE = *EXTEND / *REPLACE
Write mode of the output in relation to the contents of work file 9.

WRITE-MODE = *EXTEND
If data exists in work file 9, the output will be added to this data. If there is no data in the
file, the output will be written at the beginning of the file.

WRITE-MODE = *REPLACE
The output will be written at the beginning of work file 9. Any data that is already in the
file will be replaced.

LMS statements SHOW-ELEMENT

U8326-J-Z125-6-76 405

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Statement return code

Required access rights

For LIBRARY-ELEMENT: read authorization for LIBRARY and ELEMENT

If more than one member is affected by the statement, members without read authorization
are excluded from the statement.

Example

The member LETTER.A, which contains the text ’Dear ...’, is to be output.

//show-element (element=letter.a,type=d)
INPUT LIBRARY= :1OSQ:$USER.LIB.SHOW
INPUT ELEMENT= (D)LETTER.A/@(0001)/2011-04-09
 DEAR ...

NUMBER OF PROCESSED RECORDS IS 1

(SC2) SC1 Maincode Meaning

2
2

 0
0
0
1

32
64
64
64
64

130
130
130
130

CMD0001
LMS0084
LMS0129
CMD0230
LMS1002
LMS0302
LMS1003
LMS1004
PLA0229
LMS0041
LMS0411
LMS0412
LMS0413

No error
VTSUCB macro error
Statement aborted by user
Syntax error
Internal error
Member not found
Error during wildcard processing with at least one member or file
Other error
No access right for the member
System address space exhausted
Library locked
Member locked
Type locked

SHOW-ELEMENT-ATTRIBUTES LMS statements

406 U8326-J-Z125-6-76

SHOW-ELEMENT-ATTRIBUTES

SHOW-ELEMENT-ATTRIBUTES outputs the directory entries of the specified members or
of the entire library.

The entries are output on the medium specified by the MODIFY-LOGGING-PARAMETERS
statement. With the STRUCTURE-OUTPUT operand, the output can also be placed in a
structured S variable (list).

The directory is always output sorted by type. The remainder of the sort sequence is deter-
mined by the SORT operand. The default sort sequence is type, name and version.

The INFORMATION and LAYOUT operands are used to specify the scope and format of
the directory output. By default, the type, name, version, variant number and date are
output.

With the aid of the SECONDARY-NAME and SECONDARY-ATTRIBUTE operands, the
directory can be limited to the members containing a certain reference entry.

Note

In order to obtain the entire contents of a library (all members with all versions), it is
sufficient to specify only SHOW-ELEMENT-ATTRIBUTES without any operands,
provided no specific member type or version was set using MODIFY-LMS-DEFAULTS.

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 407

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SHOW-ELEMENT-ATTRIBUTES

ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <structured-name 1..8>
⏐ ⏐ ,ELEMENT = *ALL (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *ALL / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ VERSION = *ALL / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 1 of 5)

SHOW-ELEMENT-ATTRIBUTES LMS statements

408 U8326-J-Z125-6-76

⏐ ,ACCESS-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ,USER-TIME = *ANY / <time 1..8> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 00:00:00 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ,TO = 23:59:59 / <time 1..8>
⏐ ⏐ ,CREATION-TIME = *ANY / <time 1..8> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 00:00:00 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ,TO = 23:59:59 / <time 1..8>
⏐ ⏐ ,MODIFICATION-TIME = *ANY / <time 1..8> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 00:00:00 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ,TO = 23:59:59 / <time 1..8>
⏐ ⏐ ,ACCESS-TIME = *ANY / <time 1..8> / *INTERVAL(...)
⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 00:00:00 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ,TO = 23:59:59 / <time 1..8>
⏐ ⏐ ,CODED-CHARACTER-SET = *ANY / *NONE / <name 1..8 with-wild(20)>
⏐ ⏐ ,STATE = *ANY / *FREE / *IN-HOLD(...)
⏐ ⏐ *IN-HOLD(...)
⏐ ⏐ ⏐ HOLDER = *ANY / <name 1..8 with-wild(20)>
⏐ ⏐ ,STORAGE-FORM = *ANY / *FULL / *DELTA
⏐ ⏐ ,SECONDARY-NAME = *ANY / <alphanum-name 1..32 with-wild(68)>
⏐ ⏐ ,SECONDARY-ATTRIBUTE = *ANY / *CSECT / *ENTRY
⏐ ⏐

(part 2 of 5)

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 409

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ,ELEMENT-SIZE = *ANY / <integer 0..2147483647> / *INTERVAL(...)
⏐⏐ *INTERVAL(...)
⏐ ⏐ ⏐ FROM = 0/ <integer 1..2147483647>
⏐ ⏐ ⏐ ⏐ ,TO = 2147483647 / <integer 1..2147483647>
⏐ ⏐ ,PROTECTION = *ANY / *NONE / *PARAMETERS(...)
⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ READ = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ ⏐ ⏐ GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
⏐ ⏐ ⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ ⏐ USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,PASSWORD = *ANY / *YES / *NO
⏐ ⏐ ⏐ ⏐ ,WRITE = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ ⏐ ⏐ GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
⏐ ⏐ ⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ ⏐ USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,PASSWORD = *ANY / *YES / *NO
⏐ ⏐ ⏐ ⏐ ,EXEC = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ ⏐ ⏐ GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
⏐ ⏐ ⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ ⏐ USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,PASSWORD = *ANY / *YES / *NO
⏐ ⏐ ⏐ ⏐ ,HOLD = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ *BY-GUARD(...)
⏐ ⏐ ⏐ ⏐ ⏐ GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
⏐ ⏐ ⏐ ⏐ *PARAMETERS(...)
⏐ ⏐ ⏐ ⏐ ⏐ USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,PASSWORD = *ANY / *YES / *NO

(part 3 of 5)

SHOW-ELEMENT-ATTRIBUTES LMS statements

410 U8326-J-Z125-6-76

⏐ ,EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
⏐ ⏐ *ELEMENT(...)
⏐ ⏐ ⏐ ELEMENT = *ANY (...) / <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ *ANY(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ <composed-name 1..64 with-under with-wild(132)>(...)
⏐ ⏐ ⏐ ⏐ ⏐ VERSION = *ANY / *HIGHEST-EXISTING / *UPPER-LIMIT /
⏐ ⏐ ⏐ <composed-name 1..24 with-under with-wild(52)>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,BASE = *STD / <composed-name 1..24 with-under with-wild>
⏐ ⏐ ⏐ ⏐ ,TYPE = *ANY / *LMS-DEFAULT / <alphanum-name 1..8 with-wild(20)>
⏐ ⏐ ⏐ ⏐ ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ,ACCESS-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 1900-01-01 / <date 8..10 with-compl>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = *TODAY / <date 8..10 with-compl>

(part 4 of 5)

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 411

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

⏐ ⏐ ,USER-TIME = *ANY / <time 1..8> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 00:00:00 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = 23:59:59 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ,CREATION-TIME = *ANY / <time 1..8> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 00:00:00 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = 23:59:59 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ,MODIFICATION-TIME = *ANY / <time 1..8> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 00:00:00 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = 23:59:59 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ,ACCESS-TIME = *ANY / <time 1..8> / *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ *INTERVAL(...)
⏐ ⏐ ⏐ ⏐ ⏐ FROM = 00:00:00 / <time 1..8>
⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ,TO = 23:59:59 / <time 1..8>

,INFORMATION = *LMS-DEFAULT / *MEDIUM / *MINIMUM / *MAXIMUM /
 *SUMMARY / *DELTA-STRUCTURE / *PARAMETERS(...)

*PARAMETERS(...)
⏐⏐ GENERAL = *LMS-DEFAULT / *NO / *YES
⏐⏐ ,HISTORY = *LMS-DEFAULT / *NO / *YES
⏐⏐ ,SECURITY = *LMS-DEFAULT / *NO / *YES

,LAYOUT = *LMS-DEFAULT / *VARIABLE / *FIXED

,SORT = *LMS-DEFAULT / *BY-NAME / *BY-VERSION / *BY-USER-DATE / *BY-CREATION-DATE /
*BY-MODIFICATION-DATE / *BY-ACCESS-DATE / *BY-ELEMENT-SIZE /
*BY-SECONDARY-NAME

,TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) / *EDT(...)

*SYSLST(...)
⏐ SYSLST-NUMBER = *STD / <INTEGER 1..99>

*EDT(...)
⏐ WRITE-MODE = *EXTEND / *REPLACE

,STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)

<composed-name 1..255>(...)
 ⏐ WRITE-MODE = *REPLACE / *EXTEND

(part 5 of 5)

SHOW-ELEMENT-ATTRIBUTES LMS statements

412 U8326-J-Z125-6-76

ELEMENT = *LIBRARY-ELEMENT(...)
Specifications for the desired member designation(s).

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library for which the directory is to be output.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Outputs the directory of the library specified here.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library, which was defined by means of a /ADD-FILE-LINK
command.

ELEMENT = *ALL / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member for which the library entry is to be output.
If the default value “*ALL” is entered, LMS outputs the library entries for all of the
members with the corresponding version and type.

VERSION = *ALL / *HIGHEST-EXISTING / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member.

VERSION = *ALL
Outputs the library entries of all members selected above, regardless of their
respective versions.

VERSION = *HIGHEST-EXISTING
The library entries of all members selected above are output with the highest
existing version.

VERSION = *UPPER-LIMIT
The library entries of all members selected above are output with the version X’FF’.

VERSION = <composed-name 1..24 with-under with-wild(52)>
The library entries of all members selected above are output with the version
specified here.

BASE = *STD / <composed-name 1..24 with-under with-wild>
Prefix for the version selection. In conjunction with VERSION=*HIGHEST-
EXISTING, it is then possible to use a certain prefix to reference the highest existing
version. BASE=*STD has the same effect as BASE=*.
The operand will be ignored, if anything other than *ANY is specified in the
SECONDARY-NAME or the SECONDARY-ATTRIBUTE operands.

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 413

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

TYPE = *LMS-DEFAULTS / *ALL / <alphanum-name 1..8 with-wild(20)
Type of the member which is to be output.
If the LMS default value for TYPE is *UNDEFINED, then *LMS-DEFAULT has the same
effect as *ALL

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member has any date.

USER-DATE = *TODAY
The library entries of all members with the current date are output.

USER-DATE = <date 8..10 with-compl>
The library entries of all members with the date specified here in the form [YY]YY-MM-
DD are output.

USER-DATE = *INTERVAL(...)
The library entries of all members lying in the specified interval are output.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see USER-DATE.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see
USER-DATE.

ACCESS-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date on which the member was last accessed. For a description of the operands, see
USER-DATE.

USER-TIME = *ANY / <time 1..8> / *INTERVAL(...)
Time given by the user.

USER-TIME = *ANY
The library entries of all members are output, regardless of the time.

USER-TIME = <time 1..8>
The library entries of all members with the time specified in the form HH:MM:SS are
output.

SHOW-ELEMENT-ATTRIBUTES LMS statements

414 U8326-J-Z125-6-76

USER-TIME = *INTERVAL(...)
The library entries of all members lying in the specified interval are output.

FROM = 00:00:00 / <time 1..8>
Beginning of interval.

TO = 23:59:59 / <time 1..8>
End of interval.

CREATION-TIME = *ANY / <time1..8> / *INTERVAL(...)
Creation time of the member. For a description of the operands, see USER-TIME,
page 413.

MODIFICATION-TIME = *ANY / <time 1..8> / *INTERVAL(...)
Time of the last modification to the member. For a description of the operands, see
USER-TIME, page 413.

ACCESS-TIME = *ANY / <time 1..8> / *INTERVAL(...)
Time at which the member was last accessed. For a description of the operands, see
USER-TIME, page 413.

CODED-CHARACTER-SET = *ANY / *NONE / <name 1..8 with-wild(20)>
Character set assigned to the member.

CODED-CHARACTER-SET = *ANY
Selects members without regard to their assigned character set.

CODED-CHARACTER-SET = *NONE
Selects members which have not been assigned a character set.

CODED-CHARACTER-SET = <name 1..8 with-wild(20)>
Selects the members to which the specified character set has been assigned.

STATE = *ANY / *FREE / *IN-HOLD(...)
State assigned to the member.

STATE = *ANY
Selects members without regard to their respective STATEs.

STATE = *FREE
Selects only members with STATE=FREE

STATE = *IN-HOLD(...)
Selects only members with STATE=IN-HOLD.

HOLDER = *ANY / <name 1..8 with-wild(20)>
HOLDER assigned to the member.

HOLDER = *ANY
Selects members without regard to their respective HOLDERs.

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 415

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

HOLDER = <name 1..8 with-wild(20)>
Selects only members which are assigned a HOLDER matching the pattern.

STORAGE-FORM = *ANY / *FULL / *DELTA
Storage form for the member to be displayed.

STORAGE-FORM = *ANY
LMS selects the member on the basis of the storage form. The member may be stored
as a non-delta or delta member.

STORAGE-FORM = *FULL
The member must be stored as a non-delta member.

STORAGE-FORM = *DELTA
The member must be stored as a delta member.

SECONDARY-NAME = *ANY / <alphanum-name 1..32 with-wild(68)>
Secondary name. If anything other than *ANY is specified here, the selection is made
via the secondary directory of the library.
If wildcards are specified, only the first 32 characters of the secondary name are used
to determine the selection.

SECONDARY-ATTRIBUTE = *ANY / *CSECT / *ENTRY
Secondary attribute. If anything other than *ANY is specified here, the selection is made
via the secondary directory of the library.

ELEMENT-SIZE = *ANY / <integer 0..2147483647> / *INTERVAL(...)
Specifies the size according to which the members are to be selected.

ELEMENT-SIZE = *ANY
The member size is not used as a selection criterion.

ELEMENT-SIZE = <integer 0..2147483647>
Members are selected whose memory allocation corresponds to the specified number
of PAM pages (2-K unit).

ELEMENT-SIZE = *INTERVAL(..)
Members are selected whose memory allocation lies within the specified range.

FROM = 0 / <integer 1..2147483647>
Members are selected whose memory allocation corresponds to at least the
specified number of PAM pages (2-K unit).

TO = 2147483647 / <integer 1..2147483647>
Members are selected whose memory allocation corresponds to no more than the
specified number of PAM pages (2-K unit).

PROTECTION = *ANY / *NONE / *PARAMETERS(...)
Member protection for the selected members.

SHOW-ELEMENT-ATTRIBUTES LMS statements

416 U8326-J-Z125-6-76

PROTECTION = *ANY
The members are selected, regardless of the member protection.

PROTECTION = *NONE
The members have no additional member protection.

PROTECTION = *PARAMETERS(...)
Specifies the protection with which the members to be selected are provided.

READ = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Read protection setting assigned to the member.

READ = *ANY
Selects members without regard to their read protection settings.

READ = *NONE
Selects only members with no read protection.

READ = *BY-GUARD(...)
Selects only members which have GUARD read protection.

GUARD-NAME = <filename 1..40 without-cat-gen-vers with-wild>
Selects only members which have read protection by a GUARD-NAME
matching the pattern.

READ = *PARAMETERS(...)
Selects only members which have read protection by BACL and/or password.

USER = *ANY / *NONE / *ALL / list-poss(3): *OWNER / *GROUP / *OTHERS
The read-authorized user group which is assigned to the member.

USER = *ANY
Selects members without regard to their respective read-authorized user
groups.

USER = *NONE
Selects only members for which no read authorization has been granted.

USER = *OWNER
Selects only members for which the owner of the library file has read
authorization.

USER = *GROUP
Selects only members for which the library file owner’s group has read
authorization.

USER = *OTHERS
Selects only members for which read authorization for OTHERS has been
granted.

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 417

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

PASSWORD = *ANY / *YES / *NO
Read password assigned to the member.

PASSWORD = *ANY
Selects members without regard to their respective passwords.

PASSWORD = YES
Selects only members which are protected by a read password.

PASSWORD = *NO
Selects only members which are not protected by a read password.

WRITE = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Write authorization. Selects only members for which this authorization has been
granted in the specified manner.
The operands are analogous to those described above for READ.

EXEC = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Execute authorization. Selects only members for which this authorization has been
granted in the specified manner.
The operands are analogous to those described above for READ.

HOLD = *ANY / *NONE / *BY-GUARD(...) / *PARAMETERS(...)
Hold authorization. Selects only members for which this authorization has been
granted in the specified manner.
The operands are analogous to those described above for READ.

EXCEPT-ELEMENT = *NONE / *ELEMENT(...)
Specifies the members to be excluded from the above selection.

EXCEPT-ELEMENT = *NONE
No members are excluded.

EXCEPT-ELEMENT = *ELEMENT(...)
Specifies the members to be excluded from selection. A member is excluded when all
the fields of the EXCEPT-ELEMENT structure that are not set to *ANY identify the
member as a hit. If all the fields of the EXCEPT-ELEMENT structure are set to *ANY,
then all members will be excluded.
For a description of the operands, see *LIBRARY-ELEMENT on page 412.

INFORMATION = *LMS-DEFAULT / *MEDIUM / *MINIMUM / *MAXIMUM / *SUMMARY /
*DELTA-STRUCTURE / *PARAMETERS(...)
This parameter defines the scope of directory information to be output. It also specifies the
scope of the structure output (see parameter dependencies on page 422ff.

INFORMATION = *MEDIUM
Outputs the type, name, version, variant number and, depending on the SORT operand,
the date or size of the selected member.

SHOW-ELEMENT-ATTRIBUTES LMS statements

418 U8326-J-Z125-6-76

INFORMATION = *MINIMUM
Outputs only the type, name and version of the selected member.

INFORMATION = *MAXIMUM
All the information of the selected member is output.

INFORMATION = *SUMMARY
Outputs only the number of selected members per type.

INFORMATION = *DELTA-STRUCTURE
Only the relationship “predecessor - successor” is output for delta members. As well as the
member designation the internal delta number (DELTA#, reflects the chronological order)
and the associated base number (BASE#) are output. These internal delta numbers are
unique within a tree, they define the chaining of the members in the tree (independent of
the external user-specific version designation). The output of a tree is always sorted by
DELTA#, i.e. the SORT operand is not effective within a tree. Different trees are separated
from each other by means of a continuous line.
The output fields DELTA# and BASE# for non-delta members are empty.

INFORMATION = *PARAMETERS(...)
Additional outputs

GENERAL = *LMS-DEFAULT / *NO / *YES
Defines whether, in addition to the type, name, version and variant number, a general
information block is to be output comprising the storage format, status, member size
and, if applicable, the character set and HOLDER of the selected member.

HISTORY = *LMS-DEFAULT / *NO / *YES
Defines whether, in addition to the type, name, version and variant number, a HISTORY
block is to be output comprising the user date/time, creation date/time, modification
date/time and, if applicable, the access date/time of the selected member.

SECURITY = *LMS-DEFAULT / *NO / *YES
Defines whether, in addition to the type, name, version and variant number, a
SECURITY block for the selected member is to be output, if additional member
protection has been granted for an access or borrowing right.

LAYOUT = *LMS-DEFAULT / *VARIABLE / *FIXED
This parameter defines the format of the directory to be output.

LAYOUT = *VARIABLE
The number of print columns is determined by the longest member designation within a
member type. With output to the screen and no special sorting, the layout is oriented to the
longest member designation in the output buffer, where subsequent outputs within a
member type only change if longer member designations occur.

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 419

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

LAYOUT = *FIXED
The directory is printed in a single column in fixed format. Single column means that the
entries in the directory appear one beneath the other.

SORT = *LMS-DEFAULT / *BY-NAME / *BY-VERSION / *BY-USER-DATE /
*BY-CREATION-DATE / *BY-MODIFICATION-DATE / *BY-ACCESS-DATE /
*BY-ELEMENT-SIZE / *BY-SECONDARY-NAME
Sort criterion for the directory entries of the selected members. The type is always used as
the first sort criterion.

SORT = *BY-NAME
The directory entries of the selected members are sorted on the basis of the following
sequence: type, name and version.

SORT = *BY-VERSION
The directory entries of the selected members are sorted on the basis of the following
sequence: type, version and name.

SORT = *BY-USER-DATE
The directory entries of the selected members are sorted on the basis of the following
sequence: type, user date, name and version.

SORT = *BY-CREATION-DATE
The directory entries of the selected members are sorted on the basis of the following
sequence: type, creation date, name and version.

SORT = *BY-MODIFICATION-DATE
The directory entries of the selected members are sorted on the basis of the following
sequence: type, modification date, name and version.

SORT = *BY-ACCESS-DATE
The directory entries of the selected members are sorted on the basis of the following
sequence: type, access date, name and version.

SORT = *BY-ELEMENT-SIZE
The directory entries of the selected members are sorted on the basis of the following
sequence: type, member size, name and version.

SORT = *BY-SECONDARY-NAME
The directory entries of the selected members are sorted on the basis of the following
sequence: type, secondary name, secondary attribute, name and version.

TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) /
*EDT(...)
Controls the log output.

SHOW-ELEMENT-ATTRIBUTES LMS statements

420 U8326-J-Z125-6-76

TEXT-OUTPUT = *LOGGING-PARAMETERS
The log is output to the output medium specified with MODIFY-LOGGING-PARAMETERS
TEXT-OUTPUT=.

TEXT-OUTPUT = *NONE
The log output is suppressed, apart from error messages.

TEXT-OUTPUT = *SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Determines the SYSLST file to which the output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLST01 through SYSLST99
is used.

TEXT-OUTPUT = *EDT(...)
Output is to the work file 9 of EDT. If an error occurs during log output, then the system
switches to the default output stream (SYSOUT).

WRITE-MODE = *EXTEND / *REPLACE
Write mode of the output in relation to the contents of work file 9.

WRITE-MODE = *EXTEND
If data exists in work file 9, the output will be added to this data. If there is no data in the
file, the output will be written at the beginning of the file.

WRITE-MODE = *REPLACE
The output will be written at the beginning of work file 9. Any data that is already in the
file will be replaced.

STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)
Structured output.

STRUCTURE-OUTPUT = *SYSINF
The structured output is placed in the SYSINF stream assigned by means of ASSIGN-
STREAM (see the [12]).

STRUCTURE-OUTPUT = *NONE
There is no structured output.

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 421

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

STRUCTURE-OUTPUT = <composed-name 1..255>(...)
Specifies the S variable in which the structured output is to be placed. This variable must
be declared as a dynamic list variable.
(Command: DECLARE-VARIABLE NAME=...(TYPE=*STRUCTURE),MULTIPLE-ELEMENTS=*LIST)

WRITE-MODE = *REPLACE / *EXTEND
Specifies whether the structured output is to be appended to any existing data in the list
variable or it to be written over it.

WRITE-MODE = *REPLACE
Overwrites any existing data in the list variable.

WRITE-MODE = *EXTEND
Appends the new list members to the existing list, if any.

Statement return code

Notes

– If the SECONDARY-NAME or SECONDARY-ATTRIBUTE operand is specified and if
the value of this operand is other than *ANY, then a header will also be included in the
directory output, providing information on the secondary name and the secondary
attribute. The secondary names, however, are not displayed at maximum length.

– In the case of delta members, the value output for ELEM-SIZE or the selection of the
member size is based on the memory allocation for the whole delta tree. Other
measurements of the size of individual member versions can be displayed by means of
SHOW-ELEMENT ...,TEXT-INFO=*STATISTICS.

– If a library list is specified, INFORMATION=*DELTA-STRUCTURE is not permitted. For
SECONDARY-NAME and SECONDARY-ATTRIBUTES, only the value *ANY is
allowed.

Required access rights

Read authorization for LIBRARY.

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64
64

130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0302
LMS0303
LMS1003
LMS1004
LMS0041

No error
Statement aborted by user
Syntax error
Internal error
Member not found
Member outside reference condition range
Error during wildcard processing with at least one member or file
Other error
System address space exhausted

SHOW-ELEMENT-ATTRIBUTES LMS statements

422 U8326-J-Z125-6-76

Parameter dependencies

The following dependencies exist between the INFORMATION, SORT and LAYOUT
operands:

– The current date or the member size only influences the sorting if it, too, is to be
included in the directory output. In this case, the INFORMATION operand must have a
setting other than *MINIMUM.

