
Edition December 2011

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
Pf

ad
: P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.v

or

User Guide - English

C/C++ V3.2D
C/C++ Compiler

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2011.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

http://www.cognitas.de
mailto:manuals@ts.fujitsu.com

U21283-J-Z125-8-76

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
7

P
fa

d:
 P

:\F
TS

-B
S\

C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.iv

z

Contents

1 Preface . 9

1.1 Brief product description . 9

1.2 Summary of contents and target group . 10

1.3 Changes since the previous version . 11

1.4 Notational conventions . 12
1.4.1 General notational conventions . 12
1.4.2 SDF notational conventions . 13

2 Overview of the C/C++ development system . 21

2.1 From source program to program execution . 21

2.2 General requirements for compilation, linkage and
program execution . 23

2.3 General features of the C/C++ compiler . 24

2.4 Specific CRTE components required for C/C++ 25
2.4.1 Include libraries . 25
2.4.2 Module libraries . 26

2.5 Editing source programs . 29

2.6 POSIX support . 32
2.6.1 Compiler I/O in the POSIX file system . 32
2.6.2 Use of POSIX library functions . 35

2.7 Introductory examples . 37
Example 1: Compiling, linking, and starting a C program 37
Example 2: Compiling, linking, and starting a C++ program (ANSI C++) 40
Example 3: Compiling a C source program that is located in a POSIX file and

uses POSIX library functions . 43

Contents

 U21283-J-Z125-8-76

3 Compilation . 45

3.1 General aspects of the compiler run . 45
3.1.1 Input sources and output destinations of the compiler 45
3.1.2 Construction of default names . 48

Default names for output containers . 48
Rules for constructing module names . 52

3.1.3 Structure of compiler messages . 55

3.2 Controlling the compiler . 59
3.2.1 Calling the compiler (START-CPLUS-COMPILER) 60
3.2.2 Description of compiler statements . 61

Overview of statements . 61
Basic principles and general input rules . 64
BIND . 66
CHECK-SYNTAX . 70
COMPILE . 72
Notes on input via SYSDTA . 76
END . 78
MODIFY-BIND-PROPERTIES . 79
Interaction between the MODIFY-BIND-PROPERTIES and BIND statements 89
MODIFY-CIF-PROPERTIES . 90
MODIFY-DIAGNOSTIC-PROPERTIES . 94
MODIFY-INCLUDE-LIBRARIES . 100
MODIFY-LISTING-PROPERTIES . 105
MODIFY-MODULE-PROPERTIES . 115
MODIFY-OPTIMIZATION-PROPERTIES . 121
The optimization process . 126
MODIFY-RUNTIME-PROPERTIES . 131
MODIFY-SOURCE-PROPERTIES . 133
MODIFY-TEST-PROPERTIES . 147
PREPROCESS . 148
RESET-TO-DEFAULT . 153
SHOW-DEFAULTS . 154
SHOW-PROPERTIES . 155

3.3 Controlling the global listing generator . 156
3.3.1 Calling the listing generator (START-CPLUS-LISTING-GENERATOR) 156
3.3.2 Description of statements . 157

Overview of statements and input rules . 157
END . 157
GENERATE-LISTING . 158
MODIFY-LISTING-PROPERTIES . 160

Contents

U21283-J-Z125-8-76

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
7

P
fa

d:
 P

:\F
TS

-B
S\

C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.iv

z

4 Linkage and program execution . 169

4.1 Linkage . 169
4.1.1 Dynamic linking and loading with DBL . 171
4.1.2 Linking with BINDER . 174
4.1.3 Shareable C/C++ programs . 177
4.1.4 Restriction on linking ANSI C++ programs . 178

4.2 Program execution . 179
4.2.1 Parameter input at program start . 179

Redirecting standard I/O files . 180
Input of parameters for the main function . 181
Definition of the main function with parameters . 183

4.2.2 The advanced interactive debugger AID . 184
Requirements for symbolic debugging . 186

5 Linkage to functions and languages . 189

5.1 Linkage conventions specific to C and C++ . 189
Parameter passing “by value” . 189

5.2 Linkage between C and C++ . 191
5.2.1 Common types . 192
5.2.2 Calling C functions in C++ . 193
5.2.3 Calling C++ functions in C . 194
5.2.4 Problems and restrictions . 195

5.3 Linkage between Cfront C++ and ANSI C++ . 195

5.4 Notes on linkage to ILCS programs in other languages 196

Contents

 U21283-J-Z125-8-76

6 C language support of the compiler . 199

6.1 Overview of the C language modes . 200

6.2 Implementation-defined behavior based on the
ANSI/ISO C standard . 208

6.3 Extensions to ANSI/ISO C . 219

6.4 Pragmas . 223
6.4.1 aligned pragma . 223
6.4.2 pack pragma . 225
6.4.3 ETPND pragma . 226
6.4.4 Pragmas to control the layout of listings . 228

LISTING pragma . 228
TITLE pragma . 230
PAGE pragma . 230
SPACE pragma . 231

6.4.5 inline pragma . 231
6.4.6 int_to_unsigned pragma . 231
6.4.7 weak pragma . 232
6.4.8 ident pragma . 232
6.4.9 C++ specific pragmas . 232

VIRTUAL_FUNCTION_TAB pragma . 232
Pragmas to control template instantiation . 233

7 C++ language support of the compiler . 235

7.1 Overview of the C++ language modes . 235

7.2 Implementation-defined behavior based on the
ANSI/ISO C++ standard . 239

7.3 Template instantiation . 244
7.3.1 Fundamentals . 244
7.3.2 Automatic instantiation . 246
7.3.3 Generating explicit template instantiation statements (ETR files) 252
7.3.4 Implicit inclusion . 259

7.4 Deviations from ANSI/ISO C++ . 260
7.4.1 Extensions to ANSI-/ISO-C++ . 260
7.4.2 extern inline vs. static inline . 261

7.5 Variations in the Cfront C++ mode . 267

Contents

U21283-J-Z125-8-76

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
7

P
fa

d:
 P

:\F
TS

-B
S\

C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.iv

z

8 The C++ libraries and C++ runtime system . 275

8.1 The standard C++ library . 275

8.2 The Cfront C++ library . 277

8.3 The Tools.h++ library . 279

8.4 The C++ runtime system . 281
8.4.1 Initialization . 281
8.4.2 Exception handling . 282

Additional runtime functions . 282
C signal handling and C++ exception handling . 285
longjmp support . 285
Linking old C modules with ANSI C++ modules . 287

9 Appendix . 289

9.1 Description of listings . 289
Source/error listing . 290
Map listing . 292
Cross-reference listing . 295
Object listing . 299

9.2 Predefined preprocessor names . 302

9.3 Concept of a name adapter module in the C runtime system 304

9.4 The II-UPDATE tool . 305

9.5 EBCDIC table (EDF041) . 313

9.6 ASCII table (ISO 8859-1) . 318

Related publications . 319

Index . 323

Contents

 U21283-J-Z125-8-76

U21283-J-Z125-8-76 9

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

01

1 Preface

1.1 Brief product description

C/C++ provides users with a versatile compiler that supports both the C and C++
programming languages.

Depending on which language mode is set, the C/C++ compiler accepts:

– C source code that conforms to the definition of C by B.W. Kernighan and D.M. Ritchie
– C source code as defined in the ANSI/ISO C standards, including the ISO C

Amendment 1
– C++ code compatible with Cfront V3.0.3 *)
– C++ code that complies with the ANSI/ISO C++ Standard (Draft 1996) (see [27])

Programmers who are developing C and C++ programs are also supported by a global
listing generator which, among other things, can be used to create listings for multiple
modules (e.g. cross-reference listings, project listings).

Both the C/C++ compiler and the supplementary development tools can be operated and
controlled via a convenient SDF user interface.

In order to generate and execute C/C++ programs, you will also need the Common
RunTime Environment CRTE, which is supplied with the following components:

– headers and modules for the C library (ANSI C functions, POSIX functions as defined
in XPG4 spec1170, BS2000-specific extensions) and

– headers and modules for various C++ libraries (i.e. the C++ V2.1 compatible C++
library, the standard C++ library and the Tools.h++ library)

*) “Cfront” refers to the C++ industry standard, as defined and implemented in the C++ translator (C++ based
on C) of AT&T and USL/Novell.

Summary of contents and target group Preface

10 U21283-J-Z125-8-76

1.2 Summary of contents and target group

This User Guide describes how C/C++ programs are processed with the C/C++
compiler and other components of the C/C++ Development System in a BS2000
system environment (SDF) under the BS2000 operating system.

It is intended for users who are familiar with the programming languages C and C++ as well
as the BS2000 operating system.

The following topics are dealt with here:

– Preparing and compiling source programs

– Creating listings with the global listing generator

– Linking, loading and starting

– Executing C/C++ programs (parameter input, debuggers)

– Linkage to functions and languages

– C language support of the compiler (overview of C language modes, implementation
defined behavior, #pragma directives, extensions to the ANSI/ISO C standard)

– C++ language support of the compiler (overview of C++ language modes,
implementation defined behavior)

– Brief description of the C++ libraries supplied with CRTE

You can also develop programs in a POSIX environment by using the cc, c89, CC and
cclistgen commands. These commands are described in a separate manual under the
title “POSIX Commands of the C/C++ Compiler” [1], which serves as the main reference
source for POSIX commands.
For more detailed information on the features and functionality of the compiler (beyond the
scope of POSIX control), see also the following sections and chapters in this User Guide:

– section “The optimization process” on page 126
– section “Structure of compiler messages” on page 55
– chapter “C language support of the compiler” on page 199
– chapter “C++ language support of the compiler” on page 235
– chapter “Linkage to functions and languages” on page 189
– chapter “The C++ libraries and C++ runtime system” on page 275

In the text, references to other publications are given using short titles. The full title of each
publication is listed in the “References” section.

Preface Changes since the previous version

U21283-J-Z125-8-76 11

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

01

1.3 Changes since the previous version

The changes in this User Guide compared to the C/C++ compiler V3.2A are mainly due to
the changes in the listings output.

Notational conventions Preface

12 U21283-J-Z125-8-76

1.4 Notational conventions

All notational conventions used in this manual to represent commands, statements and
compiler options are explained in detail in the two subsections below.

1.4.1 General notational conventions

The following general notational conventions are used in this manual to indicate the format
of BS2000 commands and program statements:

*STD All uppercase letters, digits, and special characters that are not part of the
“metalanguage” denote keywords or constants and must be entered exactly
as shown.

-R msg_id Uppercase and lowercase letters, digits, and special characters in
typewritten text denote constants and must be entered exactly
as shown.

name Lowercase letters in italics denote variables that must be replaced by
current values at the time of input (see also <name>).

<name> In SDF formats, variables are additionally enclosed in angle brackets.
YES
NO

Underlining denotes the default value, i.e. the value that is automatically
used if no specification is made.

Braces enclose alternatives, i.e. one of the specified values must be
selected.
No entry is required if the underlined default value is desired.

YES / NO A slash between adjacent entries also indicates alternatives from which one
must be selected. No entry is required if the underlined default value is
desired.

[] Square brackets enclose options that may be omitted.
() Parentheses are constants and must be specified.
Ë This symbol indicates that at least one whitespace character is necessary

for the syntax.
... Ellipses signify repetition, which means that the preceeding unit can be

repeated several times in succession.
For informative texts.

YES

NO

i

Preface Notational conventions

U21283-J-Z125-8-76 13

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

01

1.4.2 SDF notational conventions

The following tables describe the notational conventions used to represent SDF commands
and statements of the C/C++ compiler and the global listing generator.

Table 1: Special characters

The special characters and notational conventions used in SDF statement formats are
explained in the table below:

Format Meaning Examples
UPPERCASE Uppercase letters indicate keywords

(names of commands, statements, and
operands, keyword values).
Some keywords start with *.

START-CPLUS-COMPILER
COMPILE

ELEMENT = *STD-ELEMENT

= The equals sign connects an operand
name with the corresponding operand
values.

LISTING = *NONE

< > Angle brackets indicate variables, the
values of which are defined by data
types and their suffixes
(see the following tables).

VERSION = <text 1..24>

Underline Underlining indicates default values of
operands, i.e. values which are
automatically used when no explicit
specification is made.

SUMMARY = *YES / *NO

/ A slash separates alternative operand
values.

TEST-SUPPORT = *YES / *NO

(…) Parentheses indicate operand values
which introduce a structure.

LIBRARY = *LINK(...)

[] Square brackets indicate optional
operand values that introduce struc-
tures. The structure that follows may be
specified without the introductory
operand value.

SOURCE = [*YES](...)

Indentation Indentation indicates dependence on
the higher- ranking operand.

LIBRARY = <filename> / *LINK(...)

*LINK(...)
⏐ LINK-NAME =

Notational conventions Preface

14 U21283-J-Z125-8-76

⏐
⏐
⏐

Vertical lines denote associated
operands in a structure. The top and
bottom of the line indicate the
beginning and end of a structure.
Further structures may occur within a
structure. The number of vertical lines
before an operand corresponds to the
depth within the structure.

*LIBRARY-ELEMENT(...)
⏐ LIBRARY =
⏐ ,ELEMENT =
⏐ ⏐ VERSION =

, A comma precedes further operands of
the same level within the structure.

,SOURCE = *NO
,SUMMARY = *NO

list-poss(n):
list-poss:

A list can be generated from the
operand values following list-poss. If
(n) is specified, the list may contain at
most n elements.
If the list contains more than one
element, it must be enclosed within
parentheses.
In this manual, (n) is indicated only if a
compiler-specific maximum number is
involved.
list-poss without (n) means that the
maximum SDF default value of 2000
applies.

list-poss (127): *STD / BY-SOURCE /
<c-string>

list-poss: <filenname> / *LINK(...)

Format Meaning Examples

Preface Notational conventions

U21283-J-Z125-8-76 15

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

01

Table 2: Data types

Variable operand values are indicated in SDF by data types. Each data type represents a
specific value range. The number of data types is restricted to those described in the table
below.

The following descriptions of data types apply to all statements. Consequently, only the
operands which deviate from the definitions given here are explained in the individual
operand descriptions.

Data type Character set Meaning
alphanum-name A…Z

0…9
$, #, @

c-string EBCDIC characters A sequence of EBCDIC characters enclosed in
single quotes. C may precede the characters.
Single quotes within the c-string must be
duplicated.
The data type c-string is provided with the suffix
with-low, which means that a distinction is made
between uppercase and lowercase letters.
Examples of valid representations:
'abc' , C'_abc' , 'ABC' , 'printf("macro-text\ n")'.

composed-name A...Z
0...9
$,#,@
hyphen
period

Name or version of a PLAM library element.
composed-name is provided with the suffix
with-under (underscore) (see also Table 3,
page 18).

filename A...Z
0...9
$,#,@
hyphen
period

Link name or fully-qualified name of a cataloged file
or a PLAM library. The maximum length for link
names is 8 characters; the maximum length for
fully-qualified names including the cat-id and
user-id is 54 characters (or 41 characters excluding
the cat-id and user-id).

Input format:

link-name

:cat:$user.

file
file(no)
group

group
(*abs
)
(+rel)

Notational conventions Preface

16 U21283-J-Z125-8-76

filename
(continuation)

link-name
The first and last character must not be a
hyphen or period; maximum of 8
characters; must contain at least A...Z.

:cat:
Optional catalog identifier;
character set restricted to A...Z and 0...9;
maximum of 4 characters;
must be enclosed in colons;
the default value is the catalog identifier
assigned to the user ID in accordance with
the entry in the user catalog (also called
the JOIN entry).

$user.
Optional user ID;
character set is A…Z, 0…9, $, #, @;
maximum of 8 characters;
must not begin with a digit;
$ and the period must be included;
the default value is the own user ID.

$.
(special case)
System default identifier

file
File or job variable name; first and last
character must not be a hyphen or period;
maximum of 41 characters; must contain
at least A...Z.

#file
@file

(special case)
or @ as the first character indicates
temporary files or job variables,
depending on system generation.

file(no)
Tape file name
no: version number;
character set is A...Z, 0...9, $, #, @.
Parentheses must be included.

Data type Character set Meaning

Preface Notational conventions

U21283-J-Z125-8-76 17

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

01

filename
(continuation)

group
Name of a file generation group
(see "file" for character set)

group

(*abs)
Absolute generation number (1-9999);
* and parentheses must be included.

(+rel)
(-rel)

Relative generation number (0-99);
sign and parentheses are required.

integer 0...9,+,- + or - are possible only as the first character.

name A...Z
0...9
$,#,@

C/C++ name for DEFINE / UNDEFINE in the
MODIFY-SOURCE-PROPERTIES statement.
The data type name is provided with the suffix
underscore (see also Table 3, page 18).
Lowercase letters cannot be represented with
name; c-string must be used for this purpose (see
page 15).
Maximum length: 125 characters

posix-filename A...Z
0...9
special characters

String with a maximum length of 255 characters;
consists of either one or two periods, or alphanu-
meric characters and special characters; all special
characters must be escaped with a preceding
\ (backslash); the / character is not allowed.
A distinction is made between uppercase and
lowercase letters

posix-pathname A...Z
0...9
special characters
structural identifiers:
slashes

Input format: [/]part1[/.../partn]
where parti is a posix-filename;
up to1023 characters; up to 247 characters for
source and header files.
The data type posix-pathname is provided with the
suffix mandatory-quotes and must therefore always
be enclosed within single quotes.

x-string Hexadecimal:
00...FF

Sequence of hexadecimal values enclosed within
single quotes; must be preceded by the letter X.

Data type Character set Meaning

(*abs)
(+rel)
(-rel)

Notational conventions Preface

18 U21283-J-Z125-8-76

Table 3: Data type suffixes

Data type suffixes denote further input specifications for data types. These suffixes place
restrictions on the value range or extend it. The following suffixes are used in their abbre-
viated form in the manual:

cat-id cat
correction-state corr
generation gen
lower-case low
manual-release man
underscore under
user-id user
version vers

The following descriptions of suffixes apply to all statements. Consequently, only the
operands which deviate from the definitions given here are explained in the individual
operand descriptions.

Suffix Meaning
x..y a) For data type integer: interval

 x Minimum value permitted for integer. x is an
 integer which may be given a sign.

 y Maximum value permitted for integer. y is an
 integer which may be given a sign.

b) For other data types: length

 x Minimum length for the operand value; x is an unsigned integer.

 y Maximum length for the operand value; y is an unsigned integer.

with Extends the options for specifying a data type.

-low A distinction is made between uppercase and lowercase letters.

-under The underscore (_) is permitted as an additional character.

without Restricts the options for specifying a data type.

-cat Specifying a catalog identifier is not permitted.

-corr Input format: [[C]'][V][m]m.na[']
No correction status may be included in the product-version data type.

-gen Specifying a file generation or file generation group is not permitted.

Preface Notational conventions

U21283-J-Z125-8-76 19

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

01

without
(continuation)

-man Input format: [[C]'][V][m]m.n[']
Neither the release status nor the correction status may be included in the
product-version data type.

-user Specifying a user identifier is not permitted.

-vers Specifying a user identifier is not permitted.

mandatory Makes certain entries mandatory for a data type

-quotes Specifications for the data types posix-filename and posix-pathname must be
enclosed within single quotes.

Suffix Meaning

Notational conventions Preface

20 U21283-J-Z125-8-76

U21283-J-Z125-8-76 21

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

2 Overview of the C/C++ development system

2.1 From source program to program execution

Three steps are necessary to convert a C/C++ source program into an executable program:

1. Preparation of the source program and header files

The source program may be in a cataloged BS2000 file, a PLAM library element (of
type S), or a POSIX file.
Header files may be located in PLAM library elements (type S), in POSIX files, or also
in cataloged files if the source program itself is located in a cataloged file.
The standard headers for the C and C++ library functions (excluding POSIX functions)
are located by default in the CRTE libraries $.SYSLIB.CRTE and $.SYSLIB.CRTE.CPP,
respectively; the standard headers for POSIX library functions are located in the library
$.SYSLIB.POSIX-HEADER.

2. Compilation

The source program must be compiled into machine language. The compiler generates
all modules only in LLM format and optionally saves them in PLAM library elements (of
type L) or in POSIX object files.

3. Linkage

The modules generated during compilation are linked with modules from the C runtime
system and the C++ runtime system (if C++ library functions are used) to create an
executable unit.
Modules created in the ANSI C++ modes should not be linked with a direct call to
BINDER, but only with the compiler statements MODIFY-BIND-PROPERTIES and
BIND.

The following overview illustrates these basic steps and indicates where other relevant
information can be found in this manual.

From source program to program execution Overview of the C/C++ development system

22 U21283-J-Z125-8-76

Preparing the
source program
(Chapter 2)

Compiling
(Chapter 3)

Linking, loading
and starting
(Chapter 4)

Program execution

C/C++ Compiler

EDT / LMS

CRTE, POSIX-HEADER
Std header files

link & load
module

temporary
object program

BINDER

DBL

link & load
module

Source program /
header files

CRTE runtime
modules

DBL

Pogram execution

(Chapter 4)

Overview of the C/C++ development system General requirements

U21283-J-Z125-8-76 23

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

2.2 General requirements for compilation, linkage and
program execution

In order to compile, link and execute a program successfully, you will need the following
components:

– Calling programs of the C/C++ compiler and global listing generator
– SDF C/C++ syntax file
– DMS/PLAM/BINDER message files
– C/C++ message file

In addition, you will also need the Common Runtime Environment CRTE V2.6, which is
supplied with the components below:

– C and C++ runtime modules
– ILCS runtime modules
– Standard headers for C library functions (excluding the POSIX functions) and for C++

library functions

The preparatory steps required to enable SDF control and the message files are described
in the release notice for C/C++ V3.2D.

Notes on the installation and operation of CRTE can be found in the release notice for
CRTE and in the CRTE User Guide [4].

In principle, the C/C++ compiler can be used with any BS2000/OSD version as of V6.0.
Note, however, that many of its features described in this manual are based on higher
operating system versions and may also require some additional software products:

– Compiler I/O in the POSIX file system and the use of POSIX library functions:
POSIX-HEADER as of V1.6.

For more details on software requirements, see also the release notice for C/C++ V3.2D.

General features of the C/C++ compiler Overview of the C/C++ development system

24 U21283-J-Z125-8-76

2.3 General features of the C/C++ compiler

Supported C and C++ language standards

The following C and C++ standards are supported by the C/C++ compiler:

– ANSI/ISO C with the ISO C Addendum 1 (1994)

– the status of the ANSI C++ draft from early 1996 including, in particular, exception
handling, templates, new-style casts, namespaces, run-time type information (RTTI),
etc.

Compatibility

The following language modes are offered by the compiler to enable the migration or porting
of older C and C++ applications: Kernighan&Ritchie C, Cfront C++ V3.0.3, and the prepro-
cessor dialect based on Reiser´s cpp and Johnson´s pcc.

Portable software

To develop portable software, the compiler also supports the “strict” ANSI C and ANSI C++
modes. All deviations from the corresponding language standards are diagnosed in these
modes.

Overview of the C/C++ development system CRTE

U21283-J-Z125-8-76 25

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

2.4 Specific CRTE components required for C/C++

This section provides you with a quick overview of the CRTE “containers” that are relevant
for programming in C++ and C. More explicit details on the functionality, scope and use of
the C++ libraries provided with the CRTE are presented in the chapter “The C++ libraries
and C++ runtime system” on page 275.

Detailed information on the general concept of CRTE can be found in the CRTE User
Guide [4].

See also the various reference manuals and publications for C and C++ library functions
listed in the References section.

2.4.1 Include libraries

The SYSLIB.CRTE library

This library contains:

– Standard headers (type S) for C library functions (ANSI C and BS2000-specific
extensions)

– Standard headers (type S) for classes and functions of the standard C++ library based
on the ANSI C++ draft

– Standard headers (type S) for classes and functions of the Tools.h++ library

This library does not include:

– Standard headers for the use of POSIX library functions. Following the installation of
POSIX-HEADER (release unit of BS2000/OSD-BC), these headers are made available
in the SYSLIB.POSIX-HEADER library.

– Standard headers of the Cfront-compatible C++ library functions for complex math and
stream-oriented I/O. These headers are located in the SYSLIB.CRTE.CPP library.

The SYSLIB.CRTE.CPP library

This library contains the standard headers for classes and functions of the
Cfront-compatible C++ library for complex math and stream-oriented I/O. These
headers are used by the compiler in the Cfront C++ mode.
See also the section “The Cfront C++ library” on page 277.

CRTE Overview of the C/C++ development system

26 U21283-J-Z125-8-76

2.4.2 Module libraries

The SYSLNK.CRTE library

This library contains:

– Individual modules of the C runtime system (object modules of type R)

These modules can be linked statically or dynamically. The C runtime system can also
be linked dynamically, provided the SYSLNK.CRTE.PARTIAL-BIND library (for the
standard partial bind linking method) or the SYSLNK.CRTE.COMPL library (for the
complete partial bind linking method) is specified instead of the SYSLNK.CRTE library
when linking with BINDER.

The C runtime system is always required in order to run C/C++ programs. Among other
things, it contains the code for all the C library functions, the central I/O routines for the
implementation of C++ I/O functions, and additional routines for the implementation of
operating system interfaces.

The entry names of the C runtime system begin with “IC@”, “ICS” or “ICX”.

– Name adapter modules for new C library functions (object modules of type R and LLMs
of type L)

Adapter modules belong to the non-preloadable components of the C runtime system
and must consequently be linked into the application program. They are contained both
in the SYSLNK.CRTE library and in the SYSLNK.CRTE.PARTIAL-BIND library.

Detailed technical information on these adapter modules can be found in the section
“Concept of a name adapter module in the C runtime system” on page 304.

– The C runtime system as a dynamically loadable prelinked module (LLM, L type).

This prelinked module is dynamically loaded into the user address space at runtime if
the library SYSLNK.CRTE.PARTIAL-BIND is specified instead of the SYSLNK.CRTE
library and if the dynamically loadable C runtime system has not been preloaded.

Overview of the C/C++ development system CRTE

U21283-J-Z125-8-76 27

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

The SYSLNK.CRTE.PARTIAL-BIND and SYSLNK.CRTE.COMPL libraries

These libraries allow C programs to be linked without unresolved external references and
enable the C runtime system to be loaded dynamically only at the time of execution.
Connection modules, which are linked instead of the C runtime module and satisfy all
unresolved external references of a C program to the C runtime system, are included in the
libraries for this purpose. These libraries also contain all the other modules that are required
in order to link a C program without any unresolved external references to the CRTE (e.g.
ILCS modules and name adapter modules).

SYSLNK.CRTE.PARTIAL-BIND is needed for the standard partial bind linking method while
SYSLNK.CRTE.COMPL is used for the complete partial bind linking method. For details
concerning the partial bind linking method as well as for differences between standard
partial bind and complete partial bind see the CRTE user guide [4].

The C runtime system itself is available in the form of a dynamically loadable prelinked
module in the library SYSLNK.CRT and is dynamically loaded into the user address space
at runtime if the program cannot be connected to the preloaded C runtime system.

Since only the connection modules are linked and not the entire C runtime system, the
finished (i.e. fully-linked) program or module is significantly smaller in size and requires
much less disk storage space than when statically linking C runtime modules from the
library SYSLNK.CRTE. Furthermore, this also results in faster load times if the C runtime
system is preloaded.

See also the CRTE user guide [4] for more technical information.

The SYSLNK.CRTE.CPP and SYSLNK.CRTE.CFCPP libraries

These libraries contain the modules of the Cfront-compatible C++ runtime system (i.e.
LLMs of type L).

SYSLNK.CRTE.CPP contains the modules of all C++ library functions for complex math
and standard I/O that are available in the Cfront C++ mode of the compiler. The entry
names begin with “ICP”.

SYSLNK.CRTE.CFCPP contains the modules for the internal runtime routines that are
needed in the Cfront C++ mode of the compiler to implement initialization, storage
management, etc. The entry names begin with “IPP”.

The modules can be linked statically or dynamically with BINDER or DBL, respectively.
Note that modules from the SYSLNK.CRTE.CFCPP library must be linked with precedence
before the modules from the SYSLNK.CRTE.CPP library.

See also the section “The Cfront C++ library” on page 277.

CRTE Overview of the C/C++ development system

28 U21283-J-Z125-8-76

The SYSLNK.CRTE.POSIX library

This library contains a “linkage option” module, which must be linked whenever the POSIX
functions of the C runtime system are to be used. This module must always be linked with
precedence before the modules in the library SYSLNK.CRTE,
SYSLNK.CRTE.PARTIAL-BIND or SYSLNK.CRTE.COMPL When linking with BINDER,
this library should preferably be linked by means of an INCLUDE statement (without speci-
fying the module name), since the use of RESOLVE statements, by contrast, would require
the linkage order to be strictly observed. This also applies when linking with the BIND
statement of the compiler, which means that the INCLUDE option should be used in the
MODIFY-BIND-PROPERTIES statement.

The SYSLNK.CRTE.STDCPP and SYSLNK.CRTE.RTSCPP libraries

These libraries contain the modules of the ANSI-C++ runtime system (LLMs, type L).

SYSLNK.CRTE.STDCPP contains the modules for the standard C++ library, which can be
used in the ANSI C++ modes of the compiler.

SYSLNK.CRTE.RTSCPP contains the modules for the internal runtime routines that are
needed in the ANSI C++ modes of the compiler to implement, among other things,
the C++ exception handling and the C++ runtime type information (RTTI).

The modules can be linked statically with the BIND statement of the compiler or dynamically
with DBL.

See also the section “The standard C++ library” on page 275.

The SYSLNK.CRTE.TOOLS library

This library contains the modules (LLMs, type L) for the Tools.h++ library, which can be
used in the ANSI C++ modes of the compiler.

The modules can be linked statically with the BIND statement of the compiler or dynamically
with DBL.

See also the section “The Tools.h++ library” on page 279.

The SYSLNK.CRTE.CPP-COMPL library

This library contains adapters for the SYSLNK.CRTE.STDCPP, SYSLNK.CRTE.RTSCPP
and SYSLNK.CRTE.TOOLS libraries.

Overview of the C/C++ development system Editing source programs

U21283-J-Z125-8-76 29

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

2.5 Editing source programs

Storage methods for source programs and header files

The C/C++ compiler processes source programs and header files which are stored as
follows:

Source programs stored as

– cataloged SAM and ISAM files (with KEYPOS=5 and KEYLEN ≤ 16)
– PLAM library elements of type S
– POSIX source files

Header files stored as

– cataloged files if the source program is itself a cataloged file
– PLAM library elements of type S
– POSIX source files

The file editor EDT

The file editor EDT is available in BS2000 for editing a C/C++ source program. EDT can
process cataloged SAM/ISAM files, PLAM library elements and POSIX files.

EDT converts lowercase letters to uppercase letters by default. Since source program texts
in C/C++ usually contain a large number of lowercase letters, automatic conversion to
uppercase must be prevented by issuing the command LOWER ON after EDT is called.

The following table provides an overview of the most important EDT statements for
processing files and library elements.
The file editor EDT is described in detail in the manual “EDT (BS2000/OSD)” [15].

Editing source programs Overview of the C/C++ development system

30 U21283-J-Z125-8-76

By default, PLAM library elements are stored by EDT as elements of type S with the highest
version number (X’FF’).

SAM files
@READ‘file‘ Read contents of a SAM file into the current work file.

@WRITE‘file‘ Write contents of the current work file to a SAM file

ISAM files
@GET‘file‘ Read contents of an ISAM file into the current work file

@SAVE‘file‘ Write contents of the current work file to an ISAM file

@OPEN‘file‘ Physically open ISAM file

@CLOSE Close an ISAM file opened with @OPEN

PLAM library elements
@OPEN LIB=lib(ELEM=elem) Open library element in the current work files

@COPY LIB=lib(ELEM=elem) Read contents of a library element into the current work file

@WRITE LIB=lib(ELEM=elem) Write contents of the current work file to a library element

@CLOSE Close a library element opened with @OPEN

POSIX files
@XOPEN FILE=pathname,MODE=
ANY/UPDATE/NEW/REPLACE

Open and read an existing POSIX file or create a new POSIX
file

@CLOSE Close a POSIX file opened with @XOPEN

@XCOPY FILE=pathname Read contents of a POSIX file into the current work file

@XWRITE FILE=pathname,MODE=
ANY/UPDATE/NEW/REPLACE

Write contents of a current work file to a POSIX file

EDT statements for processing files and library elements (extract)

Overview of the C/C++ development system Editing source programs

U21283-J-Z125-8-76 31

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

Key assignments

In order to program in C and C++, the user requires a number of special characters, some
of which may not be available on all keyboards. For example, keyboards with the German
character set have “umlauts” assigned instead of some characters specifically required for
C and C++.
The following table lists the different key assignments and their (international) hexadecimal
codes. This information can be used to create a user-specific keyboard configuration if
required.

Identifier / Functions in C and
C++

“English”
 keyboard

“German”
 keyboard

Hexadecimal
code

left angle bracket < < 4C
right angle bracket > > 6E
logical OR | ö 4F
logical exclusive OR ^ ^ 6A
underscore _ _ 6D
left square bracket [Ä BB
right square bracket] Ü BD
backslash \ Ö BC
left brace { ä FB
right brace } ü FD
bit complement ~ ß FF

POSIX support Overview of the C/C++ development system

32 U21283-J-Z125-8-76

2.6 POSIX support

2.6.1 Compiler I/O in the POSIX file system

The C/C++ compiler supports the BS2000 file system (DMS files, PLAM libraries, etc.) as
well as the POSIX file system. All inputs and outputs of the compiler in a compilation,
preprocessor or syntax analysis
run can also be effected via POSIX files. This includes, in particular:

– the input of source programs (see the SOURCE option in the COMPILE,
PREPROCESS and CHECK-SYNTAX statements)

– the input of header files (see the USER-INCLUDE-LIBRARY and
STD-INCLUDE-LIBRARY options in the MODIFY-INCLUDE-LIBRARY statement)

– the output of LLMs (see the MODULE-OUTPUT option in the COMPILE statement)

– the output of recompilable source programs (see the OUTPUT option in the
PREPROCESS statement)

– the output of compiler listings (see the OUTPUT option in the
MODIFY-LISTING-PROPERTIES statement)

– the output of message lists (see the OUTPUT option in the
MODIFY-DIAGNOSTIC-PROPERTIES statement)

– the output of CIF information (see the OUTPUT option in the
MODIFY-CIF-PROPERTIES statement)

Arbitrary combinations, i.e. the input and output of both BS2000 as well as POSIX files in
the same compilation run, are also possible.

Storage of source programs and header files

Source programs and header files may exist in EBCDIC and ASCII codes. EBCDIC is the
default in the POSIX file system; ASCII is the default for file systems on remote UNIX
computers or PCs. All files of a file system (POSIX file system or attached remote file
systems) must, however, be in the same respective (default) codeset. The compiler checks
the codeset of a file system centrally, not for each individual file. Files of an ASCII file
system are internally converted to EBCDIC for the compilation.

In contrast to program development in the POSIX shell (see the manual “POSIX commands
of the C/C++ Compiler [1]), the file names of source programs need not always contain one
of the standard suffixes “.c”, “.C” or “.i”.

Overview of the C/C++ development system POSIX support

U21283-J-Z125-8-76 33

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

Output of LLMs

The LLMs generated by the compiler can be written to POSIX object files (“.o” files). These
LLM object files can only be processed meaningfully in the POSIX subsystem (by using the
command cc, c89 or CC; see the manual “POSIX commands of the C/C++ Compiler [1]).
The generated object file format (LLM) is not supported on UNIX systems.

Other compiler outputs

– Expanded recompilable source programs

The result of a preprocessor run can be written to a POSIX source file (“.i” file in C,
“.I” file in C++). This file can be processed further in the POSIX shell with the command
cc, c89 or CC and in the BS2000 environment via the SDF interface of the C/C++
compiler.

– Compiler listings

Compiler listings can be written to a POSIX list file (“.lst” file). This list file can be printed
in the POSIX shell with the command bs2lp and in the BS2000 environment with the
SDF command PRINT-DOCUMENT.

– Diagnostic messages

– Error messages of the compiler can be written to a POSIX file (“.diag” file). This file can
be read with a file editor such as EDT in the POSIX shell (edt command) and in the
BS2000 environment (see note on EDT on page 29).

– CIF information

The local CIF information for individual modules that is used to create global listings can
be stored in a POSIX file (“.cif” file). These CIF files can be processed further in the
POSIX shell with the command cclistgen (see the manual “POSIX Commands of the
C/C++ Compiler [1]”) and via the SDF interface of the global listing generator in the
BS2000 environment (see START-CPLUS-LISTING-GENERATOR, page 156ff).

Output codeset

The output codeset of the files (EBCDIC or ASCII) is determined by the codeset of the
target file system. The compiler stores files in EBCDIC code in the POSIX file system and
in ASCII code in file systems on UNIX computers.

Only EBCDIC execution code is generated. For example, strings and string constants are
only stored in EBCDIC code.

POSIX support Overview of the C/C++ development system

34 U21283-J-Z125-8-76

Description of the term <posix-pathname>

When <posix-pathname> is specified as an input or output, the following can be specified:

– a file name with no path specification
– a relative path to a file
– an absolute path to a file
– a relative path to a directory
– an absolute path to a directory

If no absolute path exists, the name/path is interpreted relative to the user’s home directory.

All directories in the path must already exist.

When an input file is requested, no directory may be specified.
When an input directory is requested, no file may be specified.

It only makes sense to specify an output file when a single source is processed. When mul-
tiple sources are processed, it is generally not permissible to specify an output file.
When the file name is created, it must be borne in mind that meaningful further processing
of the output file in the POSIX subsystem is possible only if the name has a suitable suffix.
When a directory is specified, the compiler itself determines the name of the output file (see
the section “Default names for output containers” on page 48.

Overview of the C/C++ development system POSIX support

U21283-J-Z125-8-76 35

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

2.6.2 Use of POSIX library functions

CRTE V2.0 provides a C runtime system that supports C library functions with BS2000
functionality as well as POSIX functionality.

The library functions with BS2000 functionality include all the functions and macros that
were also offered earlier with the C runtime system, i.e. all ANSI-defined functions and
about fifty BS2000-specific extensions.
Only these functions may be used in the following cases:

– if no POSIX subsystem is available in BS2000/OSD V6.0, or
– if no preparatory steps are taken (see below) at compile and link time in a BS2000

operating system with an available POSIX subsystem.

The library functions with BS2000 functionality are described in the manual “C Library
Functions” [2].

The following functions of the C runtime system, which were introduced for the first time with
CRTE V2.0, are library functions with POSIX functionality: all functions required by the
XPG4 standard and about thirty UNIX-specific extensions. For more information on these
functions and all functions with BS2000 functionality, see the manual “C Library Functions
for POSIX Applications” [3].

Compilation and linkage of programs that use POSIX library functions

The following steps are required in order to use library functions with POSIX functionality
when developing programs in the BS2000 environment (SDF):

1. The library SYSLIB.POSIX-HEADER, which contains the standard headers for POSIX
functions, must be specified in addition to the CRTE library SYSLIB.CRTE in the search
for standard headers at compilation.

//MOD-INCLUDE-LIB STD-INCLUDE-LIB=(*STANDARD-LIBRARY,&(INSTALLATION-PATH
(’SYSLIB’,’POSIX-HEADER’,DEFAULT=’$.SYSLIB.POSIX-HEADER’)))

2. The _OSD_POSIX directive must always be set before the preprocessor encounters the
first #include directive in the program. This can be ensured by a global setting for the
entire compilation run with the SOURCE-PROPERTIES statement instead of a
definition in the source program with the #define directive.

//MODIFY-SOURCE-PROPERTIES DEFINE=_OSD_POSIX

POSIX support Overview of the C/C++ development system

36 U21283-J-Z125-8-76

3. When linking, the link option library SYSLNK.CRTE.POSIX must be linked with prece-
dence before the library SYSLNK.CRTE, SYSLNK.CRTE.PARTIAL-BIND or
SYSLNK.CRTE.COMPL. When linking with BINDER, it is advisable to use an
INCLUDE statement for the link option library (without specifying the module name),
since the use of RESOLVE statements, by contrast, would require the appropriate order
to be strictly observed. In the case of the BINDER statement, for example:

//INCLUDE-MODULES *LIB(LIB=$.SYSLNK.CRTE.POSIX,ELEM=*ALL)

This also applies when linking with the BIND statement of the compiler, i.e. the
INCLUDE option should be used in the MODIFY-BIND-PROPERTIES statement:

//MOD-BIND-PROP INCLUDE=*LIB-ELEM(LIB=&(INSTALLATION-PATH('SYSLNK.POSIX',
'CRTE',DEFAULT='$.SYSLNK.CRTE.POSIX')),ELEM=*ALL)

When developing programs in the POSIX environment, by contrast, no special preparatory
steps are required in order to use the POSIX library functions (see also the manual “POSIX
Commands of the C/C++ Compiler” [1]).

Overview of the C/C++ development system Introductory examples

U21283-J-Z125-8-76 37

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

2.7 Introductory examples

Using three simple examples, this section demonstrates how C/C++ programs are
compiled, linked, and executed in BS2000. The examples are based on the assumption that
the C/C++ compiler and the C and C++ runtime systems were installed by default under the
user ID TSOS.

Example 1: Compiling, linking, and starting a C program

The C source program is contained in the cataloged file HELLO. The compiler generates
an LLM and places it in the library PLAM.TEST. This module is then linked by different
methods:
Variant 1: with the BIND statement of the compiler
Variant 2: with BINDER
Variant 3: with DBL

Source program file HELLO

#include <stdio.h>
int main(void)
{
 printf("Hello, I am a C program\n");
 return 0;
}

The source program was written using EDT and saved in a file named HELLO.

Runtime listing for compilation, linkage and execution

(IN) indicates user inputs
(OUT) indicates system program messages

(IN) /START-CPLUS-COMPILER —— (1)
(OUT) % BLS0523 ELEMENT ’SDFCC’, VERSION ’032’,TYPE ’L’FROM LIBRARY
 ’ :P401:$TSOS.SYSLNK.CPP.032’ IN PROCESS
(OUT) % BLS0524 LLM ’SDFCC’, VERSION ’03.2D00’ OF ’2011-10-25 13:40:11’
 LOADED
(OUT) % BLS0551 COPYRIGHT (C) Fujitsu Technology Solutions 2011. ALL
 RIGHTS RESERVED
(OUT) % CDR9992 : BEGIN C/C++(BS2000/OSD) VERSION 03.2D00
(IN) //MODIFY-SOURCE-PROP LANGUAGE=*C ——————————————————————————————— (2)
(IN) //COMPILE SOURCE=HELLO,MODULE-OUTPUT=*LIB-ELEM(LIB=PLAM.TEST) —— (3)
(OUT) % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CDR9937 : MODULES GENERATED, CPU TIME USED = 0.0030 SEC

Introductory examples Overview of the C/C++ development system

38 U21283-J-Z125-8-76

Variant 1: Linking with the BIND statement

(IN) //MOD-BIND-PROP INCLUDE=*LIB(LIB=PLAM.TEST,ELEM=HELLO),-
 //RUNTIME-LANG=*C,STDLIB=*STATIC ——————————————————————————————— (4)
(IN) //BIND OUTPUT=*LIB(LIB=PLAM.TEST1,ELEM=HELLO) —————————————————— (5)
(OUT) % BND3102 SOME WEAK EXTERNS UNRESOLVED
(OUT) % BND1501 LLM FORMAT: '1'
(OUT) % BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS:
 'UNRESOLVED EXTERNAL'
(IN) //END ——— (6)
(OUT) % CDR9992 : END
(OUT) % CCM0998 CPU TIME USED: 1.9967 SECONDS

Variant 2: Linking with BINDER

(IN) /START-BINDER —— (7)
(OUT) % BND0500 BINDER VERSION 'V02.6A30' STARTED
(IN) //START-LLM-CREATION INT-NAME=XY
(IN) //INCLUDE-MODULES *LIB(LIB=PLAM.TEST,ELEM=HELLO)
(IN) //RESOLVE-BY-AUTOLINK LIB=$.SYSLNK.CRTE
(IN) //SAVE-LLM LIB=PLAM.TEST1,ELEM=HELLO,MAP=*NO
(OUT) % BND3102 SOME WEAK EXTERNS UNRESOLVED
(OUT) % BND1501 LLM FORMAT: '1'
(IN) //END
(OUT) % BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS:
 'UNRESOLVED EXTERNAL'

Variant 3: Linking, loading and starting with DBL

(IN) /ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=$.SYSLNK.CRTE —————— (8)
(IN) /START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM(LIBRARY=PLAM.TEST,-

/ELEMENT-OR-SYMBOL=HALLO),DBL-PARAMETERS=*PARAM(-
/RESOLUTION=*PARAM(ALTERNATE-LIBRARIES=*BLSLIB##))

(OUT) % BLS0524 LLM 'HALLO', VERSION ' ' OF '2011-11-07 13:33:56' LOADED
(OUT) Hello, I am a C program
(OUT) % CCM0998 CPU TIME USED: 0.0021 SECONDS

Starting programs linked with variants 1 and 2

(IN) /START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM(LIBRARY=PLAM.TEST1,-
/ELEMENT-OR-SYMBOL=HALLO) —————————————————————————————————————— (9)

(OUT) % BLS0524 LLM 'XY', VERSION ' ' OF '2011-11-07 13:33:50' LOADED
(OUT) Hello, I am a C program
(OUT) % CCM0998 CPU TIME USED: 0.0028 SECONDS

Overview of the C/C++ development system Introductory examples

U21283-J-Z125-8-76 39

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

(1) The compiler is started.

(2) The MODIFY-SOURCE-PROPERTIES statement is used to set the ANSI C mode
(the default setting is the ANSI C++ mode).

(3) The COMPILE statement is issued with selected options to begin compilation. The
SOURCE option specifies the name of the source program to be compiled, and the
MODULE-OUTPUT option specifies a PLAM library as the output destination. The
name of the object module to be generated is derived from that of the source
program (HELLO).

(4) The MODIFY-BIND-PROPERTIES statement specifies the modules to be linked
and other conditions for the subsequent linkage run with the BIND statement of the
compiler. The INCLUDE option (which corresponds to the BINDER statement
INCLUDE-MODULES) specifies the LLM HELLO, which was generated earlier and
placed in the library PLAM.TEST. The RUNTIME-LANGUAGE option specifies that
the program to be linked is a C program (ANSI C++ is the default). Due to this
option, all additional modules of the C runtime system which are required for C
programs are automatically linked with the autolink mechanism. The *STATIC entry
in the STDLIB option instructs the compiler to load the C runtime system from the
library $.SYSLNK.CRTE instead of the library $.SYSLNK.CRTE.PARTIAL-BIND
(the default).

(5) The BIND statement is issued to start the linkage run. The OUTPUT option (which
corresponds to the BINDER statement SAVE-LLM) causes the fully-linked LLM to
be stored under the name HELLO as an element of type L in the PLAM library
PLAM.TEST1. The BINDER message “SOME WEAK EXTERNS
UNRESOLVED” refers to the ILCS module IT0INITS. This module contains
WEAK-EXTERN references to all languages potentially required for ILCS.
In this example, only the C language is involved, so the other references remain
unresolved

(6) The END statement terminates the compiler run.

(7) The HELLO module that was generated at compilation in the PLAM library
PLAM.TEST is linked with BINDER.

(8) The HELLO module, which was generated at compilation and placed in the PLAM
library PLAM.TEST, is dynamically linked, loaded and started with DBL.

(9) The finished program HELLO, which was fully linked with the BIND statement
of the compiler (see variant 1) and with BINDER (see variant 2) and placed in the
library PLAM.TEST1, is loaded and started. The entry ALT-LIB=*YES (see
variant 3), which is required for dynamic linking with DBL, is not needed in this case.

Introductory examples Overview of the C/C++ development system

40 U21283-J-Z125-8-76

Example 2: Compiling, linking, and starting a C++ program (ANSI C++)

The C++ source program consists of two PLAM library elements PROG1 and PROG2. The
compiler generates LLMs and writes them to the PLAM library SYS.PROG.LIB. These
modules are then linked with the BIND statement of the compiler.

Source program element PROG1

#include <iostream.h>
extern void invoke(void);

int main(void)
{
 cout << "main(prog1)" << '\n';
 invoke();
 return 0;
}

Source program element PROG2

#include <iostream.h>
void invoke(void)
{
 cout << "invoke(prog2)" << '\n';
}

The source program extracts shown above were produced using EDT and then written
separately to the PLAM library PLAM.EXP with explicit WRITE statements of the form:
WRITE L=PLAM.EXP(E=element-name)

Overview of the C/C++ development system Introductory examples

U21283-J-Z125-8-76 41

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

Runtime listing for compilation, linkage and execution

(IN) indicates user inputs
(OUT) indicates system program messages

(IN) /START-CPLUS-COMPILER —— (1)
(OUT) % BLS0523 ELEMENT ’SDFCC’, VERSION ’032’,TYPE ’L’FROM LIBRARY
 ’ :P401:$TSOS.SYSLNK.CPP.032’ IN PROCESS
(OUT) % BLS0524 LLM ’SDFCC’, VERSION ’03.2D00’ OF ’2011-10-25 13:40:11’
 LOADED
(OUT) % BLS0551 COPYRIGHT (C) Fujitsu Technology Solutions 2011. ALL
 RIGHTS RESERVED
(OUT) % CDR9992 : BEGIN C/C++(BS2000/OSD) VERSION 03.2D00
(IN) //COMPILE SOURCE=(*LIB(LIB=PLAM.EXP,ELEM=PROG1),-
 //*LIB(LIB=PLAM.EXP,ELEM=PROG2)) ——————————————————————————————— (2)
(OUT) % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CDR9937 : MODULES GENERATED, CPU TIME USED = 0.0030 SEC
(OUT) % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CDR9937 : MODULES GENERATED, CPU TIME USED = 0.0020 SEC
(IN) //MOD-BIND-PROP INCLUDE=(*LIB(LIB=SYS.PROG.LIB,ELEM=PROG1),-
 //*LIB(LIB=SYS.PROG.LIB,ELEM=PROG2)) ——————————————————————————— (3)
(IN) //BIND OUTPUT=*LIB(LIB=PLAM.EXP1,ELEM=PROG) ———————————————————— (4)
(OUT) % BND1501 LLM FORMAT: ’1’
(OUT) % BND3102 SOME WEAK EXTERNS UNRESOLVED
(OUT) % BND1101 BINDER NORMALLY TERMINATED. SEVERITY CLASS:
 'UNRESOLVED EXTERNAL'
(IN) //END —— (5)
(OUT) % CDR9992 : END
(OUT) % CCM0998 CPU TIME USED: 1.9967 SECONDS
(IN) /START-EXECUTABLE-PROG*L(LIB=PLAM.TEST1,E-O-S=PROG) ———————————— (6)
(OUT) % BLS0523 ELEMENT 'PROG', VERSION '@' FROM LIBRARY
 ':2OS2:$USERIDXY.PLAM.EXP1' IN PROCESS
(OUT) % BLS0524 LLM '$LIB-ELEM$PLAM$BSP1$$PROG$$$UPPE', VERSION ' '
 OF '2011-11-07 14:22:01' LOADED
(OUT) main(prog1)
(OUT) ruf(prog2)
(OUT) % CCM0998 CPU TIME USED: 0.0018 SECONDS

(1) The compiler run is started.

(2) The COMPILE statement is issued to start compiling the C++ source program
elements PROG1 and PROG2. The ANSI C++ language mode is set by default.
The name off the PLAM library and that of the library element to be compiled are
specified individually in the SOURCE option in the form of a list. By default, the
compiler places the generated LLMs in the library SYS.PROG.LIB. The names of
the LLMs are derived from the names of the source program elements (PROG1,
PROG2).

Introductory examples Overview of the C/C++ development system

42 U21283-J-Z125-8-76

(3) The MODIFY-BIND-PROPERTIES statement specifies which modules are to be
linked in the following linkage run. The INCLUDE option (which corresponds to the
BINDER statement INCLUDE-MODULES) specifies the names of the LLMs to be
linked, i.e. the LLM containing the main function (PROG1) and the additional LLM
with the subroutine (PROG2). All other C and C++ runtime library modules required
for ANSI C++ programs are linked in automatically (with the autolink mechanism,
see page 87).

(4) The linkage run is started with BIND statement. The OUTPUT option (which
corresponds to the BINDER statement SAVE-LLM) causes the generated LLM to
be saved under the name PROG as an element of type L in a PLAM library.
The BINDER message “SOME WEAK EXTERNS UNRESOLVED” refers to the
ILCS module IT0INITS. This module contains WEAK-EXTERN references to all
potential languages for ILCS. Only the C and C++ languages are involved in this
example, so the other references remain unresolved. For more information on the
LLM format generated by BINDER (Format 1 in this example), please refer to the
OUTPUT-FORMAT option of the BIND statement (page 68).

(5) The compiler run is terminated with the END statement.

(6) The fully-linked program is loaded and started with the
START-EXECUTABLE-PROGRAM command.

Overview of the C/C++ development system Introductory examples

U21283-J-Z125-8-76 43

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

02

Example 3: Compiling a C source program that is located in a POSIX
file and uses POSIX library functions

The C source program exists as a POSIX source file with the name hello.c in the directory
/USERIDXY/source. The program uses POSIX library functions. The compiler generates
an LLM and writes it to a POSIX object file with the default name hello.o. This object file
is stored in the directory of the source program. The object file is then processed further in
the POSIX shell environment.

Source program file hello.c

#include <stdio.h>
FILE *fp;
int main(void)
{
 printf("Hello, I am a C program\n");
 fp = fopen("/USERIDXY/posixfiles/hello", "w");
 fputs("hello", fp);
 fclose(fp);
 return 0;
}

The source program was created with EDT and saved with the statement
@XWRITE FILE=/USERIDXY/source/hello.c.

Runtime listing for compilation, linkage and execution

(IN) indicates user inputs
(OUT) indicates system program messages

(IN) /START-CPLUS-COMPILER —— (1)
(OUT) % BLS0523 ELEMENT ’SDFCC’, VERSION ’032’,TYPE ’L’FROM LIBRARY
 ’ :P401:$TSOS.SYSLNK.CPP.032’ IN PROCESS
(OUT) % BLS0524 LLM ’SDFCC’, VERSION ’03.2D00’ OF ’2011-10-25 13:40:11’
 LOADED
(OUT) % BLS0551 COPYRIGHT (C) Fujitsu Technology Solutions 2011. ALL
 RIGHTS RESERVED
(OUT) % CDR9992 : BEGIN C/C++(BS2000/OSD) VERSION 03.2D00
(IN) //MOD-SOURCE-PROP LANG=*C,DEFINE=_OSD_POSIX ———————————————————— (2)
(IN) //MOD-INCL-LIB STD-INCL=($.SYSLIB.POSIX-HEADER,*STANDARD-LIB) —— (3)
(IN) //COMPILE SOURCE='/USERIDXY/source/hallo.c',-
 //MODULE-OUTPUT=*SOURCE-LOC ———————————————————————————————————— (4)
(OUT) % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0
(OUT) % CDR9937 : MODULES GENERATED, CPU TIME USED: 0.3829 SECONDS
(IN) //END —— (5)
(OUT) % CDR9992 : END
(OUT) % CCM0998 CPU TIME USED: 0.3829 SECONDS

Introductory examples Overview of the C/C++ development system

44 U21283-J-Z125-8-76

(IN) /START-POSIX-SHELL ——— (6)
(OUT) POSIX Basisshell 09.0A41 created Feb 14 2011
 POSIX Shell 07.0A41 created Jan 27 2009
 Copyright (C) Fujitsu Technology Solutions 2009
 All Rights reserved
 Last login: Thu Nov 3 10:45:44 2011 on term/002
(IN) cd source —— (7)
(IN) ls hallo* —— (8)
(OUT) hallo.c hallo.o
(IN) c89 hallo.o —— (9)
(IN) a.out —— (10)
(OUT) Hallo, I am a C program

(1) The compiler run is started.

(2) The MODIFY-SOURCE-PROPERTIES statement activates the ANSI C language
mode (the ANSI C++ mode is set by default) and sets the _OSD_POSIX directive
required for the use of POSIX library functions.

(3) The library containing the standard headers for POSIX library functions is assigned
with the MODIFY-INCLUDE-LIBRARY statement in addition to the CRTE library
$.SYSLNK.CRTE (*STANDARD-LIBRARY).

(4) The COMPILE statement is issued to start the compilation run. The absolute path
name of the POSIX source file to be compiled is specified with the SOURCE option.
POSIX file names must always be enclosed within single quotes. The operand
value *SOURCE-LOCATION in the MODULE-OUTPUT option causes the compiled
module to be written to a POSIX object file with the default name hello.o and
stored in the directory of the source program.

(5) The compiler run is terminated with the END statement.

(6) Since POSIX object files can only be processed further in the POSIX subsystem,
the POSIX command START-POSIX-SHELL is used to switch from the BS2000
system environment (SDF) to the POSIX environment (shell). The call places the
user in the home directory of the current BS2000 user ID (USERIDXY).

(7) The POSIX command cd is used to change to the source directory in which the
source program and the object file generated by the compiler are located.

(8) On entering the POSIX command ls, the source file hello.c and the object file
hello.o are listed.

(9) The POSIX command c89 links the object file hello.o into an executable unit and
places it in an executable POSIX file with the default name a.out. The c89
command is described in detail in the manual “POSIX Commands of the C/ C++
Compiler” [1].

(10) The program is executed.

U21283-J-Z125-8-76 45

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

3 Compilation

3.1 General aspects of the compiler run

3.1.1 Input sources and output destinations of the compiler

INPUT OF HEADER FILES

C/C++
compiler

Default case: no options specified

//COMPILE / PREPROCESS /
SYNTAX-CHECK
SOURCE =

INPUT OF SOURCE PROGRAMS

//MODIFY-INCLUDE-LIBRARIES
USER-INCLUDE-LIBRARY =

Library of the
source program

BS2000 file,
POSIX file
or library

CRTE libraries
SYSLIB.CRTE
SYSLIB.CRTE.CPP

Library or
POSIX directory

//MODIFY-INCLUDE-LIBRARIES
STD-INCLUDE-LIBRARY =

Input sources and output destinations of the compiler Compilation

46 U21283-J-Z125-8-76

C/C++
compiler

OUTPUT OF MODULES

OUTPUT OF LISTINGS

Default case:
no options specified

Library SYS.PROG.LIB,
element type L

Library <filename>
element type L

POSIX object file

Temporary system file
SYSLST

BS2000 file or
POSIX file

Library,
element type P

//COMPILE
MODULE-OUTPUT=

System file SYSOUT
//MODIFY-LISTING-PROPERTIES
OUTPUT=

Compilation Input sources and output destinations of the compiler

U21283-J-Z125-8-76 47

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

C/C++
compiler

Default case:
no options specified

//MODIFY-DIAGNOSTIC-PROP
OUTPUT =

System file SYSOUT

//MODIFY-CIF-PROPERTIES

OUTPUT =

OUTPUT OF CIF INFORMATION

OUTPUT OF DIAGNOSTICS

Library,
element type H

BS2000 file or
POSIX file

Library,
element type D

BS2000 file or
POSIX file

Temporary system file
SYSLST

Library,
element type S

BS2000 file or
POSIX file

PREPROCESSOR OUTPUT

//PREPROCESS

OUTPUT =

Construction of default names Compilation

48 U21283-J-Z125-8-76

3.1.2 Construction of default names

If no output files are explicitly specified for the compilation results, the compiler generates
default names by deriving them from the respective source program name.

The section “Default names for output containers” below describes the rules by which the
compiler constructs default names for output containers of the following compilation results:
preprocessor output, messages,
listings and CIF information.

The rules for constructing module names are described in the section “Rules for
constructing module names” on page 52).

Default names for output containers

This section summarizes the rules by which the compiler constructs default names for
output containers of the following compilation results:

– Result of a preprocessor run (PREPROCESS)
– Compiler listings (MODIFY-LISTING-PROPERTIES)
– Diagnostic messages (MODIFY-DIAGNOSTIC-PROPERTIES)
– CIF information (MODIFY-CIF-PROPERTIES)

Default names are generated, i.e. derived from the source program name, when the
following entries are made in the OUTPUT options listed above:

OUTPUT=*STD-FILE
OUTPUT=*SOURCE-LOCATION
OUTPUT=*LIB-ELEM(LIB=...,ELEM=*STD-ELEMENT)
OUTPUT=<posix-pathname> (name of a POSIX file directory)

Construction of default names for cataloged BS2000 files

The output is placed in cataloged BS2000 files with default names

– whenever OUTPUT=*STD-FILE is specified;
– if OUTPUT=*SOURCE-LOCATION is specified and the source program is read from a

BS2000 file or SYSDTA.

Compilation Construction of default names

U21283-J-Z125-8-76 49

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

1. The following source program name components, if present, are not used to construct
the default file name and are therefore dropped:

– name components for the catid and userid in BS2000 file and library names.
Exception: If the source program entered with OUTPUT=*SOURCE-LOCATION is
catalogued as a BS2000 file, then catid and userid will be kept.

– directory names in POSIX pathnames
– the suffixes .C , .CPP, .CXX, .CC and .I if the source program exists as a cataloged

BS2000 file or PLAM library element
– the suffixes .c, .C , .cpp, .CPP, .cxx, .CXX, .cc, .CC, .c++, .C++, .i and .I if

the source program exists as a POSIX file

2. If the source program exists as a cataloged BS2000 file or a POSIX file, the remaining
portion of the name is truncated from the right to 33 characters.

3. For OUTPUT=*STD-FILE only:

If the source program exists as a PLAM library element, the library and element names
are combined with a hyphen and used in the default name as shown below:
libraryname-elementname
If this name (including the hyphen) exceeds 33 characters, the library name and, if
required, also the element name, are both truncated to 16 characters from the right,
starting with the library name.

4. Special characters not allowed in file names are always converted to “$”. The permitted
special characters are $, @, #, . (period) and - (hyphen).

5. Lowercase letters (in POSIX source file names) are converted to uppercase.

6. The name truncated to 33 characters is then extended with the appropriate suffix, i.e.:
.I , .LST , .CIF or .DIAG.

Summary

Source program input from
Contents *SYSDTA BS2000 file PLAM library POSIX file
PREPROCESS CSTDEXP.I file.I lib-elem.I file.I

LISTING CSTDLST.LST file.LST lib-elem.LST file.LST

DIAGNOSTIC CSTDDIAG.DIAG file.DIAG lib-elem.DIAG file.DIAG

CIF CSTDCIF.CIF file.CIF lib-elem.CIF file.CIF

Default names for cataloged BS2000 files, depending on input source and contents

Construction of default names Compilation

50 U21283-J-Z125-8-76

Construction of default names for PLAM library elements

The output is placed in PLAM library elements with default names

– if OUTPUT=*LIB-ELEM(ELEMENT=*STD-ELEMENT) is specified;
– if OUTPUT=*SOURCE-LOCATION is specified and the source program exists as a

PLAM library element.

If the output location is specified as OUTPUT=*LIB-ELEM(LIB=*STD-LIBRARY), the
elements are written to the PLAM library with the default name SYS.PROG.LIB.

1. The following source program name components, if present, are not used to construct
the default element name and are therefore dropped:

– name components for the catid and userid in BS2000 file and library names
– directory names in POSIX path names
– the suffixes .C , .CPP, .CXX, .CC and .I if the source program exists as a

cataloged BS2000 file or PLAM library element
– the suffixes .c, .C , .cpp, .CPP, .cxx, .CXX, .cc, .CC, .c++, .C++, .i and .I if

the source program exists as a POSIX file

2. The remaining portion of the source program name is truncated from the right to 59
characters.

3. Special characters not allowed in element names are always converted to “$”. The
permitted special characters are $, @, #, . (period), - (hyphen), and _ (underscore).

4. Lowercase letters (in POSIX source file names) are converted to uppercase.

5. The name truncated to 59 characters is then extended with the appropriate suffix .I,
.LST, .CIF or .DIAG.

Summary

Source program input from
Contents *SYSDTA BS2000 file PLAM library POSIX file
PREPROCESS CSTDEXP.I, S file.I, S elem.I, S file.I, S

LISTING CSTDLST.LST, P file.LST, P elem.LST, P file.LST, P

DIAGNOSTIC CSTDDIAG.DIAG, D file.DIAG, D elem.DIAG, D file.DIAG, D

CIF CSTDCIF.CIF, H file.CIF, H elem.CIF, H file.CIF, H

Default names for PLAM library elements, depending on input source and contents

Compilation Construction of default names

U21283-J-Z125-8-76 51

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

Construction of default names for POSIX files

The output is placed in POSIX files with default names

– if OUTPUT=*SOURCE-LOCATION is specified, and the source program exists as a
POSIX file;

– if OUTPUT=<posix-pathname> is specified, and if <posix-pathname> specifies the
name of a POSIX file directory (without file name).

1. The following suffixes in source program names, if present, are not used to construct
default names and are therefore dropped: .C , .CPP, .CXX, .CC or .I (for BS2000
files) and .c, .C , .cpp, .CPP, .cxx, .CXX, .cc, .CC, .c++, .C++, .i or .I (for POSIX
files).

2. The name is extended with the appropriate suffix, i.e.: .i (C compilation),
.I (C++ compilation), .lst, .cif or .diag.

3. Lowercase letters and other special characters are accepted unaltered. No name
truncation occurs.

Construction of default names Compilation

52 U21283-J-Z125-8-76

Rules for constructing module names

As far as module names are concerned, a distinction must be made between the element
name (i.e. the name of the “container”) under which the module is stored as a library
element and the internal module and CSECT names.

If the name of the module is not explicitly specified in the MODULE-OUTPUT option of the
COMPILE statement, the element name and the internal module/CSECT names are
derived from the name of the source program.

If the name of the module is explicitly specified in the MODULE-OUTPUT option of the
COMPILE statement, the element name and the internal module / CSECT names are
constructed from that name.

Construction of element names from LLMs in PLAM libraries

● Derivation from the source program name

1. The following parts of the source program name, if present, are not used to
construct the element name and are therefore dropped: <cat-id>, <user-id>, and
the suffixes .C , .CPP, .CXX, .CC or .I (for BS2000 files) and .c, .C , .cpp, .CPP,
.cxx, .CXX, .cc, .CC, .c++, .C++, .i or .I (for POSIX files).

2. If the remaining portion of the source program name exceeds 59 characters, it is
truncated from the right to 59 characters.

3. Special characters not permitted for element names are always converted to “$”.
The permitted special characters are $, @, #, . (period), - (hyphen), and _ (under-
score). Lowercase letters in POSIX file names are converted to uppercase.

4. If the source program is read from SYSDTA, the element name is “CSTDMOD”.
This applies even if SYSTDA was assigned to a cataloged file or a library element
with the ASSIGN-SYSDTA command.

● Derivation from the explicitly specified name

In this case, the specified name is accepted as the element name without changes, i.e.
the suffix .C , .CPP, .CXX, .CC or .I, if present, is not removed. Similarly, no truncation
of the name occurs, i.e. the name can have a length of up to 64 characters.

Special Note
To enable further processing with DBL, the maximum permissible length for the element
names of LLMs is currently 32 characters. This applies to the LLM specified in the START-
EXECUTABLE-PROGRAM command (module containing the main function) as well as all
LLMs to be dynamically linked.
LLMs that have element names which exceed 32 characters must therefore be linked with
BINDER.

Compilation Construction of default names

U21283-J-Z125-8-76 53

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

Construction of LLM object file names in the POSIX file system

● Derivation from the source program name

The name of the LLM object file is derived from the name of the POSIX source file as
follows: only the suffix.c, .C , .cpp, .CPP, .cxx, .CXX, .cc, .CC, .c++, .C++, .i or
.I, if present, is removed from the name of the POSIX source file, and the suffix .o is
appended to the remaining portion. No truncation of names or conversion of special
characters to the dollar sign “$” and of uppercase to lowercase letters occur.

● Derivation from the explicitly specified name

The specified name is accepted without changes. Note, however, that LLM object files
must be provided with the suffix .o to enable further processing with the appropriate
link editors in the POSIX subsystem.

Construction of the internal module and CSECT names of LLMs

● Derivation from the source program name

1. The following parts of the source program name, if present, are not used to
construct the module/CSECT name and are therefore dropped: <cat-id>, <user-id>
and the suffixes .C , .CPP, .CXX, .CC or .I (for BS2000 files), and .c, .C , .cpp,
.CPP, .cxx, .CXX, .cc, .CC, .c++, .C++, .i or .I (for POSIX files).

2. If the remaining portion of the source program name exceeds 30 characters, it is
truncated from the right to 30 characters.

3. Special characters that are not permitted for internal LLM names are always
converted to “$”. The permitted special characters are $, @, # , - (hyphen), and
_ (underscore). Lowercase letters in POSIX file names are converted to uppercase.

4. If the source program is read from SYSDTA, “CSTDMOD” is used as a basis for
constructing the name. This also applies if SYSDTA is assigned to a cataloged file
or a library element by means of an ASSIGN-SYSDTA command.

5. The core name obtained by applying rules 1 through 4 is then used to construct the
final module and CSECT names by appending a 2-character suffix, i.e. “&@” or
“&#”:

Module name <core-name>&@
Code CSECT <core-name>&@
Data CSECT <core-name>&#

Construction of default names Compilation

54 U21283-J-Z125-8-76

● Derivation from the explicitly specified name

1. The complete specified name is used to construct the module/CSECT name, i.e.
the suffix .c, .C , .cpp, .CPP, .cxx, .CXX, .cc, .CC, .c++, .C++, .i or .I, if
present, is not removed.

2. The truncation of the name from the right to 30 characters, the conversion of invalid
special characters to the dollar sign “$”, and the appending of suffixes occurs as
described for the derivation from the source program name.

Construction of the names of ii files

An instantiation information file (ii file) is created for each of the source files used by a
template, as long as one does not already exist.
The name of this ii file is derived from the associated object and is formed by adding the
suffix .ii.
For example, the compiled version of hugo.C would have the ii file hugo.o.ii, unless an
object name other than hugo.o is specified.
The ii file is located in that library in which the object file itself is stored.

Compilation Structure of compiler messages

U21283-J-Z125-8-76 55

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

3.1.3 Structure of compiler messages

The compiler issues the following types of messages:

– Information messages that notify the user about the general compilation process
(e.g. the start and termination messages from the compiler and messages such as
’MODULES GENERATED’).

– Error messages (of the frontend compiler) that directly refer to the compiled source
program (e.g. syntax and semantic errors).

These consist of

1. the actual error message line
2. the invalid source program line (optional)
3. a flag ^ to indicate the error location (optional)

– Error messages not related to the source program (e.g. disk full, error on opening files,
etc.).

Information and error messages are output to one or more of the following destinations
during compilation:
– at the terminal and/or
– optionally to files or libraries.
The output destination for these messages can be controlled with the MODIFY-
DIAGNOSTIC-PROPERTIES statement (page 94).
Error messages that refer to the source program are also documented in the source/error
listing (controlled by the MODIFY-LISTING-PROPERTIES statement; see page 105).

General format of the compiler messages:

Error message line:

message-number [message-weight]: filename / line-number: message-text

Optional for error messages referring to the source program:

Invalid source program line

^ marker to indicate the error location

The file name and line number are omitted in error messages (with a message weight of
FATAL or ERROR) which do not refer to the source program. In information messages, the
message weight is also omitted.

Structure of compiler messages Compilation

56 U21283-J-Z125-8-76

message-number
The 7-digit message number consists of a 3-digit message class, which identifies
the compiler component, and a 4-digit message number.

[message weight]
Indicates the message weight, i.e. the severity of the error that has occurred:

Message class Components
CFE Frontend of the compiler:

scanner, preprocessor, parser, listing generator, message
facility

CDR Compiler driver, II-UPDATE
UMP Intermediate language module (ULS):

optimizer, inliner
BEM Backend
SIS Compiler I/O interface (PROSOS),

Object format (module) generator (OFG),
Diagnostic information generator for AID (DIG)

BND BINDER (when linking with the BIND statement of the
compiler)

CCM C runtime system

[NOTE] Inconsequential errors, e.g. "ugly" or superfluous constructs
which usually have no impact on subsequent program
behavior.
Notes are not issued automatically unless the options -R
minweight,notes or MINIMAL-MSG-WEIGHT=*NOTE are
specified.

[WARNING] Errors for which the compiler will generate a module, but
which could lead to situations resulting in deviant program
behavior.

Compilation Structure of compiler messages

U21283-J-Z125-8-76 57

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

filename
Name of the file or library element with the invalid source program code

line-number
Indicates the source program line in which the error occurred.

message-text
Text of the error message; can be output in English or German.

Invalid source program line with a marker to indicate the error location
-R show_column or SHOW-COLUMN=*YES is the default setting, which means
that the original source program line is shown with the error location marked
(with ^) in addition to the diagnostic message itself. If -R no_show_column or
SHOW-COLUMN=*NO is specified, the marked source program line is not output.

[ERROR], [*ERROR] Errors for which no module is generated. The compiler will
attempt to continue the compilation until the number of errors
specified with the -R limit,n or MAX-ERROR-NUMBER=n
option is reached. Errors of the frontend compiler that can
either be reduced to the severity of a WARNING/NOTE with
the -R warning/note or CHANGE-MSG-WEIGHT
=*WARNING()/*NOTE() option and warnings that were
upgraded to the severity of an ERROR with the -R error or
CHANGE-MSG-WEIGHT=*ERROR() option are flagged
with an asterisk.

[FATAL] Fatal errors leading to abortion of the compilation
[INTERNAL] Compiler errors, also leading to abortion of the compilation

Structure of compiler messages Compilation

58 U21283-J-Z125-8-76

Example

//MODIFY-SOURCE-PROP LANG=*C
//MODIFY-DIAGNOSTIC-PROP CHANGE-MSG-WEIGHT=*ERROR(CFE1064)
//COMPILE SOURCE=TEST.C

% CFE1064 [*ERROR]: TEST.C / 1: declaration does not declare anything
 struct {};
 •^

% CFE1077 [ERROR]: TEST.C / 3: this declaration has no storage class or
 type specifier
 xxxxx;
 ^

% CFE1054 [*ERROR]: USER.H / 3: too few arguments in macro invocation
 int i = A(3);
 ^

The error number CFE1064 was originally a warning, but was upgraded to the ERROR
class with the option CHANGE-MSG-WEIGHT=*ERROR(CFE1064).
The class of errors that are not originally output with an asterisk (e.g. CFE1077 in this case)
cannot be changed.
Error number CFE1054 is an example of an error that is generated in strict ANSI C mode,
but can be downgraded to the message weight of a warning with CHANGE-MSG-WEIGHT
=*WARNING(CFE1054). The same error number is assigned the error class WARNING in
extended ANSI C mode.

The HELP-MSG command can be used to obtain a more detailed explanation of all the error
messages:

HELP-MSG MSG-ID=msgid[,LANGUAGE=D / E]

The compiler messages can be output in English or German. The default setting depends
on system generation. The following command can be used to change the task-specific
default:

MODIFY-MSG-ATTRIBUTES TASK-LANGUAGE = D / E

Compilation Controlling the compiler

U21283-J-Z125-8-76 59

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

3.2 Controlling the compiler

As in the case of many other BS2000 programs (BINDER, LMS, etc.), the C/C++ compiler
can be called as an independent program and controlled via a convenient SDF command
interface. This provides the user with all the facilities offered by the product SDF (System
Dialog Facility) for the input of program statements, i.e.: various levels of guided and
unguided dialogs, input from procedure or command files, etc.

A detailed explanation of the SDF dialog interface with examples on the various forms of
SDF control can be found in the manual "SDF Dialog Interface, User Guide" [12].

START-CPLUS-COMPILER Compilation

60 U21283-J-Z125-8-76

3.2.1 Calling the compiler (START-CPLUS-COMPILER)

MONJV = *NONE / <filename 1..54>
The compiler run can be monitored by means of a BS2000 job variable.
<filename> assigns a monitoring job variable in which the compiler indicates
runtime errors that may occur.

Two values are entered into a job variable by the operating system:

a status indicator with a length of 3 bytes, and
a return code with a length of 4 bytes.

The table below shows how job variables are supplied in various termination states.

CPU-LIMIT = *JOB-REST / <integer 1..32767>
This option can be used to define the maximum CPU time for the compiler run. The value
entered here corresponds to the CPU-LIMIT operand of the START-EXECUTABLE-
PROGRAM command.

/START-CPLUS-COMPILER Abbreviations: SRCPC, CPLUS-COMPILER, CPC

MONJV = *NONE / <filename 1..54>

,CPU-LIMIT = *JOB-REST / <integer 1..32767>

Error class Compiler
termination

Status
indicator

Return
code

Procedure
behavior

Exit status

no error normal $T 0000 no
branch

-

[NOTE] 1001 EXIT_SUCCESS
0[WARNING] 1002

[ERROR] 2003 branch
to next

STEP, etc.

1

[ERROR] 2004

[FATAL] abnormal $A 3005 EXIT_FAILURE
9990888[INTERNAL] 3006

Compiler statements Overview of general input rules

U21283-J-Z125-8-76 61

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

3.2.2 Description of compiler statements

Overview of statements

For more information on the principle of “executing” and “modifying” compiler statements,
see the notes in the section “Basic principles and general input rules” on page 64.

● Executing statements

BIND
Start the linkage and/or prelinker run

CHECK-SYNTAX
Start syntax analysis

COMPILE
Start the compilation run (including module generation)

PREPROCESS
Start the preprocessor run

● Modifying and defining statements

The following list shows the various MODIFY statements together with the executing
statement(s) for which they are evaluated (in parentheses).

MODIFY-BIND-PROPERTIES
Options to control the linkage and/or prelinker run (BIND)

MODIFY-CIF-PROPERTIES
Options to output CIF information (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-DIAGNOSTIC-PROPERTIES
Options to control message output (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-INCLUDE-LIBRARIES
Options to specify header files (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-LISTING-PROPERTIES
Options to output listings (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-MODULE-PROPERTIES
Options to control object and module attributes (COMPILE)

MODIFY-OPTIMIZATION-PROPERTIES
Optimization options (COMPILE)

MODIFY-RUNTIME-PROPERTIES
Runtime options (COMPILE)

Overview of general input rules Compiler statements

62 U21283-J-Z125-8-76

MODIFY-SOURCE-PROPERTIES
Frontend options (CHECK-SYNTAX, COMPILE, PREPROCESS)

MODIFY-TEST-PROPERTIES
Debugging options (COMPILE)

● Informative statements

SHOW-DEFAULTS
Show default settings of the compiler

SHOW-PROPERTIES
Show current option values of MODIFY statements

● RESET-TO-DEFAULT
Reset option values of MODIFY statements to the default settings of the compiler

● END
Terminate the compiler run

● Standard SDF statements

Besides the C/C++-specific statements listed above, the following standard SDF
statements may also be used during a compiler run. A detailed description of these SDF
statements can be found in the manual "SDF Dialog Interface, User Guide" [12].

EXECUTE-SYSTEM-CMD
Execute a system command during the compiler run

HELP-MSG-INFORMATION
Write text of a system or compiler message to SYSOUT

HOLD-PROGRAM
Stop the compiler run, e.g. to enter system commands. Control is returned to the
statement mode of the compiler with the command RESUME-PROGRAM

MODIFY-SDF-OPTIONS
Enable/disable user syntax file and change SDF settings

REMARK
Enter comments in a sequence of statements

RESET-INPUT-DEFAULTS
Reset task-specific default values

Compiler statements Overview of general input rules

U21283-J-Z125-8-76 63

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

RESTORE-SDF-INPUT
Show previously entered statements of commands

SHOW-INPUT-DEFAULTS
Show task-specific default values

SHOW-INPUT-HISTORY
Show contents of input buffer

SHOW-SDF-OPTIONS
Show information on all active syntax files and SDF options for the current task

SHOW-STMT
Show SDF syntax for a statement

STEP
Define restart point within a command/procedure file

WRITE-TEXT
Display text

Overview of general input rules Compiler statements

64 U21283-J-Z125-8-76

Basic principles and general input rules

● Executing and modifying compiler statements

The compiler run is started with the command START-CPLUS-COMPILER and is
terminated with END statement. During each compiler run, a number of different compi-
lation and/or linkage runs may be started with appropriate "executing" statements (see
page 61). These compilation and linkage runs can be controlled by means of MODIFY
statements, which must always precede the executing statements to be used. These
MODIFY statements remain in effect even after the executing statements have been
completed (see the example on page 65 for details).

● The operand value *UNCHANGED and default settings of the compiler

When using the compiler in SDF interactive mode with guidance, the operand value
*UNCHANGED is frequently displayed for many operands in the SDF statement menus
of the compiler.

The value *UNCHANGED is an SDF default value that is always used in the current
compiler statement (and displayed on the screen) whenever no explicit specification for
an operand is made.
*UNCHANGED simply means that the operand value that was defined with an earlier
compiler statement still applies to the operand involved. If no such value was specified
in the entire compiler run, e.g. immediately after starting the compiler, *UNCHANGED
refers to the default value of the compiler, and this default value remains in effect until
some other operand value is specified with a compiler statement. In this manual, all
default values of the compiler are underlined in the individual statement descriptions.
The currently applicable operand values for compiler statements can be listed with the
SHOW-PROPERTIES statement. In this case, the actual operand value is displayed
instead of *UNCHANGED.

● Aliases

Most of the compiler statements have aliases, which may be used instead of the names
displayed in the guided dialog. These aliases are listed for each statement at the start
of the corresponding statement description.

● Spin-off mechanism

Executing statements that do not succeed trigger the spin-off mechanism. All
statements up to the next STEP are ignored in such cases.

Compiler statements Overview of general input rules

U21283-J-Z125-8-76 65

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

● Input/Output library elements

The version specification VERSION=@ is rejected, since this is not a valid value for the
LMS version.

Example

/START-CPLUS-COMPILER
//MODIFY-SOURCE-PROPERTIES DEFINE=_OSD_POSIX —————————————————————————— (1)
//MODIFY-LISTING-PROPERTIES SOURCE=*YES
//MODIFY-INCLUDE-LIBRARIES STD-INCLUDE-LIBRARY=
 (*STANDARD-LIBRARY, $.SYSLIB.POSIX-HEADER) ——————————————————————————— (2)
 //COMPILE SOURCE=HELLO1.CC ——— (3)
 ...
//MODIFY-SOURCE-PROPERTIES LANG=*C
//COMPILE SOURCE=HELLO2.C ——— (4)
...
//END
/

The MODIFY-SOURCE-PROPERTIES statement (1) only issues a directive, so the default
settings of the compiler, e.g. extended ANSI C++ language mode
(LANGUAGE=*CPLUSPLUS(MODE=*ANSI), apply to all other operands.

On compiling (2) the C++ source program HELLO1.CC, the preceding MODIFY statements
are evaluated, and the following steps are performed as a result:

1. The _OSD_POSIX directive is issued.
2. The header libraries $.SYSLIB.CRTE and $.SYSLIB.POSIX-HEADER are searched.
3. The source program is compiled in the ANSI C++ language mode and a source /error

listing is output to SYSLST.
4. The C source program is compiled in the ANSI C language mode and a source/error

listing is output to SYSLST.

Before the second compilation (4), the ANSI C language mode is set in a new MODIFY-
SOURCE-PROPERTIES statement (3). Apart from for this change, all other entries in the
earlier MODIFY statements remain in effect when compiling the C source program
HELLO2.C. In other words, steps 1., 2., and 3. are also performed.

BIND Compiler statements

66 U21283-J-Z125-8-76

BIND

Alias: LINK

This statement starts a linkage run and, in the case of ANSI C++ objects, also activates the
prelinker for automatic template instantiation. The input sources and other conditions for the
linkage and prelinker runs are defined in the preceding MODIFY-BIND-PROPERTIES
statements.

ACTION = list-poss: *PRELINK / *MODULE-GENERATION
The *PRELINK specification is only relevant in the ANSI C++ modes and affects the
automatic template instantiation by the prelinker.

If the ACTION option is not specified, the following default applies:

ACTION = (*PRELINK,*MODULE-GENERATION)

This causes both a prelinker and a linkage run to be performed in the ANSI C++ modes.
The result comprises individual modules in which all templates are instantiated and a linked
module. Note that the *PRELINK specification is ignored in the C modes and in the Cfront
C++ mode, so only a linkage run is performed in these modes.

BIND

ACTION = list-poss: *PRELINK / *MODULE-GENERATION

,OUTPUT = *NONE / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / <composed-name 1..24 with-under>

,OUTPUT-FORMAT = *UNCHANGED / *LLM(...)

*LLM(...)

⏐ EXTERNAL-NAMES = *UNCHANGED / *STD / *SHORT / *EXTENDED

,ADD-OPTION = *UNCHANGED / *NONE / <c-string 1..1800 with-low>

Compiler statements BIND

U21283-J-Z125-8-76 67

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

If ACTION=*PRELINK is specified, only a prelinker run is performed. The result consists of
individual modules in which all templates are instantiated. Specifications in the OUTPUT
and OUTPUT-FORMAT options, if any, are ignored.

If ACTION=*MODULE-GENERATION is specified, only a linkage run is performed.

OUTPUT = *NONE / *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=)
under which the linked module is to be stored. These values are passed to BINDER (as a
MODULE-CONTAINER operand) in a SAVE-LLM statement. If no further specifications are
made with the ADD-OPTION option, the remaining operands of the SAVE-LLM statement
are set to the corresponding defaults for BINDER.
The *NONE option is the default. But because this does not create a link object, this option
can only sensibly be used with (see above, ACTION =).

LIBRARY =<filename 1..54>
The module is written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> can be used (instead of a cataloged library name) to specify a valid link
name for the library. The link name must already have been assigned to the PLAM
library with the ADD-FILE-LINK command before the compiler is called.

ELEMENT = <composed-name 1..64 with-under>(...)
The module is written to the element with the assigned name under the PLAM library
specified with LIBRARY=.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is
used by the compiler.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the
highest existing version number by 1, assuming that the highest existing version ID
ends with a digit that can be incremented. If the version ID cannot be incremented,
the compiler run is aborted with an error message.
See the COMPILE statement (page 75) for an example.

VERSION = <composed-name 1..24 with-under>
The element is assigned the specified version.

BIND Compiler statements

68 U21283-J-Z125-8-76

OUTPUT-FORMAT = *LLM(EXTERNAL-NAMES = *UNCHANGED / *STD / *SHORT /
*EXTENDED)
This option controls how symbol names in EEN (Extended External Name) format are
handled by BINDER. The entries made here are passed on to BINDER as the
FOR-BS2000-VERSION operand of the SAVE-LLM statement.

EENs, i.e. external C++ symbols with untruncated names, are generally contained in
modules that were generated with the compiler in the ANSI C++ mode.
Untruncated external C symbols are generated only if the following option if specified at
compilation:
MODIFY-MODULE-PROPERTIES C-NAMES=*UNLIMITED (see page 118).
In this case, even longer external C symbols are not truncated by the compiler to 32 bytes.
Modules with EENs are stored by the compiler in LLM Format 4. The modules of the C++
libraries and of the CRTE runtime systems used in ANSI C++ mode are also provided in
LLM Format 4.

If the modules generated by the compiler do not include any EENs, i.e. are in LLM
Format 1, this option has no effect, since the BINDER generates an input format corre-
sponding to LLM Format 1.

EXTERNAL-NAMES = *UNCHANGED
The specification in the last BIND statement applies.

EXTERNAL-NAMES = *STD
By default, BINDER generates LLM Format 4. The EENs remain in the result module
without being truncated. LLMs in Format 4 can be partially linked, i.e. first linked with
unresolved external references to EENs and then processed further as desired by
means of BINDER or DBL.

EXTERNAL-NAMES = *SHORT
This entry is needed if BINDER is to generate LLM Format 1. By default, LLM Format
4 is generated.

EXTERNAL-NAMES = *EXTENDED
This entry is supported fo compatibility reasons only.

Summary of generated LLM formats

Input format SDF option EXTERNAL-NAMES = Output format
LLM 1 No entry / *STD / *SHORT / *EXTENDED LLM 1

LLM 4 (EEN)
No entry / *STD / *EXTENDED LLM 4

*SHORT LLM 1

Compiler statements BIND

U21283-J-Z125-8-76 69

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

ADD-OPTION = *UNCHANGED / *NONE / <c-string 1..1800 with-low>
<c-string> can be used to specify further operands of the BINDER statement SAVE-LLM in
addition to the MODULE-CONTAINER operand (see OUTPUT option) and the
FOR-BS2000-VERSION operand (see OUTPUT-FORMAT option). If more than one
operand is specified, they must be separated by commas as follows:
’operand1,operand2,...’
The operands are directly passed through to BINDER without SDF analysis.
The following operands of the BINDER statement SAVE-LLM are obtained from the
MODIFY-BIND-PROPERTIES statement and must therefore not be specified with ADD-
OPTION: TEST-SUPPORT (to save LSD information) and MAP (to generate a
map listing).

Automatic template instantiation

The operands specified with ADD-OPTION are currently not considered during the
automatic template instantiation by the prelinker, but only during subsequent linkage
with BINDER. The operands should not affect the type, number or order of the modules
to be linked, since different preconditions during the prelinker and linkage runs could
result in duplicates or unresolved external references.

Example

//BIND OUTPUT=*LIB(LIB=PLAM.BSP,ELEM=HELLO),ADD-OPT=’OVERWRITE=*NO,
NAME-COLLISION=*WARNING’

CHECK-SYNTAX Compiler statements

70 U21283-J-Z125-8-76

CHECK-SYNTAX

Alias: DO-SYNTAX-CHECK

The compilation run is terminated after checking the syntax of one or more source
programs. No object code is generated.

SOURCE =
This option specifies one or more source programs for which a syntax check is to be
performed.
A source program can be read from the system file SYSDTA, a cataloged BS2000 file, a
PLAM library or a POSIX file.
Note that if the source program is entered from SYSDTA, only one source program can be
read per CHECK-SYNTAX statement.

SOURCE = *SYSDTA
Input is accepted from the system file SYSDTA. SYSDTA is assigned to the terminal in
interactive mode but can be reassigned to a cataloged file or a PLAM library element with
the ASSIGN-SYSDTA command (see also page 76).

SOURCE = <filename 1..54>
<filename> is used to specify the name of a cataloged BS2000 file.

SOURCE = <posix-pathname>
Only a file name is permitted as <posix-pathname>. See page 34 for a description of the
term <posix-pathname>.

CHECK-SYNTAX

SOURCE = *SYSDTA / list-poss: <filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>

Compiler statements CHECK-SYNTAX

U21283-J-Z125-8-76 71

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

SOURCE = *LIBRARY-ELEMENT(...)
This option is used to specify a PLAM library and an element in it.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> is the link name for a PLAM library. The link name must be assigned to
the library name by means of the ADD-FILE-LINK command before the compiler is
called.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of an element from the PLAM
library specified earlier. The element must be of type S.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element
with the highest existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

Note
Templates in ANSI-C++ sources (in contrast to the COMPILE statement) are not implicitly
included.

COMPILE Compiler statements

72 U21283-J-Z125-8-76

COMPILE

This statement compiles one or more source programs and generates a module for each
compilation unit.

SOURCE =
This option specifies one or more source programs to be compiled.
A source program can be read from the system file SYSDTA, a cataloged BS2000 file, a
PLAM library or a POSIX file.
Note that if the source program is entered from SYSDTA, only one source program can be
read per COMPILE statement.

COMPILE

SOURCE = *SYSDTA / list-poss: <filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>

,MODULE-OUTPUT = *SOURCE-LOCATION / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD-LIBRARY / *SOURCE-LIBRARY / <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = *STD-ELEMENT(...) / <composed-name 1..64 with-under>(...)
⏐ ⏐ *STD-ELEMENT(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / <composed-name 1..24 with-under>
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / <composed-name 1..24 with-under>

Compiler statements COMPILE

U21283-J-Z125-8-76 73

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

SOURCE = *SYSDTA
Input from the system file SYSDTA is only possible in the C modes and in the Cfront C++
mode of the compiler. In the ANSI C++ modes, the value *SYSDTA is rejected with a corre-
sponding error message. SYSDTA is assigned to the terminal in interactive mode but can
be reassigned to a cataloged file or a PLAM library element with the ASSIGN-SYSDTA
command (see also page 76).

SOURCE = <filename 1..54>
<filename> is the name of a cataloged BS2000 file.

SOURCE = <posix-pathname>
Only a file name is permitted as <posix-pathname>. See page 34 for a description of the
term <posix-pathname>.

SOURCE = *LIBRARY-ELEMENT(...)
This option is used to specify a PLAM library and an element in it.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> is used to specify a link name for a PLAM library. The link name must
already have been assigned to the library name with the ADD-FILE-LINK command
before the compiler is called.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of an element from the PLAM
library specified earlier. The element must be of type S.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element
with the highest existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

MODULE-OUTPUT =
This option allows the user to control the library and/or name under which the generated
modules are stored.

MODULE-OUTPUT = *SOURCE-LOCATION
The module is written to the same location as the source program. If the source program is
a PLAM library element, the module is placed in the library of the source program. If the
source program is a POSIX file, the module is written as an object file (“.o” file) into the
directory of the source program.

COMPILE Compiler statements

74 U21283-J-Z125-8-76

The element or object file name is derived from the name of the source program (see the
section “Rules for constructing module names” on page 52).
The module cannot be written to a write-only file. In Posix, it must always be possible to
read the library or object file.
The *SOURCE-LOCATION specification is invalid if the source program is read from a
cataloged BS2000 file or via SYSDTA (see page 76).

MODULE-OUTPUT = <posix-pathname>
The module is written as an LLM object file in the POSIX file system.

Both a file name and a directory are permitted as <posix-pathname>. See page 34 for a de-
scription of the term <posix-pathname>.

When a file name is specified, the object file is stored under this name. Specification of a
file name is illegel when compiling multiple source programs with one COMPILE statement.

When a directory name dir is specified, an object file for each compiled source program is
written under the default name sourcefile.o to the directory dir (see also the section “Rules
for constructing module names” on page 52).

The directories specified with <posix-pathname> must already exist.
When constructing file names, it must be noted that object files can only be meaningfully
processed further (i.e. linked) in the POSIX subsystem if the name contains the suffix .o or
a suffix defined with the -Y F option of the cc/c89/CC commands (see also the manual
“POSIX Commands of the C/C++ Compiler” [1]).

MODULE-OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name
(ELEMENT=) under which the module is to be stored.

LIBRARY = *STD-LIBRARY
Modules are stored in the library SYS.PROG.LIB by default.

LIBRARY = *SOURCE-LIBRARY
The module is written to the PLAM library which contains the source program.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a
cataloged BS2000 file, a POSIX file or via SYSDTA.

LIBRARY =<filename 1..54>
The module is written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> can be used (instead of a cataloged library name) to specify a valid link
name for the library. The link name must already have been assigned to the library
name with the ADD-FILE-LINK command before the compiler is called.

Compiler statements COMPILE

U21283-J-Z125-8-76 75

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

ELEMENT = *STD-ELEMENT(...)
The element name is derived from the name of the source program (see section “Rules
for constructing module names” on page 52).

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is
used by the compiler.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the
highest existing version number by 1, assuming that the highest existing version ID
ends with a digit that can be incremented. If the version ID cannot be incremented,
the compiler run is aborted with an error message.

Warning: You may not specify *INCREMENT in the ANSI-C++ mode.

Example

VERSION = <composed-name 1..24 with-under>
The element is assigned the specified version.

ELEMENT = <composed-name 1..64 with-under>(...)
The module is written under the assigned name to the PLAM library specified with
LIBRARY= . This specification is invalid when compiling multiple source programs with
one COMPILE statement.

To enable further processing with DBL, element names of LLMs must not exceed a
maximum of 32 characters (see section “Rules for constructing module names” on
page 52).

VERSION = *UPPER-LIMIT / *INCREMENT /
<composed-name 1..24 with-under>
The version can be specified as described above for
ELEMENT=*STD-ELEMENT(...).

Warning: You may not specify *INCREMENT in the ANSI-C++ mode.

Highest existing version Version generated by *INCREMENT

ABC1
ABC9
ABC09
003
None

ABC2
Error
ABC10
004
001

COMPILE Compiler statements

76 U21283-J-Z125-8-76

Notes on input via SYSDTA

For compatibility reasons, input of a source program via the system file SYSDTA can be
enabled in the C language modes and in the Cfront C++ language mode of the compiler.
The following option must be specified for this purpose:

SOURCE=*SYSDTA

Input via SYSDTA is not possible in the ANSI C++ modes.

In interactive mode, SYSDTA is assigned to the terminal by default. Although source
programs could basically be entered from the terminal, it would not be very practical, since
the source would not be available later.

This means that if *SYSDTA is specified with the SOURCE option, SYSDTA must be
assigned to a cataloged file or a PLAM library element. The appropriate command for this
purpose is as follows:

 ⎧ filename ⎫
/ASSIGN-SYSDTA TO-FILE = ⎨ ⎬
 ⎩ *LIB-ELEM(LIB=library,ELEM=element) ⎭

The assignment can be made by the following methods:

1. Assigning SYSDTA before calling the compiler

Example

/ASSIGN-SYSDTA TO-FILE=source
/START-CPLUS-COMPILER

The assigned source must include all required MODIFY statements and the COMPILE
statement before the actual source code:

//MODIFY-SOURCE-PROP LANG=*C
//MODIFY-...
//COMPILE SOURCE=*SYSDTA,...
#include ...
main() {
...
}

Compiler statements COMPILE

U21283-J-Z125-8-76 77

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

2. Assigning SYSDTA after calling the compiler

Example

/START-CPLUS-COMPILER
//MODIFY-SOURCE-PROP LANG=*C
//MODIFY-...
//EXECUTE-SYSTEM-CMD (ASSIGN-SYSDTA TO-FILE=source)

The required MODIFY statements are specified before reassigning SYSDTA and are
hence not needed in the assigned source. Following the EXECUTE statement, no
further SDF statements may be specified. The assigned source must include at least
the COMPILE statement before the actual source code:

//COMPILE SOURCE=*SYSDTA,...
#include ...
main() {
...
}

When the end of the source file is reached, the compiler run terminates. SYSDTA cannot
be reassigned again within a compiler run.

Note that the input source continues to be SYSDTA even though the source program has
been assigned with the ASSIGN-SYSDTA command. Consequently, the source program
name “CSTD” is used as the basis for generating default names (see also the output
parameter *SOURCE-LOCATION or ELEMENT=*STD-ELEMENT). Furthermore, when a
library element is assigned with the ASSIGN-SYSDTA command instead of the SOURCE
option, the *SOURCE-LIBRARY specification has no effect.

END Compiler statements

78 U21283-J-Z125-8-76

END

This statement ends the compiler run.

END

Compiler statements MODIFY-BIND-PROPERTIES

U21283-J-Z125-8-76 79

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MODIFY-BIND-PROPERTIES

Aliases: SET-BIND-PROPERTIES
MODIFY-LINK-PROPERTIES
SET-LINK-PROPERTIES

This statement specifies the input sources and other conditions for the prelinker and linkage
run that is started thereafter with a BIND statement.

MODIFY-BIND-PROPERTIES

START-LLM-CREATION = *YES / *NO

,INCLUDE = *UNCHANGED / list-poss: *LIBRARY-ELEMENT(...) / *NONE

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under>(...)
⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>
⏐⏐ ,ADD-OPTION = *UNCHANGED / *NONE / <c-string 1..1800 with-low>

,RESOLVE = *UNCHANGED / [*AUTOLINK](...) / *NONE

*AUTOLINK(...)
 ⏐ LIBRARY = list-poss(40) : <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐⏐ ,INSTANTIATE = *NO / *YES / *IGNORE
⏐⏐ ,ADD-OPTION = *UNCHANGED / *NONE / <c-string 1..1800 with-low>

MODIFY-BIND-PROPERTIES Compiler statements

80 U21283-J-Z125-8-76

START-LLM-CREATION = *YES / *NO
The option START-LLM-CREATION=*YES is analogous to the BINDER statement
START-LLM-CREATION, which begins a new link process and creates a new LLM in the
work area. *YES is the default setting of the compiler and is automatically used if the
MODIFY-BIND-PROPERTIES statement involved is the first such statement issued since
calling the compiler.

,ADD-PRELINK-FILES = *UNCHANGED / list-poss: *LIBRARY-ELEMENT(...) / *LIBRARY(...) / *NONE

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under>(...)
⏐ *ALL(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>

*LIBRARY(...)
 ⏐ LIBRARY-NAME = <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>

,MAX-INSTANTIATE-ITER = 30 / *UNCHANGED / <integer 0..100>

,TEMPLATE-DEF-LIST = *UNCHANGED / *YES / *NO

,ADD-STATEMENT = *UNCHANGED / *NONE / list-poss: <c-string 1..1800 with-low>

,RUNTIME-LANGUAGE = *UNCHANGED / *C / *CPLUSPLUS(...)

*CPLUSPLUS(...)

⏐ MODE = *ANSI / *CPP

,STDLIB = *UNCHANGED / *DYNAMIC / *DYNAMIC-COMPLETE / *STATIC / *NONE

,TOOLSLIB = *UNCHANGED / *YES / *NO

,TEST-SUPPORT = *UNCHANGED / *YES / *NO

,LISTING = *UNCHANGED / *NONE / *SYSLST / <filename 1..54>

Compiler statements MODIFY-BIND-PROPERTIES

U21283-J-Z125-8-76 81

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

Starting with the second MODIFY-BIND-PROPERTIES statement, START-LLM-
CREATION is automatically set to the SDF default value *NO. This value remains in effect
for all subsequent MODIFY-BIND-PROPERTIES statements (and even across multiple
BIND statements) until it is explicitly changed to *YES.
As long as this value is set to *NO, the specifications made for INCLUDE and RESOLVE
libraries remain in effect for all subsequent linkage runs.
For more information on the interaction between the MODIFY-BIND-PROPERTIES and
BIND statements, see also the section “Interaction between the MODIFY-BIND-
PROPERTIES and BIND statements” on page 89.

INCLUDE =
This option, which is analogous to the MODULE-CONTAINER operand of the BINDER
statement INCLUDE-MODULES, specifies the modules to be linked.

Automatic template instantiation

The modules specified with the INCLUDE option are always instantiated by the
prelinker. In cases where the same library is also specified in the RESOLVE option, it is
important to ensure that the template instantiation is not disabled there (see RESOLVE
option, INSTANTIATE = *NO / *IGNORE, page 83).

INCLUDE = *UNCHANGED
The values specified in the MODIFY-BIND-PROPERTIES statements since the last
START-LLM-CREATION=*YES apply.

INCLUDE = list-poss: *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=)
under which the module to be linked is stored.
Multiple *LIBRARY-ELEMENT entries may be specified here in a list. These entries are
converted internally into multiple INCLUDE-MODULES statements of the BINDER in the
same order as the *LIBRARY-ELEMENT entries in the list.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> is used to specify a link name for a PLAM library. The link name must
already have been assigned to the library name with the ADD-FILE-LINK command
before the compiler is called.

ELEMENT = *ALL(...)
All modules from the PLAM library specified with LIBRARY= are linked.

MODIFY-BIND-PROPERTIES Compiler statements

82 U21283-J-Z125-8-76

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element
with the highest existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of a module from the PLAM
library specified with LIBRARY=.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element
with the highest existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

ADD-OPTION = *UNCHANGED / *NONE / <c-string 1..1800 with-low>
<c-string> can be used to specify further operands of the BINDER statement
INCLUDE-MODULES in addition to the MODULE-CONTAINER operand. If more than
one operand is specified, they must be separated by commas as follows:
’operand1,operand2,...’
The operands are directly passed through to BINDER without SDF analysis. See the
BIND statement for an input example (page 69).

Automatic template instantiation

The operands specified with ADD-OPTION are currently not considered during the
automatic template instantiation by the prelinker, but only during subsequent
linkage with BINDER. The operands should not affect the type, number or order of
the modules to be linked, since different preconditions during the prelinker and
linkage runs could result in duplicates or unresolved external references.

INCLUDE = *NONE
The operand *NONE only deletes the corresponding INCLUDE chain, but does not trigger
the complete action like for START-LLM-CREATION=YES. NONE is the default value of the
compiler, i.e. the value after starting the compiler of after a RESET-TO-DEFAULT.

RESOLVE =
This option, which is analogous to the BINDER statement RESOLVE-BY-AUTOLINK,
specifies the libraries from which unresolved external references are to be satisfied by
BINDER (when using the autolink mechanism).

Compiler statements MODIFY-BIND-PROPERTIES

U21283-J-Z125-8-76 83

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

The C/C++ runtime libraries of the CRTE must not be specified with the RESOLVE option.
These libraries are implicitly linked in the correct order and with the correct versions in
accordance with the entries in the RUNTIME-LANGUAGE-MODE, STDLIB, TOOLSLIB
and RUNTIME-ENVIRONMENT options.

Automatic template instantiation

In contrast to the INCLUDE option, the template instantiation can be controlled with the
RESOLVE option. By default, modules within RESOLVE libraries are not instantiated by
the prelinker. See also the INSTANTIATE specification (page 83).

RESOLVE = *UNCHANGED
The values specified in the MODIFY-BIND-PROPERTIES statements since the last
START-LLM-CREATION=*YES apply.

RESOLVE = [*AUTOLINK](...)

LIBRARY = list-poss(40): <filename 1..54> / *LINK(LINK-NAME = <filename 1..8>)
This option can be used to specify the cataloged file name or link name of a PLAM
library to be searched when using the autolink mechanism. If multiple libraries are
specified in a list, this is equivalent to a RESOLVE-BY-AUTOLINK statement with a list
of RESOLVE libraries. The list may contain a maximum of 40 libraries (binder
restriction).

INSTANTIATE = *NO / *YES / *IGNORE
This option is only relevant for automatic template instantiation by the prelinker. It
controls whether the libraries specified with the RESOLVE option are to be instantiated
(*YES), not instantiated (*NO by default), or completely ignored (*IGNORE) by the
prelinker. Whereas libraries for which *NO or *YES is specified are taken into account
at instantiation, i.e., are searched for existing definitions, libraries for which *IGNORE
is set are not even looked at by the prelinker and are only taken into account in the
subsequent linkage process.

 If the same library is specified in both the RESOLVE and the INCLUDE option,
the following must be observed:
As soon as INSTANTIATE=*NO (the default setting) or *IGNORE is specified for
a library in a RESOLVE option, the prelinker will not perform any template
instantiations for all elements of that library, even if the elements have been
explicitly been linked with the INCLUDE option.

ADD-OPTION = *UNCHANGED / *NONE / <c-string 1..1800 with-low>
<c-string> can be used to specify further operands of the BINDER statement
RESOLVE-BY-AUTOLINK in addition to the LIBRARY operand. If more than one
operand is specified, they must be separated by commas as follows:
’operand1,operand2,...’
The operands are directly passed through to BINDER without SDF analysis. See the
BIND statement for an input example (page 69).

i

MODIFY-BIND-PROPERTIES Compiler statements

84 U21283-J-Z125-8-76

Automatic template instantiation

The operands specified with ADD-OPTION are currently not considered during the
automatic template instantiation by the prelinker, but only during subsequent
linkage with BINDER. The operands should not affect the type, number or order of
the modules to be linked, since different preconditions during the prelinker and
linkage runs could result in duplicates or unresolved external references.

RESOLVE = *NONE
The operand *NONE only deletes the corresponding RESOLVE chain, but does not trigger
the complete action like for START-LLM-CREATION=YES. NONE is the default value of the
compiler, i.e. the value after starting the compiler of after a RESET-TO-DEFAULT.

ADD-PRELINK-FILES =
This option is only relevant for automatic template instantiation by the prelinker. This option
can be used to specify entire PLAM libraries or individual library modules, which are taken
into account by the prelinker when determining the instances to be generated as follows:

– If the specified library contains the definition of a template entity (function or static data
element), no instance that is a duplicate of that entity is generated.

– No instantiations are performed in the specified library itself. In other words, if the library
requires instances for template entities (external references), these are not generated.

If the BIND statement is used to start both a prelinker and a linkage run, the libraries or
modules specified with ADD-PRELINK-FILES are not considered for linkage.

Problem

The modules in the libraries PLAM.X and PLAM.Y contain references to the same
template instances. If the modules of these two libraries are both preinstantiated in the
BIND statement with the ACTION=*PRELINK option, this will result in duplicates.

In such cases, the prelinker must be given a hint that symbols are defined elsewhere
and that no instances should hence be generated. This can be done by using the
ADD-PRELINK-FILES option.

Solution

To begin with, the modules of the library PLAM.X are preinstantiated:

//MODIFY-BIND-PROPERTIES INCLUDE=*LIB-ELEM(LIB=PLAM.X,ELEM=*ALL)
//BIND ACTION=*PRELINK

Compiler statements MODIFY-BIND-PROPERTIES

U21283-J-Z125-8-76 85

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

This is followed by the preinstantiation of the modules in the library PLAM.Y, but the option
ADD-PRELINK-FILES is used here to inform the prelinker that the library PLAM.X needs to
be considered and that no duplicates for PLAM.X should be generated.

//MODIFY-BIND-PROPERTIES INCLUDE=*LIB-ELEM(LIB=PLAM.Y,ELEM=*ALL),
//ADD-PRELINK-FILES=*LIBRARY(LIB=PLAM.X)
//BIND ACTION=*PRELINK

ADD-PRELINK-FILES = *UNCHANGED
The values specified in the MODIFY-BIND-PROPERTIES statements since the last
START-LLM-CREATION=*YES apply.

ADD-PRELINK-FILES = list-poss: *LIBRARY-ELEMENT(...)
Like the INCLUDE option (or the INCLUDE-MODULES statement of BINDER), this option
specifies library elements to be considered by the prelinker at preinstantiation.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> is used to specify a link name for a PLAM library. The link name must
already have been assigned to the library name with the ADD-FILE-LINK command
before the compiler is called.

ELEMENT = *ALL(...)
All modules from the PLAM library specified with LIBRARY= are considered at
preinstantiation.

VERSION = *HIGHEST-EXISTING
If the element entry does not contain a version ID, the highest possible version is
used by the compiler.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of a module from the PLAM
library specified with LIBRARY=.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element
with the highest existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

MODIFY-BIND-PROPERTIES Compiler statements

86 U21283-J-Z125-8-76

ADD-PRELINK-FILES = list-poss: *LIBRARY(...)
The specified libraries are treated by the prelinker in the same way as RESOLVE libraries,
i.e. only those library modules which could potentially be used to satisfy unresolved external
references when actually linking the program are considered at preinstantiation.

LIBRARY-NAME = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> is used to specify a link name for a PLAM library. The link name must
already have been assigned to the library name with the ADD-FILE-LINK command
before the compiler is called.

ADD-PRELINK-FILES = *NONE
The operand *NONE only deletes the corresponding ADD-PRELINK-FILES chain, but does
not trigger the complete action like for START-LLM-CREATION=YES. NONE is the default
value of the compiler, i.e. the value after starting the compiler of after a RESET-TO-
DEFAULT.

MAX-INSTANTIATE-ITER = 30 / *UNCHANGED / <integer 0..100>
This option is only relevant for automatic template instantiation by the prelinker. It defines
the maximum number or prelinker iterations. The default value is 30. If a value of 0 is
specified for <integer>, the number of prelinker iterations is unlimited.

TEMPLATE-DEF-LIST = *UNCHANGED / *YES / *NO
This option is used to switch a communication technology on and off between the front end
and prelinker during the internal post-compilation phase via a definition list (see also “First
instantiation with the help of the definition list (temporary repository)” on page 248).

ADD-STATEMENT = *UNCHANGED / *NONE / list-poss: <c-string 1..1800 with-low>
<c-string> can be used to specified an additional BINDER statement. Multiple BINDER
statements can be specified as a list of c-strings as follows:
(’statement1’,’statement2’,’...’).
The operands are directly passed through to BINDER without SDF analysis.

Automatic template instantiation

The BINDER statements specified with ADD-STATEMENT are currently not considered
during the automatic template instantiation by the prelinker, but only during subsequent
linkage with BINDER. The operands should not affect the type, number or order of the
modules to be linked, since different preconditions during the prelinker and linkage runs
could result in duplicates or unresolved external references.

Compiler statements MODIFY-BIND-PROPERTIES

U21283-J-Z125-8-76 87

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

RUNTIME-LANGUAGE =
This option causes the appropriate C/C++ runtime system of the CRTE to be automatically
linked in accordance with the defined C or C++ language mode.

RUNTIME-LANGUAGE = *UNCHANGED
The value specified in the last MODIFY-BIND-PROPERTIES statement applies.

RUNTIME-LANGUAGE = *C
The C runtime system is linked.
The STDLIB option defines the method by which the C runtime system is linked. The
RUNTIME-ENVIRONMENT option determines whether the RISC version (“SRULNK”) of
the C runtime system is to be used instead of the /390 version (“SYSLNK”).

RUNTIME-LANGUAGE = *CPLUSPLUS(...)
Apart from the C runtime system, which is always required, additional C++ libraries and
runtime systems of the CRTE are linked.
The STDLIB option specifies the mode in which these CRTE libraries are linked.

MODE = *ANSI / *CPP
Depending on whether the user modules were created in the extended or strict ANSI
C++ mode (*ANSI) or in the Cfront C++ mode (*CPP) of the compiler, the appropriate
CRTE libraries will be required when linking.

*ANSI: ANSI C++ runtime system (SYSLNK.CRTE.RTSCPP) and standard C++ library
(SYSLNK.CRTE.STDCPP). The linkage of the Tools.h++ library, which can be used in
the ANSI C++ modes, is controlled by means of a separate TOOLSLIB option (see
page 88).

*CPP: Cfront C++ runtime system (SYSLNK.CRTE.CFCPP) and Cfront C++ library for
complex math and stream-oriented I/O (SYSLNK.CRTE.CPP).

STDLIB = *UNCHANGED / *DYNAMIC / *DYNAMIC-COMPLETE / *STATIC / *NONE
This option defines how external references to the C/C++ libraries of the CRTE
corresponding to the RUNTIME-LANGUAGE options are resolved.
The *DYNAMIC and *STATIC entries currently have a different effect only when linking the
C runtime system.
The C++ libraries are treated identically for both the *DYNAMIC and *STATIC specifica-
tions, i.e. are always linked fully (and “statically”).

*DYNAMIC (default): All external references to the CRTE libraries are resolved. In the case
of the C runtime system only an adapter module from the SYSLNK.CRTE.PARTIAL-BIND
library is linked in permanently. The preloaded C runtime system is connected to the
program only at runtime.

MODIFY-BIND-PROPERTIES Compiler statements

88 U21283-J-Z125-8-76

*DYNAMIC-COMPLETE: This option represents a variant of dynamic linkage that uses the
complete partial bind libraries of CRTE. The external references are resolved at runtime
from the SYSLNK.CRTE.COMPL library. In the ANSI-C++ mode, i.e. when RUNTIME-
LANGUAGE=*CPLUSPLUS(MODE=*ANSI) is specified, the SYSLNK.CRTE.CPP-
COMPL library is used instead of the SYSLNK.CRTE.RTSCPP and
SYSLNK.CRTE.STDCPP libraries.

 In the CFRONT-C++ mode the STDLIB=DYNAMIC-COMPLETE option is reset to
STDLIB=DYNAMIC. In particular, the complete partial bind method is not supported
in the CFRONT-C++ mode. You will find a complete description of the complete
partial bind libraries in the "CRTE" manual [4].