– The LAYOUT operand is only effective if INFORMATION = *MEDIUM/*MINIMUM is
specified. With all other settings, the directory is always output in fixed format.

– If INFORMATION = *MAXIMUM is specified, the information for each member will be
too long for a single line. The information will then be output in a format independent of
layout control.

– Output of the directory is accelerated if the INFORMATION operand is set to *MINIMUM
and the selection is restricted to the ELEMENT, VERSION and TYPE operands. All
other operands should be set to the value *ANY.

– The SORT and INFORMATION operands (except for INFORMATION=*SUMMARY)
influence the sort sequence of the directory. The following table shows these depen-
dencies:

 INFORMATION

 SORT *MINIMUM *MEDIUM / *MAXIMUM /
*PAR

 *BY-NAME 1. Type
 2. Name
 3. Version

 1. Type
 2. Name
 3. Version

 *BY-VERSION 1. Type
 2. Version
 3. Name

 1. Type
 2. Version
 3. Name

 *BY-USER-DATE as
SORT = BY-NAME

 1. Type
 2. User date
 3. Name
 4. Version

*BY-CREATION-DATE as
SORT = BY-NAME

 1. Type
 2. Creation date
 3. Name
 4. Version

*BY-MODIFICATION-DATE as
SORT = BY-NAME

 1. Type
 2. Modification date
 3. Name
 4. Version

LMS statements SHOW-ELEMENT-ATTRIBUTES

U8326-J-Z125-6-76 423

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

When generating structured output (STRUCTURE-OUTPUT =<composed-name 1..255>),
bear in mind the SORT and INFORMATION operands. The following dependencies exist:

– The sort order is identical to that used for text output, and the INFORMATION operand
has the same effect on the sort order as it does in text output.

– One list member is generated for each directory entry to be output.

– The INFORMATION operand influences the scope of information output in the S
variable.

– The individual variable members are described in chapter “Format of LMS output in S
variables” on page 445.

– If INFORMATION=*DELTA-STRUCTURE is specified, no structured output is
generated.

*BY-ACCESS-DATE as
SORT = BY-NAME

 1. Type
 2. Access date
 3. Name
 4. Version

*BY-ELEMENT-SIZE as
SORT = BY-NAME

 1. Type
 2. Member size
 3. Name
 4. Version

*BY-SECONDARY-NAME

 - with reference 1) 1. Type
 2. Secondary name
 3. Secondary attribute
 4. Name
 5. Version

 1. Type
 2. Secondary name
 3. Secondary attribute
 4. Name
 5. Version

- without reference 2) 1. Type
 2. Name
 3. Version

 1. Type
 2. Name
 3. Version

1) with reference means that in member selection either the secondary name or the
secondary attribute was specified with a value other than the default ANY:
SECONDARY-NAME = <alphanum-name...>
and/or SECONDARY-ATTRIBUTE = *CSECT or *ENTRY

2) without reference means that in member selection neither a secondary name nor a
secondary attribute was specified.

 INFORMATION

 SORT *MINIMUM *MEDIUM / *MAXIMUM /
*PAR

SHOW-ELEMENT-ATTRIBUTES LMS statements

424 U8326-J-Z125-6-76

Example

Outputting the directory for the library USER.BSPLIB. The library contains precisely one
member which is displayed with all its attributes.

//SHOW-ELEMENT-ATTRIBUTES -
 (LIBRARY=USER.BSPLIB,ELEMENT=*(VERSION=*)),INFORMATION=*MAXIMUM
INPUT LIBRARY= :N:$USER.USER.BSPLIB
TYPE = D
NAME = TEST
VERSION = @ VARIANT = 0001
--------------------------------GENERAL-----------------------------------
ELEM-SIZE = 12
STORAGEW = *FULL
STATE = *IN-HOLD HOLDER = MUBF
--------------------------------HISTORY-----------------------------------
USER-DATE = 2012-08-12 CRE-DATE = 2012-09-12 MOD-DATE = 2012-08-12
USER-TIME = 11:55:36 CRE-TIME = 11:55:36 MOD-TIME = 11:55:36
 ACC-DATE = 2012-08-12
 ACC-TIME = 11:55:36
--------------------------------SECURITY----------------------------------
READ-PASS = *NONE READ-USER = *OWNER *GROUP -
WR-PASS = *NONE WR-PASS = *OWNER - -

LMS statements SHOW-LIBRARY-ATTRIBUTES

U8326-J-Z125-6-76 425

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SHOW-LIBRARY-ATTRIBUTES

This statement displays all attributes set for the library. These are as follows:

– the attributes set by means of MODIFY-LIBRARY-ATTRIBUTES
– library size in 2-K units
– number of 2-K units available (can be removed by copying)
– library format (NK2/NK4)
– UPAM protection (Y/N)

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
The library whose attributes are to be displayed.

LIBRARY = *STD
The global library opened by OPEN-LIBRARY is displayed.

LIBRARY = <filename 1..54 without-vers>
Name of the library whose status is to be displayed.

LIBRARY = *LINK(...)
The status of the library assigned via a link name is displayed.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE
Controls the log output.

SHOW-LIBRARY-ATTRIBUTES

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) / *EDT(...)

*SYSLST(...)
⏐ SYSLST-NUMBER = *STD / <INTEGER 1..99>

*EDT(...)
⏐ WRITE-MODE = *EXTEND / *REPLACE

,STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)

<composed-name 1..255>(...)
 ⏐ WRITE-MODE = *REPLACE / *EXTEND

SHOW-LIBRARY-ATTRIBUTES LMS statements

426 U8326-J-Z125-6-76

TEXT-OUTPUT = *LOGGING-PARAMETERS
The log is output to the output medium specified with MODIFY-LOGGING-PARAMETERS
TEXT-OUTPUT=.

TEXT-OUTPUT = *NONE
The log output is suppressed, apart from error messages.

TEXT-OUTPUT = *SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Determines the SYSLST file to which the output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLST01 through SYSLST99
is used.

TEXT-OUTPUT = *EDT(...)
Output is to the work file 9 of EDT. If an error occurs during log output, then the system
switches to the default output stream (SYSOUT).

WRITE-MODE = *EXTEND / *REPLACE
Write mode of the output in relation to the contents of work file 9.

WRITE-MODE = *EXTEND
If data exists in work file 9, the output will be added to this data. If there is no data in the
file, the output will be written at the beginning of the file.

WRITE-MODE = *REPLACE
The output will be written at the beginning of work file 9. Any data that is already in the
file will be replaced.

STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)
Structured output.

STRUCTURE-OUTPUT = *SYSINF
The structured output is placed in the SYSINF stream assigned by means of ASSIGN-
STREAM (see the “SDF-P“ manual [12]).

STRUCTURE-OUTPUT = *NONE
There is no structured output.

LMS statements SHOW-LIBRARY-ATTRIBUTES

U8326-J-Z125-6-76 427

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

STRUCTURE-OUTPUT =<composed-name 1..255>(...)
Specifies the S variable in which the structured output is to be placed. This variable must
be declared as a dynamic list variable.
(Command: DECLARE-VARIABLE NAME =...(TYPE=*STRUCTURE), MULTIPLE-
ELEMENTS=*LIST)

WRITE-MODE = *REPLACE / *EXTEND
Specifies whether the structured output is to be appended to any existing data in the list
variable or it to be written over it.

WRITE-MODE = *REPLACE
Overwrites any existing data in the list variable.

WRITE-MODE = *EXTEND
Appends the new list members to the existing list, if any.

Statement return code

Note

The individual variable members are described in chapter “Format of LMS output in S
variables” on page 445.

Required access rights

Read authorization for LIBRARY.

Example

//SHOW-LIBRARY-ATTRIBUTES LIB=BSPLIB
INPUT LIBRARY= :1OSQ:$USER.BSPLIB
READ-PASS = *NONE READ-USER = *OWNER - -
WR-PASS = *YES WR-USER = *OWNER - -
EXEC-PASS = *NONE EXEC-USER = *OWNER - -
HOLD-PASS = *NONE HOLD-USER = *OWNER - -
ADMIN-PASS = *NONE ADMIN-USER = *OWNER - -
FILE-SIZE = 291 FREE-SIZE = 62 FORMAT = NK2 UPAM-PROT = N
ACCESS-DATE= *KEEP WR-CONTRPL = *NONE STORAGE= *STD

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64

130

CMD0001
LMS0129
CMD0230
LMS1002
LMS1004
LMS0041

No error
Statement aborted by user
Syntax error
Internal error
Other error
System address space exhausted

SHOW-LIBRARY-STATUS LMS statements

428 U8326-J-Z125-6-76

SHOW-LIBRARY-STATUS

This statement displays the status of the libraries used.

LMS outputs the following information on execution of the statement:

– name of the library/libraries
– status of the library/libraries (opened or closed)
– assigned link name, if any
– assigned library-specific default type, if any

LIBRARY = *ALL / *STD / <filename 1..54 without-vers> / *LINK(...)
The library whose status is to be displayed.

LIBRARY = *ALL
All libraries used are displayed.

LIBRARY = *STD
The global library opened by OPEN-LIBRARY is displayed.

LIBRARY = <filename 1..54 without-vers>
Name of the library whose status is to be displayed.

LIBRARY = *LINK(...)
The status of the library assigned via a link name is displayed.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

SHOW-LIBRARY-STATUS

LIBRARY = *ALL / *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

LMS statements SHOW-LIBRARY-STATUS

U8326-J-Z125-6-76 429

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Statement return code

Example

Five different libraries were used during the LMS run. One library was addressed via the
link name LIB1:

//SHOW-LIBRARY-STATUS
STATUS FILENAME MODE LINK DEF-TYPE
OPEN :N:$USER.LMSPL.LIB UPDATE
CLOSED :N:$USER.MODUL.LIB LIB1
CLOSED :N:$USER.MACRO.LIB M
CLOSED :N:$USER.QUELL.LIB
CLOSED :N:$USER.TEST.LIB

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64

130

CMD0001
LMS0129
CMD0230
LMS1002
LMS1004
LMS0041

No error
Statement aborted by user
Syntax error
Internal error
Other error
System address space exhausted

SHOW-LMS-DEFAULTS LMS statements

430 U8326-J-Z125-6-76

SHOW-LMS-DEFAULTS

This statement outputs the current values of the LMS defaults. These can be modified by
means of the MODIFY-LMS-DEFAULTS statement.

DEFAULTS = *STD
Outputs the default values for the following with their current settings: ELEMENT-
ATTRIBUTES, FILE-ATTRIBUTES, DESTROY-DATA, WRITE-MODE, DIALOG-
CONTROL, INFORMATION, LAYOUT, SORT, OUTPUT-FORM, DELETE-SOURCE and
PROTECTION.

DEFAULTS = *ALL
Outputs all defaults with their current values.

DEFAULTS = *ELEMENT-ATTRIBUTES
Outputs the current values for member type, source and target version, storage form and
the file attributes.

DEFAULTS = *FILE-ATTRIBUTES
The current value for the file access method is output.

DEFAULTS = *DESTROY-DATA
Whether or not data is to be overwritten is output.

DEFAULTS = *WRITE-MODE
The current value for the write mode is output.

DEFAULTS = *DIALOG-CONTROL
The current value for the dialog control is output.

DEFAULTS = *INFORMATION
Outputs the current setting for the scope of directory information to be output.

DEFAULTS = *LAYOUT
Outputs the current setting for the layout of the directory to be output.

DEFAULTS = *SORT
Outputs the current setting for the sort criterion of the directory to be output.

SHOW-LMS-DEFAULTS

DEFAULTS = *STD / *ALL / list-poss(2000): *ELEMENT-ATTRIBUTES / *FILE-ATTRIBUTES /
 *DESTROY-DATA / *WRITE-MODE / *DIALOG-CONTROL / *INFORMATION / *LAYOUT /
 *SORT / *OUTPUT-FORM / *DELETE-SOURCE / *PROTECTION / *MAX-ERROR-WEIGHT /
 *EDT-MODE / *NEXT-ATTEMPT / *COMPARE-PARAMETERS / *TEXT-INFORMATION /
 *MODULE-INFORMATION / *PHASE-INFORMATION / *LLM-INFORMATION

LMS statements SHOW-LMS-DEFAULTS

U8326-J-Z125-6-76 431

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

DEFAULTS = *OUTPUT-FORM
Outputs the current setting for the output form.

DEFAULTS = *DELETE-SOURCE
Outputs the default setting for source file deletion, i.e. whether the source file is to be
deleted or kept.

DEFAULTS = *PROTECTION
Outputs the default setting for the adoption of protection attributes.

DEFAULTS = *MAX-ERROR-WAIT
Outputs the default setting for spin-off control.

DEFAULTS = *EDT-MODE
Outputs the default setting for the mode that EDT is to be called in.

DEFAULTS = *NEXT-ATTEMPT
Outputs the default setting for the control of attempts to open files, etc.

DEFAULTS = *COMPARE-PARAMETERS
Outputs the default setting for the comparison parameters.

DEFAULTS = *TEXT-INFORMATION
Outputs the default setting for the scope of information for textual members.

DEFAULTS = *MODULE-INFORMATION
Outputs the default setting for the scope of information for object modules.

DEFAULTS = *PHASE-INFORMATION
Outputs the default setting for the scope of information for phases.

DEFAULTS = *LLM-INFORMATION
Outputs the default setting for the scope of information for link and load modules.

Statement return code

Required access rights

No access rights are necessary.

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64

130

CMD0001
LMS0129
CMD0230
LMS1002
LMS1004
LMS0041

No error
Statement aborted by user
Syntax error
Internal error
Other error
System address space exhausted

SHOW-LMS-DEFAULTS LMS statements

432 U8326-J-Z125-6-76

Example

//SHOW-LMS-DEFAULTS *ALL
ELEMENT-ATTRIBUTES
 TYPE = *NONE
 ELEMENT-VERSION = *ALL
 TO-ELEM-VERSION = *BY-SOURCE
 STORAGE-FORM = *STD
 SOURCE-ATTRIBUTES = *STD
FILE-ATTRIBUTES
 ACCESS-METHOD = *ISAM
DESTROY-DATA = *NO
WRITE-MODE = *CREATE
DIALOG-CONTROL = *NO
INFORMATION = *MEDIUM
LAYOUT = *VARIABLE
SORT = *BY-NAME
OUTPUT-FORM = *STD
DELETE-SOURCE = *NO
PROTECTION = *STD
MAX-ERROR-WEIGHT = *SERIOUS
EDT-MODE = *COMPATIBLE
NEXT-ATTEMPT = *NO
COMPARE-PARAMETERS
 RECORD-PART = *ALL
 SPACES = *STD
 INFORMATION = *MEDIUM
 LAYOUT = *COMPATIBLE
 JOIN-ELEMENT-SETS = *NO
TEXT-INFORMATION = *ALL
MODULE-INFORMATION = *ALL
PHASE-INFORMATION = *ALL
LLM-INFORMATION = *ALL

All LMS default values are output. These values are applicable immediately after the start
of LMS.

LMS statements SHOW-LOGGING-PARAMETERS

U8326-J-Z125-6-76 433

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

SHOW-LOGGING-PARAMETERS

This statement outputs the global LMS option values currently in force. These values are
modified by means of the MODIFY-LOGGING-PARAMETERS statement.

If this statement is specified without operands, the presettings for all of the parameters are
output (see example).

PARAMETERS = *ALL / list-poss(2000): *LOGGING / *TEXT-OUTPUT /
*OUTPUT-LAYOUT
Specifies the parameters.

PARAMETERS = *ALL
The current settings of all the parameters are output.

PARAMETERS = *LOGGING
The setting for the scope of LMS logging is output.

PARAMETERS = *TEXT-OUTPUT
The output medium setting is output.

PARAMETERS = *OUTPUT-LAYOUT
The parameter settings for the LMS log format are output.

Required access rights

No access rights are necessary.

Example

//SHOW-LOGGING-PARAMETERS
LOGGING = *MINIMUM
TEXT-OUTPUT = *SYSOUT
OUTPUT-LAYOUT
 LINES-PER-PAGE = 60
 LINE-SIZE = 132
 EXTRA-FORM-FEED = *NO
 HEADER-LINES = *YES

All global LMS options are output. These values are applicable immediately after the start
of LMS.

SHOW-LOGGING-PARAMETERS

PARAMETERS = *ALL / list-poss(2000): *LOGGING / *TEXT-OUTPUT / *OUTPUT-LAYOUT

SHOW-STATISTICS LMS statements

434 U8326-J-Z125-6-76

SHOW-STATISTICS

Comparison statistics are generated when comparing members with COMPARE-
ELEMENT. COMPARE-ELEMENT stores these comparison statistics in an internal
memory area C0. After execution of the COMPARE-ELEMENT statement, C0 is added to
area C1. C0 is reinitialized before COMPARE-ELEMENT is executed again.

The SHOW-STATISTICS statement outputs these comparison statistics. To permit this, the
number of the area must be specified.

NUMBER = *C0 / *C1
Number of the area to be output:

*C0: area containing the statistics for the current comparison.

*C1: area containing the overall statistics for all the comparisons performed thus far in
this LMS run.

HEADER-LINE = *NONE / <c-string 1..132>
It is possible to control whether or not a user-specific header (<c-string>) is output. By
default no user-specific header is output.

TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) /
*EDT(...)
Controls the log output.

TEXT-OUTPUT = *LOGGING-PARAMETERS
The log is output to the output medium specified with MODIFY-LOGGING-PARAMETERS
TEXT-OUTPUT=.

SHOW-STATISTICS

NUMBER = *C0 / *C1

,HEADER-LINE = *NONE / <c-string 1..132>

,TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) / *EDT(...)

*SYSLST(...)
⏐ SYSLST-NUMBER = *STD / <INTEGER 1..99>

*EDT(...)
⏐ WRITE-MODE = *EXTEND / *REPLACE

,STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)

<composed-name 1..255>(...)
 ⏐ WRITE-MODE = *REPLACE / *EXTEND

LMS statements SHOW-STATISTICS

U8326-J-Z125-6-76 435

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

TEXT-OUTPUT = *NONE
The log output is suppressed, apart from error messages.

TEXT-OUTPUT = *SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Determines the SYSLST file to which the output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLST01 through SYSLST99
is used.

TEXT-OUTPUT = *EDT(...)
Output is to the work file 9 of EDT. If an error occurs during log output, then the system
switches to the default output stream (SYSOUT).

WRITE-MODE = *EXTEND / *REPLACE
Write mode of the output in relation to the contents of work file 9.

WRITE-MODE = *EXTEND
If data exists in work file 9, the output will be added to this data. If there is no data in the
file, the output will be written at the beginning of the file.

WRITE-MODE = *REPLACE
The output will be written at the beginning of work file 9. Any data that is already in the
file will be replaced.

STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)
Structured output.

STRUCTURE-OUTPUT = *SYSINF
The structured output is placed in the SYSINF stream assigned by means of ASSIGN-
STREAM (see the [12]).

STRUCTURE-OUTPUT = *NONE
There is no structured output.

SHOW-STATISTICS LMS statements

436 U8326-J-Z125-6-76

STRUCTURE-OUTPUT = <composed-name 1..255>(...)
Specifies the S variable in which the structured output is to be placed. This variable must
be declared as a dynamic list variable.
(Command: DECLARE-VARIABLE NAME =...(TYPE=*STRUCTURE), MULTIPLE-
ELEMENTS=*LIST)

WRITE-MODE = *REPLACE / *EXTEND
Specifies whether the structured output is to be appended to any existing data in the
list variable or it to be written over it.

WRITE-MODE = *REPLACE
Overwrites any existing data in the list variable.

WRITE-MODE = *EXTEND
Appends the new list members to the existing list, if any.

The individual variable members are described in chapter “Format of LMS output in S
variables” on page 445.

Statement return code

Required access rights

No access rights are necessary.

Notes

The maximum value for element-count fields is 99,999. For line-count fields, it is
999,999,999.

On SYSOUT, LMS shows up to 8 digits if the value is less than 100 millions, otherwise it
shows the value in exponential notation, e.g. 12345E+4. The exact values can be obtained
from the structured output into an S variable or from text output to SYSLST, EDT or a library
member.

If the 9-digit limit overflows, the message LMS0313 will be shown and the affected counters
will continue counting modulo 109.

(SC2) SC1 Maincode Meaning

2
2

 0
0
0
1

32
64

130

CMD0001
LMS0129
LMS0313
CMD0230
LMS1002
LMS1004
LMS0041

No error
Statement aborted by user
Overflow in statistic counter
Syntax error
Internal error
Other error
System address space exhausted

LMS statements SHOW-STATISTICS

U8326-J-Z125-6-76 437

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Example

The S variable C1 was declared as follows:

/DECL-VARIABLE C1(TYPE=*STRUCTURE),MULTIPLE-ELEMENTS=*LIST

Two comparisons have been performed. Memory C0 contains the result of the last
comparison, memory C1 contains the totals for the comparisons performed thus far.

//SHOW-STATISTICS NUMBER=*C0
AREA C0
 PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 0 0 - 0 - - 0 0
C (CHANGED) 1 5 5 0 9 14 9 1
I (INSERTED) 0 0 0 - - 0 - -
D (DELETED) - - - - 0 0 0 0
--
 TOTAL 1 5 5 0 9 14 9 1
//SHOW-STATISTICS NUMBER=*C1, STRUCTURE-OUTPUT=C1, TEXT-OUTPUT=*NONE

Structure C1 can be viewed with /SHOW-VARIABLE C1#1:

C1(*LIST).SAME.NUM-OF-PRIMARY = 5
C1(*LIST).SAME.NUM-OF-SECONDARY = 5
C1(*LIST).SAME.LINE.PRIMARY = 37
C1(*LIST).SAME.LINE.INS = 0
C1(*LIST).SAME.LINE.SAME = 37
C1(*LIST).SAME.LINE.DEL = 0
C1(*LIST).SAME.LINE.SECONDARY = 37
C1(*LIST).CHA.NUM-OF-PRIMARY = 0
C1(*LIST).CHA.

.....
C1(*LIST).DEL.LINE.SECONDARY = 0
C1(*LIST).TOTAL.NUM-OF.PRIMARY = 7
C1(*LIST).TOTAL.NUM-OF.SECONDARY = 5
C1(*LIST).TOTAL.LINE.PRIMARY = 47
C1(*LIST).TOTAL.LINE.INS = 10
C1(*LIST).TOTAL.LINE.SAME = 37
C1(*LIST).TOTAL.LINE.DEL = 0
C1(*LIST).TOTAL.LINE.SECONDARY = 37

SHOW-TYPE-ATTRIBUTES LMS statements

438 U8326-J-Z125-6-76

SHOW-TYPE-ATTRIBUTES

This statement outputs all the attributes set for a given member type.

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library containing the type whose attributes are to be displayed.

LIBRARY = *STD
The library opened globally is used.

LIBRARY = <filename 1..54 without-vers>
Name of the library whose type attributes are to be displayed.

LIBRARY = *LINK(...)
The type attributes of a library assigned via a link name are displayed.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of a /ADD-FILE-LINK
command prior to calling LMS.

TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Member type whose attributes are to be output. If the LMS default value is set to
*UNDEFINED, *LMS-DEFAULT has the same effect as *ALL.

TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) /
*EDT(...)
Controls the log output.

SHOW-TYPE-ATTRIBUTES

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <structured-name 1..8>

,TYPE = *LMS-DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>

,TEXT-OUTPUT = *LOGGING-PARAMETERS / *NONE / *SYSOUT / *SYSLST(...) / *EDT(...)

*SYSLST(...)
⏐ SYSLST-NUMBER = *STD / <INTEGER 1..99>

*EDT(...)
⏐ WRITE-MODE = *EXTEND / *REPLACE

,STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)

<composed-name 1..255>(...)
 ⏐ WRITE-MODE = *REPLACE / *EXTEND

LMS statements SHOW-TYPE-ATTRIBUTES

U8326-J-Z125-6-76 439

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

TEXT-OUTPUT = *LOGGING-PARAMETERS
The log is output to the output medium specified with MODIFY-LOGGING-PARAMETERS
TEXT-OUTPUT=.