*STATIC: All external references to the CRTE libraries are resolved. In the case of the C
runtime system, all individual modules from the SYSLNK.CRTE library are linked in perma-
nently.

*NONE: The external references to the CRTE libraries remain open and are subsequently
resolved either in a later linkage run (i.e. permanently with BINDER or the BIND statement)
or directly at runtime via dynamic linkage with DBL.

 The following must be observed when external references (STDLIB=*NONE) are
left unresolved:
The standard C++ library (SYSLNK.CRTE.STDCPP) is not taken into account
during the automatic template instantiation by the prelinker, which means that
duplicate definitions could potentially exist. You will find more detailed information
on this problem in the section “Automatic instantiation” on page 246.

TOOLSLIB = *UNCHANGED / *YES / *NO
If *YES is specified, the Tools.h++ library (SYSLNK.CRTE.TOOLS). When the
STDLIB=DYNAMIC-COMPLETE option is specified, the SYSLNK.CRTE.CPP-COMPL
library is used instead of the SYSLNK.CRTE.TOOLS library. If *NO is specified, the external
references to the Tools.h++ library remain unresolved.

TEST-SUPPORT = *UNCHANGED / *YES / *NO

This option controls whether the LSD information generated at compilation is to be saved
in the linked module for subsequent use with the Advanced Interactive Debugger AID.
The value is passed as the TEST-SUPPORT operand of the BINDER statement SAVE-
LLM.

LISTING = *UNCHANGED / *NONE / *SYSLST / <filename 1..54>
This option, which is analogous to the MAP operand of the BINDER statement SAVE-LLM,
can be used to request the standard listings of BINDER. These listings are output to the
system file SYSLST or to a cataloged file specified with <filename> .

i

i

Compiler statements MODIFY-BIND-PROPERTIES

U21283-J-Z125-8-76 89

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

Interaction between the MODIFY-BIND-PROPERTIES and BIND
statements

Several MODIFY-BIND-PROPERTIES statements may be collectively involved in a linkage
run. The libraries specified with the RESOLVE, INCLUDE and ADD-PRELINK-FILES
options, for example, are collected and remain in effect even for subsequent BIND state-
ments so long as the option START-LLM-CREATION is set to *YES.

START-LLM-CREATION is automatically set to *YES only on the first call to the MODIFY-
BIND-PROPERTIES statement after calling the compiler or after a RESET-TO-DEFAULT
statement. Starting with the second MODIFY statement, the default value is *NO.

A list of libraries within a RESOLVE option has the same effect as a list of libraries within a
RESOLVE-BY-AUTOLINK statement of BINDER. Additional MODIFY-BIND-PROPERTIES
statements with a RESOLVE option are issued as independent RESOLVE-BY-AUTOLINK
statements of BINDER and are processed separately.

MODIFY-CIF-PROPERTIES Compiler statements

90 U21283-J-Z125-8-76

MODIFY-CIF-PROPERTIES

Aliases: SET-CIF-PROPERTIES
MODIFY-INFO-FILE-PROPERTIES
SET-INFO-FILE-PROPERTIES

This statement can be used to instruct the compiler to create a CIF (Compiler Information
File), which may include information on some or all compiler listings. For each compiled
source program, the CIF is written to a separate file, which can then be processed further
with the global listing generator (see page 156ff for details).

CONSUMER = *UNCHANGED
The value specified in the last MODIFY-CIF-PROPERTIES statement applies.

CONSUMER = *NONE
No permanent CIF is created.
When local listings are requested (with MODIFY-LISTING-PROPERTIES), a temporary CIF
is created (with prefix #T) to generate these listings. This CIF is deleted at TASK end.

CONSUMER = *ALL
The created CIF contains information on all listings that can be generated, depending on
which compiler components (PREPROCESS, CHECK-SYNTAX, COMPILE) are run.

MODIFY-CIF-PROPERTIES

CONSUMER = *UNCHANGED / *NONE / *ALL / list-poss(9): *BY-LISTING-PROPERTIES / *OPTIONS /
 *SOURCE / *PREPROCESSING-RESULT / *DATA-ALLOCATION-MAP /
 *CROSS-REFERENCE / *PROJECT-INFORMATION / *ASSEMBLER-CODE /
 *SUMMARY

,INCLUDE-INFORMATION = *UNCHANGED / *NONE / *ALL / *USER-INCLUDES-ONLY

,OUTPUT = *UNCHANGED / *NONE / *STD-FILE / *SOURCE-LOCATION / <filename 1..54> /
<posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD-LIBRARY / *SOURCE-LIBRARY / <filename 1..54>
⏐⏐ ,ELEMENT = *STD-ELEMENT(...) / <composed-name 1..64 with-under>(...)
⏐⏐ *STD-ELEMENT(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / <composed-name 1..24 with-under>

Compiler statements MODIFY-CIF-PROPERTIES

U21283-J-Z125-8-76 91

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

CONSUMER = list-poss(9): *BY-LISTING-PROPERTIES / *OPTIONS / *SOURCE /
*PREPROCESSING-RESULT / *DATA-ALLOCATION-MAP / *CROSS-REFERENCE /
*PROJECT-INFORMATION / *ASSEMBLER-CODE / *SUMMARY
A CIF containing information on the specified listings is created.

*BY-LISTING-PROPERTIES: CIF information is created for all listings requested with the
MODIFY-LISTING-PROPERTIES statement.

INCLUDE-INFORMATION = *UNCHANGED / *NONE / *ALL / *USER-INCLUDES-ONLY
This option can be used to control whether and from which header files CIF information is
to be generated for the source, preprocessor and cross-reference listings. By default, only
the user-defined headers and not the standard headers are taken into account.

OUTPUT = *UNCHANGED
The value specified in the last MODIFY-CIF-PROPERTIES statement applies.

OUTPUT = *NONE
No permanent CIF is created.

OUTPUT = *STD-FILE
The CIF is written to a cataloged BS2000 file. The name of this file is derived from the name
of the source program as follows:

If the source program is located in a PLAM library, the library and element name of the
source are combined with a hyphen (lib-elem) and used in the default file name. The rules
by which the compiler constructs default names are described in detail in the section
“Default names for output containers” on page 48.

OUTPUT = *SOURCE-LOCATION
The output destination and name of the CIF are derived from the location and name of the
source program as follows:

The rules by which the compiler constructs default names are described in detail in the
section “Default names for output containers” on page 48.

OUTPUT = <filename 1..54>
The CIF is written to a cataloged BS2000 file with the specified name. This entry is invalid
when compiling multiple source programs.

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDCIF.CIF file.CIF lib-elem.CIF file.CIF

Source *SYSDTA BS2000 file PLAM library POSIX file

Output
destination

BS2000 file BS2000 file Library of source Directory of source

Default name CSTDCIF.CIF file.CIF elem.CIF (type H) file.cif

MODIFY-CIF-PROPERTIES Compiler statements

92 U21283-J-Z125-8-76

OUTPUT = <posix-pathname>
The CIF is written to a POSIX file.

Both a file name and a directory are permitted as <posix-pathname>. See page 34 for a de-
scription of the term <posix-pathname>.

When a file name is specified, the CIF is stored under this name. Specification of a file name
is invalid when compiling multiple source programs with one statement.

When a directory name dir is specified, the CIF for each compiled source program is written
under the default name sourcefile.cif to the directory dir (see also section “Default names for
output containers” on page 48).

The directories specified with <posix-pathname> must already exist.
CIF files can be processed further in the POSIX subsystem with the global listing generator
cclistgen.

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=)
under which the CIF is to be stored. The elements are stored as elements of type H.

LIBRARY = *STD-LIBRARY
The CIF is written to the library SYS.PROG.LIB by default.

LIBRARY = *SOURCE-LIBRARY
The CIF is written to the PLAM library which contains the source program.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a
cataloged BS2000 file, a POSIX file or via SYSDTA.

LIBRARY = <filename 1..54>
The CIF is written to a PLAM library with the specified name.

ELEMENT = *STD-ELEMENT(...)
By default, the element name of the CIF is derived from the name of the source program
as follows:

The rules by which the compiler constructs default names are described in detail in the
section “Default names for output containers” on page 48.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is
used by the compiler.

VERSION = <composed-name 1..24 with-under>
The CIF is written to the element with the specified version ID.

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDCIF.CIF file.CIF elem.CIF file.CIF

Compiler statements MODIFY-CIF-PROPERTIES

U21283-J-Z125-8-76 93

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

ELEMENT = <composed-name 1..64 with-under>(...)
The CIF is written to a library element (type H) with the specified name. This
specification is invalid compiling multiple source programs.

VERSION = *UPPER-LIMIT /
<composed-name 1..24 with-under>
The version can be specified as described above for
ELEMENT=*STD-ELEMENT(...).

MODIFY-DIAGNOSTIC-PROPERTIES Compiler statements

94 U21283-J-Z125-8-76

MODIFY-DIAGNOSTIC-PROPERTIES

Alias: SET-DIAGNOSTIC-PROPERTIES

This statement can be used to create a user-defined list of compiler messages and to
specify various output destinations for it. In addition, it can be used to define error message
weights and error conditions for aborting compilation.

MODIFY-DIAGNOSTIC-PROPERTIES

MINIMAL-MSG-WEIGHT = *UNCHANGED / *NOTE / *WARNING / *ERROR / *FATAL

,CHANGE-MSG-WEIGHT = *UNCHANGED / list-poss: *NOTE(...) / *WARNING(...) / *ERROR(...)

*NOTE(...)

⏐ MSGID = list-poss: <alphanum-name 7..7>

*WARNING(...)

⏐ MSGID = list-poss: <alphanum-name 7..7>

*ERROR(...)

⏐ MSGID = list-poss: <alphanum-name 7..7>

,SUPPRESS-MSG = *UNCHANGED / *NONE / list-poss: *USE-BEFORE-SET / <alphanum-name 7..7>

,MAX-ERROR-NUMBER = *UNCHANGED / 50 / <integer 1..255>

,ANSI-VIOLATIONS = *UNCHANGED / *WARNING / *ERROR

,SHOW-COLUMN = *UNCHANGED / *YES / *NO

,SHOW-INCLUDES = *UNCHANGED / *YES / *NO

,VERBOSE = *UNCHANGED / *NO / list-poss: *VERSION / *MESSAGES

,GENERATE-ETR-FILE = *UNCHANGED / *NO / *ALL-INSTANTIATIONS / *ASSIGNED-INSTANTIATIONS

,OUTPUT = *UNCHANGED / list-poss(10): *SYSOUT / *SYSLST / *STD-FILE / *SOURCE-LOCATION /
*TO-LISTING /<filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD-LIBRARY / *SOURCE-LIBRARY / <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐⏐ ,ELEMENT = *STD-ELEMENT(...) / <composed-name 1..64 with-under>(...)
⏐⏐ *STD-ELEMENT(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / <composed-name 1..24 with-under>
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / <composed-name 1..24 with-under>

Compiler statements MODIFY-DIAGNOSTIC-PROPERTIES

U21283-J-Z125-8-76 95

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MINIMAL-MSG-WEIGHT = *UNCHANGED / *NOTE / *WARNING / *ERROR / *FATAL
This option can be used to specify the minimum message weight for which compiler
messages are to be included in the message listing.

CHANGE-MSG-WEIGHT = *UNCHANGED / list-poss: *NOTE(...) / *WARNING(...) /
*ERROR(...)

These options can be used to change the default message weights for diagnostic
messages that are output by the frontend compiler (beginning with CFE). Notes can be
upgraded to the message weight ERROR, and warnings can be downgraded to NOTE or
upgraded to ERROR. Errors can be downgraded to the weight of a NOTE, but only if they
were flagged with an asterisk in the original message: [*ERROR]. The message weight for
fatal errors cannot be changed.

MSGID = list-poss: <alphanum-name 7..7>
<alphanum-name> is the 7-digit message key of the compiler message for which the
message weight is to be changed.

SUPPRESS-MSG = *UNCHANGED / *NONE / list-poss: *USE-BEFORE-SET /
<alphanum-name 7..7>
This option can be used to suppress compiler messages with the message weights NOTE
and WARNING, thus restricting the listed messages to the ones most important to the user.

*USE-BEFORE-SET: The output of warnings is suppressed if local auto variables are used
in the program before being assigned a value.

<alphanum-name 7..7>: is the message key of a compiler message (NOTE or WARNING)
to be suppressed.

Example

SUPP-MSG=(CFE2802,CFE9095)

MAX-ERROR-NUMBER = *UNCHANGED / 50 / <integer 1..255>
This option can be used to specify after how many errors the compiler run is to be aborted
(notes and warnings are counted separately).
50: The compiler aborts any compilation in which more than 49 errors occur.
<integer 1..255>: specifies after how many errors the compiler run is to be aborted.

MODIFY-DIAGNOSTIC-PROPERTIES Compiler statements

96 U21283-J-Z125-8-76

ANSI-VIOLATIONS = *UNCHANGED / *WARNING / *ERROR
This option can be meaningfully used only in the strict ANSIC/C++ modes.

*WARNING is the default setting, which means that warnings are issued on detecting the
use of language constructs which deviate from the ANSI/ISO C or C++ standards, but which
are not a serious violation of the language rules defined therein (e.g. implementation-
specific language extensions; see also section “Extensions to ANSI/ISO C” on page 219
and section “Extensions to ANSI-/ISO-C++” on page 260).

If *ERROR is specified here, errors are reported in such cases.
Serious violations automatically result in errors.

SHOW-COLUMN = *UNCHANGED / *YES / *NO
This option determines whether the diagnostic messages of the compiler are generated in
short or long form.

*YES: The original source program line is shown with the error location marked (with ^) in
addition to the diagnostic message itself.

*NO: The marked source program line is not output.

SHOW-INCLUDES = *UNCHANGED / *YES / *NO
If *YES is specified, the names of header files used by the preprocessor are output.

VERBOSE = *UNCHANGED / *NO / list-poss: *VERSION / *MESSAGES
*VERSION: Details on each active compiler component (component code, version,
copyright) are output. In link processes, the version of the CRTE used and the names of the
CRTE libraries are also output.

*MESSAGES: This value is currently meaningful only in the ANSI C++ modes. It causes
additional information on automatic template instantiation by the prelinker to be written to
SYSOUT.

GENERATE-ETR-FILE = *UNCHANGED / *NO / *ALL-INSTANTIATIONS /
*ASSIGNED-INSTANTIATIONS
This option can be used to create an ETR file (ETR=Explicit Template Request) which
contains the instantiation statements for the templates used (see section “Generating
explicit template instantiation statements (ETR files)” on page 252). The file name is
derived from the name of the object file and has the suffix .etr.

The default for this option is *NO. This does not create an ETR file. If *ALL-
INSTANTIATIONS is specified, all used instances are recorded. If *ASSIGNED-
INSTANTIATIONS is specified only those instances assigned to this file by the prelinker,
and are thus contained in the ii file.

Compiler statements MODIFY-DIAGNOSTIC-PROPERTIES

U21283-J-Z125-8-76 97

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

OUTPUT = *UNCHANGED / list-poss(10): *SYSOUT / *SYSLST / *STD-FILE /
*SOURCE-LOCATION / <filename 1..54> / <posix-pathname> /
*LIBRARY-ELEMENT(...)
The OUTPUT option can be used to request the concurrent output of the message listing
at different output destinations.

 In addition to the output destinations specified in this option information messages
of the compiler (messages without message weight) are also output to SYSOUT. All
other messages are only output to the specified output destinations.

OUTPUT = *SYSOUT
Compilation messages are written to the terminal (system file SYSOUT) by default.

OUTPUT = *SYSLST
The message listing is written to the temporary system file SYSLST and is sent from there
to the printer at the end of the task (at LOGOFF).

OUTPUT = *STD-FILE
The message listing is written to a cataloged BS2000 file. The name of this file is derived
from the name of the source program as follows:

If the source program is located in a PLAM library, the library and element name of the
source are combined with a hyphen (lib-elem) and used in the default file name. The rules
by which the compiler constructs default names are described in detail in the section
“Default names for output containers” on page 48.

OUTPUT = *SOURCE-LOCATION
The output destination and name of the message listing are derived from the location and
name of the source program as follows:

The rules by which the compiler constructs default names are described in detail in the
section “Default names for output containers” on page 48.

OUTPUT = *TO-LISTING

The diagnostic output is appended to the end of the listing file as an own sublisting. The
message list is sorted according to the message weight but information messages
(messages without message weight) are not included in the message list. The name of the
output file is defined by the value of the option OUTPUT in MODIFY-LISTING-
PROPERTIES. The restrictions given there for ANSI C++ must be taken into account.

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDDIAG.DIAG file.DIAG lib-elem.DIAG file.DIAG

Source *SYSDTA BS2000 file PLAM library POSIX file

Output
destination

BS2000 file BS2000 file Library of source Directory of source

Default name CSTDDIAG.DIAG file.DIAG elem.DIAG (type D) file.diag

i

MODIFY-DIAGNOSTIC-PROPERTIES Compiler statements

98 U21283-J-Z125-8-76

OUTPUT = <filename 1..54>
The message listing is written to a cataloged BS2000 file with the specified name. This
specification is not meaningful when compiling multiple source programs, since the file is
overwritten in each case.

OUTPUT = <posix-pathname>
The message listing is written to the POSIX file system.

Both a file name and a directory are permitted as <posix-pathname>. See page 34 for a de-
scription of the term <posix-pathname>.

When a file name is specified, the message listing is stored under this name.

When a directory name dir is specified, the message listing for each compiled source pro-
gram is written under the default name sourcefile.diag to the directory dir (see also section
“Default names for output containers” on page 48).

The directories specified with <posix-pathname> must already exist. Note that the
specification of a file name is not meaningful when compiling multiple source programs,
since the file is overwritten in each case.

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name
(ELEMENT=) under which the message listing is to be stored. The elements are saved as
elements of type D.

LIBRARY = *STD-LIBRARY
The message listing is stored in the library SYS.PROG.LIB by default.

LIBRARY = *SOURCE-LIBRARY
The message listing is written to the PLAM library which contains the source program.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a
cataloged BS2000 file, a POSIX file or via SYSDTA.

LIBRARY = <filename 1..54>
The message listing is stored in a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
A link name can also be specified instead of the cataloged library name. This link
name must already have been assigned to the PLAM library (with the ADD-FILE-
LINK command) before the compiler is called.

ELEMENT = *STD-ELEMENT(...)
By default, the element name of the message listing is derived from the name of the
source program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDDIAG.DIAG file.DIAG elem.DIAG file.DIAG

Compiler statements MODIFY-DIAGNOSTIC-PROPERTIES

U21283-J-Z125-8-76 99

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

The rules by which the compiler constructs default names are described in detail in the
section “Default names for output containers” on page 48.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is
used by the compiler.

VERSION = <composed-name 1..24 with-under>
The message listing is stored in the element with the specified version ID.

ELEMENT = <composed-name 1..64 with-under>(...)
The message listing is written to a library element (type D) with the specified name.
Note that the specification of an element name is not meaningful when compiling
multiple source programs, since the element is overwritten in each case.

VERSION = *UPPER-LIMIT / <composed-name 1..24 with-under>
The version can be specified as described above for
ELEMENT=*STD-ELEMENT(...).

MODIFY-INCLUDE-LIBRARIES Compiler statements

100 U21283-J-Z125-8-76

MODIFY-INCLUDE-LIBRARIES

Aliases: MODIFY-INCLUDE-SEARCH
SET-INCLUDE-LIBRARIES
SET-INCLUDE-SEARCH

This statement specifies which include (or header) libraries and file directories are to be
searched by the compiler. It also defines the order in which these libraries and directories
are searched.

USER-INCLUDE-LIBRARY =
This option can be used to assign PLAM libraries or POSIX directories which contain
user-defined header files (requested with #include "..."). Depending on the setting of the
CURRENT-LIBRARY (see page 102) option, the library or directory containing the source
or header file listed in the include directive #include "..." is searched first, i.e., before the
libraries and directories specified with USER-INCLUDE-LIBRARY.

If the USER-INCLUDE-LIBRARY option is not specified, the following default is used:

USER-INCLUDE-LIBRARY = (*SOURCE-LIBRARY, *STANDARD-LIBRARY)

If header files are enclosed in quotes in the #include directive (#include "name"), the
compiler will search for these elements in the library or directory of the source program first,
and then in the CRTE libraries containing the standard header files. The CRTE library
$.SYSLIB.CRTE is assigned for the search in all C language modes and in the ANSI C++
modes; in Cfront C++ mode, the CRTE libraries $.SYSLIB.CRTE.CPP and
$.SYSLIB.CRTE are also searched.

MODIFY-INCLUDE-LIBRARIES

USER-INCLUDE-LIBRARY = *UNCHANGED / list-poss: *SOURCE-LIBRARY / *STANDARD-LIBRARY /
 <filename 1..54> / <posix-pathname> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <filename 1..8>

,STD-INCLUDE-LIBRARY = *UNCHANGED / list-poss: *USER-INCLUDE-LIBRARY /
 *STANDARD-LIBRARY / *SOURCE-LIBRARY / <filename 1..54> /
 <posix-pathname> / *LINK(...)

*LINK(...)
 ⏐ LINK-NAME = <filename 1..8>

,CURRENT-LIBRARY = *UNCHANGED / *YES / *NO

Compiler statements MODIFY-INCLUDE-LIBRARIES

U21283-J-Z125-8-76 101

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

If the option is specified, the above default is deactivated, and the compiler searches only
in the libraries/directories explicitly specified. In other words, if the source program library
or directory and the CRTE libraries are to be searched for header files, the *SOURCE-
LIBRARY or *STANDARD-LIBRARY options must be explicitly specified.
The libraries/directories are searched in the order in which they are specified.

USER-INCLUDE-LIBRARY = *UNCHANGED
The values specified in the last MODIFY-INCLUDE-LIBRARY statement apply. If no values
have been changed since starting the compiler, the default settings of the compiler
(*SOURCE-LIBRARY, *STANDARD-LIBRARY) apply.

USER-INCLUDE-LIBRARY = *SOURCE-LIBRARY
The library or directory containing the source program is searched for the required header
file. The *SOURCE-LIBRARY specification has no effect if the source program is in a
cataloged BS2000 file or, in general, when source programs are entered via SYSDTA (see
also page 76).

USER-INCLUDE-LIBRARY = *STANDARD-LIBRARY
The CRTE library $.SYSLIB.CRTE is assigned for the search in all C language modes and
in the ANSI C++ modes; in the Cfront C++ mode, the CRTE library $.SYSLIB.CRTE.CPP
is searched first, followed by the library $.SYSLIB.CRTE.

USER-INCLUDE-LIBRARY = <filename 1..54>
<filename> identifies the name of the PLAM library in which the required user-defined
header files are to be searched.

USER-INCLUDE-LIBRARY = <posix-pathname>
<posix-pathname> designates the name of the POSIX directory in which the required
user-defined header files are to be searched. See page 34 for a description of the term
<posix-pathname>.

USER-INCLUDE-LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
A link name can also be specified instead of a cataloged PLAM library name.
<filename> designates the link name of the assigned header library. This link name
must already have been assigned to the PLAM library (with the ADD-FILE-LINK
command) before the compiler is called.

STD-INCLUDE-LIBRARY =
This option can be used to specify the PLAM libraries and POSIX directories which contain
the required standard headers (requested with #include <...>).

STD-INCLUDE-LIBRARY = *UNCHANGED
The values specified in the last MODIFY-INCLUDE-LIBRARY statement apply. If no values
have been changed since starting the compiler, the default settings of the compiler (*USER-
INCLUDE-LIBRARY, *STANDARD-LIBRARY) apply.

MODIFY-INCLUDE-LIBRARIES Compiler statements

102 U21283-J-Z125-8-76

STD-INCLUDE-LIBRARY = *USER-INCLUDE-LIBRARY
The search order for standard header files is derived from specifications in the
USER-INCLUDE-LIBRARY option. Only the libraries/directories which are explicitly
specified in that option are taken into account, not the entries for *SOURCE-LIBRARY
and *STANDARD-LIBRARY.

STD-INCLUDE-LIBRARY = *STANDARD-LIBRARY
The CRTE library $.SYSLIB.CRTE is assigned for the search in all C language modes and
in the ANSI C++ modes; in the Cfront C++ mode, the CRTE library $.SYSLIB.CRTE.CPP
is searched first, followed by the library $.SYSLIB.CRTE.
See also the notes on standard header files for POSIX library functions (page 103).

STD-INCLUDE-LIBRARY = <filename 1..54>
<filename> designates the name of the PLAM library that is to be searched for the required
standard header files.

STD-INCLUDE-LIBRARY = <posix-pathname>
<posix-pathname> designates the name of the POSIX directory in which the required
header files are to be searched. See page 34 for a description of the term <posix-
pathname>.
This specification is not meaningful for standard headers of the CRTE, since they are
obtained from the CRTE libraries.

STD-INCLUDE-LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
A link name can also be specified instead of the cataloged PALM library name.
<filename> designates the link name of the assigned header library. This link name
must already have been assigned to the PLAM library (with the ADD-FILE-LINK
command) before the compiler is called.

CURRENT-LIBRARY = *UNCHANGED / *YES / *NO
This option determines the search for header files requested with the #include "..."
directive.

*YES: By default, when searching for headers, the library or directory of the source or
header containing the #include directive is searched first, followed by the direc-
tories/libraries specified with the USER-INCLUDE-LIBRARY option. This corresponds to
the behavior of the compiler in POSIX.
If the source program is contained in a cataloged BS2000 file, header files are searched for
in the cataloged BS2000 files.

*NO: If *NO is set, only the directories/libraries specified in the USER-INCLUDE-LIBRARY
option are searched. This corresponds to the behavior of the earlier C and C++ V2.2
compilers.

Compiler statements MODIFY-INCLUDE-LIBRARIES

U21283-J-Z125-8-76 103

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

Standard header files for POSIX library functions

The standard header files required for the use of the POSIX library functions are not
contained in the library $.SYSLNK.CRTE. They are located in the library
$.SYSLIB.POSIX-HEADER, which is supplied with the product BS2000/OSD BC. This
library must always be specified in addition to the library $.SYSLNK.CRTE if the program
uses POSIX functions. Furthermore, the _OSD_POSIX directive must be set before the
occurrence of the first #include directive in the program. This is guaranteed, for example,
if the DEFINE option of the MODIFY-SOURCE-PROPERTIES statement is used for the
definition at compilation.

Examples of the MODIFY-INCLUDE-LIBRARY statement

Example 1

The source program is located in a PLAM library named PLAM.SOURCE, and extended
ANSI C is set as the language mode.

The source program contains the directive

#include "incl.h"

The user makes the following entries:

//MODIFY-INCLUDE-LIBRARIES USER-INCL-LIB=(*STANDARD-LIBRARY,LIB1,-
//*LINK(LIB2),*SOURCE-LIBRARY,’/home/user-incl’)

Since the CURRENT-LIBRARY option is not specified, CURRENT-LIBRARY=*YES
applies.

Search procedure:

The following libraries/directories are searched in sequence for the "incl.h" header:

PLAM.SOURCE (Due to the option CURRENT-LIBRARY=*YES, the library of the
source program containing the #include directive)

$.SYSLIB.CRTE (Standard header library)
LIB1 (Library with the name LIB1)
LIB2 (Library with the link name LIB2)
PLAM.SOURCE (Source program library)
/home/user-incl (POSIX directory with the name /home/user-incl)

MODIFY-INCLUDE-LIBRARIES Compiler statements

104 U21283-J-Z125-8-76

Example 2

The source program is located in a PLAM library named PLAM.SRC, and Cfront C++ is set
as the language mode.

The user makes the following entries:

//MODIFY-INCLUDE-LIBRARIES USER-INCLUDE-LIBRARY = ($XYZ.LIB,-
//*SOURCE-LIBRARY, LIB1),STD-INCLUDE-LIBRARY = (*USER-INCLUDE-LIBRARY,-
//*STANDARD-LIBRARY),CURRENT-LIBRARY = *NO

In this case, the search for header files will proceed as follows:

Example 3

The source program is located in the POSIX directory /home/xy/src, and extended
ANSI C is set as the language mode.

The user makes the following entries:

//MODIFY-INCLUDE-LIBRARIES -
//USER-INCLUDE-LIBRARY=(*SOURCE-LIBRARY, ’/home/xy/incl1’, *STANDARD-LIBRARY),-
//STD-INCLUDE-LIBRARY=(*STANDARD-LIBRARY, $.SYSLIB.POSIX-HEADER,-
//*USER-INCLUDE-LIBRARY,’/home/xy/incl2),CURRENT-LIBRARY=*NO

In this case, the search for header files will proceed as follows:

#include "..." #include <...>

$XYZ.LIB
PLAM.SRC
LIB1

$XYZ.LIB
LIB1
$.SYSLIB.CRTE.CPP
$.SYSLIB.CRTE

#include "..." #include <...>

/home/xy/src
/home/xy/incl1
$.SYSLIB.CRTE

$.SYSLIB.CRTE
$.SYSLIB.POSIX-HEADER
/home/xy/incl1
/home/xy/incl2

Compiler statements MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 105

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MODIFY-LISTING-PROPERTIES

Alias: SET-LISTING-PROPERTIES

This statement can be used to select which compiler listings are to be generated by the
compiler. It can also be used to define the layout of the listings and their output destinations.
The structure of the compiler listing is explained in the section “Description of listings” on
page 289ff with the help of examples.

MODIFY-LISTING-PROPERTIES

OPTIONS = *UNCHANGED / *YES / *NO

,SOURCE = *UNCHANGED / *NO / [*YES](...)

*YES(...)

⏐ MINIMAL-MSG-WEIGHT = *NOTE / *WARNING / *ERROR / *FATAL

,PREPROCESSING-RESULT = *UNCHANGED / *NO / [*YES](...)

*YES(...)
 ⏐ COMMENTS = *YES / *NO

,DATA-ALLOCATION-MAP = *UNCHANGED / *NO / [*YES](...)

*YES(...)

⏐ STRUCTURE-LEVEL = *UNCHANGED / *NONE / *MAX / <integer 0..256>

,CROSS-REFERENCE = *UNCHANGED / *NO / [*YES](...)

*YES(...)
 ⏐ PREPROCESSING-INFO = *YES / *NO
⏐ ⏐ ,TYPES = *YES / *NO
⏐ ⏐ ,VARIABLES = *YES / *NO
⏐ ⏐ ,FUNCTIONS = *YES / *NO
⏐⏐ ,LABELS = *YES / *NO
⏐⏐ ,TEMPLATES = *YES / *NO
⏐ ⏐ ,ORDER = *STD / list-poss(6): *PREPROCESSING-INFO / *TYPES / *VARIABLES /
⏐ *FUNCTIONS / *LABELS / *TEMPLATES

,PROJECT-INFORMATION = *UNCHANGED / *YES / *NO

,ASSEMBLER-CODE = *UNCHANGED / *YES / *NO

,SUMMARY = *UNCHANGED / *YES / *NO

MODIFY-LISTING-PROPERTIES Compiler statements

106 U21283-J-Z125-8-76

OPTIONS = *UNCHANGED / *YES / *NO
*YES: The compiler creates a comprehensive listing of all predefined and user-specified
compiler options.

SOURCE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

,LAYOUT = *UNCHANGED / *FOR-NORMAL-PRINT(...) / *FOR-ROTATION-PRINT(...)

*FOR-NORMAL-PRINT(...)
 ⏐ LINE-SIZE = *UNCHANGED / *STD / <integer 120..255>
⏐ ⏐ ,LINES-PER-PAGE = *UNCHANGED / *STD / <integer 11..255>

*FOR-ROTATION-PRINT(...)
 ⏐ LINE-SIZE = *UNCHANGED / *STD / <integer 120..255>
⏐ ⏐ ,LINES-PER-PAGE = *UNCHANGED / *STD / <integer 11..255>

,INCLUDE-INFORMATION = *UNCHANGED / *NONE / *ALL / *USER-INCLUDES-ONLY

,LISTING-PRAGMAS = *UNCHANGED / *IGNORED / *INTERPRETED / *SELECT(...)

*SELECT(...)
 ⏐ PAGE = *YES / *NO
⏐ ⏐ ,TITLE = *YES / *NO
⏐ ⏐ ,SPACE = *YES / *NO
⏐ ⏐ ,LIST = *YES / *NO

,INITIAL-TITLE-TEXT = *UNCHANGED / *NONE / <c-string 1..256 with-low>

,OUTPUT = *UNCHANGED / *SYSLST / *SYSOUT / *STD-FILE / *SOURCE-LOCATION /
 <filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

⏐ LIBRARY = *STD-LIBRARY / *SOURCE-LIBRARY / <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = *STD-ELEMENT(...) / <composed-name 1..64 with-under>(...)
⏐ ⏐ *STD-ELEMENT(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / <composed-name 1..24 with-under>
⏐⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / <composed-name 1..24 with-under>

Compiler statements MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 107

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

SOURCE = *NO
No source/error listing is generated.

SOURCE = *YES(...)
A source/error listing is generated (not for PREPROCESS).

MINIMAL-MSG-WEIGHT = *NOTE / *WARNING / *ERROR / *FATAL
This operand can be used to specify the minimum message weight for which error
messages are to be included in the source/error listing.

Warning:
This suboption is used to limit the number of messages output as compared to the
similar MODIFY-DIAGNOSTIC-PROPERTIES suboption, e.g. from WARNING to
ERROR.
If MINIMAL-MSG-WEIGHT = *WARNING (default setting) was specified for MODIFY-
DIAGNOSTIC-PROPERTIES, you will not be able to output notes with MODIFY-
LISTING-PROPERTIES.

Examples

1. To output error messages in the source listing with a message weight of NOTE:

MODIFY-DIAGNOSTIC-PROPERTIES MINIMAL-MSG-WEIGHT=*NOTE
MODIFY-LISTING-PROPERTIES SOURCE=*YES(MINIMAL-MSG-WEIGHT=*NOTE)

2. Write all error messages with a minimum message weight of NOTE to the system
file SYSOUT, and error messages with a minimum message weight of WARNING
to the source listing:

MODIFY-DIAGNOSTIC-PROPERTIES MINIMAL-MSG-WEIGHT=*NOTE
MODIFY-LISTING-PROPERTIES SOURCE=*YES(MINIMAL-MSG-WEIGHT=*WARNING)
[Default]

 When the value given in MAX-ERROR-NUMBER is reached, no further source
program information will be output in the source/error listing. In this case the listing
can no longer be used as a reliable guide to current error status.

PREPROCESSING-RESULT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

PREPROCESSING-RESULT = *NO
The compiler does not generate a preprocessor listing.

PREPROCESSING-RESULT = *YES(...)
The compiler generates a preprocessor listing.

i

MODIFY-LISTING-PROPERTIES Compiler statements

108 U21283-J-Z125-8-76

COMMENTS = *YES / *NO
Comments from the source file are included in the preprocessor listing (can be
suppressed with *NO).

DATA-ALLOCATION-MAP = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

DATA-ALLOCATION-MAP = *NO
The compiler does not generate a map listing.

DATA-ALLOCATION-MAP = *YES(...)
The compiler generates a map listing (only for COMPILE).

STRUCTURE-LEVEL = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

STRUCTURE-LEVEL = *NONE
Structure elements are not included in the map listing.

STRUCTURE-LEVEL = *MAX
Only the structure elements up to a maximum nesting level (256) are included in the
map listing.

STRUCTURE-LEVEL = <integer 0..256>
Only the structure elements up to the nesting level specified by <integer> are included
in the map listing. If a nesting level of 0 is specified, no structure elements are output
(equivalent to STRUCTURE-LEVEL=*NONE).

Structure elements are represented with indentation and bracketing {}. Elements with a
nesting level of 16 or higher are indented no further.

CROSS-REFERENCE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

CROSS-REFERENCE = *NO
The compiler does not create a cross-reference listing.

CROSS-REFERENCE = *YES(...)
The compiler creates a cross-reference listing (not for PREPROCESS). This listing always
contains a FILETABLE section with the names of all files, libraries, and elements that are
used as sources by the compiler.
The cross-reference listing is created for each compilation unit, i.e. for the local module. If
a global (multi-module) cross-reference listing is required, the MODIFY-CIF-PROPERTIES
statement can be used to create CIF information for subsequent processing with the global
listing generator.

Compiler statements MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 109

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

PREPROCESSING-INFO = *YES / *NO
The cross-reference listing may optionally include a list of names processed by the
preprocessor.

TYPES = *YES / *NO
The cross-reference listing may optionally include a list of user-defined types (typedefs,
structure, union, class and enumeration types).

VARIABLES = *YES / *NO
The cross-reference listing contains a list of variables (can be suppressed with *NO).

FUNCTIONS = *YES / *NO
The cross-reference listing contains a list of functions (can be suppressed with *NO).

LABELS = *YES / *NO
The cross-reference listing contains a list of labels (can be suppressed with *NO).

TEMPLATES = *YES / *NO
The cross-reference listing optionally contains a list of templates (only for ANSI C++
compilations).

ORDER = *STD / list-poss(6): *PREPROCESSING-INFO / *TYPES /
*VARIABLES / *FUNCTIONS / *LABELS / *TEMPLATES
This option specifies the order in which the individual parts of the cross-reference
listing are shown.
*STD: The default is in the order shown after list-poss above.

PROJECT-INFORMATION = *UNCHANGED / *YES / *NO
*YES: The compiler creates a project listing (only for COMPILE) showing the names origi-
nally used in the source program and corresponding names internally generated by the
compiler for the linkage editor. This is important especially in the case of C++ compilations
because the generated names of functions also contain the types of their parameters in
code form.
The project listing is created for each compilation unit, i.e. for the local module. If a global
(multi-module) project listing is required, the MODIFY-CIF-PROPERTIES statement can be
used to create CIF information for subsequent processing with the global listing generator.

ASSEMBLER-CODE = *UNCHANGED / *YES / *NO
*YES: The compiler generates an object code listing (only for COMPILE).

SUMMARY = *UNCHANGED / *YES / *NO
*YES: The compiler creates a listing containing statistical data on the compiler run.

MODIFY-LISTING-PROPERTIES Compiler statements

110 U21283-J-Z125-8-76

LAYOUT =
This option can be used to define the page length (number of lines per page) and the page
width (number of characters per line) for the compiler listings.

If a line width of 120 characters is selected, all the listings will have narrower headers and
footers. Text lines are wrapped only in the table listings (option, cross-reference and map
listings). Overlong text lines in the source, preprocessor and object code listings may be
truncated when the listings are printed.

When a BS2000 output file is specified, the first column of every line is reserved to control
the line feed.
When the output is sent to a POSIX file, the appropriate POSIX control characters for line
and page feeds are generated. The result is that the line length in the POSIX output file is
up to 3 characters larger than the selected line width specification.

LAYOUT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LAYOUT = *FOR-NORMAL-PRINT(...)

LINE-SIZE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LINE-SIZE = *STD
132 characters per line are output.

LINE-SIZE = <integer 120..255>
120 to 255 characters per line are output.

LINES-PER-PAGE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LINES-PER-PAGE = *STD
64 lines per page are printed.

LINES-PER-PAGE = <integer 11..255>
11 to 255 lines are printed per page.
The lower limit is fixed at 11 lines so that at least the listing header and footer and one
line of text can be printed.

LAYOUT = *FOR-ROTATION-PRINT(...)
In order to print such listings, the ROTATION parameter must be specified in the
PRINT-FILE command.

LINE-SIZE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LINE-SIZE = *STD
120 characters per line are output.

Compiler statements MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 111

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

LINE-SIZE = <integer 120..255>
120 to 255 characters per line are output.

LINES-PER-PAGE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LINES-PER-PAGE = *STD
84 lines per page are printed.

LINES-PER-PAGE = <integer 11..255>
11 to 255 lines are printed per page.
The lower limit is fixed at 11 lines so that at least the listing header and footer and one
line of text can be printed.

INCLUDE-INFORMATION = *UNCHANGED / *NONE* / ALL / *USER-INCLUDES-ONLY
This option is used to specify which header files (if any) are to be shown in the source,
preprocessor and cross-reference listings. By default, only the user-defined header files are
shown, not the standard headers.

LISTING-PRAGMAS =
This operand controls which existing #pragma directives (if any) in the source text are to be
interpreted when creating source and preprocessor listings.
A description of #pragma directives can be found in the section “Pragmas to control the
layout of listings” on page 228.

LISTING-PRAGMAS = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LISTING-PRAGMAS = *INTERPRETED / *IGNORED
All #pragma directives are interpreted (*INTERPRETED) or ignored (*IGNORED).

LISTING-PRAGMAS = *SELECT(...)
One or more of the following #pragma directives to control listings are interpreted (*YES)
or ignored (*NO).

PAGE = *YES / *NO
Directive #pragma PAGE [text]:
for a page feed and optional line in the listing header

TITLE = *YES / *NO
Directive #pragma TITLE text:
for a line in the listing header

SPACE = *YES / *NO
Directive #pragma SPACE [n]:
to insert blank lines

MODIFY-LISTING-PROPERTIES Compiler statements

112 U21283-J-Z125-8-76

LIST = *YES / *NO
Directive #pragma LIST[ING] ON or #pragma LIST[ING] OFF:
to suppress the output of source text lines

INITIAL-TITLE-TEXT = *UNCHANGED / *NONE / <c-string 1..256>
This operand can be used to specify if an additional line is to appear in the header of the
listing and the text that is to be entered in it. In contrast to pragmas, which only apply to
source and preprocessor listings, the INITIAL-TITLE-TEXT specification applies to all
compiler listings.
In the case of source and preprocessor listings, TITLE and PAGE pragmas (if any) override
the INITIAL-TITLE-TEXT specification.

OUTPUT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

OUTPUT = *SYSLST
The listings are written to the temporary system file SYSLST by default and are sent from
there to the printer at the end of the task (at LOGOFF). Output to SYSLST is not supported
in the ANSI C++ modes and is rejected with a corresponding error message.

OUTPUT = *SYSOUT
The listings are written to the system file SYSOUT, which is assigned to the terminal in
interactive mode. Output to SYSLST is not supported in the ANSI C++ modes and is
rejected with a corresponding error message.

OUTPUT = *STD-FILE
The listings are written to a cataloged BS2000 file. The name of this file is derived from the
name of the source program as follows:

If the source program is located in a PLAM library, the library and element name of the
source are combined with a hyphen (lib-elem) and used in the default file name. The rules
by which the compiler constructs default names are described in detail in the section
“Default names for output containers” on page 48.

OUTPUT = *SOURCE-LOCATION
The output destination and name are derived from the location and name of the source
program as follows:

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDLST.LST file.LST lib-elem.LST file.LST

Source *SYSDTA BS2000 file PLAM library POSIX file

Output
destination

BS2000 file BS2000 file Library of source Directory of
source

Default name CSTDLST.LST file.LST elem.LST (type P) file.lst

Compiler statements MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 113

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

The rules by which the compiler constructs default names are described in detail in the
section “Default names for output containers” on page 48.

OUTPUT = <filename 1..54>
The listings are written to a cataloged BS2000 file with the specified name. Note that this
specification is not meaningful when compiling multiple source programs, since the file is
overwritten in each case.

OUTPUT = <posix-pathname>
The listings are written to the POSIX file system.

Both a file name and a directory are permitted as <posix-pathname>. See page 34 for a de-
scription of the term <posix-pathname>.

When a file name is specified, the listings are stored under this name.

When a directory name dir is specified, the listings for each compiled source program are
written under the default name sourcefile.lst to the directory dir (see also section “Default
names for output containers” on page 48).

The directories specified with <posix-pathname> must already exist.
The specification of a file name is not meaningful when compiling multiple source programs,
since the file is overwritten in each case.

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name (ELEMENT=)
under which the expanded program is to be stored. The elements are stored as elements
of type P.

LIBRARY = *STD-LIBRARY
The listings are written to the library SYS.PROG.LIB by default.

LIBRARY = *SOURCE-LIBRARY
The listings are written to the PLAM library which contains the source program.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a
cataloged BS2000 file, a POSIX file or via SYSDTA.

LIBRARY = <filename 1..54>
The listings are written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
A link name can also be specified instead of the library name. <filename>
designates the link name of the assigned library. This link name must already
have been assigned to the PLAM library (with the ADD-FILE-LINK command)
before the compiler is called.

MODIFY-LISTING-PROPERTIES Compiler statements

114 U21283-J-Z125-8-76

ELEMENT = *STD-ELEMENT(...)
By default, the element name of the listing is derived from the name of the source
program as follows:

The rules by which the compiler constructs default names are described in detail in the
section “Default names for output containers” on page 48.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is
used by the compiler.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the
highest existing version number by 1, assuming that the highest existing version ID
ends with a digit that can be incremented. If the version ID cannot be incremented,
the compiler run is aborted with an error message.
See the COMPILE statement (page 75) for an example.

Warning: You may not specify *INCREMENT in the ANSI-C++ mode.

VERSION = <composed-name 1..24 with-under>
The element is assigned the specified version.

ELEMENT = <composed-name 1..64 with-under>(...)
The listings are written to a library element (type P) with the specified name. Note that
the specification of an element name is not meaningful when compiling multiple source
programs, since the element is overwritten in each case.

VERSION = *UPPER-LIMIT / *INCREMENT /
<composed-name 1..24 with-under>
The version can be specified as described above for
ELEMENT=*STD-ELEMENT(...).

Warning: You may not specify *INCREMENT in the ANSI-C++ mode.

Source *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDLST.LST file.LST elem.LST file.LST

Compiler statements MODIFY-MODULE-PROPERTIES

U21283-J-Z125-8-76 115

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MODIFY-MODULE-PROPERTIES

Alias: SET-MODULE-PROPERTIES

This statement is used to define the properties of the module to be generated.

SHAREABLE-CODE = *UNCHANGED / *NO / [*YES] (...)
This option controls whether or not the generated code is shareable.

SHAREABLE-CODE = *UNCHANGED
The settings of the last MODIFY-MODULE-PROPERTIES statement are used.

SHAREABLE-CODE = *NO
The compiler does not generate shareable code.
*NO is the default setting.

SHAREABLE-CODE = [*YES] (PUBLIC-SLICING = ...)
The compiler creates shareable code in the form of an LLM with a shareable code CSECT
and a non-shareable data CSECT.

PUBLIC-SLICING =
PUBLIC SLICING defines whether or not the object generated immediately after the
attribute PUBLIC is distributed in slices.

MODIFY-MODULE-PROPERTIES

SHAREABLE-CODE = *UNCHANGED / *NO / [*YES] (...)

*YES(...)
⏐ PUBLIC-SLICING=*UNCHANGED / *YES / *NO

,LINKAGE = *UNCHANGED / *ILCS-OUT / *ILCS-INLINE

,WORKSPACE = *UNCHANGED / *TO-STATIC-AREA / *TO-STACK

,SUBROUTINE-CALL = *UNCHANGED / *BASR / *LAB

,ETPND-GENERATION = *UNCHANGED / *NO / [*YES] (...)

*YES(...)

⏐ DATE-FORMAT = *UNCHANGED / *CALENDAR-DATE-ONLY / *WITH-JULIAN-DATE

,LOWER-CASE-NAMES = *UNCHANGED / *YES / *NO

,SPECIAL-CHARACTERS = *UNCHANGED / *CONVERT-TO-DOLLAR / *KEEP

,STRING-LITERALS = *UNCHANGED / *WRITEABLE / *READ-ONLY

,CONSTANTS = *UNCHANGED / *WRITEABLE / *READ-ONLY

,C-NAMES = *UNCHANGED/ *STD / *UNLIMITED / *SHORT

,FP-ARITHMETICS = *UNCHANGED / *390-FORMAT / *IEEE-FORMAT

MODIFY-MODULE-PROPERTIES Compiler statements

116 U21283-J-Z125-8-76

PUBLIC-SLICING = *UNCHANGED
The settings of the last MODIFY-MODULE-PROPERTIES statement are used.

PUBLIC-SLICING = *YES
The object will be distributed in slices immediately after the attribute PUBLIC.
*YES is the default setting.

PUBLIC-SLICING = *NO
The object is placed in a slice.

 POSIX objects are always generated with PUBLIC-SLICING = *NO.

With very large programs it is a good idea to set PUBLIC-SLICING=*NO. This will
avoid the use of the long run times needed to read objects with slices.

LINKAGE = *UNCHANGED / *ILCS-OUT / *ILCS-INLINE
Function calls in the generated module are handled via ILCS by default. This option can be
used to specify whether the ILCS entry code for function calls is to be directly inserted at
the calling point ("inline”) or whether it is to be accessed “out-of-line” in the runtime system.

*ILCS-OUT: The ILCS entry code for function calls is accessed “out-of-line” in the runtime
system. This reduces the volume of code in the module.

*ILCS-INLINE: By default, the ILCS entry code is generated inline. This causes the
generated object to execute faster.

WORKSPACE =
This option affects some optimization steps of the compiler.

WORKSPACE =*UNCHANGED
The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

WORKSPACE = *TO-STATIC-AREA
The following optimizations are performed by the compiler:

– An auxiliary storage area is created in the static data area and supplied with constant
values.

– In the case of innermost functions (i.e. those without further calls), data that is only valid
within the function (auto variables) is not placed on the stack, but is stored together with
the static data in the data module.

These optimization measures eliminate the need to maintain a separate stack for innermost
functions and thus reduce the function entry code, and consequently the runtime of the
generated object.

WORKSPACE = *TO-STACK
The above optimizations are suppressed.

i

Compiler statements MODIFY-MODULE-PROPERTIES

U21283-J-Z125-8-76 117

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

All data (doublewords for conversions as well as auto variables and tempos of innermost
functions) is mapped on the stack.
If a function includes conversions, some of the conversions may require a doubleword to
be placed on the stack and supplied dynamically (requiring an additional instruction) before
each such conversion.

SUBROUTINE-CALL = *UNCHANGED / *BASR / *LAB
This option controls the implementation of subroutine entries via Assembler instructions.

*BASR: The BASR instruction is generated by default.

*LAB: The LAB entry generates the machine-independent Assembler instructions LA
and B. Programs with this instruction sequence are executable on all 7500 systems.

Warning: This option is not permitted in the ANSI-C++ mode.

ETPND-GENERATION =
This option serves to delete the #pragma directive used to generate an ETPND area (see
page 226) or to specify the date format of the ETPND area.

ETPND-GENERATION = *UNCHANGED
The values specified in the last MODIFY-MODULE-PROPERTIES statement apply.

ETPND-GENERATION = *NO
By default, no ETPND area is created.

ETPND-GENERATION = *YES(...)

DATE-FORMAT = *UNCHANGED / *CALENDAR-DATE-ONLY /
*WITH-JULIAN-DATE
*CALENDAR-DATE-ONLY: The date format in the ETPND area is assigned the form:
8-byte calendar date - 4-byte load address.

*WITH-JULIAN-DATE: The following date format is generated in the ETPND area:
6-byte calendar date - 3-byte Julian date - 4-byte load address.

LOWER-CASE-NAMES = *UNCHANGED / *NO / *YES
This option for converting lowercase letters to uppercase affects all external symbols in
the C language modes and in the Cfront C++ mode, but only the symbols declared with
extern "C" in the ANSI C++ modes. When external C++ symbols are coded in the
ANSI C++ modes, lowercase letters are always retained.

*NO: By default, lowercase letters are converted to uppercase when generating entry
names.
*YES: Lowercase letters are retained when generating entry names.

MODIFY-MODULE-PROPERTIES Compiler statements

118 U21283-J-Z125-8-76

SPECIAL-CHARACTERS = *UNCHANGED / *CONVERT-TO-DOLLAR / *KEEP
This option for converting the underscore affects all external symbols in the C language
modes, but only the symbols declared with extern "C" directives (not the entry names of
the C library functions) in the C++ language modes. When external C++ symbols are
coded, underscores are always retained.

*CONVERT-TO-DOLLAR: By default, underscores are converted to dollar signs when
generating entry names.
*KEEP: Underscores are retained when generating entry names.

Notes on LOWER-CASE-NAMES and SPECIAL-CHARACTERS

1. The (default) conversion of lowercase to uppercase and of underscores to dollar
signs is required whenever the generated LLM is to be linked with objects in which
the entry names have been converted accordingly. These are:

– Object modules.

– LLMs generated with the C V2.0 compiler.

– LLMs generated with the C/C++ compiler, in cases where the entry names were
converted accordingly.

– Objects created with other language translators (e.g. COBOL, ASSEMBLER).

2. The C library functions are only available in full when the options LOWER-CASE-
NAMES and SPECIAL-CHARACTERS are present in one of the following combi-
nations:

● SPECIAL-CHARACTERS=*CONVERT-TO-DOLLAR and
LOWER-CASE-NAMES=*NO

● SPECIAL-CHARACTERS=*KEEP and LOWER-CASE-NAMES=*YES

STRING-LITERALS = *UNCHANGED / *WRITEABLE / *READ-ONLY
This option determines whether string literals (e.g. "abc") are placed in the data module
(*WRITEABLE) or in the code module (*READ-ONLY).

CONSTANTS = *UNCHANGED / *WRITEABLE / *READ-ONLY
This option determines whether constants (i.e. objects declared with the const qualifier)
are stored in the data module (*WRITEABLE) or the code module (*READ-ONLY).

C-NAMES = *UNCHANGED / *STD / *UNLIMITED / *SHORT
This option determines the length of external C names and affects all external symbols in
the C language modes and only the symbols declared extern "C" in the C++ language
modes (not the entry names of C library functions).
This option also works with static functions.

Compiler statements MODIFY-MODULE-PROPERTIES

U21283-J-Z125-8-76 119

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

*STD: By default, external C names can have a maximum length of 32 characters. Longer
names are truncated by the compiler to 32 characters. When generating shareable code,
only 30 characters may be used.

*UNLIMITED: No name truncation occurs. In this case, the compiler generates entry names
in EEN format. EEN names can have a maximum length of 32000 characters. Modules
containing EEN names are stored by the compiler in LLM Format 4. More details on the
subsequent processing of LLMs in Format 4 can be found under the OUTPUT-FORMAT
option of the BIND statement (page 68).
The *UNLIMITED value is not supported in the Cfront C++ mode.

*SHORT: External C names are truncated by the compiler to 8 characters, which
corresponds to the handling of external names within object modules. This option is
required if external names exceeding 8 characters in length are used in the program and if
the module generated by the C/C++ compiler is to be linked with object modules that were
created with the earlier C/C++ compilers or with compilers for other ILCS languages (e.g.
COBOL85).

FP-ARITHMETICS = *UNCHANGED / *390-FORMAT / *IEEE-FORMAT
This option determines whether the C/C++ compiler generates floating-point numbers and
operation codes in /390 format or IEEE format. This option effects all variables and con-
stants of the float, double, and long double data types in C/C++ programs.

*390-FORMAT: The C/C++ compiler creates code for constants and operations
in the /390 format (/390 floating-point arithmetics).
*390-FORMAT is the default setting.

*IEEE-FORMAT: TThe C/C++ compiler creates code for constants and operations
in IEEE format (IEEE floating-point arithmetics).

Important!

● It is not possible to undo links with objects which have been compiled with different
floating-point arithmetics. This characteristic can lead to unexpected results when these
programs are run.

● The same C/C++ program can produce different results depending on whether the
IEEE format or the /390 format is used for floating-point data types and operations. The
reasons for this are as follows:

– IEEE floating-point numbers use a different internal notation from /390 floating-point
numbers.

– IEEE floating-point operations use different semantics from /390 floating-point
operations even on the same type of operation. This is the case for example in
rounding. IEEE format uses "Round to Nearest" as default whereas /390 format
uses "Round to Zero" as default.

MODIFY-MODULE-PROPERTIES Compiler statements

120 U21283-J-Z125-8-76

Requirements:

● If you are using IEEE floating-point arithmetics, you must not declare the C library
functions explicitly in your source program. C library functions should be declared
indirectly by including the corresponding CRTE headers (see the "C Library Functions"
manual [2]). Otherwise compilation error ‘CFE1079[ERROR]..: Typangabe erwartet /
expected a type specifier‘ can occur.

● For each and every CRTE function that works with floating-point numbers in your
program, you must use the corresponding or matching include file. If you do not do this,
the CRTE functions will not be able to process the floating-point numbers correctly. You
should ensure that you include the include file <stdio.h> for the function printf() with
#include <stdio.h>.

Important!

C++ library functions do no support the IEEE format and must therefore be replaced
with C functions where necessary.

● In the CRTE runtime environment, some C library functions use the IEEE format for
floating-point arithmetics. If you are using the IEEE floating-point arithmetics, you
should specify the MODIFY-MODULE-PROPERTIES statement as follows:

MODIFY-MODULE-PROPERTIES -

...

FP-ARITHMETICS=*IEEE-FORMAT, -

LOWER-CASE-NAMES=*YES, -

SPECIAL-CHARACTERS=*KEEP, -

...

Compiler statements MODIFY-OPTIMIZATION-PROPERTIES

U21283-J-Z125-8-76 121

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MODIFY-OPTIMIZATION-PROPERTIES

Alias: SET-OPTIMIZATION-PROPERTIES

This option can be used to activate or deactivate some or all of the optimizations performed
by the compiler.
For more details on the effects of optimization, see the section starting on page 126.

LEVEL = *UNCHANGED
The value specified in the last MODIFY-OPTIMIZATION-PROPERTIES statement applies.

LEVEL = *LOW
With this optimization level, no standard optimizations are performed, so debugging with
AID is possible.
LEVEL=*LOW is automatically set instead of the *HIGH or *VERY-HIGH specification when
the TEST-SUPPORT=*YES option has also been set.

LEVEL = *HIGH(...) / *VERY-HIGH(...)
If *HIGH or *VERY-HIGH is specified, all standard optimizations are performed (see
“Standard optimizations” on page 126). The only difference between these two levels is the
fact that every optimization strategy is internally executed only once for *HIGH, but several
times for *VERY-HIGH. Consequently, if the “highly-optimized” level *VERY-HIGH is set, the
overall compile time is much greater than the compile time for the *HIGH optimization level.

The parameters of the *HIGH or *VERY-HIGH structure can be used to individually control
the expansion of loops. Debugging with AID is not possible with this optimization level.

MODIFY-OPTIMIZATION-PROPERTIES

LEVEL = *UNCHANGED / *LOW / *HIGH(...) / *VERY-HIGH(...)

*HIGH(...) / *VERY-HIGH(...)

⏐ ,LOOP-UNROLLING = *UNCHANGED / *NO / [*YES](...)
⏐⏐ *YES(...)
⏐⏐ ⏐ FACTOR = 4 / <integer 1..100>

,INLINING = *UNCHANGED / *NO / [*YES](...)

*YES(...)
⏐ USER-FUNCTIONS = *UNCHANGED / list-poss(127): *STD / *BY-SOURCE /
⏐ <c-string 1..255 with-low>

,BUILTIN-FUNCTIONS = *UNCHANGED / *NONE / *ALL / list-poss(11): <c-string 1..125 with-low>

MODIFY-OPTIMIZATION-PROPERTIES Compiler statements

122 U21283-J-Z125-8-76

LOOP-UNROLLING = *UNCHANGED / *NO / *YES(FACTOR = 4 /
<integer 1..100>...)
This option controls the expansion of loops. Multiple expansion of the body of a loop
reduces the execution time for the iterations of the loop. Expanding the body of the loop
provides an opportunity for further optimization; however, the repetition of code also
implies an increase in the size of the generated object.

By default, the optimizer expands the body of a loop 4 times.

● Where required, a separate expansion factor can be selected with <integer>. Speci-
fying an expansion factor does not, however, ensure that the loop expansion will be
carried out in all cases. In order to ensure that the expansion is carried out correctly,
you should concentrate on optimizing the loop structure and the specified
expansion factor.

● Loop expansion can be suppressed with *NO.

For further details, see “Expansion of loops” on page 130.

INLINING =
This option controls the inline substitution of user-defined functions. As in the case of the
inline substitution of some C library functions from the standard library (see
BUILTIN-FUNCTIONS), each call to an inline function is replaced by the corresponding
function code. Consequently, no call and return code sequence is required, and better
execution time is achieved. This optimization measure is, however, associated with an
increase in the size of the generated module due to the repetition of code.

For further details, see the section on “Inline substitution of user-defined functions” on
page 129.

Standard settings of the compiler

If the INLINING option is not specified, the following default settings apply for the
C and C++ language modes, respectively:

1. C modes (MODIFY-SOURCE-PROPERTIES LANGUAGE=*C):

INLINING=*NO
No inline substitution is performed.

2. C++ modes (MODIFY-SOURCE-PROPERTIES LANGUAGE=*CPLUSPLUS):

INLINING=*YES(USER-FUNCTIONS=*BY-SOURCE)
Inline substitution is performed for all C++-specific inline functions (i.e. functions with
the inline attribute and member functions defined within classes).

INLINING = *UNCHANGED
The value specified in the last MODIFY-OPTIMIZATION-PROPERTIES statement applies.

Compiler statements MODIFY-OPTIMIZATION-PROPERTIES

U21283-J-Z125-8-76 123

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

INLINING = *NO
No user-defined functions are generated inline by the optimizer. *NO is the default setting
in the C language modes if no INLINING option has been specified.
In addition, *NO is also automatically assumed by the compiler instead of *YES(...) values
if the option TEST-SUPPORT=*YES has also been set.

INLINING = *YES(USER-FUNCTIONS = *UNCHANGED / list-poss: *STD /
*BY-SOURCE / <c-string 1..255 with-low>)

*STD:
If only *STD is specified, the optimizer selects functions for inline substitution on the basis
of its own criteria. *STD implies *BY-SOURCE, which means that even inline pragmas and
C++-specific inline functions are considered by the optimizer when searching for suitable
candidates to be inlined (see also *BY-SOURCE).
*STD is the default when INLINING=*YES is specified.

*BY-SOURCE:
If only *BY-SOURCE is specified, only the following user-defined functions are substituted
inline:

– In the C modes: all C functions specified with the following #pragma directive:
#pragma inline function-name
The inline pragma is not supported in the C++ language modes.
See also the section “inline pragma” on page 231.

– In the C++ modes: all C++ functions with the inline attribute and all C++ functions
defined within classes.

*BY-SOURCE is the default in the C++ language modes if no INLINING option is specified.

<c-string>:
<c-string> can be used to specify the name of a user-defined function to be inlined by the
optimizer. The specification of user-selected functions with <c-string> is only supported in
the C language modes, since C++ has its own language elements for the inline substitution
of functions. <c-string> implies the specification of *BY-SOURCE, which means that even
inline pragmas are considered by the optimizer (see also *BY-SOURCE in the C modes).

list-poss:
*STD, <c-string> and - for compatibility reasons - even *BY-SOURCE may also be specified
together, in which case the optimizer will first attempt the inline substitution of the
function(s) specified with *BY-SOURCE and/or <c-string> and then select other functions
for inline
substitution (provided *STD is also specified) according to its own criteria. Note that
*BY-SOURCE need not be specified here, since it is implicitly assumed whenever *STD or
<c-string> is specified at the same time.

The meaningful combinations are therefore:

MODIFY-OPTIMIZATION-PROPERTIES Compiler statements

124 U21283-J-Z125-8-76

*STD, <c-string>
<-c-string>, <c-string>, ...

Example of the INLINING option

//MODIFY-OPTIMIZATION-PROP -
//LEVEL=*HIGH,INLINING=*YES(USER-FUNCT=(*STD,’funct1’,’funct2’))

See the “Inline substitution of user-defined functions” on page 129 for further details.

BUILTIN-FUNCTIONS = *UNCHANGED / *NONE / *ALL /
list-poss: <c-string 1..125 with-low>
This option can be used to specify the C library functions for which the implementation in
the CRTE can be assumed. This permits better optimization of the program.

*NONE
No library function call is specially optimized.

*ALL
All calls for known library functions are handled separately.

<c-string>
Calls for this function are handled separately.

The compiler achieves the greatest effect through inline substitution of a function. In this
case the function code is directly inserted at the point of call. This eliminates some of the
time-consuming administrative tasks of the runtime system (e.g. saving and restoring reg-
isters, return from the function, etc.) and thus reduces the overall execution time of the pro-
gram.

The following C library functions can be expanded inline:.

Notes
– Inlined functions cannot be replaced by other functions at link time and cannot be used

as checkpoints when debugging with AID.

– Non-inlined functions are retained as a call. However, optimizations are possible which
cannot be achieved in the user functions. For example, the compiler can use the infor-
mation that the isdigit() function has no side effects.

strcpy
strcmp
strncmp
strlen
strcat
memcpy

memcmp
memset
abs
fabs
labs

Compiler statements MODIFY-OPTIMIZATION-PROPERTIES

U21283-J-Z125-8-76 125

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

– If a function is defined by the user with a name which the compiler knows, conflicts can
occur with this option. The function written by the user will generally have a different im-
plementation from the function in the CRTE. Warning CFE2067 is issued instead of the
definition in order to indicate the conflict.

– Note that the features of the CRTE implementation are used in every compilation unit.
However, the warning is only output in the compilation unit containing the private defi-
nition.

The default settings of the MODIFY-OPTIMIZATION-PROPERTIES statement and possible
modifications are repeated in summarized form in the table below.

*HIGH(...) / *VERY-HIGH(...) *LOW
Standard optimizations *YES *NO

LOOP-UNROLLING *YES
(controllable)

*NO

BUILTIN-FUNCTIONS *NONE
(controllable)

INLINING (in C) *NO
(controllable)

INLINING (in C++) *YES(USER-FUNCTIONS=*BY-SOURCE)
(controllable)

MODIFY-OPTIMIZATION-PROPERTIES Compiler statements

126 U21283-J-Z125-8-76

The optimization process

In the description that follows, the term “standard optimizations” is used to collectively refer
to all optimization measures that can only be activated or deactivated globally, i.e. which
cannot be controlled individually.

In contrast to the standard optimizations, some optimization steps such as loop expansion,
and inlining can be individually controlled. Selective control is provided in these cases
because, among other things, the benefits of such optimization (e.g. quicker execution
times) may need to be weighed against other disadvantages (e.g. an increase in the size
of the generated module or longer compilation times).
In some cases, setting the LOOP-UNROLLING and INLINING options may actually
degrade performance. It is therefore advisable to determine the best settings for each
application by running some tests.

Standard optimizations

The C++ compiler performs the following optimizations:

– evaluation of constant expressions at compile time
– optimization of subscript computation in loops
– elimination of superfluous assignments
– propagation of constant expressions
– elimination of redundant expressions
– optimization of branches to unconditional branch instructions

The term “base block” is fundamental to the concept of optimization and refers to a
maximum, unbranched command sequence. Such a command sequence has precisely
one entry point and one exit.
Base blocks are the units via which most optimization steps with the C++ compiler are
implemented.

1. Evaluation of constant expressions at compile time

By evaluating expressions for which operand values are known during compilation, the
execution of commands is relocated from the program run to the compiler run. Conse-
quently, the program executes faster.
Evaluations at compile time involve integer arithmetics and relational operations.

Example

Before optimization After optimization

 I = 1 + 2; I = 3;
 I = 2 * 4; I = 8;
 1 <= 5; <TRUE>

Compiler statements MODIFY-OPTIMIZATION-PROPERTIES

U21283-J-Z125-8-76 127

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

2. Elimination of superfluous assignments

If an assignment to a variable v is followed by a change in the value of v without the original
value ever being used, this assignment is eliminated. Assignments to variables whose
values are of no further consequence to the program run are also eliminated.

Example

Before optimization After optimization

 i = 5; i = 3;
 i = 3;

3. Propagation of constant expressions

If a variable whose value is already known at the time of compilation is used in an
expression, this variable will be replaced by the appropriate value.

Example

Before optimization After optimization

 a = 3; a = 3;
 i = a; i = 3;

This optimization also has a bearing on other optimization techniques. After the successful
propagation of a variable, the original assignment may be deleted, or a new constant
expression that has already been evaluated at compile time may appear.

Example

Before optimization After optimization

 a = 3;
 i = a + 4; i = 7;
 a = 5; a = 5;

4. Elimination of redundant expressions

If the value of an expression occurring within a base block is already known at the time of
compilation as a result of an earlier calculation, then this expression is redundant. To avoid
a repeat calculation, the expression is assigned to a new variable and replaced by this new
variable wherever it occurs.

MODIFY-OPTIMIZATION-PROPERTIES Compiler statements

128 U21283-J-Z125-8-76

Example

Before optimization After optimization

 a = b * c + 20; h = b * c;
 e = b * c - 10; a = h + 20;
 e = h - 10;

5. Optimization of subscript computation in loops

If an array element is subscripted in a loop via an iteration variable, the multiplication
required in order to compute the address of the array element is reduced to additions.
As a rule, the address of the array element is calculated as

base address + index * length of an array element

Before entering a loop, the optimizer supplies an address variable with the address of the
array element that was referenced during the first iteration. With every following iteration,
this address variable is then incremented with a fixed length of one array element.

This optimization technique is especially rewarding in the case of multidimensional arrays,
since one multiplication step can be eliminated per dimension under optimum conditions.

6. Optimization of branches to unconditional branch instructions

In branch instructions that have an unconditional branch as their destination, the branch
address of the unconditional branch is substituted for the original branch address. This also
helps eliminate superfluous code, i.e. code which specifies addresses that cannot be
accessed.

Example

Before optimization After optimization

 goto lab1; goto lab2;

lab1: ab1:
 goto lab2; goto lab2;

lab2: lab2:

Compiler statements MODIFY-OPTIMIZATION-PROPERTIES

U21283-J-Z125-8-76 129

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

Inline substitution of user-defined functions

The inline substitution of a function eliminates the need to call the function at runtime, since
the function code is integrated into the source code at the point of call. This reduces the
administrative overhead and code required for function calls and returns (e.g. saving and
restoring registers, allocating stacks, writing parameters to the transfer area, etc.) and can
thus produce substantial savings in execution time. In addition, the inlining of functions
enhances the effect of the standard optimizations due to the larger context.
Inlined static functions are deleted.

Inline substitution does, however, increase the size of the generated modules. It may
produce extremely large functions with an increasing number of variables as potential recip-
ients of registers that cannot all be supplied due to the limited number of registers available.
This fact must be weighed against the advantages of this method of optimization.

Inline substitution is particularly suitable for small functions where the overhead for the
function call and return constitutes a substantial part of the actual function code.

Functions with the following attributes can never be expanded inline:

– functions with a variable number of parameters (cf. va_... macros in <stdarg.h>)
– functions containing setjmp calls
– recursive functions

MODIFY-OPTIMIZATION-PROPERTIES Compiler statements

130 U21283-J-Z125-8-76

Expansion of loops

Loop expansion reduces the number of iterations in a loop by repeating, i.e. “expanding”
the body of the loop (statement block) one or more times. Since each iteration of a loop
requires loop control statements to test the value of the current iteration and to branch
accordingly, a reduction in the number of iterations also improves execution time.

For example, if the body of a loop is doubled (expansion factor 2), the overhead for loop
control statements is reduced by half. In general, the following rule applies: an expansion
factor of n reduces the overhead for loop control statements to 1/n.
The size of the generated module is, however, increased by the repetition of code. By
default, the optimizer uses an expansion factor of 4.

Expanding the body of a loop also creates the potential for new optimization. For example,
the extended base blocks can be made more efficient by the propagation of constant
expressions or the elimination of redundant expressions.

Example of a loop expansion with expansion factor 4

Before expansion:

i = 0;

while(i < 80) {
 a[i] = b[i+1];
 i++;
 }

After expansion:

i = 0;

while(i < 80) {
 a[i] = b[i+1];
 i++;
 if(!(i < 80)) goto end;
 a[i] = b[i+1];
 i++;
 if(!(i < 80)) goto end;
 a[i] = b[i+1];
 i++;
 if(!(i < 80)) goto end;
 a[i] = b[i+1];
 i++;
 }
end:

Optimizations in the body of the loop are also possible here.

Compiler statements MODIFY-RUNTIME-PROPERTIES

U21283-J-Z125-8-76 131

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MODIFY-RUNTIME-PROPERTIES

Alias: SET-RUNTIME-PROPERTIES

This statement can be used to influence runtime behavior when compiling programs
containing the main function.

PARAMETER-PROMPTING = *UNCHANGED / *YES / *NO
*YES: The executable program is to simulate the UNIX environment, in other words:

– the program with parameters can be called using START-EXECUTABLE-PROGRAM,
or

– a parameter line should appear after the program is started to allow the input of param-
eters for the main function or redirection of stdin, stdout or stderr (see also section
“Parameter input at program start” on page 179).

*NO: The executable program is started without the parameter line being requested.

If the program is started from the POSIX shell, the entries in the
PARAMETER-PROMPTING option will be meaningless, since
parameters are always entered from the command line in this case.

STACK-SIZE = 64 / *UNCHANGED / <integer 8..99999> / <x-string 1..8>
This option can be used to determine the amount of space to be reserved for the first
segment of the C runtime stack.
64: The default value is 64 kilobytes.
<integer>: Between 8 and 99999 kilobytes of storage space can be reserved.
<x-string>: 8 ..1869F

STATISTIC-MESSAGES = *UNCHANGED / *CPU-TIME / *NONE
When a program is terminated, the CPU time used is reported by default. This message
can be suppressed by specifying *NONE.

MODIFY-RUNTIME-PROPERTIES

PARAMETER-PROMPTING = *UNCHANGED / *YES / *NO

,STACK-SIZE = 64 / *UNCHANGED / <integer 8..99999> / <x-string 1..8>

,STATISTIC-MESSAGES = *UNCHANGED / *CPU-TIME / *NONE

,PROGRAM-INTERRUPT = *UNCHANGED / *INTEGER-OVERFLOW / *NONE

,ENVIRONMENT-ENCODING = *UNCHANGED / *STD / *EBCDIC

MODIFY-RUNTIME-PROPERTIES Compiler statements

132 U21283-J-Z125-8-76

PROGRAM-INTERRUPT = *UNCHANGED / *INTEGER-OVERFLOW / *NONE
This operand can be used to set the program mask when compiling programs that contain
the main function

*INTEGER-OVERFLOW corresponds to the ILCS program mask X’0C’.

 This option does not affect the selection of generated commands. The result is that
permitting INTEGER-OVERFLOWs does not necessarily mean that an overflow is
triggered in all cases.

*NONE corresponds to the program mask X’00’.

The effects of these two program masks are as follows:

 No changes in the ILCS program mask are permitted if mixed languages are used!

ENVIRONMENT-ENCODING = *UNCHANGED / *STD / *EBCDIC
These options enable the manner in which external strings (arguments of main and envi-
ronment valuables) are handled to be controlled in the case of programs which contain the
main function.
*STD is the default value. This causes the external strings to be coded in the manner spe-
cified in the MODIFY-SOURCE-PROPERTIES LITERAL-ENCODING option.
The *EBCDIC option is offered for reasons of compatibility and causes external strings to
be coded in EBCDIC even when MODIFY-SOURCE-PROPERTIES=*ASCII or *ASCII-
FULL is specified.

INTEGER-OVERFLOW NONE

fixed-point overflow
decimal overflow
exponent overflow
null mantissa

permitted
permitted
suppressed
suppressed

suppressed
suppressed
suppressed
suppressed

i

i

Compiler statements MODIFY-SOURCE-PROPERTIES

U21283-J-Z125-8-76 133

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MODIFY-SOURCE-PROPERTIES

Alias: SET-SOURCE-PROPERTIES

This statement can be used to define the properties of a source program and to control the
behavior of the preprocessor and the C and C++ frontends.

MODIFY-SOURCE-PROPERTIES

/* Options to select the language mode */
LANGUAGE = *UNCHANGED / *C(...) / *CPLUSPLUS(...)

*C(...)

⏐ MODE = *UNCHANGED / *ANSI / *STRICT-ANSI / *KERNIGHAN-RITCHIE

*CPLUSPLUS(...)

⏐ MODE = *UNCHANGED / *ANSI / *STRICT-ANSI / *CPP

/* Preprocessor options */
,DEFINE = *NONE / *UNCHANGED / list-poss: <c-string 1..125 with-low> / <name 1..125 with-under> /

 *SUBSTITUTE(...)

*SUBSTITUTE(...)
 ⏐ IDENTIFIER = <c-string 1..125 with-low> / <name 1..125 with-under>
⏐ ⏐ ,TOKEN-STRING = <c-string 1..125 with-low> / <name 1..125 with-under>

,UNDEFINE = *NONE / *UNCHANGED / *ALL / list-poss: <c-string 1..125 with-low> /
 <name 1..125 with-under> /

,ASSERT = *NONE / *UNCHANGED / list-poss: *SUBSTITUTE(...)

*SUBSTITUTE(...)
 ⏐ IDENTIFIER = <c-string 1..125 with-low> / <name 1..125 with-under>
⏐ ⏐ ,TOKEN-STRING = <c-string 1..125 with-low> / <name 1..125 with-under>

,PREINCLUDE = *UNCHANGED / *NONE / <c-string 1..1024 with-low>

,COMMENTS = *UNCHANGED / *YES / *NO

,PREPROCESSING-MODE = *UNCHANGED / *ANSI / *KR

,IMPLICIT-INCLUDE = *UNCHANGED / *YES / *NO

MODIFY-SOURCE-PROPERTIES Compiler statements

134 U21283-J-Z125-8-76

Options to select the language mode

LANGUAGE =
This option specifies in which programming language (C or C++) the sources to be
compiled were written. The value specified in the suboption MODE= determines in which
of the available C language modes (K&R C, extended or strict ANSI C) or C++ language
modes (Cfront C++, extended or strict ANSI C++) the source programs are compiled.
The default setting of the compiler is extended ANSI C++:
LANGUAGE=*CPLUSPLUS(MODE=*ANSI)

/* Common frontend options in C and C++ */
,SIGNED-CHARACTER = *UNCHANGED / *YES / *NO

,AT-ALLOWED = *UNCHANGED / *YES / *NO

,DOLLAR-ALLOWED = *UNCHANGED / *YES / *NO

,ENUM-TYPE = *UNCHANGED / *VALUE-DEPENDENT / *LONG

,SIGNED-FIELDS = *UNCHANGED / *SIGNED / *UNSIGNED

,PLAIN-FIELDS = *UNCHANGED / *SIGNED / *UNSIGNED

,PRESERVING = *UNCHANGED / *UNSIGNED / *LONG

,ALTERNATIVE-TOKENS = *UNCHANGED / *YES / *NO

,EXTERNAL-DEFINITION = *UNCHANGED / *BY-SOURCE-LANGUAGE / *UNIQUE /
*MULTIPLY-ALLOWED

,LONGLONG = *UNCHANGED / *YES / *NO

,END-OF-LINE-COMMENTS = *UNCHANGED / *YES / *NO

,LITERAL-ENCODING = *UNCHANGED / *NATIVE / *ASCII / *ASCII-FULL / *EBCDIC / *EBCDIC-FULL

/* C++ specific options */
,INSTANTIATION = *UNCHANGED / *NONE / *AUTO / *LOCAL / *ALL

,VIRTUAL-FUNCTION-TAB = *UNCHANGED / *INTERNALLY-DEFINED / *GLOBALLY-DEFINED /
 *EXTERNALLY-DECLARED

,USE-STD-NAMESPACE = *UNCHANGED / *YES / *NO

,KEYWORD-BOOL = *UNCHANGED / *YES / *NO

,KEYWORD-WCHAR = *UNCHANGED / *YES / *NO

,LOOP-INIT = *UNCHANGED / *OLD / *NEW

,SPECIALIZATION = *UNCHANGED / *OLD / *NEW

Compiler statements MODIFY-SOURCE-PROPERTIES

U21283-J-Z125-8-76 135

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

LANGUAGE = *UNCHANGED
The value specified in the last MODIFY-SOURCE-PROPERTIES statement applies.

LANGUAGE = *C(...)
The source program is a C program.

MODE = *UNCHANGED
The value specified in the last MODIFY-SOURCE-PROPERTIES statement with
LANGUAGE=*C applies.

MODE = *ANSI
Extended ANSI C mode (default setting)
The compiler supports C code, as defined in the ANSI/ISO C standard, including the
ISO C Amendment 1. In addition, various other language extensions are also supported
(see the chapter “C language support of the compiler” on page 199ff). Note that the
namespace is not restricted to names specified by the standard. All C library functions
of the CRTE (ANSI functions, POSIX and X/OPEN functions, and UNIX extensions)
may be used.
__STDC__ has a value of 0, and __STDC_VERSION__ a value of 199409L.

MODE = *STRICT-ANSI
Strict ANSI C mode
This mode can be used to test a program for ANSI/ISO conformance.
As in the extended ANSI C mode, the compiler supports C code in accordance with the
ANSI/ISO C standard.

However, in contrast to the extended ANSI C mode, the namespace is restricted to the
names defined in the standard, and only the C library functions defined in the ANSI/ISO
standard are available. This is technically accomplished as follows:
When *STRICT-ANSI is specified, the _STRICT_STDC directive is set internally. The
_STRICT_STDC setting instructs the compiler to deactivate or bypass the prototype
declarations for all non-ANSI/ISO C library functions in the standard headers (stdio.h,
stdlib.h, etc.). The _STRICT_STDC directive is, however, only effective for the
prototype declarations in the standard headers defined by ANSI/ISO; the BS2000
and POSIX-specific headers do not include a check for this directive.

Deviations from the standard result in compiler messages (mostly warnings). If desired,
the output of errors can be forced in such cases by specifying the option
ANSI-VIOLATIONS=*ERROR (see page 96).
__STDC__ has a value of 1, and __STDC_VERSION__ a value of 199409L.

MODIFY-SOURCE-PROPERTIES Compiler statements

136 U21283-J-Z125-8-76

MODE = *KERNIGHAN-RITCHIE
K&R C mode
This mode should not be used for new developments. It is typically intended for porting
"old" K&R C sources and/or systematic conversions to ANSI C.
The compiler accepts C code, as defined by Kernighan&Ritchie in the reference manual
("The C Programming Language", First Edition). It also supports C language elements
of the ANSI C standard that are semantically identical to the Kernighan&Ritchie
"definition" of the C language (e.g. function prototypes, const, volatile). This
simplifies the conversion of a K&R C source to ANSI C. All C library functions of the
CRTE (i.e. ANSI functions, POSIX and X/OPEN functions, UNIX extensions) are
available for use.
As far as the preprocessor behavior is concerned, ANSI/ISO C is the default. If desired,
the option PREPROCESSING-MODE=*KR (see page 139) can be specified to convert
the preprocessor behavior to K&R C (as required when porting old C sources from a
UNIX system, for example).
__STDC__ has a value of 0, and __STDC_VERSION__ is not defined.

LANGUAGE = *CPLUSPLUS(...)
The source program is a C++ program. This is also the default setting of the compiler before
the programming language is defined for the first time with the LANGUAGE option.

MODE = *UNCHANGED
The value specified in the last MODIFY-SOURCE-PROPERTIES statement with
LANGUAGE=*CPLUSPLUS applies.

MODE = *ANSI
Extended ANSI C++ mode (default setting)
The compiler supports C++ code in accordance with the definition proposed in the
ANSI C++ draft for the future ANSI/ISO C++ standard. In this case, the namespace is
not restricted to names specified in the standard.
The following C++ libraries are available:
– the standard C++ library (strings, containers, iterators, algorithms, and numerics),

including the Cfront-compatible I/O classes
– the Tools.h++ library
For more information on C++ libraries, see also the chapter “The C++ libraries and C++
runtime system” on page 275ff.
As in the extended ANSI C mode, various language extensions as well as all C library
functions of the CRTE are available for use.
__STDC__ has a value of 0, __cplusplus a value of 2, and __STDC_VERSION a value
of 199409L.

Compiler statements MODIFY-SOURCE-PROPERTIES

U21283-J-Z125-8-76 137

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MODE = *STRICT-ANSI
Strict ANSI C++ mode
In terms of the C++ language support (based on the ANSI/ISO C++) and the available
C++ libraries, this mode corresponds to the extended ANSI C++ mode.
However, in contrast to the extended ANSI C++ mode, only the C library functions
defined in the ANSI/ISO standard are available (as in the case of the strict ANSI C
mode).
Deviations from the standard result in compiler messages (mostly warnings), but the
output of errors can be forced in such cases by specifying the option
ANSI-VIOLATIONS=*ERROR (see page 96).
__STDC__ has a value of 1, __cplusplus a value of 199612L (which may change in
future versions; see the Release Notice for details), and __STDC_VERSION a value of
199409L.

MODE = *CPP
Cfront C++ mode
This mode is only offered for compatibility reasons and should not be used for new
developments. It supports the C++ language elements of Cfront V3.0.3.
Cfront V3.0.3 was first released with the C++ compiler V2.1.
The Cfront compatible C++ library with complex math and stream-oriented I/O is
available.
More information on the Cfront C++ library can be found in the section “The Cfront C++
library” on page 277.
C++ sources must be compiled with MODE=*CPP if their modules are to be linkable
with C++ V2.1/V2.2 modules.
__STDC__ has a value of 0, __cplusplus a value of 1, and __STDC_VERSION a value
of 199409L.

Preprocessor options

DEFINE = *NONE
Only the names and values that are specified by #define directives in the program or are
predefined by the compiler are considered valid for the current compiler run.

DEFINE = *UNCHANGED
The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

DEFINE = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> is used to define a name. This definition has the same effect as the
following statement in a program:

#define name 1

MODIFY-SOURCE-PROPERTIES Compiler statements

138 U21283-J-Z125-8-76

Such names are queried in the program with, for example, the preprocessor directives
#ifdef, #ifndef or #if defined(), #if ! defined(). See also the example below.
When POSIX library functions are used, the _OSD_POSIX directive must be set before the
occurrence of the first #include directive in the program. The easiest way to do this is by
means of a definition at the time of compilation.

DEFINE = *SUBSTITUTE(...)
This substructure is used to define macros and symbolic constants (analogous to a
#define directive for replacing text). See also the example below.

IDENTIFIER = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> designates the name to be replaced in the source program by the
value or text specified with TOKEN-STRING.

TOKEN-STRING = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> specifies the value or text to be substituted in the source program
for the name indicated by IDENTIFIER.

Note
If data in the DEFINE option is inconsistent with any #define directives in the source
program, the entries in the source program will always be given precedence!

Example: DEFINE option

MODIFY-SOURCE-PROP DEFINE=('mch_file',DEBUG,_OSD_POSIX,*SUB('host',BS2000),-
*SUB(LAN,'C++'))

Values set with DEFINE must be enclosed in single quotes if they contain characters other
than uppercase A to Z, the digits 0 to 9, or the special characters $, #, @, and _ (see also
the table on page 15).

The above entries in the DEFINE option correspond to the following #define directives in
the source program:

 #define mch_file 1
 #define DEBUG 1
 #define _OSD_POSIX 1
 #define host BS2000
 #define LAN C++

UNDEFINE = *NONE
The DEFINE entries (see above) remain unmodified by default.

UNDEFINE = *UNCHANGED
The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

UNDEFINE = *ALL
All DEFINE entries are deleted.

Compiler statements MODIFY-SOURCE-PROPERTIES

U21283-J-Z125-8-76 139

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

UNDEFINE = <c-string 1..125 with-low> / <name 1..125 with-under>
The names specified with DEFINE <c-string> / <name> are deleted.

ASSERT = *NONE / *UNCHANGED / list-poss: *SUBSTITUTE(...)
This option can be used to define an assertion, as if by a preprocessor #assert directive
(see page 221).

ASSERT= *SUBSTITUTE(...)

IDENTIFIER = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> designates the name of the assertion.

TOKEN-STRING = <c-string 1..125 with-low> / <name 1..125 with-under>
<c-string> / <name> specifies the value or text to be substituted for the assertion
designated by IDENTIFIER.

PREINCLUDE = *UNCHANGED / *NONE / <c-string 1..1024 with-low>
The pre-include option specifies an include file which is to be included at the start of the
source program via an imaginary #include statement. The preprocessor searches for this
include file in the USER-INCLUDE paths.

The include file specified via the PREINCLUDE option wil be handled like an include file
which is specified inside an #include statement at the beginning of the source program.

If several include files are to be pre-included then the corresponding #include statements
should be collected together in a single include file and this include file should then be
specified via the PREINCLUDE option.

COMMENTS = *UNCHANGED / *YES / *NO
This option can be used to specify whether the expanded and recompilable source program
created by the preprocessor may also contain comments.

PREPROCESSING-MODE = *UNCHANGED / *ANSI / *KR
*ANSI: This is the default setting in all C and C++ language modes of the compiler. In
other words, preprocessor behavior in accordance with the ANSI/ISO C standard is also
supported in the K&R C mode by default.

*KR: The obsolete preprocessor behavior based on Reiser´s cpp and Johnson´s pcc can
be turned on with *KR.

IMPLICIT-INCLUDE = *UNCHANGED / *YES / *NO
This option only affects C++ templates. It determines whether or not the definition of a
template is included implicitly (see the section “Implicit inclusion” on page 259).

MODIFY-SOURCE-PROPERTIES Compiler statements

140 U21283-J-Z125-8-76

Common frontend options in C and C++

SIGNED-CHARACTER = *UNCHANGED / *YES / *NO
*NO: The data type char is unsigned by default.

*YES: char is treated as a signed char in expressions and conversions.
Note that the use of this option may result in portability problems!

AT-ALLOWED = *UNCHANGED / *YES / *NO
Determines whether the "at" sign ’@’ is allowed (*YES) or not allowed (*NO) in names.

 The Cfront-C++ library contains declarations with the “at” sign (@) (see page 277).

DOLLAR-ALLOWED = *UNCHANGED / *YES / *NO
Determines whether the "dollar" sign ’$’ is allowed (*YES) or not allowed (*NO) in names.

ENUM-TYPE = *UNCHANGED / *VALUE-DEPENDENT / *LONG
This option controls the handling of enum data.

*VALUE-DEPENDENT: depending on the range of values, enum data is represented as
char, short, or long.

*LONG: enum data is always treated as objects of type long.

SIGNED-FIELDS = *UNCHANGED / *SIGNED / *UNSIGNED
*SIGNED: By default, signed bit fields are treated as signed.

*UNSIGNED: signed bit fields are always interpreted as unsigned. This option is only
offered for compatibility reasons with older C versions and is only meaningful in K&R C
mode.

PLAIN-FIELDS = *UNCHANGED / *SIGNED / *UNSIGNED
This option controls whether integer bit fields (short, int, long) are treated as signed
(*SIGNED) or unsigned (*UNSIGNED) types. signed is the default.

PRESERVING = *UNCHANGED / *UNSIGNED / *LONG
This option controls whether arithmetic operations with operands of type long and
unsigned int return a result of type long (*LONG) in accordance with K&R mode (first
edition; see section 6.6 in the appendix) or of type unsigned long (*UNSIGNED) in
accordance with ANSI/ISO C.

i

Compiler statements MODIFY-SOURCE-PROPERTIES

U21283-J-Z125-8-76 141

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

ALTERNATIVE-TOKENS = *UNCHANGED / *YES / *NO
This option controls whether alternative tokens are to be recognized by the compiler.
This includes:

– digraph sequences (e.g. <: for [) in the C and C++ modes and
– additional keywords for operators (e.g. and for &&, bitand for &), which are only valid

in the C++ language mode.

*YES is the default for the ANSI C++ modes.
*NO is the default for all other modes.

EXTERNAL-DEFINITION =
This option controls how the compiler reserves memory for the externally visible variables
of a module. This is important if the program consists of several modules that are to be
subsequently linked into an object program.

EXTERNAL-DEFINITION = *UNCHANGED
The values specified in the last MODIFY-SOURCE-PROPERTIES statement apply.

EXTERNAL-DEFINITION = *BY-SOURCE-LANGUAGE
The value of the EXTERNAL-DEFINITION option depends on the information in the
language mode options:

LANGUAGE=*C(MODE=*KERNIGHAN-RITCHIE): MULTIPLY-ALLOWED

LANGUAGE=*C(MODE=*ANSI/*STRICT-ANSI): UNIQUE

LANGUAGE=*CPLUSPLUS(MODE=*ANSI/*STRICT-ANSI/*CPP): UNIQUE

EXTERNAL-DEFINITION = *UNIQUE
Externally visible variables may be defined in precisely one module only and must be
declared in all other modules as extern. The memory space for such variables is set up in
the data module of the object in which the variable has been defined. If the variable is
defined in more than one module, an appropriate error message will be issued at the time
of linking.

EXTERNAL-DEFINITION = *MULTIPLY-ALLOWED
This option is used for programs in which an externally visible variable is defined in more
than one module, but is to be assigned to precisely one memory area. To achieve this, the
variable must not be statically initialized in any definition. The compiler sets aside the
memory for this variable in the COMMON area so that later, after linkage, only one memory
area is assigned to the multiply defined variable.
If the variable is initialized statically in the definition, the memory area is created not in the
COMMON area but in the data area. Assignment to precisely one memory area is then not
possible!

MODIFY-SOURCE-PROPERTIES Compiler statements

142 U21283-J-Z125-8-76

LONGLONG = *UNCHANGED / *YES / *NO
This option determines whether the data type long long is recognized by the compiler.

*YES: By default, the data type long long is not recognized. In this case, the preprocessor
define _LONGLONG is set. The data type long long is an extension to the ANSI C and C++
Standard.

*NO: The use of the data type long long results in an error.

END-OF-LINE-COMMENTS = *UNCHANGED / *YES / *NO
This option determines whether the compiler accepts C++ comments (//...) in C programs
as well. C++ comments can only be allowed in the extended ANSI C mode. They are not
allowed in the other C modes (STRICT-ANSI and KERNIGHAN-RITCHIE) and are always
valid in the C++ modes.

*YES: The compiler accepts C++ comments in extended ANSI C mode.

*NO: The compiler does not accepts C++ comments in extended ANSI C mode (default
setting).

LITERAL-ENCODING = *UNCHANGED / *NATIVE / *ASCII / *ASCII-FULL / *EBCDIC /
*EBCDIC-FULL
This option determines whether the C/C++ compiler object code for EBCDIC characters
and EBCDIC literal strings creates characters and literal strings in EBCDIC or ASCII
format (ISO 8859-1).

In C/C++, literal strings can contain binary coded characters as octal or hexadecimal
escape sequences with the following syntax:

– octal escape sequences: ´\[0-7] [0-7] [0-7]´
– hexadecimal escape sequences: ´\x[0-9A-F] [0-9A-F]´

Whether or not the C/C++ compiler escape sequences are converted into ASCII format
depends on the value specified for the option LITERAL-ENCODING =

LITERAL-ENCODING = *UNCHANGED
The settings of the last MODIFY-SOURCE-PROPERTIES statement apply.

LITERAL-ENCODING = *NATIVE
The C/C++ compiler leaves the character and literal string code in the EBCDIC format, i.e.
it transfers the characters and strings into the object code without converting them.
*NATIVE is the default setting.

LITERAL-ENCODING =*ASCII
The C/C++ compiler encodes the characters and literal strings in ASCII format. Strings
containing escape sequences will not be converted into ASCII format.

Compiler statements MODIFY-SOURCE-PROPERTIES

U21283-J-Z125-8-76 143

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

LITERAL-ENCODING =*ASCII-FULL
The C/C++ compiler encodes the characters and literal strings in ASCII format. Strings
containing escape sequences will be converted into ASCII format.

LITERAL-ENCODING =*EBCDIC
The C/C++ compiler leaves the character and literal string code in the EBCDIC format, i.e.
it transfers the characters and strings into the object code without converting them.

LITERAL-ENCODING=*EBCDIC has the same effect as
LITERAL-ENCODING=*EBCDIC-FULL or LITERAL-ENCODING=*NATIVE

LITERAL-ENCODING =*EBCDIC-FULL
The C/C++ compiler leaves the character and literal string code in the EBCDIC format, it
transfers the characters and strings into the object code without converting them.

LITERAL-ENCODING=*EBCDIC-FULL has the same effect as
LITERAL-ENCODING=*EBCDIC or LITERAL-ENCODING=*NATIVE

Requirements:

● If your are using ASCII notation for characters and literal strings, you must not declare
C library functions explicitly in your source program. C library functions should be
declared indirectly by including the corresponding CRTE headers. Otherwise the
compilation error ‘CFE1079[ERROR]..: Typangabe erwartet / expected a type specifier‘
can occur.

● If you select the ASCII or ASCII_FULL options, you should note the following. For each
and every CRTE function (C library function) in your program that works with characters
or strings, you must use the corresponding or matching include file. If you do not do this,
the CRTE functions will not be able to process the character strings correctly. You
should ensure that you include the include file <stdio.h> for the function printf() with
<stdio.h>.

● In the CRTE runtime environment, some C library functions work with ASCII character
strings.

If you are using ASCII character strings, you should specify the
MODIFY-SOURCE-PROPERTIES statement as follows:

MODIFY-SOURCE-PROPERTIES -

...

LITERAL-ENCODING=ASCII[-FULL] -

...

MODIFY-SOURCE-PROPERTIES Compiler statements

144 U21283-J-Z125-8-76

You must also specify the MODIFY-MODULE-PROPERTIES statement with the
following entries:

MODIFY-MODULE-PROPERTIES -

...

LOWER-CASE-NAMES=*YES, -

SPECIAL-CHARACTERS=*KEEP, -
...

Caution:

C++ library functions do not support ASCII format and must therefore possibly be replaced
by C functions.

C++ specific frontend options

INSTANTIATION = *UNCHANGED / *NONE / *AUTO / *LOCAL / *ALL
This option is only relevant in the ANSI C++ modes. It controls how templates with external
linkage are instantiated. This includes function templates as well as (non-static and
non-inline) functions and static variables that are members of template classes. These
templates types are combined under the generic term "template entity" below.

All instantiations requested explicitly with the instantiation directive template declaration or
with the instantiation pragma #pragma instantiate template-entity are always created by
the compiler for each compilation unit in all instantiation modes.

The remaining template entities are instantiated as follows:

*NONE:
No instantiations other than those requested explicitly are created.

*AUTO (default setting):
Instantiation is performed across all compilation units by means of a prelinker. This prelinker
is activated with the BIND statement (see page 66). The principle of automatic instantiation
is discussed in detail in the section “Automatic instantiation” on page 246.

*LOCAL:
Instantiations are created per compilation unit, i.e. all template entities that are used in a
compilation unit are instantiated. The generated functions are given internal linkage. This
mode provides a very simple mechanism for getting started with template programming.
The compiler will instantiate the functions that are used in each compilation unit as local
functions, and the program will link and run correctly. This method does, however, result in
multiple copies of instantiated functions and is therefore not suitable for production use.
Note that there may also be problems due to multiple copies of local static variables. For
the same reasons, this method is also not suitable if one of the templates contains a static
variable.

Compiler statements MODIFY-SOURCE-PROPERTIES

U21283-J-Z125-8-76 145

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

Warning:

The basic_string template contains a static variable in order to represent an empty
string. If you use the *LOCAL option and the type string from the library, this empty string
is no longer recognized. Try to avoid using this combination as it can lead to serious
problems.

*ALL:
Instantiations are created per compilation unit, i.e. all template entities that are declared or
referenced in a compilation unit are instantiated. All member functions and static variables
of a template class are instantiated, regardless of whether or not they are used.
Template functions are instantiated even if they have only been declared.

VIRTUAL-FUNCTION-TAB = *UNCHANGED / *INTERNALLY-DEFINED /
*GLOBALLY-DEFINED / *EXTERNALLY-DECLARED
This option can be used to specify how the virtual functions table is to be generated by the
compiler.

*INTERNALLY-DEFINED: The virtual functions table is declared static by default, i.e., a
copy of the table is created for each module.

*GLOBALLY-DEFINED / *EXTERNALLY-DECLARED: This option can be used to reduce
the memory requirement for modules by defining the table as global in just one module
(*GLOBALLY-DEFINED) and then declaring it as extern (*EXTERNALLY-DECLARED) in
other modules.

Note
The VIRTUAL-FUNCTION-TAB option only has an effect on classes in which the normal
heuristics for positioning the table of virtual functions do not work. It therefore only applies
for classes which contain no “non-inline non-pure virtual function”.

USE-STD-NAMESPACE = *UNCHANGED / *YES / *NO
This option determines the use of ANSI C++ library functions for which names have been
defined in the standard std namespace.

*YES is the default setting in extended ANSI C++ mode. The compiler behaves as if the
following lines were entered at the start of a compilation unit:

namespace std{}
using namespace std;

*NO is the default setting in strict ANSI C++ mode and the only possible behavior in
Cfront C++ mode.

If USE-STD-NAMESPACE=*NO is set in the extended or strict ANSI C++ mode, the source
program must contain the statement using namespace std; otherwise, the names must
be qualified appropriately before the first call to an ANSI C++ library function.

MODIFY-SOURCE-PROPERTIES Compiler statements

146 U21283-J-Z125-8-76

KEYWORD-BOOL = *UNCHANGED / *YES / *NO
This option can be used to define whether bool is recognized as a keyword.

*YES is the default setting in the ANSI C++ modes. In this case, the preprocessor macro
_BOOL is defined.

*NO is the default setting and the only possible behavior in the Cfront C++ mode.

KEYWORD-WCHAR = *UNCHANGED / *YES / *NO
This option can be used to define whether wchar_t is recognized as a keyword.

*YES is the default setting in the ANSI C++ modes. In this case, the preprocessor macro
_WCHAR_T is defined.

*NO is the default setting and the only possible behavior in the Cfront C++ mode.

LOOP-INIT = *UNCHANGED / *OLD / *NEW
This option defines how an initialization statement in for and while loops is to be treated.

*OLD is the default setting in the C++ mode and specifies that an initialization statement
has the same scope as the entire loop.

*NEW is the default setting in the ANSI C++ modes and specifies the new
ANSI C++-conformant scope rule, which surrounds the entire loop in its own
implicitly generated scope.

SPECIALIZATION = *UNCHANGED / *OLD / *NEW
This option is only relevant in the ANSI C++ modes. It is used to enable or disable
acceptance of the new template<> syntax for template specializations.

*NEW is the default setting. In this case, the compiler implicitly defines the macro
__OLD_SPECIALIZATION_SYNTAX with the value 0.

If *OLD is specified, the compiler implicitly defines the macro
__OLD_SPECIALIZATION_SYNTAX with the value 1.

Compiler statements MODIFY-TEST-PROPERTIES

U21283-J-Z125-8-76 147

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

MODIFY-TEST-PROPERTIES

Alias: SET-TEST-PROPERTIES

This statement controls whether information is generated for the AID debugger.

TEST-SUPPORT = *YES
Debugging information is generated for AID.
In order to debug without any restrictions with AID, the optimization and inline substitution
of user-defined functions must be suppressed (see MODIFY-OPTIMIZATION-
PROPERTIES). The compiler assumes INLINING=*NO for all configurations. The optimi-
zation level is reset to *LOW.

TEST-SUPPORT = NO
No debugging information is generated for AID.
However, call hierarchies can be traced back (e.g. by specifying %SDUMP %NEST after
the program terminates).

MODIFY-TEST-PROPERTIES

TEST-SUPPORT = *UNCHANGED / *YES / *NO

PREPROCESS Compiler statements

148 U21283-J-Z125-8-76

PREPROCESS

Alias: DO-PREPROCESSING

This statement can be used to end the compilation of one or more source programs on
completion of the preprocessor phase. During the preprocessing, an expanded and
recompilable source program can be generated for each compilation unit.

SOURCE =
This option specifies one or more source programs to be compiled.
A source program can be read from the system file SYSDTA, a cataloged BS2000 file, a
PLAM library or a POSIX file.
Note that if the source program is entered from SYSDTA, only one source program can be
read per PREPROCESS statement.

PREPROCESS

SOURCE = *SYSDTA / list-poss: <filename 1..54>/ <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>

,OUTPUT = *NONE / *STD-FILE / *SOURCE-LOCATION / <filename 1..54>/
 <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD-LIBRARY / *SOURCE-LIBRARY / <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = *STD-ELEMENT(...) / <composed-name 1..64 with-under>(...)
⏐ ⏐ *STD-ELEMENT(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / <composed-name 1..24 with-under>
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / <composed-name 1..24 with-under>

Compiler statements PREPROCESS

U21283-J-Z125-8-76 149

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

SOURCE = *SYSDTA
Input is accepted from the system file SYSDTA. SYSDTA is assigned to the terminal in
interactive mode but can be reassigned to a cataloged file or a PLAM library element with
the ASSIGN-SYSDTA command (see also page 76).

SOURCE = <filename 1..54>
<filename> is the name of a cataloged BS2000 file.

SOURCE = <posix-pathname>
Only a file name is permitted as <posix-pathname>. See page 34 for a description of the
term <posix-pathname>.

SOURCE = *LIBRARY-ELEMENT(...)
This option is used to specify a PLAM library and an element in it.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> is used to specify a link name for a PLAM library. The link name must
already have been assigned to the library name with the ADD-FILE-LINK command
before the compiler is called.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of an element from the PLAM
library specified earlier. The element must be of type S.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the compiler uses the element
with the highest existing version.

VERSION = <composed-name 1..24 with-under>
The compiler uses the element with the specified version.

OUTPUT =
This option can be used to specify if and where the result of the preprocessor run
is to be stored.

OUTPUT = *NONE
No expanded and recompilable source program is generated. The result of the
preprocessor run (expansions and error messages, if any) can only be checked by
requesting a preprocessor listing.

PREPROCESS Compiler statements

150 U21283-J-Z125-8-76

OUTPUT = *STD-FILE
The expanded program is written by default to a cataloged BS2000 file. The name of this
file is derived from the name of the source program as follows:

If the source program is located in a PLAM library, the library and element name of the
source are combined with a hyphen (lib-elem) and used in the default file name. The rules
by which the compiler constructs default names are described in detail in the section
“Default names for output containers” on page 48.

OUTPUT = *SOURCE-LOCATION
The output destination and name of the expanded program are derived from the location
and name of the source program as follows:

The rules by which the compiler constructs default names are described in detail in the
section “Default names for output containers” on page 48.

OUTPUT = <filename 1..54>
The expanded program is written to a cataloged BS2000 file with the specified name. This
specification is invalid when compiling multiple source programs.

OUTPUT = <posix-pathname>
The expanded program is written to a POSIX file system.

Both a file name and a directory are permitted as <posix-pathname>. See page 34 for a de-
scription of the term <posix-pathname>.

When a file name is specified, the expanded program is stored under this name. Specifica-
tion of a file name is invalid when compiling multiple source programs with one statement.

When a directory name dir is specified, the expanded program for each source program is
written under the default name sourcefile.i (C source) or sourcefile.I (C++ source) to the di-
rectory dir (see also section “Default names for output containers” on page 48).

The directories specified with <posix-pathname> must already exist.
When constructing file names, it must be noted that expanded source programs can only
be meaningfully processed further in the POSIX subsystem if the name contains the suffix
.i or .I or a suffix defined with the -Y F option of the cc/c89/CC commands (see also the
manual “POSIX Commands of the C/C++ Compiler” [1]).

Output *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDEXP.I file.I lib-elem.I file.I

Source *SYSDTA BS2000 file PLAM library POSIX file

Output
destination

BS2000 file BS2000 file Library of source Directory of source

Default name CSTDEXP.I file.I elem.I (type S) file.i (C source)
file.I (C++ source

Compiler statements PREPROCESS

U21283-J-Z125-8-76 151

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name
(ELEMENT=) under which the expanded program is to be stored. The elements are stored
as elements of type S.

LIBRARY = *STD-LIBRARY
The expanded program is written by default to the library SYS.PROG.LIB.

LIBRARY = *SOURCE-LIBRARY
The expanded program is written to the PLAM library which contains the source
program.
The *SOURCE-LIBRARY specification is invalid if the source program is read from a
cataloged BS2000 file, a POSIX file or via SYSDTA.

LIBRARY = <filename 1..54>
The expanded program is written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> can be used to specify a valid link name for the PLAM library.
The link name must already have been assigned to the library name with the
ADD-FILE-LINK command before the compiler is called.

ELEMENT = *STD-ELEMENT(...)
By default, the element name of the expanded program is derived from the name of the
source program as follows:

The rules by which the compiler constructs default names are described in detail in the
section “Default names for output containers” on page 48.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is
used by the compiler.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the
highest existing version number by 1, assuming that the highest existing version ID
ends with a digit that can be incremented. If the version ID cannot be incremented,
the compiler run is aborted with an error message.
See the COMPILE statement (page 75) for an example.

VERSION = <composed-name 1..24 with-under>
The compiler uses the version specified.

Output *SYSDTA BS2000 file PLAM library POSIX file

Default name CSTDEXP.I file.I elem.I file.I

PREPROCESS Compiler statements

152 U21283-J-Z125-8-76

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> designates the fully-qualified element name of the expanded
program. This specification is invalid when compiling multiple source programs.

VERSION = *UPPER-LIMIT / *INCREMENT /
<composed-name 1..24 with-under>
The version can be specified as described above for
ELEMENT=*STD-ELEMENT(...).

Compiler statements RESET-TO-DEFAULT

U21283-J-Z125-8-76 153

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

RESET-TO-DEFAULT

This statement resets the current option values in the corresponding MODIFY statements
to the default values of the compiler, i.e., the values that take effect immediately after the
START-CPLUS-COMPILER command.

SELECT = *UNCHANGED
The value specified in the last RESET-TO-DEFAULT statement applies.

SELECT = *ALL
The option values of all MODIFY statements are reset to the default values of the compiler.

SELECT = list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /
*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND
Only the option values of the specified MODIFY statements are reset to the default values
of the compiler. For example, *INCLUDE stands for MODIFY-INCLUDE-LIBRARIES,
*SOURCE for MODIFY-SOURCE-PROPERTIES, etc.

In addition to the options of MODIFY-BIND-PROPERTIES statement, *BIND also resets the
ACTION and OUTPUT-FORMAT options of the BIND statement to the default values of the
compiler.

Information on default values of the compiler can also be obtained by means of the
SHOW-DEFAULTS statement (see page 154). In this manual, the default values of the
compiler are underlined.

RESET-TO-DEFAULT

SELECT = *UNCHANGED / *ALL / list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /
*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND

SHOW-DEFAULTS Compiler statements

154 U21283-J-Z125-8-76

SHOW-DEFAULTS

This statement can be used to show the default values of the compiler, i.e., the values
which apply to the corresponding MODIFY statements immediately after calling the
START-CPLUS-COMPILER command and which remain in effect until a value is
explicitly changed. These default values can also be set with the RESET-TO-DEFAULT
statement.

SELECT = *UNCHANGED
The value specified in the last SHOW-DEFAULTS statement applies.

SELECT = *ALL
Information on all MODIFY statements is shown.

SELECT = list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /
*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND
Information is shown only for the specified MODIFY statements.
For example, *INCLUDE stands for MODIFY-INCLUDE-LIBRARIES, *SOURCE for
MODIFY-SOURCE-PROPERTIES, etc.

OUTPUT = *UNCHANGED / *SYSOUT / *SYSLST
The information is output via SYSOUT (default setting) or SYSLST.

Note
Some options of the MODIFY-SOURCE-PROPERTIES statement are displayed with the
option value __unset__. These are options that can have different default values (so-called
“alternative defaults”), depending on the language mode.

SHOW-DEFAULTS

SELECT = *UNCHANGED / *ALL / list-poss(10):*INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /
*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND

,OUTPUT = *UNCHANGED / *SYSOUT / *SYSLST

Compiler statements SHOW-PROPERTIES

U21283-J-Z125-8-76 155

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

SHOW-PROPERTIES

This statement can be used to view the currently set option values in the selected or all
MODIFY statements. In the output indirect values are replaced by real ones if possible.

SELECT = *UNCHANGED
The value specified in the last SHOW-PROPERTIES statement applies.

SELECT = *ALL
Information on all MODIFY statements is shown.

SELECT = list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /
*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND
Information is shown only for the specified MODIFY statements.
For example, *INCLUDE stands for MODIFY-INCLUDE-LIBRARIES, *SOURCE for
MODIFY-SOURCE-PROPERTIES, etc.

OUTPUT = *UNCHANGED / *SYSOUT / *SYSLST
The information is output via SYSOUT (default setting) or SYSLST.

Note
The outputs of the SHOW-PROPERTIES and SHOW-DEFAULTS statements are virtually
identical on starting the compiler and just after a RESET-TO-DEFAULT statement, except
for the fact that SHOW-PROPERTIES displays the actual value (in accordance with the
predefined ANSI C++ mode) instead of the option value __unset__.

SHOW-PROPERTIES

SELECT = *UNCHANGED / *ALL / list-poss(10): *INCLUDE / *SOURCE / *MODULE / *OPTIMIZATION /
*RUNTIME / *TEST / *DIAGNOSTIC / *LISTING / *CIF / *BIND

,OUTPUT = *UNCHANGED / *SYSOUT / *SYSLST

START-CPLUS-LISTING-GENERATOR Global listing generator

156 U21283-J-Z125-8-76

3.3 Controlling the global listing generator

The global listing generator is called with the START-CPLUS-LISTING-GENERATOR
command. The input source for the listing generator consists of CIF information, which is
created by the compiler for each compilation unit and stored in PLAM library elements (type
H), in cataloged BS2000 files or in POSIX files (see the MODIFY-CIF-PROPERTIES
statement, page 90). All listings generated by the global listing generator are written to a
single output file, which may be the system file SYSLST, by default, or the output file
specified with the OUTPUT option. The listing generator uses the CIF information stored for
local cross-reference and project listings to create global (i.e. multi-module) cross-
reference and project listings. The remaining listings are generated per source file.

3.3.1 Calling the listing generator (START-CPLUS-LISTING-GENERATOR)

MONJV = *NONE / <filename 1..54>
<filename> is used to assign a monitoring job variable in which the listing generator can
indicate runtime errors that may occur. The status indicators and return codes used here
are identical to those of the C/C++ compiler (see START-CPLUS-COMPILER, page 60).

/START-CPLUS-LISTING-GENERATOR Abbreviations: S-CP-L-G, CPLUS-LISTING-GENERATOR, CPLG

MONJV = *NONE / <filename 1..54>

,CPU-LIMIT = *JOB-REST / <integer 1..32767>

Global listing generator END

U21283-J-Z125-8-76 157

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

3.3.2 Description of statements

Overview of statements and input rules

The following statements can be used to control the global listing generator:

● The modification statement MODIFY-LISTING-PROPERTIES defines the type, layout
and output destination of the listing to be generated.

● The execution statement GENERATE-LISTING defines the input sources and starts the
actual generation of the listing.

● The END statement terminates the global listing generator.

● The SDF standard statements (analogous to controlling the compilers; see page 62)

The MODIFY-LISTING-PROPERTIES statement must precede the GENERATE-LISTING
statement. If no MODIFY-LISTING-PROPERTIES statement is specified, no listings are
generated (in accordance with the default setting). The general rules for the SDF statement
interface of the compiler are also applicable to the global listing generator (see “Basic
principles and general input rules” on page 64).

END

This statement ends the listing generator run.

END

GENERATE-LISTING Global listing generator

158 U21283-J-Z125-8-76

GENERATE-LISTING

Aliases: DO-LISTING-GENERATION, LIST

This statement defines the input sources for the global listing generator and starts the
generation of the listing. The scope, layout and output destination of listings depend on the
specifications in a preceding MODIFY-LISTING-PROPERTIES statement.

CIF-FILE = <filename 1..54>
<filename> specifies the name of a cataloged BS2000 file containing the CIF information.

CIF-FILE = <posix-pathname>
<posix-pathname> specifies the name of a POSIX file containing the CIF information.
See page 34 for a description of the term <posix-pathname>.