TEXT-OUTPUT = *NONE
The log output is suppressed, apart from error messages.

TEXT-OUTPUT = *SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Determines the SYSLST file to which the output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLST01 through SYSLST99
is used.

TEXT-OUTPUT = *EDT(...)
Output is to the work file 9 of EDT. If an error occurs during log output, then the system
switches to the default output stream (SYSOUT).

WRITE-MODE = *EXTEND / *REPLACE
Write mode of the output in relation to the contents of work file 9.

WRITE-MODE = *EXTEND
If data exists in work file 9, the output will be added to this data. If there is no data in the
file, the output will be written at the beginning of the file.

WRITE-MODE = *REPLACE
The output will be written at the beginning of work file 9. Any data that is already in the
file will be replaced.

STRUCTURE-OUTPUT = *SYSINF / *NONE / <composed-name 1..255>(...)
Structured output.

STRUCTURE-OUTPUT = *SYSINF
The structured output is placed in the SYSINF stream assigned by means of ASSIGN-
STREAM (see the “SDF-P“ manual [12]).

STRUCTURE-OUTPUT = *NONE
There is no structured output.

SHOW-TYPE-ATTRIBUTES LMS statements

440 U8326-J-Z125-6-76

STRUCTURE-OUTPUT = <composed-name 1..255>(...)
Specifies the S variable in which the structured output is to be placed. This variable must
be declared as a dynamic list variable.
(Command: DECLARE-VARIABLE NAME =...(TYPE=*STRUCTURE), MULTIPLE-
ELEMENTS=*LIST)

WRITE-MODE = *REPLACE / *EXTEND
Specifies whether the structured output is to be appended to any existing data in the
list variable or it to be written over it.

WRITE-MODE = *REPLACE
Overwrites any existing data in the list variable.

WRITE-MODE = *EXTEND
Appends the new list members to the existing list, if any.

The individual variable members are described in chapter “Format of LMS output in S
variables” on page 445).

Statement return code

Required access rights

Read authorization for LIBRARY.

Notes

– If a certain type is specified, the values explicitly set using MODIFY-TYPE-ATTR, if any,
will be output. Otherwise, the statement will output the implicit default values.

– If TYPE=* is specified, the statement outputs the attributes for all explicitly declared
types and for types which are embodied by existing members.

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64
64
64

130

CMD0001
LMS0129
CMD0230
LMS1002
LMS0304
LMS1003
LMS1004
LMS0041

No error
Statement aborted by user
Syntax error
Internal error
Type not found
Error during wildcard processing with at least one member or file
Other error
System address space exhausted

LMS statements SHOW-TYPE-ATTRIBUTES

U8326-J-Z125-6-76 441

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

Example

The type attributes for member type S are set and then displayed. The library used is the
globally set library.

//MODIFY-TYPE-ATTRIBUTES TYPE=S,CONVENTION=*STD-SEQUENCE(EXAMPLE=V001)
//SHOW-TYPE-ATTRIBUTES TYPE=S
INPUT LIBRARY= :1OSQ:$USER.LIB.MODTYATT
TYPE = S
SUPER-TYPE = *NONE
CONVENTION = *STD-SEQUENCE
EXAMPLE = V001
INIT-ELEM-P= *NONE
ADMINISTRAT= *NONE
STORAGE = *STD WR-CONTROL = *NONE

SHOW-USER-EXITS LMS statements

442 U8326-J-Z125-6-76

SHOW-USER-EXITS

This statement displays the active user exits.

The SHOW-USER-EXITS statement has no operands.

Statement return code

Example

//SHOW-USER-EXITS
FUNCTION ENTRY LIBRARY INT
SHOW USELST TEST.LIB V1

SHOW-USER-EXITS

(SC2) SC1 Maincode Meaning
 0
1

32
64

130

CMD0001
CMD0230
LMS1002
LMS1004
LMS0041

No error
Syntax error
Internal error
Other error
System address space exhausted

LMS statements WRITE-COMMENT

U8326-J-Z125-6-76 443

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

7

WRITE-COMMENT

This statement is used to write comments to the output medium defined by the statement
//MODIFY-LOGGING-PARAMETERS TEXT-OUTPUT=..., unlike the WRITE-TEXT
statement, which always directs output to SYSOUT or SYSLST.

COMMENT = ' ' / <c-string 1..1024 with-low>
Comment text. If nothing is specified, a blank is used as the default value, i.e. a blank line
is generated.

Statement return code

Example

The text enclosed in apostrophes, which may also extend over multiple lines, is interpreted
as a comment.

//write-comment 'This is the last LMS statement to be described.-
// A new chapter begins on the next page.'

WRITE-COMMENT

COMMENT = ’ ’ / <c-string 1..1024 with-low>

(SC2) SC1 Maincode Meaning

2
 0
0
1

32
64

130

CMD0001
LMS0129
CMD0230
LMS1002
LMS1004
LMS0041

No error
Statement aborted by user
Syntax error
Internal error
Other error
System address space exhausted

WRITE-COMMENT LMS statements

444 U8326-J-Z125-6-76

U8326-J-Z125-6-76 445

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

8

8 Format of LMS output in S variables
If the structure members of a variable are invalid due to underlying conditions (see below),
the members are created and filled with an empty string or 0.

In the tables below, the columns have the following meanings: T stands for data type (and
the entries S and I for string and integer, respectively), W stands for information selection
(only with the format for //SHOW-ELEMENT-ATTRIBUTES; see page 447) and Con.
stands for condition.

8.1 COMPARE-ELEMENT statement

Output information Name of S variable T Contents Con.
Library name (first member) varname#.PRIMARY.LIB S <filename 1..54>

Member name (first member) varname#.PRIMARY.ELEM S <comp-name 1..64>

Member version (first member) varname#.PRIMARY.VERSION S <comp-name 1..24> /
´*UP-LIM´

Member type (first member) varname#.PRIMARY.TYPE S <alphanum 1..8>

Library name (second member) varname#.SECONDARY.LIB S <comp-name 1..64>

Member name (second member) varname#.SECONDARY.ELEM S <comp-name 1..64>

Member version (second member) varname#.SECONDARY.VERSION S <comp-name 1..24> /
´*UP-LIM´

Member type (second member) varname#.SECONDARY.TYPE S <alphanum 1..8>

Result of comparison varname#.COMPARE-RESULT S ´*SAME´ / ´*CHA´ /
´*DEL´ / ´*INS´

Number of records in first member varname#.LINE.PRIMARY I <integer>

Number of inserted records varname#.LINE.INS I <integer>

Number of same records varname#.LINE.SAME I <integer>

Number of deleted records varname#.LINE.DEL I <integer>

Number of records in second member varname#.LINE.SECONDARY I <integer>

FIND-ELEMENT statement Format of LMS output in S variables

446 U8326-J-Z125-6-76

8.2 FIND-ELEMENT statement

Output information Name of S variable T Contents Con.
Library name varname#.LIB S <filename 1..54>

Member name varname#.ELEM S <comp-name 1..64>

Member version varname#.VERSION S <comp-name 1..24> /
´*UP-LIM´

Member type varname#.TYPE S <alphanum 1..8>

Number of records varname#.LINE.ALL I <integer>

Number of hit records varname#.LINE.MATCH I <integer>

Format of LMS output in S variables SHOW-ELEMENT-ATTRIBUTES statement

U8326-J-Z125-6-76 447

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

8

8.3 SHOW-ELEMENT-ATTRIBUTES statement

Information selection Selection#

INFORMATION = *MINIMUM / *MEDIUM 1

INFORMATION = *MAXIMUM 2

INFORMATION = *PARAMETERS (GENERAL=*YES) 3

INFORMATION = *PARAMETERS (HISTORY=*YES) 4

INFORMATION = *PARAMETERS (SECURITY=*YES) 5

INFORMATION = *SUMMARY 6

Output information Name of S variable T Contents W Con.
Library name varname#.LIB S <filename 1..54> 1-6

Member name varname#.ELEM S <comp-name 1..64> 1-5

Member version varname#.VERSION S <comp-name 1..24> /
´*UP-LIM´

1-5

Member type varname#.TYPE S <alphanum 1..8> 1-6

Secondary name varname#.SECONDARY-NAME S <alphanum 1..32> 1,2 *1

Secondary attribute varname#.SECONDARY-ATTR S ´*CSECT´ / ´*ENTRY´ 1,2 *1

User date varname#.USER-DATE S <yyyy-mm-dd> 2,4

User time varname#.USER-TIME S <hh:mm:ss> 2,4

Date of member creation varname#.CRE-DATE S <yyyy-mm-dd> 2,4

Time of member creation varname#.CRE-TIME S <hh:mm:ss> 2,4

Date of last modification to member varname#.MOD-DATE S <yyyy-mm-dd> 2,4

Time of last modification to member varname#.MOD-TIME S <hh:mm:ss> 2,4

Date of last access to member varname#.ACCESS-DATE S ´*NONE´ / <yyyy-mm-dd> 2,4

Time of last access to member varname#.ACCESS-TIME S ´*NONE´ / <hh:mm:ss> 2,4

Storage form (full / delta storage) varname#.STOR-FORM S ´*FULL´ / ´*DELTA´ 2,3

Character set assigned to the member varname#.CODED-CHAR-SET S ´´ / <name 1..8> 2,3

Status of the member varname#.STA S ´*FREE´ / ´*IN-HOLD´ 2,3

Holder assigned to the member varname#.HOLDER S ´´ / <name 1..8> 2,3

Indicator, of whether member protection
has been defined

varname#.PROT-DEFI S ´*NONE´ / ´*PAR´ 2,5

Indicator for read protection varname#.READ.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

2,5 *2

Name of read guard varname#.READ.GUARD-NAME S <filename 1..18> 2,5 *3

SHOW-ELEMENT-ATTRIBUTES statement Format of LMS output in S variables

448 U8326-J-Z125-6-76

Indicator for read authorization (BACL) varname#.READ.USER-DEFI S ´*NONE´ / ´*LIST´ 2,5 *4

Indicator for read authorization of owner varname#.READ.OWNER S ´´ / ´*OWNER´ 2,5 *5

Indicator for read authorization of
owner’s group

varname#.READ.GROUP S ´´ / ´*GROUP´ 2,5 *5

Indicator for read authorization for
OTHERS

varname#.READ.OTHERS S ´´ / ´*OTHERS´ 2,5 *5

Indicator of whether a read password has
been defined for the member

varname#.READ.PASS S ´*NO´ / ´*YES´ 2,5 *4

Indicator for write protection varname#.WRITE.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

2,5 *2

Name of write guard varname#.WRITE.GUARD-NAME S <filename 1..18> 2,5 *3

Indicator for write authorization (BACL) varname#.WRITE.USER-DEFI S ´*NONE´ / ´*LIST´ 2,5 *4

Indicator for write authorization of owner varname#.WRITE.OWNER S ´´ / ´*OWNER´ 2,5 *5

Indicator for write authorization of
owner’s group

varname#.WRITE.GROUP S ´´ / ´*GROUP´ 2,5 *5

Indicator for write authorization for
OTHERS

varname#.WRITE.OTHERS S ´´ / ´*OTHERS´ 2,5 *5

Indicator of whether a write password has
been defined for the member

varname#.WRITE.PASS S ´*NO´ / ´*YES´ 2,5 *4

Indicator for execute protection varname#.EXEC.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

2,5 *2

Name of execute guard varname#.EXEC.GUARD-NAME S <filename 1..18> 2,5 *3

Indicator for execute authorization
(BACL)

varname#.EXEC.USER-DEFI S ´*NONE´ / ´*LIST´ 2,5 *4

Indicator for execute authorization of
owner

varname#.EXEC.OWNER S ´´ / ´*OWNER´ 2,5 *5

Indicator for execute authorization of
owner’s group

varname#.EXEC.GROUP S ´´ / ´*GROUP´ 2,5 *5

Indicator for execute authorization for
OTHERS

varname#.EXEC.OTHERS S ´´ / ´*OTHERS´ 2,5 *5

Indicator of whether an execute
password has been defined for the mem-
ber

varname#.EXEC.PASS S ´*NO´ / ´*YES´ 2,5 *4

Indicator for hold protection varname#.HOLD.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

2,5 *2

Name of hold guard varname#.HOLD.GUARD-NAME S <filename 1..18> 2,5 *3

Indicator for hold authorization (BACL) varname#.HOLD.USER-DEFI S ´*NONE´ / ´*LIST´ 2,5 *4

Indicator for hold authorization of owner varname#.HOLD.OWNER S ´´ / ´*OWNER´ 2,5 *5

Indicator for hold authorization of owner’s
group

varname#.HOLD.GROUP S ´´ / ´*GROUP´ 2,5 *5

Output information Name of S variable T Contents W Con.

Format of LMS output in S variables SHOW-ELEMENT-ATTRIBUTES statement

U8326-J-Z125-6-76 449

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

8

*1 : SORT = *BY-SECONDARY-NAME and SECONDARY-NAME ≠ *ANY
*2 : varname#.PROT-DEFI = ´*PAR´
*3 : varname#.PROT-DEFI = ´*PAR´ and varname#.xxxx.DEFI = ´*BY-GUARD´
*4 : varname#.PROT-DEFI = ´*PAR´ and varname#.xxxx.DEFI = ´*PAR´
*5 : *4 and varname#.xxxx.USER-DEFI = ´*LIST´

Indicator for hold authorization for
OTHERS

varname#.HOLD.OTHERS S ´´ / ´*OTHERS´ 2,5 *5

Indicator of whether an hold password
has been defined for the member

varname#.HOLD.PASS S ´*NO´ / ´*YES´ 2,5 *4

Member size in 2K pages varname#.ELEM-SIZE I <integer> 2,3

Number of members for member type varname#.NUM-OF-ELEM I <integer> 6

Output information Name of S variable T Contents W Con.

SHOW-LIBRARY-ATTRIBUTES statement Format of LMS output in S variables

450 U8326-J-Z125-6-76

8.4 SHOW-LIBRARY-ATTRIBUTES statement

Output information Name of S variable T Contents Con.
Library name varname#.LIB S <filename 1..54>

Permissible storage form varname#.STOR-FORM S ´*STD´ / ´*NONE´ /
´*FULL´ / ´*DELTA´

Control of additional checks varname#.WRITE-CONTR S ´*NONE´ / ´*ACTIVATE´
´*DEACTIVATE´

Indicator for recording of access dates varname#.ACCESS-DATE S ´*NONE´ / ´*KEEP´

Indicator for administration protection varname#.ADM.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

Name of administration guard varname#.ADM.GUARD-NAME S <filename 1..18> *3

Indicator for administer authorization (BACL) varname#.ADM.USER-DEFI S ´*NONE´ / ´*LIST´ *4

Indicator for administer authorization of owner varname#.ADM.OWNER S ´´ / ´*OWNER´ *5

Indicator for administer authorization of owner’s
group

varname#.ADM.GROUP S ´´ / ´*GROUP´ *5

Indicator for administer authorization for OTHERS varname#.ADM.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether an administration password
has been defined for the member

varname#.ADM.PASS S ´*NO´ / ´*YES´ *4

Indicator of whether member protection has been
defined

varname#.PROT-DEFI S ´*NONE´ / ´*PAR´

Indicator for read protection varname#.PROT.READ-DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

*2

Name of read guard varname#.PROT.READ.GUARD-
NAME

S <filename 1..18> *3

Indicator for read authorization (BACL) varname#.PROT.READ.USER-
DEFI

S ´*NONE´ / ´*LIST´ *4

Indicator for read authorization of owner varname#.PROT.READ.OWNER S ´´ / ´*OWNER´ *5

Indicator for read authorization of owner’s group varname#.PROT.READ.GROUP S ´´ / ´*GROUP´ *5

Indicator for read authorization for OTHERS varname#.PROT.READ.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether a read password has been
defined for the member

varname#.PROT.READ.PASS S ´*NO´ / ´*YES´ *4

Indicator for write protection varname#.PROT.WRITE.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

*2

Name of write guard varname#.PROT.WRITE.GUARD-
NAME

S <filename 1..18> *3

Indicator for write authorization (BACL) varname#.PROT.WRITE.USER-
DEFI

S ´*NONE´ / ´*LIST´ *4

Indicator for write authorization of owner varname#.PROT.WRITE.OWNER S ´´ / ´*OWNER´ *5

Indicator for write authorization of owner’s group varname#.PROT.WRITE.GROUP S ´´ / ´*GROUP´ *5

Indicator for write authorization for OTHERS varname#.PROT.WRITE.OTHERS S ´´ / ´*OTHERS´ *5

Format of LMS output in S variables SHOW-LIBRARY-ATTRIBUTES statement

U8326-J-Z125-6-76 451

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

8

*2 : varname#.PROT-DEFI = ´*PAR´
*3 : varname#.PROT-DEFI = ´*PAR´ and varname#.xxxx.DEFI = ´*BY-GUARD´
*4 : varname#.PROT-DEFI = ´*PAR´ and varname#.xxxx.DEFI = ´*PAR´
*5 : *4 and varname#.xxxx.USER-DEFI = ´*LIST´

Indicator of whether a write password has been
defined for the member

varname#.PROT.WRITE.PASS S ´*NO´ / ´*YES´ *4

Indicator for execute protection varname#.PROT.EXEC.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

*2

Name of execute guard varname#.PROT.EXEC.GUARD-
NAME

S <filename 1..18> *3

Indicator for execute authorization (BACL) varname#.PROT.EXEC.USER-
DEFI

S ´*NONE´ / ´*LIST´ *4

Indicator for execute authorization of owner varname#.PROT.EXEC.OWNER S ´´ / ´*OWNER´ *5

Indicator for execute authorization of owner’s group varname#.PROT.EXEC.GROUP S ´´ / ´*GROUP´ *5

Indicator for execute authorization for OTHERS varname#.PROT.EXEC.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether an execute password has been
defined for the member

varname#.PROT.EXEC.PASS S ´*NO´ / ´*YES´ *4

Indicator for hold protection varname#.PROT.HOLD.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

*2

Name of hold guard varname#.PROT.HOLD.GUARD-
NAME

S <filename 1..18> *3

Indicator for hold authorization (BACL) varname#.PROT.HOLD.USER-
DEFI

S ´*NONE´ / ´*LIST´ *4

Indicator for hold authorization of owner varname#.PROT.HOLD.OWNER S ´´ / ´*OWNER´ *5

Indicator for hold authorization of owner’s group varname#.PROT.HOLD.GROUP S ´´ / ´*GROUP´ *5

Indicator for hold authorization for OTHERS varname#.PROT.HOLD.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether a hold password has been
defined for the member

varname#.PROT.HOLD.PASS S ´*NO´ / ´*YES´ *4

Format of the library varname#.LIB-FORM S ´*NK2´ / ´*NK4´

Indicator of whether the library is (UPAM) protected varname#.PROT-LIB S ´*YES´ / ´*NO´

Library size in 2-K pages varname#.F-SIZE I <integer>

Number of available 2-K pages varname#.FREE-SIZE I <integer>

Output information Name of S variable T Contents Con.

SHOW-STATISTICS statement Format of LMS output in S variables

452 U8326-J-Z125-6-76

8.5 SHOW-STATISTICS statement

Output information Name of S variable T Contents Con.
Number of primary members (result: “same”) varname#.SAME.NUM-OF-

PRIMARY
I <integer>

Number of secondary members (result: “same”) varname#.SAME.NUM-OF-
SECONDARY

I <integer>

Number of primary member records (result:
“same”)

varname#.SAME.LINE.PRIMARY I <integer>

varname#.SAME.LINE.INS I 0

Number of same records (result: “same”) varname#.SAME.LINE.SAME I <integer>

varname#.SAME.LINE.DEL I 0

Number of secondary member records (result:
“same”)

varname#.SAME.LINE.
SECONDARY

I <integer>

Number of primary members (result: “changed”) varname#.CHA.NUM-OF-
PRIMARY

I <integer>

Number of secondary members (result:
“changed”)

varname#.CHA.NUM-OF-
SECONDARY

I <integer>

Number of primary member records (result:
“changed”)

varname#.CHA.LINE.PRIMARY I <integer>

Number of inserted records (result: “changed”) varname#.CHA.LINE.INS I <integer>

Number of same records (result: “changed”) varname#.CHA.LINE.SAME I <integer>

Number of deleted records (result: “changed”) varname#.CHA.LINE.DEL I <integer>

Number of secondary member records (result:
“changed”)

varname#.CHA.LINE.
SECONDARY

I <integer>

Number of primary members (result: “inserted”) varname#.INS.NUM-OF-PRIMARY I <integer>

varname#.INS.NUM-OF-
SECONDARY

I 0

Number of primary member records (result:
“inserted”)

varname#.INS.LINE.PRIMARY I <integer>

Number of inserted records (result: “inserted”) varname#.INS.LINE.INS I <integer>

varname#.INS.LINE.SAME I 0

varname#.INS.LINE.DEL I 0

Number of secondary member records (result:
“inserted”)

varname#.INS.LINE.SECONDARY I 0

varname#.DEL.NUM-OF-
PRIMARY

I 0

Format of LMS output in S variables SHOW-STATISTICS statement

U8326-J-Z125-6-76 453

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

8

Fields with a value of 0 are created in order to keep the variable substructures uniform.

Number of secondary members (result:
“deleted”)

varname#.DEL.NUM-OF-
SECONDARY

I <integer>

varname#.DEL.LINE.PRIMARY I 0

varname#.DEL.LINE.INS I 0

varname#.DEL.LINE.SAME I 0

Number of deleted records (result: “deleted”) varname#.DEL.LINE.DEL I <integer>

Number of secondary member records (result:
“deleted”)

varname#.DEL.LINE.
SECONDARY

I <integer>

Number of primary members (total) varname#.TOTAL.NUM-OF-
PRIMARY

I <integer>

Number of secondary members (total) varname#.TOTAL.NUM-OF-
SECONDARY

I <integer>

Number of primary member records (total) varname#.TOTAL.LINE.PRIMARY I <integer>

Number of inserted records (total) varname#.TOTAL.LINE.INS I <integer>

Number of same records (total) varname#.TOTAL.LINE.SAME I <integer>

Number of deleted records (total) varname#.TOTAL.LINE.DEL I <integer>

Number of secondary member records (total) varname#.TOTAL.LINE.
SECONDARY

I <integer>

Output information Name of S variable T Contents Con.