CIF-FILE = *LIBRARY-ELEMENT(...)
This option is used to specify a PLAM library and one or more of its (type H) elements
containing the CIF information.

LIBRARY = *STD-LIBRARY
The listing generator processes CIF elements contained in the library SYS.PROG.LIB
by default.

LIBRARY = <filename 1..54>
<filename> assigns the name of a PLAM library.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
<filename> is used to specify a link name for a PLAM library. The link name must
be assigned to the library name by means of the ADD-FILE-LINK command before
the listing generator is called.

GENERATE-LISTING

CIF-FILE = list-poss: <filename 1..54> / <posix-pathname> / *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *STD-LIBRARY / <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>

Global listing generator GENERATE-LISTING

U21283-J-Z125-8-76 159

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully-qualified name of a CIF element from the PLAM
library specified earlier. The element must be of type H.

VERSION = *HIGHEST-EXISTING
If the element specification contains no version ID, the listing generator uses the
element with the highest existing version.

VERSION = <composed-name 1..24 with-under>
The listing generator uses the element with the specified version.

MODIFY-LISTING-PROPERTIES Global listing generator

160 U21283-J-Z125-8-76

MODIFY-LISTING-PROPERTIES

Alias: SET-LISTING-PROPERTIES

This statement can be used to select which listings are to be generated by the listing
generator. It can also be used to define the layout and the output destinations for these
listings. Apart from a few deviations in the OUTPUT option, the syntax of this statement
is identical to the compiler statement of the same name.

MODIFY-LISTING-PROPERTIES

OPTIONS = *UNCHANGED / *YES / *NO

,SOURCE = *UNCHANGED / *NO / [*YES](...)

*YES(...)

⏐ MINIMAL-MSG-WEIGHT = *NOTE / *WARNING / *ERROR / *FATAL

,PREPROCESSING-RESULT = *UNCHANGED / *NO / [*YES](...)

*YES(...)
 ⏐ COMMENTS = *YES / *NO

,DATA-ALLOCATION-MAP = *UNCHANGED / *NO / [*YES](...)

*YES(...)

⏐ STRUCTURE-LEVEL = *UNCHANGED / *NONE / *MAX / <integer 0..256>

,CROSS-REFERENCE = *UNCHANGED / *NO / [*YES](...)

*YES(...)
 ⏐ PREPROCESSING-INFO = *YES / *NO
⏐ ⏐ ,TYPES = *YES / *NO
⏐ ⏐ ,VARIABLES = *YES / *NO
⏐ ⏐ ,FUNCTIONS = *YES / *NO
⏐⏐ ,LABELS = *YES / *NO
⏐⏐ ,TEMPLATES = *YES / *NO
⏐ ⏐ ,ORDER = *STD / list-poss(6): *PREPROCESSING-INFO / *TYPES / *VARIABLES /
⏐ *FUNCTIONS / *LABELS / *TEMPLATES

,PROJECT-INFORMATION = *UNCHANGED / *YES / *NO

,ASSEMBLER-CODE = *UNCHANGED / *YES / *NO

,SUMMARY = *UNCHANGED / *YES / *NO

Global listing generator MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 161

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

OPTIONS = *UNCHANGED / *YES / *NO
*YES: The listing generator creates a listing of all default and user-defined compiler options.

SOURCE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

SOURCE = *NO
No source/error listing is generated.

,LAYOUT = *UNCHANGED / *FOR-NORMAL-PRINT(...) / *FOR-ROTATION-PRINT(...)

*FOR-NORMAL-PRINT(...)
 ⏐ LINE-SIZE = *UNCHANGED / *STD / <integer 120..255>
⏐ ⏐ ,LINES-PER-PAGE = *UNCHANGED / *STD / <integer 11..255>

*FOR-ROTATION-PRINT(...)
 ⏐ LINE-SIZE = *UNCHANGED / *STD / <integer 120..255>
⏐ ⏐ ,LINES-PER-PAGE = *UNCHANGED / *STD / <integer 11..255>

,INCLUDE-INFORMATION = *UNCHANGED / *NONE / *ALL / *USER-INCLUDES-ONLY

,LISTING-PRAGMAS = *UNCHANGED / *IGNORED / *INTERPRETED / *SELECT(...)

*SELECT(...)
 ⏐ PAGE = *YES / *NO
⏐ ⏐ ,TITLE = *YES / *NO
⏐ ⏐ ,SPACE = *YES / *NO
⏐ ⏐ ,LIST = *YES / *NO

,INITIAL-TITLE-TEXT = *UNCHANGED / *NONE / <c-string 1..256 with-low>

,OUTPUT = *UNCHANGED / *SYSLST / *SYSOUT / <filename 1..54> / <posix-pathname> /
 *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)

⏐ LIBRARY = *STD-LIBRARY / <filename 1..54> / *LINK(...)
⏐ ⏐ *LINK(...)
⏐ ⏐ ⏐ LINK-NAME = <filename 1..8>
⏐ ⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ ⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *UPPER-LIMIT / *INCREMENT / <composed-name 1..24 with-under>

MODIFY-LISTING-PROPERTIES Global listing generator

162 U21283-J-Z125-8-76

SOURCE = *YES(...)
A source/error listing is generated.

MINIMAL-MSG-WEIGHT = *NOTE / *WARNING / *ERROR / *FATAL
This option can be used to specify the minimum message weight for which error
messages are to be included in the source listing. Note that the minimum message
weight must be exactly the same as specified using the operand of the same name in
the MODIFY-DIAGNOSTIC-PROPERTIES statement.

Examples

1. In the list of source programs, error messages as that are weighted higher than
NOTE are to be output:

MODIFY-DIAGNOSTIC-PROPERTIES MINIMAL-MSG-WEIGHT=*NOTE
MODIFY-LISTING-PROPERTIES MINIMAL-MSG-WEIGHT=*NOTE

2. In the system file SYSOUT, error messages weighted higher than NOTE are to be
output, and in the list of source programs, error messages weighted higher than
WARNING:

MODIFY-DIAGNOSTIC-PROPERTIES MINIMAL-MSG-WEIGHT=*NOTE
MODIFY-LISTING-PROPERTIES MINIMAL-MSG-WEIGHT=*WARNING

 When the value given in MAX-ERROR-NUMBER (controlled via MODIFY-
DIAGNOSTIC-PROPERTIES) is reached, no further source program information
will be output in the source/error listing. In this case the listing can no longer be used
as a reliable guide to current error status.

PREPROCESSING-RESULT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

PREPROCESSING-RESULT = *NO
The listing generator does not create a preprocessor listing.

PREPROCESSING-RESULT = *YES(...)
The listing generator creates a preprocessor listing.

COMMENTS = *YES / *NO
Comments from the source file are included in the preprocessor listing (can be
suppressed with *NO).

DATA-ALLOCATION-MAP = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

DATA-ALLOCATION-MAP = *NO
The listing generator does not create a map listing.

i

Global listing generator MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 163

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

DATA-ALLOCATION-MAP = *YES(...)
The listing generator creates a preprocessor listing.

STRUCTURE-LEVEL = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

STRUCTURE-LEVEL = *NONE
Structure elements are not included in the map listing.

STRUCTURE-LEVEL = *MAX
Structure elements up to the maximum nesting level (256) are included in the map
listing.

STRUCTURE-LEVEL = <integer 0..256>
Only the structure elements up to the nesting level specified by <integer> are included
in the map listing. If the specified as the nesting level is 0, no structure elements are
included (corresponds to STRUCTURE-LEVEL=*NONE).

CROSS-REFERENCE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

CROSS-REFERENCE = *NO
The listing generator does not create a cross-reference listing.

CROSS-REFERENCE = *YES(...)
The listing generator creates a "global" cross-reference listing, i.e. a cross-reference listing
for multiple modules. This listing always contains a FILETABLE section with the names of
all files, libraries, and elements that are used as sources by the compiler.

PREPROCESSING-INFO = *YES / *NO
The cross-reference listing may optionally include a list of names processed by the
preprocessor.

TYPES = *YES / *NO
The cross-reference listing may optionally include a list of user-defined types
(typedefs, structure, union, class and enumeration types).

VARIABLES = *YES / *NO
The cross-reference listing contains a list of variables (can be suppressed with *NO).

FUNCTIONS = *YES / *NO
The cross-reference listing contains a list of functions (can be suppressed with *NO).

LABELS = *YES / *NO
The cross-reference listing contains a list of labels (can be suppressed with *NO).

TEMPLATES = *YES / *NO
The cross-reference listing may optionally contain a list of templates.

MODIFY-LISTING-PROPERTIES Global listing generator

164 U21283-J-Z125-8-76

ORDER = *STD / list-poss(6): *PREPROCESSING-INFO / *TYPES /
*VARIABLES / *FUNCTIONS / *LABELS / *TEMPLATES
This option specifies the order in which the individual parts of the cross-reference
listing are shown.

*STD: The default is in the order shown after list-poss above.

PROJECT-INFORMATION = *UNCHANGED / *YES / *NO
*YES: The listing generator creates a project listing showing a comparison of all external
names originally used in the source program and the names internally generated by the
compiler for the linkage editor.

ASSEMBLER-CODE = *UNCHANGED / *YES / *NO
*YES: The listing generator creates an object code listing.

SUMMARY = *UNCHANGED / *YES / *NO
*YES: The listing generator creates a listing containing statistical data on the compiler run.

LAYOUT =
This option can be used to define the page width (number of characters per line) and the
page length (number of lines per page) for the listings.

If a line width of 120 characters is selected, all the listings will have narrower headers and
footers. Text lines are wrapped only in the table listings (option, cross-reference and map
listings). Overlong text lines in the source, preprocessor and object code listings may be
truncated when the listings are printed.

When a BS2000 output file is specified, the first column of every line is reserved to control
the line feed.
When the output is sent to a POSIX file, the appropriate POSIX control characters for line
and page feeds are generated. The result is that the line length in the POSIX output file is
up to 3 characters larger than the selected line width specification.

LAYOUT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LAYOUT = *FOR-NORMAL-PRINT(...)

LINE-SIZE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LINE-SIZE = *STD
132 characters per line are output.

LINE-SIZE = <integer 120..255>
120 to 255 characters per line are output.

Global listing generator MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 165

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

LINES-PER-PAGE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LINES-PER-PAGE = *STD
64 lines per page are output.

LINES-PER-PAGE = <integer 11..255>
11 to 255 lines are printed per page.
The lower limit is fixed at 11 lines so that at least the listing header and footer and one
line of text can be printed.

LAYOUT = *FOR-ROTATION-PRINT(...)
In order to print such listings, the ROTATION parameter must be specified in the
PRINT-FILE command.

LINE-SIZE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LINE-SIZE = *STD
120 characters per line are output.

LINE-SIZE = <integer 120..255>
120 to 255 characters per line are output.

LINES-PER-PAGE = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LINES-PER-PAGE = *STD
84 lines per page are output.

LINES-PER-PAGE = <integer 11..255>
11 to 255 lines are printed per page.
The lower limit is fixed at 11 lines so that at least the listing header and footer and one
line of text can be printed.

INCLUDE-INFORMATION = *UNCHANGED / *ALL / *NONE / *USER-INCLUDES-ONLY
This option is used to specify which header files (if any) are to be shown in the source,
preprocessor and cross-reference listings. By default, only the user-defined header files are
shown, not the standard headers. Note that this option can only restrict the information
created on the include files at compilation, include file that are explicitly or implicitly deter-
mined using the operand of the same name in the MODIFY-CIF-PROPERTIES statement.

LISTING-PRAGMAS =
This option controls which existing #pragma directives (if any) in the source text are to be
interpreted when creating source and preprocessor listings.
A description of the #pragma directives can be found in the section “Pragmas to control the
layout of listings” on page 228.

MODIFY-LISTING-PROPERTIES Global listing generator

166 U21283-J-Z125-8-76

LISTING-PRAGMAS = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

LISTING-PRAGMAS = *INTERPRETED / *IGNORED
All #pragma directives are interpreted (*INTERPRETED) or ignored (*IGNORED).

LISTING-PRAGMAS = *SELECT(...)
One or more of the following #pragma directives to control listings are interpreted (*YES)
or ignored (*NO).

PAGE = *YES / *NO
Directive #pragma PAGE [text]:
for a page feed and optional line in the listing header

TITLE = *YES / *NO
Directive #pragma TITLE text:
for a line in the listing header

SPACE = *YES / *NO
Directive #pragma SPACE [n]:
to insert blank lines

LIST = *YES / *NO
Directive #pragma LIST[ING] ON or #pragma LIST[ING] OFF:
to suppress the output of source text lines

INITIAL-TITLE-TEXT = *UNCHANGED / *NONE / <c-string 1..256>
This option can be used to specify if an additional line is to appear in the header of the listing
and the text that is to be entered in it. In contrast to pragmas, which only apply to source
and preprocessor listings, the INITIAL-TITLE-TEXT option applies to all compiler listings. If
the text is longer than the line length defined with the LINE-SIZE option (see page 110ff), it
is split into multiple lines of appropriate length.
In the case of source and preprocessor listings, TITLE and PAGE pragmas (if any) override
the INITIAL-TITLE-TEXT specification.

OUTPUT = *UNCHANGED
The value specified in the last MODIFY-LISTING-PROPERTIES statement applies.

OUTPUT = *SYSLST
The listings are written to the temporary system file SYSLST by default and are sent from
there to the printer at the end of the task (at LOGOFF).

OUTPUT = *SYSOUT
The listings are written to the system file SYSOUT, which is assigned to the terminal in
interactive mode.

Global listing generator MODIFY-LISTING-PROPERTIES

U21283-J-Z125-8-76 167

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

03

OUTPUT = <filename 1..54>
The listings are written to a cataloged BS2000 file with the specified name.

OUTPUT = <posix-pathname>
The listings are written to a POSIX file.
Only a file name is permitted as <posix-pathname>. See page 34 for a description of the
term <posix-pathname>.

OUTPUT = *LIBRARY-ELEMENT(...)
This option specifies the PLAM library (LIBRARY=) and the element name
(ELEMENT=) under which the listings are to be stored. The elements are saved
as elements of type P.

LIBRARY = *STD-LIBRARY
The listings are stored in the library SYS.PROG.LIB by default.

LIBRARY = <filename 1..54>
The listings are written to a PLAM library with the specified name.

LIBRARY = *LINK(...)

LINK-NAME = <filename 1..8>
A link name can also be specified instead of the library name.
<filename> designates the link name of the assigned library. This link name must
already have been assigned to the PLAM library (with the ADD-FILE-LINK
command) before the listing generator is called.

ELEMENT = <composed-name 1..64 with-under>(...)
The listings are written to a PLAM library element (type P) with the specified name.

VERSION = *UPPER-LIMIT
If the element entry does not contain a version ID, the highest possible version is
used by the listing generator.

VERSION = *INCREMENT
The element is assigned a version number that is obtained by incrementing the
highest existing version number by 1, assuming that the highest existing version ID
ends with a digit that can be incremented. If the version ID cannot be incremented,
the generation of the listing is aborted with an error message.
See the COMPILE statement (page 75) for an example.

MODIFY-LISTING-PROPERTIES Global listing generator

168 U21283-J-Z125-8-76

U21283-J-Z125-8-76 169

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

4 Linkage and program execution

4.1 Linkage

The result produced by the C/C++ compiler on compiling a source program consists of a
link-and-load module or LLM. This module already consists of machine code, but cannot be
executed on the computer until all generated modules have been combined (i.e. linked) with
other modules to create an executable unit.
The additionally required modules are usually modules of the runtime system, but other
modules (e.g. modules of subroutines in other languages or separately compiled C/C++
program segments) can also be linked in, if required. These additional modules may include
modules that were compiled by different compilers at various times.

The main function of the linkage editor is to select the modules required for the loadable
unit from various sources (files, libraries) and link them to one another. Linkage basically
means that the linkage editor supplements each module with the addresses that refer to
areas external to the module (external references).

Before the unit generated during the linkage phase can be run, a loader must load it into
memory so that the processor can access the code and execute it.

The following functional units are available in the Binder-Loader-Starter system of
BS2000 for performing the linking and loading tasks:

● Dynamic binder loader DBL

The dynamic binder loader DBL combines three steps into a single operation by linking
modules (object modules, LLMs) into a temporary loadable unit, loading it immediately
into memory and then starting it.

● Linkage editor BINDER

BINDER links modules (object modules, LLMs) to form a logically and physically
structured loadable unit. This unit is called a link-and-load module (Link and Load
Module, LLM). BINDER stores an LLM as a type-L element in a PLAM library.

Linkage Linkage and program execution

170 U21283-J-Z125-8-76

There are two ways of linking programs with BINDER:

1. directly, i.e. by calling BINDER with the START-BINDER command, and
2. implicitly, i.e. with the compiler statements BIND and MODIFY-BIND-PROPERTIES

The above compiler statements are not dealt with here, since they are described in detail
in chapter 3 (see BIND on page 66ff and MODIFY-BIND-PROPERTIES, page 79 ff).

Modules generated in the ANSI C++ modes of the compiler contain symbol names in the
EEN format (EEN = Extended External Name), which is supported by DBL only as of
BLSSERV V2.0. The dynamic loading of ANSI C++ modules with DBL is therefore only
possible with BLSSERV V2.0 or later. Static linkage of ANSI C++ modules must be
performed with the BIND statement of the compiler.
See also the section “Restriction on linking ANSI C++ programs” on page 178.

The C and C++ runtime modules needed for linking C/C++ programs are a component of
the CRTE runtime system. An overview of all C/C++-specific CRTE libraries is provided in
the section “Specific CRTE components required for C/C++” on page 25ff. More detailed
information, with appropriate notes on linking the C++ runtime libraries, in particular, can be
found in the chapter “The C++ libraries and C++ runtime system” on page 275.

Linkage and program execution DBL

U21283-J-Z125-8-76 171

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

4.1.1 Dynamic linking and loading with DBL

When the dynamic binder loader DBL is used, modules are temporarily linked into a
loadable unit, which is then loaded into memory and executed, all in one operation.
The generated load unit is automatically deleted after the program run.

The mode of operation of DBL is described in detail in the “Dynamic Binder Loader / Starter”
manual [13].

Since the C/C++ compiler always generates modules only in LLM format, the
START-EXECUTABLE-PROGRAM always must be used when linking and loading with
DBL.

With this command, object modules and LLMs can be processed. Alternative libraries to be
searched (runtime libraries and possibly other libraries) are assigned with the link name
BLSLIBnn (00 ≤ nn ≤ 99). This is done with the ADD-FILE-LINK command before the
linkage editor is called. For example:

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=PLAM.USER
/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE

To ensure that DBL searches these alternative libraries, the following entry must be made
in the RESOLUTION parameter of the START-EXECUTABLE-PROGRAM command:

..ALTERNATE-LIBRARIES=*BLSLIB##

DBL Linkage and program execution

172 U21283-J-Z125-8-76

The linkage run with DBL is initiated by means of the START-EXECUTABLE-PROGRAM or
LOAD-EXECUTABLE-PROGRAM command.
If the START-EXECUTABLE-PROGRAM command is used, the program is executed
immediately. With the LOAD-EXECUTABLE-PROGRAM command, however, you have the
option of entering additional commands (e.g. debugging commands).

/

LIB=library,ELEM=mainmod
DBL accesses the specified PLAM library. The name of the module containing the
main function must be specified as the element name.

RESOLUTION=*PARAMETERS (ALTERNATE-LIBRARIES=*BLSLIB##)
This entry is always required when LLMs are to be linked dynamically.

Load and start function of DBL

Any LLM that has been fully linked with BINDER (i.e. with all external references resolved)
can be loaded and started with DBL without assigning alternative libraries as follows:

START-EXECUTABLE-PROGRAM FROM-FILE=*LIBRARY-ELEMENT(*LIBRARY=library,
ELEMENT-OR-SYMBOL=module)

Recommended BLSLIBnn order for assigning CRTE libraries

1. C programs

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=user-library
/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE

2. Cfront C++ programs

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=user-library
/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE.CFCPP
/ADD-FILE-LINK LINK-NAME=BLSLIB03,FILE-NAME=$.SYSLNK.CRTE.CPP
/ADD-FILE-LINK LINK-NAME=BLSLIB04,FILE-NAME=$.SYSLNK.CRTE

START-EXECUTABLE-PROGRAM

LOAD-EXECUTABLE-PROGRAM
FROM-FILE=*LIBRARY-ELEMENT(LIBRARY=library,

ELEMENT-OR-SYMBOL=mainmod),
DBL-PARAMETERS=*PARAMETERS(RESOLUTION=
*PARAMETERS(ALTERNATE-LIBRARIES=*BLSLIB##))

Linkage and program execution DBL

U21283-J-Z125-8-76 173

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

3. ANSI C++ programs (using the Tools.h++ library)

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=user-library
/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=$.SYSLNK.CRTE.TOOLS
/ADD-FILE-LINK LINK-NAME=BLSLIB03,FILE-NAME=$.SYSLNK.CRTE.STDCPP
/ADD-FILE-LINK LINK-NAME=BLSLIB04,FILE-NAME=$.SYSLNK.CRTE.RTSCPP
/ADD-FILE-LINK LINK-NAME=BLSLIB05,FILE-NAME=$.SYSLNK.CRTE

BINDER Linking, loading and starting

174 U21283-J-Z125-8-76

4.1.2 Linking with BINDER

BINDER enables object modules and LLMs to be linked into an LLM and stored as a
type-L element in a PLAM library. BINDER is described in detail in the “BINDER”
manual [14].

Note that modules generated in the ANSI C++ modes of the compiler cannot be linked with
a direct call to BINDER. These modules can only be linked with the compiler statement
BIND (see also the section “Restriction on linking ANSI C++ programs” on page 178).

Control statements for BINDER (selection)

/START-BINDER ——— (1)

//START-LLM-CREATION INT-NAME=name ———————————————————————————————————— (2)

//INCLUDE-MODULES MOD-CONTAINER=*LIB(LIB=bibliothek,ELEM=) ——— (3)

[//INCLUDE-MODULES MOD-CONTAINER=*LIB(LIB=..., ELEM=...)] ————————————— (4)

[//INCLUDE-MODULES MOD-CONTAINER=*LIB(LIB=$.SYSLNK.CRTE.POSIX,ELEM=*ALL)]
(5)

[//RESOLVE-BY-AUTOLINK LIB=..., [SYMBOL-NAME=externverweis]] ————————————— (6)

[//RESOLVE-BY-AUTOLINK LIB=
] (7)

[//MODIFY-SYMBOL-VISIBILITY ..., VISIBLE=*NO] ————————————————————————— (8)

//SAVE-LLM MOD-CONTAINER=*LIB(LIB=library, ELEM=element) —————————————————— (9)

//END ——— (10)

(1) BINDER is invoked.

(2) This statement generates a new LLM with the internal name name in the work area.
The generated LLM is saved with the SAVE-LLM statement (see 9) as a type-L
element in a PLAM library.

mainmod

*ALL

([$.SYSLNK.CRTE.CFCPP,$.SYSLNK.CRTE.CPP,]
$.SYSLNK.CRTE)

([$.SYSLNK.CRTE.CFCPP,$.SYSLNK.CRTE.CPP,]
$.SYSLNK.CRTE.PARTIAL-BIND)

Linking, loading and starting BINDER

U21283-J-Z125-8-76 175

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

(3) mainmod is the name of the LLM that contains the main function.
library is the name of the PLAM library in which the object modules are stored. If
*ALL is specified, all the modules from the specified input source are linked.

(4) Further INCLUDE-MODULE statements can be used to link in additional modules
from various libraries.

(5) The library SYSLNK.CRTE.POSIX must always be linked if POSIX library functions
are used. Since this “linkage option” library must be linked with precedence before
the C runtime system, the INCLUDE-MODULES statement should always be used
for linkage.

(6) The RESOLVE-BY-AUTOLINK statements inform BINDER of the external refer-
ences (=module names) and the corresponding libraries (or only the libraries) that
are to be searched with the autolink mechanism for external references that are still
unresolved. RESOLVE-BY-AUTOLINK statements for user-defined libraries and
modules must always be specified before those for runtime libraries (see 7).

(7) The respective CRTE runtime libraries to be linked are specified in a list.

All modules of the C runtime system that are required by the program are linked in
permanently with a RESOLVE on the SYSLNK.CRTE library.

The RESOLVE on the library SYSLNK.CRTE.PARTIAL-BIND links in a connection
module instead of the C runtime system. All external references to the C runtime
system are satisfied from this module. The C runtime system itself is loaded dynam-
ically at runtime. The fully linked module requires far less disk storage space than
when statically linking C runtime modules from the library SYSLNK.CRTE.
Furthermore, the program executes faster.

If no RESOLVE-BY-AUTOLINK statement is specified, the external references to
the runtime system remain unresolved. The runtime modules are then dynamically
linked and loaded at runtime (see the section “Dynamic linking and loading with
DBL” on page 171).

(8) The MODIFY-SYMBOL-VISIBILITY statement can be used to mask external
symbols for subsequent linkage runs. The symbols remain visible by default. See
also “Masking symbols” on page 176.

(9) This statement stores the current LLM generated with START-LLM-CREATION as
a type-L element in a PLAM library.

(10) The END statement terminates the BINDER run.

BINDER Linking, loading and starting

176 U21283-J-Z125-8-76

In the INCLUDE-MODULES and RESOLVE-BY-AUTOLINK statements, LIB=*BLS-LINK
may also be specified instead of the library name (LIB=library). In this case, the libraries to
be searched must be assigned with the link name BLSLIBnn (00 ≤ nn ≤ 99). This is done
with the ADD-FILE-LINK command before BINDER is called. For example:

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=PLAM.USER1
/ADD-FILE-LINK LINK-NAME=BLSLIB02,FILE-NAME=PLAM.USER2

If all external references have been resolved, any LLM generated with BINDER can be
loaded and started with DBL without assigning alternative libraries as follows:

START-EXECUTABLE-PROGRAM *LIBRARY-ELEMENT(LIB=library,ELEM=modul)

Masking symbols

In contrast to TSOSLNK, symbols (CSECTs, ENTRYs) are not masked by default when
linking with BINDER and thus remain visible for subsequent linkage runs with BINDER or
DBL.

This affects dynamic linking with DBL and can, among other things, have the following
consequences:
If a PLAM library contains individual modules generated by the compiler as well as LLMs
with a linked-in runtime system, then external references to the runtime system will be
resolved from any prelinked module and not from the runtime library when the individual
modules are linked dynamically. This results in several “DUPLICATES” warnings from DBL.
Due to the autolink mechanism, the library in which the individual module resides is
searched first, before the runtime libraries assigned with the link name BLSLIBnn.

To ensure that external references are always resolved from the current runtime library at
link time rather than some arbitrary module,

– the individual modules and prelinked modules must be maintained in different libraries,

– or the symbols must be masked with the MODIFY-SYMBOL-VISIBILITY statement
when linking with BINDER.

Linking, loading and starting Shareable C/C++ programs

U21283-J-Z125-8-76 177

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

4.1.3 Shareable C/C++ programs

In the case of large programs, it is often advantageous to ensure that all individual program
sections to be accessed concurrently by several users (or tasks) are made shareable.

The following compiler option must be specified at compilation in order to generate
shareable programs:

//MODIFY-MODULE-PROP SHAREABLE-CODE=*YES

For each compilation unit, the compiler generates one LLM containing a non-shareable
data CSECT and a shareable code CSECT. The code CSECT is marked with the attribute
PUBLIC.

A subsequent linkage run creates a PUBLIC slice from the code CSECT and a PRIVATE
slice from the data CSECT.

The PUBLIC slice is declared shareable by the system administrator with the
ADD-SHARED command, and only the PRIVATE slice is subsequently loaded with the
START-EXECUTABLE-PROGRAM command.

Example

/START-CPLUS-COMPILER
//MOD-SOURCE-PROP LANG=*C
//MOD-MODULE-PROP SHAREABLE-CODE=*YES
//COMPILE SOURCE=MODUL1.C,MODULE-OUTPUT=*LIB-ELEM(LIB=A.TEST)
//COMPILE SOURCE=MODUL2.C,MODULE-OUTPUT=*LIB-ELEM(LIB=A.TEST)
//END

/START-BINDER
//START-LLM-CREATION INT-NAME=TEST,-
// SLICE-DEFINITION=BY-ATTRIBUTE(PUBLIC=*YES)
//INCLUDE-MODULES LIB=A.TEST,ELEM=(MODUL1)
//INCLUDE-MODULES LIB=A.TEST,ELEM=(MODUL2)
//SAVE-LLM LIB=B.TEST,ELEM=TEST
//END

/ADD-FILE-LINK LINK-NAME=BLSLIB01,FILE-NAME=$.SYSLNK.CRTE
/START-EXECUTABLE-PROGRAM FROM-FILE=*LIBRARY-ELEMENT(-
/ LIB=B.TEST,ELEM=TEST),-
/ DBL-PAR=*PAR(RESOLUTION=*PAR(ALTERNATE-LIBRARIES=*BLSLIB##))

Restrictions on linking ANSI C++ programs Linking, loading and starting

178 U21283-J-Z125-8-76

4.1.4 Restriction on linking ANSI C++ programs

It is only when using the BIND statement of the compiler that the correct linkage of an
ANSI C++ program can be guaranteed. This is because, among other things, the
automatic template instantiation by the prelinker is performed with the BIND statement
(see also page 244ff).

Program execution Parameter input

U21283-J-Z125-8-76 179

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

4.2 Program execution

4.2.1 Parameter input at program start
By default, a C/C++ program is executed immediately as soon as it is invoked with the
START-EXECUTABLE-PROGRAM command.
The PARAMETER-PROMPTING option of the MODIFY-RUNTIME-PROPERTIES
statement (see page 131) can be used to control whether the standard I/O files are to be
redirected before program execution and whether parameters can be passed to the main
function.

PARAMETER-PROMPTING = *NO

By default, the program is executed immediately after it is started with the
START-EXECUTABLE-PROGRAM command, i.e. without a preceding dialog step for the
input
of parameters. Only the name of the program is passed to the main function.

PARAMETER-PROMPTING = *YES

After it is started with the START-EXECUTABLE-PROGRAM command, the program
issues the message:

CCM0001 enter options :
*

The START-EXECUTABLE-PROGRAM or SRX command also enables the parameters to
be transferred at the same time:
/START-EXECUTABLE-PROGRAM..,PROGRAM-PARAMETERS=‘...‘

As in the command line of the UNIX operating system, one or more parameter lines can
now be used
– to redirect the standard I/O files for C (stdin, stdout ad stderr) and C++ (cin, cout,

cerr and clog; see page 180), and

– to pass parameters to the main function (see page 181).

To ensure that these parameters can be addressed in the program, the main function
must include two formal parameters, which are usually named argc (argument count)
and argv (argument vector). See page 183.

The individual entries (for redirection and main parameters) must be separated in the
parameter line by whitespace characters.

If one parameter line is not sufficient for the input, the line can be terminated with a
backslash (\), and the next parameter can be entered at the start of the following line. As
with the whitespace character, the backslash (\) is interpreted here as a delimiter between
two parameters (see also page 182 for further meanings of \).

Parameter input Program execution

180 U21283-J-Z125-8-76

Example

*par1 par2 par3\
*par4

Redirecting standard I/O files

At the start of program execution, the standard I/O files are assigned to the following
BS2000 system files:

stdin/cin SYSDTA

stdout/cout SYSOUT

stderr/cerr/clog SYSOUT

These default values can be modified in the parameter line. The dummy parameters input
and output must be replaced by currently applicable values.

<input
The standard input (stdin, cin) is to be read in from input.

>output
The standard output (stdout, cout) is to be written to output.
If the file already exists, it is overwritten; if not, it is created as a new file.

>>output
The standard output (stdout, cout) is to be appended to output.
If the file does not exist, it is created as a new file.

2>output
The standard error output (stderr, cerr, clog) is to be written to output.
If the file already exists, it is overwritten; if not, it is created as a new file.

2>>output
The standard error output (stderr, cerr, clog) is to be appended to output.
If the file does not exist, it is created as a new file.

The following current values can be inserted for input or output:

(SYSDTA)
designates the system file SYSDTA. This specification can only be used for input.

(SYSOUT)
(SYSLST)
designate the system files SYSOUT and SYSLST. These entries are only valid for
output.

Program execution Parameter input

U21283-J-Z125-8-76 181

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

filename
designates the name of a cataloged BS2000 file. This specification is valid for both input
and output.

*POSIX(filename)
filename designates the name of a POSIX file. This redirection specification is valid for
both input and output and is only possible if the POSIX link option library is linked (see
item 3 on page 36).

Files to be used as input files must already exist.

If an output file does not exist, it is created as a new file. If it already exists, it will either
be overwritten (> or 2>) or extended by the addition of new output (>> or 2>>).

Note
The redirection of standard I/O files affects all I/O functions that read from standard input or
write to standard output by default, as well as all functions that use the file pointers
stdin/stdout or the file descriptors 0/1 as arguments. No redirection takes place for I/O
operations on files that were explicitly opened with the names “(SYSDTA)”, “(SYSOUT)”, or
“(SYSTERM)”.

Input of parameters for the main function

Input data that is in the parameter line but does not serve to redirect the standard I/O files
(see page 180) is passed to the main function as parameters (i.e. actual arguments). In the
program, these parameters can be processed as strings that are terminated with the null
byte (\0).

In the explanation given below, the dummy parameters in italics must be replaced by
currently applicable values:

%pattern
All file names that correspond to the specified pattern are passed as parameters.

pattern is a fully or partially qualified file name with wildcard syntax.

For compatibility reasons, further parameters can also be specified in order to control
which files are selected, e.g.:

– file and catalog attributes (FCBTYPE, SHARE, etc.)

– creation and access date (CRDATE, EXDATE, etc.)

These parameters must be specified in the syntax of the ISP command FSTAT.

For example, the following specification supplies the names of all files that were created
today with the suffix .C.

%*.c,cr=t

Parameter input Program execution

182 U21283-J-Z125-8-76

string’ or "string"
string may contain any characters, including whitespace characters. These characters
are passed to the program in an unchanged state and without the delimiting quotes
(’ or "). If the single or double quote that is used as a delimiter appears in the string, it
must be preceded by a backslash (\). For example: ’\’quotation\’’ or "\"quotation\"".

The end-of-line character (\n) can also be passed to the program by terminating the
line (with a backslash) within the string and entering any further characters as well as
the closing quote in the continuation line. For example:
’Part 1\
Part 2’

other-parameters
The character or characters are passed to the program directly. Whitespace
characters and the backslash at the end of the line are treated as delimiters
between two parameters.

If characters with a special meaning when passing parameters (e.g. % or >) are to be
transferred to the program, they must be preceded by a backslash. In such a case, the
backslash is removed, and the character itself is transferred. This method can also be
used to cancel the special meaning of the backslash. Thus, \\ stands for a backslash
without special meaning.

To enable the transfer of lowercase letters via procedure parameters, any uppercase
letter that is preceded by a backslash is converted to the corresponding lowercase
letter.

Effect of the backslash (summary):

\letter
The letter is passed as a lowercase letter. This makes it possible to pass lowercase
letters even in cases where the BS2000 command interpreter automatically converts
lowercase into uppercase (e.g. in procedure parameters).

\end-of-line
Backslash immediately followed by end-of-line.

Outside quoted strings, the backslash is interpreted as a delimiter between two
parameters. Consequently, additional parameters can be entered in continuation lines.

Within quoted strings, the end-of-line loses its special meaning and is passed to the
program as an end-of-line character (\n).

\other-character
The backslash is removed, and the other-character is passed. This method can be used
to cancel the special meaning of specific characters.

Program execution Parameter input

U21283-J-Z125-8-76 183

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

Examples

Input: Passed parameters:

\AB\C "aBc"

%exp. All file names with the prefix EXP.

'string with \ "string with \nnewline"
newline'

Definition of the main function with parameters

Two formal parameters are required in the main function in order to enable the program to
address data that has been entered in the parameter line (see page 181):

int main(int argc, char *argv[])

The names of the parameters (argc, argv) may be freely selected, but these are the names
commonly used in the UNIX operating system.

The first parameter argc indicates the number of parameters that have been passed
(including the program name).

The second parameter argv is a pointer to an array of char pointers (strings). The program
name (in argv[0]) and all entered parameters are stored in it as strings that are terminated
with the null byte (\0).

Example

The following example outputs the program name and all entered parameters.

#include <stdio.h>

int main(int argc, char *argv[])
{
 int i;
 printf("Program name: %s\n", argv[0]);
 for (i=1; i<argc; ++i)
 printf("%d. parameter is: %s\n", i, argv[i]);
 return 0;
}

Interactive debugger AID Program execution

184 U21283-J-Z125-8-76

4.2.2 The advanced interactive debugger AID

C and C++ programs can be tested using the Advanced Interactive Debugger AID.

This User Guide only provides a brief description of AID. A complete description of the
debugger can be found in the manual “AID, Debugging of C/C++ programs” [9].

AID offers the following features:

● It enables “symbolic” debugging, i.e. symbolic names from the source program may be
specified in commands instead of hexadecimal addresses, provided LSD information is
generated during compilation and passed to the loaded program.

It is not always necessary to load this information for the complete program together
with that program. AID allows the LSD information to be dynamically loaded for each
translation unit if the associated object modules are stored with the LSD information in
a PLAM library. This means that resources can be used more efficiently:

– Program memory is freed, since LSD information needs to be loaded only when
required for debugging

– A program which is found to be error-free in the debugging session does not need
to be recompiled or relinked (without LSD information) before being used.

– If a program needs to be debugged when in productive use, the required LSD
information will already be available without having to recompile and relink the
program.

● It offers functions which, in particular, enable:

– program execution to be traced and logged on a symbolic level (TRACE function)

– program execution to be interrupted at fixed points or on the occurrence of defined
events so that AID or BS2000 commands (so- called “subcommands”) can be
executed

– the contents of variables to be output in a format that takes data definitions of the
source program into account

– the contents of variables to be changed

– call hierarchies to be traced even without LSD informations (%SDUMP %NEST).

● In addition to the diagnosis of loaded programs, it supports the analysis of memory
dumps in disk files.

● It can be used in batch mode and in interactive mode. Note, however, that the inter-
active dialog mode is recommended for debugging programs, since the sequence of
commands need not be defined in advance but can be adapted to suit the particular
situation.

Program execution Interactive debugger AID

U21283-J-Z125-8-76 185

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

The following types of symbols can be addressed in C:

– simple (scalar) types

– arrays and elements of arrays

– structures/unions and their components

– enumeration constants (enum)

– bit fields

– pointers

– functions

– labels

Note, however, that preprocessor constants and macros (#DEFINEs), typedef names,
enum, structure and union types (labels), and inline substituted functions cannot be
referenced.

In addition, the following types of symbols can be addressed in C++:

– functions and data elements within classes

– overloaded functions and operators

– references

– templates

– namespaces

Source references are used to refer to individual statement lines and block references to
the start of blocks:

S'[<UNIQUE-no.> -] <line-no.> [: <rel.statement-no.>]' or

BLK = '[<UNIQUE-no.> -] <line-no.> [: <rel.block-no.>]'

The UNIQUE number and line number also appear in the source/error listing.

Interactive debugger AID Program execution

186 U21283-J-Z125-8-76

Requirements for symbolic debugging

For debugging at symbolic level, AID enables variables to be addressed with the names
defined in the source program and source references to be used to refer to individual
statement lines. LSD information must be made available to AID for this purpose.

The generation and transfer of this information is controlled in each of the following steps
by specifying appropriate operands in the control statements or commands:

– compiling with the C++ compiler

– linking and loading with the dynamic binder loader

– linking with BINDER

– linking with the compiler statement BIND

Compiling with the C/C++ compiler

The generation of LSD information is controlled with the following option:

//MODIFY-TEST-PROPERTIES TEST-SUPPORT = *NO / *YES

*NO *NO is the default value, which means that the compiler does not generate LSD
information. Even without LSD information, it is possible to trace the call hierar-
chies. In other words, %SDUMP %NEST can always be used if the program is
aborted.

*YES The compiler generates LSD information.
However, this is only possible for non-optimized programs. If optimization happens
to be set (see the MODIFY-OPTIMIZATION-PROPERTIES statement), the
compiler treats the request for debugging support as the higher priority, switches
the optimization level to *LOW, and issues an appropriate message.

Program execution Interactive debugger AID

U21283-J-Z125-8-76 187

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

04

Linking, loading and starting

Once the LSD information has been generated during compilation, it is possible to

– load it together with the overall program or

– dynamically load it on request for each translation unit if the associated modules are
maintained in a PLAM library.

The table below shows which operands have to be specified in both cases in order to
transfer LSD information:

A program to be tested should be loaded with the LOAD-EXECUTABLE-PROGRAM
command so that AID commands can be subsequently entered.
A program that is to be processed with AID only if an error occurs can be loaded and started
with the START-EXECUTABLE-PROGRAM command.

Method of link-
ing/loading

Loading LSD information
with the overall program:

ynamic loading of LSD information
by AID (%SYMLIB):

Linking, loading
and starting with
DBL

LOAD-EXECUTABLE-PROGRAM ...,
 TEST-OPTIONS=*AID
or
START-EXECUTABLE-PROGRAM
...,
 TEST-OPTIONS=*AID

LOAD-EXECUTABLE-PROGRAM ...,
 [TEST-OPTIONS=*NONE]
or
START-EXECUTABLE-PROGRAM ...,
 [TEST-OPTIONS=*NONE]

Linking with
BINDER

START-LLM-CREATION ...,
 INC-DEF=*PAR(...,
 TEST-SUPPORT=*YES)
or
INCLUDE-MODULES ...,
 TEST-SUPPORT=*YES

START-LLM-CREATION ...,
 [INC-DEF=*PAR(...,
 TEST-SUPPORT=*NO)]
or
INCLUDE-MODULES ...,
 [TEST-SUPPORT=*NO]

Linking with the
BIND statement

MODIFY-BIND-PROP ...,
 TEST-SUPPORT=*YES

MODIFY-BIND-PROP ...,
 [TEST-SUPPORT=*NO]

Loading and
starting with DBL

LOAD-EXECUTABLE-PROGRAM ...,
 TEST-OPTIONS=*AID
or
START-EXECUTABLE-PROGRAM
...,
 TEST-OPTIONS=*AID

LOAD-EXECUTABLE-PROGRAM ...,
 [TEST-OPTIONS=*NONE]
or
START-EXECUTABLE-PROGRAM ...,
 [TEST-OPTIONS=*NONE]

Interactive debugger AID Program execution

188 U21283-J-Z125-8-76

Note on linking the C runtime systems

If the modules from the CRTE library SYSLNK.CRTE.PARTIAL-BIND are linked, and the C
runtime system itself is loaded dynamically only at runtime (which reflects the default setting
when linking with the BIND statement of the compiler), the following restriction applies when
debugging with AID: in the case of some program errors, e.g. due to invalid parameter
passing to C library functions, AID cannot display the call hierarchy fully, since the last
function before the error occurred may be missing. This restriction can be eliminated by
linking the C runtime system statically. The following entry is required for this purpose when
linking with the BIND statement of the compiler: MODIFY-BIND-PROPERTIES
STDLIB=*STATIC.

Name of the translation unit in the S qualification

For LLMs, the so-called “source module name” is specified. This name is derived from the
name of the source program by the C/C++ compiler as follows:

1. The <cat-id> and <user-id> name components, if present, are not used.

2. If the file or element name of the source program exceeds 32 characters, it is truncated
from the right to 32 characters.

If the source module name contains periods, it must be specified in the S qualification using
the n’name’ notation.

Example

The file name of the source program is HELLO.C.

The S qualification in the %TRACE command, for example, would be:
/%t 1 in s=n’hello.c’

U21283-J-Z125-8-76 189

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

05

5 Linkage to functions and languages
The C++ compiler complies with the conventions of the program communications interface
ILCS (Inter-Language Communication Services). In other words, it normally creates ILCS
objects at compilation.

These objects can be linked to objects in other languages, provided such objects also
comply with ILCS conventions.

A detailed description of the inter-language communication services (ILCS) and the general
conventions for linkage to other languages can be found in the CRTE User Guide [4].

This chapter contains supplementary details with respect to special conventions that must
be observed for linkage between C and C++ programs.

5.1 Linkage conventions specific to C and C++

Some of the specific conventions to be observed in C/C++ in addition to the ILCS
conventions described in the CRTE User Guide are outlined below.

Parameter passing “by value”

In C/C++, parameters are passed “by value” (as defined in the respective language
standards). The parameter list therefore contains the values of the individual parameters.
This form of parameter passing is possible only if all objects to be linked are C and C++
objects.

The internal structure of the parameter list is described in the section “Implementation-
defined behavior based on the ANSI/ISO C standard” on page 216.

The following points must be noted with respect to the passing of floating-point numbers
when specifying linkage from K&R C to ANSI C or C++ objects:
In K&R mode, float values are always passed as double. In ANSI C mode, float values
are only passed as double if no prototype declaration exists; otherwise, they are actually
passed as float values.
In C++ mode, float values are always passed unconverted.

Linkage conventions specific to C and C++ Linkage to functions and languages

190 U21283-J-Z125-8-76

The proper transfer of floating-point numbers between K&R C and ANSI C or C++ can only
be guaranteed if floating-point numbers are declared double in the ANSI C or C++
program.

The following measures are necessary for linkage to objects in other languages:

– When a routine in some other language is called, the address of the data element to be
transferred must be specified (e.g. &par). Technically speaking, the address of the data
element is then passed “by value”.

– If a C/C++ routine is called from a routine in another language, the formal parameters
in C and C++ must be declared as pointers to the data elements to be transferred, e.g.
f(T *par).

Passing function return values

In the case of a structure function, the result structure is copied to the parameter list, and a
pointer to the parameter list is supplied in R1.

Linkage to functions and languages Linkage between C and C++

U21283-J-Z125-8-76 191

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

05

5.2 Linkage between C and C++

The C programming language is the foundation for C++. One of the main advantages of
C++ is that libraries written in C can also be easily used.

External names, however, are handled differently in C and C++ implementations. In
contrast to C, external names in C++ are coded for the linkage editor.

To enable the common use of functions and data in C++ and C (or other languages), the
coding of external names must therefore be suppressed. The appropriate language
element in C++ for this purpose is as follows:

extern "C" declaration;

or

extern "C" {
 declarations
}

The above extern “C” declarations are required in the C++ program for all functions and
data that are defined in C++ as well as those which are defined in C (or other languages).

When standard C library functions are called from C++ source programs, only the corre-
sponding standard header elements (e.g. stdio.h) need to be specified, since they already
contain the extern “C” declarations for all C library functions.

To provide linkage between C and C++, only ANSI C objects should be used.
Linkage between C++ objects and K&R C objects is also technically possible, but may
create problems in some cases (different restrictions apply to function declarations; float
parameters are passed differently, etc.).

Linkage between C and C++ Linkage to functions and languages

192 U21283-J-Z125-8-76

5.2.1 Common types

In order to use data and functions in C and C++, they must have the same or comparable
types. C++ contains the same set of basic data types as C; however, since C++ is a true
superset of C, it also contains more types than C.

The following C++ types may be used for linkage between C++ and other languages:

– fundamental types: char, short, int, long, float, double, long double, void

– qualifiers: unsigned, const, volatile

– pointers to common types

– arrays of common types (passed as pointers)

– structures and unions
These must not contain the following components in C++: member functions,
constructors, destructors, base classes, and access specifiers. The structure and
union components must have common types, i.e. must be syntactically identical.

– enumerations

– functions with common argument and result types
Ellipses (...) are permitted.

The following C++ types must not be used if linkage to other languages is required:

– reference types

– pointers to members of classes, unions, or structures

– classes

– structures and unions containing member functions, constructors, destructors, base
classes, or access specifiers

– types defined locally in a class

– member functions

– templates

Linkage to functions and languages Linkage between C and C++

U21283-J-Z125-8-76 193

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

05

5.2.2 Calling C functions in C++

C functions can be used in C++ without any problems, provided each C function is declared
in C++ with an extern “C” directive and its complete prototype.

Example:

C source:

/* file = C_file.c */

int error_level;

void error(int number, char *text)
{
 printf("Error %d, Reason: %s\n", number, text);
}

C++ source:

// file = C++_file.C

extern "C" int error_level;
extern "C" void error(int, char *);

int main(void)
{
 error_level = 100;
 error(error_level, "TEST");
 return 0;
}

The C++ source contains extern “C” declarations for all the C identifiers used in it.

Linkage between C and C++ Linkage to functions and languages

194 U21283-J-Z125-8-76

5.2.3 Calling C++ functions in C

C++ functions can be used in C only if they have a type that can also be represented in C.

Depending on whether or not the C++ source is available, there are different ways to
achieve linkage between functions.

If the C++ source code is available, the C++ function can be declared there with an
extern “C” directive; however, it must be declared with extern “C” in every C++
source fragment that calls the function!
In the calling C source code, a “plain” extern declaration is required for the C++ function.

If the C++ source is not available or a general new declaration and recompilation is too
cumbersome, an additional function level can be inserted. This is done by writing a
so-called “wrapper” function in C++ and defining it as extern “C”. The wrapper function
can then be called in C without restrictions.

Example

C++ function to be called:

int hidden(int i)
{
 // ...
}

Wrapper function:

extern int hidden(int);

extern "C" int wrapper(int i)
{
 return hidden(i);
}

C source fragment that calls the wrapper function:

extern int wrapper(int);

int main(void)
{
 printf("%d\n", wrapper(100));
 return 0;
}

This technique can also be used if a C++ function contains a parameter with a type that
does not directly match a C type. In the case of a C++ function with a reference type
parameter, for example, a wrapper function with a parameter of type pointer could be written
and called instead.

Linkage to functions and languages Linkage between Cfront C++ and ANSI C++

U21283-J-Z125-8-76 195

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

05

5.2.4 Problems and restrictions

The combined usage of C and C++ in a program system is subject to the following
restrictions:

– Free store management

The new and delete operators in C++ provide a separate facility for free store
management. Storage space management in C, by contrast, is achieved by the
functions malloc and free. These two methods must not be combined.

The effect of using delete to free storage that was requested with malloc (or using
free on storage that was requested with new) is undefined.

– Standard I/O files

C++ offers a new interface for file processing. The C++ standard files cin, cout, cerr
and clog correspond to the standard I/O files stdin, stdout and stderr in C.

Note that if the corresponding standard files are used in both C and C++, the behavior
of the program cannot be guaranteed.

If the standard I/O files for C and C++ are to be used in combination in the same C++
program, the C++ function ios::syn_with_stdio()must be called (see the manual
“C++ Library Functions” [5]).

5.3 Linkage between Cfront C++ and ANSI C++

It is not possible to combine Cfront C++ modules with ANSI C++ modules.

Linkage to other ILCS languages Linkage to functions and languages

196 U21283-J-Z125-8-76

5.4 Notes on linkage to ILCS programs in other languages

Linkage to C++

In C++, external names are encoded for the link editor (BINDER).

If a combination of functions and data in C++ and some other ILCS language is being used,
the encoding of external names must be suppressed. The C++ language construct for this
purpose is:

extern "C" declaration;

or

extern "C" {
 declarations
}

Note that extern "C" declarations are needed in the C++ program not only for the data and
functions defined in C++, but also for those defined in the other ILCS language.

Shared file processing

Shared files must be opened both in the C/C++ section and in the other language section.
Control over their processing is implemented internally via different FCBs.

Since processing of a shared file is accomplished using different FCBs, alternate reading
of the file into the C section and the other language section is not possible. All characters
of the file are supplied both to the C section and to the other language section.

Calling the main function

Calling a main function is possible. MAIN must be then used as the entry address.
If there are several modules with main functions in a library, the desired main function can
be selected by explicitly linking in the appropriate module (by using an INCLUDE statement
instead of RESOLVE).

It is not possible to redirect the standard I/O files or pass parameters to the main function.

Linkage to functions and languages Linkage to other ILCS languages

U21283-J-Z125-8-76 197

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
8

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

05

Shared STXIT event handling

ILCS distinguishes between implicit language-specific event handling and event handling
that can be enabled and disabled explicitly.
Implicit language-specific event handling is restricted to the STXIT events ERROR and
PROCHK, while explicit enabling and disabling is possible for all STXIT events.

STXIT routines explicitly enabled by routines in different languages are managed in
parallel, i.e. when an event occurs, the enabled routines of all languages involved are called
(in the order in which they were enabled).
Implicit event handling is rendered ineffective by an explicitly enabled routine.

C/C++ has no implicit language-specific event handling. Explicit enabling and disabling is
possible using the C library functions signal and cstxit.
Enabling event handling routines for the STXIT event classes ERROR and PROCHK
causes implicit event handling by other languages to be deactivated. On exiting from the
C/C++ language environment, the event handling routines for ERROR and PROCHK
should therefore be explicitly disabled in order to reactivate implicit event handling by other
languages.
With the C library function signal, the routines are disabled by assigning SIG_DFL.

Linkage to other ILCS languages Linkage to functions and languages

198 U21283-J-Z125-8-76

U21283-J-Z125-8-76 199

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

6 C language support of the compiler
The compiler supports the C language scope as defined by Kernighan & Ritchie as well as
the ANSI/ISO standard (including the ISO C Amendment 1).

The Kernighan & Ritchie definition is documented in:

“The C Programming Language” by B.W. Kernighan and D.M. Ritchie, First Edition,
Prentice Hall, 1978

The ANSI/ISO definition is documented in:

“The C Programming Language” by B.W. Kernighan and D.M. Ritchie, Second Edition,
Based on Draft-Proposed ANSI C, 1988, Prentice Hall, ISBN 0-13-110362-8

“American National Standard for Information Systems - Programming Language - C”
X3.159-1989, Doc. No. X3J11/90-013, February 14, 1990 and
“International Standard ISO/IEC 9899 : 1990, Programming languages - C”

The ISO C Amendment is documented in:

“International Standard ISO/IEC 9899 : 1990, Programming languages - C /
Amendment 1 : 1994”

The following sections, which are intended as a supplement to the vendor-independent
literature listed above, describe the implementation and machine-specific characteristics of
this compiler and the various extensions to the standard C language definitions above.

Section 6.1 compares the C language modes of the compiler and points out the most
important differences between them.
Section 6.2 describes implementation-defined behavior based on the ANSI/ISO standard.
Section 6.3 describes the C language extensions to the definition in the ANSI/ISO standard.
Section 6.4 describes the #pragma directives supported by this compiler.

Overview of the C language modes C language support of the compiler

200 U21283-J-Z125-8-76

6.1 Overview of the C language modes

In accordance with the different language standards defined for C, the compiler supports
three C compilation modes:

K&R C mode (POSIX option -X t, SDF option MODE=KERNIGHAN-RITCHIE)
The compiler accepts C code based on the language definition by Kernighan & Ritchie
as well as some ANSI-specific extensions.

Extended ANSI C mode (POSIX option -X a, SDF option MODE=ANSI) or
strict ANSI C mode (POSIX option -X c, SDF option MODE=STRICT-ANSI)

The compiler accepts C code based on the ANSI/ISO definition.

The following table contains an overview of the language elements defined in the ANSI/ISO
C standard and indicates which of those elements are supported in the K&R and ANSI C
modes.

Key to the entries in the table:

X Fully supported

XE Extension to ANSI/ISO C that is fully supported in strict ANSI C mode, but
results in a warning

o Supported syntactically, but not semantically

- Not supported
1) to 9) Notes at the end of the table

C language support of the compiler Overview of the C language modes

U21283-J-Z125-8-76 201

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

C language elements Language definition Compilation mode
ANSI / ISO K&R extended ANSI strict ANSI K&R

Lexical elements

Multibyte characters X - X X X

Trigraph sequences
 ??= #
 ??([
 ??/ \
 ??)]
 ??’ ^
 ??< {
 ??! |
 ??> }
 ??- ~

X - X X -

Digraph sequences 1)

 <: [
 :>]
 <% {
 %> }
 %: #
 %:%: ##

X - X X X

Escape sequences
 \a
 \b
 \f
 \n
 \r
 \t
 \v
 \’
 \"
 \?
 \\
 \ octdigits
 \ x hexdigits

X
X
X
X
X
X
X
X
X
X
X
X
X

-
X
X
X
X
X
-
X
-
-
X
X
-

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

-
X
X
X
X
X
X
X
X
X
X
X
X

Lengths of identifiers
 internal
 external

31
 6

 8
<8

all characters are significant
30/32

Keywords 2)

Overview of the C language modes

Overview of the C language modes C language support of the compiler

202 U21283-J-Z125-8-76

Constants
 integer
 float
 character
 L' character'
 string
 L"string"
 enum
Suffixes
 integer L,l
 integer U, u
 integer LL, ll 3)
 float F, f
 float L,l

X
X
X
X
X
X
X

X
X
-
X
X

X
X
X
-
X
-
X

X
-
-
-
-

X
X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X
X
X

X
X

XE
X
X

X
X
X
X
X
X
X

X
X
X
X
X

Data type declarations
Type specifiers
 void 4)

 void * 4)

 char
 short
 int
 long
 long long 5)
 float
 double
 long double
 signed
 unsigned
 array []
 structure 6)

 union 6)

 (*)
 enum
 ()

X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X

-
-
X
X
X
X
-
X
X
-
-
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X

XE
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Type qualifiers
 const
 volatile

X
X

-
-

X
X

X
X

o
o

Initialization
 auto aggregate X - X X X

C language elements Language definition Compilation mode
ANSI / ISO K&R extended ANSI strict ANSI K&R

Overview of the C language modes

C language support of the compiler Overview of the C language modes

U21283-J-Z125-8-76 203

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

Storage classes
 typedef
 extern
 static
 auto
 register

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

Bitfield types
 int
 signed int
 all integral

X
X
-

X
X
-

X
X
X

X
X

XE

X
X
X

Conversion rules 7)

value preserving X - X X -

sign preserving - X - - X

Functions
Definition “old” 8) X X X X X

Definition “new“ X - X X X

Prototyping 9) X - X X o

Parameter type 10)

matching
X - X X -

Preprocessor directives
(stringizing) X - X X X

(token pasting) X - X X X

#assert / #unassert - - X XE X

#define X X X X X

defined X - X X X

#elif X - X X X

#else X X X X X

#endif X X X X X

#error X - X X X

#include X X X X X

#if X X X X X

#ifdef X X X X X

#ifndef X X X X X

#ident - - o o o

C language elements Language definition Compilation mode
ANSI / ISO K&R extended ANSI strict ANSI K&R

Overview of the C language modes

Overview of the C language modes C language support of the compiler

204 U21283-J-Z125-8-76

#line X X X X X

#line (old style) - X X XE X

#pragma X - X X X

#undef X X X X X

(null directive) X - X X X

Predefined macro names
 __LINE__
 __FILE__
 __DATE__
 __TIME__
 __STDC__
 __STDC_VERSION__ 11)

X
X
X
X
X
X

-
-
-
-
-
-

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
-

C language elements Language definition Compilation mode
ANSI / ISO K&R extended ANSI strict ANSI K&R

Overview of the C language modes

C language support of the compiler Overview of the C language modes

U21283-J-Z125-8-76 205

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

Notes

1) Digraph sequences

Digraph sequences are defined in the ISO C Amendment 1 and are recognized in the
C compilation modes only if the POSIX option -K alternative_tokens or the
SDF option ALTERNATIVE-TOKENS=*YES is set.

2) Reserved keywords

The asm keyword is reserved in K&R mode and in extended ANSI mode. However,
since the inline substitution of Assembler code is not yet supported, the use of this
keyword will result in an error. The asm keyword is not reserved in the strict ANSI C
mode.

3) Suffixes: LL, ll

These suffixes are an extension to ANSI/ISO C Standard. The identify integer constants
of type long long (see page 219).

4) void

The type void signifies an empty set of values. It can be used in the following three
ways:

1. Result type of functions which do not return a value.

2. A pointer to void points to an object of any data type.

3. The number of parameters and the data types of the parameters can be specified
in a function declaration (see Prototyping). If void is used instead of the parameter
list, then no parameters are defined.

asm continue extern long static void
auto default float register struct volatile
break do for return switch while
case double goto short typedef
char else if signed union
const enum int sizeof unsigned

Overview of the C language modes C language support of the compiler

206 U21283-J-Z125-8-76

5) Data type long long

This data type is an extension to the ANSI/ISO C Standard (see page 219).
long long is also supported in K&R mode.

6) structure, union

In accordance with ANSI C, structures and unions may be mutually assigned (if of the
same type), passed to functions as parameters, and returned as exit values of
functions.
These options are also supported in K&R mode.

7) Implicit arithmetic conversions

One important difference between ANSI and K&R lies in the area of implicit arithmetic
conversions.

In K&R mode, operands of an expression are converted using the “unsigned-
preserving” rule, i.e. extending an operand of type unsigned char or unsigned short
produces a result of type unsigned int. If unsigned types appear in an expression
together with other types, the result is always unsigned.

In ANSI mode, by contrast, the “value-preserving” rule applies, i.e. the result type
depends on the size of the operand type. Extending an operand of type unsigned
char or unsigned short thus produces a result of type int if int is large enough to
represent all values of the smaller type. Otherwise, the result is an unsigned int.

Due to this difference, the results of arithmetic expressions could differ in some cases
and thus lead to erratic program behavior. This must be taken into account when
moving from K&R C to ANSI C.

8) Definition of functions

In contrast to K&R, ANSI has introduced a new syntax for the definition of formal
function parameters, but also allows the “old-style” (K&R) syntax.
Both definition types are also supported in K&R mode.

9) Prototyping

In contrast to K&R, ANSI defines function prototypes. These are function declarations
in which the number and types of individual parameters are also specified. This enables
the compiler to compare the types of current parameters with those of formal param-
eters in the declaration and to adapt them to the formal parameters as required.

Prototype declarations are syntactically allowed in K&R mode, but have no semantic
significance.

C language support of the compiler Overview of the C language modes

U21283-J-Z125-8-76 207

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

10) Parameter type matching

The advantage of prototyping is that the parameters specified in the function declaration
are not subject to standard conversion rules. A parameter that is declared there as
float will also be passed as float, without first being converted to double. If K&R
and ANSI objects are to be combined, floating-point parameters should always be
declared double.

The automatic matching of parameter types is only supported in ANSI modes.

11) __STDC_VERSION__

This preprocessor macro is defined in the ISO C Amendment 1 and has the value
199409L in the extended and strict ANSI modes. It is not defined in K&R mode.

Implementation-defined behavior C language support of the compiler

208 U21283-J-Z125-8-76

6.2 Implementation-defined behavior based on the
ANSI/ISO C standard

Identifiers

In principle, both internal and external names can have any length. In the case of internal
names, all characters are significant. For external names, the compiler evaluates a
maximum of 32 characters by default (see the rules below). In accordance with ANSI/ISO
C, the following characters are allowed when constructing names: the digits 0 to 9, the
uppercase letters A to Z, the lowercase letters a to z, and the underscore _. Furthermore,
as an extension to ANSI/ISO C, the “dollar” character $ and the “at” sign @ are also allowed
in names by default, but this can be turned off with the appropriate options (-K no_dollar,
-K no_at and DOLLAR-ALLOWED=*NO, AT-ALLOWED=*NO).
Multibyte characters are not supported in identifiers.

The following applies to external names:

– By default, i.e. when the options -K c_names_std and C-NAMES=*STD are set,
external names can have a maximum length of 32 characters. Longer names are
truncated by the compiler to 32 characters.
Up to 30 characters may be used when generating shared code (with the -K share
and SHAREABLE-CODE=*YES options).

If the options -K c_names_unlimited and C-NAMES=*UNLIMITED are set, no name
truncation occurs. The compiler generates entry names in the EEN format. EEN names
can have a maximum length of 32000 characters.

– By default, lowercase letters are converted to uppercase, and underscores (_) are
converted to the dollar character ($). These conversions can be suppressed by
specifying the appropriate options (-K llm_case_lower, -K llm_keep or LOWER-
CASE-NAMES=*YES, SPECIAL-CHARACTERS=*KEEP) so that lowercase letters
and underscores are retained in external names.

– External names must not begin with “I”.

The above rules also apply to external names that are declared as extern "C" in C++ and
also for static functions.

C language support of the compiler Implementation-defined behavior

U21283-J-Z125-8-76 209

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

main function

The compiler allows the return types int and void for the main function.

Two formal parameters are provided for the main function to allow arguments to be passed
to a program in a call:

int main(int argc, char *argv[])

The first parameter argc shows the number of passed arguments. Since the first argument
argv[0] is conventionally the program name, the number of arguments is at least 1.

The second parameter argv is a pointer to an array of strings. It holds the program name
(in argv[0]) and all arguments entered in the program call in the form of strings terminated
with the null byte (\0).

As an extension to ANSI/ISO C, it is also possible to declare a third parameter
char *envp[] for the main function (see page 219).

More details on passing parameters to main functions can be found in the section “Input of
parameters for the main function” on page 181.

Characters

By default, the data type char is treated as unsigned by the compiler (see also the
-K uchar, -K schar and SIGNED-CHARACTER=*NO/*YES options).

The value of an EBCDIC character is always positive.
The value of ’\377’ (octal) or ’\xFF’ (hexadecimal) is thus 255.
If a character constant contains a numeric value that is not included in the EBCDIC
character set, behavior is undefined.

The value of a character constant that contains more than one character (e.g. ’ab’) is
computed from the EBCIC value of the character as a number to the base 256. The first
(right) character is multiplied by 1, the second character by 256, the third character by
256 * 256, the fourth character by 256 * 256 * 256.
For example, ’abcd’ produces the value ’a’ * 2563 + ’b’ * 2562 + ’c’ * 256 + ’d’
(= 2172814212).

The value of a multibyte character constant in the form L’ab’ is identical to the value of a
character constant in the form ’ab’ in this implementation.

If a character constant contains five or more characters, an error occurs, and no code is
generated.
The assignment of int to char occurs modulo 256.

Implementation-defined behavior C language support of the compiler

210 U21283-J-Z125-8-76

Multibyte characters

In this implementation, multibyte characters always have a length of 1 byte, and
wchar_t values are always 32-bit integer values.

Pointers

A pointer is represented in 4 bytes and is aligned on a word boundary. The difference
between two pointers is of type int (ptrdiff_t).

Arrays

In C, arrays always have fixed limits; the size of an array is thus already known at compile
time. An array name in C is always treated as a pointer that points to the first element of the
array.

The elements are sequentially stored in memory; the first element has the index zero. In the
case of multi-dimensional arrays, the elements are stored in memory in such a way that the
last index is the first to vary. Like the array itself, each element is aligned in accordance with
the element type.

Structures

In structures, components occupy space in the order of their declaration. Each component
is aligned in accordance with its type. The structure itself is aligned on the maximum
alignment size required for a component. The size of the structure is a multiple of this
alignment so that arrays can be constructed from these structures. See also “Internal repre-
sentation of data types (alignment and representation in registers)” on page 215 and the
preprocessor directive #pragma aligned on page 223.

Example

 Size: Alignment: Offset:

struct { char a; 1 byte byte boundary 0 (word boundary)
 short b; 2 bytes half-word boundary 2
 char c; 1 byte byte boundary 4
 long d; 4 bytes word boundary 8
 char e; 1 byte byte boundary 12
 }; 16 (structure end)

a ////// b c ////////////////////// d e //////////////////////

0 1 2 4 5 8 12 13 16

C language support of the compiler Implementation-defined behavior

U21283-J-Z125-8-76 211

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

Bitfields

Bitfields are stored from left to right in a maximum of 32 bits (one word).

Bitfields can be defined as follows:

int unsigned int signed int
long unsigned long signed long
short unsigned short signed short
char unsigned char signed char

Bitfields without the unsigned or signed keyword are represented in accordance with the
base type, i.e. char as unsigned and int, long and short as signed. If signed or
unsigned is specified explicitly, the bitfields are represented accordingly. This default
behavior can be modified by means of the following options:
-K schar , -K signed_fields_unsigned and -K plain_fields_unsigned or
SIGNED-FIELDS=*UNSIGNED, PLAIN-FIELDS=*UNSIGNED,
SIGNED-CHARACTER=*YES.

If the bitfield fits in the current byte, half-word, word or double-word, the specified number
of bits are placed in it without being aligned; otherwise, the bitfield is aligned on a byte, half-
word, word or double-word boundary in accordance with its base type (see example below).

Example

struct
{
 unsigned short a : 7;
 unsigned short b : 5;
 unsigned short c : 5;
 unsigned short d : 8;
} x;

0 15

x.a x.b

x.c x.d

Implementation-defined behavior C language support of the compiler

212 U21283-J-Z125-8-76

Enumerations (enum)

Without an explicit value assignment, the numbers 0, 1, etc. are sequentially assigned to
the constants when an enumeration type is defined. If a value is explicitly assigned to a
constant, the following constants automatically receive a correspondingly higher value.

By default, an enumeration type is represented as char, short or long, depending on the
threshold limits (highest and lowest values). Regardless of the actual storage space
requirements, enum data can always be represented as long by using the -K enum_long
or ENUM-TYPE=*LONG compiler options .

Type qualifier volatile

volatile prevents optimization on accessing a variable. This means that instead of using
the old contents, new values are always read from storage. For all assignments, including
redundant ones, the appropriate value is directly written to storage. In contrast to
non- volatile objects, which are subject to extensive optimization and are typically held
in registers, the implementation guarantees that all references to volatile objects will
always point to values in storage.

volatile is only accepted syntactically in K&R mode.

size_t

In this implementation, size_t corresponds to unsigned int.

ptrdiff_t

In this implementation, ptrdiff_t corresponds to int.

Conversion of data types

– integer --> integer

When an unsigned integer value is converted to a signed integer type of the same size,
the bit pattern is retained. If the value cannot be accommodated, the result corresponds
to the subtraction of the largest possible number + 1 from the given size.

If a conversion of an integer value to a smaller integer type is involved, and the value
cannot be accommodated, the bit pattern is retained and the higher-valued bits are
truncated.

C language support of the compiler Implementation-defined behavior

U21283-J-Z125-8-76 213

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

– floating-point number --> integer

When a floating-point number is converted to an integer, the number is truncated toward
zero.

Example

(int)(-1.5) is -1

(int)(1.5) is 1

The result is undefined if the floating-point number to be converted is too large to be
represented as an integer value.

– integer --> floating-point number

The conversion of an integer to a floating-point type that cannot accept the correct value
is accomplished by rounding.

– floating-point number --> floating-point number

The conversion of a floating-point number to a smaller floating-point number (e.g.
double to float) is accomplished by rounding.

– integer <--> pointer

When an integer is converted to a pointer, and vice versa, the bit pattern is not changed
(simple reinterpretation).

Sign of division remainder

The remainder of an integral division always has the same sign as the dividend.

Example

(-5) / 2 is -2, (-5) % 2 is -1
5 / (-2) is -2, 5 % (-2) is 1

Logical and arithmetic right shift

If the left operand is unsigned, the right shift is logical (padding of 0 bits); otherwise, arith-
metic (padding of signed bits).

Example

(-8) >> 1 is -4

Bitwise operations on signed integer values

Bitwise operations (operators ~, <<, &, ̂ , and |) are executed as unsigned integers on inter-
pretation; however, the result is signed.

Implementation-defined behavior C language support of the compiler

214 U21283-J-Z125-8-76

Declarators

Any number of declarators may be used to declare a type.

switch statement

Any number of case branches may be used per switch statement.

Preprocessor directives

– #include

#include directives cannot be specified with a sequence of <name> or “name” headers.
Only the first name is accepted.

The compiler accepts #include directives in which the names of headers contain
slashes (/) for directories even in the case of PLAM library elements. Every slash in the
names of user-defined and standard headers is internally converted to a period for the
search in PLAM libraries.
Consequently, in source programs which are ported out of POSIX or UNIX system, for
example, the slashes need not be converted to periods.

Example

#include <sys/types.h>

The compiler looks for the standard header SYS.TYPES.H in the CRTE library
$.SYSLIB.CRTE.

There are no restrictions with respect to the nesting of header files.

– #pragma

See the section “Pragmas” on page 223.

– _ _DATE, _ _TIME_ _

If the date and time of compilation are not available, these macros are defined as
follows:

_ _DATE_ _ "Jan 1 1970"
_ _TIME_ _ "01:00:00"

C language support of the compiler Implementation-defined behavior

U21283-J-Z125-8-76 215

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

Size and value ranges for elementary data types

*) The data type long long is an extension to the ANSI/ISO C Standard; see also
page 219.

Internal representation of data types (alignment and representation in registers)

This section illustrates how individual C data types are internally represented in memory.

For scalar types, additional details are provided on their representation in registers. On the
one hand, this defines how the variables are represented with the register storage class;
on the other, it illustrates how the value of such a variable is interpreted in expressions.

Type Bit Value ranges
char
signed char
short
unsigned short
int
unsigned int
long
unsigned long
long long *)
unsigned long long *)
float
double
long double

 8
 8
16
16
32
32
32
32
64
64
32
64
124

0 .. 255
-128 .. 127
-32768 .. 32767
0 .. 65535
-2147483648 .. 2147483647 (-231 .. 231-1)
0 .. 4294967295 (0 .. 232-1)
same as int
same as unsigned int
-9223372036854775808 .. 9223372036854775807 (-263.. 263-1)
0 .. 18446744073709551615 (0 .. 264-1)
10-75 .. 0.79*1076

same as float
same as float

Data type Size Alignment Representation in registers
char, unsigned char,
signed char

1 byte byte boundary right aligned

short, unsigned short 2 bytes half-word boundary right aligned

int, unsigned int 4 bytes word boundary as in memory

long, unsigned long 4 bytes word boundary as in memory

long long, unsigned long long 8 Byte double-word
boundary

no representation in registers

pointer 4 bytes word boundary as in memory

float 4 bytes word boundary left aligned

double 8 bytes double-word
boundary

no conversion is required for
representation

long double 16 bytes double-word
boundary

represented by a pair of floating-
point registers

Implementation-defined behavior C language support of the compiler

216 U21283-J-Z125-8-76

Implementation-defined limits

Most limits depend on the available system resources (e.g. on virtual memory). Only the
following limits are implementation-defined:

Storage classes

This section summarizes how storage space is assigned to variables, depending on their
storage class.

Storage class register

Variables can be declared as register variables with register. This is a hint to the compiler
that the variables are used relatively often and should therefore be held in registers. This
saves the high overhead of accessing storage when reading and writing such variables.
Note, however, that the optimization mechanism of the compiler may ignore such hints and
implement variables as register variables in accordance with its own algorithm.

Storage class auto (default)

Storage space is reserved in an Automatic Data Area for local variables with the
(predefined) storage class auto.

Data type Size and alignment
Enumerations Represented as char, short or long with corresponding alignment,

depending on limits.

Arrays Size and alignment correspond to element type.

Structures Size and alignment for individual components based on above rules;
overall alignment based on maximum alignment for components.

Bitfields If the alignment boundary for the base type is not exceeded, the
specified number of bits is created without alignment; otherwise, the
bits are aligned in accordance with the base type.

Characteristic Maximum value
Number of parameters in a macro definition 224-1

Number of arguments in a macro call 224-1

sizeof limit 231

C language support of the compiler Implementation-defined behavior

U21283-J-Z125-8-76 217

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

Parameters in the parameter list

Function parameters are passed in the order of their appearance in a parameter list.

All unsigned... parameters are represented as unsigned; all other integer parameters
(char, short) as int: right-justified in one word each, aligned on a word boundary, and
padded on the left with sign bits (int) or zeros (unsigned...) where necessary. Pointers
occupy one word.

Depending on the language mode, floating-point numbers are passed differently.
In K&R mode, floating-point numbers (float, double) are always passed in double
precision, i.e. as a double-word aligned on a double-word boundary.
In ANSI mode, float values are passed in double precision only if no prototype declaration
is present. Otherwise, float values are passed in single precision, i.e. as a word aligned
on a word boundary.
In C++ mode, float values are always passed in single precision, since prototype
declarations must be present.

long double is passed in two double-words, aligned on a double-word boundary.

Structure parameters are aligned on a word or double-word boundary as required. The size
of a structure is padded in accordance with the maximum alignment requirement for a
component. For example, if a structure contains only short and char components, the size
will be a multiple of 2 bytes.

Arrays cannot be passed as values. A pointer to the first array element is passed.

Static variables

The compiler reserves storage space for the following types of static variables already at
the time of compilation:

● local static variables

● global static variables

● global external variables

The difference between these storage classes lies in their scope:

– Local static variables are variables that are defined with the static storage class
specifier within a function. They are only recognized in the function in which they are
defined.

– Global static variables are variables that are defined with the static storage class
specifier outside a function. They are only recognized within a compilation unit.

– Global external variables are variables that are defined outside a function without the
static storage class specifier. These variables can also be accessed in other compi-
lation units, provided they are declared there with the extern storage class specifier.

Implementation-defined behavior C language support of the compiler

218 U21283-J-Z125-8-76

Functions without a prototype

If a function without a prototype is called and there is parameter information present, then
an error may be output in some cases. An error is output when an “old style” definition or a
prototype in the K&R mode is found.

If the argument and the parameter are of different types (according to their customary type
extensions) and one of the following arises, then an error is output:

– Parameter and argument are of different sizes

– Parameter and argument have different alignments

– The parameter is of type float, double or long double

– The argument is of type float, double or long double

The error can be downgraded to a warning. If this is done, the call made at runtime will
generally fail.

C language support of the compiler Extensions

U21283-J-Z125-8-76 219

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

6.3 Extensions to ANSI/ISO C

The extensions described below do not conform to the language features described in the
ANSI/ISO standard and could thus result in potentially non-portable source programs if
used.

Special character $ and @ in identifiers

By default, the “dollar” symbol $ and the “at” sign @ are permitted in internal and external
names. This can be suppressed by means of options (see “Identifiers” on page 208).

main function with three parameters

In addition to the two parameters argc and argv (see page 209), a third parameter
char *envp[] may be declared, where envp is a pointer to an array of strings that is supplied
with information on the system environment. See the manual “C Library Functions for
POSIX Applications” [3] for details.

Scope of functions

extern declarations of functions within blocks apply to the entire compilation unit. If
multiple extern declarations are available for the same function, they are tested for a
match.

Write access to string literals

In this implementation, string literals can be overwritten by default. This ensures that the
literals do not overlap. Identical literals are stored in separate areas.
The -K rostr and STRING-LITERALS=*READ-ONLY options can be used to specify
read-only access for string literals.

Data type long long

The data type long long (together with unsigned long long) is represented in 8 bytes,
aligned on a double-word boundary. Constants of type long long are identified with the
suffixes LL or ll following the number. When a constant can no longer be represented as
an unsigned long, it is treated as a constant of type long long. A long long constant is
unsigned if it includes the additional suffix U or u or if it is too large to be represented as a
signed long long.
The following restrictions apply when using the data type long long:
Bitfields, array subscripts and expressions in switch statements of type long long are not
supported.

Extensions C language support of the compiler

220 U21283-J-Z125-8-76

Conversion of function pointers

The cast operator can be used to convert pointers to objects to pointers to functions, and
vice versa. In the case of implicit conversions, warnings are issued by the compiler.

Non-integer bitfields

All integral types (except long long) can be used as bitfields (see also “Bitfields” on
page 211). The standard only defines the types int, usigned int and signed int.

The asm keyword

The asm keyword is reserved in K&R mode and in extended ANSI mode. However, since
the inline substitution of Assembler code is not yet supported, the use of this keyword will
result in an error. The asm keyword is not reserved in the strict ANSI C mode.

Multiple definitions of external variables

If there are so-called “tentative” definitions for the same object (i.e. external declarations of
variables without the attribute extern or static) in several compilation units, these must
always be of the same type. Different type declarations for the same external object are not
recognized by the compiler. Multiple initializations of external variables will result in errors
on linkage. This behavior can be controlled with options (-K external_multiple, -K
external_unique and EXTERNAL-DEFINITION=*UNIQUE/*MULTIPLY-ALLOWED).

Empty macro arguments

When calling macros, it is also possible to pass empty arguments.

Example

#define F(a,b) f(a)+f(b);

F(1) /* produces f(1)+f(); */
F(,1) /* produces f()+f(1); */

Predefined macros

For compatibility reasons, some predefined macros do not begin with the underscore (_)
character (see the section “Predefined preprocessor names” on page 302).

Additional preprocessor directives

The following additional preprocessor directives are accepted by the compiler:
#line (old format), #ident, #assert and #unassert.

C language support of the compiler Extensions

U21283-J-Z125-8-76 221

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

#line directive (old format):

This directive is identical to the #line directive, except for the fact that the keyword line
is omitted.

#ident directive:

The #ident directive, which is equivalent to the #pragma ident, is accepted syntactically,
but does cause any changes in the generated object. The compiler does not issue any
notes or warnings, since these directives are used internally in system headers.

#assert directive:

The #assert directive can be used to define an assertion. Assertions are independent of
macro definitions.

name is the name of the assertion, and token-sequence is the value to which the assertion
applies.
A single token may be one of the following lexical units: name, keyword, constant, string,
operator, separator/punctuation character. If no token-sequence is specified, the assertion is
considered defined as in the case of a symbolic constant, but no value is assigned.

The #if statement can be used to test whether an assertion applies to a value:

#if #name(non-empty-token-sequence)

name is the name of the assertion, and non-empty-token-sequence is the value to be tested.
For example, the following test for the predefined assertion compiler would return the
value “true”:

#if #system(bs2000)

The predefined assertions are described in the appendix under “Predefined preprocessor
assertions (#assert)” on page 303.

#Ëdigit-sequenceË[header-file]

#identË"string"

#assertËname[(token-sequence)]

Extensions C language support of the compiler

222 U21283-J-Z125-8-76

#unassert directive:

The #unassert directive has the same syntax as #assert and can be used to remove any
assertion.
If a token-sequence is specified, only the assertion for that value is removed; otherwise, i.e.
if no token-sequence is specified, the entire assertion is deleted.

#unassertËname[(token-sequence)]

C language support of the compiler Pragmas

U21283-J-Z125-8-76 223

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

6.4 Pragmas

This section describes the #pragma directives which are defined as implementation-
dependent in the ANSI/ISO standard and which are accepted by the compiler.

6.4.1 aligned pragma

The aligned pragma can be used to align data elements within classes, structures and
unions on a larger number of bytes than the default minimum alignment set for the
compiler.
This pragma can be used in all language modes of the compiler.

n is a number of bytes, which is specified in steps to the power of 2 up to a maximum of 8,
and optionally entered in decimal, octal or hexadecimal notation. The permitted values (in
decimal notation) are 1, 2, 4, 8 and16 (still permitted by the syntax).

Notes
For the sake of simplicity, the following notes only refer to structures, but are also
analogously applicable to classes and unions.

– Pragmas that specify fewer bytes than the minimum alignment intended for the
corresponding data type (see table below) are not permitted and are ignored.

– The data element to be aligned may also be a bitfield, in which case the bitfield is
created in a new base field with the required alignment.

– In the case of static elements, the pragma is ignored.

– The pragma must be placed in the structure definition immediately before the data
element to be aligned. Otherwise, it will be ignored.

#pragmaËalignedËn

Data type Minimum alignment
(number of bytes)

char
short
int
long
long long
float
pointer
double
long double

1
2
4
4
8
4
4
8
8

Pragmas C language support of the compiler

224 U21283-J-Z125-8-76

– If multiple pragmas precede a data element, the one with the largest alignment
specification is considered.

– If a pragma precedes the declaration of several structure elements, it is applied to only
the first declared element.

– The alignment of a structure is based on the maximum alignment of its elements.

– If a structure appears as an element in another structure, the pragma preceding it
applies to the alignment of the entire structure, and not the alignment of its elements.

– A pragma that precedes a structure element that represents an array applies to the
alignment of the entire array (i.e. the first array element), and not the remaining array
elements.

– Aligned pragmas and pack pragmas (see page 225) can be active at the same time for
a specified structure element. In this case, the aligned pragmas take precedence.

Example

...
class bsp1
 {
 int a; // Aligned on 4 bytes.
#pragma aligned 8
 int b,c; // b is aligned on 8 bytes.
 // c is aligned on 4 bytes!
 // The maximum alignment of an element
 // of class bsp1 is thus equal to 8 bytes.
 // Class bsp1 is therefore aligned on
 // 8 bytes.
 int d; // Aligned on 4 bytes.
};

class bsp2
 {
public:
double dens; // Aligned on 8 bytes.
#pragma aligned 4 // Is ignored. Since the maximum alignment
 // of an element of the structure stru1 is
 // 8 bytes, stru1 is also aligned on 8 bytes.
 // A corresponding warning is issued.
 struct
 {
 int istru11; // Aligned on 4 bytes.
 double dstru12; // Aligned on 8 bytes.
 } stru1; // Aligned on 8 bytes (see above).

 struct
 {

C language support of the compiler Pragmas

U21283-J-Z125-8-76 225

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

 short s1; // Aligned on 2 bytes.
 short s2; // Aligned on 2 bytes.
 } stru2; // Aligned on 2 bytes, since the maximum
 // alignment of an element equals 2 bytes.
#pragma aligned 4
 char c; // Aligned on 4 bytes.
 char c1; // Aligned on 1 byte.
#pragma aligned 8
 short ar1[16]; // The array is aligned on 8 bytes,
 // but not the individual array elements.
 ...
 }
...

6.4.2 pack pragma

This pragma controls structure layout. The alignment of the structural elements in all struc-
tures is reduced to the number specified in the pragma. This has the effect of reducing the
size of the structure. The scope of a pack pragma extends as far as the next pack pragma..

n can be specified as a decimal, octal or hexadecimal number. The permitted values (in
decimal notation) are 1, 2, 4 and 8.

Default value: 8

Important notes
Using pack pragmas has the effect of increasing run time since accessing unaligned
structure elements takes longer than accessing aligned structure elements. This effect is
not so noticeable on S servers as on other servers (e.g. SX servers).

You should note that using the address of a structure element is not without risks.
Attempting to access a structure element by using its address can cause a dump.

#pragmaËpack ([n])

Pragmas C language support of the compiler

226 U21283-J-Z125-8-76

6.4.3 ETPND pragma

This pragma can be used to create a documentation area in each module (code and data
CSECT) of the generated LLM. This area contains general information on the translation
unit (e.g. the version number or creation date), but no data on the function of the module. If
desired, a patch area can be reserved for corrections that may be required at a later stage.

Format:

CODE The ETPND area is created in the code or data module.
DATA

version Module version as a decimal value in the range [0..999]. If this entry is
omitted, 0 is assumed.

date Date of creation, in the form yyyymmdd, yyyy-mm-dd or yymmdd.
If the six-digit format is specified, the year must be between 1960 and 2059.
The two missing digits for the year (19 or 20) are added as appropriate.
If the eight-digit is specified, the date must lie between 1.1.1880 (18800101)
and 1.1.2021 (20210101).

Overflows in months or days, if present, are converted to the canonical
form. An entry of 19961335 (35.13.1996), for example, would thus corre-
spond to 19970204 (4.2.1997).

If no creation date is specified, the compiler uses the date of compilation.

compno Component number as a decimal value in the range [0..99999999]. If this
entry is omitted, 0 is assumed.

number Size of the patch area in bytes. The value must not exceed 4294967295
(0xFFFFFFFF). If this entry is omitted, an area of 200 bytes is reserved in
the code module, and no area (0) is reserved in the data module.
If PATCH=0 is specified, no patch area is reserved in the code module
either. The value may be specified as a decimal, octal or hexadecimal
number.

#pragmaËETPNDË

[,VER=version]
[,DATE=date]
[,COMPNR=compno]
[,PATCH=number]
[,MODULLENGTH=length]

CODE

DATA

C language support of the compiler Pragmas

U21283-J-Z125-8-76 227

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

length Length of the module including that of the ETPND area (24+7 bytes due to
alignment on a double-word boundary) in bytes; this operand can be used
to terminate a module on a page boundary. The value must not exceed
4294967295 (0xFFFFFFFF). If the value specified for length is less than the
actual length of the module; the operand will be ignored. The value may be
specified as a decimal, octal or hexadecimal number.

Notes

– An ETPND pragma cannot be used to specify values for both MODULLENGTH and
PATCH at the same time. If the ETPND pragma contains both entries, MODULLENTGH
is ignored.

– Only one ETPND pragma may be specified per module (i.e. per code and data CSECT).
If multiple ETPND pragmas are specified for the same module, only the last pragma
specified is used.

Pragmas C language support of the compiler

228 U21283-J-Z125-8-76

6.4.4 Pragmas to control the layout of listings

The layout of source, error, and preprocessor listings can be controlled from within the
source text by means of #pragma directives. Other listings generated by the compiler
cannot be controlled by pragmas.

The -K pragmas_interpreted, -K pragmas_ignored and LISTING-PRAGMAS=...
options can be used to globally specify which of the pragmas that appear in the source text
are to be interpreted or ignored.

LISTING pragma

The LISTING pragma can be used to suppress the output of source text lines.

If LIST OFF is specified, all source text lines that follow this directive are suppressed in the
listing.

LIST ON cancels the effect of LIST OFF, i.e. all subsequent source text lines are shown in
the listing.

Source text lines in a header file are not shown in the listing if the corresponding #include
directives are enclosed within #pragma LIST OFF and #pragma LIST ON directives.

Error messages of the compiler that are related to source text lines for which output has
been suppressed are inserted at the point at which the source text in question would
normally appear. In such cases, the appropriate line number and the file or element name
are also shown.

#pragmaËLIST[ING]Ë
OFF

ON

C language support of the compiler Pragmas

U21283-J-Z125-8-76 229

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

Example

Source text:

98 ...
99 ... ←LR Message related to line 99
100 ...
101 #pragma LIST OFF
102 #include "msg.h"
 1 ...
... ←LR Messages related to suppressed lines
 45 ...
103 #pragma LIST ON
104 ...

Source/Error listing:

98 ...
99 ...

****> CFE2234 [ERROR] : ...

100 ...
101 #pragma LIST OFF

****> CFE1004 [NOTE] : msg.h / 13: ...
****> CFE1386 [WARNING] : msg.h / 37: ...

103 #pragma LIST ON
104 ...

Pragmas C language support of the compiler

230 U21283-J-Z125-8-76

TITLE pragma

The TITLE pragma can be used to define additional text to be included in the default header
generated for the listing.

text Any string that is enclosed within quotes and consists of printable
characters. Control characters such as \n, \t, etc. are not permitted.

If the text to be added exceeds the maximum line length defined with the -N output or
LINE-SIZE=... options, it is split into multiple lines of appropriate length.

The text in the TITLE pragma appears only as of the second page in the header of the listing
and overwrites any text defined with the INITIAL-TITLE-TEXT option. The first page of the
listing contains either a blank line or the text defined with the INITIAL-TITLE-TEXT option.

The defined text remains in effect until the next TITLE or PAGE pragma or until the end of
the file.

Invalid characters (e.g. control characters) also result in a warning and are replaced by
blanks.

If the generation of multiple additional text lines in the header of a listing makes the
minimum prescribed number of 11 lines per page (see the options -N output and
LINES-PER-PAGE) insufficient for the output of at least one line of source text in addition
to the header and footer, the listing generator issues a warning and selects a correspond-
ingly higher number of lines.

PAGE pragma

The PAGE pragma generates a page feed and can optionally be used like the TITLE
pragma to define an additional line of text to be entered in the header of the listing.

text Any string that is enclosed within quotes and consists of printable
characters. Control characters such as \n, \t, etc. are not permitted.

The #pragma PAGE directive without text generates a page feed.

The directive #pragma PAGE text generates a page feed with the line specified by text
appearing as an additional line in the header of the listing. All other conditions for the output
of text lines are the same as those for the TITLE pragma.

#pragmaËTITLEËtext

#pragmaËPAGE[Ëtext]

C language support of the compiler Pragmas

U21283-J-Z125-8-76 231

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

SPACE pragma

The SPACE pragma can be used to generate blank lines in the listing.

n is a non-negative integer. The above directive inserts n blank lines into the
listing. n can be specified as a decimal, octal or hexadecimal number.

If n is omitted, one blank line is inserted.

6.4.5 inline pragma

The inline pragma is used to specify the names of the user-defined C functions to be
substituted inline by the compiler.

name Name of a C function to be substituted inline.

The given C functions are substituted inline only if the following options are specified:
-F inline_by_source or -F i in POSIX and INLINING=*YES in SDF. The inline pragma
is not supported in the C++ modes, since C++ has built-in mechanisms for inlining
functions.

6.4.6 int_to_unsigned pragma

The pragma is supported because it may be contained in older C sources, typically those
ported from a UNIX system. It only works in K&R mode and instructs the compiler to treat
a function name with the result type unsigned as if its result type were still int.

The declaration of the function name with the result type unsigned must appear before the
#pragma directive, e.g.:

unsigned int strlen(const char*);
#pragma int_to_unsigned strlen

#pragmaËSPACE[Ën]

#pragmaËinlineËname

#pragmaËint_to_unsignedËname

Pragmas C language support of the compiler

232 U21283-J-Z125-8-76

6.4.7 weak pragma

This pragma declares name as a global symbol with the linkage attribute “weak external
reference” (WXTRN). For more information on WXTRNs, see the manual “BINDER” [14].
Symbols that are declared as weak may remain unresolved at linkage. This means that if a
reference to name cannot be resolved, BINDER will only issue an information message.
Weak external references are resolved only on explicit inclusion (INCLUDE-MODULES).
They are not resolved when modules are included with the autolink mechanism
(RESOLVE-BY-AUTOLINK).
Note that external C++ names cannot be declared as weak.

6.4.8 ident pragma

This pragma is only accepted syntactically by the compiler, since it may be contained in
older C sources, typically those ported from a UNIX system.

6.4.9 C++ specific pragmas

The following #pragma directives are only relevant for C++ compilations.

VIRTUAL_FUNCTION_TAB pragma

This pragma has the same effect as the corresponding compiler options:
The GLOBALY-DEFINED entry is equivalent to the options
VIRTUAL-FUNCTION-TAB=*GLOBALLY-DEFINED and -K force_vtbl.
The EXTERNALLY-DECLARED entry is equivalent to the options
VIRTUAL-FUNCTION-TAB=*EXTERNALLY-DECLARED and -K suppress_vtbl.

This pragma can only be used as an alternative to option control.

#pragmaËweakËname

#pragmaËidentË"string"

#pragmaËVIRTUAL_FUNCTION_TABË
GLOBALLY_DEFINED

EXTERNALLY_DECLARED

C language support of the compiler Pragmas

U21283-J-Z125-8-76 233

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

06

As soon as an equivalent SDF or POSIX option is explicitly specified at compilation (even
if this is only the default VIRTUAL-FUNCTION-TAB= *INTERNALLY-DEFINED or -K
normal_vtbl), the pragma is ignored.

Pragmas to control template instantiation

The instantiation of individual templates or even a group of templates can be controlled with
the following pragmas:

– The instantiate pragma causes the template entity that is specified as an argument
to be created. This pragma can be used in all instantiation modes.

– The do_not_instantiate pragma suppresses the instantiation of the template entity
specified as an argument. The typical candidates for this pragma are template entities
for which specific definitions (specializations) have been provided. This pragma can be
used in all instantiation modes.

– The can_instantiate pragma is a hint to the compiler that the template entity
specified as an argument can, but need not, be created in the compilation unit. This
pragma is required in connection with libraries and is only evaluated in automatic
instantiation mode.

The following arguments can be specified with the pragmas:

When a template class name is specified as an argument (e.g. A<int>), the net effect is
the same as if the pragma were specified for each member function and for each static data
member of that template class. When instantiating an entire class, individual member
functions or static data members can be excluded from the instantiation process by using
the do_not_instantiate pragma.

#pragmaË Ëargument

Argument Examples
a template class name A<int>
a member function name A<int>::f
a static data member name A<int>::i
a member function declaration void A<int>::f(int, char)
a template function declaration char * f(int, float)

instantiate
do_not_instantiate
can_instantiate

Pragmas C language support of the compiler

234 U21283-J-Z125-8-76

Example

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

In order to instantiate templates, the appropriate template definitions must be available in
the current compilation unit. If an instantiation is requested explicitly with the instantiate
pragma, and no template definition or only a specific definition (specialization) is available,
an error message (ERROR) is issued.

Example

template <class T> void f1(T); // no body provided
template <class T> void g1(T); // no body provided
void f1(int) { } // specific definition
void main()
{

int i;
double d;
f1(i);
f1(d);
g1(i);
g1(d);

}
#pragma instantiate void f1(int) // error - specific definition
#pragma instantiate void g1(int) // error - no body provided

f1(double) and g1(double) will not be instantiated either (due to the missing
template definitions), but no error message will be issued during the compilation in this
case. The missing template definitions will, however, result in a linker error at link time.

If a member function name (e.g. A<int>::f) is specified as a pragma argument, it must
not be an overloaded function. Overloaded member functions can be instantiated by
providing the complete member function declaration, as in
#pragma instantiate char * A<int>::f(int, char *)

The argument to an instantiation pragma may not be a compiler-generated function, an
inline function, or a pure virtual function.

U21283-J-Z125-8-76 235

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

7 C++ language support of the compiler
The compiler optionally supports the C++ language scope compatible with Cfront V3.0.3 as
well as the scope defined in the ANSI/ISO C++ draft standard proposed at the end of 1996.

The C++ programming language is described in detail in the “The C++ Programming
Language”, Second Edition (Cfront V3.0.3) and Third Edition (ANSI/ISO C++) by Bjarne
Stroustrup.

The following sections describe the vendor-specific and implementation-defined language
features of C++. They are intended as a supplement to the C++ language definitions given
in the manuals by B. Stroustrup.

7.1 Overview of the C++ language modes

In accordance with the different language definitions for C++, the compiler supports three
C++ compilation modes:

Cfront C++ mode (POSIX option -X d. SDF option MODE=*CPP)
The compiler accepts C++ code compatible with Cfront V3.0.3.

extended ANSI C++ mode (POSIX option -X w, SDF option MODE=*ANSI) or
strict ANSI C++ mode (SDF option -X e, MODE=*STRICT-ANSI)

The compiler accepts C++ code based on the ANSI/ISO definition.

The following table contains an overview of the main differences between the various C++
language modes.

Overview of the C++ language modes C++ language support of the compiler

236 U21283-J-Z125-8-76

Features / Language attributes Cfront 3.0.3 extended ANSI strict ANSI
Reserved keywords 1)

Exception handling
catch, throw, try

no yes yes

Templates
template

no yes yes

New ANSI C++ language features 2) yes yes

– Runtime type information (RTTI)
typeid, dynamic_cast

no

– Arrays: new/delete
new [], delete[]

– Name space
namespace, using

– Template parameter typename

– Constructor type explicit

– Data type wchar_t

– Boolean data type bool

– Storage class mutable yes

– Casting keywords
const_cast, reinterpret_cast,
static_cast

long long yes yes yes 3)

__STDC__ ==0 ==0 ==1

__STDC_VERSION__ ==199409L ==199409L ==199409L

__cplusplus ==1 ==2 ==199612L 4)

Object layout and name mangling compatible new 5) new 5)

Overview of differences between the various C++ language modes

C++ language support of the compiler Overview of the C++ language modes

U21283-J-Z125-8-76 237

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

1) Reserved keywords

All keywords listed in the chapter “C language support of the compiler” on page 205 are
also reserved in the C++ language modes in addition to the following C++-specific
keywords.

The keywords shown in boldprint are not reserved in the Cfront C++ mode.

1 The keywords bool, true and false are reserved in the ANSI C++ modes,
depending on the setting of the -K bool, -K no_bool or KEYWORD-
BOOL=*YES/*NO options. -K bool or KEYWORD-BOOL=*YES is the default.

2 No exception handling and templates are supported in the Cfront C++ mode. The
keywords catch, throw, try and template are nonetheless not freely available
and will result in an error message if used.

The following keywords may be used as alternative tokens for C operators. They may
or may not be reserved, depending on the settings of the -K alternative_token,
-K no_alternative_token or ALTERNATIVE-TOKENS=*YES/*NO options.
By default, they are “not reserved” in the Cfront C++ mode and “reserved” in the ANSI
C++ modes.

asm explicit new template 2 using
bool 1 export operator this virtual

catch 2 false1 private throw 2 wchar_t
class friend protected true 1

const_cast inline public try 2

delete mutable reinterpret_cast typeid
dynamic_cast namespace static_cast typename

Reserved names in C++

and && not_eq !=
and_eq &= or ||
bitand & or_eq |=
bitor | xor ^
compl ~ xor_eq ^=
not !

Keyword operators in C++

Overview of the C++ language modes C++ language support of the compiler

238 U21283-J-Z125-8-76

2) New ANSI C++ language features

In accordance with the future ANSI/ISO C++ standard, several new C++ language
features have been added since the language definition presented by Bjarne Stroustrup
in “The C++ Programming Language”, Second Edition. These new features are now
documented in Stroustrup´s Third Edition.

3) long long

The data type long long is an extension to ANSI C++ (see also page 219).

4) __cplusplus

This value will increase in subsequent versions of the compiler and may also change
before the final release of the ANSI/ISO C++ standard.

5) Object layout and name mangling

Due to the support for templates, exception handling, RTTI, new[] and delete[], the
object layout and name mangling strategies differ with respect to Cfront V3.0.3.
Consequently, modules generated with the earlier C++ compiler as of V2.1 or with the
C/C++ compiler V3.0 in the Cfront C++ mode cannot be linked with modules generated
in one of the ANSI C++ modes!

C++ language support of the compiler Implementation-defined behavior

U21283-J-Z125-8-76 239

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

7.2 Implementation-defined behavior based on the
ANSI/ISO C++ standard

All of the implementation-defined features based on the ANSI/ISO C standard that have
already been described in the chapter “C language support of the compiler” (see
page 208ff) are also applicable in the C++ language modes and are therefore not listed
individually here.

Only the implementation-defined C++ language features that extend beyond the scope of
the C language are described below. A list of the individual C++ language features which
are only supported in the ANSI C++ modes and not in the Cfront C++ mode of the compiler
can be found in the tabular overview on page 236.

Identifiers with external linkage

– Compilation in the Cfront C++ mode
External C++ names are truncated by the compiler to 32 characters. When generating
shared code (with the options -K share or SHAREABLE-CODE=*YES), the maximum
permissible length is restricted to 30 characters.
Lowercase letters are converted to uppercase by default, but can be retained in external
names with the option -K llm_case_lower or LOWER-CASE-NAMES=*YES.

– Compilation in the ANSI C++ modes
All characters are significant for the construction of external C++ names. No name
truncation and no conversion from lowercase to uppercase occurs. The compiler
generates entry names in the EEN format, which can have a length of up to 32000
characters. Longer names result in an error.

To enable processing by the link editor, names with external C++ linkage are transformed
internally by the compiler so that they only contain permitted characters and are unique
(name mangling). This internal name mangling process differs in the Cfront C++ mode and
in the ANSI C++ modes. A list of the originally used external C++ names and those which
were generated internally by the compiler for the linkage editor can be obtained with the
option -N project or PROJECT-INFORMATION=*YES.

Linkage of the main function

The main function has external C linkage.

Data type bool

The size of type bool is defined as sizeof(bool) == 1.

Implementation-defined behavior C++ language support of the compiler

240 U21283-J-Z125-8-76

reinterpret_cast

The destination object contains the same bit pattern as the expression evaluated by
reinterpret_cast, but might not be a valid object of the desired type (e.g.
reinterpret_cast<float>(int)).

The following conversions are possible:

1. A pointer can be explicitly converted to an integral type that is large enough to hold it.
Depending on whether the destination type is signed or unsigned, the value of the
result obtained from the conversion may or may not be signed.

2. The value of an integral type can be explicitly converted to a pointer.

Allocation overhead for new arrays

For each allocated array, a structure is reserved at the start of the memory block allocated
for that array. This structure contains two size_t members, one for the size of the array (in
bytes) and one for the number of elements in the array (this field is encoded in order to
detect whether the structure has been overwritten).

The asm keyword

The asm keyword is an extension to the ANSI C standard, but is defined as a normal
reserved keyword in the ANSI C++ standard. However, since the inline substitution of
Assembler code is not supported, any attempt to use this keyword will result in an error
message.

Linkage specification

The supported linkage specifications are “C++” and “C”.

The default linkage specification is "C++". Names with external C++ linkage are trans-
formed internally by the compiler to enable processing by the linkage editor (name
mangling). Since this internal name mangling process differs in the Cfront C++ mode and
in the ANSI C++ modes, Cfront C++ modules cannot be linked with ANSI C++ modules.

In the case of names with external C linkage, no internal name mangling is performed.
C linkage can be used to link and call functions written in C or in a language that behaves
like C on its name mangling interface.

A pointer to a C function is compatible with a pointer to a C++ function of the same type if
the argument types are C-compatible PODs.

Linkage of templates

Only templates with C++ linkage are supported.

C++ language support of the compiler Constructors and destructors

U21283-J-Z125-8-76 241

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

Template instantiation

See page 244ff

Reference types

The reference for an value is bound to a temporary object created by the compiler.
Internally, the C++ data type reference is treated as a pointer (see page 210).

Allocation of non-static data elements of a class

The allocation of memory for these data elements occurs in the strict order of their declara-
tions, i.e. without taking the access specifiers public, private or protected into
account.

Bitfields within classes

Bitfields within classes are handled in the same way as bitfields within structures. This
applies to the allocation and alignment as well as the handling of “plain” bitfields without the
signed or unsigned attribute.

Constructors and destructors for global and local static objects

C++ supports the initialization and finalization of objects with constructors and destructors.
Constructor and destructor calls can be applied on both dynamic as well as global and local
static objects.

Constructors and destructors for dynamic objects

Constructors for dynamic objects are called when objects are created with the new
operator, on entering functions or local blocks, on processing current parameters, and when
temporary objects are created.

Destructors for dynamic objects are called in the reverse order of their construction, e.g. on
exiting a function (return, exit), block, etc.

Constructors and destructors C++ language support of the compiler

242 U21283-J-Z125-8-76

Constructors and destructors for global and local static objects

The type and order of constructor and destructor calls for global and local static objects is
“implementation-defined”. Seen from a technical viewpoint, this means the following:

Constructor calls are collected in one function per compilation unit, and the address of each
such function is stored in a specially marked variable in the data section of the program.
During the initialization of the runtime system, a list of these variables is generated, and the
constructors are called before the main function. Destructors are called on exiting a
program normally, i.e. on calling exit, _exit, bs2exit or return from the main function,
but not on calling abort.

Seen from the user´s perspective, the following points must be observed when using global
and local static objects with constructors and destructors:

– The redirection of standard I/O files (see page 180) has no effect within global and local
static objects.

– The order in which constructors are called is totally undefined and may actually vary
even when running the same program. It is therefore crucial to ensure that no depen-
dencies between the individual constructor calls exist.

– The names of the special variables for constructor function addresses (see above)
begin with ICP. This prefix and the initial letter I in general must not be used when
constructing user-defined external names, since this produces errors in constructor
handling.

– ESD information must not be suppressed when linking.

– The data of the program must be in class-6 memory.

– In the case of shared code, all code segments to call constructors are loaded
dynamically.

– No inter-language linkage is permitted within a destructor (only linkage to other
languages).

– No code may be “unloaded”; otherwise, on exiting the program, this would result in
destructors being called for code that no longer exists.

– In the case or true subsystems for which data and code are loaded dynamically with an
explicit call, the runtime system must be reinitialized. During this process, the table of
constructors is extended, and the new constructors are called.

C++ language support of the compiler Constructors and destructors

U21283-J-Z125-8-76 243

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

Exception handling

Thrown exceptions

The memory for exception objects is taken from a preallocated storage, which can be
extended by calls to malloc.

Handling of exceptions

The stack is not unwound, i.e. no destructors are called for automatic objects if the program
exits with terminate() due to a missing exception handler (see also the function
unwind_exit() on page 282).

The unexpected() function

The thrown exception object which causes the unexpected() function to fail is destroyed
by calling a destructor and is replaced by a new bad_exception object.

More details on exception handling can be found on page 282ff.

Return type of operator->

The return type of operator->() is not checked any more at the point where the function
is declared, but is now only checked at the point where it is used as an “->” operator. (This
check was performed later on just for elements of class templates in versions up to V3.0C.)

Template instantiation C++ language support of the compiler

244 U21283-J-Z125-8-76

7.3 Template instantiation

7.3.1 Fundamentals

The C++ language includes the concept of templates. A template is a description of a class
or function that serves as a model for a family of derived classes or functions. For example,
one can write a template for a Stack class, and then use a stack of integers, a stack of
floats, or a stack of any user-defined type. These stacks could then be typically written in
the source as Stack<int>, Stack<float> and Stack<X>. From a single source
description of the template for a stack, the compiler can create instantiations of the template
for each of the types required.

The instantiation of a class template is always created as soon as it is required during
compilation. The instantiations of template functions and member functions or static data
members of a class template (referred to as template entities below), by contrast, need
not be created immediately. This is due to the following reasons:

– In the case of template entities with external linkage (functions and static data
members), it is important to have only one copy of the instantiated template entity
throughout the program.

– The ANSI C++ language allows one to write a specialization for a template entity, which
means that the programmer can supply a specific version to be used instead of the
instantiation generated from the template for a specific data type.
Since the compiler cannot know, when compiling a reference to a template entity, if a
specialization for that entity is available in another compilation unit, it cannot create the
instantiation immediately.

– The ANSI C++ language dictates that template functions which are not referenced
should not be compiled and should be checked for errors. Consequently, a reference to
a template class should not automatically instantiate all the member functions of that
class.

Note that some template entities such as inline functions are always instantiated when
used.

From the requirements listed above, it is evident that if the compiler is responsible for the
entire instantiation (i.e. if the instantiation is done “automatically”), these instantiations can
only be performed meaningfully on a program-wide basis. In other words, the compiler
cannot make decisions about the instantiation of template entities until it has seen the
source code of all compilation units in the program.

The C/C++ compiler provides an instantiation mechanism by which automatic instantiation
is carried out at link time (with the aid of a “prelinker”). This mechanism is discussed in detail
in the section “Automatic instantiation” on page 246.

C++ language support of the compiler Template instantiation

U21283-J-Z125-8-76 245

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

More explicit control over the instantiation process is available to the programmer via
different instantiation modes that can be selected using options and by means of
#pragma directives.

● The options to select instantiation modes are:
MODIFY-SOURCE-PROP INSTANTIATION=*NONE / *AUTO / *LOCAL / *ALL
(see page 144ff).

● The instantiation of individual templates or even a template group can be controlled with
the pragmas:
instantiate, do_not_instantiate and can_instantiate (see page 233ff).

Important notes
The default template instantiation method of this compiler (i.e. automatic instantiation by the
prelinker and implicit inclusion) is also the recommended method and should generally be
used. Deviations from this default method via control options should be restricted to excep-
tional cases and should only be attempted if the entire application is known in detail,
including every template that is defined and used.

Implicit inclusion must not be disabled (with IMPLICIT-INCLUDE=*NO) when using
templates from the standard C++ library (SYSLNK.CRTE.STDCPP). Otherwise, the
required definitions will not be found.

Instantiation modes ≠ INSTANTIATION=*AUTO: In this case, there is a high risk that
unresolved external references (*NONE), duplicates (*ALL) or runtime errors (*LOCAL)
may occur.

Template instantiation C++ language support of the compiler

246 U21283-J-Z125-8-76

7.3.2 Automatic instantiation

The C/C++ compiler supports automatic instantiation (INSTANTIATION=*AUTO) by default
in the ANSI C++ language modes. This enables you to compile source code and link the
generated objects without being concerned about any required instantiations.

Note that the discussion which follows refers to the automatic instantiation of template
entities for which there is no explicit instantiation request (template declaration) and no
instantiate pragma.

Requirements

For each instantiation, the compiler expects a source file that contains both a reference to
the required instantiation and the definition of the template entity as well as all types
required for the instantiation of that template entity. The latter two requirements can be
satisfied by the following methods:

– Each .h file that declares a template entity also contains either the definition of the
entity or includes another file containing the definition.

– Implicit inclusion
When the compiler sees a template declaration in a .h file and discovers a need to
instantiate that entity, it looks for a source file with the same base name as the .h file
and a suffix that satisfies the conventions for C++ source file names (.C , .CPP, .CXX
or .CC). This file is then implicitly included by the compiler on instantiation at the end of
each compilation unit without a message being issued. Further details see the section
“Implicit inclusion” on page 259.

– The programmer makes sure that the files that define template entities also contain the
definitions of all required types and adds C++ code or instantiation pragmas in those
files to request the instantiation of the template entities therein.

First instantiation without a definition list

The definition list method can also be used as an alternative to the following procedure (see
page 248).

The following steps are performed internally during automatic instantiation:

1. Create instantiation information files
The first time that one or more source files are compiled with the COMPILE statement,
no template entities are instantiated. For each source file that makes use of a template,
an associated instantiation information file is created if no such file exists. This instan-
tiation information file is placed in the PLAM library of the module to be generated and
is assigned the base name of the module with the suffix .II by default (see the section
“Rules for constructing module names” on page 52). For example, if a source program

C++ language support of the compiler Template instantiation

U21283-J-Z125-8-76 247

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

named ABC.CC were to be compiled (without explicitly specifying a module name), the
file ABC.II would be generated as the instantiation information file. This file must not
be modified by the user.

2. Create modules
The created modules contain information on which instantiations could have been
created and on those possibly required when compiling a source file.

3. Assign template instantiations
When the modules are linked with the BIND statement, the prelinker is called before the
actual linking takes place. The prelinker examines the modules, looking for references
and definitions of template entities and for additional information about entities that
could be instantiated. If the prelinker cannot find a definition for a required template
entity, it looks for a module that indicates that it could instantiate that template entity.
When it finds such a module, it assigns the instantiation to it.

4. Update the instantiation information file
All instantiations that were assigned to a given module are recorded by name in the
associated instantiation information file.

5. Recompile
The compiler is internally called again to recompile each file for which the instantiation
information file was changed.

6. Create new modules
When the compiler compiles a file, it reads the instantiation information file for that
compilation unit and generates a new module with the required instantiations
(i.e. template definitions).

7. Repetition
Steps 3 to 6 are repeated until all instantiations which are required and which can be
generated have been created.

8. Linkage
The modules are linked together.

Template instantiation C++ language support of the compiler

248 U21283-J-Z125-8-76

First instantiation with the help of the definition list (temporary repository)

Since the method above (see page 246) needs to recompile some files more than once, an
option was added to accelerate the entire process.

When this option is used, the files are generally only recompiled once. Most of the instanti-
ations are assigned to the first few files to be recompiled in this process. This results in
disadvantages in some cases since the object size increases due to this (although other
objects decrease in size to balance this out).

Steps 3-5 above are modified. The resulting algorithm appears as follows:

1. Create instantiation information files
The first time that one or more source files are compiled with the COMPILE statement,
no template entities are instantiated. For each source file that makes use of a template,
an associated instantiation information file is created if no such file exists. This instan-
tiation information file is placed in the PLAM library of the module to be generated and
is assigned the base name of the module with the suffix .II by default (see the section
“Rules for constructing module names” on page 52). For example, if a source program
named ABC.CC were to be compiled (without explicitly specifying a module name), the
file ABC.II would be generated as the instantiation information file. This file must not
be modified by the user.

2. Create modules
The created modules contain information on which instantiations could have been
created and on those possibly required when compiling a source file.

3. Assign template instantiations to a source file
If there are references for template entities for which there are no definitions in the set
of modules, then a file that could instantiate one of the template entities is selected. All
template entities that can be instantiated in this file are assigned to the file.