SHOW-TYPE-ATTRIBUTES statement Format of LMS output in S variables

454 U8326-J-Z125-6-76

8.6 SHOW-TYPE-ATTRIBUTES statement

Output information Name of S variable T Contents Con.
Library name varname#.LIB S <filename 1..54>

Member type varname#.TYPE S <alphanum 1..8>

Name of supertype varname#.SUPER-TYPE S ´*NONE´ /
<alphanum 1..8>

Name of base type varname#.BASE-TYPE S <alphanum 1..8>

Current version convention varname#.CONVENTION S ´*NONE´ / ́ *STD-TREE´ /
´*STD-SEQ´ /
’*MUL-SEQ’

Current version example (for *STD-SEQ and
*MUL-SEQ)

varname#.CONVENTION-
EXAMPLE

S ´´ / <comp-name 1..24>

Permissible storage form varname#.STOR-FORM S ´*STD´ / ´*NONE´ /
´*FULL´ / ´*DELTA´

Control of additional checks varname#.WRITE-CONTR S ´*NONE´ / ´*ACTIVATE´ /
´*DEACTIVATE´

Indicator for administration protection varname#.ADM.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

Name of administration guard varname#.ADM.GUARD-NAME S <filename 1..18> *3

Indicator for administer authorization (BACL) varname#.ADM.USER-DEFI S ´*NONE´ / ´*LIST´ *4

Indicator for administer authorization of owner varname#.ADM.OWNER S ´´ / ´*OWNER´ *5

Indicator for administer authorization of owner’s
group

varname#.ADM.GROUP S ´´ / ´*GROUP´ *5

Indicator for administer authorization for
OTHERS

varname#.ADM.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether an administration password
has been defined for the member

varname#.ADM.PASS S ´*NO´ / ´*YES´ *4

Indicator of whether member protection has been
defined

varname#.PROT-DEFI S ´*NONE´ / ´*PAR´

Indicator for read protection varname#.PROT.READ-DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

*2

Name of read guard varname#.PROT.READ.GUARD-
NAME

S <filename 1..18> *3

Indicator for read authorization (BACL) varname#.PROT.READ.USER-
DEFI

S ´*NONE´ / ´*LIST´ *4

Indicator for read authorization of owner varname#.PROT.READ.OWNER S ´´ / ´*OWNER´ *5

Indicator for read authorization of owner’s group varname#.PROT.READ.GROUP S ´´ / ´*GROUP´ *5

Indicator for read authorization for OTHERS varname#.PROT.READ.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether a read password has been
defined for the member

varname#.PROT.READ.PASS S ´*NO´ / ´*YES´ *4

Format of LMS output in S variables SHOW-TYPE-ATTRIBUTES statement

U8326-J-Z125-6-76 455

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

8

*2 : varname#.PROT-DEFI = ´*PAR´
*3 : varname#.PROT-DEFI = ´*PAR´ and varname#.xxxx.DEFI = ´*BY-GUARD´
*4 : varname#.PROT-DEFI = ´*PAR´ and varname#.xxxx.DEFI = ´*PAR´
*5 : *4 and varname#.xxxx.USER-DEFI = ´*LIST´

Indicator for write protection varname#.PROT.WRITE.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

*2

Name of write guard varname#.PROT.WRITE.GUARD-
NAME

S <filename 1..18> *3

Indicator for write authorization (BACL) varname#.PROT.WRITE.USER-
DEFI

S ´*NONE´ / ´*LIST´ *4

Indicator for write authorization of owner varname#.PROT.WRITE.OWNER S ´´ / ´*OWNER´ *5

Indicator for write authorization of owner’s group varname#.PROT.WRITE.GROUP S ´´ / ´*GROUP´ *5

Indicator for write authorization for OTHERS varname#.PROT.WRITE.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether a write password has been
defined for the member

varname#.PROT.WRITE.PASS S ´*NO´ / ´*YES´ *4

Indicator for execute protection varname#.PROT.EXEC.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

*2

Name of execute guard varname#.PROT.EXEC.GUARD-
NAME

S <filename 1..18> *3

Indicator for execute authorization (BACL) varname#.PROT.EXEC.USER-
DEFI

S ´*NONE´ / ´*LIST´ *4

Indicator for execute authorization of owner varname#.PROT.EXEC.OWNER S ´´ / ´*OWNER´ *5

Indicator for execute authorization of owner’s
group

varname#.PROT.EXEC.GROUP S ´´ / ´*GROUP´ *5

Indicator for execute authorization for OTHERS varname#.PROT.EXEC.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether an execute password has
been defined for the member

varname#.PROT.EXEC.PASS S ´*NO´ / ´*YES´ *4

Indicator for hold protection varname#.PROT.HOLD.DEFI S ´*NONE´ / ́ *BY-GUARD´ /
´*PAR´

*2

Name of hold guard varname#.PROT.HOLD.GUARD-
NAME

S <filename 1..18> *3

Indicator for hold authorization (BACL) varname#.PROT.HOLD.USER-
DEFI

S ´*NONE´ / ´*LIST´ *4

Indicator for hold authorization of owner varname#.PROT.HOLD.OWNER S ´´ / ´*OWNER´ *5

Indicator for hold authorization of owner’s group varname#.PROT.HOLD.GROUP S ´´ / ´*GROUP´ *5

Indicator for hold authorization for OTHERS varname#.PROT.HOLD.OTHERS S ´´ / ´*OTHERS´ *5

Indicator of whether a hold password has been
defined for the member

varname#.PROT.HOLD.PASS S ´*NO´ / ´*YES´ *4

Output information Name of S variable T Contents Con.

SHOW-TYPE-ATTRIBUTES statement Format of LMS output in S variables

456 U8326-J-Z125-6-76

U8326-J-Z125-6-76 457

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

9 Examples
The following chapter uses execution examples to illustrate certain typical LMS applica-
tions.

In the examples, user inputs are indicated by means of lowercase letters and bold print.

9.1 Adding, correcting and assembling library source programs

A source program is added as an S-type member to a library and then assembled. Since
errors were found during assembly, the member is corrected with EDT and subsequently
assembled again. The module from the EAM area is added to the same library as an R-type
member.

/start-lms --- (1)

//modify-logging-parameters logging=*maximum ------------------------------------- (2)
//modify-lms-defaults version=*increment --- (3)
//open-library library=bsp1.bib,mode=*update ------------------------------------- (4)
LIBRARY IS CLEARED AND PREPARED -- (5)

(1) LMS is called.

(2) In addition to error messages, positive acknowledgments are also logged.

(3) At every write operation, the target version is incremented by 1.

(4) Library BSP1.BIB is to be created as a new library and assigned as an I/O library.

(5) Library BSP1.BIB has been created.

Adding, correcting and assembling source programs Examples

458 U8326-J-Z125-6-76

//add-element from-file=quell.erfass,to-elem=(elem=erfass,type=s) ----------------- (6)

INPUT FILE
OUTPUT LIBRARY= :1OSN:$USER.BSP1.BIB
 ADD :1OSN:$USER.QUELL.ERFASS AS (S)ERFASS/001(0001)/2013-03-01 ----------- (7)
//show-element-attributes --- (8)
INPUT LIBRARY= :1OSN:$USER.BSP1.BIB
TYP NAME VER (VAR#) DATE
(S) ERFASS 001 (0001) 2013-03-01
 1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS ----------------------------------- (9)
//show-element (element=erfass, type=s) --- (10)
INPUT LIBRARY= :1OSN:$USER.BSP1.BIB
INPUT ELEMENT= (S)ERFASS/001(0001)/2013-03-01
 TITLE 'ERFASSEN VON DATEN'
 PRINT NOGEN
ERFAS START
 BALR 5,0
 USING *,5
 OPEN DATEI,OUTPUT
LESEN RDATA SATZ,ENDPGM
 PUT DATEI,SATZ
 B LESEN
ENDPGM TERM
*
DATEI FXB FCBTYPE=SAM, LINK=DATEN
SATZ DS CL84
 END
NUMBER OF PROCESSED RECORDS IS 14 -- (11)
//end --- (12)

(6) File QUELL.ERFASS is added to the library as an S-type member having the name
ERFASS.

(7) Positive acknowledgment: member ERFASS, with the version designation 001 and
variant number 0001, is written to the library.

(8) The directory of library BSP1.BIB is to be listed.

(9) Directory entry of library BSP1.BIB.

(10) Member ERFASS is to be listed.

(11) Contents of member ERFASS.

(12) LMS is terminated.

Examples Adding, correcting and assembling source programs

U8326-J-Z125-6-76 459

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

/start-assembh --- (13)
//compile source=*library-element(lib=bsp1.bib,element=erfass) ------------------- (14)
% ASS6011 ASSEMBLY TIME: 820 MSEC --- (15)
% ASS6018 1 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: SIGNIFICANT ERROR
% ASS6006 LISTING GENERATOR TIME: 439 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-lms --- (16)
//modify-logging-parameters logging=*maximum ------------------------------------- (17)
//modify-lms-defaults version=*increment --- (18)
//open-library library=bsp1.bib,mode=*update ------------------------------------- (19)
//edit-element (element=erfass,type=s) --- (20)

(13) The assembler is called.

(14) The source program in member ERFASS of library BSP1.BIB is to be assembled.

(15) The program contains errors.

(16) LMS is called again.

(17) In addition to error messages, positive acknowledgments are also logged.

(18) The target version is incremented by 1 during each write operation.

(19) Library BSP1.BIB is opened for writing and reading.

(20) Member ERFASS is to be processed with EDT.

Adding, correcting and assembling source programs Examples

460 U8326-J-Z125-6-76

% LMS0420 EDITED ELEMENT (S)ERFASS/002(0002)/2013-03-01 TO BE ADDED? REPLY
(Y=YES; N=NO OR R=RETURN TO EDITOR)

y --- (22)
INPUT LIBRARY= :1OSN:$USER.BSP1.BIB
OUTPUT LIBRARY= :1OSN:$USER.BSP1.BIB
INPUT ELEMENT= (S)ERFASS/001(0001)/2013-03-01
OUTPUT ELEMENT= (S)ERFASS/002(0002)/2013-03-01
 CORRECT (S)ERFASS/001(0001)/2013-03-01 AS (S)ERFASS/002(0001)/2013-03-01
--- (23)
//end

(21) The error is corrected:

– Make line 1.20 overwriteable by entering “x” in the statement column.

– Change “FcB” in line 1.20 to “FCB” and terminate EDT by entering HALT in the
statement line.

(22) “Y” causes the corrected member to be added with version 002 to the output library.
The old version (version 001) is retained.

(23) Positive acknowledgment: input member ERFASS has been corrected. The output
member is given the same name and the version 002.

 0.10 TITLE 'ERFASSEN VON DATEN'
 0.20 PRINT NOGEN
 0.30 ERFAS START
 0.40 BALR 5,0
 0.50 USING *,5
 0.60 OPEN DATEI,OUTPUT
 0.70 LESEN RDATA SATZ,ENDPGM
 0.80 PUT DATEI,SATZ
 0.90 B LESEN
 1.00 ENDPGM TERM
 1.10 *
x1.20 DATEI FcB FCBTYPE=SAM, LINK=DATEN
 1.30 SATZ DS CL84
 1.40 END
 2.40
 3.40
 4.40
 5.40
 6.40
 7.40
 8.40
 9.40
 OUTPUT ELEMENT= (S)ERFASS/@(0002)/2013-03-01

halt 0000.10:001(0)

(21)

Examples Adding, correcting and assembling source programs

U8326-J-Z125-6-76 461

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

/delete-system-file system-file=*omf
/start-assembh
//compile source=*library(lib=bsp1.bib,element=erfass)
% ASS6011 ASSEMBLY TIME: 1037 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 406 MSEC
//end
% ASS6012 END OF ASSEMBH -- (24)
/start-lms --- (25)
//modify-logging-parameters logging=*maximum ------------------------------------- (26)
//open-library library=BSP1.BIB,mode=*update ------------------------------------- (27)
//add-element from-file=*omf,to-elem=(type=r) ------------------------------------ (28)
INPUT OMF
OUTPUT LIBRARY= :1OSN:$USER.BSP1.BIB
 ADD ERFAS AS (R)ERFAS/@(0001)/2013-03-01
//end -- (29)

(24) The assembly run has been executed successfully.

(25) LMS is called.

(26) In addition to error messages, positive acknowledgments are also logged.

(27) Library BSP1.BIB is again opened for reading and writing.

(28) Module ERFAS is taken from the EAM area and incorporated as member ERFAS.

(29) LMS is terminated.

Copying members Examples

462 U8326-J-Z125-6-76

9.2 Copying members

Members from various libraries are copied to another library.

/add-file-link link-name=lib1,file-name=modul.lib -------------------------------- (1)

/start-lms -- (2)
//modify-logging-parameters logging=*maximum -------------------------------------- (3)
//open-library library=bsp2.bib,mode=*update -------------------------------------- (4)
LIBRARY IS CLEARED AND PREPARED
//show-element-attributes (library=*link(link-name=lib1),type=r) ------------------ (5)
INPUT LIBRARY= :1OSN:$USER.MODUL.LIB,LINK=LIB1
TYP NAME VER (VAR#) DATE
(R) MODERF @ (0001) 2013-03-01
 1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//copy-element elem=(library=*link(link-name=lib1),elem=moderf,type=r), -

// to-element=(library=*std,element=mod.erf) --------------------------- (6)
INPUT LIBRARY= :1OSN:$USER.MODUL.LIB,LINK=LIB1
OUTPUT LIBRARY= :1OSN:$USER.BSP2.BIB
 COPY (R)MODERF/@(0001)/2011-02-19 AS (R)MOD.ERF/@(0001)/2011-02-19

(1) This input enables the library MODUL.LIB to be assigned via the link name LIB1
during the LMS run.

(2) LMS is called.

(3) In addition to error messages, positive acknowledgments are also logged.

(4) The new library BSP2.BIB is created as a global library and opened for writing and
reading.

(5) The directory of library MODUL.LIB, that is specified via link name LIB1, is to be
listed.

(6) Module MODERF from library MODUL.LIB is copied to library BSP2.BIB under the
member name MOD.ERF.

Examples Copying members

U8326-J-Z125-6-76 463

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//show-element-attributes (library=macro.lib,type=m) —————————————————— (7)

INPUT LIBRARY= :1OSN:$USER.MACRO.LIB
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(M) MAC1 @ (0001) 2011-02-19 MAC2 @ (0001) 2011-02-19
 2 (M)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//copy-element elem=(library=macro.lib,elem=mac*,type=m), -
// to-element=(library=*std,element=mu*) ------------------------------ (8)
INPUT LIBRARY= :1OSN:$USER.MACRO.LIB
OUTPUT LIBRARY= :1OSN:$USER.BSP2.BIB
 COPY (M)MAC1/@(0001)/2011-02-19 AS (M)MU1/@(0001)/2011-02-19
 COPY (M)MAC2/@(0001)/2011-02-19 AS (M)MU2/@(0001)/2011-02-19 ------------ (9)
//show-element-attributes (library=quell.lib,type=s) ----------------------------- (10)
INPUT LIBRARY= :1OSN:$USER.QUELL.LIB
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(S) EDTB @ (0001) 2011-02-19 PROT @ (0001) 2011-02-19
(S) SEINAUS @ (0001) 2011-02-19 SERFAS @ (0001) 2011-02-19
 4 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//copy-element elem=(library=quell.lib,elem=*,type=s, -
// except-element=(element=edtb)) ------------------------------ (11)
INPUT LIBRARY= :1OSN:$USER.QUELL.LIB
OUTPUT LIBRARY= :1OSN:$USER.BSP2.BIB
 COPY (S)PROT/@(0001)/2011-02-19 AS (S)PROT/@(0001)/2011-02-19
 COPY (S)SEINAUS/@(0001)/2011-02-19 AS (S)SEINAUS/@(0001)/2011-02-19
 COPY (S)SERFAS/@(0001)/2011-02-19 AS (S)SERFAS/@(0001)/2011-02-19

(7) The directory of library MACRO.LIB, that is assigned as a local library, is to be listed.

(8) Those members of library MACRO.LIB whose member designations begin with
“MAC” are to be copied to library BSP2.BIB. The new member designations begin
with “MU”. The member designations of the input members are transferred, starting
from the third position.

(9) Positive acknowledgment: the selected members, with the new member designa-
tions, are copied.

(10) The directory of library QUELL.LIB, that is assigned as a local library, is to be listed.

(11) All members from library QUELL.LIB, with the exception of member EDTB, are
copied to the output library.

Copying members Examples

464 U8326-J-Z125-6-76

//show-element-attributes (library=test.lib) —————————————————————————— (12)

INPUT LIBRARY= :1OSN:$USER.TEST.LIB
TYP NAME VER (VAR#) DATE
(S) SERFAS @ (0001) 2011-02-19
 1 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//copy-element elem=(library=test.lib,elem=*,type=*), -
// to-elem=(library=*std,element=*(version=007)) ---------------------- (13)
INPUT LIBRARY= :1OSN:$USER.TEST.LIB
OUTPUT LIBRARY= :1OSN:$USER.BSP2.BIB
 COPY (S)SERFAS/@(0001)/2011-02-19 AS (S)SERFAS/007(0001)/2011-02-19

(12) The directory of program library TEST.LIB, that is assigned as a local library, is to
be listed.

(13) All members of program library TEST.LIB are copied to the output library and stored
under the same name and version number 007.

Examples Copying members

U8326-J-Z125-6-76 465

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//show-element-attributes ——— (14)

INPUT LIBRARY= :1OSN:$USER.BSP2.BIB
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(M) MU1 @ (0001) 2011-02-19 MU2 @ (0001) 2011-02-19
 2 (M)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE
(R) MOD.ERF @ (0001) 2011-02-19
 1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(S) PROT @ (0001) 2011-02-19 SEINAUS @ (0001) 2011-02-19
(S) SERFAS 007 (0001) 2011-02-19 SERFAS @ (0001) 2011-02-19
 4 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
--
 7 ELEMENT(S) IN THIS TABLE OF CONTENTS
//show-library-status -- (15)
STATUS FILENAME MODE LINK DEF-TYPE
CLOSED :1OSN:$USER.TEST.LIB
CLOSED :1OSN:$USER.QUELL.LIB
CLOSED :1OSN:$USER.MACRO.LIB
CLOSED :1OSN:$USER.MODUL.LIB LIB1
OPEN :1OSN:$USER.BSP2.BIB UPDATE
//close-library -- (16)
//show-library-status -- (17)
STATUS FILENAME MODE LINK DEF-TYPE
CLOSED :1OSN:$USER.TEST.LIB
CLOSED :1OSN:$USER.QUELL.LIB
CLOSED :1OSN:$USER.MACRO.LIB
CLOSED :1OSN:$USER.MODUL.LIB LIB1
CLOSED :1OSN:$USER.BSP2.BIB
//end -- (18)

(14) The directory of the current input library BSP2.BIB is to be listed with all members.
There are two members with member name SERFAS, but with different version
numbers.

(15) The status of the libraries used during the LMS run is queried.

(16) Library BSP2.BIB is closed.

(17) The status of the libraries used during the LMS run is queried.

(18) The LMS run is terminated.

Comparing members Examples

466 U8326-J-Z125-6-76

9.3 Comparing members

Member ERFASS (listed in the example on page 458) and member EINAUS are compared.
A comparison log is generated.

/start-lms -- (1)

//modify-logging-parameters logging=*maximum -------------------------------------- (2)
//open-library library=bsp1.bib,mode=*update -------------------------------------- (3)
//add-element from-file=quell.einaus, to-elem=(elem=einaus,type=s) ---------------- (4)
INPUT FILE
OUTPUT LIBRARY= :1OSN:$USER.BSP1.BIB
 ADD :1OSN:$USER.QUELL.EINAUS AS (S)EINAUS/@(0001)/2013-03-01

(1) LMS is called.

(2) In addition to error messages, positive acknowledgments are also logged.

(3) Library BSP1.BIB is opened for reading and writing.

(4) File QUELL.EINAUS is added to the library as S-type member EINAUS.

Examples Comparing members

U8326-J-Z125-6-76 467

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//show-element (element=einaus,type=s) --- (5)
INPUT LIBRARY= :1OSN:$USER.BSP1.BIB
INPUT ELEMENT= (S)ES/@(0001)/2013-03-01
 TITLE 'ERFASSEN VON DATEN'
 PRINT NOGEN
ERFAS START
 BALR 5,0
 USING *,5
 OPEN DATEI,OUTPUT
LESEN RDATA SATZ,ENDPGM
 CLC TEXT(4),=C'/EOF'
 BE ENDPGM
 MVC ATEXT,TEXT
 LH 9,SL
 AH 9,=H'1'
 STH 9,ASL
 WROUT ASATZ,ENDPGM
 PUT DATEI,SATZ
 B LESEN
ENDPGM TERM
*
DATEI FCB FCBTYPE=SAM,LINK=DATEN
 DS OH
SATZ DS CL84
SL DS CL2
 DS CL2
TEXT DS CL80
ASATZ DS OCL85
ASL DS CL2
 DC X'000001'
ATEXT DS CL80
 END
NUMBER OF PROCESSED RECORDS IS 29

(5) Member EINAUS is listed.

Comparing members Examples

468 U8326-J-Z125-6-76

//show-element (element=erfass,type=s) ————————————————————————————————— (6)

INPUT LIBRARY= :1OSQ:$USER.BSP1.BIB
INPUT ELEMENT= (S)ERFASS/002(0001)/2013-03-01
 TITLE 'ERFASSEN VON DATEN'
 PRINT NOGEN
ERFAS START
 BALR 5,0
 USING *,5
 OPEN DATEI,OUTPUT
LESEN RDATA SATZ,ENDPGM
 PUT DATEI,SATZ
 B LESEN
ENDPGM TERM
*
DATEI FCB FCBTYPE=SAM, LINK=DATEN
SATZ DS CL84
 END
NUMBER OF PROCESSED RECORDS IS 14

//compare-element primary-elem=(elem=einaus,type=s), -
// secondary-elem=(elem=erfass), -
// compare-parameters = *par(information=*maximum) ----------------- (7)

FUNCTION = C O M P A R E
PAR COMPARE= 00001/32764/L/MAX
PRIMARY LIBRARY= :1OSN:$USER.BSP1.BIB
PRIMARY ELEMENT= (S)EINAUS/@(0001)/2013-03-01
SECONDARY LIBRARY= :1OSN:$USER.BSP1.BIB
SECONDARY ELEMENT= (S)ERFASS/002(0001)/2013-03-01 -------------------------------- (8)
--
SAME FROM #1 TO #7 AS FROM #1 TO #7 ----------------------- (9)
 #1 > TITLE 'ERFASSEN VON DATEN'<
 #2 > PRINT NOGEN<
 #3 >ERFAS START<
 #4 > BALR 5,0<
 #5 > USING *,5<
 #6 > OPEN DATEI,OUTPUT
 #7 >LESEN RDATA SATZ,ENDPGM<

(6) The member ERFASS is listed.

(7) Members EINAUS and ERFASS are compared. The comparison log is to be output
in its full scope.

(8) Start of comparison log:
The log includes the values set for COMPARE, the names of the primary and
secondary libraries, and the names of the primary and secondary members.

(9) The records with record IDs #1 through #7 are identical in both members.

Examples Comparing members

U8326-J-Z125-6-76 469

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

--

INS. FROM #8 TO #14 --- (10)

 #8 > CLC TEXT(4),=C'/EOF'<
 #9 > BE ENDPGM<
 #10 > MVC ATEXT,TEXT<
 #11 > LH 9,SL<
 #12 > AH 9,=H'1'<
 #13 > STH 9,ASL<
 #14 > WROUT ASATZ,ENDPGM< --- (11)
--
SAME FROM #15 TO #19 AS FROM #8 TO #12 ---------------------- (12)
 #15 > PUT DATEI,SATZ <
 #16 > B LESEN<
 #17 >ENDPGM TERM<
 #18 >*<
 #19 >DATEI FCB FCBTYPE=SAM, LINK=DATEN< -------------------------------- (13)
--
INS. #20 --- (14)
 #20 > DS OH< --- (15)
--

(08) –(21) Comparison log

(10) Records #8 through #14 are present in the primary member only and are repre-
sented as INS(erted).

(11) Output of inserted records.

(12) Records #15 through #19 of the primary member are identical to records #8 through
#12 of the secondary member.

(13) Output of identical records.

(14) Record #20 is present in the primary member only and is represented as
INS(erted).

(15) Output of inserted record.

Comparing members Examples

470 U8326-J-Z125-6-76

SAME #21 AS #13 ----------------------------------- (16)

 #21 >SATZ DS CL84< --- (17)
--
INS. FROM #22 TO #28 -- (18)
 #22 >SL DS CL2<
 #23 > DS CL2<
 #24 >TEXT DS CL80<
 #25 >ASATZ DS OCL85<
 #26 >ASL DS CL2<
 #27 > DC X'000001'<
 #28 >ATEXT DS CL80< -- (19)
--
SAME #29 AS #14 ----------------------------------- (20)
 #29 > END< -- (21)
--
PRIMARY ELEMENT= (S)EINAUS/@(0001)/2013-03-01
SECONDARY ELEMENT= (S)ERFASS/002(0001)/2013-03-01
RESULT: C PRIMARY= 29 INSERTED= 15 (3) DELETED= 0 (0)
 SECONDARY= 14 SAME= 14 (4) ----------------------------- (22)
//end --- (23)

(16) Record #21 of the primary member is identical to record #13 of the secondary
member.

(17) Output of identical record.

(18) Records #20 through #28 are present in the primary member only and are repre-
sented as INS(erted).

(19) Output of inserted records.

(20) Record #29 of the primary member is identical to record #14 of the secondary
member.

(21) Output of identical record.

(22) Result of the comparison; output of the number of records of the primary and
secondary members, and of the number of inserted, identical and deleted records.