4. Update the instantiation information file
The set of instantiations that were assigned to the file are recorded by name in the
associated instantiation file.

5. Store the definition list
A definition list is stored internally in memory. It contains a list of all definitions found in
all modules that relate to templates. This list can be read in and changed during recom-
pilation.

Note
This list is not stored in a file.

6. Recompile
The compiler is internally called again to recompile the corresponding source files.

C++ language support of the compiler Template instantiation

U21283-J-Z125-8-76 249

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

7. Create new modules
When the compiler recompiles a file, it reads the instantiation information file for that
compilation unit and generates a new module with the required instantiations.
When the compiler obtains an opportunity during compilation to instantiate additional
template entities that are not mentioned in the definition list and were not found in the
libraries resolved, then it will also instantiate these (e.g. for templates that are contained
in templates). It sends the list of instantiations that it obtained during recompilation to
the prelinker so that the prelinker can assign it to the file.

This process results in faster instantiations and reduces the necessity of recompiling an
existing file more than once during the prelinking process.

8. Repetition
Steps 3 to 7 are repeated until all instantiations that are required and can be generated
have been created.

9. Linkage
The modules are linked together.

Further development

Once a program has been correctly linked, the associated instantiation information files
contain all the names of the defined and required instantiations. From then on, whenever
source files are compiled, the compiler will consult the instantiation information file and do
the instantiations therein as in a normal compilation run. In other words, except in cases
where the set of required instantiations changes, the prelinker will find all required instanti-
ations stored in the modules, so no further instantiation adjustments are needed. This
applies even if the entire program is recompiled.

If a specialization of a template entity has been provided somewhere in the program, the
prelinker will treat it as a definition. Since this definition will satisfy any references to the
template entity, the prelinker will see no need to request an instantiation for that template
entity. If a specialization is added to a program that has already been compiled, the
prelinker will remove the assignment of the instantiation from the corresponding instanti-
ation information file.

The instantiation information file must not be modified (e.g. renamed or deleted) by the user,
except in the following case: if a source file in which a definition was changed and another
source file in which a specialization was added are being compiled in sequence in the same
compiler run, and the compilation of the first file (with the changed definition) has aborted
with an error, the associated instantiation information file must be deleted manually to allow
the prelinker to regenerate it.

Template instantiation C++ language support of the compiler

250 U21283-J-Z125-8-76

Interaction between the compilation and prelinker runs

Since the automatic template instantiation by the prelinker can, among other things, also
involve subsequent compilations, the conditions under which the compilation occurs
(COMPILE) play an important role in the prelinker run (BIND ACTION=*PRELINK,...) as
well. Technically speaking, all options relevant for the compilation, code generation and
compiler outputs are entered in the corresponding instantiation information files and
interpreted during the automatic template instantiation. In order to ensure that the follow-up
compilations and other updates function correctly during instantiation, the following points,
in particular, must be observed:

● The input of source programs via SYSDTA and the output of listings to SYSLST or
SYSOUT are not supported and are rejected with a corresponding error message.

● All I/O files and libraries of the compilation run must also be locatable and accessible in
the prelinker run and should hence be neither renamed nor deleted. If the prelinker run
occurs in some other environment (e.g. user ID), fully-qualified file names must be used
in the compilation, i.e., names including the <cat-id> and <user-id> for BS2000 files and
PLAM libraries, and absolute path names (beginning with /) for POSIX files.

● The *INCREMENT option is not permitted for the following output files:

– module element name

– cif element name

– listing element name

Warning: Compilation is aborted in this case.

● When you specify an explicit version string for ’module name’, an ii-element file with the
same version string is searched for, read in and written. (If an existing ii-element with a
different version string is to be used, then this element must be copied and stored under
a new name before it can be linked and before the template instantiation starts.) This
behavior is not compatible with the C++ Compiler V3.0.

C++ language support of the compiler Template instantiation

U21283-J-Z125-8-76 251

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

Prelinking and dynamic linkage

The prelinker does the automatic instantiation only in the individual modules generated by
the compiler, since it requires the unique assignment between the module and the instanti-
ation file (.II file) for this purpose. The prelinker is activated only with the BIND statement
of the compiler (ACTION=*PRELINK). If only ACTION=*MODULE-GENERATION is
specified in the BIND statement, no template instantiation is performed.

When generating the finished program (via static or dynamic linkage), all “prelinked
modules” of the the BIND statement and all dynamically linked modules that require
instances of template entities must either
– already contain these instances (which may be achieved by explicit instantiation

and/or the preinstantiation of modules with the BIND statement (ACTION=*PRELINK)
– or provide appropriate headers with can_instantiate pragmas.

During the preinstantiation with the BIND statement, it is absolutely essential to ensure that
the C++ libraries and C++ runtime systems of the CRTE (standard C++ library, ANSI C++
runtime system, Tools.h++ library) are also considered by the prelinker, since duplicate
definitions may otherwise be created. The libraries are automatically taken into account if
the STDLIB option of the MODIFY-BIND-PROPERTIES statement is set to *DYNAMIC or
*STATIC and the TOOLSLIB option is set to *YES. If the CRTE libraries are to be linked in
dynamically themselves, duplicate definitions can be prevented as follows:

1. The first step is to preinstantiate the modules, taking the used CRTE libraries into
account:

//MODIFY-BIND-PROPERTIES STDLIB=*DYNAMIC / *STATIC [,TOOLSLIB=*YES], ...
//BIND ACTION=*PRELINK, ...

2. All modules with unresolved external references to the used CRTE libraries can then
be linked in a second step:

//MODIFY-BIND-PROPERTIES STDLIB=*NONE [,TOOLSLIB=*NO], ...
//BIND ACTION=*MODULE-GENERATION, ...

If the prelinker and linkage runs are to be executed concurrently, the ADD-PRELINK-FILES
option must be used. The main disadvantage of this method is that the names of the CRTE
libraries would then need to be specified explicitly.
In the case of a standard installation of the CRTE, for example, this is achieved as follows:

//MODIFY-BIND-PROPERTIES ADD-PRELINK-FILES=(*LIB(LIB=$.SYSLNK.CRTE.STDCPP),-
*LIB(LIB=$.SYSLNK.CRTE.RTSCPP) [,*LIB(LIB=$.SYSLNK.CRTE.TOOLS)]),-
STDLIB=*NONE, ...

//BIND ACTION=(*PRELINK,*MODULE-GENERATION), ...

Template instantiation C++ language support of the compiler

252 U21283-J-Z125-8-76

7.3.3 Generating explicit template instantiation statements (ETR files)

In some cases, for example, when automatic instantiation cannot be used effectively, the
programmer has the option of using explicit (manual) instantiation in order to extend the
sources as required.
To make this process easier, it is possible to create an ETR file (ETR - Explicit Template
Request) which contains the instantiation statements for the templates used and which can
be incorporated into a source.
The options for creating this ETR file can be specified with the GENERATE-ETR-FILE
operand of the SDF statement MODIFY-DIAGNOSTIC-PROPERTIES (see page 96).
The important options are *ALL..., which outputs all relevant information and
*ASSIGNED..., which only outputs part of this information.

The templates taken into account during the ETR analysis can be divided into the following
classes:

● Templates that are instantiated explicitly in the compilation unit. These are output with
“ALL”.

● Templates that are assigned by the prelinker to the compilation unit and then instan-
tiated within the compilation unit. These can be output using both “ALL” and
“ASSIGNED”.

● Templates that are used in the compilation unit and that can be instantiated here. These
are output with “ALL”.

● Templates that are used in the compilation unit, but cannot be instantiated here. These
are output with “ALL”.

The contents of an ETR file have the following format:

● Comments in the header will indicate that the file is a generated file.

● Four logical lines are created for each template (see the example below):

– a comment line containing the text ’The following template was’

– a comment line containing the type of the instance (for example, ’explicitly instan-
tiated’)

– a comment line containing the external name of the instance. This name is the same
as the entry in the ii file (see section “The II-UPDATE tool” on page 305) and can
also be obtained from the binder listing or the binder error listing

– a line which describes the explicit instantiation for this instance

C++ language support of the compiler Template instantiation

U21283-J-Z125-8-76 253

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

Notes

– If the lines described above are too long, they will be wrapped in the usual C++ fashion
using “Backslash newline”.

– The sequence of the output templates is not defined. If recompilation takes place or a
source is modified, the sequence may change.

– The fourth logical line is particularly interesting when copying to a source.

– The comments are always in English.

The following two scenarios describe sensible uses of an ETR file:

1. The compiler is called during development using the INSTANTIATION=*AUTO option
of the SDF statement MODIFY-SOURCE-PROPERTIES and the
GENERATE-ETR-FILE=*ASSIGNED option of the SDF statement MODIFY-
DIAGNOSTIC-PROPERTIES.
The instantiation statements output to the ETR files are incorporated into the appro-
priate sources. Productive operation is then activated using the INSTANTI-
ATION=*NONE or *AUTO option in the SDF statement MODIFY-SOURCE-
PROPERTIES the next time the compiler is called.
The advantage of this method is the considerable reduction in the time it takes to
complete prelinking during productive operation.

2. The compiler is called during development using the INSTANTIATION=*NONE and
GENERATE-ETR-FILE=*ALL-INSTANTIATIONS option (of the SDF statements as
described above).
After linking the developer checks each unresolved external reference to see whether
it is a template, and if it is a template, when it can be instantiated. Particularly helpful in
this case are the output external names. Then, the developer selects a source for the
instantiation and inserts the instantiation statements there. In addition, the correct
header files must also be included.
This method requires a considerable amount of manual work. But you do not subse-
quently need to call the prelinker.
This procedure offers you precise control over the placing of instances
(which is important when using components with high performance requirements).

Template instantiation C++ language support of the compiler

254 U21283-J-Z125-8-76

Example 1

For a single ETR file compiled using two files, x.c and y.c:

The following statements are used for compilation:

//MOD-DIAG GEN-ETR=ALL
//COMPILE (X.C, Y.C), *LIB(OLIB), MODULE-OUTPUT=*SOURCE-LOCATION

Source x.c:

template <class T> void f(T) {}
template <class T> void g(T);

template void f(long);

void foo()
{
 f(5);
 f(’a’);
 g(5);
}

Source y.c:

template <class T> void f(T) {}

void bar()
{
 f(5):
}

ETR-File x.etr (is in the OLIB library as a type S member):

// This file is generated and will be changed when the module is compiled

// The following template was
// explicitly instantiated
// __Of__Fl&_
template void f(long);

C++ language support of the compiler Template instantiation

U21283-J-Z125-8-76 255

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

// The following template was
// used in this module and can be instantiated here
// __Of__Fi&_
template void f(int);

// The following template was
// used in this module and can be instantiated here
// __Of__Fc&_
template void f(char);

// The following template was
// used in this module
// __Og__Fi&_
template void g(int);

ETR-File y.etr (is in the OLIB library as a type S member):

// This file is generated and will be changed when the module is compiled
// The following template was
// used in this module and can be instantiated here
// __Of__Fi&_
template void f(int);

The user can now decide in which source they wish to make explicit instantiations (this
decision must always be made for entries with “used in this module and can be instantiated
here“), for example, insertion of template void f(int) and
template void f(char) in x.c (see the Source in Example 2).
Then you will subsequently not need to use automatic template instantiation.

Template instantiation C++ language support of the compiler

256 U21283-J-Z125-8-76

Example 2

This example uses two file x.c and y.c in a library called test.

Source x.c

template <class T> void f(T){}
template <class T> void g(T);

template void f(long);

void foo()
{
 f(5);
 f(’a’);
 g(5);
}

Source y.c:

template <class T> void f(T) {}

void bar()
{
 f(5):
}

These programs are compiled using the following statements and the prelinking carried out:

//mod-source-prop language=*cplusplus(*ansi), instantiation=*auto
//mod-diagnostic-prop generate-etr-file=*assigned-instantiations
//compile *lib-elem(test, X.C), module-output=*source-location
//compile *lib-elem(test, Y.C), module-output=*source-location
//mod-bind-prop start-llm-creation=*yes
//mod-bind-prop include=*lib-elem(test,X)
//mod-bind-prop include=*lib-elem(test,Y)
//bind action=*prelink

C++ language support of the compiler Template instantiation

U21283-J-Z125-8-76 257

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

This creates a file called x.etr in the library test:

// This file is generated and will be changed when the module is compiled

// The following template was
// instantiated automatically by the compiler
// __Of__Fi&_
template void f(int);

// The following template was
// instantiated automatically by the compiler
// __Of__Fc&_
template void f(char);

The important lines are inserted in the file x.c, which creates the file x1.c:

template <class T> void f(T){}
template <class T> void g(T);

template void f(long);

void foo()
{
 f(5);
 f(’a’);
 g(5);
}
template void f(int);
template void f(char);

Then you can carry out production using the following commands:

//mod-source-prop language=*cplusplus(*ansi), instantiation=*none
//mod-diagnostic-prop generate-etr-file=*no
//compile *lib-elem(test,X1.C), module-output=*source-location
//compile *lib-elem(test,Y.C), module-output=*source-location

Template instantiation C++ language support of the compiler

258 U21283-J-Z125-8-76

Example 3

The following example shows the four classes of template that can be output.
The same assumptions are made as for example 1.
The following commands are input:

//mod-source-prop language=*cplusplus(*ansi), instantiation=*auto
//mod-diagnostic-prop generate-etr-file=*no
//compile *lib-elem(test,Y.C), module-output=*source-location
//mod-bind-prop start-llm-creation=*yes
//mod-bind-prop include=*lib-elem(test,y)
//bind action=*prelink (this will assign y to f(int))
//mod-diagnostic-prop generate-etr-file=*all-instantiations
//compile *lib-elem(test,X.C), module-output=*source-location
//mod-bind-prop start-llm-creation=*yes
//mod-bind-prop include=*lib-elem(test,X)
//mod-bind-prop include=*lib-elem(test,Y)
//bind action=*prelink

This creates an ETR file x.etr in the library called test:

// This file is generated and will be changed when the module is compiled

// The following template was
// explicitly instantiated
// __Of__Fl&
template void f(long(;

// The following template was
// used in this module and can be instantiated here
// __Of__Fi&
template void f(int);

// The following template was
// instantiated automatically by the compiler
// __Of__Fc&
template void f(char);

// The following template was
// used in this module
// __Og__Fi&
template void g(int);

C++ language support of the compiler Template instantiation

U21283-J-Z125-8-76 259

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

7.3.4 Implicit inclusion

The implicit inclusion of source files is a method of finding definitions of template entities.
This method is enabled for the compiler by default (see also the option IMPLICIT-INCLUDE
on page 139) and can be disabled with IMPLICIT-INCLUDE=*NO. Implicit inclusion must
not be disabled when using templates from the standard C++ library (see the notes on
page 245 for details).

When implicit inclusion is enabled, the compiler looks for the definition of a template entity
in accordance with the following principle:
If a template entity is declared in a header file named basename.H and no definition for it is
available in the compiled source code, the compiler will assume that the definition for that
template entity is contained in a source file
– which is located as a source program element in the same PLAM library as the header

file and
– which has the same base name as the header file and a standard suffix that is valid for

C++ source files, i.e.: .C , .CPP, .CXX or .CC (e.g. basename.CC).

Let us assume, for example, that a template entity ABC::f is declared in the header file
XYZ.H in the library PLAM.T. If the instantiation of ABC::f is requested on compilation, but
no definition of ABC::f exists in the compiled source code, the compiler will search the
library PLAM.T for a source file with the base name XYZ and a standard suffix that applies
to C++ source files, i.e.: .C , .CPP, .CXX or .CC (e.g. XYZ.CC). If such a file exists, it will be
treated as if it were included at the end of the source file containing the #include directive
for XYZ.H.

Deviations C++ language support of the compiler

260 U21283-J-Z125-8-76

7.4 Deviations from ANSI/ISO C++

7.4.1 Extensions to ANSI-/ISO-C++

The extensions described below are accepted in all C++ language modes, except when the
option -R strict_errors or ANSI-VIOLATIONS=*ERROR has been set in the strict ANSI
C++ mode. Note that all extensions to ANSI/ISO C (see the section “Extensions to
ANSI/ISO C” on page 219ff) are also supported in the C++ modes.

Declarations and definitions in classes

The following extensions will result in warnings if used in any of the C++ modes.
In the strict ANSI C++ mode, the output of errors can be forced with the option
-R strict_errors or ANSI-VIOLATIONS=*ERROR.

● A friend declaration for a class may omit the class keyword:

class A {

friend B; // ANSI requires friend class B;
};

● Constants of scalar type may be defined within a class:

class A {
const int size = 10;
int a[size];

};

● A qualified name may be used in the declaration of a class member:

struct A {
int A::f(); // ANSI requires int f();

};

Preprocessor

The preprocessor macro c_plusplus is defined in addition to the standard-compliant
macro __cplusplus. No warning is issued.

C++ language support of the compiler Deviations

U21283-J-Z125-8-76 261

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

7.4.2 extern inline vs. static inline

An inline function can be interpreted as static inline or extern inline. This question
is important when local static variables are used in the function or when the address of such
a function is used in a comparison.
Examples 1 and 2 at the end of this section illustrate the problem.

From the programmer’s viewpoint, a static inline function behaves in exactly the same way
as a static function. The function itself and all the elements declared in the function are local
to the current compilation unit. The function itself does not interact in any way with elements
of other compilation units; these must be produced by other (external) functions.

An extern inline function behaves like a normal external function. The body of the function
must occur in every compilation unit which uses it. It must, however, always be identical.
The behavior can be described by means of a comparison: it is as if the body were the only
definition in an additional compilation unit and this function were called in all the other com-
pilation units.

In addition to the definition above, the optimizer is also informed that an inline expansion is
desirable. However, the meaning must be retained when this optimzation is implmented.

The view of the C++ standard

If a function is declared with the keyword inline, it is implicitly regarded as
extern inline. A static inline must be declared with the keywords static and
inline.
A member function which is defined within a class is implicitly regarded as extern inline.

Implementation in the compiler

The compiler does not know the concept of an extern inline function. It interprets all inline
functions as static inline.
This affects both the functions declared with the keyword inline and also the member
functions defined within a class.

The problematical constructs

In many cases it is irrelevant whether a function is interpreted as static inline or
extern inline. To permit this, one of three constructs must be used. The situation is pro-
blematical only when the function is used in multiple compilation units.

The functions affected are those which are conceived as extern inline (see Example 3).
These functions are almost always contained in a header file, together with a body. Temp-
lates or member functions can be concerned here.

Deviations C++ language support of the compiler

262 U21283-J-Z125-8-76

In the case of templates it must be borne in mind that the CPP compiler includes other sour-
ces if this function is not disabled. In this context, see the options //MODIFY-SOURCE-
PROPERTIES IMPLICIT-INCLUDE = and –K implicit_include which are active in the
default case (see Example 4).

● Local static variables

In such a situation a local static variable exists several times over in the compiler im-
plementation, while the standard requires a single occurrence. Whether this leads to a
problem depends on the reason why the variable was defined as local static (see Ex-
ample 5).
If a single occurrence is indeed expected, a problem exists. Whether this will result in
runtime errors depends very much on the actual usage.
The situation is different if the reason is the lifetime of the memory. A great deal of code
sets up a string internally in order to return it as the return value. No auto variable can
be used here because the memory is released when the value is returned. However, a
local static remains valid until the function is called again. This is frequently used
when texts are edited for output. In this case the variable is duplicated, but this has
practically no effect on the program run.

● Comparison of addresses

An extern inline function has an unambiguous address, a static inline function one
address per compilation unit. This is not relevant as long as the addresses are only
used to call the function.
Things become critical when such addresses are compared with each other. However,
this tends to happen only rarely. It would be conceivable when registering callback func-
tions in which each function should only be entered once.

● String literal

This construct only returns a problem in exceptional cases. The standard does not de-
fine whether string literals with the same content also have the same address. It is also
very unusual to use the address of a string literal in comparisons or similar functions.

C++ language support of the compiler Deviations

U21283-J-Z125-8-76 263

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

Example 1: A problematical situation

// file bsp.h
#include <stdio.h>
class BSP {
public:

inline int mf1(void);
};
inline int BSP::mf1(void)
{

static int i = 1;
return i++;

}
extern void f();

// file bsp1.c
#include “bsp.h”
void f()
{

BSP bsp;
printf (“Value 1: %d\n”, bsp.mf1());

}
// file bsp2.c

#include “bsp.h”
void g()
{

BSP bsp;
printf (“Value 2: %d\n”, bsp.mf1());

}
int main()
{

f();
g();
return 0;

}

Explanation

The function mf1 is critical, as is the variable i which it contains. According to the standard
this should only exist once. The two calls in bsp1.c and bsp2.c should therefore apply to
the same variable. The required output is

Value 1: 1
Value 2: 2

However, in the implementation of the CPP compiler the function is processed separately
in bsp1.c and bsp2.c. A different variable is addressed with the call in bsp2.c from the
call in bsp1.c. Both variants are initialized with 1.

Deviations C++ language support of the compiler

264 U21283-J-Z125-8-76

The output is then

Value 1: 1
Value 2: 1

Example 2: A problematical situation with templates

// file tmpl.h
#include <stdio.h>
template <class T>
inline int tmpl(T t)
{

static int i = 1;
return i++;

}
extern void f();

// file tmpl1.c
#include “tmpl.h”
void f()
{

printf (“Value 1: %d\n”, tmpl(5));
}

// file tmpl2.c
#include “tmpl.h”
void g()
{

printf (“Value 2: %d\n”, tmpl(7));
}
int main()
{

f();
g();
return 0;

}

Explanation

The same notes apply as for Example 1, but a template is involved here rather than a mem-
ber function. The output expected by the standard is

Value 1: 1
Value 2: 2

The output supplied by the CPP compiler is

Value 1: 1
Value 2: 1

C++ language support of the compiler Deviations

U21283-J-Z125-8-76 265

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

Example 3: Functions affected

// file bf.h
inline int f1(T) { } // affected
int f2(T); // not affected
static inline int f3(T) { } //not affected

as explicitly static
template <class T> inline int tf1(T) { } //affected
template <class T> int tf2(T); //not affected
template <class T> static inline int tf3(T) { } //not affected

as explicitly static
class BSP {
public:

inline int mf1(void); //affected
int mf2(void) { } //affected
int mf3(void); //not affected

};
inline int BSP::mf1(void) { }

Example 4: Implicit include

// file ii.h
template <class T> inline int ii(T);

// file ii.c
template <class T> inline int ii(T) //this function is affected,

although it is contained in a
.c file

{
static int i;
return i++;

}

Deviations C++ language support of the compiler

266 U21283-J-Z125-8-76

Example 5: Problematical static variables

Usage is only presented as problematical/not problematical here. To become a real pro-
blem, the function must be a problematical inline function.

inline void no_recursion (void)
{

static int active = 0; //problematical
active ++;
if (active > 1)
{

illegal_recursion ();
} else {

do_something ();
}
active --;

}

This is problematical because the recursion is not reliably detected.

inline char * debug_text ()
{

static char buffer [200]; // not problematical
sprintf (buffer, “…”, …);
return buffer;

}

This is not problematical because the content of the buffer is always used before the next
call. There is normally nobody who saves and accepts the address, which means that its
content changes reliably.

inline void f (void)
{

static int actions = 0; //(see below)
actions++;
if (actions > 200)
{

actions = 0;
optimize_datastructures (); //Only cleaning up, no relevant

change
}
do_something ();

}
Whether this is problematical depends very much on the optimize_datastructures
function. If it is really thae case that only optimization is being performed there, the program
runs correctly despite actions being duplicated.
However, the performance is different because optimize_datastructures is no longer
called on a regular basis.

C++ language support of the compiler Variations in the Cfront C++ mode

U21283-J-Z125-8-76 267

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

7.5 Variations in the Cfront C++ mode

The behavior of the compiler in the Cfront C++ mode is compatible with Cfront C++ V3.0
and later versions, i.e. the compiler supports many of the corresponding function attributes
and specific features. The Cfront C++ mode is supported so that existing code containing
extensions to Cfront versions as of V3.0 can be compiled without manual intervention. It
does not guarantee full compatibility with the earlier C++ compilers (V2.1, V2.2).

Consequently, note that if a program produces an error when compiled with the
C++ V2.1/V2.2 compiler, it is possible that the C/C++ V3.0 compiler may produce a different
error or no error at all in the Cfront C++ mode. Some of the special aspects to be noted for
the Cfront C++ mode are described below.

● const qualifiers on the this parameter may be dropped in some contexts, as in this
example:

struct A {
void f() const;

};

void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a function of type const may be put into
a pointer to a non-const type, since a call using the pointer is permitted to modify the
object, and the function pointed to will actually not modify the object. An assignment in
the reverse direction would not be safe.

● Conversion operators specifying conversion to void are allowed.

● A friend declaration may introduce a new type. A friend declaration that omits the
elaborated type specifier is allowed in the ANSI C++ mode, but is also allowed to
introduce a new type name in the Cfront mode.

struct A {
friend B;

};

● The third operator of the ? operator is a conditional expression instead of an assignment
expression.

Variations in the Cfront C++ mode C++ language support of the compiler

268 U21283-J-Z125-8-76

● A reference to a pointer type may be initialized from a pointer value without using a
temporary variable even if the reference pointer type has supplementary type qualifiers
in addition to those present in the pointer value. For example:

int *p;
const int *&r = p; // No temporary used

● A reference variable may be initialized with 0.

● Since the accessibility of types is not checked in the Cfront mode, access errors for
types are issued as warnings instead of errors.

● When calling overloaded functions, a null pointer must be written as a string in the form
"0". Other notations such as const variables with the value 0 or constants in the form
'\0' are not interpreted as a null pointer by the compiler in the case of overloaded
functions.

● No warning is issued when an operator()() function has default argument
expressions.

● An alternate form of declaring pointer-to-member-function variables is supported. This
is illustrated in the example below:

struct A {
void f(int);
static void sf(int);
typedef void A::T3(int); // nonstd typedef decl
typedef void T2(int); // std typedef

};

typedef void A::T(int); // nonstd typedef decl
T* pmf = &A::f; // nonstd ptr-to-member decl
A::T2* pf = A::sf; // std ptr to static mem decl
A::T3* pmf2 = &A::f; // nonstd ptr-to-member decl

In this example, T names a routine type for a nonstatic member function of class A that
takes an int argument and returns void. The use of such types is restricted to non-
standard pointer-to-member declarations. The declarations of T and pmf in combination
are equivalent to a single standard pointer-to-member declaration in the form:

void (A::* pmf)(int) = &A::f;

C++ language support of the compiler Variations in the Cfront C++ mode

U21283-J-Z125-8-76 269

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

A non-standard pointer-to-member declaration that appears outside of a class decla-
ration, such as the declaration of T, is normally invalid and would cause an error to be
issued. For declarations that appear within a class declaration, such as A::T3, this
feature changes the meaning of a valid declaration.

● protected class members are not checked when the address of a protected
member is specified.

class B { protected: inti; };
class D : public B {void mf(); };

void D::mf() {
int B::* pmi1 = &B::i; // error in ANSI mode, OK in Cfront mode
int D::* pmi2 = &D::i; // OK

}

Note that the checking of protected class members for other operations (i.e. every-
thing except the declaration of pointer-to-member addresses) is handled as defined by
the standard in Cfront mode.

● The destructor of a derived class may implicitly call the private constructor of a base
class. This is an error in the ANSI C++ mode, but is reduced to a warning in the Cfront
C++ mode. For example:

class A {
~A();

};

class B : public A {
~B();

};

B:: ~B(){} // Error except in Cfront mode

Variations in the Cfront C++ mode C++ language support of the compiler

270 U21283-J-Z125-8-76

● When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattern type-name-or-keyword (identifier...) is
treated as an argument. For example:

class A { A(); };
double d;
A x(int(d));
A(x2);

According to the standard, int(d) is interpreted as a parameter declaration (with
redundant parentheses), which means that x is a function. In the Cfront C++ mode,
int(d) is interpreted as an argument, so x is a variable.

Note that the declaration A(x2); is also interpreted differently in the Cfront C++ mode
as compared to the standard. The standard dictates that it should be interpreted as the
declaration of an object named x2, but in the Cfront C++ mode it is interpreted as a
cast of x2 to type A.

A similar deviation from the standard can be seen in the interpretation of the following
declaration:

int xyz(int());

According to the standard, this declares the function xyz, which takes a parameter that
is a function without arguments and returns an int. In the Cfront mode, this is inter-
preted as the declaration of an object that is initialized with the value 0.

● Bitfields

A named bitfield may have a size of 0. The declaration is treated as if no name were
declared.

Plain bitfields, i.e. bitfields declared with the type int, are always unsigned.

● The name for a type specifier may be a typedef name that is a synonym for a class
name:

typedef class A T;
class T *pa; // No error in Cfront mode

● No warning is issued on duplicate size and sign (signed or unsigned) type specifiers:

short short int i; // No warning in Cfront mode

C++ language support of the compiler Variations in the Cfront C++ mode

U21283-J-Z125-8-76 271

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

● Virtual function table pointer update code is not generated in destructors for base
classes of classes without virtual functions, even if the base class virtual functions might
be overridden in a further derived class. For example:

struct A {
virtual void f() {}
A() {}
~A() {}

};

struct B : public A {
B() {}
~B() {f();} // Should call A::f according to ARM 12.7

};

struct C : public B {
void f() {}

} c;

In the Cfront mode, B::~B calls the function C::f.

● An extra comma is allowed after the last argument in an argument list:

f(1,2,);

● A constant pointer-to-member function may be cast to a pointer-to-function. Only a
warning is issued:

struct A {int f();};
main() {

int (*p)();
p = (int (*)())A::f; // OK, with warning

}

● Arguments of class types that allow bitwise copy construction but also have destructors
are passed by value (like C structures), and the destructor is not called on the “copy”.
In ANSI mode, the class object is copied to a temporary object; the address of the
temporary object is passed as the argument, and the destructor is called on the
temporary object after the call returns. In practice, this is not much of a problem, since
classes that allow bitwise copying usually do not have destructors.

● A union member may be declared to have the type of a class for which the user has
defined an assignment operator (as long as the class has no constructors or
destructors). However, a warning is issued.

Variations in the Cfront C++ mode C++ language support of the compiler

272 U21283-J-Z125-8-76

● If an unnamed class appears in a typedef declaration, the typedef name may be
used as the class name.

typedef struct {int i, j; } S;
struct S x; // No error in Cfront mode

● A typedef name may be used in an explicit destructor call:

struct A { ~A(); };
typedef A B;
int main() {

A *a;
a->~B(); // Permitted in Cfront mode

}

● Two member functions may be declared with the same parameter types when one is
static and the other is nonstatic with a function qualifier. For example:

class A {
void f(int) const;
static void f(int); // no error in Cfront mode

}

● When two functions have the same name and very similar parameter types, they cannot
be used together. This is the case when the parameter types differ only in the following
aspects:

– char vs. signed char;

f(char);
f(signed char);

– Array limits

f(char(*x)[15]);
f(char(*x)[18]);

– A const qualification of a typedef

typedef char c;
f(const c*);
f(c*);

C++ language support of the compiler Variations in the Cfront C++ mode

U21283-J-Z125-8-76 273

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

07

– Indirect or combined use of these aspects

f(char*,int);
f(signed char*,int);
typedef char c;
g(char,c*);
g(signed char,const c*);

If both functions are defined nevertheless, this is interpreted as a duplicate. No mes-
sage is issued during compilation.

Variations in the Cfront C++ mode C++ language support of the compiler

274 U21283-J-Z125-8-76

U21283-J-Z125-8-76 275

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

08

8 The C++ libraries and C++ runtime system
The following C++ libraries are provided with CRTE:

– a standard C++ library based on the ANSI C++ draft

– a C++ library compatible with Cfront V3.0.3

– Tools.h++ V7.0

8.1 The standard C++ library

The standard C++ library can only be used in the ANSI C++ modes of the compiler.
This library includes the following interfaces:

● A string class

<string>

● Container classes

<bitset>
<deque>
<list>
<map>
<queue>
<set>
<stack>
<vector>

● Iterators

<iterator>

● Generic algorithms

<algorithm>

● Numeric classes and operations

<complex>
<numeric>

The standard C++ library The C++ libraries and C++ runtime system

276 U21283-J-Z125-8-76

● I/O classes

<iostream.h>
<fstream.h>
<strstream.h>
<stdiostream.h>
<iomanip.h>

The I/O classes are currently not ANSI-compliant and correspond to the
Cfront V3.0.3-compatible I/O library iostream.

The header files for the above interfaces are contained in the library SYSLIB.CRTE, and
the modules are contained in the library SYSLNK.CRTE.STDCPP.

All names of the standard C++ library, except for the I/O classes, are available in the std
namespace.

The following header files (also contained in SYSLIB.CRTE), in which all ANSI C library
functions are defined in the std namespace, constitute a further component of the standard
C++ library. The names of these header files are derived from the names of the ANSI C
headers as follows: each name is preceded by the letter c, and the .h suffix is dropped.

Using the library

Program development in the BS2000 environment (SDF)

The library SYSLIB.CRTE must be searched for standard headers at compilation. This can
be ensured by specifying the search for standard headers with the option STD-INCLUDE-
LIBRARY= *STANDARD-LIBRARY (default) in the MODIFY-INCLUDE-LIBRARY
statement.

The program must be linked with the BIND statement of the compiler, and the (default) entry
RUNTIME-LANGUAGE=*CPLUSPLUS(MODE=*ANSI) must be specified in the
MODIFY-BIND-PROPERTIES statement.

For further details see page 79.

<cassert> <ciso646> <csetjmp> <cstdio> <ctime>

<cctype> <climits> <csignal> <cstdlib> <cwchar>

<cerrno> <clocale> <cstdarg> <cstring> <cwctype>

<cfloat> <cmath> <cstddef>

The C++ libraries and C++ runtime system The Cfront C++ library

U21283-J-Z125-8-76 277

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

08

Program development in the POSIX environment

In order to include header files and link in the required modules, one of the ANSI C++
modes (-X w, -X e) must be specified in the CC command. The default setting for the CC
command is -X w (extended ANSI C++). For more details, see also the manual “POSIX
Commands of the C/C++ Compiler”.

Documentation

The standard C++ library is described in detail in the following manual:
“Standard C++ Library V1.2, User´s Guide and Reference” [6] (one volume).

A description of the I/O classes compatible with Cfront V3.0.3 can be found in the
“Cfront C++ Library”, Reference Manual [5].

8.2 The Cfront C++ library

The C++ library compatible with Cfront V3.0.3 can only be used in the Cfront C++ mode of
the compiler. This library includes the following interfaces:

● A class for complex math

<complex.h>

● Classes for stream-oriented I/O

<iostream.h>
<fstream.h>
<strstream.h>
<stdiostream.h>
<iomanip.h>
<generic.h>
<new.h>

The header files for the above interfaces are contained in the library SYSLIB.CRTE.CPP,
and the modules are located in the library SYSLNK.CRTE.CPP.

Using the library

Program development in the BS2000 environment (SDF)

 The headers of the Cfront C++ library contain declarations which use the "at" sign
(@). You should note that it will not be possible to use the Cfront C++ library where
*NO is specified in the option AT-ALLOWED=... in the MODIFY-SOURCE-
PROPERTIES statement.

i

The Cfront C++ library The C++ libraries and C++ runtime system

278 U21283-J-Z125-8-76

In the search for standard headers at compilation, the library SYSLIB.CRTE.CPP must be
searched before the library SYSLIB.CRTE. This can be ensured by specifying the search
for standard headers with the option STD-INCLUDE-LIBRARY= *STANDARD-LIBRARY
(default) in the MODIFY-INCLUDE-LIBRARY statement.

When linking with the BIND statement of the compiler, only the following entry must be
specified in the MODIFY-BIND-PROPERTIES statement:
RUNTIME-LANGUAGE=*CPLUSPLUS(MODE=*CPP).

Program development in the POSIX environment

 If you use the Cfront C++ library, you cannot use the option -K no_at.

In order to include header files and link in the required modules, only the language mode
option -X d needs to be specified in the CC command. Note, however, that the -X d option
must be specified for both compilation and linkage:

CC -X d -c x.C y.C # Compilation
CC -X d x.o y.o # Linkage

Documentation

The Cfront C++ library is described in detail in the following manual:
“C++ V2.1 (BS2000) C++ Library Functions“ [5].

i

The C++ libraries and C++ runtime system The Tools.h++ library

U21283-J-Z125-8-76 279

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

08

8.3 The Tools.h++ library

The Tools.h++ V7.0 library can only be used in the ANSI C++ modes of the compiler.

This library offers a broad spectrum of “foundation classes”, i.e.:

● string classes with pattern-matching mechanisms

● classes to handle the date and time

● virtual streams

● file and file manager classes

● container classes (collectable) with the option of implementing persistence and
associated iterator classes:

– Smalltalk-like container classes (without template usage)
– template container classes to store values (RWTVal...)
– template container classes to store pointers (RWTPtr...)

● classes for internationalization

The header files for the above interfaces are contained in the library SYSLIB.CRTE, and
the modules are contained in the libraries SYSLNK.CRTE.TOOLS.

Using the library

Program development in the BS2000 environment (SDF)

The library SYSLIB.CRTE must be searched for standard headers at compilation. This can
be ensured by specifying the search for standard headers with the option STD-INCLUDE-
LIBRARY= *STANDARD-LIBRARY (default) in the MODIFY-INCLUDE-LIBRARY
statement.

The program must be linked with the BIND statement of the compiler, and the following
options must be specified in the MODIFY-BIND-PROPERTIES statement:
RUNTIME-LANGUAGE=*CPLUSPLUS(MODE=*ANSI) (default) and TOOLSLIB=*YES.

For further details see page 79.

The Tools.h++ library The C++ libraries and C++ runtime system

280 U21283-J-Z125-8-76

Program development in the POSIX environment

In order to include header files and link in the required modules, one of the ANSI C++
modes (-X w, -X e) must be specified in the CC command. The default setting for the CC
command is -X w (extended ANSI C++).

Furthermore, when linking the program, the option -l RWtools must also be specified.
For more details, see also the manual “POSIX Commands of the C/C++ Compiler” [1].

Documentation

The Tools.h++ library is described in detail in the following manuals:
“Tools.h++ V7.0, User´s Guide” and
“Tools.h++ V7.0, Class Reference”

Information on the documentation

In order to make the tools.h++ library independent of incompatible future versions of the
standard library, it is not based on the standard library (i.e. the RW_NO_STL directive has
been placed in the central configuration header w/compiler.h).
Certain classes are therefore not available or only available with restrictions. These are
identified accordingly in the “Tools.h++ Class Reference” manual [8], e.g.
“RWTValMap requires the Standard C++ Library.”
When the associated headers are used, a #error error message is issued, e.g.

“Cannot include header if RW_NO_STL macro is defined for your compiler”
or
“You must have both Standard Library and Exceptions to use this class.”

Some classes implement functions which are linked to particular systems:

header rw/xdrstrea.h; class RWXDRistream and RWXDRostream

These classes can be used in BS2000/POSIX, but not in BS2000 native.

header rw/winstrea.h; class RWCLIPstreambuf

The “Tools.h++ Class Reference” manual [8] contains the following information on this:
“Class RWCLIPstreambuf is a specialized streambuf that gets and puts sequences of cha-
racters to Microsoft Windows global memory. It can be used to exchange data through
Windows clipboard facility.”
As neither the concept of a “Microsoft Windows global memory” nor that of a “Windows clip-
board” exists in Windows, this class is not available here.

The C++ libraries and C++ runtime system The C++ runtime system

U21283-J-Z125-8-76 281

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

08

8.4 The C++ runtime system

8.4.1 Initialization

Exceptions thrown during the initialization of global objects result in a call to terminate and
thus cause the program to abort without diagnostics. If desired, you can use
set_terminate to specify some other exception-handling routine to be used in the event
of an unforeseen program abort. This function must, however, be called before initializing
the global objects.

The C++ runtime system offers the following solution to specify functions to be used as the
“initial current handler”:

– You can link your own __initial_terminate_handler function of type
terminate_handler into your program. This function is declared weak in the C++
runtime system. If __initial_terminate_handler is defined, the function will then
be called as the “initial handler” to terminate exception processing.

– You can also use the functions __initial_unexpected_handler and
__initial_new_handler with the same mechanism. These routines are of type
unexpected_handler and new_handler, respectively.

You must include the header file <exception> for the __initial_terminate_handler
and __initial_unexpected_handler interfaces and the header file <new> for the
__initial_new_handler.

The C++ runtime system The C++ libraries and C++ runtime system

282 U21283-J-Z125-8-76

8.4.2 Exception handling

Additional runtime functions

Besides the runtime functions defined by the language standard, the C++ runtime system
offers a number of useful functions with which programs can be made more reliable. Note,
however, that programs which use these functions are not ANSI C++-compliant and are
hence not portable.
The following additional functions are available: unwind_exit,
get_caught_object_typeid, can_throw and can_rethrow.
These functions are all part of the _SNI_extensions namespace.

unwind_exit - Unwind stack before exiting program

The unwind_exit function, like exit, is used to terminate a program. In contrast to exit,
however, a call to unwind_exit causes the following additional actions to be performed
before the program is exited:

– All automatic objects on the runtime stack that have not yet been deleted are
destroyed.

– All exception objects that have not been exited are destroyed.

This is followed by the destruction of global objects as in the case of exit.

Note that neither exit nor unwind_exit will destroy objects on the heap that have not
been released.

If a destructor called by unwind_exit ends with an exception, terminate is called
implicitly. It is therefore advisable to call unwind_exit in the terminate_handler as well.
This will guarantee that the destructors for all automatic and exception objects are
eventually called in any case. This cannot result in an endless loop.

The unwind_exit function can be called from any part of the program (like exit),
especially from a terminate_handler. Like exit, it is supplied with an exit status as an
argument (and with the same effect).

The prototype of the unwind_exit function is declared in the <exception> header:

#include <exception>

namespace _SNI_extensions {
 void unwind_exit(int status);

}

The C++ libraries and C++ runtime system The C++ runtime system

U21283-J-Z125-8-76 283

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

08

get_caught_object_typeid - Determine type of caught exception object

The function get_caught_object_typeid can be used to determine the type of a caught
exception object. It returns the type of the exception object that was most recently caught
and was not finished. If the exception object is a pointer type, the type of the object pointed
to is returned. If no caught and unfinished exception object exists, an exception of type
bad_typeid is thrown.

The type of the caught exception object is returned as a reference to a type_info object.
The class type_info and the prototype of the function get_caught_object_typeid are
declared in the <typeinfo> header:

#include <typeinfo>

namespace _SNI_extensions {
 const type_info &get_caught_object_typeid(EO_flag_set *pflags);

}

If the argument to get_caught_object_typeid is non-zero, it is interpreted as an
address containing information on whether the caught object is a pointer, and if it is, also
the type attributes applicable to the object pointed to.

EO_NO_FLAGS : not a pointer
EO_IS_POINTER : pointer
EO_POINTER_TO_CONST : pointer to constant
EO_POINTER_TO_VOLATILE : pointer to volatile

The function get_caught_object_typeid can be called in any handler
(terminate_handler, unexpected_handler, catch(...) {...}) to obtain information
about the type of the caught exception object. This can be useful in diagnosing program
runtime errors.

The C++ runtime system The C++ libraries and C++ runtime system

284 U21283-J-Z125-8-76

can_throw - Check for terminate or unexpected on throwing an object

The function can_throw (predicate) checks whether an exception of the specified type can
be thrown without resulting in a call to terminate or unexpected.

#include <typeinfo>

namespace _SNI_extensions {
bool can_throw(const std::type_info &typeid_to_check,

 EO_flag_set flags = EO_NO_FLAGS);
}

typeid_to_check must be a non-pointer type of an exception object.

flags can be used to specify whether the type of exception to be actually checked is a
pointer or whether it is a const or volatile:

EO_NO_FLAGS : not a pointer type
EO_IS_POINTER : pointer type
EO_POINTER_TO_CONST : pointer to const
EO_POINTER_TO_VOLATILE : pointer to volatile

If the flags argument is not specified, EO_NO_FLAGS (not a pointer type) is set by default.

can_rethrow - Check for terminate or unexpected on rethrowing an object

The function can_rethrow (predicate) checks whether an exception can be rethrown
(throw;) without resulting in a call to terminate or unexpected.

#include <typeinfo>

namespace _SNI_extensions {
bool can_rethrow(void);

}

The C++ libraries and C++ runtime system The C++ runtime system

U21283-J-Z125-8-76 285

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

08

C signal handling and C++ exception handling

According to the ANSI-C++ language definition, the use of C++ exception handling is not
allowed in C signal routines. If a C signal routine is nonetheless reached by the runtime
system during stack processing triggered by an exception, the system behaves as if the end
of the stack were reached. Consequently, it is not possible to throw an exception from a
signal routine or to rethrow an exception that was caught with catch before the signal
routine was called. In such cases, terminate is invoked instead.

The function unwind_exit (see page 282) does not destroy all objects when called from
signal routines. All automatic objects which were not deleted before the call to the signal
routine and all exception objects that had not yet terminated are not destroyed in this case.
However, the program still terminates with exit.

longjmp support

After a longjmp call, the following actions are performed by the C++ runtime system for
each function that is skipped:

– All automatic objects that were constructed in the function but not deleted are
destroyed.

– All exception objects which were caught in the function but which have not terminated
are destroyed.

Note, however, that these destructors are not invoked for the target function of the longjmp
call itself. Consequently, in a function containing a setjmp call, no object should be
constructed, destroyed or caught between the setjmp call and the entry of the routine
aborted by the longjmp. This can be achieved by relocating all code for constructors,
destructors and catching exceptions to a separate function. Furthermore, in order to
prevent this function from being inlined, it must be called via an external function pointer.
Consider the following example:

The C++ runtime system The C++ libraries and C++ runtime system

286 U21283-J-Z125-8-76

Example

Instead of using the code of the function f() in Version 1, the code of Version 2 is to be
used:

/* Version 1 */

#include <setjmp>

jmp_buf target;
void g();
class X { ~X(); };

void g()
{

longjmp(target, 1);
}

void f()
{

if (setjmp(target) == 0)
{

X x; // No destruction for longjmp call by g()
(g);

}
}

/* Version 2 */

void f1()
{

X x; // Destruction for longjmp call by g()
g();

}

extern void (*f1p)() = f1;

void f()
{

if (setjmp(target) == 0)
{

(*f1p)(); // f1() is not inlined here
}

}

longjmp and signal routines

When longjmp is called from a signal routine, no destructors for automatic and exception
objects are executed in the function in which the signal occurred.

The C++ libraries and C++ runtime system The C++ runtime system

U21283-J-Z125-8-76 287

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

08

Linking old C modules with ANSI C++ modules

C modules generated with the C or C++ Compiler V2.2 can be linked with ANSI C++
modules. Note, however, that the following restrictions apply with respect to stack handling
by the C++ runtime system:

– No exception may be thrown if there is still an active C V2.2 function between the call
to throw and the exception handler (catch) which catches the exception.

– No exception may be rethrown if there is still an active C V2.2 function between the call
to throw; and the exception handler (catch) that has caught the rethrown exception.

– No longjmp across a C V2.2 funtion may be executed from a C++ function.

The C++ runtime system The C++ libraries and C++ runtime system

288 U21283-J-Z125-8-76

U21283-J-Z125-8-76 289

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

9 Appendix

9.1 Description of listings

The listing generators of the compiler produce the following listings, depending on what is
requested in the MODIFY-LISTING-PROPERTIES statement:

The following listings are described below by means of examples:
source/error, map, cross-reference, and object listings.

Listing Options of the MODIFY-LISTING-PROPERTIES statement
Option listing
Source/error listing
Preprocessor listing
Map listing
Cross-reference listing
Project listing
Object code listing
Summary listing

OPTIONS
SOURCE
PREPROCESSING-RESULT
DATA-ALLOCATION-MAP
CROSS-REFERENCE
PROJECT-INFORMATION
ASSEMBLER-CODE
SUMMARY

Description of listings Appendix

290 U21283-J-Z125-8-76

Source/error listing

The source/error listing is requested with the SOURCE option of the
MODIFY-LISTING-PROPERTIES statement.

*** SOURCE - ERROR - LISTING ** C/C++(BS2000/OSD) COMPILER 03.2D00 DATE:2011-11-02 PAGE: 1
 SOURCENAME:*BS2000(MAINPROG) TIME=17:37:07

 (1) (2) (3) (4) (5)

 EXP INC FILE SRC BLOCK
 LIN LEV NO LIN LEV

 1 0 0 1 0 #include <stdio.h>
 1746 0 0 2 0 #include "incl1.h"
 1747 1 10 1 0 class A
 1748 1 10 2 0 {
 1749 1 10 3 0 int i;
 1750 1 10 4 0 public:
 1751 1 10 5 0 A(int x = 1) : i(x) {};
 1752 1 10 6 0 void foo() { printf("A::foo called\n"); };
 1753 1 10 7 0 } a;
 1754 0 0 3 0 #include "incl2.h"
 1755 1 11 1 0 class B : public A
 1756 1 11 2 0 {
 1757 1 11 3 0 int i;
 1758 1 11 4 0 public:
 1759 1 11 5 0 B(int x = 2) : i(x) {};
 1760 1 11 6 0 void foo() { printf("B::foo called\n"); };
 1761 1 11 7 0 } b;
 1762 0 0 4 0 extern "C" int jj;
 1763 0 0 5 0 extern int ii;
 1764 0 0 6 0
 1765 0 0 7 0 int main(void)
 1766 0 0 8 0 {
 1767 0 0 9 1 char *string = "AbCdEfG";
 1768 0 0 10 1 float xx = 1.0;
 1769 0 0 11 1 int ii = 1;
 1770 0 0 12 1 int jj = 2;
 1771 0 0 13 1 A* aptr = &a;
 1772 0 0 14 1 A* bptr = &b;
 1773 0 0 15 1
 1774 0 0 16 1 printf("%d\n", ii);
 1775 0 0 17 1 printf("%d\n", jj);
 1776 0 0 18 1 printf("%s\n", string);
 1777 0 0 19 1 printf("%f\n", xx);
 1778 0 0 20 1 a.foo();
 1779 0 0 21 1 aptr->foo();
 1780 0 0 22 1 b.foo();
 1781 0 0 23 1 bptr->foo();
 1782 0 0 24 1
 1783 0 0 25 1 return 0;
 1784 0 0 26 1 }

(6)

Appendix Description of listings

U21283-J-Z125-8-76 291

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

(1) Serial line number in the source listing, including all lines of the header elements
used in the source program. The lines from the header elements are always
included in the count, regardless of whether or not they are displayed in the source
listing (see the INCLUDE-INFORMATION option).

(2) Nesting level of the header elements.

(3) Number of the file (source file or header element) for which the respective contents
are mapped in the source listing. This number (starting with 0 for the source file) is
incremented by 1 for each #include or #line directive. At the end of each header
element, the number is reset to the value of the file containing the associated
#include directive. This number is relevant for the source reference for debugging
with AID if header elements contain executable statements or if #line directives
are interspersed with executable statements in source programs.
Only the user-defined header elements, i.e. incl1.h (10) and incl2.h (11), are
expanded in the example. The standard header element stdio.h and the other
#include directives contained in it are assigned the numbers 1 to 9 (see also the
FILETABLE section in the cross-reference listing).

(4) Original line number in the source file or header element, taking #line directives
into account.

(5) Nesting level of the statement blocks.

(6) The contents of header elements, depending on what is specified in the
INCLUDE-INFORMATION option of the MODIFY-LISTING-PROPERTIES
statement (only the user-defined header elements in this case).

Description of listings Appendix

292 U21283-J-Z125-8-76

Map listing

The map listing is requested with the DATA-ALLOCATION-MAP option of the
MODIFY-LISTING-PROPERTIES statement. It provides information on all the symbolic
addresses used in the program (names of variables and functions).

******** MAP - LISTING ******** C/C++ (BS2000/OSD) COMPILER 03.2D00 DATE:2011-11-02 PAGE: 3
 SOURCENAME:*BS2000(MAINPROG) TIME=17:37:33

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
name stcl/type size slice offs xoffs enuval stroffs xstroffs

a nospec 4 1 104 0x0068 - - -
 class
{
}
aptr auto 4 1 24 0x0018 - - -
 pointer to class
b nospec 8 1 108 0x006C - - -
 class
{
}
bptr auto 4 1 28 0x001C - - -
 pointer to class
ii extern 4 - - - - - -
 signed int
ii auto 4 1 16 0x0010 - - -
 signed int
jj extern 4 - - - - - -
 signed int
jj auto 4 1 20 0x0014 - - -
 signed int
string auto 4 1 8 0x0008 - - -
 pointer to char
x param 4 - - - - - -
 signed int
x param 4 - - - - - -
 signed int
xx auto 4 1 12 0x000C - - -
 float
A nospec 4 - - - - - -
 class
{
}
B nospec 8 - - - - - -
 class
{
}

Appendix Description of listings

U21283-J-Z125-8-76 293

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

(1) Name of the symbolic address.

(2) stcl (storage class): Storage class of the symbolic address. The following specifiers
are used:

(3) type: Data type of the symbolic address (in a separate line under the storage class).
The following abbreviations are used:

(4) size: Size of the variable in memory (in bytes).

(5) slice: A slice is an area (code or data fragment) with a length of 4096 bytes that can
be addressed via a base register. The digit specifies in which slice of the data
module the variable is located.

extern External variables and functions that are defined in a different
module.

entry_var Functions that are defined or declared in the source file.
static Static variables at block level, i.e. that are valid at block level.
param Function parameters.
auto Variables at block level, excluding static variables (see istat).
enum Member of an enumeration type.
member Elements of classes, structures or unions.
statmem Static element of a class.
typedef typedef name.
lab_const Label.

funct ret function returning
long long int
ptr pointer
short short int
struct structure
uchar unsigned char
schar signed char

Description of listings Appendix

294 U21283-J-Z125-8-76

(6) offs: Relative address within a slice (decimal).

(7) xoffs: Relative address within a slice (hexadecimal).

(8) enuval: For members of an enumeration type (enum), enuval specifies the value of
the member.

(9) stroffs: Byte position of the symbolic address within a structure (decimal).

(10) xstroffs: Byte position of the symbolic address within a structure (hexadecimal).

Appendix Description of listings

U21283-J-Z125-8-76 295

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

Cross-reference listing

The cross-reference listing is requested with the CROSS-REFERENCE option of the
MODIFY-LISTING-PROPERTIES statement.

It consists of the following parts:

– The FILETABLE section contains the names of all files or libraries/elements that were
used by the compiler as a source (source program or header element). A number is
assigned to each of these names. These numbers are referenced in the other sections
of the cross-reference listing.

– The PREPROCESSING-INFO section contains a list of the names processed by the
preprocessor in #include and #define directives (macros, header element names,
etc.).

– The TYPES section contains a list of the user-defined types (typedefs, classes,
structure, union, and enumeration types).

– The VARIABLES section contains a list of variables.

– The FUNCTIONS section contains a list of functions.

– The LABELS section contains a list of labels.

– The TEMPLATES section contains a list of templates (in ANSI C++ mode only).

The names in the individual lists are sorted in alphabetical order.

The PREPROCESSING-INFO, TYPES and TEMPLATES sections are not included in the
cross-reference listing by default and must be explicitly specified with
PREPROCESSING-INFO=*YES, TYPES=*YES or TEMPLATES=*YES, respectively.

Description of listings Appendix

296 U21283-J-Z125-8-76

FILETABLE section of the cross-reference listing

******* XREF - LISTING ******** C/C++ (BS2000/OSD) COMPILER 03.2D00 DATE:2011-11-02 PAGE: 1
 FILETABLE SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

 SOURCE FILE 0 = *BS2000(:2OSC:$TST30B.MAINPROG)
 INCLUDE FILE 1 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,STDIO.H(V02.3B08),S)
 INCLUDE FILE 2 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,IOBUF.H(V02.3B08),S)
 INCLUDE FILE 3 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,POSFILE.H(V02.3B08),S)
 INCLUDE FILE 4 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,STDIO.BS21.H(V02.3B08),S)
 INCLUDE FILE 5 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,STDIO.COMMON.H(V02.3B08),S)
 INCLUDE FILE 6 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,STDIO.BS22.H(V02.3B08),S)
 INCLUDE FILE 7 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,CGLOBALS.H(V02.3B08),S)
 INCLUDE FILE 8 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,IOBUF.H(V02.3B08),S)
 INCLUDE FILE 9 = *LIBRARY-ELEMENT(:2OSL:$TSOS.SYSLIB.CRTE,ERRNO.H(V02.3B08),S)
 INCLUDE FILE 10 = *LIBRARY-ELEMENT(:2OSC:$TST30B.PLAM.INCL,INCL1.H(*UPPER-LIMIT),S)
 INCLUDE FILE 11 = *LIBRARY-ELEMENT(:2OSC:$TST30B.PLAM.INCL.INCL2.H(*UPPER-LIMIT),S)

File number in global cross-reference listings

In a cross-reference listing that was created with the global listing generator from multiple
CIF files (see the section “Controlling the global listing generator” on page 156), the file
number is indicated in the form n(m), where n is the sequential number of the source and
header files (analogous to the local cross-reference listing; see above) used for each
compilation unit (= CIF file), and m is the number of the respective compilation unit. The
numbering of compilation units begins with 0.