The numbers in parentheses indicate how many continuous sections (consisting of
consecutive records) have been inserted, identified as identical, or deleted.

(23) LMS is terminated.

Examples Processing delta members

U8326-J-Z125-6-76 471

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

9.4 Processing delta members

/start-lms ---
//modify-logging-parameters logging=*maximum (1)

//open-library library=bsp4.bib,mode=*update ------------------------------------- (2)
LIBRARY IS CLEARED AND PREPARED
//add-element from-file=workelem,to-elem=(elem=delta(v=v00),type=s, -
// storage-form=*delta) --- (3)
INPUT FILE
OUTPUT LIBRARY= :1OSN:$USER.BSP4.BIB
 ADD :1OSN:$USER.WORKELEM AS (S)DELTA/V00(0001)/2013-03-01
 , FIRST DELTA VERSION
//edit-element (,element=delta(version=v00),type=s), -
// to-elem=(,elem=delta(v=v01)) -------------------------------------- (4)

(1) LMS is called.

(2) The new library BSP4.BIB is created.

(3) File WORKELEM is added to the library as a new S-type delta member,
DELTA/V00.

(4) Delta member DELTA/V00 is to be processed with EDT and the result added as new
member DELTA/V01 to DELTA/V00.

% LMS0420 EDITED ELEMENT (S)DELTA/V01(0002)/2013-03-01 TO BE ADDED OR RETURN TO EDITOR ?
REPLY (Y=YES; N=NO OR R=RETURN)?

 0.10 MINI START
 0.20 BALR 3,0
 0.30 USING *,3
 0.40 OPEN SAMFCB,OUTPUT
 0.50 PUT SAMFCB,EINGABE
 0.60 TERM
 0.70 SAMFCB FCB FCBTYPE=SAM,LINK=MINI
 0.80 EINGABE DC C´DA IST ER JA´
 0.90 END
 1.90
 2.90
 3.90
 4.90
 5.90
 6.90
 7.90
 8.90
 9.90
10.90
11.90
12.90
13.90
 OUTPUT ELEMENT= (S)DELTA/V01(0002)/2011-02-27

halt 0000.10:001(0)

Processing delta members Examples

472 U8326-J-Z125-6-76

y
INPUT LIBRARY= :1OSN:$USER.BSP4.BIB
OUTPUT LIBRARY= :1OSN:$USER.BSP4.BIB
INPUT ELEMENT= (S)DELTA/V00(0001)/2013-03-01
OUTPUT ELEMENT= (S)DELTA/V01(0002)/2013-03-01
 CORRECT (S)DELTA/V00(0001)/2013-03-01 AS (S)DELTA/V01(0002)/2011-10-01
 ON BASE (S)DELTA/V00(0002)/2013-03-01
//copy-element (library=lib.arbeit,elem=input,type=s), -
// to-elem=(elem=delta(version=v02,base=v00)) ------------------------- (5)
INPUT LIBRARY= :1OSN:$USER.LIB.ARBEIT
OUTPUT LIBRARY= :1OSN:$USER.BSP4.BIB
 COPY (S)INPUT/@(0001)/2011-02-19 AS (S)DELTA/V02(0003)/2011-02-19
 ON BASE (S)DELTA/V00(0003)/2011-02-19
//show-element-attributes information=*delta-structure ---------------------------- (6)
INPUT LIBRARY= :1OSN:$USER.BSP4.BIB
TYP NAME VERSION (VAR#) DATE DLT# BASE#
(S) DELTA V00 . . . (0000) 00001 00000
(S) DELTA V01 . . . (0000) 00002 00001
(S) DELTA V02 . . . (0000) 00003 00001

 3 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS

(5) The non-delta member INPUT is copied from library LIB.ARBEIT to the global
library as S-type delta member DELTA/V02 to the base V00.

(6) The directory of library BSP4.BIB is to be listed as a complete delta tree.

Examples Processing delta members

U8326-J-Z125-6-76 473

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//add-element workelem,(,delta(v11,v01),s,,delta) -------------------------------- (7)

INPUT FILE
OUTPUT LIBRARY= :1OSN:$USER.BSP4.BIB
 ADD :1OSN:$USER.WORKELEM AS (S)DELTA/V11(0004)/2013-03-01 ON BASE
 (S)DELTA/V01(0004)/2011-10-01
//show-element-attributes information=*delta-structure --------------------------- (8)
INPUT LIBRARY= :1OSN:$USER.BSP4.BIB
TYP NAME VERSION (VAR#) DATE DLT# BASE#
(S) DELTA V00 . . . (0000) 00001 00000
(S) DELTA V01 . . . (0000) 00002 00001
(S) DELTA V02 . . . (0000) 00003 00001
(S) DELTA V11 . . . (0000) 00004 00002

 4 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//end -- (9)

(7) File WORKELEM is added as type-S delta member DELTA/V11 to delta member
DELTA/V01. This statement is an example of an input using only positional
operands.

(8) The directory of library BSP4.BIB as a delta tree is to be listed.

(9) LMS is terminated.

The delta members now have the following structure:

DELTA/V01

DELTA/V00

DELTA/V11

DELTA/V02

Modifying an object module Examples

474 U8326-J-Z125-6-76

9.5 Modifying an object module

The member USELST is added to the library as an object module and modified there by
means of a substatement.

/start-assembh -- (1)

//compile source=*library-element(lib=bsp5.bib,element=uselst), -
//module-lib=bsp5.bib(elemnt=uselst) -- (2)
% ASS6011 ASSEMBLY TIME: 240 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 453 MSEC
//end
% ASS6012 END OF ASSEMBH
/start-lms -- (3)
//modify-logging-parameters logging=*maximum -------------------------------------- (4)
//open-library library=bsp5.bib,mode=*update -------------------------------------- (5)
//show-element-attributes (type=r) -- (6)
INPUT LIBRARY= :1OSN:$USER.BSP5.BIB
TYP NAME VER (VAR#) DATE
(R) USELST @ (0001) 2013-03-01
 1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS

(1) The assembler is called to generate an object module.

(2) The source program USELST is to be assembled. On error-free assembly, the
object module thus generated is written to library BSP5.BIB. The object module
automatically receives member type R.

(3) LMS is called.

(4) In addition to error messages, positive acknowledgments are also logged.

(5) Library BSP5.BIB is assigned. It must be opened for reading and writing, otherwise
modification of the object module is impossible.

(6) Display directory for all R-type members. The library now contains object module
USELST generated from the assembler run.

Examples Modifying an object module

U8326-J-Z125-6-76 475

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//modify-element (element=uselst,type=r) --- (7)

//add-text-modification address=x´c0´,new-contents=´aa´(old=´ER´) ---------------- (8)
//end-modify --- (9)
INPUT LIBRARY= :1OSN:$USER.BSP5.BIB
OUTPUT LIBRARY= :1OSN:$USER.BSP5.BIB
INPUT ELEMENT= (R)USELST/@(0001)/2013-03-01
OUTPUT ELEMENT= (R)USELST/@(0002)/2013-03-01
TEXT-ADR: 000000C0
TEXT BEFORE CHANGE: E R
 C5D9
TEXT AFTER CHANGE: a a
 8181 -- (10)
 CORRECT (R)USELST/@(0001)/2013-03-01 AS (R)USELST/@(0002)/2013-03-01
 , OUTPUT REPLACED --- (11)
//show-element-attributes (type=r) --- (12)
INPUT LIBRARY= :1OSN:$USER.BSP5.BIB
TYP NAME VER (VAR#) DATE
(R) USELST @ (0002) 2013-03-01
 1 (R)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//end -- (13)

(7) Module USELST is to be modified.

(8) This substatement replaces the text ’ER’ with ’aa’ at address c0.

(9) Substatement input is terminated.

(10) The text at address 0000C0 is replaced.

(11) Message indicating that the change has been made and the original member is
replaced by the modified member.

(12) Display directory for all R-type members. The library now contains the modified
object module.

(13) LMS is terminated.

Generating SAM/ISAM files Examples

476 U8326-J-Z125-6-76

9.6 Generating SAM/ISAM files

EDT is used to create a SAM file. This file is added as a member and stored in the form of
two different types of file:

– as a SAM file, on the basis of the file attributes stored in the member

– as an ISAM file using ISAM keys created by default.

/start-lms -- (1)

//modify-logging-parameters logging=*maximum -------------------------------------- (2)
//open-library library=bsp6.bib,mode=*update -------------------------------------- (3)
LIBRARY IS CLEARED AND PREPARED
//modify-lms-defaults type=d -- (4)

(1) LMS is called.

(2) In addition to error messages, positive acknowledgments are also logged.

(3) Library BSP6.BIB is opened.

(4) The default value for the member type will be set.

//call-edt -- (5)

 1.00 BACH SEBASTIAN MUENCHEN AUF DER HOEHE 7 AB 3
 2.00 BERGMANN NORBERT MUENCHEN TORWEG 10 AB 5
 3.00 FINK SUSANNE NUERNBERG RINGSTR. 23 AB 1
 4.00 MEYER FRANZ NUERNBERG WASSERMUNGENWEG AB 1
 5.00 GRUNDLER WOLFGANG BASEL SONNENSTR. 11 AB 2
 6.00 KNOLL MONIKA FRANKFURT BAUMALLEE 12 AB 3
 7.00 LIEDL ERIKA MUENCHEN IN DER BREITE 1 AB 5
 8.00 WAGNER JOHANN AUGSBURG AM SEE 45 AB 4
 9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00

write ´pers.dat´;halt 0000.10:001(0)

Examples Generating SAM-/ISAM files

U8326-J-Z125-6-76 477

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//modify-lms-defaults (source-attributes=*keep) ---------------------------------- (6)

//add-element from-file=pers.dat, to-elem=(,perdat) ------------------------------ (7)
INPUT FILE
OUTPUT LIBRARY= :1OSN:$USER.BSP6.BIB
 ADD :1OSN:$USER.PERS.DAT AS (D)PERDAT/@(0001)/2013-03-01

(5) EDT is called in order to generate or process a file.

Subsequently the data is entered and stored as SAM file PERS.DAT by means of
WRITE. HALT terminates EDT and returns control to LMS.

(6) The file attributes of the EDT file are retained.

(7) File PERS.DAT added to the library as a D-type member having the name PERDAT.

//show-element-attributes (type=d)
INPUT LIBRARY= :1OSN:$USER.BSP6.BIB
TYP NAME VER (VAR#) DATE
(D) PERDAT @ (0001) 2013-03-01
 1 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//extract-element (element=perdat) --- (8)
INPUT LIBRARY= :1OSN:$USER.BSP6.BIB
OUTPUT FILE
 EXTRACT (D)PERDAT/@(0001)/2013-03-01 AS :1OSN:$USER.PERDAT
//exec-sys-cmd (show-file-attributes perdat,information=*all-attr) --------------- (9)

Generating SAM-/ISAM files Examples

478 U8326-J-Z125-6-76

00000003 :1OSN:$USER.PERDAT
 ------------------------------- HISTORY -------------------------------
 CRE-DATE = 2013-03-01 ACC-DATE = 2013-03-01 CHANG-DATE = 2013-03-01
 CRE-TIME = 10:32:56 ACC-TIME = 10:32:56 CHANG-TIME = 10:32:56
 ACC-COUNT = 1 S-ALLO-NUM = 0
 ------------------------------- SECURITY -------------------------------
 READ-PASS = NONE WRITE-PASS = NONE EXEC-PASS = NONE
 USER-ACC = OWNER-ONLY ACCESS = WRITE ACL = NO
 AUDIT = NONE FREE-DEL-D = *NONE EXPIR-DATE = 2013-03-01
 DESTROY = NO FREE-DEL-T = *NONE EXPIR-TIME = 00:00:00
 SP-REL-LOCK= NO ENCRYPTION = *NONE
 ------------------------------- BACKUP -------------------------------
 BACK-CLASS = A SAVED-PAG = COMPL-FILE VERSION = 1
 MIGRATE = ALLOWED
 ------------------------------- ORGANIZATION -------------------------------
 FILE-STRUC = SAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
 IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
 REC-FORM = (V,N) REC-SIZE = 0
 AVAIL = *STD
 WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED
 ------------------------------- ALLOCATION -------------------------------
 SUPPORT = PUB S-ALLOC = 34 HIGH-US-PA = 1
 EXTENTS VOLUME DEVICE-TYPE EXTENTS VOLUME DEVICE-TYPE
 1 1OSN.2 D34211-2
 NUM-OF-EXT = 1
:1OSN: PUBLIC: 1 FILE RES= 3 FREE= 2 REL= 0 PAGES

(8) The directory of library BSP6.BIB for member type D is to be listed.

(9) Member PERDAT is output as file PERDAT. Since no file attributes have been
specified for this file, LMS generates a SAM file in accordance with the file attributes
stored.

(10) (The file attributes of the generated file are listed.

//extract-element (element=perdat), to-file=persdat, -
// file-attributes=*parameters(access-method=*isam)
INPUT LIBRARY= :1OSN:$USER.BSP6.BIB
OUTPUT FILE
 EXTRACT (D)PERDAT/@(0001)/2013-03-01 AS :1OSN:$USER.PERSDAT
//exec-sys-cmd (show-file-attributes persdat,information=all) --------------------- (10)

Examples Generating SAM-/ISAM files

U8326-J-Z125-6-76 479

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

00000003 :1OSN:$USER.PERSDAT
 ------------------------------- HISTORY -------------------------------
 CRE-DATE = 2013-03-01 ACC-DATE = 2013-03-01 CHANG-DATE = 2013-03-01
 CRE-TIME = 10:32:56 ACC-TIME = 10:32:56 CHANG-TIME = 10:32:56
 ACC-COUNT = 1 S-ALLO-NUM = 0
 ------------------------------- SECURITY -------------------------------
 READ-PASS = NONE WRITE-PASS = NONE EXEC-PASS = NONE
 USER-ACC = OWNER-ONLY ACCESS = WRITE ACL = NO
 AUDIT = NONE FREE-DEL-D = *NONE EXPIR-DATE = 2013-03-01
 DESTROY = NO FREE-DEL-T = *NONE EXPIR-TIME = 00:00:00
 SP-REL-LOCK= NO ENCRYPTION = *NONE
 ------------------------------- BACKUP -------------------------------
 BACK-CLASS = A SAVED-PAG = COMPL-FILE VERSION = 1
 MIGRATE = ALLOWED
 ------------------------------- ORGANIZATION -------------------------------
 FILE-STRUC = ISAM BUF-LEN = STD(1) BLK-CONTR = PAMKEY
 IO(USAGE) = READ-WRITE IO(PERF) = STD DISK-WRITE = IMMEDIATE
 REC-FORM = (V,N) REC-SIZE = 0
 KEY-LEN = 8 KEY-POS = 5
 AVAIL = *STD
 WORK-FILE = *NO F-PREFORM = *K S0-MIGR = *ALLOWED
 ------------------------------- ALLOCATION -------------------------------
 SUPPORT = PUB S-ALLOC = 9 HIGH-US-PA = 3
 EXTENTS VOLUME DEVICE-TYPE EXTENTS VOLUME DEVICE-TYPE
 1 1OSN.1 D34211-2
 NUM-OF-EXT = 1
:1OSN: PUBLIC: 1 FILE RES= 3 FREE= 1 REL= 0 PAGES
//end -- (11)

(11) Member PERDAT is created as a file having the name PERSDAT. The ACCESS-
METHOD operand is then used to specify that the file PERSDAT is an ISAM file.

(12) The file attributes of the generated file are listed.

(13) LMS is terminated.

Outputting comparison statistics Examples

480 U8326-J-Z125-6-76

9.7 Outputting comparison statistics

All members of several libraries are compared. After the comparison, the relevant
comparison statistics and, at the end, the grand total of the comparisons performed in the
LMS run are output.

This LMS run is performed without a global library, i.e. no OPEN-LIBRARY is specified. All
required libraries are defined locally in statements.

/start-lms -- (1)

//modify-logging-parameters logging=*maximum -------------------------------------- (2)
//compare-element primary-elem=(lib=lib.all.v2,element=*,type=s), -
// secondary-elem=(lib=lib.sou.v1,element=*,type=s), -
// compare-parameters = (information=*summary) ----------------------- (3)
FUNCTION = C O M P A R E
PAR COMPARE= 00001/32764/L/SUM
PRIMARY LIBRARY= :1OSQ:$USER.LIB.ALL.V2
SECONDARY LIBRARY= :1OSQ:$USER.LIB.SOU.V1

PRIMARY ELEMENT= (S)EINAUS/@(0001)/2011-02-19
SECONDARY ELEMENT= (S)EINAUS/@(0001)/2011-02-19
RESULT: S PRIMARY= 8 INSERTED= - (-) DELETED= - (-)
 SECONDARY= 8 SAME= 8 (1)

PRIMARY ELEMENT= (S)ERFASS/@(0002)/2011-02-19
SECONDARY ELEMENT= (S)ERFASS/@(0001)/2011-02-19
RESULT: S PRIMARY= 14 INSERTED= - (-) DELETED= - (-)
 SECONDARY= 14 SAME= 14 (1)

PRIMARY ELEMENT= (S)PROT/@(0001)/2011-02-19
SECONDARY ELEMENT= (S)PROT/@(0001)/2011-02-19
RESULT: S PRIMARY= 5 INSERTED= - (-) DELETED= - (-)
 SECONDARY= 5 SAME= 5 (1) ----------------------------- (4)

(1) LMS is called.

(2) In addition to error messages, positive acknowledgments are also logged.

(3) All S-type members of library LIB.ALL.V2 are compared with the members of library
LIB.SOU.V1.

(4) The result of the comparison is output.

Examples Outputting comparison statistics

U8326-J-Z125-6-76 481

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//show-statistics number=*c0 --- (5)

AREA C0
 PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC.
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 3 27 - 27 - - 27 3
C (CHANGED) 0 0 0 0 0 0 0 0
I (INSERTED) 0 0 0 - - 0 - -
D (DELETED) - - - - 0 0 0 0

 TOTAL 3 27 0 27 0 0 27 3
//compare-element primary-elem=(lib=lib.all.v2,element=*,type=m), -
// secondary-elem=(lib=lib.mac.v1,element=*,type=m), -
// compare-param =(information=*summary) ---------------------------- (6)
FUNCTION = C O M P A R E
PAR COMPARE= 00001/32764/L/SUM
PRIMARY LIBRARY= :1OSQ:$USER.LIB.ALL.V2
SECONDARY LIBRARY= :1OSQ:$USER.LIB.MAC.V1

PRIMARY ELEMENT= (M)MAC1/@(0001)/2011-02-19
SECONDARY ELEMENT= (M)MAC1/@(0001)/2011-02-19
RESULT: S PRIMARY= 5 INSERTED= - (-) DELETED= - (-)
 SECONDARY= 5 SAME= 5 (1)

PRIMARY ELEMENT= (M)MAC2/@(0001)/2011-02-19
SECONDARY ELEMENT= (M)MAC2/@(0001)/2011-02-19
RESULT: S PRIMARY= 5 INSERTED= - (-) DELETED= - (-)
 SECONDARY= 5 SAME= 5 (1)

PRIMARY ELEMENT= (M)MUC1/@(0001)/2011-02-19
RESULT: I PRIMARY= 5 INSERTED= 5 (1) DELETED= - (-)
 SECONDARY= - SAME= - (-)

PRIMARY ELEMENT= (M)MUC2/@(0001)/2011-02-19
RESULT: I PRIMARY= 5 INSERTED= 5 (1) DELETED= - (-)
 SECONDARY= - SAME= - (-) ---------------------------- (7)

(5) The current comparison statistics, contained in area C0, are output. LMS then
performs the following internal actions:

– Area C0 is added to area C1.

– Area C0 is cleared again so as to accommodate the result of the next
comparison.

(6) All M-type members of library LIB.ALL.V2 are compared with the members of macro
library LIB.MAC.V1.

(7) The result of the comparison is output.

Outputting comparison statistics Examples

482 U8326-J-Z125-6-76

//show-statistics number=*c0 -- (8)

AREA C0
 PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC.
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 2 10 - 10 - - 10 2
C (CHANGED) 0 0 0 0 0 0 0 0
I (INSERTED) 2 10 10 - - 10 - -
D (DELETED) - - - - 0 0 0 0

 TOTAL 4 20 10 10 0 10 10 2
//show-statistics number=*c1 -- (9)
AREA C1
 PRIM. PRIM. INS. SAME DEL. INS+DEL SEC. SEC.
STATISTIC ELEM. LINES LINES LINES LINES LINES LINES ELEM.
S (SAME) 5 37 - 37 - - 37 5
C (CHANGED) 0 0 0 0 0 0 0 0
I (INSERTED) 2 10 10 - - 10 - -
D (DELETED) - - - - 0 0 0 0

 TOTAL 7 47 10 37 0 10 37 5
//end --- (10)

(8) The current comparison statistics, again contained in area C0, are output.

(9) Area C1 is output. This contains the overall statistics for all comparisons performed
thus far in the present LMS run.

(10) LMS is terminated.

Examples Branching to user program

U8326-J-Z125-6-76 483

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

9.8 Branching to a user program while a member is being listed

The user program lists only the first 10 input records of a member.

If a member consists of less than 10 records, the program pads it out with additional records
of its own to bring it up to 10.

/start-lms --- (1)

//modify-logging-parameters logging=*maximum ------------------------------------- (2)
//open-library library=use.lib,mode=*update -------------------------------------- (3)
//show-element (element=uselst,type=s) --- (4)
INPUT LIBRARY= :1OSQ:$USER.USE.LIB
INPUT ELEMENT= (S)USELST/@(0001)/2011-02-19
* TITLE 'USEREXIT FOR THE FUNCTION: LST'
*
* 1.) BY CONNECTING WITH THIS UNDERPROGRAM ONLY THE
* FIRST 10 RECORDS PER ELEMENT ARE LISTED.
*
* 2.) IF THE ELEMENT HAS LESS THAN 10 RECORDS,
* FURTHER RECORDS ARE INSERTED.
* INPUT FROM LMS: R1=A(PARAMETER LIST)
* R13=A(SAVEAREA), 18 WORDS
* R14=RETURN ADDRESS
* R15=A(USERPROGRAM)
*
PARDSEC DSECT
AUFTRAG DS A A(TASK FROM LMS)
* - 'BOE':START OF ELEMENT
* - 'REC':RECORD ORDERED
* - 'EOE':END OF ELEMENT
ANTWORT DS A A(ANSWER FROM USERPROGRAM)
* - 'CON':CONTINUE
* - 'DEL':DELETE RECORD
* - 'INS':INSERT NEW RECORD
SATZ DS A A(RECORD, INCL. 4 BYTE HEADER)
* -

(1) LMS is called.

(2) All messages and statements are logged.

(3) Library USE.LIB is assigned.

(4) User source program USELST is listed.