PREPROCESSING-INFO section in the cross-reference listing

******* XREF - LISTING ******** C/C++ (BS2000/OSD) COMPILER 03.2D00 DATE:2011-11-02 PAGE: 2
 PREPRO SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

 56/12:5
 *LIBRARY-ELEMENT(:2OSC:$TST30B.PLAM.INCL,INCL1.H(*UPPER-LIMIT),S) / include file
 2%0
 *LIBRARY-ELEMENT(:2OSC:$TST30B.PLAM.INCL,INCL2.H(*UPPER-LIMIT),S) / include file
 3%0

'.'applied ':'def ':^'undef '%'included

Appendix Description of listings

U21283-J-Z125-8-76 297

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

TYPES section in the cross-reference listing

******* XREF - LISTING ******** C/C++ (BS2000/OSD) COMPILER 03.2D00 DATE:2011-11-02 PAGE: 3
 TYPES SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

a0000270 / struct of size 16 (0x10)
std / namespace
A / class of size 4 (0x4) ----------------- (1)
 1/7:10 1/18.11 13/3.0 14/3.0 ----------------- (2)
 public baseclass of class 'B'
 i / member, signed int, private ----------------- (3)
 A / inline constructor(signed int), public
 foo / member, inline function(void) ret void, public
B / class of size 8 (0x8)
 1/7:11
 A / baseclass, public
 i / member, signed int, private
 B / inline constructor(signed int), public
 foo / member, inline function(void) ret void, public

'.'used ':'def '&'decl

(1) Name and description of the user-defined type, possibly with a size specification
(decimal and hexadecimal).

(2) From left to right:
source program line and column in which the type appears,
abbreviation symbol for usage of the type, and
number of the source file or (header) element from the FILETABLE.

For example, 14/3.0 means that a variable of type class A is defined in line 14,
column 3 of the source program mainprog (0), and that the type is used (.).

(3) In the case of structured types, the respective components of these types are also
described (indented).
The data members of structures, classes, and unions are listed only in the TYPES
section (they are not variables). Members of functions are repeated in the
FUNCTIONS section.

Description of listings Appendix

298 U21283-J-Z125-8-76

VARIABLES section in the cross-reference listing

******* XREF - LISTING ******** C/C++ (BS2000/OSD) COMPILER 03.2D00 DATE:2011-11-02 PAGE: 4
 VARIABLES SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

a / class 'A' ------------------ (1)
 7/3=10 7/3:10 13/14&0 20/3&0 ------------------ (2)
aptr / automatic, pointer to class 'A',
 local in main(void) ret signed int, init value = &a-
 13/6=0 13/6:0 21/3.0
b / class 'B'
 7/3=11 7/3:11 14/14&0 22/3&0
bptr / automatic, pointer to class 'A',
 local in main(void) ret signed int
 14/6=0 14/6:0 23/3.0
i / member, signed int,
 member of class 'A'
 3/10:10 5/21=10
i / member, signed int,
 member of class 'B'
 3/10:11 5/21=11
ii / automatic, signed int,
 local in main(void) ret signed int, init value = 1
 11/7=0 11/7:0 16/18.0
ii / extern, signed int
 5/12:%0
jj / extern, signed int
 4/16:%0
jj / automatic, signed int,
 local in main(void) ret signed int, init value = 2
 12/7=0 12/7:0 17/18.0
string / automatic, pointer to char,
 local in main(void) ret signed int, init value = "AbCdEfG"
 9/9=0 9/9:0 18/18.0
x / param of constructor A::A, signed int
 5/12:10 5/23.10
x / param of constructor B::B, signed int
 5/12:11 5/23.11
xx / automatic, float,
 local in main(void) ret signed int, init value = 1
 10/9=0 10/9:0 19/18.0

'='write '.'read '*='indir-write '*.'indir-read '&'read-addr ':'def '%'decl ':%'extdecl '%%'use

(1) Name, storage class and data type of the variables.

(2) From left to right:
source program line and column in which the variable appears,
abbreviation symbol for usage of the variable, and
number of the source file or (header) element from the FILETABLE

For example, 7/3:10 means that the variable a is defined (:) in line 7, column 3 of
the header element incl1.h (10).

Appendix Description of listings

U21283-J-Z125-8-76 299

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

FUNCTIONS section in the cross-reference listing

******* XREF - LISTING ******** C/C++ (BS2000/OSD) COMPILER 03.2D00 DATE:2011-11-02 PAGE: 5
 FUNCTIONS SOURCENAME:*BS2000(MAINPROG) TIME=17:37:52

foo / public member of class 'B', inline function(void) ret void ---------- (1)
 6/11:11 22/5.0 ---------- (2)
foo / public member of class 'A', inline function(void) ret void
 6/11:10 20/5.0 21/9.0 23/9.0
main / function(void) ret signed int
 7/5:0
A / public member of class 'A', inline constructor(signed int)
 5/6:10 7/3.10 5/26.11
B / public member of class 'B', inline constructor(signed int)
 5/6:11 7/3.11

'.'call ':'def '&'decl '%'extdecl ':^'forward '&.'read-addr

(1) Name of the function, its scope, signature (type of parameters and return type), and
storage class. For member functions, additional information on the access rights
(e.g. public) and the class or union in which it is contained.

(2) From left to right:
source program line and column in which the function appears,
abbreviation for usage at that position, and
number of the source file or (header) element from the FILETABLE.

For example, 6/11:11 means that the function foo is defined (:) in line 6, column 11
of the header element incl2.h (11).

Object listing

The object listing is requested with the ASSEMBLER-CODE option of the
MODIFY-LISTING-PROPERTIES statement.

It contains

– the hexadecimal representation of object code generated by the code generator,

– the object code in Assembler notation,

– comments concerning the object code in Assembler notation,

– the source program lines in C/C++ notation as comments.

The overall listing is arranged into separate sections for code and data modules. Each
module listing is divided into areas. The beginning of a given module or area listing is
indicated by comment lines in the Assembler source program.

Description of listings Appendix

300 U21283-J-Z125-8-76

***** ASSEMBLER - LISTING ***** C/C++ (BS2000/OSD) COMPILER 03.2D00 DATE:2011-11-02 PAGE: 1
 SOURCENAME:*BS2000(MAINPROG) TIME=17:37:22

 1 ******************************
 2 * CODE MODULE
 3 *
 4 * OPTIMIZER: ON
 5 * SHARED CODE: OFF
 6 * OBJECT FORMAT: LLM
 7 ******************************
 000000 8 MAINPROG\&@ CSECT READ
 000000 9 MAINPROG\&@ AMODE ANY
 000000 10 MAINPROG\&@ RMODE ANY
 11 ******************************
 12 * CODE AREA (main)
 13 ******************************
 000000 14 ENTRY MAIN
 000000 15 MAIN DS 0A
 000000 16 USING *,15
 000000 90 EF D00C 17 STM 14,15,12(13)
 000004 90 2C D01C 18 STM 2,12,28(13)
 000008 58 90 D04C 19 L 9,76(0,13)
 00000C 98 AB F068 20 LM 10,11,#DC#CONT#10 104(15)
 000010 58 E0 9018 21 L 14,24(0,9)
 000014 41 00 E0D8 22 LA 0,216(0,14)
 000018 55 00 9010 23 CL 0,16(0,9)
 00001C 47 20 F044 24 BC 2,#OFLOW#10 68(0,15)
 000020 50 00 9018 25 ST 0,24(0,9)
 000000 00 00 26 #OFLOWOK#10 EQU *
 000024 50 E0 900C 27 ST 14,12(0,9)
 000028 58 00 F088 28 L 0,#DC#SAVID#10 136(0,15)
 00002C 50 00 E000 29 ST 0,0(0,14)
 000030 58 00 F08C 30 L 0,#DC#EHL#10 140(0,15)
 000034 50 00 E050 31 ST 0,80(0,14)
 000038 50 D0 E004 32 ST 13,4(0,14)
 00003C 50 90 E04C 33 ST 9,76(0,14)
 000040 18 DE 34 LR 13,14
 000042 07 FA 35 BCR 15,10
 .
 .
 .
 000094 58 80 F084 69 L 8,132(0,15)
 70 ***** LINE 7: (*BS2000(:2OSC:$TST30B.MAINPROG))
 71 ***** int main(void)
 000098 72 @0000001 DS 0H
 73 ***** LINE 8
 74 ***** {
 000098 75 @0000002 DS 0H
 000098 58 F0 B024 76 L 15,36(0,11) <17> <17>
 00009C 41 00 0000 77 LA 0,0(0,0)
 0000A0 0D EF 78 BASR 14,15
 79 ***** LINE 16
 80 ***** printf("%d\n", ii);

 (1) (2) (3) (4) (5)

Appendix Description of listings

U21283-J-Z125-8-76 301

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

(1) Location counter, in hexadecimal notation

(2) Object code, in hexadecimal notation

(3) Line number of the Assembler code

(4) Assembler code (symbolic address, Assembler mnemonics, operands) and source
program line as a comment

(5) Explanation of the Assembler code

Predefined preprocessor names Appendix

302 U21283-J-Z125-8-76

9.2 Predefined preprocessor names

When the C/C++ compiler is used for compilation in the SDF environment (COMPILE,
CHECK-SYNTAX, and PREPROCESS statements), some preprocessor macros and
assertions are predefined, depending on which language mode is selected and which
additional options are specified.

Predefined preprocessor macros (defines)

The options specified below are all part of the MODIFY-SOURCE-PROPERTIES
statement:

_BOOL In ANSI C++ mode with the option KEYWORD-BOOL=*YES

__CGLOBALS_PRAGMA
 Always set

__cplusplus In all C++ language modes:

== 1 in Cfront C++ mode
== 2 in extended ANSI C ++ mode
== 199612L in strict ANSI C ++ mode

c_plusplus In all C++ language modes

__CFRONT_V3 In Cfront C++ mode

__EDG_NO_IMPLICIT_INCLUSION
 In ANSI C++ modes, when implicit inclusion has been disabled

with the option IMPLICIT-INCLUDE=*NO within the framework of
template instantiation

__EXISTCGLOB Always set

LANGUAGE_C Always set

_LANGUAGE_C Always set

_LONGLONG Option LONGLONG=*YES

__OLD_SPECIALIZATION_SYNTAX
 In ANSI C++ modes:

== 1 with the option SPECIALIZATION=*OLD
== 0 with the option SPECIALIZATION=*NEW (default)

__SHORT_NAMES Is defined, if C-NAMES=*SHORT is specified

__SIGNED_CHARS__ Option SIGNED-CHARACTER=*YES

__SNI In all C modes and in Cfront C++ mode

Appendix Predefined preprocessor names

U21283-J-Z125-8-76 303

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

__SNI_HOST_BS2000
 Always set

__SNI__STDCplusplus
 In all C++ language modes:

== 0 in Cfront and extended ANSI C++ mode
== 1 in strict ANSI C++ mode

__SNI_TARG_BS2000
 Always set

__STDC__ Always set:

== 0 in the K&R C, extended ANSI C, Cfront C++ and extended
ANSI C++ modes

== 1 in strict ANSI C and strict ANSI C++ modes

__STDC_VERSION__ Undefined in K&R C mode

== 199409L in ANSI C modes and in all C++ modes

_STRICT_STDC In strict ANSI C and C++ modes

_WCHAR_T In ANSI C++ modes with the option KEYWORD-WCHAR=*YES
(default)
If this option is not set (e.g. in C modes or in Cfront C++ mode),
_WCHAR_T is defined in various standard headers to issue a
typedef for wchar_t

_WCHAR_T_KEYWORD In ANSI C++ modes with the option KEYWORD-WCHAR=*YES
(default)

Predefined preprocessor assertions (#assert)

The options specified below are all part of the MODIFY-SOURCE-PROPERTIES
statement:

data_model(bit32)
 Always set

cpu(7500) On generating /390 code

machine(7500) On generating /390 code

system(bs2000) Always set

Concept of a name adapter module in the C runtime system Appendix

304 U21283-J-Z125-8-76

9.3 Concept of a name adapter module in the C runtime system

One of the problems with regard to C library functions is the fact that these functions are
addressed on the source program level with predefined names (e.g. printf, fopen), while
BS2000 naming conventions require entry names beginning with the prefix “IC”.
Furthermore, C library functions also need to be replaceable by user-defined functions,
where entry names can be constructed from the function names without the prefix “IC”.

Up until CRTE Version 1.0B, this problem was solved with the aid of a table that enabled
the compiler to recognize the function names and convert them accordingly. Consequently,
changes in the C runtime system were always associated with changes in the compiler. For
reasons of compatibility, this technique has been retained for the existing C library functions
in the C runtime system (all ANSI functions and approx. 50 BS2000-specific extensions).
For all POSIX functions that were added by name as of CRTE V2.0A and all functions to be
added in future, the problem is now solved on a compiler-independent basis by means of
name adapter modules. These adapter modules contain the entry names derived from the
function name minus the prefix “IC” and call the actual “standard” function with the entry
name IC....

The following adapter modules are available for each C library function:

– An object module (OM) with the function name (possibly abbreviated to 8 characters)
as an entry name in which lowercase letters have been converted to uppercase, and
the underscore to a dollar character, e.g. FPATHKON for the function fpathkonv.

This is only relevant when linking object modules generated with the earlier C/C++
compilers (until V2.2). As of C/C++ V3.0 and higher, only modules in LLM format are
generated.

– Up to four LLMs in which the unabbreviated function name is contained as the entry
name, but once in lowercase or uppercase, and once with the underscore retained or
converted (cf. the LOWER-CASE-NAMES and SPECIAL-CHARACTERS options in the
MODIFY-MODULE-PROPERTIES statement).
For example, two LLMs exist for the fpathkonv function containing the entry names
FPATHKONV and fpathkonv, respectively.

Adapter modules belong to the non-preloadable components of the C runtime system and
must consequently be linked into the application program. They are contained both in the
SYSLNK.CRTE library and in the SYSLNK.CRTE.PARTIAL-BIND library.

If a user-defined function is to be called instead of the standard library function, the
corresponding user module must be linked with precedence before the SYSLNK.CRTE or
SYSLNK.CRTE.PARTIAL-BIND library. The user module can be either an object module or
an LLM (with or without conversion of the lowercase letters and underscores).

Appendix The II-UPDATE tool

U21283-J-Z125-8-76 305

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

9.4 The II-UPDATE tool

When binding or recompiling ANSI C++ programs the system accesses existing ii infor-
mation (ii=instantiation information). This information contains, among other things, the
names of source files/libraries and source elements, of include libraries and lists or CIF
files/libraries/elements. If these files, libraries and/or elements are renamed or located
under a different ID (or another cat-id), then these changes must also be made in the ii files.

ii files, also known as ii elements, are created by the compiler from programs that contain
templates.
II-UPDATE is a compiler-independent tool with an SDF interface. If a source or include
library has been renamed, the tool is able to make these changes automatically in the ii file
without the need to recompile. It is only possible to adjust the ii elements of a single library
per call of the tool.

Entries in ii elements which contain the names of BS2000 or POSIX files or POSIX directo-
ries cannot be changed, but II-UPDATE can display these without error. This applies both
for source, include, CIF and for listing entries.

The II-UPDATE tool Appendix

306 U21283-J-Z125-8-76

CONTAINER = *LIBRARY-ELEMENT(...)
This option is used to specify which ii elements in which object library are to be adapted.

LIBRARY = <filename 1..54>
<filename> is the name of a PLAM library.

ELEMENT = *ALL
All the ii elements in the PLAM library specified using LIBRARY= are to be adapted.

START-II-UPDATE

CONTAINER = *LIBRARY-ELEMENT(...)

*LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54>
⏐ ,ELEMENT = *ALL / <composed-name 1..64 with-under>(...)
⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *HIGHEST-EXISTING / <composed-name 1..24 with-under>
⏐

,OLD-NAME = *LIBRARY-ELEMENT(...) / *LIBRARY(...)

* LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = <filename 1..54>
⏐ ,ELEMENT = <composed-name 1..64 with-under>(...)
⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION = *DEFAULT / <composed-name 1..24 with-under>

*LIBRARY(...)
⏐ LIBRARY = <filename 1..54>

,NEW-NAME = *LIBRARY-ELEMENT(...) / *LIBRARY(...)

* LIBRARY-ELEMENT(...)
 ⏐ LIBRARY = *SAME / <filename 1..54>
⏐ ,ELEMENT = *SAME / <composed-name 1..64 with-under>(...)
⏐ <composed-name 1..64 with-under>(...)
⏐ ⏐ ⏐ VERSION =*UNCHANGED / <composed-name 1..24 with-under>

*LIBRARY(...)
⏐ LIBRARY = <filename 1..54>

,CONTEXT = *INCLUDE / *CIF / *SOURCE / *LISTING / *ALL

,ACTION = list-poss(2): *REPLACE / *SHOW

Appendix The II-UPDATE tool

U21283-J-Z125-8-76 307

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully qualified name of an ii element from the PLAM
library specified using LIBRARY=.

VERSION = *HIGHEST-EXISTING
If the ii element information does not contain a version number, II-UPDATE uses the
ii element with the highest version.

VERSION = <composed-name 1..24 with-under>
II-UPDATE uses the ii element with the specified version.

OLD-NAME = *LIBRARY-ELEMENT(...) / *LIBRARY
This option is used to specify the original library name or original library element names (for
example, from the source library elements) that is to be modified in an ii file. The name must
be specified in exactly the same way as in the ii file, i.e. if required with cat-id and user-
id (see also example 6).

LIBRARY-ELEMENT (...)

LIBRARY = <filename 1..54>
<filename> is the name of the PLAM library that has changed or in which a change
has been made.

ELEMENT = <composed-name 1..64 with-under>(...)
<composed-name> identifies the fully qualified name of an ii element that has
changed.

VERSION = *DEFAULT
Regardless of context, the version value of the ii element is accepted.

VERSION = <composed-name 1..24 with-under>
Identifies the version of the element that has changed.

LIBRARY = <filename 1..54>
<filename> is the name of a PLAM library that has changed.

NEW-NAME = *LIBRARY-ELEMENT(...) / *LIBRARY
This option is used to specify the new library or element name that is to be substituted for
that specified in OLD-NAME.

LIBRARY-ELEMENT(...)

LIBRARY = *SAME / <filename 1..54>
If *SAME is specified, the name of the PLAM library as entered in the OLD-NAME
parameter is used.
<filename> is the new name of the PLAM library that is specified under OLD-NAME.

The II-UPDATE tool Appendix

308 U21283-J-Z125-8-76

ELEMENT = *SAME / <composed-name 1..64 with-under>(...)
If *SAME is specified, the name of the element as entered in the OLD-NAME
parameter is used.
<composed-name> is the changed, fully qualified name of an element that was
specified under OLD-NAME.

VERSION = *UNCHANGED
The existing version of the library elements (in the ii element) should not be
changed.

VERSION = <composed-name 1..24 with-under>
The new version name of the element.

LIBRARY = <filename 1..54>
<filename> is the new name of the PLAM library as specified under OLD-NAME.

Note
Only the same type of OLD-NAME / NEW-NAME combinations are supported, for example,
OLD-NAME = *LIBRARY / NEW-NAME = *LIBRARY or
OLD-NAME = *LIBRARY-ELEMENT / NEW-NAME = *LIBRARY-ELEMENT

CONTEXT = *INCLUDE / *CIF / *SOURCE / *LISTING / *ALL
If *INCLUDE is specified, the adaption of the library is only carried out if
OLD-NAME and NEW-NAME are also library names.
If OLD-NAME and NEW-NAME are library element names, then adaptation would not take
place for *INCLUDE.
CONTEXT = *ALL specifies the renaming of include libraries, of source libraries, of
elements, lists or CIF outputs.

Note
No message is output indicating the total number or replacements carried out for the
various contexts.

ACTION =
This option enables II-UPDATE to be instructed to replace or output all library or library ele-
ment names of an ii element which can potentially be replaced.

ACTION = *REPLACE
Replacements are performed. Only the replacements which are performed are output.

ACTION = *SHOW
No replacements are performed. All possible replacements are output, however. The
names of libraries and elements which would not be replaced are also output.

ACTION = (*SHOW, *REPLACE)
Replacements are performed. In addition to the replacements which were performed, the
replacements which were not performed are also output.

Appendix The II-UPDATE tool

U21283-J-Z125-8-76 309

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

Note
The specified context is taken into account in all cases. II-UPDATE remains compatible to
older versions with regard to call, replacement and output behavior.

The following examples will provide further information about the points mentioned above.

Example 1

The include library INC-LIB-V1 has been renamed in INC-LIB-V2. The following statement
carries out the appropriate changes to all the ii elements in the MY-OBJ-LIB library.

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB, *ALL),-
/OLD-NAME=*LIBRARY(INC-LIB-V1),-
/NEW-NAME=*LIBRARY(INC-LIB-V2),-
/CONTEXT=*INCLUDE

Example 2

The source library MY-SOURCE-LIB.V1 has been renamed in MY-SOURCE-LIB.V2.
The following statement makes the appropriate changes to the library element EL.O.II in the
MY-OBJ-LIB library:

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB, EL.O.II),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB.V1),-
/NEW-NAME=*LIBRARY(MY-SOURCE-LIB.V2),-
/CONTEXT=*SOURCE

Example 3

The source libraries MY-SOURCE-LIB1 and MY-SOURCE-LIB2 contain a program system.
The associated objects are located in the libraries MY-OBJ-LIB1 and MY-OBJ-LIB2. The
source libraries are to be renamed in SOURCE-LIB1-V1 and SOURCE-LIB2-V2. The
assumption has been made that each source library makes use of the other (include):

/MODIFY-FILE-ATTRIBUTES MY-SOURCE-LIB1, SOURCE-LIB1-V1
/MODIFY-FILE-ATTRIBUTES MY-SOURCE-LIB2, SOURCE-LIB2-V1

The ii files/elements are adapted using the following statements:

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB1, *ALL),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB1).-
/NEW-NAME=*LIBRARY(SOURCE-LIB1-V1),-
/CONTEXT=*SOURCE

The II-UPDATE tool Appendix

310 U21283-J-Z125-8-76

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB1, *ALL),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB2),-
/NEW-NAME=*LIBRARY(SOURCE-LIB2-V1),-
/CONTEXT=*INCLUDE

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB2, *ALL),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB1),-
/NEW-NAME=*LIBRARY(SOURCE-LIB1-V1),-
/CONTEXT=*INCLUDE

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB2, *ALL),-
/OLD-NAME=*LIBRARY(MY-SOURCE-LIB2),-
/NEW-NAME=*LIBRARY(SOURCE-LIB2-V1),-
/CONTEXT=*SOURCE

Example 4

Using the program system described in Example 3 but this time, instead of renaming the
source libraries, we are going to move the source library element MY-ELEM.C from the
MY-SOURCE-LIB1 library to the MY-SOURCE-LIB2 library and both the associated object
MY-ELEM.O and the associated ii element MY-ELEM.O.II to the MY-OBJ-LIB2 library:

/LMS
//O-L MY-SOURCE-LIB1,*U
//COP-EL (,MY-ELEM.C,S),(MY-SOURCE-LIB2,MY-ELEM.C)
//DEL-EL (,MY-ELEM.C,S)
//O-L MY-OBJ-LIB1,*U
//COP-EL (,MY-ELEM.O,L),(MY-OBJ-LIB2,MY-ELEM.O)
//COP-EL (,MY-ELEM.O.II,S),(MY-OBJ-LIB2,MY-ELEM.O.II)
//DEL-EL (,MY-ELEM.O.L)
//DEL-EL (,MY-ELEM.O.II,S)
//END

The ii files/elements are adapted using the following statements:

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB2, MY-ELEM.O.II),-
/OLD-NAME=*LIB-ELEM(MY-SOURCE-LIB1,MY-ELEM.C)
/NEW-NAME=*LIB-ELEM(MY-SOURCE-LIB2, MY-ELEM.C),-
/CONTEXT=*SOURCE

Appendix The II-UPDATE tool

U21283-J-Z125-8-76 311

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

Example 5

The source libraries MY-SOURCE-LIB1 and MY-SOURCE-LIB2 contain a program system
(see Example 3). The associated listing libraries MY-LISTING-LIB1 and MY-LISTING-LIB2
are to be renamed to LISTING-LIB1-V1 or LISTING-LIB2-V1:

/MODIFY-FILE-ATTRIBUTES MY-LISTING-LIB1, LISTING-LIB1-V1
/MODIFY-FILE-ATTRIBUTES MY-LISTING-LIB2, LISTING-LIB2-V2

The ii files/elements are adapted using the following statements:

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB1,*ALL),-
/OLD-NAME=*LIBRARY(MY-LISTING-LIB1),-
/NEW-NAME=*LIBRARY(LISTING-LIB1-V1),-
/CONTEXT=*LISTING

/START-II-UPDATE CONTAINER=*LIB-ELEM(MY-OBJ-LIB2,*ALL),-
/OLD-NAME=*LIBRARY(MY-LISTING-LIB2),-
/NEW-NAME=*LIBRARY(LISTING-LIB2-V1),-
/CONTEXT=*LISTING

Example 6

The include library HELLO-MAP.INCLIB was renamed HELLO-MAP.INCLIB.NEW. The follo-
wing string of statements is initially used to determine the exact notation of the library which
is to be renamed (ACTION=*SHOW; in this case the values of the old-name and new-name
parameters are of no significance); subsequently the replacements are performed using
ACTION=(*SHOW, *REPLACE):

/START-II-UPDATE CONTAINER=*LIB-ELEM(HELLO-MAP.OLIB1,*ALL),-
/OLD-NAME=*LIBRARY(OLIB),-
/NEW-NAME=*LIBRARY(NLIB),-
/CONTEXT=*ALL,-
/ACTION=*SHOW

Output:

% BLS0523 ELEMENT 'II-UPDATE', VERSION '032', TYPE 'L' FROM LIBRARY ': 2OSG:
$TSOS.SYSLNK.CPP.032' IN PROCESS
% BLS0524 LLM 'II-UPDATE', VERSION '03.2D00' OF '2011-11-02 14:33:19' LOADED
% BLS0551 COPYRIGHT (C) Fujitsu Technology Solutions 2011. ALL RIGHTS RESERVED
% CDR9992 BEGIN II-UPDATE VERSION 03.2D00
% CDR9810 Processing ii-element *LIBRARY-ELEMENT(:2OSC:$MTZ.HELLO-MAP.OLIB1,
HELLO-MAP-HP.II(*UPPER-LIMIT),S)

The II-UPDATE tool Appendix

312 U21283-J-Z125-8-76

% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$TSOS.SYSLIB.CRTE)
% CDR9819 source lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.SLIB1)
% CDR9810 Processing ii-element *LIBRARY-ELEMENT(:2OSC:$MTZ.HELLO-MAP.OLIB1,
HELLO-MAP-UP.II(*UPPER-LIMIT),S)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$TSOS.SYSLIB.CRTE)
% CDR9819 source lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.SLIB1)
% CDR9814 Summary: 0 include / 0 source / 0 cif / 0 listing replaced
% CCM0998 CPU TIME USED: 0.1485 SECONDS

/START-II-UPDATE CONTAINER=*LIB-ELEM(HELLO-MAP.OLIB1,*ALL),-
/OLD-NAME=*LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB),-
/NEW-NAME=*LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB.NEW),-
/CONTEXT=*ALL,-
/ACTION=(*REPLACE,*SHOW)

Output:

% BLS0523 ELEMENT 'II-UPDATE', VERSION '032', TYPE 'L' FROM LIBRARY
':2OSG:$TSOS.SYSLNK.CPP.032' IN PROCESS
% BLS0524 LLM 'II-UPDATE', VERSION '03.2D00' OF '2011-11-02 14:33:19' LOADED
% BLS0551 COPYRIGHT (C) Fujitsu Technology Solutions 2011. ALL RIGHTS RESERVED
% CDR9992 BEGIN II-UPDATE VERSION 03.2D00
% CDR9810 Processing ii-element *LIBRARY-ELEMENT(:2OSC:$MTZ.HELLO-MAP.OLIB1,
HELLO-MAP-HP.II(*UPPER-LIMIT),S)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$TSOS.SYSLIB.CRTE)
% CDR9811 include lib replaced: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB) -->
*LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB.NEW)
% CDR9819 source lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.SLIB1)
% CDR9810 Processing ii-element *LIBRARY-ELEMENT(:2OSC:$MTZ.HELLO-MAP.OLIB1,
HELLO-MAP-UP.II(*UPPER-LIMIT),S)
% CDR9819 include lib no replacement: *LIBRARY(:2OSC:$TSOS.SYSLIB.CRTE)
% CDR9811 include lib replaced: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB) -->
*LIBRARY(:2OSC:$MTZ.HELLO-MAP.INCLIB.NEW)
% CDR9819 source lib no replacement: *LIBRARY(:2OSC:$MTZ.HELLO-MAP.SLIB1)
% CDR9814 Summary: 2 include / 0 source / 0 cif / 0 listing replaced
% CCM0998 CPU TIME USED: 0.2243 SECONDS

Appendix EBCDIC table (EDF041)

U21283-J-Z125-8-76 313

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

9.5 EBCDIC table (EDF041)

Decimal Hexadecimal EBCDIC Meaning
 0 00 0000 0000 \0 (null byte)

 . . .

 . . .

 5 05 0000 0101 \t (tabulator character)

 . . .

 . . .

11 0B 0000 1011 \v (vertical tabulator)

12 0C 0000 1100 \f (page feed)

13 0D 0000 1101 \r (carriage return)

 . . .

 . . .

21 15 0001 0101 \n (newline character)

22 16 0001 0110

 . . .

 . . .

64 40 0100 0000 Ë (space)

 . . .

 . . .

 . . .

74 4A 0100 1010 ` (accent grave)

75 4B 0100 1011 . (period)

76 4C 0100 1100 < (less than)

77 4D 0100 1101 ((open parenthesis)

78 4E 0100 1110 + (plus)

79 4F 0100 1111 | (vertical)

80 50 0101 0000 & (ampersand)

 . . .

 . . .

 . . .

90 5A 0101 1010 ! (exclamation mark)

91 5B 0101 1011 $ (dollar sign)

EBCDIC table (EDF041) Appendix

314 U21283-J-Z125-8-76

92 5C 0101 1100 * (asterisk)

93 5D 0101 1101) (close parenthesis)

94 5E 0101 1110 ; (semicolon)

 . . .

96 60 0110 0000 - (minus)

97 61 0110 0001 / (slash)

 . . .

 . . .

 . . .

106 6A 0110 1010 ^ (exclusive OR)

107 6B 0110 1011 , (comma)

108 6C 0110 1100 % (percent)

109 6D 0110 1101 _ (underscore)

110 6E 0110 1110 > (greater than)

111 6F 0110 1111 ? (question mark)

 . . .

 . . .

 . . .

122 7A 0111 1010 : (colon)

123 7B 0111 1011 # (number sign)

124 7C 0111 1100 @ (commercial at)

125 7D 0111 1101 ' (apostrophe)

126 7E 0111 1110 = (equals sign)

127 7F 0111 1111 " (quote)

 . . .

 . . .

 . . .

129 81 1000 0001 a

130 82 1000 0010 b

131 83 1000 0011 c

132 84 1000 0100 d

133 85 1000 0101 e

134 86 1000 0110 f

Decimal Hexadecimal EBCDIC Meaning

Appendix EBCDIC table (EDF041)

U21283-J-Z125-8-76 315

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

135 87 1000 0111 g

136 88 1000 1000 h

137 89 1000 1001 i

138 8A 1000 1010

 . . .

 . . .

 . . .

145 91 1001 0001 j

146 92 1001 0010 k

147 93 1001 0011 l

148 94 1001 0100 m

149 95 1001 0101 n

150 96 1001 0110 o

151 97 1001 0111 p

152 98 1001 1000 q

153 99 1001 1001 r

 . . .

 . . .

 . . .

162 A2 1010 0010 s

163 A3 1010 0011 t

164 A4 1010 0100 u

165 A5 1010 0101 v

166 A6 1010 0110 w

167 A7 1010 0111 x

168 A8 1010 1000 y

169 A9 1010 1001 z

 . . .

 . . .

 . . .

187 BB 1011 1011 [(open square bracket)

188 BC 1011 1100 \ (backslash)

189 BD 1011 1101] (close quare bracket)

Decimal Hexadecimal EBCDIC Meaning

EBCDIC table (EDF041) Appendix

316 U21283-J-Z125-8-76

 . . .

 . . .

 . . .

193 C1 1100 0001 A

194 C2 1100 0010 B

195 C3 1100 0011 C

196 C4 1100 0100 D

197 C5 1100 0101 E

198 C6 1100 0110 F

199 C7 1100 0111 G

200 C8 1100 1000 H

201 C9 1100 1001 I

 . . .

 . . .

 . . .

209 D1 1101 0001 J

210 D2 1101 0010 K

211 D3 1101 0011 L

212 D4 1101 0100 M

213 D5 1101 0101 N

214 D6 1101 0110 O

215 D7 1101 0111 P

216 D8 1101 1000 Q

217 D9 1101 1001 R

 . . .

 . . .

 . . .

226 E2 1110 0010 S

227 E3 1110 0011 T

228 E4 1110 0100 U

229 E5 1110 0101 V

230 E6 1110 0110 W

231 E7 1110 0111 X

Decimal Hexadecimal EBCDIC Meaning

Appendix EBCDIC table (EDF041)

U21283-J-Z125-8-76 317

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.k

09

232 E8 1110 1000 Y

233 E9 1110 1001 Z

 . . .

 . . .

 . . .

240 F0 1111 0000 0

241 F1 1111 0001 1

242 F2 1111 0010 2

243 F3 1111 0011 3

244 F4 1111 0100 4

245 F5 1111 0101 5

246 F6 1111 0110 6

247 F7 1111 0111 7

248 F8 1111 1000 8

249 F9 1111 1001 9

 . . .

251 FB 1111 1011 { (open brace)

 . . .

253 FD 1111 1101 } (close brace)

 . . .

255 FF 1111 1111 ~ (bit complement)

Decimal Hexadecimal EBCDIC Meaning

ASCII table (ISO 8859-1) Appendix

318 U21283-J-Z125-8-76

9.6 ASCII table (ISO 8859-1)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 SP 0 @ P ` p NBSP ° À à
1 ! 1 A Q a q ¡ ± Á Ñ á ñ
2 " 2 B R b r ¢ 2 Â Ò â ò
3 # 3 C S c s £ 3 Ã Ó ã ó
4 $ 4 D T d t ¤ ´ Ä Ô ä ô
5 % 5 E U e u ¥ μ Å Õ å õ
6 & 6 F V f v ¶ Æ Ö æ ö
7 ´ 7 G W g w § • Ç x ç ÷
8 (8 H X h x " , È Ø è ø
9) 9 I Y i y © 1 É Ù é ù
A * : J Z j z ª º Ë Ú ê ú
B + ; K [k { « » Ê Û ë û
C , < L \ l | ¬ 1/4 Ì Ü ì ü
D - = M] m } SHY 1/2 Í í
E . > N ^ n ~ ® 3/4 Î î
F / ? O - o ¯ ¿ Ï β ï ÿ

D o\

Y y

O o

U21283-J-Z125-8-76 319

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.li

t

Related publications
The manuals are available as online manuals, see http://manuals.ts.fujitsu.com, or in printed
form which must be paid and ordered separately at http://manualshop.ts.fujitsu.com.

[1] C/C++ V3.2D (BS2000/OSD)
POSIX Commands of the C/C++ Compiler
User Guide

[2] C Library Functions (BS2000/OSD)
Reference Manual

[3] C Library Functions for POSIX Applications (BS2000/OSD)
Reference Manual

[4] CRTE (BS2000/OSD)
Common RunTime Environment
User Guide

[5] C++ (BS2000)
C++ Library Functions

[6] Standard C++ Library V1.2
User‘s Guide and Reference

[7] Tools.h++ V7.0
User‘s Guide

[8] Tools.h++ V7.0
Class Reference

[9] AID (BS2000/OSD)
Debugging of C/C++ Programs
User Guide

[10] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

http://manuals.ts.fujitsu.com
http://manualshop.ts.fujitsu.com

Related publications

320 U21283-J-Z125-8-76

[11] BS2000/OSD-BC
Commands
User Guide

[12] SDF (BS2000/OSD)
SDF Dialog Interface
User Guide

[13] BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD
User Guide

[14] BINDER
Binder in BS2000/OSD
User Guide

[15] EDT V16.6B (BS2000/OSD)
Statements
User Guide

[16] LMS (BS2000)
SDF Format
User Guide

[17] BS2000/OSD-BC
Executive Macros
User Guide

[18] BS2000/OSD-BC
Introductory Guide to DMS
User Guide

[19] JV (BS2000/OSD)
Job Variables
Reference Manual

[20] POSIX (BS2000/OSD)
POSIX Basics for Users and System Administrators
User Guide

[21] POSIX (BS2000/OSD)
Commands
User Guide

Related publications

U21283-J-Z125-8-76 321

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

2u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 1
5.

01
.2

00
7

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
07

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.3
9

P
fa

d:
 P

:\F
TS

-B
S

\C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.li

t

Other reference literature and standards

[22] The C Programming Language
2nd Edition - ANSI-C
by Brian W. Kernighan und Dennis M. Ritchie

[23] The C++ Programming Language
(Third Edition)
by Bjarne Stroustrup

[24] „American National Standard for Information Systems - Programming Language C“,
Doc.No. X3J11/90-013, February 14, 1990 bzw.
„International Standard ISO/IEC 9899 : 1990, Programming languages - C“

[25] „International Standard ISO/IEC 9899 : 1990, Programming languages - C /
Amendment 1 : 1994“

[26] „Working Paper for Draft Proposed International Standard for Information Systems -
Programming Language C++“,
Doc.No. X3J16/96-0219R1, WG21/N0137, Dec 2 1996

This document can be ordered from:
American National Standards Institute (ANSI), Standards Secretariat: ITIC,
1250 Eye Street NW, Suite 200, Washington DC 20005 (USA)
or from:
Normenausschuß Informationstechnik im DIN
Deutsches Institut für Normung e.V.
10772 Berlin

[27] „International Standard ISO/IEC 14882 : 1998, Programming languages - C++“

Related publications

322 U21283-J-Z125-8-76

U21283-J-Z125-8-76 323

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.4
0

P
fa

d:
 P

:\F
TS

-B
S\

C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.s

ix

Index

#assert directive 221
#define directive 137
#ident directive 221
#include directive 100, 214
#line directive 221
#pragma directive 214, 223

ETPND area 117
for template instantiation 233
inline substitution of functions 123
layout of listings 111, 165

#unassert directive 222
*UNCHANGED, explanation of operand value 64
__cplusplus 136, 236, 302
__DATE__ 214
__STDC__ 135, 303
__STDC_VERSION__ 135, 207, 303
__TIME__ 214
_OSD_POSIX 35, 103
_SNI_extensions, namespace 282
_STRICT_STDC 135, 303

A
ACTION option, BIND statement 66
adapter modules, C runtime system 26, 304
ADD-OPTION option 69
ADD-PRELINK-FILES option 84
address passing

of parameters 190
ADD-STATEMENT option 86
ADVANCED mode, DBL 171
AID 184
aligned pragma 223
alignment of data types 215

aligned pragma 223

alphanum-name, SDF data type 15
ALTERNATIVE-TOKENS option 141
ANSI C language mode

extended 135, 200
strict 135, 200

ANSI C++ language mode
extended 136, 235
strict 137, 235

ANSI-VIOLATIONS option 96
argc

parameter for the main function 183
argv

parameter for the main function 183
arithmetic conversions 206
arrays

internal representation 210
ASCII notation 142
ASCII table 318
asm, inline substitution of Assembler code 220,

240
ASSERT option 139
assertions (see preprocessor assertions) 303
AT-ALLOWED option 140
auto, storage class 216
automatic instantiation 246

B
BEM, message class 56
BIND statement 66
BINDER 169

control statements 174
linking with 174

bitfields 211, 220, 241
bitwise operations 213

Index

324 U21283-J-Z125-8-76

BLSLIBnn
link name 171

bool, C++ data type 239
BUILTIN-FUNCTIONS option 124
by reference

parameter passing 190
by value

parameter passing 189
by value, parameter passing 217

C
C ++ functions

calling in C 194
C functions

calling in C++ 193
C language modes 200
C language support of the compiler 199

extensions to ANSI/ISO C 219
implementation-defined behavior 208
overview of the C language modes 200
pragmas 223

C runtime system
overview 25
POSIX library functions 35

C++ language modes 235
C++ language support of the compiler 235

constructors and destructors calls 241
extensions to ANSI/ISO C++ 260
implementation-defined behavior 239
overview of the C++ language modes 235
template instantiation 244
variations in the Cfront C++ mode 267

C++ libraries 275
C++ runtime system, overview 27
C/C++ compiler

call 60
construction of default names 48
exit status 60
I/O in the POSIX file system 32
input sources and output destinations 45
messages 55
statements 61

C/C++ development system
components 23
introductory examples 37
overview 21

calling the DBL 172
can_instantiate pragma 233
can_rethrow() 284
can_throw() 284
CDR, message class 56
cerr

redirecting 180
CFE, message class 56
Cfront

explained 9
Cfront C++ language mode 137, 235, 267
Cfront C++ library 277
CHANGE-MSG-WEIGHT option 95
char, C data type 209
characters 209
CHECK-SYNTAX statement 70
CIF information

global listing generator 156
MODIFY-CIF-PROPERTIES 90

cin
redirecting 180

classes 241
clog

redirecting 180
C-NAMES option 118
COMMENTS option 139
compilation 45

introductory examples 37
COMPILE statement 72
compiler messages 55
composed-name, SDF data type 15
CONSTANTS option 118
constructors 241
CONSUMER option 90
conversions 212

arithmetic 206
data types 212

cout
redirecting 180

Index

U21283-J-Z125-8-76 325

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.4
0

P
fa

d:
 P

:\F
TS

-B
S\

C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.s

ix

CPU-LIMIT option 60
cross-reference listing 108, 163

layout 295
CRTE

components 25
POSIX support 35

c-string, SDF data type 15
CURRENT-LIBRARY option 102

D
data types in C

internal representation 215
size and value ranges 215

data types in SDF 15
DBL 169

linking and loading with 171
debugging with AID 184

requirements for symbolic debugging 186
declarators, number 214
default names

generated by compiler 48
DEFINE option 137
definition list 246, 248
destructors 241
digraph sequences 205
division remainder, sign 213
do_not_instantiate pragma 233
DOLLAR-ALLOWED option 140
dynamic binder loader (DBL) 169
dynamic linking and loading 171

E
EBCDIC table 313
editing source programs 29
EDT, file editor 29
EENs 68, 119
END statement

compiler 78
global listing generator 157

END-OF-LINE-COMMENTS option 142
enter options line 179
enum 212
ENUM-TYPE option 140

envp, parameter for the main function 219
error listing (see source/error listing) 107, 161
error messages of the compiler 55
ERROR, message weight 57
ETPND area, creation 226
ETPND-GENERATION option 117
ETR files 252
exception handling 243, 282
executable program 169
expansion of loops 122, 130
external (global)

storage class 217
external C 240
external C++ 240
external names

external C declarations 191, 196
in C 208
in C++ 239

external symbols
masking 176

EXTERNAL-DEFINITION option 141

F
FATAL, message weight 57
filename, SDF data type 15
first instantiation

with definition list 248
without definition list 246

FP-ARITHMETICS 119
functions

linkage specifications 189

G
GENERATE-ETR-FILE option 96
GENERATE-LISTING statement, global listing

generator 158

H
header files

MODIFY-INCLUDE-LIBRARIES 100
storage 29

Index

326 U21283-J-Z125-8-76

I
ident pragma 232
identifier 208, 219
IEEE floating-point arithmetics 119
ii files 54, 305
II-UPDATE 305
ILCS (Inter-Language Communication

Services) 189
ILCS interface 189

special conventions for C/C++ 189
implementation-defined behavior

C language mode 208
C++ language mode 239

implicit inclusion 259
IMPLICIT-INCLUDE option 139
INCLUDE option 81
INCLUDE-INFORMATION option 111, 165

MODIFY-CIF-PROPERTIES 91
INITIAL-TITLE-TEXT option 112, 166
inline generation of functions 231
inline pragma 231
inline substitution of functions 122, 129
INLINING option 122
instantiate pragma 233
instantiation of templates 244
integer, SDF data type 17
interactive debugger AID 184
interfacing C and C++

calling C functions 193
ISO C mode (see ANSI C mode) 135

J
job variables 60

status indicator 60

K
K&R C language mode 136, 200
key assignments, overview 31
keyword operators in C++ 237
KEYWORD-BOOL option 146
KEYWORD-WCHAR option 146

L
language interfacing

special conventions for C/C++ 189
LANGUAGE option 134
language scope of the compiler

C 199
C++ 235

languages
linkage specifications 189

LAYOUT option 110, 164
LEVEL option 121
library

Cfront C++ 277
standard C++ 275
Tools.h++ 279

link name
BLSLIBnn 171

linkage
between C and C++ 191
of templates 240
to ILCS programs in other languages 196

linkage between C and C++ 191
calling C++ functions 193, 194
common types 192

LINKAGE option 116
linkage specification in C++ 240
linkage to functions (see linkage to

languages) 189
linkage to languages 189
linking

general 169
POSIX linkage option 36
temporary 171
with BINDER 174
with DBL 171
with the BIND statement 66

listing generator
description 289

listing generator, global 156
LISTING pragma 228
LISTING-PRAGMAS option 111, 165

Index

U21283-J-Z125-8-76 327

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.4
0

P
fa

d:
 P

:\F
TS

-B
S\

C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.s

ix

listings
#pragma directive 228
global listing generator 156

list-poss, SDF notational convention 14
LLM

element name 52
generation with BINDER 169, 174
module and CSECT name 53
output to POSIX file 33
shareable 177

LLM formats 1 to 4 68
LOAD-EXECUTABLE-PROGRAM 172
LOAD-EXECUTABLE-PROGRAM command

calling DBL 172
loading

general 169
long long, C data type 219
LONGLONG option 142
loop expansion 122, 130
LOOP-INIT option 146
LOOP-UNROLLING option 122
LOWER-CASE-NAMES option 117

M
macro arguments, empty 220
main function 209, 219

calling from other languages 196
definition with parameters 183
linkage in C++ 239
parameter input 181

mandatory-quotes, suffix for SDF data types 19
map listing 108, 162

layout 292
masking symbols 176
MAX-ERROR-NUMBER option 95
MAX-INSTANTIATE-ITER option 86
message weight 56
messages of the compiler 55
MINIMAL-MSG-WEIGHT option

MODIFY-DIAGNOSTIC-PROPERTIES 95
MODE option 135
MODIFY-BIND-PROPERTIES statement 79
MODIFY-CIF-PROPERTIES statement 90

MODIFY-DIAGNOSTIC-PROPERTIES
statement 94

MODIFY-INCLUDE-LIBRARIES statement 100
MODIFY-LISTING-PROPERTIES statement

compiler 105
global listing generator 160

MODIFY-MODULE-PROPERTIES
statement 115

MODIFY-MSG-ATTRIBUTES command 58
MODIFY-OPTIMIZATION-PROPERTIES

statement 121
MODIFY-RUNTIME-PROPERTIES

statement 131
MODIFY-SOURCE-PROPERTIES

statement 133
MODIFY-SYMBOL-VISIBILITY

BINDER statement 176
MODIFY-TEST-PROPERTIES statement 147
module names 52
module properties, MODIFY-MODULE-

PROPERTIES 115
MODULE-OUTPUT option 73
MONJV option 60, 156
multibyte character constant 209
multibyte characters 210
multiple definitions of external variables 220

N
name mangling in C++ 238
name, SDF data type 17
new array 240
notational conventions

general 12
SDF 13

NOTE, message weight 56

O
object code listing 109, 164
object layout in C++ 238
object listing

layout 299
object listing (see object code listing) 109, 164
object program

temporary 171

Index

328 U21283-J-Z125-8-76

optimization
MODIFY-OPTIMIZATION-

PROPERTIES 121
process 126

output of listings
compiler 105
global listing generator 156

output of messages
MODIFY-DIAGNOSTIC-PROPERTIES 94

OUTPUT option
BIND 67
MODIFY-CIF-PROPERTIES 91
MODIFY-DIAGNOSTIC-PROPERTIES 97
MODIFY-LISTING-PROPERTIES 112, 166
PREPROCESS 149

OUTPUT-FORMAT option, BIND statement 68

P
pack-Pragma 225
PAGE pragma 230
parameter input at program start

for the main function 181
redirecting standard I/O files 180

parameter list, internal structure 217
parameter passing

by reference 190
by value 189
specific to C/C++ 189

parameter, internal structure of the parameter
list 217

PARAMETER-PROMPTING option 131, 179
patch area 226
PLAIN-FIELDS option 140
pointer 210
POSIX

C library functions 35
I/O in POSIX files 32

posix-filename
SDF data type 17

posix-pathname 34
SDF data type 17

pragmas 223
predefined preprocessor macros 302
PREINCLUDE option 139

prelinker, automatic template instantiation 144
PREPROCESS statement 148
preprocessor assertions, predefined 303
preprocessor directives 214, 220
preprocessor listing 107, 162
preprocessor macros, predefined 302
PRESERVING option 140
program execution 179
program interfacing (see linkage

specifications) 189
PROGRAM-INTERRUPT option 132
project listing 109, 164
prototyping 206
ptrdiff_t 212
PUBLIC-SLICING option 115

R
reference types in C++ 241
register, storage class 216
reinterpret_cast 240
repository

temporary 248
reserved keywords

in C 205
in C++ 237

RESET-TO-DEFAULT statement 153
RESOLVE option 82
return code display

contents 60
return values of functions

specific to C/C++ 190
right shift 213
RUNTIME-LANGUAGE option 87

S
SDF

data types 15
notational conventions 13
suffixes for data types 18

shareability 115
C/C++ programs 177
COMPILER-ACTION option 115
SHAREABLE-CODE option 115

SHAREABLE-CODE option 115

Index

U21283-J-Z125-8-76 329

D
ok

us
ch

ab
lo

ne
n

19
x2

4
Ve

rs
io

n
7.

4u
s

fü
r F

ra
m

eM
ak

er
 V

7.
x

vo
m

 0
9.

02
.2

01
0

©
 c

og
ni

ta
s

G
m

bH
 2

00
1-

20
10

8.
 N

ov
em

be
r 2

01
1

 S
ta

nd
 1

3:
47

.4
0

P
fa

d:
 P

:\F
TS

-B
S\

C
om

pi
le

r\C
++

\c
pp

_b
hb

_e
\c

pp
-b

hb
.s

ix

SHOW-COLUMN option 96
SHOW-DEFAULTS statement 154
SHOW-INCLUDES option 96
SHOW-PROPERTIES statement 155
sign of division remainder 213
sign propagation 212
SIGNED-CHARACTER option 140
SIGNED-FIELDS option 140
SIS, message class 56
size_t 212
source listing

layout 290
SOURCE option

CHECK-SYNTAX 70
COMPILE 72
PREPROCESS 148

source program
editing 29
input via SYSDTA 76
preparing 29
saving to POSIX file 32
storage 29

source/error listing 107, 161
SPACE pragma 231
special characters 219
SPECIAL-CHARACTERS option 118
SPECIALIZATION option 146
spin-off mechanism, SDF 64
STACK-SIZE option 131
standard C++ library 275
standard I/O files 180

default assignment 180
redirection 180

standard optimizations 126
START-CPLUS-COMPILER 60
START-CPLUS-LISTING-GENERATOR 156
START-EXECUTABLE-PROGRAM 172
START-EXECUTABLE-PROGRAM command

calling DBL 172
starting a C program 179

starting
general 169

START-LLM-CREATION option 80

static (global)
storage class 217

static (local)
storage class 217

static variable, storage class 217
STATISTIC-MESSAGES option 131
statistics 164

in summary listing 109
status indicator

in job variables 60
stderr

redirecting 180
stdin

redirecting 180
STD-INCLUDE-LIBRARY option 101
STDLIB option 87
stdout

redirecting 180
storage classes 216
string literals 219
STRING-LITERALS option 118
Stroustrup, Bjarne 235
structure, C data type 206
structures 210
STXIT event handling

for linkage between languages 197
SUBROUTINE-CALL option 117
subroutines

specifications (see linkage to languages) 189
summary listing 109, 164
SUPPRESS-MSG option

MODIFY-DIAGNOSTIC-PROPERTIES 95
switch statement 214
symbolic debugging

with AID 184
symbolic debugging with AID 184
SYSDTA, input of source program 76
SYSLIB.CRTE 25
SYSLIB.CRTE.CPP 25
SYSLNK.CRTE 26
SYSLNK.CRTE.CFCPP 27
SYSLNK.CRTE.COMPL 27
SYSLNK.CRTE.CPP 27
SYSLNK.CRTE.CPP-COMPL 28

Index

330 U21283-J-Z125-8-76

SYSLNK.CRTE.PARTIAL-BIND 27
SYSLNK.CRTE.POSIX 28, 36
SYSLNK.CRTE.RTSCPP 28
SYSLNK.CRTE.STDCPP 28
SYSLNK.CRTE.TOOLS 28

T
TEMPLATE-DEF-LIST option 86
templates

C++ linkage 240
instantiation of 244

TEST-SUPPORT option 88, 147
TITLE pragma 230
Tools.h++ library 279

U
UMP, message class 56
UNCHANGED, explanation of operand value 64
UNDEFINE option 138
union, C data type 206
USER-INCLUDE-LIBRARY option 100
USE-STD-NAMESPACE option 145

V
VERBOSE option 96
VIRTUAL_FUNCTION_TAB pragma 232
visibility

of external symbols 176
void, C data type 205
volatile, type qualifier 212

W
WARNING, message weight 56
wchar_t 210
weak pragma 232
with, suffix for SDF data types 18
without, suffix for SDF data types 18
WORKSPACE option 116

X
XREF listing (see cross-reference listing) 108,

163

	Contents
	Preface
	Brief product description
	Summary of contents and target group
	Changes since the previous version
	Notational conventions
	General notational conventions
	SDF notational conventions

	Overview of the C/C++ development system
	From source program to program execution
	General requirements for compilation, linkage and program execution
	General features of the C/C++ compiler
	Specific CRTE components required for C/C++
	Include libraries
	Module libraries

	Editing source programs
	POSIX support
	Compiler I/O in the POSIX file system
	Use of POSIX library functions

	Introductory examples
	Example 1: Compiling, linking, and starting a C program
	Example 2: Compiling, linking, and starting a C++ program (ANSI C++)
	Example 3: Compiling a C source program that is located in a POSIX file and uses POSIX library functions

	Compilation
	General aspects of the compiler run
	Input sources and output destinations of the compiler
	Construction of default names
	Default names for output containers
	Rules for constructing module names
	Structure of compiler messages

	Controlling the compiler
	Calling the compiler (START-CPLUS-COMPILER)
	Description of compiler statements
	Overview of statements
	Basic principles and general input rules
	BIND
	CHECK-SYNTAX
	COMPILE
	Notes on input via SYSDTA
	END
	MODIFY-BIND-PROPERTIES
	Interaction between the MODIFY-BIND-PROPERTIES and BIND statements
	MODIFY-CIF-PROPERTIES
	MODIFY-DIAGNOSTIC-PROPERTIES
	MODIFY-INCLUDE-LIBRARIES
	MODIFY-LISTING-PROPERTIES
	MODIFY-MODULE-PROPERTIES
	MODIFY-OPTIMIZATION-PROPERTIES
	The optimization process
	MODIFY-RUNTIME-PROPERTIES
	MODIFY-SOURCE-PROPERTIES
	MODIFY-TEST-PROPERTIES
	PREPROCESS
	RESET-TO-DEFAULT
	SHOW-DEFAULTS
	SHOW-PROPERTIES

	Controlling the global listing generator
	Calling the listing generator (START-CPLUS-LISTING-GENERATOR)
	Description of statements
	Overview of statements and input rules
	END
	GENERATE-LISTING
	MODIFY-LISTING-PROPERTIES

	Linkage and program execution
	Linkage
	Dynamic linking and loading with DBL
	Linking with BINDER
	Shareable C/C++ programs
	Restriction on linking ANSI C++ programs

	Program execution
	Parameter input at program start
	Redirecting standard I/O files
	Input of parameters for the main function
	Definition of the main function with parameters
	The advanced interactive debugger AID
	Requirements for symbolic debugging

	Linkage to functions and languages
	Linkage conventions specific to C and C++
	Parameter passing “by value”

	Linkage between C and C++
	Common types
	Calling C functions in C++
	Calling C++ functions in C
	Problems and restrictions

	Linkage between Cfront C++ and ANSI C++
	Notes on linkage to ILCS programs in other languages

	C language support of the compiler
	Overview of the C language modes
	Implementation-defined behavior based on the ANSI/ISO C standard
	Extensions to ANSI/ISO C
	Pragmas
	aligned pragma
	pack pragma
	ETPND pragma
	Pragmas to control the layout of listings
	LISTING pragma
	TITLE pragma
	PAGE pragma
	SPACE pragma
	inline pragma
	int_to_unsigned pragma
	weak pragma
	ident pragma
	C++ specific pragmas
	VIRTUAL_FUNCTION_TAB pragma
	Pragmas to control template instantiation

	C++ language support of the compiler
	Overview of the C++ language modes
	Implementation-defined behavior based on the ANSI/ISO C++ standard
	Template instantiation
	Fundamentals
	Automatic instantiation
	Generating explicit template instantiation statements (ETR files)
	Implicit inclusion

	Deviations from ANSI/ISO C++
	Extensions to ANSI-/ISO-C++
	extern inline vs. static inline

	Variations in the Cfront C++ mode

	The C++ libraries and C++ runtime system
	The standard C++ library
	The Cfront C++ library
	The Tools.h++ library
	The C++ runtime system
	Initialization
	Exception handling
	Additional runtime functions
	C signal handling and C++ exception handling
	longjmp support
	Linking old C modules with ANSI C++ modules

	Appendix
	Description of listings
	Source/error listing
	Map listing
	Cross-reference listing
	Object listing

	Predefined preprocessor names
	Concept of a name adapter module in the C runtime system
	The II-UPDATE tool
	EBCDIC table (EDF041)
	ASCII table (ISO 8859-1)

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