Branching to user program Examples

484 U8326-J-Z125-6-76

PARDSECL EQU *-PARDSEC L'DSECT
USELST CSECT PAGE
 STM 0,15,0(13) SAVE REGISTERS
 LR 10,15 BASE
 USING PARDSEC,1 LMS PARAMETERLIST
 USING USELST,10
 L 6,AUFTRAG A(TASK)
 L 7,ANTWORT A(ANSWER)
 L 8,SATZ A(RECORD)
 CLC 0(3,6),REC RECORD ORDERED?
 BE DOSATZ YES ---?
 CLC 0(3,6),BOE START OF ELEMENT
 BE DOBOE YES ---?
 CLC 0(3,6),EOE END OF ELEMENT
 BE DOEOE YES ---?
 B RETURN
*
DOBOE EQU *
 ZAP ANZAHL,P0 COUNTER := 0
 B RETURN
*
DOSATZ EQU *
 CP ANZAHL,P10 ALREADY 10 RECORDS LISTED?
 BNL DODEL YES (REST IGNORE) ---?
 AP ANZAHL,P1 COUNTER := COUNTER +1
 B DOCON
*
DOEOE EQU *
 CP ANZAHL,P10 ALREADY 10 RECORDS LISTED?
 BNL DOCON YES (NO INSERT) ---?
 AP ANZAHL,P1 COUNTER := COUNTER +1
 B DOINS
*
DOINS EQU *
 MVC 0(3,7),INS INSERT RECORD
 LA 9,INSSATZ
 ST 9,SATZ A(RECORD TO BE INSERTED)
 B RETURN
*
DODEL EQU *
 MVC 0(3,7),DEL DELETE RECORD
 B RETURN
*
DOCON EQU *
 MVC 0(3,7),CON CONTINUE
*

Examples Branching to user program

U8326-J-Z125-6-76 485

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

RETURN EQU *
 LM 0,15,0(13) RESTORE REGISTERS
 BR 14
 TITLE 'KONSTANTEN UND VARIABLE'
BOE DC 'BOE' START OF ELEMENT
REC DC 'REC' RECORD ORDERED
EOE DC 'EOE' END OF ELEMENT
CON DC 'CON' CONTINUE
DEL DC 'DEL' DELETE RECORD
INS DC 'INS' INSERT NEW RECORD
ANZAHL DC PL2'0'
P0 DC PL2'0'
P1 DC PL2'1'
P10 DC PL2'10'
INSSATZ DC Y(INSSATZE-INSSATZ)
 DC XL2'4040'
 DC '**************** INSERT BY USER-PROGRAM *************'
INSSATZE EQU *
 LTORG
 END
NUMBER OF PROCESSED RECORDS IS 89

//activate-user-exit function=*show-elem,entry=uselst,lib=use.lib ---------------- (5)
//show-element (element=einaus,type=s) --- (6)
INPUT LIBRARY= :1OSQ:$USER.USE.LIB
INPUT ELEMENT= (S)EINAUS/@(0001)/2011-02-19
USER EXIT USELST IN USE.LIB IS ACTIVE
 #286 > TITLE 'SEIZE OF DATES'
 #287 > PRINT NOGEN
 #288 > ERFAS START
 #289 > BALR 5,0
 #290 > USING *,5
 #291 > OPEN DATEI,OUTPUT
 #292 > LESEN RDATA SATZ,ENDPGM
 #293 > CLC TEXT(4),=C'/EOF'
 #294 > BE ENDPGM
 #295 > MVC ATEXT,TEXT
NUMBER OF PROCESSED RECORDS IS 10

(5) Before listing an input record LMS branches to user program USELST, which
resides in library USE.LIB.

(6) The first 10 records of member EINAUS of the assigned library USE.LIB are listed.

Branching to user program Examples

486 U8326-J-Z125-6-76

//show-user-exits --- (7)

FUNCTION ENTRY LIBRARY INT
SHOW USELST USE.LIB V1
//show-element (element=persdat,type=s) --- (8)
INPUT LIBRARY= :1OSQ:$USER.USE.LIB
INPUT ELEMENT= (S)PERSDAT/@(0001)/2011-02-19
USER EXIT USELST IN USE.LIB IS ACTIVE
 #1113 > BACH SEBASTIAN MUENCHEN AUF DER HOEHE 7 AB 3
 #1114 > BERGMANN NORBERT MUENCHEN TORWEG 10 AB 5
 #1115 > FINK SUSANNE NUERNBERG RINGSTR. 23 AB 1
 #1116 > MEYER FRANZ NUERNBERG WASSERMUNGENWEG AB 1
 #1117 > GRUNDLER WOLFGANG BASEL SONNENSTR. 11 AB 2
 #1118 > KNOLL MONIKA FRANKFURT BAUMALLEE 12 AB 3
 #1119 > LIEDL ERIKA MUENCHEN IN DER BREITE 1 AB 5
 #1120 > WAGNER JOHANN AUGSBURG AM SEE 45 AB 4
**************** INSERT BY USER-PROGRAM *********
**************** INSERT BY USER-PROGRAM *********
NUMBER OF PROCESSED RECORDS IS 10
//end --- (9)

(7) The active user exits are displayed.

(8) Member PERSDAT is listed. Since it is shorter than 10 records it is padded with
records by the user program.

(9) LMS is terminated.

Examples Granting protection attributes

U8326-J-Z125-6-76 487

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

9.9 Granting and displaying protection attributes

Specific protection attributes are to be granted for a library and for certain members in this
library.

/start-lms

//modify-logging-parameters logging=*maximum ------------------------------------- (1)
//open-library library=bsp9.bib,mode=*update ------------------------------------- (2)
LIBRARY IS CLEARED AND PREPARED
//modify-library-attributes administration=(user=*owner), -
// init-elem-protection=(read=(user=*owner), -
// write=(user=*owner,password=´P´),-
// exec=(user=*owner)) ------------------------- (3)
//show-library-attributes -- (4)
INPUT LIBRARY= :1OSQ:$USER.BSP9.BIB
READ-PASS = *NONE READ-USER = *OWNER - -
WR-PASS = *YES WR-USER = *OWNER - -
EXEC-PASS = *NONE EXEC-USER = *OWNER - -
ADMIN-PASS = *NONE ADMIN-USER = *OWNER - -
FILE-SIZE = 12 FREE-SIZE = 4 FORMAT = NK2 UPAM-PROT = N
ACCESS-DATE= *NONE WR-CONTROL = *NONE STORAGE=*NONE
//modify-type-attributes type=d, -
// init-elem-protection=(read=(user=(*owner,*group)), -
// write=(user=*owner)) --------------------------- (5)

(1) In addition to error messages, positive acknowledgments are also logged.

(2) Library BSP9.BIB is opened for reading and writing.

(3) Administration authorization is granted for the library owner ’USER’. Only he/she
may create, delete or rename members. Initial member protection is set. For all
member types for which nothing more specific is set, members are created with this
protection.

(4) Output the library attributes.

(5) A specific initial member protection is set for type D: read authorization is granted
to the owner and the group, write authorization is granted to the owner of the library.

Granting protection attributes Examples

488 U8326-J-Z125-6-76

//add-element to-element=(element=test,type=s) ------------------------------------ (6)

input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP9.BIB
OUTPUT ELEMENT= (S)TEST/@(0001)/2013-03-01
 ADD (S)TEST/@(0001)/2013-03-01
//add-element to-element=(element=test,type=d) ------------------------------------ (7)
input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP9.BIB
OUTPUT ELEMENT= (D)TEST/@(0001)/2013-03-01
 ADD (D)TEST/@(0001)/2013-03-01
//copy-element element=(element=test,type=s), -
// to-element=(element=test2,type=s) ---------------------------------- (8)
INPUT LIBRARY= :1OSQ:$USER.BSP9.BIB
OUTPUT LIBRARY= :1OSQ:$USER.BSP9.BIB
 COPY (S)TEST/@(0001)/2013-03-01 AS (S)TEST2/@(0001)/2013-03-01
//modify-element-protection element=(element=test2,type=s), -
// new-protection=(read=(user=*all)) --------------------- (9)
OUTPUT LIBRARY= :1OSQ:$USER.BSP9.BIB
 MODIFY (S)TEST2/@(0001)/2013-03-01

(6) An S-type member having the name TEST is created. The input is performed via
*SYSDTA. The member automatically receives the protection applying to the library
(see (3)).

(7) A further member is created under the same name but as type D. The input for this
member is also performed via *SYSDTA. The member receives the protection
defined for all D-type members (see (5)).

(8) S-type member TEST is copied. The new member is to be called TEST2. The type
remains the same.

(9) Member TEST2 receives new protection; read authorization is extended to all
users.

Examples Granting protection attributes

U8326-J-Z125-6-76 489

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//show-element-attributes element=(element=*(version=*)), -
// information=*maximum ----------------------------------- (10)

INPUT LIBRARY= :1OSQ:$USER.BSP9.BIB
TYPE = D
NAME = TEST
VERSION = @ VARIANT = 0001
USER-DATE = 2013-03-01 CRE-DATE = 2013-03-01 MOD-DATE = 2013-03-01
USER-TIME = 10:33:06 CRE-TIME = 10:33:06 MOD-TIME = 10:33:06
STORAGE = *FULL
STATE = *FREE
ELEM-SIZE = 1
READ-PASS = *NONE READ-USER = *OWNER *GROUP -
WR-PASS = *NONE WR-USER = *OWNER - -

 1 (D)-ELEMENT(S) IN THIS TABLE OF CONTENTS
TYPE = S
NAME = TEST
VERSION = @ VARIANT = 0001
USER-DATE = 2013-03-01 CRE-DATE = 2013-03-01 MOD-DATE = 2013-03-01
USER-TIME = 10:33:06 CRE-TIME = 10:33:06 MOD-TIME = 10:33:06
STORAGE = *FULL
STATE = *FREE
ELEM-SIZE = 1
READ-PASS = *NONE READ-USER = *OWNER - -
WR-PASS = *YES WR-USER = *OWNER - -
EXEC-PASS = *NONE EXEC-USER = *OWNER - -

TYPE = S
NAME = TEST2
VERSION = @ VARIANT = 0001
USER-DATE = 2013-03-01 CRE-DATE = 2013-03-01 MOD-DATE = 2013-03-01
USER-TIME = 10:33:06 CRE-TIME = 10:33:06 MOD-TIME = 10:33:06
STORAGE = *FULL
STATE = *FREE
ELEM-SIZE = 1
READ-PASS = *NONE READ-USER = *OWNER *GROUP *OTHERS
WR-PASS = *YES WR-USER = *OWNER - -
EXEC-PASS = *NONE EXEC-USER = *OWNER - -
 2 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
--
 3 ELEMENT(S) IN THIS TABLE OF CONTENTS
//end -- (11)

(10) All members are displayed with their protection attributes.

(11) The LMS run is terminated.

Convention NONE Examples

490 U8326-J-Z125-6-76

9.10 Automatic version incrementation with convention NONE

Member “test” is always added to the library under the same name, but with a different
method of inclusion.

/start-lms

//modify-logging-parameters logging=*maximum -------------------------------------- (1)
//open-library library=bsp10.bib,mode=*update ------------------------------------- (2)
LIBRARY IS CLEARED AND PREPARED
//show-type-attributes type=s --- (3)
INPUT LIBRARY= :1OSQ:$USER.BSP10.BIB
TYPE = S
SUPER-TYPE = *NONE
BASE-TYPE = S
CONVENTION = *NONE
INIT-ELEM-P= *NONE
ADMINISTRAT= *NONE
STORAGE = *NONE WR-CONTROL = *NONE
//add-element to-element=(element=test(version=*increment),type=s) ---------------- (4)
input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP10.BIB
OUTPUT ELEMENT= (S)TEST/001(0001)/2013-03-01
 ADD (S)TEST/001(0001)/2013-03-01

(1) In addition to error messages, positive acknowledgments are also logged.

(2) Library BSP10.BIB is opened for reading and writing; no S-type member is present.

(3) Display type attributes for member type S as a check. Member type S has the
convention NONE.

(4) Create the first member via *SYSDTA. The member is created under type S with
the name “test” through automatic version incrementation.

Examples Convention NONE

U8326-J-Z125-6-76 491

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//add-element to-element=(element=test(version=*increment),type=s) --------------- (5)

input2
*END

INPUT SYSDTA
OUTPUT ELEMENT= (S)TEST/002(0001)/2013-03-01
 ADD (S)TEST/002(0001)/2013-03-01
//add-element to-element=(element=test(version=a001),type=s) --------------------- (6)
input3
*END

INPUT SYSDTA
OUTPUT ELEMENT= (S)TEST/A001(0001)/2013-03-01
 ADD (S)TEST/A001(0001)/2013-03-01
//add-element to-element=(element=test(version=*increment,base=a*),type=s) ------- (7)
input4
*END

INPUT SYSDTA
OUTPUT ELEMENT= (S)TEST/A002(0001)/2013-03-01
 ADD (S)TEST/A002(0001)/2013-03-01
//add-element to-elem=(elem=test(version=*highest-existing),type=s), -
// write-mode=*any -- (8)
input5
*END

INPUT SYSDTA
OUTPUT ELEMENT= (S)TEST/002(0002)/2013-03-01
 ADD (S)TEST/002(0002)/2013-03-01 , OUTPUT REPLACED
//show-element-attributes -- (9)
INPUT LIBRARY= :1OSQ:$USER.BSP10.BIB
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(S) TEST A001 (0001) 2013-03-01 TEST A002 (0001) 2013-03-01
(S) TEST 001 (0001) 2013-03-01 TEST 002 (0002) 2013-03-01
 4 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//end -- (10)

(5) Maintain the sequence with *INCREMENT, i.e. a second member with the same
name and type but with a version incremented by one is created.

(6) Explicit creation of version A001.

(7) Create a further member through automatic version incrementation; the member is
based on the version with prefix A*.

(8) Overwrite the highest version with type S and name “test”.

(9) Directory of library BSP10.BIB.

(10) Terminate the LMS run.

Convention STD-SEQUENCE Examples

492 U8326-J-Z125-6-76

9.11 Automatic version incrementation with convention
STD-SEQUENCE

Members are to be added to a library in a preset version format, whereby the version is to
be automatically incremented.

/start-lms

//modify-logging-parameters logging=*maximum -------------------------------------- (1)
//open-library library=bsp11.bib,mode=*update ------------------------------------- (2)
LIBRARY IS CLEARED AND PREPARED
//modify-type-attributes type=s,convention=*std-sequence(example=v001) ------------ (3)
//show-type-attributes type=s --- (4)
INPUT LIBRARY= :1OSQ:$USER.BSP11.BIB
TYPE = S
SUPER-TYPE = *NONE
BASE-TYPE = S
CONVENTION = *STD-SEQUENCE
EXAMPLE = V001
INIT-ELEM-P= *NONE
ADMINISTRAT= *NONE
STORAGE = *NONE WR-CONTROL = *NONE
//add to-element=library-element(element=test(version=*increment),type=s) --------- (5)
input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP11.BIB
OUTPUT ELEMENT= (S)TEST/V001(0001)/2013-03-01
 ADD (S)TEST/V001(0001)/2013-03-01

(1) In addition to error messages, positive acknowledgments are also logged.

(2) Library BSP11.BIB is opened for reading and writing; no S-type member is present.

(3) Set up the convention STD-SEQUENCE for type S with the example given in
EXAMPLE for the version format.

(4) Display type attributes for member type S as a check.

(5) Create the first member via *SYSDTA. The member is created under type S with
the name “test” through automatic version incrementation.

Examples Convention STD-SEQUENCE

U8326-J-Z125-6-76 493

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//add-element to-element=(element=test(version=*increment),type=s) --------------- (6)

input1
*END

INPUT SYSDTA
OUTPUT ELEMENT= (S)TEST/V002(0001)/2013-03-01
 ADD (S)TEST/V002(0001)/2013-03-01
//add to-element=library-element(element=test(version=w001),type=s) -------------- (7)
input1
*END

INPUT SYSDTA
OUTPUT ELEMENT= (S)TEST/W001(0001)/2013-03-01
 ADD (S)TEST/W001(0001)/2013-03-01
//add to-element=library-element(element=test(version=999),type=s) --------------- (8)
input1
*END

OUTPUT ELEMENT= (S)TEST/999/2013-03-01
% LMS0024 ERROR ON LIBRARY ':1OSQ:$USER.BSP11.BIB', *** PLAM ERROR CODE '0476'.
% PLA0476 VERSION OR PREFIX NOT ACCORDING TO EFFECTIVE CONVENTION
 NO ADD (S)TEST/999/2013-03-01 , ERROR OCCURRED
SKIPPED:input1
//add to-element=(element=test(version=*highest-existing),type=s), -
// write-mode=*any -- (9)
input1
*END

INPUT SYSDTA
OUTPUT ELEMENT= (S)TEST/W001(0002)/2013-03-01
 ADD (S)TEST/W001(0002)/2013-03-01 , OUTPUT REPLACED

(6) Maintain the sequence with *INCREMENT, i.e. a second member with the same
name and type but with a version incremented by one is created.

(7) Maintain the sequence on changing version, i.e. a third member is created with the
same name and type but, through explicit specification of the version, with version
W001.

(8) An attempt is made to add a further member that does not have a version format
corresponding to the convention STD-SEQUENCE. This statement is rejected by
LMS.

(9) Overwrite the highest version with type S and name “test”.

Convention STD-SEQUENCE Examples

494 U8326-J-Z125-6-76

//show-element-attributes --- (10)

INPUT LIBRARY= :1OSQ:$USER.BSP11.BIB
TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(S) TEST V001 (0001) 2013-03-01 TEST V002 (0001) 2013-03-01
(S) TEST W001 (0002) 2013-03-01
 3 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//end --- (11)

(10) Overview of members present.

(11) Terminate the LMS run.

Examples Convention STD-TREE

U8326-J-Z125-6-76 495

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

9.12 Automatic version incrementation with convention
STD-TREE

/start-lms

//modify-logging-parameters logging=*maximum ------------------------------------- (1)
//open-library library=bsp12.bib,mode=*update ------------------------------------ (2)
LIBRARY IS CLEARED AND PREPARED
//modify-type-attributes type=s,convention=*std-tree ----------------------------- (3)
//show-type-attributes type=s -- (4)
INPUT LIBRARY= :1OSQ:$USER.BSP12.BIB
TYPE = S
SUPER-TYPE = *NONE
BASE-TYPE = S
CONVENTION = *STD-TREE
INIT-ELEM-P= *NONE
ADMINISTRAT= *NONE
STORAGE = *NONE WR-CONTROL = *NONE
//add to-element=library-element(element=test(version=*increment),type=s) -------- (5)
input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP12.BIB
OUTPUT ELEMENT= (S)TEST/001.001(0001)/2013-03-01
 ADD (S)TEST/001.001(0001)/2013-03-01

(1) In addition to error messages, positive acknowledgments are also logged.

(2) Library BSP12.BIB is opened for reading and writing; no S-type member is present.

(3) Set up the convention STD-TREE for member type S.

(4) Display type attributes for member type S as a check.

(5) Create the first member via *SYSDTA. The member is created under type S with
the name “test” through automatic version incrementation.

Convention STD-TREE Examples

496 U8326-J-Z125-6-76

//add to-element=library-element(element=test(version=*increment),type=s) --------- (6)

input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP12.BIB
OUTPUT ELEMENT= (S)TEST/001.002(0001)/2013-03-01
 ADD (S)TEST/001.002(0001)/2013-03-01
//add to-element=(element=test(version=*increment,base=1.1),type=s) --------------- (7)
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP12.BIB
OUTPUT ELEMENT= (S)TEST/001.001.001.001(0001)/2013-03-01
% LMS0095 INPUT DATA RECORDS MISSING
 ADD (S)TEST/001.001.001.001(0001)/2013-03-01

//add-element to-element=library-element(element=test(version=2.1),type=s --------- (8)
input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP12.BIB
OUTPUT ELEMENT= (S)TEST/002.001(0001)/2013-03-01
 ADD (S)TEST/002.001(0001)/2013-03-01
//add to-element=(element=test(version=*increment,base=1.1.1.*),type=s) ----------- (9)
input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP12.BIB
OUTPUT ELEMENT= (S)TEST/001.001.001.002(0001)/2013-03-01
 ADD (S)TEST/001.001.001.002(0001)/2013-03-01
//add to-element=(element=test(version=*highest-existing),type=s), -
// write-mode=*any --- (10)
input1
*END

INPUT SYSDTA
OUTPUT LIBRARY= :1OSQ:$USER.BSP12.BIB
OUTPUT ELEMENT= (S)TEST/002.001(0002)/2013-03-01
 ADD (S)TEST/002.001(0002)/2013-03-01 , OUTPUT REPLACED

(6) Maintain the sequence with *INCREMENT, i.e. a second member with the same
name and type but with a version incremented by one is created.

(7) Open a side branch on version 1.1

(8) Create a member with the same type and name, but with an explicitly specified
version.

(9) Maintain the side branch with prefix 1.1.1.

(10) Overwrite the highest version with type A and name “test”.

Examples Convention STD-TREE

U8326-J-Z125-6-76 497

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//show-element-attributes -- (11)

INPUT LIBRARY= :1OSQ:$USER.BSP12.BIB
TYP NAME VERSION (VAR#) DATE
(S) TEST 001.001 (0001) 2013-03-01
(S) TEST 001.001.001.001 (0001) 2013-03-01
(S) TEST 001.001.001.002 (0001) 2013-03-01
(S) TEST 001.002 (0001) 2013-03-01
(S) TEST 002.001 (0002) 2013-03-01
 5 (S)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//end -- (12)

(11) Output directory of library BSP12.BIB. The library contains five members with the
same name and type but with differing version and variant numbers.

(12) Terminate the LMS run.

make run Examples

498 U8326-J-Z125-6-76

9.13 make run

The following example of the make functionality consists of several procedures.

The procedure MAINPROCEDURE has the following parameters:

The parameters TARGET, SUCC-PROC, SELECT and PROCEDURE are to be specified
in the same way as in BEGIN-MAKE. If the procedure is called with the default parameters,
the target component of the make run is the first target in MAKEDEFAULTS or MAKEFILE.
The make run generates a procedure which is then called with INCLUDE-PROCEDURE.

The MAKEDEFAULTS file contains default settings and standard actions, i.e. things that
can be shared by a number of program systems.

The MAKEFILE file contains the actual definitions of the program system, the depen-
dencies.
The program system contains a phase file which is linked from two object modules. The
object modules are compiled from S-type members of the same names with the aid of two
M-type members. The pseudo-targets CLEAR and PRINT can be used for special program
system actions (clearing and printing).

MAINPROCEDURE procedure:

/DECLARE-PARAMETER (TARGET(INI-VALUE=´*FIRST-TARGET´),-

/ SUCC-PROC(INI-VALUE=´*CREATE-PROC´),-
/ SELECT(INI-VALUE=´*MODIFIED´),-
/ PROCEDURE(INI-VALUE=´#P´),-
/ MAKEFILE(INI-VALUE=´MAKEFILE´),-
/ MAKEDEFAULTS(INI-VALUE=´MAKEDEFAULTS´))
/SET-VAR SUB0=SUBSTR(´&(PROCEDURE)´,1,2) „FILE OR BIB.-ELEMENT“ ----------------- (1)
/BEGIN-BLOCK DATA-INSERTION=YES
/START-LMS

(1) Use of the /INCLUDE-PROCEDURE command is permitted.

TARGET: Target component of the make runs
SUCC-PROC: Continuation processing
SELECT: Consideration of the time stamp
PROCEDURE: Generated procedure
MAKEFILE: Description of the program system itself
MAKEDEFAULTS: Description of the global defaults

Examples make run

U8326-J-Z125-6-76 499

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

/IF (SUB0=´*L´)

// MODIFY-LMS-DEFAULTS TYPE=J
// DELETE-ELEMENT &(PROCEDURE) „BIB.-ELEMENT DELETE“
// STEP
/ELSE
// EXEC-SYSTEM-CMD DELETE-FILE &(PROCEDURE) „FILE DELETE“
// STEP
/END-IF
//BEGIN-MAKE TARGET=&(TARGET), - --- (2)
// SELECT=&(SELECT), -
// SUCCESS-PROCESSING=&(SUCC-PROC), -
// PROCEDURE=&(PROCEDURE)
/INCLUDE-PROCEDURE NAME=&MAKEDEFAULTS -- (3)
/INCLUDE-PROCEDURE NAME=&MAKEFILE
/END-BLOCK
//END-MAKE --- (4)
//END
/IF (SUBSTR(´&(SUCC-PROC)´,2,2) <> ´CR)́ „NO CREATE-PROC“
/ EXIT-PROC „SUBSEQUENT PROCESSING ALREADY EXECUTED“
/END-IF
/INC-PROC &(PROCEDURE) „EXECUTE, MAYBE NOT EXISTING“
/SET-JOB-STEP
/EXIT-PROCEDURE

(2) The make run is started.

(3) MAKEDEFAULTS and MAKEFILE are called.

(4) The sequence of make substatements is concluded and so also the make run.
Continuation processing as specified in the BEGIN-MAKE statement (in this case
the default INCLUDE-PROCEDURE) is initiated.

make run Examples

500 U8326-J-Z125-6-76

MAKEDEFAULTS file:

/RESUME-PROGRAM

//MODIFY-MAKE-DEFAULTS LIBRARY=BSPLIB,-
// CURRENT-TARGET-VAR=CURT,FROM-OBJECTS-VAR=ALLOBJ ------------------------------ (5)
//SET-STD-ACTION - -- (6)
// TARGET-TYPE=R,FROM-TYPE=S,-
// ACTION='/CALL-PROCEDURE *LIB(BSPLIB,COMPILE),(&&(CURT.ELEMENT))'
/HOLD-PROGRAM --- (7)
/EXIT-PROC

(5) The default library and make variables are set. These settings are valid for the
subsequent statements.

(6) A standard action (compilation) is set for the transition from member type S to
member type R.

(7) Preparation for branching back out of the procedure.

Examples make run

U8326-J-Z125-6-76 501

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

MAKEFILE file:

/RESUME-PROGRAM

//SET-DEPENDENCY - --- (8)
// TARGET-OBJECT=PROG, -
// FROM-OBJECT=(*LIB(,TEIL1,R),*LIB(,TEIL2,R)), -
// ACTION='/CALL-PROCEDURE LINK,(OBJVAR=ALLOBJ)'
//SET-DEPENDENCY - --- (9)
// TARGET-OBJECT=*LIB(,*,R),-
// FROM-OBJECT=(*LIB(,*,S), *LIB(,GLOBALDATA,M), *LIB(,HEADERS,M)) ------------- (10)
//SET-DEPENDENCY - --- (11)
// TARGET-OBJECT=CLEAR,-
// ACTION='/CALL-PROCEDURE *LIB(BSPLIB,DELETE.TEMPS)'
//SET-DEPENDENCY - --- (12)
// TARGET-OBJECT=PRINT,-
// ACTION='/CALL-PROCEDURE *LIB(BSPLIB,PRINT.LISTFILES)'
//SET-PREPROCESSING - -- (13)
// ACTION=('/CALL-PROCEDURE *LIB(BSPLIB,INIT)',-
// '/DECL-VAR ALLOBJ(TYPE=STRING),MULT-ELEM=LIST,SCOPE=TASK')
//SET-POSTPROCESSING - --- (14)
// ACTION='/CALL-PROCEDURE *LIB(BSPLIB,STOP)'
/HOLD-PROGRAM
/EXIT-PROC

(8) Definition of the dependency “Phase is linked from object modules”. The phase file
PROG is the first target of the make run (*FIRST-TARGET).

(9) Definition of the dependency “Object module generated from source of same name;
further components (type M) required.” The standard action specified in (3) is used.

(10) “Of the same name” is formulated through the use of make selection and
construction. The selection is specified at TARGET-OBJECT, and the construction
at FROM-OBJECT. The LMS restriction that the construction must contain at least
one wildcard symbol does not apply to make construction specifications.
*LIB(,HEADERS,M) contains no wildcard symbol.

(11) The target file CLEAR is not dependent on any FROM-OBJECT, i.e. is never
current. If CLEAR is specified as the target of the make run, clearing actions are
initiated for the program system. The CLEAR actions should not be executed every
time the program system is updated.

(12) As in (11). The printing of results is defined as the action for PRINT.

make run Examples

502 U8326-J-Z125-6-76

(13) When a procedure is generated, the ´/CALL INIT´ action is to be placed at its
beginning. In addition, the variable ALLOBJ is to be defined globally for the task
since it is to be imported into the LINK procedure later. The declaration is not
overwritten during execution of the generated procedure.

(14) When a procedure is generated, the ́ /CALL STOP´ action is to be placed at its end.

Written in a fashion similar to that of UNIX-make, the MAKEFILE file could look like this:

MAKEFILE file:

/RESUME-PROGRAM

//SET-DEPENDENCY PROG, (*LIB(,TEIL1,R),*LIB(,TEIL2,R)), -
// '/CALL-PROCEDURE *LIB(BSPLIB,LINK),(OBJVAR=ALLOBJ)'
//SET-DEPENDENCY *LIB(,*,R),(*LIB(,*,S),*LIB(,GLOBALDATA,M),*LIB(,HEADERS,M))
//SET-DEPENDENCY CLEAR, *NONE,-
// '/CALL-PROCEDURE *LIB(BSPLIB,DELETE.TEMPS)'
//SET-DEPENDENCY PRINT, *NONE,-
// '/CALL-PROCEDURE *LIB(BSPLIB,PRINT.LISTFILES)'
//SET-PREPROCESSING ('/CALL-PROCEDURE *LIB(BSPLIB,INIT)',-
// '/DECL-VAR ALLOBJ(TYPE=STRUC),MULT-ELEM=LIST,SCOPE=TASK')
//SET-POSTPROCESSING '/CALL-PROCEDURE *LIB(BSPLIB,STOP)'
/HOLD-PROGRAM
/EXIT-PROC

Examples make run

U8326-J-Z125-6-76 503

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

If it is necessary to generate the program system in its entirety, the required procedure
would look something like this:

/DECL-VAR SYSLMSMAKE(TYPE=STRUC(DEF=*DYN)) --------------------------------------- (1)

/CALL-PROCEDURE *LIB(BSPLIB,INIT)
/DECL-VAR ALLOBJ(TYPE=STRUC),MULT-ELEM=*LIST,SCOPE=*TASK
/IF-BLOCK-ERROR -- (2)
/EXIT-PROCEDURE
/END-IF
/DECLARE-VARIABLE CURT(TYPE=*STRUC) -- (3)
/IF-BLOCK-ERROR
/END-IF
...
/SET-VARIABLE CURT.ELEM = 'TEIL1' -- (4)
...
/CALL-PROCEDURE *LIB(BSPLIB,COMPILE),(&(CURT.ELEM))
...
/SET-VARIABLE CURT.ELEM = 'TEIL2'
...
/CALL-PROCEDURE *LIB(BSPLIB,COMPILE),(&(CURT.ELEM))
...
/DECLARE-VARIABLE ALLOBJ(TYPE=*STRUC),MULT-ELEM=*LIST ---------------------------- (5)
/IF-BLOCK-ERROR
/END-IF
/FREE-VARIABLE ALLOBJ
...
/SET-VARIABLE SYSLMSMAKE.ELEM = 'TEIL1'
...
/SET-VARIABLE ALLOBJ = SYSLMSMAKE,MODE=APPEND ------------------------------------ (6)
/SET-VARIABLE SYSLMSMAKE.ELEM = 'TEIL2'
...
/SET-VARIABLE ALLOBJ = SYSLMSMAKE,MODE=APPEND
/CALL-PROCEDURE *LIB(BSPLIB,LINK),(OBJVAR=ALLOBJ)
...
/CALL-PROCEDURE *LIB(BSPLIB,STOP)

(1) The make-internal auxiliary variables for list creation are declared.

(2) This sequence of statements is inserted after each action (except
POSTPROCESSING) to ensure clean error exiting.

(3) CURT is declared (errors are tolerated since CURT can be declared, for example,
globally).

make run Examples

504 U8326-J-Z125-6-76

(4) The other components of the S variables and the S list variable ALLOBJ are also
set.

(5) An empty S list variable for ALLOBJ is declared. ALLOBJ is also handled before the
other procedure calls, but its result is not used in them.

(6) The FROM-OBJECTS are appended to the S list variable ALLOBJ.

The procedures called in MAKEFILE have the following interfaces:

1. INIT and STOP have no parameters.

2. COMPILE has only one parameter, i.e. a member name. For the sake of simplicity, no
library specification or other information is entered.

3. LINK allows the entry of the name of an S list variable containing all the objects that are
to be linked. The list variable is handled as follows:

/DECL-PAR NAME=INPUTVAR(TYPE=STRING)

/DECL-VAR I(TYPE=STRUC(DEF=*DYN))
/IMPORT-VAR &(INPUTVAR) --- (1)
...
/FOR I=*LIST(&INPUTVAR) --- (2)
/ DO-SOMETHING ... &(I) -- (3)
/END-FOR

(1) The specified list variables (which must be defined globally for the task) are
imported.

(2) The list variables are listed in variable I.

(3) Variable I is used either directly in SDF entries or in /SEND-DATA
or /SEND-STATEMENT.

Examples Using the output in S variables

U8326-J-Z125-6-76 505

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

9.14 Using the output in S variables

This procedure compares two libraries.

All the members which exist in the newer library (NEW-LIB parameter) are deleted from the
older library (OLD-LIB parameter).

/BEGIN-PARAMETER-DECLARATION

/DECLARE-PARAMETER NAME=OLD-LIB(INITIAL-VALUE=*PROMPT)
/DECLARE-PARAMETER NAME=NEW-LIB(INITIAL-VALUE=*PROMPT)
/END-PARAMETER-DECLARATION
/DECLARE-VARIABLE NAME=NEW-ELEMENTS(TYPE=*STRUC), -
/ MULTIPLE-ELEMENTS=*LIST -- (1)
/BEGIN-BLOCK DATA-INSERTION=*YES
/START-LMS
//SHOW-ELEM-ATTR -
// ELEM=*LIB-ELEM(LIB=&NEW-LIB,ELEM=*ALL,TYPE=*ALL),-
// INF=*MIN,STRUCTURE-OUTPUT=NEW-ELEMENTS ---------------------------------- (2)
/DECLARE-VARIABLE NAME=LOOP(TYPE=*STRUC) --- (3)
/FOR LOOP=*LIST(NEW-ELEMENTS)
//DELETE-ELEM *LIB-ELEM(LIB=&OLD-LIB, -
// ELEM=&(LOOP.ELEM)(VERS=&(LOOP.VERSION)), -
// TYPE=&(LOOP.TYPE)) -------------------------------------- (4)
//STEP "if member in &OLD-LIB does not exist"
/END-FOR
//END
/END-BLOCK

(1) The variables for the output of //SHOW-ELEMENT-ATTRIBUTES are declared.

(2) The output of //SHOW-ELEMENT-ATTRIBUTES is placed in the variables.

(3) The loop variables are declared.

(4) The members in a loop are deleted; the values of the loop variables are used for
member, version and type.

Library lists Examples

506 U8326-J-Z125-6-76

9.15 Library lists

The following example illustrates how library lists are embedded into a development
environment.

When several developers are working on a shared database, it is usual for data to be stored
locally as well as in the central data pool. Data is then transferred to and fro by means of
the borrowing mechanism.

When compiling a local variant, it is a good idea to combine central and local data in a library
list, so that the exact storage location does not have to be known for each library member.

The figure below shows the central library and a local library, both of which belong to the
development environment. Source members have the member type S, while include
members have the type M. The result is PROGRAM with type L. With the help of library lists,
PROGRAM can be updated both centrally and locally with the same make file. The library
list with which PROGRAM is updated is to receive the name SYSPLAMALT-PROGRAM
(library lists must begin with "SYSPLAMALT-"). If used locally, SYSPLAMALT-PROGRAM
must consist of two libraries, if used centrally only of one.

– locally: SYSPLAMALT-PROGRAM = '(LIB,$CENTRAL.LIB)'
(first look locally, then under $CENTRAL)

– centrally: SYSPLAMALT-PROGRAM = '($CENTRAL.LIB)'
(look only under $CENTRAL)

Figure 11: Combining source libraries

//begin-make
//modify-make-defaults library=sysplamalt-program,-
// from-objects-var=from

$LOKAL.LIB:
local library

S/SOURCE/001

M/INCLUD1/001

L/PROGRAM/012
L/SOURCE1/001

$ZENTRAL.LIB:
central library

S/SOURCE/001
S/SOURCE/020

M/INCLUD1/011
M/INCLUD2/002

L/PROGRAM/012
L/SOURCE1/001
L/SOURCE2/020

Examples Library lists

U8326-J-Z125-6-76 507

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
k0

9

//set-dependency *l(lib,program,l), "$LOCAL.LIB od. $CENTRAL.LIB"-
// (*l(,source1,l),-
// *l(,source2,l)),'/call bind'
//set-dependency *l(,source1,l),-
// (*l(,source1,s),-
// *l(,includ1,m),-
// *l(,includ2,m)),-
// '/call compile lib=&&(from#1.lib),elem=source1'
//set-dependency *l(,source2,l),-
// (*l(,source2,s),-
// *l(,includ2,m)),-
// '/call compile lib=&&(from#1.lib),elem=source2'
//end-make

In the BIND and COMPILE procedures, the library list is used in two different ways. BIND
uses the library list on the input side directly:

...
//include-module element=source1,library=sysplamalt-program
//include-module element=source2,library=sysplamalt-program
...

With local use, the local library then has priority over the central library.

The COMPILE procedure has a LIB parameter which is supplied with the hit library via the
make S variable FROM; the compiler then works directly with this value. Include processing
operates with the library list SYSPLAMALT-PROGRAM. Local includes then have priority
over central ones.

Library lists Examples

508 U8326-J-Z125-6-76

U8326-J-Z125-6-76 509

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
an

h

10 Appendix

10.1 Supplementary information in LMS messages

The following supplementary information appears in various combinations in addition to the
actual text of the LMS messages:

Supplementary information Meaning
FUNCTION TERMINATED Function is aborted

(LIBRARY INPUT) Library input

(LIBRARY OUTPUT) Library output

(LISTING-MEMBER-OUTPUT) Log output to member

STATEMENT(S) IS (ARE)
SKIPPED

The entire statement is ignored

SYSLST (LISTING) Log output to SYSLST

OUTPUT-LIBRARY LOCKED The output library is locked

OPENERROR ON
LIBRARY/ELEMENT

Error occurred when library/member was opened

OUTPUT-LIBRARY MISSING The output library does not exist

RECFORM=F The library member has records of fixed length

KEYPOS>5 The KEYPOS is greater than 5

KEYLEN>8 The KEYLEN is greater than 8
(applies only when calling EDT)

KEYLEN>16 The KEYLEN is greater than 16
(applies only when calling EDOR)

KEYS DO EXIST IN ELEMENT The library member to be extended has been added using
SOURCE-ATTRIBUTES=KEEP and contains the ISAM keys

DIFFERENT FILETYPE/ VALUE
PROPAGATION (MIN/MAX)

The file type or the “VALUE PROPAGATION” of the file to be
added does not match that of the library member to be extended

DIFFERENT RECORD
FORMAT

The record format of the file to be added does not match the
record format of the library member to be extended

Supplementary information in LMS messages Appendix

510 U8326-J-Z125-6-76

DIFFERENT RECORD SIZE The record length of the file to be added does not match the
record length of the library member to be extended

DIFFERENT KEYPOSITION The position of the keys of the file to be added does not match the
position of the keys of the library member to extended

DIFFERENT KEYLENGTH The length of the keys of the file to be added does not match the
length of the keys of the library member to be extended

DIFFERENT LOGLENGTH The LOGLENGTH of the file to be added does not match the
LOGLENGTH of the library member to be extended

DIFFERENT VALUE LENGTH The VALLEN value of the file to be added does not match the
VALLEN of the library member to be extended

OUTPUT-LIBRARY IS NOT A
PLAM-LIBRARY

The output library is not a program library

FIXED RECORD FORMAT ON
INPUT-FILE

The library member to be extended contains no file attributes and
the input file has fixed-length records

KEYPOSITION≠5 ON
INPUT-FILE

The library member to be extended contains no file attributes and
the input file has a key position which is not equal to 5

KEYLENGTH>16 ON
INPUT-FILE

The library member to be extended contains no file attributes and
the input file has a key length greater than 16

RECORD SIZE>2032 ON
INPUT-FILE

The file to be added has a record length of more than 2032 bytes

Supplementary information Meaning

Appendix Messages of the AMCB access routine

U8326-J-Z125-6-76 511

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
an

h

10.2 Messages of the AMCB access routine

The messages issued by the internal LMS access routine AMCB have the following
format:

where

xxxx is the AMCB error key.

xxxx Meaning of AMCB error codes
0000 No error

0001 DMS error

0002 Illegal op code

0003 File name missing in control block

0004 No / modified FCB address, or FCB address for FOP with DMS-OPEN points to active
FCB

0005 Incorrect op code sequence

0006 Library type invalid

0007 Contradictory LIB types in control block

0008 Library has been repaired

0009 Library must be repaired

0010 Address not within member limits

0011 On writing: library limit reached

0012 Contradictory information in control block and FCB

0013 Supplementary information missing

0014 Supplementary information missing

0015 Record too long

0017 Last member in library has been deleted

0019 This is not an LMS library

0022 Module not complete (e.g. no END record)

0023 Incorrect record type in module

0050 Overwrite error

0051 Insufficient memory

{AMCB} : xxxx

Messages of the AMCB access routine Appendix

512 U8326-J-Z125-6-76

0052 Member has been overwritten

0053 Input file is empty

0054 Empty file is replaced

0062 Function not implemented

0063 No files present

0066 First record not an ESD record

0100 Illegal program file

0101 DMS error

0102 Unknown file type

0107 Neither file name nor link name entered

0108 User error

0109 Open error

0111 No free space in file table

0112 FSTAT error

0118 No empty file for CREATE

0119 Open for empty file

0120 File name invalid

0121 File ID has no entry in file table

0122 Requested open status different from actual status

0123 No further space for FCB

0124 No further space for access indicator in file table

0125 Second access to output library

0126 No further space for link table entry

0127 Link table entry missing

0131 Library still open for CTL or PRT

0136 Access error, e.g. file locked

0150 Access method not known

xxxx Meaning of AMCB error codes

Appendix Old LMS subprogram interface

U8326-J-Z125-6-76 513

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
an

h

10.3 Old LMS subprogram interface

For compatibility reasons, the old subprogram interface described here is still supported.

The new subprogram interface is described in the manual “LMS Subroutine Interface” [1].

If LMS is called as a subprogram with independent dialog, control is returned to the program
that issued the call after the END statement is processed. LMS remains loaded after the
END statement is processed. In all other respects, the LMS run is the same as when the
program is loaded by means of the /START-EXECUTABLE-PROGRAM command.
Whenever LMS is called, it logs on its own STXIT routine.

When control is returned to the main program, LMS’s STXIT routine is logged off; the main
program must then log its own STXIT routine on again.

When calling the subprogram interface, be sure to observe the following register conven-
tions:

Before control is returned to the calling program, LMS stores the following return codes in
register 15:

Register 1 must be zero.
Register 13 contains the address of an 18-word save area which must be made

available by the calling program. LMS uses this area to store the register
contents of the calling program.

Register 14 contains the return address.
Register 15 contains the entry address LMSUPSDF.

X'00' LMS terminated normally.
X'04' LMS terminated abnormally.

Old LMS subprogram interface Appendix

514 U8326-J-Z125-6-76

Example

LMS is called as a subprogram from the program UPROG. In LMS, a member is output from
a program library to a file. After the LMS run has terminated, control is returned to the user
program.

/START-LMS

//OPEN UEB.BIB,U -- (1)
//SHOW-ELEM *LIB(,LMSCALL,S) -- (2)
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
INPUT ELEMENT= (S)LMSCALL/(0001)/1995-08-12
UPROG START
 BALR 3,0
 USING *,3
 MVC OUTPUT,ANMELD
AUFRUF WROUT OUT,TERM
 LA 14,RUECK --- (3)
 LA 1,0 -- (4)
 LA 13,SAVE -- (5)
 L 15,=V(LMSUPSDF) -- (6)
 BALR 14,15
RUECK MVC OUTPUT,ABMELD
 WROUT OUT,TERM
*
*
TERM TERM
*
*
SAVE DS 18F
*
ANMELD DC '********** *LMS ACTIVATED NOW ************'
ABMELD DC '***** LMS TERMINATED NOW - RETURNING TO PROGRAM *****'
OUT DC Y(ENDE-OUT)
 DS CL2
 DC X'01'
OUTPUT DS CL50
ENDE EQU *
*
*
 END UPROG
NUMBER OF PROCESSED RECORDS IS 29
//END
/
.
.
.
/START-EXECUTABLE-PROGRAM FROM-FILE=(LIB=UEB.BIB,ELEM=LMSCALL)
% BLS0500 PROGRAM 'LMSCALL', VERSION '007' OF '95-08-12' LOADED
********** *LMS ACTIVATED NOW ************
% LMS0310 LMS VERSION ´03.4B00´ STARTED -- (7)

Appendix Old LMS subprogram interface

U8326-J-Z125-6-76 515

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
an

h

//OPEN UEB.BIB,U
//SHOW-E-ATTR
INPUT LIBRARY= :N:$USER.UEB.BIB,DEV=DISK
TYP NAME VER (VAR#) DATE
(C) LMSCALL 007 (0001) 1995-08-12
 1 (C)-ELEMENT(S) IN THIS TABLE OF CONTENTS
//EXTRACT-ELEM *LIB(,LMSCALL,S),LMSCALL1
INPUT LIBRARY= :N:$USER.UEB.BIB,DUF2EV=DISK
OUTPUT FILE
 SEL (S)LMSCALL/(0001)/1995-08-12 AS LMSCALL1
//END -- (8)
% LMS0311 LMS VERSION ´03.4B00´ TERMINATED NORMALLY
***** LMS TERMINATED - RETURNING TO PROGRAM *****

(1) The program library UEB.BIB is designated as the input and output library.

(2) The source program LMSCALL is listed.

(3) The return address is loaded in register 14.

(4) Register 1 is set to 0.

(5) The address of the save area is loaded in register 13.

(6) The entry address LMSUPSDF is loaded in register 15.

(7) LMS is called from within the user program.

(8) Following termination of the LMS run, control is returned to the user program.

Migrating old library formats Appendix

516 U8326-J-Z125-6-76

10.4 Migrating old library formats

LMSSDF only processes the library format. The old library formats shown below can be
converted into the PLAM library format as follows. If these conversions fail, this means that
the library format is unknown.

1. Converting from LMR, MLU and COBLUR libraries

/EXEC $LMSCONV or /EXEC $LMS
$LIB libold
$LIB libnew,NEW
$DUP* *
$END

libold is the library in LMR, MLU or COBLUR format which is to be converted.
libnew is a newly created library in PLAM format.

2. Converting from FMS libraries

/EXEC $LMS
$LIB libnew,NEW
$ADDS FMS=libold(*)
$END

libold is the library in FMS format which is to be converted.
libnew is a newly created library in PLAM format.
ADDx FMS=libold(...) uses the original date for the target member .
ADDx FMS=libold(...)>... assigns today’s date for the target member.

Appendix Product components

U8326-J-Z125-6-76 517

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
an

h

10.5 Product components

Logical ID File name Function
SYSPRG.ISP LMS Starter phase LMS (ISP)
SYSPRG.SDF LMSSDF Starter phase LMSSDF
SYSLNK SYSLNK.LMS.034 LMS module library
SYSLIB SYSLIB.LMS.034 User interface for LMS-UP
SYSMES SYSMES.LMS.034 Message file
SYSSSC SYSSSC.LMS.034 Subsystem declaration
SYSSSC SYSSSC.LMS.034.PRELOAD Subsystem declarations to preload

the private part of LMS (see
Release Notice)

SYSSII SYSSII.LMS.034 Structure information ffr IMON
SYSSDF SYSSDF.LMS.034 SDF syntax file
SYSFGM.D SYSFGM.LMS.034.D Release Notice, German
SYSFGM.E SYSFGM.LMS.034.E Release Notice, English
SYSREP SYSREP.LMS.034 Correction file
SYSRMS SYSRMS.LMS.034 Correction depot for RMS
SYSNRF SYSNRF.LMS.034 Noref file
SYSACF SYSACF.LMS.034 Alias catalog for LMSLIB

Table 6: Product components

Product components Appendix

518 U8326-J-Z125-6-76

U8326-J-Z125-6-76 519

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

P
fa

d:
 P

:\F
TS

-B
S

\L
M

S
\s

df
\e

n\
lm

ss
df

e.
lit

Related publications
You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

[1] LMS
(BS2000/OSD)
Subroutine Interface
User Guide

[2] ARCHIVE (BS2000/OSD)
User Guide

[3] SDF (BS2000/OSD)
SDF Dialog Interface
User Guide

[4] BS2000/OSD-BC
Commands
User Guide

[5] BINDER (BS2000/OSD)
User Guide

[6] SECOS (BS2000/OSD)
Security Control System
User Guide

[7] SECOS (BS2000/OSD)
Security Control System - Audit
User Guide

[8] JV (BS2000/OSD)
Job Variables
User Guide

[9] BS2000/OSD-BC
Introductory Guide to DMS
User Guide

http://manuals.ts.fujitsu.com

Related publications

520 U8326-J-Z125-6-76

[10] EDT (BS2000/OSD)
Statements
User Guide

[11] EDT (BS2000/OSD)
Unicode Mode Statements
User Guide

[12] SDF-P (BS2000/OSD)
Programming in the Command Language
User Guide

[13] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

[14] openFT (BS2000)
Enterprise File Transfer in the Open World
User Guide

[15] XHCS (BS2000/OSD)
8-Bit Code Processing in BS2000/OSD
User Guide

[16] C Library Functions (BS2000/OSD)
for POSIX Applications
Reference Manual

U8326-J-Z125-6-76 521

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

Pf
ad

: P
:\F

TS
-B

S
\L

M
S

\s
df

\e
n\

lm
ss

df
e.

si
x

Index

*LMS-DEFAULT (operand value) 156
$LMSPAR 71

A
Abbreviation options 154
aborting LMS output 98
access date and time 43
access protection for members 57
ACL 64
ACS (Alias Catalog System) 114
actions 131
ACTIVATE-USER-EXIT statement 158
activating a user program 158
ADD-ELEMENT statement 165
ADD-RECORD (MODIFY-ELEMENT

substatement) 301
ADD-REP-RECORD substatement 288
ADD-TEXT-MODIFICATION substatement 289
adding

a REP record 288
delta members 93
files 165
members 83
object modules 168
source programs 457
temporary files 173

administer authorization
for a type 57

AID (Advanced Interactive Debugger) 299
alias 114, 140
alias catalog 114
alias name 114
aliases 155
alphanum-name (data type) 141

AMCB error codes 511
archiving members using the delta method 91
assembling source programs 457
assigning libraries 74
attribute record 111
attributes

assigned by access method 43
assigned by user 44
content-descriptive 44
member 43
organizational 44

auditing 66

B
BACL 64
base type 36
base version 51
BASE# 338
BEGIN-MAKE statement 176
BLKCTRL 105
block control field (CF) 112
borrowing mechanism 23
branching to a user program 158, 483
building a delta tree 94

C
c-string (data type) 141
CALL-EDT statement 197
cancelling corrections 298
case-sensitive (suffix for data type) 153
cat (suffix for data type) 152
cat-id (data type) 141
CCS (coded character set) 116

Index

522 U8326-J-Z125-6-76

CCSN (coded character set name) 116
evaluating 120
logging 119
setting explicitly 118
setting implicitly 118

character set
coded 116
extended 116

class 2 option
NONKEY 108
PAMKEY 108

CLOSE-LIBRARY statement 199
closing a library 199
code (coded character set) 116
coded character set 116
command-rest (data type) 141
COMPARE-ELEMENT statement 201
comparing

members 87, 466
text members 201

comparison
formal 87
logical 87

comparison base 92
comparison log 88, 201, 209
comparison result 88
comparison statistics 88, 201, 209

output 434, 480
compiler result information 34
compl (suffix for data type) 147
component 125

definition 125
derived 125
derived (definition) 125
source 125

composed-name (data type) 141
construction specification

for member designations 41
in make 133

constructor 151
constructor (string) 150
container 91
contents of a member 33
Continuation lines 154

controlling
log output 97
the LMS run 96

convention
checks 53
default version 53
format 53
incrementation procedure 53
NONE 54
setting 53
standard base selection 53
STD-SEQ 126
STD-SEQUENCE 54
STD-TREE 55, 126

converting library format 113
copy with structure 213
COPY-ELEMENT statement 213
COPY-LIBRARY statement 226
copying members 213, 462
corr (suffix for data type) 152, 153
correcting

link and load modules 89
members 89
object modules 89
phases 89
source programs 457
text members 89, 237
text records 289
with EDIT-ELEMENT 89
with MODIFY-ELEMENT 89

correction statement 287
corrections

cancel 298
CPU-LIMIT operand 68
creating text members 237
creation date and time 43
CSECT attributes

modify 293
CSECT name 299
current (definition) 125
current program system 125

Index

U8326-J-Z125-6-76 523

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

Pf
ad

: P
:\F

TS
-B

S
\L

M
S

\s
df

\e
n\

lm
ss

df
e.

si
x

D
data of any format 35
data protection by overwriting 65
data type

alphanum-name 141
c-string 141
cat-id 141
command-rest 141
composed-name 141
date 141
device 141
filename 142
fixed 141
integer 143
name 143
partial-name 144
posix-filename 144
posix-pathname 144
product-version 145
structured-name 145
text 145
time 145
vsn 145
x-string 146
x-text 146

data types in SDF 138, 139
suffixes 138

date (data type) 141
deactivating the user exit 229
default values

modify 330
output 430

defining
global parameters 296
record ID 300

DELETE-ELEMENT statement 230
DELETE-RECORD-TYPE substatement 291
deleting

delta members 86, 95
members 86, 230
record or record area 303
record types 291

DELTA 338

delta
as organizational aid 92
as storage form 92

delta member 91
add 93
delete 86, 95
lock 95
organization 92
output 94
overwrite 95
process 471
rename 95
storage 92

delta method 16, 31, 91
delta numbers, internal 338
delta quantity 93
delta sequence 92, 93
delta storage method 91
delta structure 92
delta tree 49, 92

building 94
leaves 49
members 49
storage 49

DELTA# 338
dependencies

on member type 46
structure 134

dependency (definition) 125
derived component 125
DESTROY-DATA 65

as member attribute 65
as processing parameter 65

device (data type) 141
dialog

inquiry mechanism 24
dig (suffix for data type) 152
directory

of a library 28
output 90, 406
sort sequence 422
sorting 406

disk space requirements
reducing 377

Index

524 U8326-J-Z125-6-76

documents 34
DSDD records 291
dynamically loading the user program 160

E
EDIT-ELEMENT statement 237
edited data 34
editor run 238
EDT

@USE statement 121
and LMS 121
calling 197
terminating 197

END statement 73, 256
END-MAKE (make substatement) 183
END-MODIFY (MODIFY-ELEMENT

substatement) 302
END-MODIFY substatement 292
ENTER jobs 34
entry in system catalog 28
error handling 99
EXTRACT-ELEMENT statement 257

F
file

add 165
attribute BLKCTRL 105

filename (data type) 142
fixed (data type) 141
form feed character (log parameter) 354
formal comparison 87, 209
from-object 134
full member 91
full storage 91
full-filename see data type filename 142

G
gen (suffix for data type) 152
generating

ISAM files 258
S variables 20

global library 75
graph 134

component 135

H
hold feature 126

I
IFG format masks 34
IFG user profiles 35
INCLUDE record 291
index

constructor (string) 150
global 150
notation 151
placeholder specific 150

initial member protection 61
input format

dates 44
input library 29
Input rules 154
inquiry mechanism in interactive mode 24
integer (data type) 143
interface of user exit 160
internal delta numbers 338
internal memory C0 434
INTR command 104
ISAM file 108

generating 258, 476
ISAM key

calculating increment 258
ISD records 291

J
job switch

4 set 97
using 104

K
keyword UNCHANGED 96
Konvention

MULTI-SEQUENCE 56

Index

U8326-J-Z125-6-76 525

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

Pf
ad

: P
:\F

TS
-B

S
\L

M
S

\s
df

\e
n\

lm
ss

df
e.

si
x

L
leaves 49
library 28

assignment 74
characteristics 15
close 199
copying entire 226
copying to NK4 pubset 228
definition 15
global 75
internal file organization 105
local 76
opening (read and write) 75
opening (read) 75
reorganizing 377
UPAM-protected 64

library format
converting 113

library list 74, 77, 506, 507
line length (log parameter) 354
link and load modules 34

correct 89
link name 76
list members 34
list variable

dynamic 427
listing members 86
LLM

link and load modules 34
modification 277

LMS
and EDT 121
functions 67
in batch mode 24
in interactive mode 24
log 97
logging parameters 96
start file 71
terminating 256

LMS log 97

LMS run
control 96
starting 67
terminating 73

local library 76
locking delta members 95
log format 209
log output

control 97
log parameters

specifying 354
logging format

control 97
logging scope

control 97
logical comparison 87, 208
logical deletion 86, 95
low (suffix for data type) 147
LSD records 291, 299

M
macros 34
make functionality 23, 127

area of application 127
example 498

make S variables
defining 184

make substatement 128
conclude 176
END-MAKE 183
initiate 176
MODIFY-MAKE-DEFAULTS 184
SET-DEPENDENCY 187
SET-POSTPROCESSING 193
SET-PREPROCESSING 194
SET-STD-ACTION 131, 195

man (suffix for data type) 152, 153
mandatory (suffix for data type) 153
manual

notational conventions 11

Index

526 U8326-J-Z125-6-76

member 15, 28
add 83
cancel reservation 126
compare 87, 201, 466
copy 213, 462
correct 89
define hold right 126
delete 86, 230
list 86
logical deletion 230
output 86, 476
output to file 257
physical deletion 230
process 83
rename 90, 304
reserve 368
return 126
with attribute record 111
without attribute record 112

member access rights 57
administer 57
execute 57
hold 57
read 57
write 57

member attributes 43
member contents 33

display 392
member designation 37

construction specification 41
logging 38
multiple selection 39
name component 15
structure 15
syntax 38
type component 15
version component 15

member protection 57
initial 61
modify 254, 314

member record or record area
delete 303

member relationships 45
delta tree 45
naming convention 45
reference entry 45

member size 43
member type 33

base type 36
definition 33
dependencies 46
derived (see user type) 36
reserved type 34
supertype 36
textual 35
type check 46

member type C 34
member type D 34
member type F 34
member type H 34
member type J 34
member type L 34
member type M 34
member type P 34
member type R 35
member type S 35
member type U 35
member type X 35
member versions

holding 126
members of a delta tree 49
messages

access routine 511
supplementary information 509

metasyntax in SDF 138, 139
modification date and time 43
MODIFY-CSECT-ATTRIBUTES

substatement 293
MODIFY-ELEMENT statement 277
MODIFY-ELEMENT substatements

ADD-RECORD 301
conclude 302
END-MODIFY 302
for text members 300
REMOVE-RECORD 303

Index

U8326-J-Z125-6-76 527

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

Pf
ad

: P
:\F

TS
-B

S
\L

M
S

\s
df

\e
n\

lm
ss

df
e.

si
x

MODIFY-ELEMENT-ATTRIBUTES
statement 304

MODIFY-ELEMENT-PROTECTION
statement 254, 314

MODIFY-LIBRARY-ATTRIBUTES statement 324
MODIFY-LMS-DEFAULTS statement 330
MODIFY-LMS-OPTIONS statement 351
MODIFY-MAKE-DEFAULTS (make

substatement) 184
MODIFY-MODIFICATION-DEFAULTS

substatement 296
MODIFY-TYPE-ATTRIBUTES statement 356
modifying

an object module 474
CSECT attributes 293
LLMs 277
member protection 254, 314
object modules 277
phases 277

MONJV operand 68
multiple access

restriction 30
to delta members 32
to libraries 29

multiple selection
examples 39
negative selection 39

multiple selection of member designations 39

N
name (data type) 143
naming convention 45
negative acknowledgment 98
negative selection 39
NK4 disks 111
non-delta member 91
notational conventions

manual 11

O
object module 35

add 168
correct 89
modify 277, 474

odd (suffix for data type) 152
old LMS subprogram interface 513
OPEN-LIBRARY statement 364
operand value

*LMS-DEFAULT 156
organization of delta members 92
output

aborting LMS output 98
in library member 353
in work file 9 (EDT) 352
of members as files 257
suppressing 352
to SYSOUT 352

output library 29
output medium

defining 352
output redirection 18
outputting

comparison statistics 434, 480
directory 90, 406
members 86

overview
delta members 94

overwriting delta members 95

P
page numbering 352
PAM file 107, 109
PAM members 35
partial-filename (data type) 144
path-compl (suffix for data type) 147
phase 34

correct 89
modification 277

phase correction 89
physical deletion 86, 95, 230
PLAM 9
Positional operands 154
positive acknowledgment 98
POSIX

placeholder 148
posix-filename (data type) 144
posix-pathname (data type) 144
predecessor member 92

Index

528 U8326-J-Z125-6-76

preset options
LMS 73

primary member 87
procedure

storing 90
procedures and ENTER jobs 34
processing

delta members 471
members 83

processing delta members 471
product components 517
product-version (data type) 145
program library 9
program system 125

current 125
definition 125
sources 135

protection attributes, overview 62
PROVIDE-ELEMENT statement 368

Q
quotes (suffix for data type) 153

R
Readme file 12
record ID 300

defining 300
for text members 300

record number 300
record or record area

deleting 303
record types

deleting 291
redirection

output 18
reference entry 45
reference record 45
reference year 44
REMOVE-MODIFICATION substatement 298
REMOVE-RECORD (MODIFY-ELEMENT

substatement) 303
RENAME-SYMBOLS substatement 299

renaming
delta members 95
members 90, 304
symbols 299
versions 304

REORGANIZE-LIBRARY statement 377
reorganizing

library 377
REP record 291

add 288
reserving members 368
restricting multiple access 30
RETURN-ELEMENT statement 382
run

editor 238
runtime control for make 133

S
S variable

generating 20
SYSLMSPAR 71

SAM file 109
generating 476

SAM/ISAM file 107
SAT (security audit trail) 66
scratch file

for EDT 237
name 237

screen overflow
control 98

SDF standard statements 137
secondary attribute 45
secondary directory 45
secondary member 87
secondary name 45
secondary name and attribute 43
selection specifications

in make 133
sep (suffix for data type) 152
SET-DEPENDENCY (make substatement) 187
SET-POSTPROCESSING (make

substatement) 193

Index

U8326-J-Z125-6-76 529

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4d
e

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

17
. J

un
e

20
13

 S
ta

nd
 1

1:
30

.4
7

Pf
ad

: P
:\F

TS
-B

S
\L

M
S

\s
df

\e
n\

lm
ss

df
e.

si
x

SET-PREPROCESSING (make
substatement) 194

SET-STD-ACTION (make substatement) 131,
195

short name 140
SHOW-ELEMENT statement 392
SHOW-ELEMENT-ATTRIBUTES statement 406
SHOW-LIBRARY-ATTRIBUTES statement 425
SHOW-LIBRARY-STATUS statement 428
SHOW-LMS-DEFAULTS statement 430
SHOW-LMS-OPTIONS statement 433
SHOW-LOGGING-PARAMETERS

statement 433
SHOW-STATISTICS statement 434
SHOW-TYPE-ATTRIBUTES statement 438
SHOW-USER-EXITS statement 442
SoftBooks 12, 98
software development process 125

hold feature 126
make functionality 127

sort sequence for the directory 422
sorting

directory 406
source component 125, 131, 195
source program 35

adding 457
assembling 457
correcting 457

source version 50
sources

program system 135
spec (suffix for data type) 152
specifying

standard actions 131
spin-off mechanism 99, 133
standard actions

specifying 131, 195
start file

LMS 71
START-LMS command 67
starting

LMS run 67
Statement aliases 155
statement return code mechanism 99

storage form 31, 43
storage unit 33
storing delta members 92
storing procedures 90
storing text-oriented members 91
structure of a library 28
structured-name (data type) 145
STXIT routine 103, 104
substatement 89, 287

ADD-REP-RECORD 288
ADD-TEXT-MODIFICATION 289
DELETE-RECORD-TYPE 291
END-MODIFY 292
execute 287
MODIFY-CSECT-ATTRIBUTES 293
MODIFY-MODIFICATION-DEFAULTS 296
overview 287
REMOVE-MODIFICATION 298
RENAME-SYMBOLS 299
terminate 292

subsystem
ACS 114
XHCS-SYS 117

suffixes for data types 138, 141
SUPER-TYPE 358
symbols

rename 299
SYSLMSPAR 71
SYSPAR.LMS 71
system catalog

entry 28

T
table of contents

of a library 28
target components 131, 195
target object 134
target version 50
task file table (TFT) 111
temp-file (suffix for data type) 153
temporary files

add 173

Index

530 U8326-J-Z125-6-76

terminating
LMS run 256
MODIFY-ELEMENT substatements 302
substatements 292
the LMS run 73

text (data type) 145
text member 35

correct 237
create 237

text records
correcting 289

textual member types 35
time (data type) 145
TXTP records 291
type check 46
type redirection 74
type trees 36
type, superordinate 358

U
under (suffix for data type) 148
Unicode character sets

UTF16 116
UTF8 116
UTFE 116

UPAM file 111
UPAM-protected libraries 64
user (suffix for data type) 153
user exit

deactivate 229
display 442
interface 160

user interfaces 103
user program

branching 158
branching to 483
dynamic loading 160

user type 36
using job switches 104

V
variant number 38
vers (suffix for data type) 153
version

maintenance 48
rename 304

VERSION operand 67
version specification

´XFF´ 50
*BY-SOURCE 50
syntax 38

version storage 48
vsn (data type) 145
VTSU (virtual terminal support) 117

W
wild(n) (suffix for data type) 148
wildcard character 39
wildcard specifications 39
wildcard syntax 39
with (suffix for data type) 147
without (suffix for data type) 152
WRITE-COMMENT statement 443

X
x-string (data type) 146
x-text (data type) 146
XHCS (extended host code support) 116

	Contents
	1 Preface
	1.1 Brief product description
	1.2 Target group
	1.3 Summary of contents
	1.4 Notational conventions
	1.5 Readme file
	1.6 Changes since LMS V3.3A
	1.7 Software configuration requirements

	2 Characteristics of LMS
	2.1 Program libraries
	2.2 Members
	2.3 Delta method
	2.4 Input and output stream
	2.5 Input and output in S variables (SDF-P)
	2.6 Support for program development
	2.7 LMS in interactive/batch mode
	2.8 Addressing mode

	3 Program libraries
	3.1 Structure of a library
	3.2 Input and output libraries
	3.3 Multiple access to libraries
	3.4 Restricting multiple access

	4 Members
	4.1 Multiple access to members
	4.2 Member type definition
	4.2.1 Standard types
	4.2.2 Derived types

	4.3 Convention for member designations
	4.3.1 Member designations in statements
	4.3.2 Logging the member designations
	4.3.3 Multiple selection of member designations
	4.3.4 Construction specification for member designations

	4.4 Member attributes
	4.4.1 Attributes assigned by the access method
	4.4.2 Attributes that can be assigned by users
	4.4.3 Input format for dates

	4.5 Relationships between members
	4.6 Version management
	4.6.1 Version maintenance and storage
	4.6.2 Version designations
	4.6.3 Version conventions
	4.6.3.1 Convention: NONE
	4.6.3.2 Convention: STD-SEQUENCE
	4.6.3.3 Convention: STD-TREE
	4.6.3.4 Convention: MULTI-SEQUENCE

	4.7 Member protection/data protection
	4.7.1 Access protection for members
	4.7.2 Data protection by overwriting
	4.7.3 Auditing

	5 LMS functions
	5.1 Starting/terminating LMS
	5.1.1 Starting LMS
	5.1.2 Monitoring LMS execution with job variables
	5.1.3 Start file
	5.1.4 Preset options following LMS startup
	5.1.5 Terminating the LMS run

	5.2 Library assignment
	5.3 Processing of members
	5.3.1 Adding members to a library
	5.3.2 Outputting members to a file
	5.3.3 Listing members
	5.3.4 Deleting members
	5.3.5 Comparing members
	5.3.6 Correcting members
	5.3.7 Renaming members
	5.3.8 Outputting library directories
	5.3.9 Storing procedures

	5.4 Archiving members using the delta method
	5.4.1 Delta as a storage form and organizational aid
	5.4.2 Adding delta members
	5.4.3 Overview of delta members
	5.4.4 Deleting delta members
	5.4.5 Locking delta members
	5.4.6 Restrictions when using the delta method

	5.5 Controlling the LMS run
	5.5.1 LMS logging parameters
	5.5.2 Controlling log output
	5.5.3 Controlling screen overflow
	5.5.4 Error handling in interactive and procedure modes
	5.5.4.1 Spin-off mechanism
	5.5.4.2 Statement return code mechanism

	5.5.5 User interfaces
	5.5.6 Interrupting the LMS run
	5.5.7 Using job switches

	5.6 PAM key elimination
	5.6.1 Library files
	5.6.2 Member processing
	5.6.3 Summary

	5.7 Support for NK4 disks
	5.7.1 Adding files with ADD-ELEMENT
	5.7.2 Outputting members with EXTRACT-ELEMENT

	5.8 Handling alias names (ACS)
	5.9 Using extended character sets in LMS (XHCS)
	5.9.1 Hardware and software requirements
	5.9.2 LMS-specific application of extended character sets

	5.10 Utilizing LMS functionality from within EDT
	5.11 LMS and EDT V17

	6 Support for the software development process
	6.1 Borrowing mechanism
	6.2 make functionality
	6.2.1 Actions
	6.2.2 Using variables
	6.2.3 Selection and construction specifications in make
	6.2.4 Runtime control during continuation processing
	6.2.5 TOUCH
	6.2.6 make operation

	7 Statements
	7.1 SDF standard statements for LMS
	7.2 Syntax description
	7.3 Input rules
	7.4 Statement aliases
	7.5 Description of the LMS statements
	ACTIVATE-USER-EXIT
	ADD-ELEMENT
	BEGIN-MAKE
	make substatements
	CALL-EDT
	CLOSE-LIBRARY
	COMPARE-ELEMENT
	COPY-ELEMENT
	COPY-LIBRARY
	DEACTIVATE-USER-EXIT
	DELETE-ELEMENT
	EDIT-ELEMENT
	EDIT-ELEMENT-ATTRIBUTES
	EDIT-ELEMENT-PROTECTION
	END
	EXTRACT-ELEMENT
	FIND-ELEMENT
	MODIFY-ELEMENT
	MODIFY-ELEMENT substatements for member types R, C and L
	MODIFY-ELEMENT substatements for textual members
	MODIFY-ELEMENT-ATTRIBUTES
	MODIFY-ELEMENT-PROTECTION
	MODIFY-LIBRARY-ATTRIBUTES
	MODIFY-LMS-DEFAULTS
	MODIFY-LOGGING-PARAMETERS
	MODIFY-TYPE-ATTRIBUTES
	OPEN-LIBRARY
	PROVIDE-ELEMENT
	REORGANIZE-LIBRARY
	RESET-LMS-DEFAULTS
	RESET-LOGGING-PARAMETERS
	RESET-TYPE-ATTRIBUTES
	RETURN-ELEMENT
	SHOW-ELEMENT
	SHOW-ELEMENT-ATTRIBUTES
	SHOW-LIBRARY-ATTRIBUTES
	SHOW-LIBRARY-STATUS
	SHOW-LMS-DEFAULTS
	SHOW-LOGGING-PARAMETERS
	SHOW-STATISTICS
	SHOW-TYPE-ATTRIBUTES
	SHOW-USER-EXITS
	WRITE-COMMENT

	8 Format of LMS output in S variables
	8.1 COMPARE-ELEMENT statement
	8.2 FIND-ELEMENT statement
	8.3 SHOW-ELEMENT-ATTRIBUTES statement
	8.4 SHOW-LIBRARY-ATTRIBUTES statement
	8.5 SHOW-STATISTICS statement

	9 Examples
	9.1 Adding, correcting and assembling library source programs
	9.2 Copying members
	9.3 Comparing members
	9.4 Processing delta members
	9.5 Modifying an object module
	9.6 Generating SAM/ISAM files
	9.8 Branching to a user program while a member is being listed
	9.9 Granting and displaying protection attributes
	9.10 Automatic version incrementation with convention NONE
	9.11 Automatic version incrementation with convention STD-SEQUENCE
	9.12 Automatic version incrementation with convention STD-TREE
	9.13 make run
	9.14 Using the output in S variables
	9.15 Library lists

	10 Appendix
	10.1 Supplementary information in LMS messages
	10.2 Messages of the AMCB access routine
	10.3 Old LMS subprogram interface
	10.4 Migrating old library formats
	10.5 Product components

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

